Sample records for computer supported outbreak

  1. Removing a barrier to computer-based outbreak and disease surveillance--the RODS Open Source Project.

    PubMed

    Espino, Jeremy U; Wagner, M; Szczepaniak, C; Tsui, F C; Su, H; Olszewski, R; Liu, Z; Chapman, W; Zeng, X; Ma, L; Lu, Z; Dara, J

    2004-09-24

    Computer-based outbreak and disease surveillance requires high-quality software that is well-supported and affordable. Developing software in an open-source framework, which entails free distribution and use of software and continuous, community-based software development, can produce software with such characteristics, and can do so rapidly. The objective of the Real-Time Outbreak and Disease Surveillance (RODS) Open Source Project is to accelerate the deployment of computer-based outbreak and disease surveillance systems by writing software and catalyzing the formation of a community of users, developers, consultants, and scientists who support its use. The University of Pittsburgh seeded the Open Source Project by releasing the RODS software under the GNU General Public License. An infrastructure was created, consisting of a website, mailing lists for developers and users, designated software developers, and shared code-development tools. These resources are intended to encourage growth of the Open Source Project community. Progress is measured by assessing website usage, number of software downloads, number of inquiries, number of system deployments, and number of new features or modules added to the code base. During September--November 2003, users generated 5,370 page views of the project website, 59 software downloads, 20 inquiries, one new deployment, and addition of four features. Thus far, health departments and companies have been more interested in using the software as is than in customizing or developing new features. The RODS laboratory anticipates that after initial installation has been completed, health departments and companies will begin to customize the software and contribute their enhancements to the public code base.

  2. A method for detecting and characterizing outbreaks of infectious disease from clinical reports.

    PubMed

    Cooper, Gregory F; Villamarin, Ricardo; Rich Tsui, Fu-Chiang; Millett, Nicholas; Espino, Jeremy U; Wagner, Michael M

    2015-02-01

    Outbreaks of infectious disease can pose a significant threat to human health. Thus, detecting and characterizing outbreaks quickly and accurately remains an important problem. This paper describes a Bayesian framework that links clinical diagnosis of individuals in a population to epidemiological modeling of disease outbreaks in the population. Computer-based diagnosis of individuals who seek healthcare is used to guide the search for epidemiological models of population disease that explain the pattern of diagnoses well. We applied this framework to develop a system that detects influenza outbreaks from emergency department (ED) reports. The system diagnoses influenza in individuals probabilistically from evidence in ED reports that are extracted using natural language processing. These diagnoses guide the search for epidemiological models of influenza that explain the pattern of diagnoses well. Those epidemiological models with a high posterior probability determine the most likely outbreaks of specific diseases; the models are also used to characterize properties of an outbreak, such as its expected peak day and estimated size. We evaluated the method using both simulated data and data from a real influenza outbreak. The results provide support that the approach can detect and characterize outbreaks early and well enough to be valuable. We describe several extensions to the approach that appear promising. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Method for Detecting and Characterizing Outbreaks of Infectious Disease from Clinical Reports

    PubMed Central

    Cooper, Gregory F.; Villamarin, Ricardo; Tsui, Fu-Chiang (Rich); Millett, Nicholas; Espino, Jeremy U.; Wagner, Michael M.

    2014-01-01

    Outbreaks of infectious disease can pose a significant threat to human health. Thus, detecting and characterizing outbreaks quickly and accurately remains an important problem. This paper describes a Bayesian framework that links clinical diagnosis of individuals in a population to epidemiological modeling of disease outbreaks in the population. Computer-based diagnosis of individuals who seek healthcare is used to guide the search for epidemiological models of population disease that explain the pattern of diagnoses well. We applied this framework to develop a system that detects influenza outbreaks from emergency department (ED) reports. The system diagnoses influenza in individuals probabilistically from evidence in ED reports that are extracted using natural language processing. These diagnoses guide the search for epidemiological models of influenza that explain the pattern of diagnoses well. Those epidemiological models with a high posterior probability determine the most likely outbreaks of specific diseases; the models are also used to characterize properties of an outbreak, such as its expected peak day and estimated size. We evaluated the method using both simulated data and data from a real influenza outbreak. The results provide support that the approach can detect and characterize outbreaks early and well enough to be valuable. We describe several extensions to the approach that appear promising. PMID:25181466

  4. Public perceptions of quarantine: community-based telephone survey following an infectious disease outbreak.

    PubMed

    Tracy, C Shawn; Rea, Elizabeth; Upshur, Ross E G

    2009-12-16

    The use of restrictive measures such as quarantine draws into sharp relief the dynamic interplay between the individual rights of the citizen on the one hand and the collective rights of the community on the other. Concerns regarding infectious disease outbreaks (SARS, pandemic influenza) have intensified the need to understand public perceptions of quarantine and other social distancing measures. We conducted a telephone survey of the general population in the Greater Toronto Area in Ontario, Canada. Computer-assisted telephone interviewing (CATI) technology was used. A final sample of 500 individuals was achieved through standard random-digit dialing. Our data indicate strong public support for the use of quarantine when required and for serious legal sanctions against those who fail to comply. This support is contingent both on the implementation of legal safeguards to protect against inappropriate use and on the provision of psychosocial supports for those affected. To engender strong public support for quarantine and other restrictive measures, government officials and public health policy-makers would do well to implement a comprehensive system of supports and safeguards, to educate and inform frontline public health workers, and to engage the public at large in an open dialogue on the ethical use of restrictive measures during infectious disease outbreaks.

  5. Public perceptions of quarantine: community-based telephone survey following an infectious disease outbreak

    PubMed Central

    2009-01-01

    Background The use of restrictive measures such as quarantine draws into sharp relief the dynamic interplay between the individual rights of the citizen on the one hand and the collective rights of the community on the other. Concerns regarding infectious disease outbreaks (SARS, pandemic influenza) have intensified the need to understand public perceptions of quarantine and other social distancing measures. Methods We conducted a telephone survey of the general population in the Greater Toronto Area in Ontario, Canada. Computer-assisted telephone interviewing (CATI) technology was used. A final sample of 500 individuals was achieved through standard random-digit dialing. Results Our data indicate strong public support for the use of quarantine when required and for serious legal sanctions against those who fail to comply. This support is contingent both on the implementation of legal safeguards to protect against inappropriate use and on the provision of psychosocial supports for those affected. Conclusion To engender strong public support for quarantine and other restrictive measures, government officials and public health policy-makers would do well to implement a comprehensive system of supports and safeguards, to educate and inform frontline public health workers, and to engage the public at large in an open dialogue on the ethical use of restrictive measures during infectious disease outbreaks. PMID:20015400

  6. Creating a process for incorporating epidemiological modelling into outbreak management decisions.

    PubMed

    Akselrod, Hana; Mercon, Monica; Kirkeby Risoe, Petter; Schlegelmilch, Jeffrey; McGovern, Joanne; Bogucki, Sandy

    2012-01-01

    Modern computational models of infectious diseases greatly enhance our ability to understand new infectious threats and assess the effects of different interventions. The recently-released CDC Framework for Preventing Infectious Diseases calls for increased use of predictive modelling of epidemic emergence for public health preparedness. Currently, the utility of these technologies in preparedness and response to outbreaks is limited by gaps between modelling output and information requirements for incident management. The authors propose an operational structure that will facilitate integration of modelling capabilities into action planning for outbreak management, using the Incident Command System (ICS) and Synchronization Matrix framework. It is designed to be adaptable and scalable for use by state and local planners under the National Response Framework (NRF) and Emergency Support Function #8 (ESF-8). Specific epidemiological modelling requirements are described, and integrated with the core processes for public health emergency decision support. These methods can be used in checklist format to align prospective or real-time modelling output with anticipated decision points, and guide strategic situational assessments at the community level. It is anticipated that formalising these processes will facilitate translation of the CDC's policy guidance from theory to practice during public health emergencies involving infectious outbreaks.

  7. Reversible Parallel Discrete-Event Execution of Large-scale Epidemic Outbreak Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S; Seal, Sudip K

    2010-01-01

    The spatial scale, runtime speed and behavioral detail of epidemic outbreak simulations together require the use of large-scale parallel processing. In this paper, an optimistic parallel discrete event execution of a reaction-diffusion simulation model of epidemic outbreaks is presented, with an implementation over themore » $$\\mu$$sik simulator. Rollback support is achieved with the development of a novel reversible model that combines reverse computation with a small amount of incremental state saving. Parallel speedup and other runtime performance metrics of the simulation are tested on a small (8,192-core) Blue Gene / P system, while scalability is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes (up to several hundred million individuals in the largest case) are exercised.« less

  8. Hot spots in a wired world: WHO surveillance of emerging and re-emerging infectious diseases.

    PubMed

    Heymann, D L; Rodier, G R

    2001-12-01

    The resurgence of the microbial threat, rooted in several recent trends, has increased the vulnerability of all nations to the risk of infectious diseases, whether newly emerging, well-established, or deliberately caused. Infectious disease intelligence, gleaned through sensitive surveillance, is the best defence. The epidemiological and laboratory techniques needed to detect, investigate, and contain a deliberate outbreak are the same as those used for natural outbreaks. In April 2000, WHO formalised an infrastructure (the Global Outbreak Alert and Response Network) for responding to the heightened need for early awareness of outbreaks and preparedness to respond. The Network, which unites 110 existing networks, is supported by several new mechanisms and a computer-driven tool for real time gathering of disease intelligence. The procedure for outbreak alert and response has four phases: systematic detection, outbreak verification, real time alerts, and rapid response. For response, the framework uses different strategies for combating known risks and unexpected events, and for improving both global and national preparedness. New forces at work in an electronically interconnected world are beginning to break down the traditional reluctance of countries to report outbreaks due to fear of the negative impact on trade and tourism. About 65% of the world's first news about infectious disease events now comes from informal sources, including press reports and the internet.

  9. Transparency and Documentation in Simulations of Infectious Disease Outbreaks: Towards Evidence-Based Public Health Decisions and Communications

    NASA Astrophysics Data System (ADS)

    Ekberg, Joakim; Timpka, Toomas; Morin, Magnus; Jenvald, Johan; Nyce, James M.; Gursky, Elin A.; Eriksson, Henrik

    Computer simulations have emerged as important tools in the preparation for outbreaks of infectious disease. To support the collaborative planning and responding to the outbreaks, reports from simulations need to be transparent (accessible) with regard to the underlying parametric settings. This paper presents a design for generation of simulation reports where the background settings used in the simulation models are automatically visualized. We extended the ontology-management system Protégé to tag different settings into categories, and included these in report generation in parallel to the simulation outcomes. The report generator takes advantage of an XSLT specification and collects the documentation of the particular simulation settings into abridged XMLs including also summarized results. We conclude that even though inclusion of critical background settings in reports may not increase the accuracy of infectious disease simulations, it can prevent misunderstandings and less than optimal public health decisions.

  10. Influence of weather on the synchrony of gypsy moth (Lepidoptera: Lymantriidae) outbreaks in New England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D.W.; Liebhold, A.M.

    1995-10-01

    Outbreaks of the gypsy moth, Lymantria dispar (L.), were partially synchronous across New England states (Massachusetts, Maine, New Hampshire, and Vermont) from 1938 to 1992. To explain this synchrony, we investigated the Moran effect, a hypothesis that local population oscillations, which result form similar density-dependent mechanisms operating at time lags, may be synchronized over wide areas by exposure to common weather patterns. We also investigated the theory of climatic release, which ostulates that outbreaks are triggered by climatic factors favorable for population growth. Time series analysis revealed defoliation series in 2 states as 1st-order autoregressive processes and the other 2more » as periodic 2nd-order autoregressive processes. Defoliation residuals series computed using the autoregressive models for each state were cross correlated with series of weather variables recorded in the respective states. The weather variables significantly correlated with defoliation residuals in all 4 states were minimum temperature and precipitation in mid-December in the same gypsy moth generation and minimum temperature in mid- to late July of the previous generation. These weather variables also were correlated strongly among the 4 states. The analyses supported the predictions of the Moran effect and suggest the common weather may synchronize local populations so as to produce pest outbreaks over wide areas. We did not find convincing evidence to support the theory of climatic release. 41 refs., 7 figs., 4 tabs.« less

  11. Managing Ebola from rural to urban slum settings: experiences from Uganda.

    PubMed

    Okware, Sam I; Omaswa, Francis; Talisuna, Ambrose; Amandua, Jacinto; Amone, Jackson; Onek, Paul; Opio, Alex; Wamala, Joseph; Lubwama, Julius; Luswa, Lukwago; Kagwa, Paul; Tylleskar, Thorkild

    2015-03-01

    Five outbreaks of ebola occurred in Uganda between 2000-2012. The outbreaks were quickly contained in rural areas. However, the Gulu outbreak in 2000 was the largest and complex due to insurgency. It invaded Gulu municipality and the slum- like camps of the internally displaced persons (IDPs). The Bundigugyo district outbreak followed but was detected late as a new virus. The subsequent outbreaks in the districts of Luwero district (2011, 2012) and Kibaale (2012) were limited to rural areas. Detailed records of the outbreak presentation, cases, and outcomes were reviewed and analyzed. Each outbreak was described and the outcomes examined for the different scenarios. Early detection and action provided the best outcomes and results. The ideal scenario occurred in the Luwero outbreak during which only a single case was observed. Rural outbreaks were easier to contain. The community imposed quarantine prevented the spread of ebola following introduction into Masindi district. The outbreak was confined to the extended family of the index case and only one case developed in the general population. However, the outbreak invasion of the town slum areas escalated the spread of infection in Gulu municipality. Community mobilization and leadership was vital in supporting early case detection and isolations well as contact tracing and public education. Palliative care improved survival. Focusing on treatment and not just quarantine should be emphasized as it also enhanced public trust and health seeking behavior. Early detection and action provided the best scenario for outbreak containment. Community mobilization and leadership was vital in supporting outbreak control. International collaboration was essential in supporting and augmenting the national efforts.

  12. Faster Detection of Poliomyelitis Outbreaks to Support Polio Eradication

    PubMed Central

    Chenoweth, Paul; Okayasu, Hiro; Donnelly, Christl A.; Aylward, R. Bruce; Grassly, Nicholas C.

    2016-01-01

    As the global eradication of poliomyelitis approaches the final stages, prompt detection of new outbreaks is critical to enable a fast and effective outbreak response. Surveillance relies on reporting of acute flaccid paralysis (AFP) cases and laboratory confirmation through isolation of poliovirus from stool. However, delayed sample collection and testing can delay outbreak detection. We investigated whether weekly testing for clusters of AFP by location and time, using the Kulldorff scan statistic, could provide an early warning for outbreaks in 20 countries. A mixed-effects regression model was used to predict background rates of nonpolio AFP at the district level. In Tajikistan and Congo, testing for AFP clusters would have resulted in an outbreak warning 39 and 11 days, respectively, before official confirmation of large outbreaks. This method has relatively high specificity and could be integrated into the current polio information system to support rapid outbreak response activities. PMID:26890053

  13. Faster Detection of Poliomyelitis Outbreaks to Support Polio Eradication.

    PubMed

    Blake, Isobel M; Chenoweth, Paul; Okayasu, Hiro; Donnelly, Christl A; Aylward, R Bruce; Grassly, Nicholas C

    2016-03-01

    As the global eradication of poliomyelitis approaches the final stages, prompt detection of new outbreaks is critical to enable a fast and effective outbreak response. Surveillance relies on reporting of acute flaccid paralysis (AFP) cases and laboratory confirmation through isolation of poliovirus from stool. However, delayed sample collection and testing can delay outbreak detection. We investigated whether weekly testing for clusters of AFP by location and time, using the Kulldorff scan statistic, could provide an early warning for outbreaks in 20 countries. A mixed-effects regression model was used to predict background rates of nonpolio AFP at the district level. In Tajikistan and Congo, testing for AFP clusters would have resulted in an outbreak warning 39 and 11 days, respectively, before official confirmation of large outbreaks. This method has relatively high specificity and could be integrated into the current polio information system to support rapid outbreak response activities.

  14. A Study of 279 General Outbreaks of Gastrointestinal Infection in the North-East Region of England

    PubMed Central

    Tebbutt, Grahame M.; Wilson, Deborah; Holtby, Ian

    2009-01-01

    All outbreaks of infectious intestinal disease reported to the authorities were entered on a computer database with outbreak control teams being established to investigate larger or more significant incidents. The outbreak database and, when set up, the notes of outbreak team meetings were examined for the 279 outbreaks reported in a three-year period (2003–2005). Faeces specimens submitted as part of an outbreak were examined for microbial pathogens and the results cross-matched to the outbreak number. Almost half of the general outbreaks reported (137) occurred in long-term care facilities for the elderly, 51 outbreaks were recorded in hospitals and 31 occurred in the wider community. In 76 outbreaks no specimen was logged. A microbial cause was confirmed in about one-third of outbreaks, with noroviruses being the most common (19%). Salmonellas accounted for 12 of the 21 community outbreaks linked to social events and all were foodborne. Suggestions for improving notification and surveillance are discussed. PMID:19440398

  15. Computational analysis of Ebolavirus data: prospects, promises and challenges.

    PubMed

    Michaelis, Martin; Rossman, Jeremy S; Wass, Mark N

    2016-08-15

    The ongoing Ebola virus (also known as Zaire ebolavirus, a member of the Ebolavirus family) outbreak in West Africa has so far resulted in >28000 confirmed cases compared with previous Ebolavirus outbreaks that affected a maximum of a few hundred individuals. Hence, Ebolaviruses impose a much greater threat than we may have expected (or hoped). An improved understanding of the virus biology is essential to develop therapeutic and preventive measures and to be better prepared for future outbreaks by members of the Ebolavirus family. Computational investigations can complement wet laboratory research for biosafety level 4 pathogens such as Ebolaviruses for which the wet experimental capacities are limited due to a small number of appropriate containment laboratories. During the current West Africa outbreak, sequence data from many Ebola virus genomes became available providing a rich resource for computational analysis. Here, we consider the studies that have already reported on the computational analysis of these data. A range of properties have been investigated including Ebolavirus evolution and pathogenicity, prediction of micro RNAs and identification of Ebolavirus specific signatures. However, the accuracy of the results remains to be confirmed by wet laboratory experiments. Therefore, communication and exchange between computational and wet laboratory researchers is necessary to make maximum use of computational analyses and to iteratively improve these approaches. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Investigation of a computer virus outbreak in the pharmacy of a tertiary care teaching hospital.

    PubMed

    Bailey, T C; Reichley, R M

    1992-10-01

    A computer virus outbreak was recognized, verified, defined, investigated, and controlled using an infection control approach. The pathogenesis and epidemiology of computer virus infection are reviewed. Case-control study. Pharmacy of a tertiary care teaching institution. On October 28, 1991, 2 personal computers in the drug information center manifested symptoms consistent with the "Jerusalem" virus infection. The same day, a departmental personal computer began playing "Yankee Doodle," a sign of "Doodle" virus infection. An investigation of all departmental personal computers identified the "Stoned" virus in an additional personal computer. Controls were functioning virus-free personal computers within the department. Cases were associated with users who brought diskettes from outside the department (5/5 cases versus 5/13 controls, p = .04) and with College of Pharmacy student users (3/5 cases versus 0/13 controls, p = .012). The detection of a virus-infected diskette or personal computer was associated with the number of 5 1/4-inch diskettes in the files of personal computers, a surrogate for rate of media exchange (mean = 17.4 versus 152.5, p = .018, Wilcoxon rank sum test). After education of departmental personal computer users regarding appropriate computer hygiene and installation of virus protection software, no further spread of personal computer viruses occurred, although 2 additional Stoned-infected and 1 Jerusalem-infected diskettes were detected. We recommend that virus detection software be installed on personal computers where the interchange of diskettes among computers is necessary, that write-protect tabs be placed on all program master diskettes and data diskettes where data are being read and not written, that in the event of a computer virus outbreak, all available diskettes be quarantined and scanned by virus detection software, and to facilitate quarantine and scanning in an outbreak, that diskettes be stored in organized files.

  17. Whole genome sequencing of Salmonella Typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable number tandem repeat analysis type in Australia, 2014.

    PubMed

    Phillips, Anastasia; Sotomayor, Cristina; Wang, Qinning; Holmes, Nadine; Furlong, Catriona; Ward, Kate; Howard, Peter; Octavia, Sophie; Lan, Ruiting; Sintchenko, Vitali

    2016-09-15

    Salmonella Typhimurium (STM) is an important cause of foodborne outbreaks worldwide. Subtyping of STM remains critical to outbreak investigation, yet current techniques (e.g. multilocus variable number tandem repeat analysis, MLVA) may provide insufficient discrimination. Whole genome sequencing (WGS) offers potentially greater discriminatory power to support infectious disease surveillance. We performed WGS on 62 STM isolates of a single, endemic MLVA type associated with two epidemiologically independent, food-borne outbreaks along with sporadic cases in New South Wales, Australia, during 2014. Genomes of case and environmental isolates were sequenced using HiSeq (Illumina) and the genetic distance between them was assessed by single nucleotide polymorphism (SNP) analysis. SNP analysis was compared to the epidemiological context. The WGS analysis supported epidemiological evidence and genomes of within-outbreak isolates were nearly identical. Sporadic cases differed from outbreak cases by a small number of SNPs, although their close relationship to outbreak cases may represent an unidentified common food source that may warrant further public health follow up. Previously unrecognised mini-clusters were detected. WGS of STM can discriminate foodborne community outbreaks within a single endemic MLVA clone. Our findings support the translation of WGS into public health laboratory surveillance of salmonellosis.

  18. Framework for evaluating public health surveillance systems for early detection of outbreaks: recommendations from the CDC Working Group.

    PubMed

    Buehler, James W; Hopkins, Richard S; Overhage, J Marc; Sosin, Daniel M; Tong, Van

    2004-05-07

    The threat of terrorism and high-profile disease outbreaks has drawn attention to public health surveillance systems for early detection of outbreaks. State and local health departments are enhancing existing surveillance systems and developing new systems to better detect outbreaks through public health surveillance. However, information is limited about the usefulness of surveillance systems for outbreak detection or the best ways to support this function. This report supplements previous guidelines for evaluating public health surveillance systems. Use of this framework is intended to improve decision-making regarding the implementation of surveillance for outbreak detection. Use of a standardized evaluation methodology, including description of system design and operation, also will enhance the exchange of information regarding methods to improve early detection of outbreaks. The framework directs particular attention to the measurement of timeliness and validity for outbreak detection. The evaluation framework is designed to support assessment and description of all surveillance approaches to early detection, whether through traditional disease reporting, specialized analytic routines for aberration detection, or surveillance using early indicators of disease outbreaks, such as syndromic surveillance.

  19. Characterization of Clostridium Baratii Type F Strains Responsible for an Outbreak of Botulism Linked to Beef Meat Consumption in France.

    PubMed

    Mazuet, Christelle; Legeay, Christine; Sautereau, Jean; Bouchier, Christiane; Criscuolo, Alexis; Bouvet, Philippe; Trehard, Hélène; Jourdan Da Silva, Nathalie; Popoff, Michel

    2017-02-01

    A second botulism outbreak due to Clostridium baratii occurred in France in August 2015 and included three patients who had their meal in a restaurant the same day. We report the characterization of C. baratii isolates including whole genome sequencing (WGS). Four C. baratii isolates collected in August 2015 from the outbreak 2 were analysed for toxin production and typing as well as for genetic characterization. WGS was done using using the NEBNext Ultra DNA Library Prep kit for Illumina (New England Biolabs) and sequenced on MiSeq machine (Illumina) in paired-end reads of 250 bases. The phylogenetic tree was generated based on the UPGMA method with genetic distances computed by using the Kimura two-parameter model. Evolutionary analyses were conducted in Bionumerics (V.6.6 Applied Maths). Three C. baratii isolates for patient's stools and one isolate from meat produced botulinum neurotoxin (BoNT) type F and retained a bont/F7 gene in OrfX cluster. All isolates were identical according to the WGS. However, phylogeny of the core genome showed that the four C. baratii strains were distantly related to that of the previous C. baratii outbreak in France in 2014 and from the other C. baratii strains reported in databanks. The fact that the strains isolated from the patients and meat samples were genetically identical supports that the meat used for the Bolognese sauce was responsible for this second botulism outbreak in France. These isolates were unrelated to that from the first C. baratii outbreak in France in 2014 indicating a distinct source of contamination. WGS provided robust determination of genetic relatedness and information regarding BoNT typing and toxin gene locus genomic localization.

  20. The Role of the Polio Program Infrastructure in Response to Ebola Virus Disease Outbreak in Nigeria 2014

    PubMed Central

    Vaz, Rui G.; Mkanda, Pascal; Banda, Richard; Komkech, William; Ekundare-Famiyesin, Olubowale O.; Onyibe, Rosemary; Abidoye, Sunday; Nsubuga, Peter; Maleghemi, Sylvester; Hannah-Murele, Bolatito; Tegegne, Sisay G.

    2016-01-01

    Background. The current West African outbreak of the Ebola virus disease (EVD) began in Guinea in December 2013 and rapidly spread to Liberia and Sierra Leone. On 20 July 2014, a sick individual flew into Lagos, Nigeria, from Monrovia, Liberia, setting off an outbreak in Lagos and later in Port Harcourt city. The government of Nigeria, supported by the World Health Organization and other partners, mounted a response to the outbreak relying on the polio program experiences and infrastructure. On 20 October 2014, the country was declared free of EVD. Methods. We examined the organization and operations of the response to the 2014 EVD outbreak in Nigeria and how experiences and support from the country's polio program infrastructure accelerated the outbreak response. Results. The deputy incident manager of the National Polio Emergency Operations Centre was appointed the incident manager of the Ebola Emergency Operations Centre (EEOC), the body that coordinated and directed the response to the EVD outbreak in the country. A total of 892 contacts were followed up, and blood specimens were collected from 61 persons with suspected EVD and tested in designated laboratories. Of these, 19 (31%) were positive for Ebola, and 11 (58%) of the case patients were healthcare workers. The overall case-fatality rate was 40%. EVD sensitization and training were conducted during the outbreak and for 2 months after the outbreak ended. The World Health Organization deployed its surveillance and logistics personnel from non–Ebola-infected states to support response activities in Lagos and Rivers states. Conclusions. The support from the polio program infrastructure, particularly the coordination mechanism adopted (the EEOC), the availability of skilled personnel in the polio program, and lessons learned from managing the polio eradication program greatly contributed to the speedy containment of the 2014 EVD outbreak in Nigeria. PMID:26908718

  1. Computer-Generated Dot Maps as an Epidemiologic Tool: Investigating an Outbreak of Toxoplasmosis

    PubMed Central

    Werker, Denise H.; King, Arlene S.; Marion, Stephen A.; Bell, Alison; Issac-Renton, Judith L.; Irwin, G. Stewart; Bowie, William R.

    1999-01-01

    We used computer-generated dot maps to examine the spatial distribution of 94 Toxoplasma gondii infections associated with an outbreak in British Columbia, Canada. The incidence among patients served by one water distribution system was 3.52 times that of patients served by other sources. Acute T. gondii infection among 3,812 pregnant women was associated with the incriminated distribution system. PMID:10603218

  2. Preparedness of elderly long-term care facilities in HSE East for influenza outbreaks.

    PubMed

    O'Connor, L; Boland, M; Murphy, H

    2015-01-01

    Abstract We assessed preparedness of HSE East elderly long-term care facilities for an influenza outbreak, and identified Public Health Department support needs. We surveyed 166 facilities based on the HSE checklist document for influenza outbreaks, with 58% response rate. Client flu vaccination rates were > 75%; leading barriers were client anxiety and consent issues. Target flu vaccine uptake of 40% in staff occurred in 43% of facilities and was associated with staff vaccine administration by afacility-attached GP (p = 0.035), having a facility outbreak plan (p = 0.013) and being anon-HSE run facility (p = 0.013). Leading barriers were staff personal anxiety (94%) and lack of awareness of the protective effect on clients (21%). Eighty-nine percent found Public Health helpful, and requested further educational support and advocacy. Staff vaccine uptake focus, organisational leadership, optimal vaccine provision models, outbreak plans and Public Health support are central to the influenza campaign in elderly long-term care facilities.

  3. Discrete Event Modeling and Massively Parallel Execution of Epidemic Outbreak Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S; Seal, Sudip K

    2011-01-01

    In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback effects and the significant role of transients in the dynamics make simulation the only effective method for proactive, reactive or post-facto analysis. The spatial scale, runtime speed, and behavioral detail needed in detailed simulations of epidemic outbreaks make it necessary to use large-scale parallel processing. Here, an optimistic parallel execution of a new discrete event formulation of a reaction-diffusion simulation model of epidemic propagation is presented to facilitate in dramatically increasing the fidelity and speed by which epidemiological simulations can be performed. Rollback support needed during optimistic parallelmore » execution is achieved by combining reverse computation with a small amount of incremental state saving. Parallel speedup of over 5,500 and other runtime performance metrics of the system are observed with weak-scaling execution on a small (8,192-core) Blue Gene / P system, while scalability with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes exceeding several hundreds of millions of individuals in the largest cases are successfully exercised to verify model scalability.« less

  4. Spatially explicit models, generalized reproduction numbers and the prediction of patterns of waterborne disease

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Gatto, M.; Mari, L.; Casagrandi, R.; Righetto, L.; Bertuzzo, E.; Rodriguez-Iturbe, I.

    2012-12-01

    Metacommunity and individual-based theoretical models are studied in the context of the spreading of infections of water-borne diseases along the ecological corridors defined by river basins and networks of human mobility. The overarching claim is that mathematical models can indeed provide predictive insight into the course of an ongoing epidemic, potentially aiding real-time emergency management in allocating health care resources and by anticipating the impact of alternative interventions. To support the claim, we examine the ex-post reliability of published predictions of the 2010-2011 Haiti cholera outbreak from four independent modeling studies that appeared almost simultaneously during the unfolding epidemic. For each modeled epidemic trajectory, it is assessed how well predictions reproduced the observed spatial and temporal features of the outbreak to date. The impact of different approaches is considered to the modeling of the spatial spread of V. cholera, the mechanics of cholera transmission and in accounting for the dynamics of susceptible and infected individuals within different local human communities. A generalized model for Haitian epidemic cholera and the related uncertainty is thus constructed and applied to the year-long dataset of reported cases now available. Specific emphasis will be dedicated to models of human mobility, a fundamental infection mechanism. Lessons learned and open issues are discussed and placed in perspective, supporting the conclusion that, despite differences in methods that can be tested through model-guided field validation, mathematical modeling of large-scale outbreaks emerges as an essential component of future cholera epidemic control. Although explicit spatial modeling is made routinely possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is still lacking. Here, we show that the requirement that all the local reproduction numbers R0 be larger than unity is neither necessary nor sufficient for outbreaks to occur when local settlements are connected by networks of primary and secondary infection mechanisms. To determine onset conditions, we derive general analytical expressions for a reproduction matrix G0 explicitly accounting for spatial distributions of human settlements and pathogen transmission via hydrological and human mobility networks. At disease onset, a generalized reproduction number Λ0 (the dominant eigenvalue of G0) must be larger than unity. We also show that geographical outbreak patterns in complex environments are linked to the dominant eigenvector and to spectral properties of G0. Tests against data and computations for the 2010 Haiti and 2000 KwaZulu-Natal cholera outbreaks, as well as against computations for metapopulation networks, demonstrate that eigenvectors of G0 provide a synthetic and effective tool for predicting the disease course in space and time. Networked connectivity models, describing the interplay between hydrology, epidemiology and social behavior sustaining human mobility, thus prove to be key tools for emergency management of waterborne infections.

  5. An infectious way to teach students about outbreaks.

    PubMed

    Cremin, Íde; Watson, Oliver; Heffernan, Alastair; Imai, Natsuko; Ahmed, Norin; Bivegete, Sandra; Kimani, Teresia; Kyriacou, Demetris; Mahadevan, Preveina; Mustafa, Rima; Pagoni, Panagiota; Sophiea, Marisa; Whittaker, Charlie; Beacroft, Leo; Riley, Steven; Fisher, Matthew C

    2018-06-01

    The study of infectious disease outbreaks is required to train today's epidemiologists. A typical way to introduce and explain key epidemiological concepts is through the analysis of a historical outbreak. There are, however, few training options that explicitly utilise real-time simulated stochastic outbreaks where the participants themselves comprise the dataset they subsequently analyse. In this paper, we present a teaching exercise in which an infectious disease outbreak is simulated over a five-day period and subsequently analysed. We iteratively developed the teaching exercise to offer additional insight into analysing an outbreak. An R package for visualisation, analysis and simulation of the outbreak data was developed to accompany the practical to reinforce learning outcomes. Computer simulations of the outbreak revealed deviations from observed dynamics, highlighting how simplifying assumptions conventionally made in mathematical models often differ from reality. Here we provide a pedagogical tool for others to use and adapt in their own settings. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Mitigating Infectious Disease Outbreaks

    NASA Astrophysics Data System (ADS)

    Davey, Victoria

    The emergence of new, transmissible infections poses a significant threat to human populations. As the 2009 novel influenza A/H1N1 pandemic and the 2014-2015 Ebola epidemic demonstrate, we have observed the effects of rapid spread of illness in non-immune populations and experienced disturbing uncertainty about future potential for human suffering and societal disruption. Clinical and epidemiologic characteristics of a newly emerged infectious organism are usually gathered in retrospect as the outbreak evolves and affects populations. Knowledge of potential effects of outbreaks and epidemics and most importantly, mitigation at community, regional, national and global levels is needed to inform policy that will prepare and protect people. Study of possible outcomes of evolving epidemics and application of mitigation strategies is not possible in observational or experimental research designs, but computational modeling allows conduct of `virtual' experiments. Results of well-designed computer simulations can aid in the selection and implementation of strategies that limit illness and death, and maintain systems of healthcare and other critical resources that are vital to public protection. Mitigating Infectious Disease Outbreaks.

  7. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection.

    PubMed

    Taylor, Angela J; Lappi, Victoria; Wolfgang, William J; Lapierre, Pascal; Palumbo, Michael J; Medus, Carlota; Boxrud, David

    2015-10-01

    Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Simulation study of the mechanisms underlying outbreaks of clinical disease caused by Actinobacillus pleuropneumoniae in finishing pigs.

    PubMed

    Klinkenberg, D; Tobias, T J; Bouma, A; van Leengoed, L A M G; Stegeman, J A

    2014-10-01

    Actinobacillus pleuropneumoniae is a major cause of respiratory disease in pigs. Many farms are endemically infected without apparent disease, but occasionally severe outbreaks of pleuropneumonia occur. To prevent and control these outbreaks without antibiotics, the underlying mechanisms of these outbreaks need to be understood. Outbreaks are probably initiated by a trigger (common risk factor) changing the host-pathogen interaction, but it is unclear whether this trigger causes all cases directly (trigger mechanism), or whether the first case starts a transmission chain inducing disease in the infected contacts (transmission mechanism). The aim of this study was to identify conditions under which these mechanisms could cause A. pleuropneumoniae outbreaks, and to assess means for prevention and control. Outbreaks were first characterised by data from a literature review, defining an average outbreak at 12 weeks of age, affecting 50% of animals within 4 days. Simple mathematical models describing the two mechanisms can reproduce average outbreaks, with two observations supporting the trigger mechanism: (1) disease should be transmitted 50 times faster than supported by literature if there is a transmission chain; and (2) the trigger mechanism is consistent with the absence of reported outbreaks in young pigs as they have not yet been colonised by the bacterium. In conclusion, outbreaks of A. pleuropneumoniae on endemic farms are most likely caused by a trigger inducing pneumonia in already infected pigs, but more evidence is needed to identify optimum preventive interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Signature-forecasting and early outbreak detection system

    PubMed Central

    Naumova, Elena N.; MacNeill, Ian B.

    2008-01-01

    SUMMARY Daily disease monitoring via a public health surveillance system provides valuable information on population risks. Efficient statistical tools for early detection of rapid changes in the disease incidence are a must for modern surveillance. The need for statistical tools for early detection of outbreaks that are not based on historical information is apparent. A system is discussed for monitoring cases of infections with a view to early detection of outbreaks and to forecasting the extent of detected outbreaks. We propose a set of adaptive algorithms for early outbreak detection that does not rely on extensive historical recording. We also include knowledge of infection disease epidemiology into forecasts. To demonstrate this system we use data from the largest water-borne outbreak of cryptosporidiosis, which occurred in Milwaukee in 1993. Historical data are smoothed using a loess-type smoother. Upon receipt of a new datum, the smoothing is updated and estimates are made of the first two derivatives of the smooth curve, and these are used for near-term forecasting. Recent data and the near-term forecasts are used to compute a color-coded warning index, which quantify the level of concern. The algorithms for computing the warning index have been designed to balance Type I errors (false prediction of an epidemic) and Type II errors (failure to correctly predict an epidemic). If the warning index signals a sufficiently high probability of an epidemic, then a forecast of the possible size of the outbreak is made. This longer term forecast is made by fitting a ‘signature’ curve to the available data. The effectiveness of the forecast depends upon the extent to which the signature curve captures the shape of outbreaks of the infection under consideration. PMID:18716671

  10. Yellow Fever Outbreak, Southern Sudan, 2003

    PubMed Central

    Onyango, Clayton O.; Grobbelaar, Antoinette A.; Gibson, Georgina V.F.; Sang, Rosemary C.; Sow, Abdourahmane; Swanepoel, Robert

    2004-01-01

    In May 2003, an outbreak of fatal hemorrhagic fever, caused by yellow fever virus, occurred in southern Sudan. Phylogenetic analysis showed that the virus belonged to the East African genotype, which supports the contention that yellow fever is endemic in East Africa with the potential to cause large outbreaks in humans. PMID:15498174

  11. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013–2016

    PubMed Central

    Spengler, Jessica R.; Ervin, Elizabeth D.; Towner, Jonathan S.; Rollin, Pierre E.

    2016-01-01

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013–2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community’s insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Continued efforts during the outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research. PMID:27070842

  12. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016

    DOE PAGES

    Spengler, Jessica R.; Ervin, Elizabeth D.; Towner, Jonathan S.; ...

    2016-06-01

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Finally, continued efforts during themore » outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.« less

  13. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spengler, Jessica R.; Ervin, Elizabeth D.; Towner, Jonathan S.

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Finally, continued efforts during themore » outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.« less

  14. Perspectives on West Africa Ebola Virus Disease Outbreak, 2013-2016.

    PubMed

    Spengler, Jessica R; Ervin, Elizabeth D; Towner, Jonathan S; Rollin, Pierre E; Nichol, Stuart T

    2016-06-01

    The variety of factors that contributed to the initial undetected spread of Ebola virus disease in West Africa during 2013-2016 and the difficulty controlling the outbreak once the etiology was identified highlight priorities for disease prevention, detection, and response. These factors include occurrence in a region recovering from civil instability and lacking experience with Ebola response; inadequate surveillance, recognition of suspected cases, and Ebola diagnosis; mobile populations and extensive urban transmission; and the community's insufficient general understanding about the disease. The magnitude of the outbreak was not attributable to a substantial change of the virus. Continued efforts during the outbreak and in preparation for future outbreak response should involve identifying the reservoir, improving in-country detection and response capacity, conducting survivor studies and supporting survivors, engaging in culturally appropriate public education and risk communication, building productive interagency relationships, and continuing support for basic research.

  15. A Growing Global Network’s Role in Outbreak Response: AFHSC-GEIS 2008-2009

    DTIC Science & Technology

    2011-01-01

    network and included a wide spectrum of support activities in collaboration with host country partners, several of which were in direct support of the... activities in collaboration with host country partners, several of which were in direct support of the World Health Organization?s (WHO) International...military’s role in supporting outbreak response activities within their own countries [6]. In late 2006, Chretien et al., provided a detailed break- down of

  16. Support vector machine applied to predict the zoonotic potential of E. coli O157 cattle isolates

    USDA-ARS?s Scientific Manuscript database

    Methods based on sequence data analysis facilitate the tracking of disease outbreaks, allow relationships between strains to be reconstructed and virulence factors to be identified. However, these methods are used postfactum after an outbreak has happened. Here, we show that support vector machine a...

  17. The risk of sustained sexual transmission of Zika is underestimated

    PubMed Central

    2017-01-01

    Pathogens often follow more than one transmission route during outbreaks—from needle sharing plus sexual transmission of HIV to small droplet aerosol plus fomite transmission of influenza. Thus, controlling an infectious disease outbreak often requires characterizing the risk associated with multiple mechanisms of transmission. For example, during the Ebola virus outbreak in West Africa, weighing the relative importance of funeral versus health care worker transmission was essential to stopping disease spread. As a result, strategic policy decisions regarding interventions must rely on accurately characterizing risks associated with multiple transmission routes. The ongoing Zika virus (ZIKV) outbreak challenges our conventional methodologies for translating case-counts into route-specific transmission risk. Critically, most approaches will fail to accurately estimate the risk of sustained sexual transmission of a pathogen that is primarily vectored by a mosquito—such as the risk of sustained sexual transmission of ZIKV. By computationally investigating a novel mathematical approach for multi-route pathogens, our results suggest that previous epidemic threshold estimates could under-estimate the risk of sustained sexual transmission by at least an order of magnitude. This result, coupled with emerging clinical, epidemiological, and experimental evidence for an increased risk of sexual transmission, would strongly support recent calls to classify ZIKV as a sexually transmitted infection. PMID:28934370

  18. The Methanol Poisoning Outbreaks in Libya 2013 and Kenya 2014.

    PubMed

    Rostrup, Morten; Edwards, Jeffrey K; Abukalish, Mohamed; Ezzabi, Masoud; Some, David; Ritter, Helga; Menge, Tom; Abdelrahman, Ahmed; Rootwelt, Rebecca; Janssens, Bart; Lind, Kyrre; Paasma, Raido; Hovda, Knut Erik

    2016-01-01

    Outbreaks of methanol poisoning occur frequently on a global basis, affecting poor and vulnerable populations. Knowledge regarding methanol is limited, likely many cases and even outbreaks go unnoticed, with patients dying unnecessarily. We describe findings from the first three large outbreaks of methanol poisoning where Médecins Sans Frontières (MSF) responded, and evaluate the benefits of a possible future collaboration between local health authorities, a Non-Governmental Organisation and international expertise. Retrospective study of three major methanol outbreaks in Libya (2013) and Kenya (May and July 2014). Data were collected from MSF field personnel, local health personnel, hospital files, and media reports. In Tripoli, Libya, over 1,000 patients were poisoned with a reported case fatality rate of 10% (101/1,066). In Kenya, two outbreaks resulted in approximately 341 and 126 patients, with case fatality rates of 29% (100/341) and 21% (26/126), respectively. MSF launched an emergency team with international experts, medications and equipment, however, the outbreaks were resolving by the time of arrival. Recognition of an outbreak of methanol poisoning and diagnosis seem to be the most challenging tasks, with significant delay from time of first presentations to public health warnings being issued. In spite of the rapid response from an emergency team, the outbreaks were nearly concluded by the time of arrival. A major impact on the outcome was not seen, but large educational trainings were conducted to increase awareness and knowledge about methanol poisoning. Based on this training, MSF was able to send a local emergency team during the second outbreak, supporting that such an approach could improve outcomes. Basic training, simplified treatment protocols, point-of-care diagnostic tools, and early support when needed, are likely the most important components to impact the consequences of methanol poisoning outbreaks in these challenging contexts.

  19. Interactions among human behavior, social networks, and societal infrastructures: A Case Study in Computational Epidemiology

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.

    Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.

  20. Computer-aided assessment of pulmonary disease in novel swine-origin H1N1 influenza on CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Dwyer, Andrew J.; Summers, Ronald M.; Mollura, Daniel J.

    2011-03-01

    The 2009 pandemic is a global outbreak of novel H1N1 influenza. Radiologic images can be used to assess the presence and severity of pulmonary infection. We develop a computer-aided assessment system to analyze the CT images from Swine-Origin Influenza A virus (S-OIV) novel H1N1 cases. The technique is based on the analysis of lung texture patterns and classification using a support vector machine (SVM). Pixel-wise tissue classification is computed from the SVM value. The method was validated on four H1N1 cases and ten normal cases. We demonstrated that the technique can detect regions of pulmonary abnormality in novel H1N1 patients and differentiate these regions from visually normal lung (area under the ROC curve is 0.993). This technique can also be applied to differentiate regions infected by different pulmonary diseases.

  1. Salmonellosis Outbreak Traced to Playground Sand, Australia, 2007–2009

    PubMed Central

    Musto, Jennie; Hogg, Geoff; Janssen, Monika; Rose, Karrie

    2012-01-01

    A community outbreak of gastroenteritis in Australia during 2007–2009 was caused by ingestion of playground sand contaminated with Salmonella enterica Paratyphi B, variant Java. The bacterium was also isolated from local wildlife. Findings support consideration of nonfood sources during salmonellosis outbreak investigations and indicate transmission through the animal–human interface. PMID:22709539

  2. Discrimination of tornadic and non-tornadic severe weather outbreaks

    NASA Astrophysics Data System (ADS)

    Mercer, Andrew Edward

    Outbreaks of severe weather affect the majority of the conterminous United States. An outbreak is characterized by multiple severe weather occurrences within a single synoptic system. Outbreaks can be categorized by whether or not they produce tornadoes. It is hypothesized that the antecedent synoptic signal contains important information about outbreak type. Accordingly, the scope of this research is to determine the extent that the synoptic signal can be utilized to classify outbreak type at various lead times. Outbreak types are classified using the NCEP/NCAR reanalysis data, which are arranged on a global 2.5° latitude-longitude grid, include 17 vertical pressure levels, and span from 1948 to the present (2008). Fifty major tornado outbreak (TO) cases and fifty major non-tornadic severe weather outbreak (NTO) cases are selected for this work. Two types of analyses are performed on these cases to assess discrimination ability. One analysis involves outbreak classification using the Weather Research and Forecasting (WRF) model initialized with the NCEP/NCAR reanalysis dataset. Meteorological covariates are computed from the WRF output and used in training and testing of statistical classification models. The covariate fields are depicted on a 21 X 21 gridpoint field with an 18 km grid spacing centered on the outbreak. Covariates with large discrimination potential are determined using permutation testing. A P-mode principal component analysis (PCA) is used on the subset of covariates determined by permutation testing to reduce data dimensionality, since numerous redundancies exist in the initial covariate set. Three statistical classification models are trained and tested with the resulting PC scores: a support vector machine (SVM), a logistic regression model (LogR), and a multiple linear regression model (LR). Promising results emerge from these methods, as a probability of detection (POD) of 0.89 and a false alarm ratio (FAR) of 0.13 are obtained from the best discriminating statistical technique (SVM) at 24-hours lead time. Results degrade only slightly by 72-hours lead time (maximum POD of 0.833 and minimum FAR of 0.276). Synoptic composites of the outbreak types are the second analysis considered. Composites are used to reveal synoptic features of outbreak types, which can be utilized to diagnose the differences between classes (in this case, TOs and NTOs). The composites are created using PCA. Five raw variables, height, temperature, relative humidity, and u and v wind components, are extracted from the NCEP/NCAR reanalysis data for North America. Converging longitude lines with increasing latitude on the reanalysis grid introduce bias into correlation calculations in higher latitudes; hence, the data are mapped onto both a latitudinal density grid and a Fibonacci grid. The resulting PCA produces two significant principal components (PCs), and a cluster analysis on these PCs for each outbreak type results in two types of TOs and NTOs. TO composites are characterized by a trough of low pressure over the central United States and major quasigeostrophic forcing features such as an upper level jet streak, cyclonic vorticity advection increasing with height, and warm air advection. These dynamics result in a strong surface cyclone in most tornado outbreaks. These features are considerably less pronounced in NTOs. The statistical analyses presented herein were successful in classifying outbreak types at various lead times, using synoptic scale data as input.

  3. Scabies outbreaks in residential care homes: factors associated with late recognition, burden and impact. A mixed methods study in England.

    PubMed

    Hewitt, K A; Nalabanda, A; Cassell, J A

    2015-05-01

    Scabies is an important public health problem in residential care homes. Delayed diagnosis contributes to outbreaks, which may be prolonged and difficult to control. We investigated factors influencing outbreak recognition, diagnosis and treatment, and staff experiences of outbreak control, identifying areas for intervention. We carried out a semi-structured survey of managers, affected residents and staff of seven care homes reporting suspected scabies outbreaks in southern England over a 6-month period. Attack rates ranged from 2% to 50%, and most cases had dementia (37/39, 95%). Cases were diagnosed clinically by GPs (59%) or home staff (41%), none by dermatologists. Most outbreaks were attributable to avoidably late diagnosis of the index case. Participants reported considerable challenges in managing scabies outbreaks, including late diagnosis and recognition of outbreaks; logistically difficult mass treatment; distressing treatment processes and high costs. This study demonstrates the need for improved support for care homes in detecting and managing these outbreaks.

  4. Delays in Global Disease Outbreak Responses: Lessons from H1N1, Ebola, and Zika

    PubMed Central

    Silverberg, Sarah L.

    2018-01-01

    In global disease outbreaks, there are significant time delays between the source of an outbreak and collective action. Some delay is necessary, but recent delays have been extended by insufficient surveillance capacity and time-consuming efforts to mobilize action. Three public health emergencies of international concern (PHEICs)—H1N1, Ebola, and Zika—allow us to identify and compare sources of delays and consider seven hypotheses about what influences the length of delays. These hypotheses can then motivate further research that empirically tests them. The three PHEICs suggest that deferred global mobilization is a greater source of delay than is poor surveillance capacity. These case study outbreaks support hypotheses that we see quicker responses for novel diseases when outbreaks do not coincide with holidays and when US citizens are infected. They do not support hypotheses that we see quicker responses for more severe outbreaks or those that threaten larger numbers of people. Better understanding the reason for delays can help target policy interventions and identify the kind of global institutional changes needed to reduce the spread and severity of future PHEICs. PMID:29345996

  5. CDC Support for Global Public Health Emergency Management.

    PubMed

    Brencic, Daniel J; Pinto, Meredith; Gill, Adrienne; Kinzer, Michael H; Hernandez, Luis; Pasi, Omer G

    2017-12-01

    Recent pandemics and rapidly spreading outbreaks of infectious diseases have illustrated the interconnectedness of the world and the importance of improving the international community's ability to effectively respond. The Centers for Disease Control and Prevention (CDC), building on a strong foundation of lessons learned through previous emergencies, international recognition, and human and technical expertise, has aspired to support nations around the world to strengthen their public health emergency management (PHEM) capacity. PHEM principles streamline coordination and collaboration in responding to infectious disease outbreaks, which align with the core capacities outlined in the International Health Regulations 2005. CDC supports PHEM by providing in-country technical assistance, aiding the development of plans and procedures, and providing fellowship opportunities for public health emergency managers. To this end, CDC partners with US agencies, international partners, and multilateral organizations to support nations around the world to reduce illness and death from outbreaks of infectious diseases.

  6. The Methanol Poisoning Outbreaks in Libya 2013 and Kenya 2014

    PubMed Central

    Rostrup, Morten; Edwards, Jeffrey K.; Abukalish, Mohamed; Ezzabi, Masoud; Some, David; Ritter, Helga; Menge, Tom; Abdelrahman, Ahmed; Rootwelt, Rebecca; Janssens, Bart; Lind, Kyrre; Paasma, Raido; Hovda, Knut Erik

    2016-01-01

    Background Outbreaks of methanol poisoning occur frequently on a global basis, affecting poor and vulnerable populations. Knowledge regarding methanol is limited, likely many cases and even outbreaks go unnoticed, with patients dying unnecessarily. We describe findings from the first three large outbreaks of methanol poisoning where Médecins Sans Frontières (MSF) responded, and evaluate the benefits of a possible future collaboration between local health authorities, a Non-Governmental Organisation and international expertise. Methods Retrospective study of three major methanol outbreaks in Libya (2013) and Kenya (May and July 2014). Data were collected from MSF field personnel, local health personnel, hospital files, and media reports. Findings In Tripoli, Libya, over 1,000 patients were poisoned with a reported case fatality rate of 10% (101/1,066). In Kenya, two outbreaks resulted in approximately 341 and 126 patients, with case fatality rates of 29% (100/341) and 21% (26/126), respectively. MSF launched an emergency team with international experts, medications and equipment, however, the outbreaks were resolving by the time of arrival. Interpretation Recognition of an outbreak of methanol poisoning and diagnosis seem to be the most challenging tasks, with significant delay from time of first presentations to public health warnings being issued. In spite of the rapid response from an emergency team, the outbreaks were nearly concluded by the time of arrival. A major impact on the outcome was not seen, but large educational trainings were conducted to increase awareness and knowledge about methanol poisoning. Based on this training, MSF was able to send a local emergency team during the second outbreak, supporting that such an approach could improve outcomes. Basic training, simplified treatment protocols, point-of-care diagnostic tools, and early support when needed, are likely the most important components to impact the consequences of methanol poisoning outbreaks in these challenging contexts. PMID:27030969

  7. Whole-genome Sequencing for Tracing the Transmission Link between Two ARD Outbreaks Caused by a Novel HAdV Serotype 7 Variant, China

    PubMed Central

    Qiu, Shaofu; Li, Peng; Liu, Hongbo; Wang, Yong; Liu, Nan; Li, Chengyi; Li, Shenlong; Li, Ming; Jiang, Zhengjie; Sun, Huandong; Li, Ying; Xie, Jing; Yang, Chaojie; Wang, Jian; Li, Hao; Yi, Shengjie; Wu, Zhihao; Jia, Leili; Wang, Ligui; Hao, Rongzhang; Sun, Yansong; Huang, Liuyu; Ma, Hui; Yuan, Zhengquan; Song, Hongbin

    2015-01-01

    From December 2012 to February 2013, two outbreaks of acute respiratory disease caused by HAdV-7 were reported in China. We investigated possible transmission links between these two seemingly unrelated outbreaks by integration of epidemiological and whole-genome sequencing (WGS) data. WGS analyses showed that the HAdV-7 isolates from the two outbreaks were genetically indistinguishable; however, a 12 bp deletion in the virus-associated RNA gene distinguished the outbreak isolates from other HAdV-7 isolates. Outbreak HAdV-7 isolates demonstrated increased viral replication compared to non-outbreak associated HAdV-7 isolate. Epidemiological data supported that the first outbreak was caused by introduction of the novel HAdV-7 virus by an infected recruit upon arrival at the training base. Nosocomial transmission by close contacts was the most likely source leading to onset of the second HAdV-7 outbreak, establishing the apparent transmission link between the outbreaks. Our findings imply that in-hospital contact investigations should be encouraged to reduce or interrupt further spread of infectious agents when treating outbreak cases, and WGS can provide useful information guiding infection-control interventions. PMID:26338697

  8. Effects of Response to 2014-2015 Ebola Outbreak on Deaths from Malaria, HIV/AIDS, and Tuberculosis, West Africa.

    PubMed

    Parpia, Alyssa S; Ndeffo-Mbah, Martial L; Wenzel, Natasha S; Galvani, Alison P

    2016-03-01

    Response to the 2014-2015 Ebola outbreak in West Africa overwhelmed the healthcare systems of Guinea, Liberia, and Sierra Leone, reducing access to health services for diagnosis and treatment for the major diseases that are endemic to the region: malaria, HIV/AIDS, and tuberculosis. To estimate the repercussions of the Ebola outbreak on the populations at risk for these diseases, we developed computational models for disease transmission and infection progression. We estimated that a 50% reduction in access to healthcare services during the Ebola outbreak exacerbated malaria, HIV/AIDS, and tuberculosis mortality rates by additional death counts of 6,269 (2,564-12,407) in Guinea; 1,535 (522-2,8780) in Liberia; and 2,819 (844-4,844) in Sierra Leone. The 2014-2015 Ebola outbreak was catastrophic in these countries, and its indirect impact of increasing the mortality rates of other diseases was also substantial.

  9. Radiological Characterization of Cerebral Phenotype in Newborn Microcephaly Cases from 2015 Outbreak in Brazil

    PubMed Central

    Ramalho Rocha, Yuri Raoni; Cavalcanti Costa, José Ricardo; Almeida Costa, Pericles; Maia, Gessica; Vasconcelos, Rafael de Medeiros; Ramos Tejo, Cynthia; Martins Batista, Rafaella; Lima Neto, Manoel; Martins de Lima, Gustavo Graco; Negromonte, Francisco; Borba, Marcelle; Bezerra Jeronimo, Selma Maria; Sequerra, Eduardo Bouth; Moreira Neto, Manuel

    2016-01-01

    Introduction: Brazil is facing, since October of 2015, an outbreak of microcephalic fetuses. This outbreak is correlated with the beginning of circulation of Zika virus (ZIKV) in the country. Although it is clear that the size of the head is diminished in these fetuses, the brain phenotype associated with these malformations is unknown. Methods: We collected computed tomography images of the microcephaly cases from the region of Natal, Rio Grande do Norte, from September 2015 to February 2016. Findings: The microcephalies derived from the current outbreak are associated with intracerebral calcifications, malformation of the ventricular system, migratory disorders in the telencephalon and, in a lower frequency, malformation of the cerebellum and brainstem. Discussion: The characteristics described herein are not usually found in other types of microcephaly. We suggest that this work can be used as a guideline to identify microcephaly cases associated to the current outbreak. PMID:27617166

  10. Multinational outbreak of Salmonella Enteritidis infection during an international youth ice hockey competition in Riga, Latvia, preliminary report, March and April 2015.

    PubMed

    Pesola, A K; Parn, T; Huusko, S; Perevosčikovs, J; Ollgren, J; Salmenlinna, S; Lienemann, T; Gossner, C; Danielsson, N; Rimhanen-Finne, R

    2015-05-21

    A multinational outbreak of salmonellosis linked to the Riga Cup 2015 junior ice-hockey competition was detected by the Finnish health authorities in mid-April and immediately notified at the European Union level. This prompted an international outbreak investigation supported by the European Centre for Disease Prevention and Control. As of 8 May 2015, seven countries have reported 214 confirmed and suspected cases, among which 122 from Finland. The search for the source of the outbreak is ongoing.

  11. Rapid Identification of a Cooling Tower-Associated Legionnaires' Disease Outbreak Supported by Polymerase Chain Reaction Testing of Environmental Samples, New York City, 2014-2015.

    PubMed

    Benowitz, Isaac; Fitzhenry, Robert; Boyd, Christopher; Dickinson, Michelle; Levy, Michael; Lin, Ying; Nazarian, Elizabeth; Ostrowsky, Belinda; Passaretti, Teresa; Rakeman, Jennifer; Saylors, Amy; Shamoonian, Elena; Smith, Terry-Ann; Balter, Sharon

    2018-04-01

    We investigated an outbreak of eight Legionnaires' disease cases among persons living in an urban residential community of 60,000 people. Possible environmental sources included two active cooling towers (air-conditioning units for large buildings) <1 km from patient residences, a market misting system, a community-wide water system used for heating and cooling, and potable water. To support a timely public health response, we used real-time polymerase chain reaction (PCR) to identify Legionella DNA in environmental samples within hours of specimen collection. We detected L. pneumophila serogroup 1 DNA only at a power plant cooling tower, supporting the decision to order remediation before culture results were available. An isolate from a power plant cooling tower sample was indistinguishable from a patient isolate by pulsed-field gel electrophoresis, suggesting the cooling tower was the outbreak source. PCR results were available <1 day after sample collection, and culture results were available as early as 5 days after plating. PCR is a valuable tool for identifying Legionella DNA in environmental samples in outbreak settings.

  12. Dengue Contingency Planning: From Research to Policy and Practice.

    PubMed

    Runge-Ranzinger, Silvia; Kroeger, Axel; Olliaro, Piero; McCall, Philip J; Sánchez Tejeda, Gustavo; Lloyd, Linda S; Hakim, Lokman; Bowman, Leigh R; Horstick, Olaf; Coelho, Giovanini

    2016-09-01

    Dengue is an increasingly incident disease across many parts of the world. In response, an evidence-based handbook to translate research into policy and practice was developed. This handbook facilitates contingency planning as well as the development and use of early warning and response systems for dengue fever epidemics, by identifying decision-making processes that contribute to the success or failure of dengue surveillance, as well as triggers that initiate effective responses to incipient outbreaks. Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed. Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak Prediction/ Detection and Outbreak Response seeks to provide countries with evidence-based best practices to justify the declaration of an outbreak and the mobilization of the resources required to implement an effective dengue contingency plan.

  13. Why has the Ebola outbreak in West Africa been so challenging to control?

    PubMed Central

    Semalulu, T; Wong, G; Kobinger, G; Huston, P

    2014-01-01

    West Africa is in the midst of the largest Ebola outbreak ever; there have been over 1000 deaths and many new cases are reported each day. The World Health Organization (WHO) declared it an outbreak in March 2014 and on August 6, 2014 the WHO declared the outbreak a public health emergency of international concern. Based on the number of deaths and total number of cases reported to the WHO as of August 11, 2014, the current outbreak has an overall mortality rate of 55%. Outbreak control measures against Ebola virus disease are effective. Why then, has this outbreak been so challenging to control? Ebola is transmitted through bodily fluids and immediately attacks the immune system, then progressively attacks the major organs and the lining of blood vessels. Sierra Leone, Guinea and Liberia are small countries that have limited resources to respond to prolonged outbreaks, especially in rural areas. This has been made more challenging by the fact that health care workers are at risk of contracting Ebola virus disease. Treatment to date has been supportive, not curative and outbreak control strategies have been met with distrust due to fear and misinformation. However, important progress is being made. The international response to Ebola is gaining momentum, communication strategies have been developed to address the fear and mistrust, and promising treatments are under development, including a combination of three monoclonal antibodies that has been administered to two American Ebola infected health care workers. The National Microbiology Laboratory of the Public Health Agency of Canada (PHAC) has been supporting laboratory diagnostic efforts in West Africa and PHAC has been working with the provinces and territories and key stakeholders to ensure Canada is prepared for a potential Ebola importation. PMID:29769855

  14. Why has the Ebola outbreak in West Africa been so challenging to control?

    PubMed

    Semalulu, T; Wong, G; Kobinger, G; Huston, P

    2014-08-14

    West Africa is in the midst of the largest Ebola outbreak ever; there have been over 1000 deaths and many new cases are reported each day. The World Health Organization (WHO) declared it an outbreak in March 2014 and on August 6, 2014 the WHO declared the outbreak a public health emergency of international concern. Based on the number of deaths and total number of cases reported to the WHO as of August 11, 2014, the current outbreak has an overall mortality rate of 55%. Outbreak control measures against Ebola virus disease are effective. Why then, has this outbreak been so challenging to control? Ebola is transmitted through bodily fluids and immediately attacks the immune system, then progressively attacks the major organs and the lining of blood vessels. Sierra Leone, Guinea and Liberia are small countries that have limited resources to respond to prolonged outbreaks, especially in rural areas. This has been made more challenging by the fact that health care workers are at risk of contracting Ebola virus disease. Treatment to date has been supportive, not curative and outbreak control strategies have been met with distrust due to fear and misinformation. However, important progress is being made. The international response to Ebola is gaining momentum, communication strategies have been developed to address the fear and mistrust, and promising treatments are under development, including a combination of three monoclonal antibodies that has been administered to two American Ebola infected health care workers. The National Microbiology Laboratory of the Public Health Agency of Canada (PHAC) has been supporting laboratory diagnostic efforts in West Africa and PHAC has been working with the provinces and territories and key stakeholders to ensure Canada is prepared for a potential Ebola importation.

  15. Long-term Psychological and Occupational Effects of Providing Hospital Healthcare during SARS Outbreak

    PubMed Central

    Lancee, William J.; Balderson, Kenneth E.; Bennett, Jocelyn P.; Borgundvaag, Bjug; Evans, Susan; Fernandes, Christopher M.B.; Goldbloom, David S.; Gupta, Mona; Hunter, Jonathan J.; Hall, Linda McGillis; Nagle, Lynn M.; Pain, Clare; Peczeniuk, Sonia S.; Raymond, Glenna; Read, Nancy; Rourke, Sean B.; Steinberg, Rosalie J.; Stewart, Thomas E.; Coke, Susan VanDeVelde; Veldhorst, Georgina G.; Wasylenki, Donald A.

    2006-01-01

    Healthcare workers (HCWs) found the 2003 outbreak of severe acute respiratory syndrome (SARS) to be stressful, but the long-term impact is not known. From 13 to 26 months after the SARS outbreak, 769 HCWs at 9 Toronto hospitals that treated SARS patients and 4 Hamilton hospitals that did not treat SARS patients completed a survey of several adverse outcomes. Toronto HCWs reported significantly higher levels of burnout (p = 0.019), psychological distress (p<0.001), and posttraumatic stress (p<0.001). Toronto workers were more likely to have reduced patient contact and work hours and to report behavioral consequences of stress. Variance in adverse outcomes was explained by a protective effect of the perceived adequacy of training and support and by a provocative effect of maladaptive coping style and other individual factors. The results reinforce the value of effective staff support and training in preparation for future outbreaks. PMID:17326946

  16. Strategies adopted and lessons learnt during the severe acute respiratory syndrome crisis in Singapore.

    PubMed

    2005-01-01

    In Singapore, the military was actively involved in the containment of the outbreak of severe acute respiratory syndrome (SARS) last year. The outbreak started in February 2003 with three Singapore travellers to Hong Kong. At that time, nothing was known about the aetiological agent of the atypical pneumonia that was termed SARS. Unfortunately one of the travellers was a super-spreader, defined as a person with high efficiency for virus transmission, and was responsible for the expansion of the national outbreak. Not only was the Singapore military involved in contact tracing of personnel and enforcement of home quarantine, military-affiliated research institutes were also involved in providing diagnostic support. This review reconstructs the events that took place during the SARS outbreak, focusing on the special support arising from complementing the military-affiliated laboratory with the public health laboratory. A description of the diagnostic findings is provided in chronological order. The review ends with lessons Singapore learnt from the SARS crisis, stressing the importance of national preparedness for future outbreaks. 2004 John Wiley & Sons, Ltd.

  17. How people react to Zika virus outbreaks on Twitter? A computational content analysis.

    PubMed

    Fu, King-Wa; Liang, Hai; Saroha, Nitin; Tse, Zion Tsz Ho; Ip, Patrick; Fung, Isaac Chun-Hai

    2016-12-01

    Zika-related Twitter incidence peaked after the World Health Organization declared an emergency. Five themes were identified from Zika-related Twitter content: (1) societal impact of the outbreak; (2) government, public and private sector, and general public responses to the outbreak; (3) pregnancy and microcephaly: negative health consequences related to pregnant women and babies; (4) transmission routes; and (5) case reports. User-generated contents sites were preferred direct information channels rather than those of the government authorities. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. Microcephaly: computational and organotypic modeling of a ...

    EPA Pesticide Factsheets

    lecture discusses computational and organotypic models of microcephaly in an AOP Framework and ToxCast assays. Lecture slide presentation at UNC Chapel Hill for Advanced Toxicology course lecture on Computational Approaches to Developmental and Reproductive Toxicology with presentation on computational and organotypic modeling of a complex human birth defect microcephaly with is associated with the recent Zika virus outbreak.

  19. Simulating Nationwide Pandemics: Applying the Multi-scale Epidemiologic Simulation and Analysis System to Human Infectious Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dombroski, M; Melius, C; Edmunds, T

    2008-09-24

    This study uses the Multi-scale Epidemiologic Simulation and Analysis (MESA) system developed for foreign animal diseases to assess consequences of nationwide human infectious disease outbreaks. A literature review identified the state of the art in both small-scale regional models and large-scale nationwide models and characterized key aspects of a nationwide epidemiological model. The MESA system offers computational advantages over existing epidemiological models and enables a broader array of stochastic analyses of model runs to be conducted because of those computational advantages. However, it has only been demonstrated on foreign animal diseases. This paper applied the MESA modeling methodology to humanmore » epidemiology. The methodology divided 2000 US Census data at the census tract level into school-bound children, work-bound workers, elderly, and stay at home individuals. The model simulated mixing among these groups by incorporating schools, workplaces, households, and long-distance travel via airports. A baseline scenario with fixed input parameters was run for a nationwide influenza outbreak using relatively simple social distancing countermeasures. Analysis from the baseline scenario showed one of three possible results: (1) the outbreak burned itself out before it had a chance to spread regionally, (2) the outbreak spread regionally and lasted a relatively long time, although constrained geography enabled it to eventually be contained without affecting a disproportionately large number of people, or (3) the outbreak spread through air travel and lasted a long time with unconstrained geography, becoming a nationwide pandemic. These results are consistent with empirical influenza outbreak data. The results showed that simply scaling up a regional small-scale model is unlikely to account for all the complex variables and their interactions involved in a nationwide outbreak. There are several limitations of the methodology that should be explored in future work including validating the model against reliable historical disease data, improving contact rates, spread methods, and disease parameters through discussions with epidemiological experts, and incorporating realistic behavioral assumptions.« less

  20. Ebola virus disease outbreak; the role of field epidemiology training programme in the fight against the epidemic, Liberia, 2014.

    PubMed

    Lubogo, Mutaawe; Donewell, Bangure; Godbless, Lucas; Shabani, Sasita; Maeda, Justin; Temba, Herilinda; Malibiche, Theophil C; Berhanu, Naod

    2015-01-01

    The African Field Epidemiology Network (AFENET) is a public health network established in 2005 as a non-profit networking alliance of Field Epidemiology and Laboratory Training Programs (FELTPs) and Field Epidemiology Training Programs (FETPs) in Africa. AFENET is dedicated to supporting Ministries of Health in Africa build strong, effective and sustainable programs and capacity to improve public health systems by partnering with global public health experts. The Network's goal is to strengthen field epidemiology and public health laboratory capacity to contribute effectively to addressing epidemics and other major public health problems in Africa. The goal for the establishment of FETP and FELTP was and still is to produce highly competent multi-disciplinary public health professionals who would assume influential posts in the public health structures and tackle emerging and re-emerging communicable and non-communicable diseases. AFENET currently networks 12 FELTPs and FETPs in sub-Saharan Africa with operations in 20 countries. During the Ebola Virus Disease (EVD) outbreak in West Africa, African Union Support for the Ebola Outbreak in West Africa (ASEOWA) supported FETP graduates from Uganda, Zimbabwe, Ethiopia and Tanzania for the investigation and control of the EVD outbreak in Liberia. The graduates were posted in different counties in Liberia where they lead teams of other experts conduct EVD outbreak investigations, Infection Control and Prevention trainings among health workers and communities, Strengthening integrated disease surveillance, developing Standard Operating Procedures for infection control and case notification in the Liberian setting as well as building capacity of local surveillance officers' conduct outbreak investigation and contact tracing. The team was also responsible for EVD data management at the different Counties in Liberia. The FETP graduates have been instrumental in the earlier successes registered in various counties in Liberia in the control of the Ebola virus disease. Such efforts should be sustained by supporting local authorities develop strong health systems that are able to respond to epidemic of such magnitude in the near future.

  1. Ebola virus disease outbreak; the role of field epidemiology training programme in the fight against the epidemic, Liberia, 2014

    PubMed Central

    Lubogo, Mutaawe; Donewell, Bangure; Godbless, Lucas; Shabani, Sasita; Maeda, Justin; Temba, Herilinda; Malibiche, Theophil C; Berhanu, Naod

    2015-01-01

    The African Field Epidemiology Network (AFENET) is a public health network established in 2005 as a non-profit networking alliance of Field Epidemiology and Laboratory Training Programs (FELTPs) and Field Epidemiology Training Programs (FETPs) in Africa. AFENET is dedicated to supporting Ministries of Health in Africa build strong, effective and sustainable programs and capacity to improve public health systems by partnering with global public health experts. The Network's goal is to strengthen field epidemiology and public health laboratory capacity to contribute effectively to addressing epidemics and other major public health problems in Africa. The goal for the establishment of FETP and FELTP was and still is to produce highly competent multi-disciplinary public health professionals who would assume influential posts in the public health structures and tackle emerging and re-emerging communicable and non-communicable diseases. AFENET currently networks 12 FELTPs and FETPs in sub-Saharan Africa with operations in 20 countries. During the Ebola Virus Disease (EVD) outbreak in West Africa, African Union Support for the Ebola Outbreak in West Africa (ASEOWA) supported FETP graduates from Uganda, Zimbabwe, Ethiopia and Tanzania for the investigation and control of the EVD outbreak in Liberia. The graduates were posted in different counties in Liberia where they lead teams of other experts conduct EVD outbreak investigations, Infection Control and Prevention trainings among health workers and communities, Strengthening integrated disease surveillance, developing Standard Operating Procedures for infection control and case notification in the Liberian setting as well as building capacity of local surveillance officers’ conduct outbreak investigation and contact tracing. The team was also responsible for EVD data management at the different Counties in Liberia. The FETP graduates have been instrumental in the earlier successes registered in various counties in Liberia in the control of the Ebola virus disease. Such efforts should be sustained by supporting local authorities develop strong health systems that are able to respond to epidemic of such magnitude in the near future. PMID:26779298

  2. An outbreak of hepatitis A associated with a bakery, New York, 1994: the 1968 "West Branch, Michigan' outbreak repeated.

    PubMed Central

    Weltman, A. C.; Bennett, N. M.; Ackman, D. A.; Misage, J. H.; Campana, J. J.; Fine, L. S.; Doniger, A. S.; Balzano, G. J.; Birkhead, G. S.

    1996-01-01

    In a community hepatitis A outbreak in the Rochester, New York area, 64 of 79 (81%) people with anti-hepatitis A IgM-antibodies and onset of symptoms from 9 April-31 May 1994, recalled eating food obtained from a retail buyer's club. Eleven (65%) of 17 households with cases contained club members compared with 7 (21%) of 34 neighbourhood-matched control-households (matched odds ratio 8.5; 95% CI 1.7-41.6). Club employees who ate sugar-glazed baked goods were at fourfold increased risk for hepatitis. The source of infection was an IgM-positive baker who contaminated baked goods while applying sugar glaze. Computer-generated purchase lists implicated 11-12 March and 21-24 March as the most likely dates when contamination occurred. This investigation demonstrates the importance of food workers adhering to established hygiene practices. Computer-generated commercial datasets can be useful in epidemiologic investigations. PMID:8870631

  3. Rapid Identification of a Cooling Tower-Associated Legionnaires’ Disease Outbreak Supported by Polymerase Chain Reaction Testing of Environmental Samples, New York City, 2014–2015

    PubMed Central

    Benowitz, Isaac; Fitzhenry, Robert; Boyd, Christopher; Dickinson, Michelle; Levy, Michael; Lin, Ying; Nazarian, Elizabeth; Ostrowsky, Belinda; Passaretti, Teresa; Rakeman, Jennifer; Saylors, Amy; Shamoonian, Elena; Smith, Terry-Ann; Balter, Sharon

    2018-01-01

    We investigated an outbreak of eight Legionnaires’ disease cases among persons living in an urban residential community of 60,000 people. Possible environmental sources included two active cooling towers (air-conditioning units for large buildings) <1 km from patient residences, a market misting system, a community-wide water system used for heating and cooling, and potable water. To support a timely public health response, we used real-time polymerase chain reaction (PCR) to identify Legionella DNA in environmental samples within hours of specimen collection. We detected L. pneumophila serogroup 1 DNA only at a power plant cooling tower, supporting the decision to order remediation before culture results were available. An isolate from a power plant cooling tower sample was indistinguishable from a patient isolate by pulsed-field gel electrophoresis, suggesting the cooling tower was the outbreak source. PCR results were available <1 day after sample collection, and culture results were available as early as 5 days after plating. PCR is a valuable tool for identifying Legionella DNA in environmental samples in outbreak settings. PMID:29780175

  4. Emergent lineages of mumps virus suggest the need for a polyvalent vaccine.

    PubMed

    May, Meghan; Rieder, Courtney A; Rowe, Rebecca J

    2018-01-01

    Mumps outbreaks among vaccinated patients have become increasingly common in recent years. While there are multiple conditions driving this re-emergence, convention has suggested that these outbreaks are associated with waning immunity rather than vaccine escape. Molecular evidence from both the ongoing American and Dutch outbreaks in conjunction with recent structural biology studies challenge this convention, and suggest that emergent lineages of mumps virus exhibit key differences in antigenic epitopes from the vaccine strain employed: Jeryl-Lynn 5. The American and Dutch 2016-2017 outbreak lineages were examined using computational biology through the lens of diversity in immunogenic epitopes. Findings are discussed and the laboratory evidence indicating neutralization of heterologous mumps strains by serum from vaccinated individuals is reviewed. Taken together, it is concluded that the number of heterologous epitopes occurring in mumps virus in conjunction with waning immunity is facilitating small outbreaks in vaccinated patients, and that consideration of a polyvalent mumps vaccine is warranted. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Estimated Cost to a Restaurant of a Foodborne Illness Outbreak.

    PubMed

    Bartsch, Sarah M; Asti, Lindsey; Nyathi, Sindiso; Spiker, Marie L; Lee, Bruce Y

    Although outbreaks of restaurant-associated foodborne illness occur periodically and make the news, a restaurant may not be aware of the cost of an outbreak. We estimated this cost under varying circumstances. We developed a computational simulation model; scenarios varied outbreak size (5 to 250 people affected), pathogen (n = 15), type of dining establishment (fast food, fast casual, casual dining, and fine dining), lost revenue (ie, meals lost per illness), cost of lawsuits and legal fees, fines, and insurance premium increases. We estimated that the cost of a single foodborne illness outbreak ranged from $3968 to $1.9 million for a fast-food restaurant, $6330 to $2.1 million for a fast-casual restaurant, $8030 to $2.2 million for a casual-dining restaurant, and $8273 to $2.6 million for a fine-dining restaurant, varying from a 5-person outbreak, with no lost revenue, lawsuits, legal fees, or fines, to a 250-person outbreak, with high lost revenue (100 meals lost per illness), and a high amount of lawsuits and legal fees ($1 656 569) and fines ($100 000). This cost amounts to 10% to 5790% of a restaurant's annual marketing costs and 0.3% to 101% of annual profits and revenue. The biggest cost drivers were lawsuits and legal fees, outbreak size, and lost revenue. Pathogen type affected the cost by a maximum of $337 000, the difference between a Bacillus cereus outbreak (least costly) and a listeria outbreak (most costly). The cost of a single foodborne illness outbreak to a restaurant can be substantial and outweigh the typical costs of prevention and control measures. Our study can help decision makers determine investment and motivate research for infection-control measures in restaurant settings.

  6. The Global Outbreak Alert and Response Network

    PubMed Central

    Mackenzie, John S.; Drury, Patrick; Arthur, Ray R.; Ryan, Michael J.; Grein, Thomas; Slattery, Raphael; Suri, Sameera; Domingo, Christine Tiffany; Bejtullahu, Armand

    2014-01-01

    The Global Outbreak Alert and Response Network (GOARN) was established in 2000 as a network of technical institutions, research institutes, universities, international health organisations and technical networks willing to contribute and participate in internationally coordinated responses to infectious disease outbreaks. It reflected a recognition of the need to strengthen and coordinate rapid mobilisation of experts in responding to international outbreaks and to overcome the sometimes chaotic and fragmented operations characterising previous responses. The network partners agreed that the World Health Organization would coordinate the network and provide a secretariat, which would also function as the operational support team. The network has evolved to comprise 153 institutions/technical partners and 37 additional networks, the latter encompassing a further 355 members and has been directly involved in 137 missions to 79 countries, territories or areas. Future challenges will include supporting countries to achieve the capacity to detect and respond to outbreaks of international concern, as required by the International Health Regulations (2005). GOARN's increasing regional focus and expanding geographic composition will be central to meeting these challenges. The paper summarises some of network's achievements over the past 13 years and presents some of the future challenges. PMID:25186571

  7. The global outbreak alert and response network.

    PubMed

    Mackenzie, John S; Drury, Patrick; Arthur, Ray R; Ryan, Michael J; Grein, Thomas; Slattery, Raphael; Suri, Sameera; Domingo, Christine Tiffany; Bejtullahu, Armand

    2014-01-01

    The Global Outbreak Alert and Response Network (GOARN) was established in 2000 as a network of technical institutions, research institutes, universities, international health organisations and technical networks willing to contribute and participate in internationally coordinated responses to infectious disease outbreaks. It reflected a recognition of the need to strengthen and coordinate rapid mobilisation of experts in responding to international outbreaks and to overcome the sometimes chaotic and fragmented operations characterising previous responses. The network partners agreed that the World Health Organization would coordinate the network and provide a secretariat, which would also function as the operational support team. The network has evolved to comprise 153 institutions/technical partners and 37 additional networks, the latter encompassing a further 355 members and has been directly involved in 137 missions to 79 countries, territories or areas. Future challenges will include supporting countries to achieve the capacity to detect and respond to outbreaks of international concern, as required by the International Health Regulations (2005). GOARN's increasing regional focus and expanding geographic composition will be central to meeting these challenges. The paper summarises some of network's achievements over the past 13 years and presents some of the future challenges.

  8. Use of an online survey during an outbreak of clostridium perfringens in a retirement community-Arizona, 2012.

    PubMed

    Yasmin, Seema; Pogreba-Brown, Kristen; Stewart, Jennifer; Sunenshine, Rebecca

    2014-01-01

    An outbreak of gastrointestinal (GI) illness among retirement community residents was reported to the Maricopa County Department of Public Health. Online surveys can be useful for rapid investigation of disease outbreaks, especially when local health departments lack time and resources to perform telephone interviews. Online survey utility among older populations, which may lack computer access or literacy, has not been defined. To investigate and implement prevention measures for a GI outbreak and assess the utility of an online survey among retirement community residents. A retrospective cohort investigation was conducted using an online survey distributed through the retirement community e-mail listserv; a follow-up telephone survey was conducted to assess computer literacy and Internet access. A case was defined as any GI illness occurring among residents during March 1-14, 2012. A barbecue in a retirement community of 3000 residents. Retirement community residents. Residents were directed to discard leftover food and seek health care for symptoms. A telephone survey was conducted to assess the utility of online surveys in this population. Computer literacy and Internet access of retirement community residents. Of 1000 residents on the listserv, 370 (37%) completed the online survey (mean age, 69.7 years; 60.6% women); 66 residents (17.8%) reported a GI illness after the barbecue, 63 (95.5%) reported diarrhea, and 5 (7.6%) reported vomiting. Leftover beef from an attendee's refrigerator grew Clostridium perfringens. Of 552 residents contacted by telephone, 113 completed the telephone survey (mean age, 71.3 years; 63.3% women), 101 (89.4%) reported the ability to send e-mail, 82 (81.2%) checked e-mail daily, and 28 (27.7%) checked e-mail on a handheld device. The attack rate was 17.8% for online versus 2.7% for telephone respondents (P < .001). This outbreak demonstrated the utility of an online survey to rapidly collect information and implement prevention measures among an older demographic.

  9. Deep sequencing of H7N8 avian influenza viruses from surveillance zone supports H7N8 high pathogenicity avian influenza was limited to a single outbreak farm in Indiana during 2016

    USDA-ARS?s Scientific Manuscript database

    In mid-January 2016, an outbreak of H7N8 high pathogenicity avian influenza (HPAI) virus in commercial turkeys occurred in Indiana. The outbreak was first detected by an increase in mortality followed by laboratory confirmation of H7N8 HPAI virus. Surveillance within the 10 km Control Zone detected...

  10. Management of rodent viral disease outbreaks: one institutions (r)evolution.

    PubMed

    Smith, Abigail L

    2010-01-01

    At first blush, an outbreak of mouse hepatitis virus or epizootic diarrhea of infant mice virus in a research colony of laboratory mice may not seem like a disaster. However, irrespective of magnitude, such an outbreak at an academic institution is disruptive for researchers at all levels. It can be a disaster for the graduate student who may have just a few experiments to finish before writing the thesis or for the postdoctoral fellow who is in the lab for only 1 or 2 years. Infectious disease outbreaks also limit the ability of principal investigators to share their animals with collaborators at their home institution as well as with those at extramural sites, thereby thwarting the expectation that research materials supported by federal funds will be made readily available to colleagues. This article traces the evolution of a change in culture at a large, well-funded academic institution with over 1,800 active IACUC protocols, more than 1,000 of which include mice. During a period of less than 5 years, the institution evolved from virtual paralysis in the face of such outbreaks to the implementation of policies and practices that enable effective outbreak management and the timely resumption of research functionality. This evolution required not only support from the highest levels of leadership in the university and its school of medicine but also a huge outlay of financial resources.

  11. Distribution of outbreak reporting in health care institutions by day of the week.

    PubMed

    Amirov, Chingiz; Walton, Ryan N; Ahmed, Sarah; Binns, Malcolm A; Van Toen, Jane E; Candon, Heather L

    2012-12-01

    The notion that outbreaks are more likely to occur on Friday is prevalent among staff in health care institutions. However, there is little evidence to support or discredit this notion. We postulated that outbreaks were no more likely to be reported on any particular day of the week. A total of 901 institutional outbreaks in Toronto health care facilities were tabulated according to type, outbreak setting, and day of the week reported. A χ(2) goodness-of-fit test compared daily values for 7-day per week and 5-day per week periods. Post hoc partitioning was used to pinpoint specific day(s) of the week that differed significantly. Fewer outbreaks were reported on Saturdays and Sundays. Further analysis examined the distribution of outbreak reporting specifically focusing on the Monday to Friday weekday period. Among the weekdays, higher proportions of outbreaks were reported on Mondays and Fridays. Our null hypothesis was rejected. Overall, Mondays and Fridays had the highest occurrence of outbreak reporting. We suggest that this might be due to "deadline" and "catch-up" reporting related to the "weekend effect," whereby structural differences in weekend staffing affect detection of outbreaks. Such delays warrant reexamination of surveillance processes for timely outbreak detection independent of calendar cycle. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  12. Dengue Contingency Planning: From Research to Policy and Practice

    PubMed Central

    Runge-Ranzinger, Silvia; Kroeger, Axel; Olliaro, Piero; McCall, Philip J.; Sánchez Tejeda, Gustavo; Lloyd, Linda S.; Hakim, Lokman; Bowman, Leigh R.; Horstick, Olaf; Coelho, Giovanini

    2016-01-01

    Background Dengue is an increasingly incident disease across many parts of the world. In response, an evidence-based handbook to translate research into policy and practice was developed. This handbook facilitates contingency planning as well as the development and use of early warning and response systems for dengue fever epidemics, by identifying decision-making processes that contribute to the success or failure of dengue surveillance, as well as triggers that initiate effective responses to incipient outbreaks. Methodology/Principal findings Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed. Conclusions/Significance Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak Prediction/ Detection and Outbreak Response seeks to provide countries with evidence-based best practices to justify the declaration of an outbreak and the mobilization of the resources required to implement an effective dengue contingency plan. PMID:27653786

  13. Severe Outbreak of Sorbitol-Fermenting Escherichia coli O157 via Unpasteurized Milk and Farm Visits, Finland 2012.

    PubMed

    Jaakkonen, A; Salmenlinna, S; Rimhanen-Finne, R; Lundström, H; Heinikainen, S; Hakkinen, M; Hallanvuo, S

    2017-09-01

    Shiga toxin-producing, sorbitol-fermenting Escherichia coli O157 (SF O157) has emerged as a cause of severe human illness. Despite frequent human findings, its transmission routes and reservoirs remain largely unknown. Foodborne transmission and reservoir in cattle have been suspected, but with limited supporting evidence. This study describes the outbreak of SF O157 that occurred in Finland in 2012. The outbreak originated from a recreational farm selling unpasteurized milk, as revealed by epidemiologic and microbiological investigations, and involved six hospitalized children and two asymptomatic adults with culture-confirmed infection. An identical strain of SF O157 was isolated from patients, cattle and the farm environment, and epidemiologic analysis suggested unpasteurized milk as the vehicle of transmission. This study reports the first milkborne outbreak of SF O157, provides supporting evidence of cattle as a reservoir and highlights the health risks related to the consumption of unpasteurized milk. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  14. The Use of a Mobile Laboratory Unit in Support of Patient Management and Epidemiological Surveillance during the 2005 Marburg Outbreak in Angola

    PubMed Central

    Grolla, Allen; Jones, Steven M.; Fernando, Lisa; Strong, James E.; Ströher, Ute; Möller, Peggy; Paweska, Janusz T.; Burt, Felicity; Pablo Palma, Pedro; Sprecher, Armand; Formenty, Pierre; Roth, Cathy; Feldmann, Heinz

    2011-01-01

    Background Marburg virus (MARV), a zoonotic pathogen causing severe hemorrhagic fever in man, has emerged in Angola resulting in the largest outbreak of Marburg hemorrhagic fever (MHF) with the highest case fatality rate to date. Methodology/Principal Findings A mobile laboratory unit (MLU) was deployed as part of the World Health Organization outbreak response. Utilizing quantitative real-time PCR assays, this laboratory provided specific MARV diagnostics in Uige, the epicentre of the outbreak. The MLU operated over a period of 88 days and tested 620 specimens from 388 individuals. Specimens included mainly oral swabs and EDTA blood. Following establishing on site, the MLU operation allowed a diagnostic response in <4 hours from sample receiving. Most cases were found among females in the child-bearing age and in children less than five years of age. The outbreak had a high number of paediatric cases and breastfeeding may have been a factor in MARV transmission as indicated by the epidemiology and MARV positive breast milk specimens. Oral swabs were a useful alternative specimen source to whole blood/serum allowing testing of patients in circumstances of resistance to invasive procedures but limited diagnostic testing to molecular approaches. There was a high concordance in test results between the MLU and the reference laboratory in Luanda operated by the US Centers for Disease Control and Prevention. Conclusions/Significance The MLU was an important outbreak response asset providing support in patient management and epidemiological surveillance. Field laboratory capacity should be expanded and made an essential part of any future outbreak investigation. PMID:21629730

  15. Upholding Tuberculosis Services during the 2014 Ebola Storm: An Encouraging Experience from Conakry, Guinea.

    PubMed

    Ortuno-Gutierrez, Nimer; Zachariah, Rony; Woldeyohannes, Desalegn; Bangoura, Adama; Chérif, Gba-Foromo; Loua, Francis; Hermans, Veerle; Tayler-Smith, Katie; Sikhondze, Welile; Camara, Lansana-Mady

    2016-01-01

    Ten targeted health facilities supported by Damien Foundation (a Belgian Non Governmental Organization) and the National Tuberculosis (TB) Program in Conakry, Guinea. To uphold TB program performance during the Ebola outbreak in the presence of a package of pre-emptive additional measures geared at reinforcing the routine TB program, and ensuring Ebola infection control, health-workers safety and motivation. A retrospective comparative cohort study of a TB program assessing the performance before (2013) and during the (2014) Ebola outbreak. During the Ebola outbreak, all health facilities were maintained opened, there were no reported health-worker Ebola infections, drug stockouts or health staff absences. Of 2,475 presumptive pulmonary TB cases, 13% were diagnosed with TB in both periods (160/1203 in 2013 and 163/1272 in 2014). For new TB, treatment success improved from 84% before to 87% during the Ebola outbreak (P = 0.03). Adjusted Hazard-ratios (AHR) for an unfavorable outcome was alwo lower during the Ebola outbreak, AHR = 0.8, 95% CI:0.7-0.9, P = 0.04). Treatment success improved for HIV co-infected patients (72% to 80%, P<0.01). For retreatment patients, the proportion achieving treatment success was maintained (68% to 72%, P = 0.05). Uptake of HIV-testing and Cotrimoxazole Preventive Treatment was maintained over 85%, and Anti-Retroviral Therapy uptake increased from 77% in 2013 to 86% in 2014 (P<0.01). Contingency planning and health system and worker support during the 2014 Ebola outbreak was associated with encouraging and sustained TB program performance. This is of relevance to future outbreaks.

  16. Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America.

    PubMed

    Shutt, Deborah P; Manore, Carrie A; Pankavich, Stephen; Porter, Aaron T; Del Valle, Sara Y

    2017-12-01

    As South and Central American countries prepare for increased birth defects from Zika virus outbreaks and plan for mitigation strategies to minimize ongoing and future outbreaks, understanding important characteristics of Zika outbreaks and how they vary across regions is a challenging and important problem. We developed a mathematical model for the 2015/2016 Zika virus outbreak dynamics in Colombia, El Salvador, and Suriname. We fit the model to publicly available data provided by the Pan American Health Organization, using Approximate Bayesian Computation to estimate parameter distributions and provide uncertainty quantification. The model indicated that a country-level analysis was not appropriate for Colombia. We then estimated the basic reproduction number to range between 4 and 6 for El Salvador and Suriname with a median of 4.3 and 5.3, respectively. We estimated the reporting rate to be around 16% in El Salvador and 18% in Suriname with estimated total outbreak sizes of 73,395 and 21,647 people, respectively. The uncertainty in parameter estimates highlights a need for research and data collection that will better constrain parameter ranges. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America

    DOE PAGES

    Shutt, Deborah P.; Manore, Carrie A.; Pankavich, Stephen; ...

    2017-07-13

    As South and Central American countries prepare for increased birth defects from Zika virus outbreaks and plan for mitigation strategies to minimize ongoing and future outbreaks, understanding important characteristics of Zika outbreaks and how they vary across regions is a challenging and important problem. We developed a mathematical model for the 2015/2016 Zika virus outbreak dynamics in Colombia, El Salvador, and Suriname. We fit the model to publicly available data provided by the Pan American Health Organization, using Approximate Bayesian Computation to estimate parameter distributions and provide uncertainty quantification. The model indicated that a country-level analysis was not appropriate formore » Colombia. We then estimated the basic reproduction number to range between 4 and 6 for El Salvador and Suriname with a median of 4.3 and 5.3, respectively. We estimated the reporting rate to be around 16% in El Salvador and 18% in Suriname with estimated total outbreak sizes of 73,395 and 21,647 people, respectively. The uncertainty in parameter estimates highlights a need for research and data collection that will better constrain parameter ranges.« less

  18. Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutt, Deborah P.; Manore, Carrie A.; Pankavich, Stephen

    As South and Central American countries prepare for increased birth defects from Zika virus outbreaks and plan for mitigation strategies to minimize ongoing and future outbreaks, understanding important characteristics of Zika outbreaks and how they vary across regions is a challenging and important problem. We developed a mathematical model for the 2015/2016 Zika virus outbreak dynamics in Colombia, El Salvador, and Suriname. We fit the model to publicly available data provided by the Pan American Health Organization, using Approximate Bayesian Computation to estimate parameter distributions and provide uncertainty quantification. The model indicated that a country-level analysis was not appropriate formore » Colombia. We then estimated the basic reproduction number to range between 4 and 6 for El Salvador and Suriname with a median of 4.3 and 5.3, respectively. We estimated the reporting rate to be around 16% in El Salvador and 18% in Suriname with estimated total outbreak sizes of 73,395 and 21,647 people, respectively. The uncertainty in parameter estimates highlights a need for research and data collection that will better constrain parameter ranges.« less

  19. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula.

  20. SEARCHING FOR A WATER SUPPLY CONNECTION IN THE CABOOL, MISSOURI OUTBREAK

    EPA Science Inventory

    A recent disease outbreak resulting in 4 deaths, 32 hospitalization and a total of 243 documented cases of diarrhea was linked epidemiologically and by on-site data gathering supported by the use of a distribution system model to the public water supply. The pathogenic agent, Esc...

  1. FoodChain-Lab: A Trace-Back and Trace-Forward Tool Developed and Applied during Food-Borne Disease Outbreak Investigations in Germany and Europe.

    PubMed

    Weiser, Armin A; Thöns, Christian; Filter, Matthias; Falenski, Alexander; Appel, Bernd; Käsbohrer, Annemarie

    2016-01-01

    FoodChain-Lab is modular open-source software for trace-back and trace-forward analysis in food-borne disease outbreak investigations. Development of FoodChain-Lab has been driven by a need for appropriate software in several food-related outbreaks in Germany since 2011. The software allows integrated data management, data linkage, enrichment and visualization as well as interactive supply chain analyses. Identification of possible outbreak sources or vehicles is facilitated by calculation of tracing scores for food-handling stations (companies or persons) and food products under investigation. The software also supports consideration of station-specific cross-contamination, analysis of geographical relationships, and topological clustering of the tracing network structure. FoodChain-Lab has been applied successfully in previous outbreak investigations, for example during the 2011 EHEC outbreak and the 2013/14 European hepatitis A outbreak. The software is most useful in complex, multi-area outbreak investigations where epidemiological evidence may be insufficient to discriminate between multiple implicated food products. The automated analysis and visualization components would be of greater value if trading information on food ingredients and compound products was more easily available.

  2. FoodChain-Lab: A Trace-Back and Trace-Forward Tool Developed and Applied during Food-Borne Disease Outbreak Investigations in Germany and Europe

    PubMed Central

    Filter, Matthias; Falenski, Alexander; Appel, Bernd; Käsbohrer, Annemarie

    2016-01-01

    FoodChain-Lab is modular open-source software for trace-back and trace-forward analysis in food-borne disease outbreak investigations. Development of FoodChain-Lab has been driven by a need for appropriate software in several food-related outbreaks in Germany since 2011. The software allows integrated data management, data linkage, enrichment and visualization as well as interactive supply chain analyses. Identification of possible outbreak sources or vehicles is facilitated by calculation of tracing scores for food-handling stations (companies or persons) and food products under investigation. The software also supports consideration of station-specific cross-contamination, analysis of geographical relationships, and topological clustering of the tracing network structure. FoodChain-Lab has been applied successfully in previous outbreak investigations, for example during the 2011 EHEC outbreak and the 2013/14 European hepatitis A outbreak. The software is most useful in complex, multi-area outbreak investigations where epidemiological evidence may be insufficient to discriminate between multiple implicated food products. The automated analysis and visualization components would be of greater value if trading information on food ingredients and compound products was more easily available. PMID:26985673

  3. Discovering network behind infectious disease outbreak

    NASA Astrophysics Data System (ADS)

    Maeno, Yoshiharu

    2010-11-01

    Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.

  4. A secure protocol for protecting the identity of providers when disclosing data for disease surveillance

    PubMed Central

    Hu, Jun; Mercer, Jay; Peyton, Liam; Kantarcioglu, Murat; Malin, Bradley; Buckeridge, David; Samet, Saeed; Earle, Craig

    2011-01-01

    Background Providers have been reluctant to disclose patient data for public-health purposes. Even if patient privacy is ensured, the desire to protect provider confidentiality has been an important driver of this reluctance. Methods Six requirements for a surveillance protocol were defined that satisfy the confidentiality needs of providers and ensure utility to public health. The authors developed a secure multi-party computation protocol using the Paillier cryptosystem to allow the disclosure of stratified case counts and denominators to meet these requirements. The authors evaluated the protocol in a simulated environment on its computation performance and ability to detect disease outbreak clusters. Results Theoretical and empirical assessments demonstrate that all requirements are met by the protocol. A system implementing the protocol scales linearly in terms of computation time as the number of providers is increased. The absolute time to perform the computations was 12.5 s for data from 3000 practices. This is acceptable performance, given that the reporting would normally be done at 24 h intervals. The accuracy of detection disease outbreak cluster was unchanged compared with a non-secure distributed surveillance protocol, with an F-score higher than 0.92 for outbreaks involving 500 or more cases. Conclusion The protocol and associated software provide a practical method for providers to disclose patient data for sentinel, syndromic or other indicator-based surveillance while protecting patient privacy and the identity of individual providers. PMID:21486880

  5. Outbreaks of epidemic keratoconjunctivitis caused by human adenovirus type 8 in the Tibet Autonomous Region of China in 2016

    PubMed Central

    mei, Hong; Li, Hong; ga, Dan zeng gong; jie, Guo; chi, Mi ma bu; Zhang, Sheng; Ma, Chaofeng

    2017-01-01

    From April to November 2016, two outbreaks of epidemic keratoconjunctivitis (EKC) occurred successively at primary and middle schools in the Tibet Autonomous Region of China, and a total of 197 clinically diagnosed cases were reported. Real-time PCR analyses confirmed that human adenovirus (HAdV) infection was related to these outbreaks. Further studies involving sequence determination and phylogenetic analysis based on the penton base, hexon, and fiber genes indicated that human adenovirus type 8 (HAdV-8), belonging to species D, was responsible for the outbreaks. This is the first report of a HAdV-8 associated EKC outbreak in mainland of China, and the results of this study are expected to provide support for future research into HAdV-8 in China. PMID:28915257

  6. Molecular typing of toxic shock syndrome toxin-1- and Enterotoxin A-producing methicillin-sensitive Staphylococcus aureus isolates from an outbreak in a neonatal intensive care unit.

    PubMed

    Layer, Franziska; Sanchini, Andrea; Strommenger, Birgit; Cuny, Christiane; Breier, Ann-Christin; Proquitté, Hans; Bührer, Christoph; Schenkel, Karl; Bätzing-Feigenbaum, Jörg; Greutelaers, Benedikt; Nübel, Ulrich; Gastmeier, Petra; Eckmanns, Tim; Werner, Guido

    2015-10-01

    Outbreaks of Staphylococcus aureus are common in neonatal intensive care units (NICUs). Usually they are documented for methicillin-resistant strains, while reports involving methicillin-susceptible S. aureus (MSSA) strains are rare. In this study we report the epidemiological and molecular investigation of an MSSA outbreak in a NICU among preterm neonates. Infection control measures and interventions were commissioned by the Local Public Health Authority and supported by the Robert Koch Institute. To support epidemiological investigations molecular typing was done by spa-typing and Multilocus sequence typing; the relatedness of collected isolates was further elucidated by DNA SmaI-macrorestriction, microarray analysis and bacterial whole genome sequencing. A total of 213 neonates, 123 healthcare workers and 205 neonate parents were analyzed in the period November 2011 to November 2012. The outbreak strain was characterized as a MSSA spa-type t021, able to produce toxic shock syndrome toxin-1 and Enterotoxin A. We identified seventeen neonates (of which two died from toxic shock syndrome), four healthcare workers and three parents putatively involved in the outbreak. Whole-genome sequencing permitted to exclude unrelated cases from the outbreak and to discuss the role of healthcare workers as a reservoir of S. aureus on the NICU. Genome comparisons also indicated the presence of the respective clone on the ward months before the first colonized/infected neonates were detected. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Upholding Tuberculosis Services during the 2014 Ebola Storm: An Encouraging Experience from Conakry, Guinea

    PubMed Central

    Zachariah, Rony; Woldeyohannes, Desalegn; Bangoura, Adama; Chérif, Gba-Foromo; Loua, Francis; Hermans, Veerle; Tayler-Smith, Katie; Sikhondze, Welile; Camara, Lansana-Mady

    2016-01-01

    Setting Ten targeted health facilities supported by Damien Foundation (a Belgian Non Governmental Organization) and the National Tuberculosis (TB) Program in Conakry, Guinea. Objectives To uphold TB program performance during the Ebola outbreak in the presence of a package of pre-emptive additional measures geared at reinforcing the routine TB program, and ensuring Ebola infection control, health-workers safety and motivation. Design A retrospective comparative cohort study of a TB program assessing the performance before (2013) and during the (2014) Ebola outbreak. Results During the Ebola outbreak, all health facilities were maintained opened, there were no reported health-worker Ebola infections, drug stockouts or health staff absences. Of 2,475 presumptive pulmonary TB cases, 13% were diagnosed with TB in both periods (160/1203 in 2013 and 163/1272 in 2014). For new TB, treatment success improved from 84% before to 87% during the Ebola outbreak (P = 0.03). Adjusted Hazard-ratios (AHR) for an unfavorable outcome was alwo lower during the Ebola outbreak, AHR = 0.8, 95% CI:0.7–0.9, P = 0.04). Treatment success improved for HIV co-infected patients (72% to 80%, P<0.01). For retreatment patients, the proportion achieving treatment success was maintained (68% to 72%, P = 0.05). Uptake of HIV-testing and Cotrimoxazole Preventive Treatment was maintained over 85%, and Anti-Retroviral Therapy uptake increased from 77% in 2013 to 86% in 2014 (P<0.01). Conclusion Contingency planning and health system and worker support during the 2014 Ebola outbreak was associated with encouraging and sustained TB program performance. This is of relevance to future outbreaks. PMID:27533499

  8. Computational Modeling of Interventions and Protective Thresholds to Prevent Disease Transmission in Deploying Populations

    PubMed Central

    2014-01-01

    Military personnel are deployed abroad for missions ranging from humanitarian relief efforts to combat actions; delay or interruption in these activities due to disease transmission can cause operational disruptions, significant economic loss, and stressed or exceeded military medical resources. Deployed troops function in environments favorable to the rapid and efficient transmission of many viruses particularly when levels of protection are suboptimal. When immunity among deployed military populations is low, the risk of vaccine-preventable disease outbreaks increases, impacting troop readiness and achievement of mission objectives. However, targeted vaccination and the optimization of preexisting immunity among deployed populations can decrease the threat of outbreaks among deployed troops. Here we describe methods for the computational modeling of disease transmission to explore how preexisting immunity compares with vaccination at the time of deployment as a means of preventing outbreaks and protecting troops and mission objectives during extended military deployment actions. These methods are illustrated with five modeling case studies for separate diseases common in many parts of the world, to show different approaches required in varying epidemiological settings. PMID:25009579

  9. Computational modeling of interventions and protective thresholds to prevent disease transmission in deploying populations.

    PubMed

    Burgess, Colleen; Peace, Angela; Everett, Rebecca; Allegri, Buena; Garman, Patrick

    2014-01-01

    Military personnel are deployed abroad for missions ranging from humanitarian relief efforts to combat actions; delay or interruption in these activities due to disease transmission can cause operational disruptions, significant economic loss, and stressed or exceeded military medical resources. Deployed troops function in environments favorable to the rapid and efficient transmission of many viruses particularly when levels of protection are suboptimal. When immunity among deployed military populations is low, the risk of vaccine-preventable disease outbreaks increases, impacting troop readiness and achievement of mission objectives. However, targeted vaccination and the optimization of preexisting immunity among deployed populations can decrease the threat of outbreaks among deployed troops. Here we describe methods for the computational modeling of disease transmission to explore how preexisting immunity compares with vaccination at the time of deployment as a means of preventing outbreaks and protecting troops and mission objectives during extended military deployment actions. These methods are illustrated with five modeling case studies for separate diseases common in many parts of the world, to show different approaches required in varying epidemiological settings.

  10. Putting Life into Computer-Based Training: The Creation of an Epidemiologic Case Study.

    ERIC Educational Resources Information Center

    Gathany, Nancy C.; Stehr-Green, Jeanette K.

    1994-01-01

    Describes the design of "Pharyngitis in Louisiana," a computer-based epidemiologic case study that was created to teach students how to conduct disease outbreak investigations. Topics discussed include realistic content portrayals; graphics; interactive teaching methods; interaction between the instructional designer and the medical…

  11. Performance of eHealth data sources in local influenza surveillance: a 5-year open cohort study.

    PubMed

    Timpka, Toomas; Spreco, Armin; Dahlström, Örjan; Eriksson, Olle; Gursky, Elin; Ekberg, Joakim; Blomqvist, Eva; Strömgren, Magnus; Karlsson, David; Eriksson, Henrik; Nyce, James; Hinkula, Jorma; Holm, Einar

    2014-04-28

    There is abundant global interest in using syndromic data from population-wide health information systems--referred to as eHealth resources--to improve infectious disease surveillance. Recently, the necessity for these systems to achieve two potentially conflicting requirements has been emphasized. First, they must be evidence-based; second, they must be adjusted for the diversity of populations, lifestyles, and environments. The primary objective was to examine correlations between data from Google Flu Trends (GFT), computer-supported telenursing centers, health service websites, and influenza case rates during seasonal and pandemic influenza outbreaks. The secondary objective was to investigate associations between eHealth data, media coverage, and the interaction between circulating influenza strain(s) and the age-related population immunity. An open cohort design was used for a five-year study in a Swedish county (population 427,000). Syndromic eHealth data were collected from GFT, telenursing call centers, and local health service website visits at page level. Data on mass media coverage of influenza was collected from the major regional newspaper. The performance of eHealth data in surveillance was measured by correlation effect size and time lag to clinically diagnosed influenza cases. Local media coverage data and influenza case rates showed correlations with large effect sizes only for the influenza A (A) pH1N1 outbreak in 2009 (r=.74, 95% CI .42-.90; P<.001) and the severe seasonal A H3N2 outbreak in 2011-2012 (r=.79, 95% CI .42-.93; P=.001), with media coverage preceding case rates with one week. Correlations between GFT and influenza case data showed large effect sizes for all outbreaks, the largest being the seasonal A H3N2 outbreak in 2008-2009 (r=.96, 95% CI .88-.99; P<.001). The preceding time lag decreased from two weeks during the first outbreaks to one week from the 2009 A pH1N1 pandemic. Telenursing data and influenza case data showed correlations with large effect sizes for all outbreaks after the seasonal B and A H1 outbreak in 2007-2008, with a time lag decreasing from two weeks for the seasonal A H3N2 outbreak in 2008-2009 (r=.95, 95% CI .82-.98; P<.001) to none for the A p H1N1 outbreak in 2009 (r=.84, 95% CI .62-.94; P<.001). Large effect sizes were also observed between website visits and influenza case data. Correlations between the eHealth data and influenza case rates in a Swedish county showed large effect sizes throughout a five-year period, while the time lag between signals in eHealth data and influenza rates changed. Further research is needed on analytic methods for adjusting eHealth surveillance systems to shifts in media coverage and to variations in age-group related immunity between virus strains. The results can be used to inform the development of alert-generating eHealth surveillance systems that can be subject for prospective evaluations in routine public health practice.

  12. Performance of eHealth Data Sources in Local Influenza Surveillance: A 5-Year Open Cohort Study

    PubMed Central

    Spreco, Armin; Dahlström, Örjan; Eriksson, Olle; Gursky, Elin; Ekberg, Joakim; Blomqvist, Eva; Strömgren, Magnus; Karlsson, David; Eriksson, Henrik; Nyce, James; Hinkula, Jorma; Holm, Einar

    2014-01-01

    Background There is abundant global interest in using syndromic data from population-wide health information systems—referred to as eHealth resources—to improve infectious disease surveillance. Recently, the necessity for these systems to achieve two potentially conflicting requirements has been emphasized. First, they must be evidence-based; second, they must be adjusted for the diversity of populations, lifestyles, and environments. Objective The primary objective was to examine correlations between data from Google Flu Trends (GFT), computer-supported telenursing centers, health service websites, and influenza case rates during seasonal and pandemic influenza outbreaks. The secondary objective was to investigate associations between eHealth data, media coverage, and the interaction between circulating influenza strain(s) and the age-related population immunity. Methods An open cohort design was used for a five-year study in a Swedish county (population 427,000). Syndromic eHealth data were collected from GFT, telenursing call centers, and local health service website visits at page level. Data on mass media coverage of influenza was collected from the major regional newspaper. The performance of eHealth data in surveillance was measured by correlation effect size and time lag to clinically diagnosed influenza cases. Results Local media coverage data and influenza case rates showed correlations with large effect sizes only for the influenza A (A) pH1N1 outbreak in 2009 (r=.74, 95% CI .42-.90; P<.001) and the severe seasonal A H3N2 outbreak in 2011-2012 (r=.79, 95% CI .42-.93; P=.001), with media coverage preceding case rates with one week. Correlations between GFT and influenza case data showed large effect sizes for all outbreaks, the largest being the seasonal A H3N2 outbreak in 2008-2009 (r=.96, 95% CI .88-.99; P<.001). The preceding time lag decreased from two weeks during the first outbreaks to one week from the 2009 A pH1N1 pandemic. Telenursing data and influenza case data showed correlations with large effect sizes for all outbreaks after the seasonal B and A H1 outbreak in 2007-2008, with a time lag decreasing from two weeks for the seasonal A H3N2 outbreak in 2008-2009 (r=.95, 95% CI .82-.98; P<.001) to none for the A p H1N1 outbreak in 2009 (r=.84, 95% CI .62-.94; P<.001). Large effect sizes were also observed between website visits and influenza case data. Conclusions Correlations between the eHealth data and influenza case rates in a Swedish county showed large effect sizes throughout a five-year period, while the time lag between signals in eHealth data and influenza rates changed. Further research is needed on analytic methods for adjusting eHealth surveillance systems to shifts in media coverage and to variations in age-group related immunity between virus strains. The results can be used to inform the development of alert-generating eHealth surveillance systems that can be subject for prospective evaluations in routine public health practice. PMID:24776527

  13. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore.

    PubMed

    Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S Y; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R

    2016-09-01

    With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore's dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369-1375; http://dx.doi.org/10.1289/ehp.1509981.

  14. Zika Virus: Medical Countermeasure Development Challenges

    PubMed Central

    Malone, Robert W.; Homan, Jane; Callahan, Michael V.; Glasspool-Malone, Jill; Damodaran, Lambodhar; Schneider, Adriano De Bernardi; Zimler, Rebecca; Talton, James; Cobb, Ronald R.; Ruzic, Ivan; Smith-Gagen, Julie; Janies, Daniel; Wilson, James

    2016-01-01

    Introduction Reports of high rates of primary microcephaly and Guillain–Barré syndrome associated with Zika virus infection in French Polynesia and Brazil have raised concerns that the virus circulating in these regions is a rapidly developing neuropathic, teratogenic, emerging infectious public health threat. There are no licensed medical countermeasures (vaccines, therapies or preventive drugs) available for Zika virus infection and disease. The Pan American Health Organization (PAHO) predicts that Zika virus will continue to spread and eventually reach all countries and territories in the Americas with endemic Aedes mosquitoes. This paper reviews the status of the Zika virus outbreak, including medical countermeasure options, with a focus on how the epidemiology, insect vectors, neuropathology, virology and immunology inform options and strategies available for medical countermeasure development and deployment. Methods Multiple information sources were employed to support the review. These included publically available literature, patents, official communications, English and Lusophone lay press. Online surveys were distributed to physicians in the US, Mexico and Argentina and responses analyzed. Computational epitope analysis as well as infectious disease outbreak modeling and forecasting were implemented. Field observations in Brazil were compiled and interviews conducted with public health officials. PMID:26934531

  15. Technical description of RODS: a real-time public health surveillance system.

    PubMed

    Tsui, Fu-Chiang; Espino, Jeremy U; Dato, Virginia M; Gesteland, Per H; Hutman, Judith; Wagner, Michael M

    2003-01-01

    This report describes the design and implementation of the Real-time Outbreak and Disease Surveillance (RODS) system, a computer-based public health surveillance system for early detection of disease outbreaks. Hospitals send RODS data from clinical encounters over virtual private networks and leased lines using the Health Level 7 (HL7) message protocol. The data are sent in real time. RODS automatically classifies the registration chief complaint from the visit into one of seven syndrome categories using Bayesian classifiers. It stores the data in a relational database, aggregates the data for analysis using data warehousing techniques, applies univariate and multivariate statistical detection algorithms to the data, and alerts users of when the algorithms identify anomalous patterns in the syndrome counts. RODS also has a Web-based user interface that supports temporal and spatial analyses. RODS processes sales of over-the-counter health care products in a similar manner but receives such data in batch mode on a daily basis. RODS was used during the 2002 Winter Olympics and currently operates in two states-Pennsylvania and Utah. It has been and continues to be a resource for implementing, evaluating, and applying new methods of public health surveillance.

  16. Supporting business continuity during a highly pathogenic avian influenza outbreak: a collaboration of industry, academia, and government.

    PubMed

    Hennessey, Morgan; Lee, Brendan; Goldsmith, Timothy; Halvorson, Dave; Hueston, William; McElroy, Kristina; Waters, Katherine

    2010-03-01

    Since 2006, a collaborative group of egg industry, state, federal, and academia representatives have worked to enhance preparedness in highly pathogenic avian influenza (HPAI) planning. The collaborative group has created a draft egg product movement protocol, which calls for realistic, science-based contingency plans, biosecurity assessments, commodity risk assessments, and real-time reverse transcriptase-PCR testing to support the continuity of egg operations while also preventing and eradicating an HPAI outbreak. The work done by this group serves as an example of how industry, government, and academia can work together to achieve better preparedness in the event of an animal health emergency. In addition, in the event of an HPAI outbreak in domestic poultry, U.S. consumers will be assured that their egg products come from healthy chickens.

  17. Deterministic Factors Overwhelm Stochastic Environmental Fluctuations as Drivers of Jellyfish Outbreaks.

    PubMed

    Benedetti-Cecchi, Lisandro; Canepa, Antonio; Fuentes, Veronica; Tamburello, Laura; Purcell, Jennifer E; Piraino, Stefano; Roberts, Jason; Boero, Ferdinando; Halpin, Patrick

    2015-01-01

    Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future.

  18. Investigating outbreaks: practical guidance in the Indian scenario.

    PubMed

    Murhekar, Manoj; Moolenaar, Ron; Hutin, Yvan; Broome, Claire

    2009-01-01

    The new international Health Regulations, 2005, which came into force in 2007, establish a national focal point in each country to manage public health emergencies of international concern, including outbreaks. Investigating outbreaks is a challenging task. Often, pressure from decision-makers to hasten investigation may preclude proper evidence-based conclusions. Furthermore, the task of outbreak investigation is given to senior staff, who have limited time for field activities. The classical 10-step approach includes 4 main stages of (i) confirmation of the presence of the outbreak and of diagnosis using laboratory tests, (ii) generation of hypotheses regarding causation using descriptive epidemiology findings, (iii) hypothesis-testing using analytical epidemiology techniques, and (iv) institution of prevention measures. Peer-review at all stages of the investigation and reporting is the keystone of the quality assurance process. It is important to build capacity for outbreak Investigation. Two Field Epidemiology Training Programmes in India are trying to do this. In these programmes, epidemiologists-in-training take a lead in investigating outbreaks, while learning the ropes, with full technical support from the faculty. This training should spawn a culture of generating and using evidence for decision-making in the context of public health, and help strengthen health systems even beyond the domain of outbreaks.

  19. Individualistic values are related to an increase in the outbreaks of infectious diseases and zoonotic diseases.

    PubMed

    Morand, Serge; Walther, Bruno A

    2018-03-01

    Collectivist versus individualistic values are important attributes of intercultural variation. Collectivist values favour in-group members over out-group members and may have evolved to protect in-group members against pathogen transmission. As predicted by the pathogen stress theory of cultural values, more collectivist countries are associated with a higher historical pathogen burden. However, if lifestyles of collectivist countries indeed function as a social defence which decreases pathogen transmission, then these countries should also have experienced fewer disease outbreaks in recent times. We tested this novel hypothesis by correlating the values of collectivism-individualism for 66 countries against their historical pathogen burden, recent number of infectious disease outbreaks and zoonotic disease outbreaks and emerging infectious disease events, and four potentially confounding variables. We confirmed the previously established negative relationship between individualism and historical pathogen burden with new data. While we did not find a correlation for emerging infectious disease events, we found significant positive correlations between individualism and the number of infectious disease outbreaks and zoonotic disease outbreaks. Therefore, one possible cost for individualistic cultures may be their higher susceptibility to disease outbreaks. We support further studies into the exact protective behaviours and mechanisms of collectivist societies which may inhibit disease outbreaks.

  20. Diagnosis of vertical motions from VAS retrievals during a convective outbreak

    NASA Technical Reports Server (NTRS)

    Funk, T. W.; Fuelberg, H. E.

    1985-01-01

    GOES-VAS satellite retrievals are used to investigate an intense convective outbreak over the Mississippi River Valley on 21-22 July 1982. The primary goals are to assess the strengths and weaknesses of three methods for computing vertical motion using satellite retrievals and to determine the effects of short interval observations on the calculations. Then, the vertical motions are incorporated with thermodynamic parameters to assess the usefulness of VAS data in delineating factors leading to storm formation. Results indicate that the quasi-geotrophic omega equation provided patterns and magnitudes most consistent with observed weather events and the 12 h radiosonde-derived motions. The vorticity method generally produced reasonable patterns, especially over the convective outbreak, although magnitudes were large due to its time derivative.

  1. An outbreak of neonatal toxic shock syndrome-like exanthematous disease (NTED) caused by methicillin-resistant Staphylococcus aureus (MRSA) in a neonatal intensive care unit.

    PubMed

    Nakano, Miyo; Miyazawa, Hirofumi; Kawano, Yasushi; Kawagishi, Mika; Torii, Keizo; Hasegawa, Tadao; Iinuma, Yoshitsugu; Ohta, Michio

    2002-01-01

    Neonatal toxic shock syndrome-like exanthematous disease (NTED) is a new entity of methicillin-resistant Staphylococcus aureus (MRSA) infection. Most of NTED cases reported previously in the literature were sporadic ones. In the present report, we describe an outbreak of NTED that occurred in a neonatal intensive care unit (NICU) between April, 1999 and April, 2000 in Japan. All MRSA strains isolated from 14 patients (6 NTED, 2 infections and 6 colonizations) in this outbreak belonged to the group of coagulase II and produced toxic shock syndrome toxin 1 (TSST-1). Of these, 14 strains produced staphylococcal enterotoxin C (SEC). No other superantigenic toxins were produced by these strains. The pulsed field gel electrophoresis (PFGE) patterns of genomic DNA digested with SmaI were indistinguishable each other due to no band shifting in all of the 13 strains except for strain O-21 and M56. Strain M56 was different from the dominant type in the positions of only 2 bands, whereas the pattern of strain O-21 had no similarity with the other pattern, suggesting that this outbreak was associated with the spread of a unique MRSA strain in the NICU. Two-dimensional electrophoresis (2-DE) analysis of exoproteins revealed that the patterns of these 14 strains were very indistinguishable to each other, and that these strains produced very large amounts of TSST-1 and SEC3 subtype superantigens, as measured with computer-assisted image analysis of the intensity of 2-DE spots. The 2-DE gel of O-21 showed the different pattern from the others. These results as well as the profiles of toxin production also supported the conclusion drawn from PFGE analysis. Based on these results, the involvement of TSST-1 and SEC3 in the pathogenesis of NTED is discussed.

  2. Legionnaires' disease from a cooling tower in a community outbreak in Lidköping, Sweden- epidemiological, environmental and microbiological investigation supported by meteorological modelling.

    PubMed

    Ulleryd, Peter; Hugosson, Anna; Allestam, Görel; Bernander, Sverker; Claesson, Berndt E B; Eilertz, Ingrid; Hagaeus, Anne-Christine; Hjorth, Martin; Johansson, Agneta; de Jong, Birgitta; Lindqvist, Anna; Nolskog, Peter; Svensson, Nils

    2012-11-21

    An outbreak of Legionnaires' Disease took place in the Swedish town Lidköping on Lake Vänern in August 2004 and the number of pneumonia cases at the local hospital increased markedly. As soon as the first patients were diagnosed, health care providers were informed and an outbreak investigation was launched. Classical epidemiological investigation, diagnostic tests, environmental analyses, epidemiological typing and meteorological methods. Thirty-two cases were found. The median age was 62 years (range 36 - 88) and 22 (69%) were males. No common indoor exposure was found. Legionella pneumophila serogroup 1 was found at two industries, each with two cooling towers. In one cooling tower exceptionally high concentrations, 1.2 × 109 cfu/L, were found. Smaller amounts were also found in the other tower of the first industry and in one tower of the second plant. Sero- and genotyping of isolated L. pneumophila serogroup 1 from three patients and epidemiologically suspected environmental strains supported the cooling tower with the high concentration as the source. In all, two L. pneumophila strains were isolated from three culture confirmed cases and both these strains were detected in the cooling tower, but one strain in another cooling tower as well. Meteorological modelling demonstrated probable spread from the most suspected cooling tower towards the town centre and the precise location of four cases that were stray visitors to Lidköping. Classical epidemiological, environmental and microbiological investigation of an LD outbreak can be supported by meteorological modelling methods.The broad competence and cooperation capabilities in the investigation team from different authorities were of paramount importance in stopping this outbreak.

  3. Legionnaires’ disease from a cooling tower in a community outbreak in Lidköping, Sweden- epidemiological, environmental and microbiological investigation supported by meteorological modelling

    PubMed Central

    2012-01-01

    Background An outbreak of Legionnaires’ Disease took place in the Swedish town Lidköping on Lake Vänern in August 2004 and the number of pneumonia cases at the local hospital increased markedly. As soon as the first patients were diagnosed, health care providers were informed and an outbreak investigation was launched. Methods Classical epidemiological investigation, diagnostic tests, environmental analyses, epidemiological typing and meteorological methods. Results Thirty-two cases were found. The median age was 62 years (range 36 – 88) and 22 (69%) were males. No common indoor exposure was found. Legionella pneumophila serogroup 1 was found at two industries, each with two cooling towers. In one cooling tower exceptionally high concentrations, 1.2 × 109 cfu/L, were found. Smaller amounts were also found in the other tower of the first industry and in one tower of the second plant. Sero- and genotyping of isolated L. pneumophila serogroup 1 from three patients and epidemiologically suspected environmental strains supported the cooling tower with the high concentration as the source. In all, two L. pneumophila strains were isolated from three culture confirmed cases and both these strains were detected in the cooling tower, but one strain in another cooling tower as well. Meteorological modelling demonstrated probable spread from the most suspected cooling tower towards the town centre and the precise location of four cases that were stray visitors to Lidköping. Conclusions Classical epidemiological, environmental and microbiological investigation of an LD outbreak can be supported by meteorological modelling methods. The broad competence and cooperation capabilities in the investigation team from different authorities were of paramount importance in stopping this outbreak. PMID:23171054

  4. A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels

    PubMed Central

    2012-01-01

    Background In recent years, computer simulation models have supported development of pandemic influenza preparedness policies. However, U.S. policymakers have raised several concerns about the practical use of these models. In this review paper, we examine the extent to which the current literature already addresses these concerns and identify means of enhancing the current models for higher operational use. Methods We surveyed PubMed and other sources for published research literature on simulation models for influenza pandemic preparedness. We identified 23 models published between 1990 and 2010 that consider single-region (e.g., country, province, city) outbreaks and multi-pronged mitigation strategies. We developed a plan for examination of the literature based on the concerns raised by the policymakers. Results While examining the concerns about the adequacy and validity of data, we found that though the epidemiological data supporting the models appears to be adequate, it should be validated through as many updates as possible during an outbreak. Demographical data must improve its interfaces for access, retrieval, and translation into model parameters. Regarding the concern about credibility and validity of modeling assumptions, we found that the models often simplify reality to reduce computational burden. Such simplifications may be permissible if they do not interfere with the performance assessment of the mitigation strategies. We also agreed with the concern that social behavior is inadequately represented in pandemic influenza models. Our review showed that the models consider only a few social-behavioral aspects including contact rates, withdrawal from work or school due to symptoms appearance or to care for sick relatives, and compliance to social distancing, vaccination, and antiviral prophylaxis. The concern about the degree of accessibility of the models is palpable, since we found three models that are currently accessible by the public while other models are seeking public accessibility. Policymakers would prefer models scalable to any population size that can be downloadable and operable in personal computers. But scaling models to larger populations would often require computational needs that cannot be handled with personal computers and laptops. As a limitation, we state that some existing models could not be included in our review due to their limited available documentation discussing the choice of relevant parameter values. Conclusions To adequately address the concerns of the policymakers, we need continuing model enhancements in critical areas including: updating of epidemiological data during a pandemic, smooth handling of large demographical databases, incorporation of a broader spectrum of social-behavioral aspects, updating information for contact patterns, adaptation of recent methodologies for collecting human mobility data, and improvement of computational efficiency and accessibility. PMID:22463370

  5. Genomic Infectious Disease Epidemiology in Partially Sampled and Ongoing Outbreaks

    PubMed Central

    Didelot, Xavier; Fraser, Christophe; Gardy, Jennifer; Colijn, Caroline

    2017-01-01

    Abstract Genomic data are increasingly being used to understand infectious disease epidemiology. Isolates from a given outbreak are sequenced, and the patterns of shared variation are used to infer which isolates within the outbreak are most closely related to each other. Unfortunately, the phylogenetic trees typically used to represent this variation are not directly informative about who infected whom—a phylogenetic tree is not a transmission tree. However, a transmission tree can be inferred from a phylogeny while accounting for within-host genetic diversity by coloring the branches of a phylogeny according to which host those branches were in. Here we extend this approach and show that it can be applied to partially sampled and ongoing outbreaks. This requires computing the correct probability of an observed transmission tree and we herein demonstrate how to do this for a large class of epidemiological models. We also demonstrate how the branch coloring approach can incorporate a variable number of unique colors to represent unsampled intermediates in transmission chains. The resulting algorithm is a reversible jump Monte–Carlo Markov Chain, which we apply to both simulated data and real data from an outbreak of tuberculosis. By accounting for unsampled cases and an outbreak which may not have reached its end, our method is uniquely suited to use in a public health environment during real-time outbreak investigations. We implemented this transmission tree inference methodology in an R package called TransPhylo, which is freely available from https://github.com/xavierdidelot/TransPhylo. PMID:28100788

  6. Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii on computer interface surfaces of hospital wards and association with clinical isolates.

    PubMed

    Lu, Po-Liang; Siu, L K; Chen, Tun-Chieh; Ma, Ling; Chiang, Wen-Gin; Chen, Yen-Hsu; Lin, Sheng-Fung; Chen, Tyen-Po

    2009-10-01

    Computer keyboards and mice are potential reservoirs of nosocomial pathogens, but routine disinfection for non-water-proof computer devices is a problem. With better hand hygiene compliance of health-care workers (HCWs), the impact of these potential sources of contamination on clinical infection needs to be clarified. This study was conducted in a 1600-bed medical center of southern Taiwan with 47 wards and 282 computers. With education and monitoring program of hand hygiene for HCWs, the average compliance rate was 74% before our surveillance. We investigated the association of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Acinetobacter baumannii, three leading hospital-acquired pathogens, from ward computer keyboards, mice and from clinical isolates in non-outbreak period by pulsed field gel electrophoresis and antibiogram. Our results revealed a 17.4% (49/282) contamination rate of these computer devices by S. aureus, Acinetobacter spp. or Pseudomonas spp. The contamination rates of MRSA and A. baumannii in the ward computers were 1.1% and 4.3%, respectively. No P. aeruginosa was isolated. All isolates from computers and clinical specimens at the same ward showed different pulsotypes. However, A. baumannii isolates on two ward computers had the same pulsotype. With good hand hygiene compliance, we found relatively low contamination rates of MRSA, P. aeruginosa and A. baumannii on ward computer interface, and without further contribution to nosocomial infection. Our results suggested no necessity of routine culture surveillance in non-outbreak situation.

  7. Infection prevention and control of the Ebola outbreak in Liberia, 2014-2015: key challenges and successes.

    PubMed

    Cooper, Catherine; Fisher, Dale; Gupta, Neil; MaCauley, Rose; Pessoa-Silva, Carmem L

    2016-01-05

    Prior to the 2014-2015 Ebola outbreak, infection prevention and control (IPC) activities in Liberian healthcare facilities were basic. There was no national IPC guidance, nor dedicated staff at any level of government or healthcare facility (HCF) to ensure the implementation of best practices. Efforts to improve IPC early in the outbreak were ad hoc and messaging was inconsistent. In September 2014, at the height of the outbreak, the national IPC Task Force was established with a Ministry of Health (MoH) mandate to coordinate IPC response activities. A steering group of the Task Force, including representatives of the World Health Organization (WHO) and the United States Centers for Disease Control and Prevention (CDC), supported MoH leadership in implementing standardized messaging and IPC training for the health workforce. This structure, and the activities implemented under this structure, played a crucial role in the implementation of IPC practices and successful containment of the outbreak. Moving forward, a nationwide culture of IPC needs to be maintained through this governance structure in Liberia's health system to prevent and respond to future outbreaks.

  8. Predictive and Reactive Distribution of Vaccines and Antivirals during Cross-Regional Pandemic Outbreaks

    PubMed Central

    Uribe-Sánchez, Andrés; Savachkin, Alex

    2011-01-01

    As recently pointed out by the Institute of Medicine, the existing pandemic mitigation models lack the dynamic decision support capability. We develop a large-scale simulation-driven optimization model for generating dynamic predictive distribution of vaccines and antivirals over a network of regional pandemic outbreaks. The model incorporates measures of morbidity, mortality, and social distancing, translated into the cost of lost productivity and medical expenses. The performance of the strategy is compared to that of the reactive myopic policy, using a sample outbreak in Fla, USA, with an affected population of over four millions. The comparison is implemented at different levels of vaccine and antiviral availability and administration capacity. Sensitivity analysis is performed to assess the impact of variability of some critical factors on policy performance. The model is intended to support public health policy making for effective distribution of limited mitigation resources. PMID:23074658

  9. Cost of a measles outbreak in a remote island economy: 2014 Federated States of Micronesia measles outbreak.

    PubMed

    Pike, Jamison; Tippins, Ashley; Nyaku, Mawuli; Eckert, Maribeth; Helgenberger, Louisa; Underwood, J Michael

    2017-10-13

    After 20years with no reported measles cases, on May 15, 2014 the Centers for Disease Control and Prevention (CDC) was notified of two cases testing positive for measles-specific immunoglobulin M (IgM) antibodies in the Federated States of Micronesia (FSM). Under the Compact of Free Association, FSM receives immunization funding and technical support from the United States (US) domestic vaccination program managed by the Centers for Disease Control and Prevention (CDC). In a collaborative effort, public health officials and volunteers from FSM and the US government worked to respond and contain the measles outbreak through an emergency mass vaccination campaign, contact tracing, and other outbreak investigation activities. Contributions were also made by United Nations Children's Emergency Fund (UNICEF) and World Health Organization (WHO). Total costs incurred as a result of the outbreak were nearly $4,000,000; approximately $10,000 per case. Direct medical costs (≈$141,000) were incurred in the treatment of those individuals infected, as well as lost productivity of the infected and informal caregivers (≈$250,000) and costs to contain the outbreak (≈$3.5 million). We assessed the economic burden of the 2014 measles outbreak to FSM, as well as the economic responsibilities of the US. Although the US paid the majority of total costs of the outbreak (≈67%), examining each country's costs relative to their respective economy illustrates a far greater burden to FSM. We demonstrate that while FSM was heavily assisted by the US in responding to the 2014 Measles Outbreak, the outbreak significantly impacted their economy. FSM's economic burden from the outbreak is approximately equivalent to their entire 2016 Fiscal Year budget dedicated to education. Published by Elsevier Ltd.

  10. A neighborhood susceptibility index for planning of local physical interventions in response to pandemic influenza outbreaks

    PubMed Central

    Timpka, Toomas; Eriksson, Henrik; Strömgren, Magnus; Eriksson, Olle; Ekberg, Joakim; Grimvall, Anders; Nyce, James; Gursky, Elin; Holm, Einar

    2010-01-01

    The global spread of a novel A (H1N1) influenza virus in 2009 has highlighted the possibility of a devastating pandemic similar to the ‘Spanish flu’ of 1917–1918. Responding to such pandemics requires careful planning for the early phases where there is no availability of pandemic vaccine. We set out to compute a Neighborhood Influenza Susceptibility Index (NISI) describing the vulnerability of local communities of different geo-socio-physical structure to a pandemic influenza outbreak. We used a spatially explicit geo-physical model of Linköping municipality (pop. 136,240) in Sweden, and employed an ontology-modeling tool to define simulation models and transmission settings. We found considerable differences in NISI between neighborhoods corresponding to primary care areas with regard to early progress of the outbreak, as well as in terms of the total accumulated share of infected residents counted after the outbreak. The NISI can be used in local preparations of physical response measures during pandemics. PMID:21347087

  11. Data, network, and application: technical description of the Utah RODS Winter Olympic Biosurveillance System.

    PubMed Central

    Tsui, Fu-Chiang; Espino, Jeremy U.; Wagner, Michael M.; Gesteland, Per; Ivanov, Oleg; Olszewski, Robert T.; Liu, Zhen; Zeng, Xiaoming; Chapman, Wendy; Wong, Weng Keen; Moore, Andrew

    2002-01-01

    Given the post September 11th climate of possible bioterrorist attacks and the high profile 2002 Winter Olympics in the Salt Lake City, Utah, we challenged ourselves to deploy a computer-based real-time automated biosurveillance system for Utah, the Utah Real-time Outbreak and Disease Surveillance system (Utah RODS), in six weeks using our existing Real-time Outbreak and Disease Surveillance (RODS) architecture. During the Olympics, Utah RODS received real-time HL-7 admission messages from 10 emergency departments and 20 walk-in clinics. It collected free-text chief complaints, categorized them into one of seven prodromes classes using natural language processing, and provided a web interface for real-time display of time series graphs, geographic information system output, outbreak algorithm alerts, and details of the cases. The system detected two possible outbreaks that were dismissed as the natural result of increasing rates of Influenza. Utah RODS allowed us to further understand the complexities underlying the rapid deployment of a RODS-like system. PMID:12463938

  12. Data, network, and application: technical description of the Utah RODS Winter Olympic Biosurveillance System.

    PubMed

    Tsui, Fu-Chiang; Espino, Jeremy U; Wagner, Michael M; Gesteland, Per; Ivanov, Oleg; Olszewski, Robert T; Liu, Zhen; Zeng, Xiaoming; Chapman, Wendy; Wong, Weng Keen; Moore, Andrew

    2002-01-01

    Given the post September 11th climate of possible bioterrorist attacks and the high profile 2002 Winter Olympics in the Salt Lake City, Utah, we challenged ourselves to deploy a computer-based real-time automated biosurveillance system for Utah, the Utah Real-time Outbreak and Disease Surveillance system (Utah RODS), in six weeks using our existing Real-time Outbreak and Disease Surveillance (RODS) architecture. During the Olympics, Utah RODS received real-time HL-7 admission messages from 10 emergency departments and 20 walk-in clinics. It collected free-text chief complaints, categorized them into one of seven prodromes classes using natural language processing, and provided a web interface for real-time display of time series graphs, geographic information system output, outbreak algorithm alerts, and details of the cases. The system detected two possible outbreaks that were dismissed as the natural result of increasing rates of Influenza. Utah RODS allowed us to further understand the complexities underlying the rapid deployment of a RODS-like system.

  13. Ebolavirus is evolving but not changing: No evidence for functional change in EBOV from 1976 to the 2014 outbreak.

    PubMed

    Olabode, Abayomi S; Jiang, Xiaowei; Robertson, David L; Lovell, Simon C

    2015-08-01

    The 2014 epidemic of Ebola virus disease (EVD) has had a devastating impact in West Africa. Sequencing of ebolavirus (EBOV) from infected individuals has revealed extensive genetic variation, leading to speculation that the virus may be adapting to humans, accounting for the scale of the 2014 outbreak. We computationally analyze the variation associated with all EVD outbreaks, and find none of the amino acid replacements lead to identifiable functional changes. These changes have minimal effect on protein structure, being neither stabilizing nor destabilizing, are not found in regions of the proteins associated with known functions and tend to cluster in poorly constrained regions of proteins, specifically intrinsically disordered regions. We find no evidence that the difference between the current and previous outbreaks is due to evolutionary changes associated with transmission to humans. Instead, epidemiological factors are likely to be responsible for the unprecedented spread of EVD. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  14. Relevance of Global Health Security to the US Export Economy.

    PubMed

    Cassell, Cynthia H; Bambery, Zoe; Roy, Kakoli; Meltzer, Martin I; Ahmed, Zara; Payne, Rebecca L; Bunnell, Rebecca E

    To reduce the health security risk and impact of outbreaks around the world, the US Centers for Disease Control and Prevention and its partners are building capabilities to prevent, detect, and contain outbreaks in 49 global health security priority countries. We examine the extent of economic vulnerability to the US export economy posed by trade disruptions in these 49 countries. Using 2015 US Department of Commerce data, we assessed the value of US exports and the number of US jobs supported by those exports. US exports to the 49 countries exceeded $308 billion and supported more than 1.6 million jobs across all US states in agriculture, manufacturing, mining, oil and gas, services, and other sectors. These exports represented 13.7% of all US export revenue worldwide and 14.3% of all US jobs supported by all US exports. The economic linkages between the United States and these global health security priority countries illustrate the importance of ensuring that countries have the public health capacities needed to control outbreaks at their source before they become pandemics.

  15. Relevance of Global Health Security to the US Export Economy

    PubMed Central

    Cassell, Cynthia H.; Bambery, Zoe; Roy, Kakoli; Meltzer, Martin I.; Ahmed, Zara; Payne, Rebecca L.

    2017-01-01

    To reduce the health security risk and impact of outbreaks around the world, the US Centers for Disease Control and Prevention and its partners are building capabilities to prevent, detect, and contain outbreaks in 49 global health security priority countries. We examine the extent of economic vulnerability to the US export economy posed by trade disruptions in these 49 countries. Using 2015 US Department of Commerce data, we assessed the value of US exports and the number of US jobs supported by those exports. US exports to the 49 countries exceeded $308 billion and supported more than 1.6 million jobs across all US states in agriculture, manufacturing, mining, oil and gas, services, and other sectors. These exports represented 13.7% of all US export revenue worldwide and 14.3% of all US jobs supported by all US exports. The economic linkages between the United States and these global health security priority countries illustrate the importance of ensuring that countries have the public health capacities needed to control outbreaks at their source before they become pandemics. PMID:29199867

  16. Generalized reproduction numbers and the prediction of patterns in waterborne disease

    PubMed Central

    Gatto, Marino; Mari, Lorenzo; Bertuzzo, Enrico; Casagrandi, Renato; Righetto, Lorenzo; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2012-01-01

    Understanding, predicting, and controlling outbreaks of waterborne diseases are crucial goals of public health policies, but pose challenging problems because infection patterns are influenced by spatial structure and temporal asynchrony. Although explicit spatial modeling is made possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is still lacking. Here we show that the requirement that all the local reproduction numbers be larger than unity is neither necessary nor sufficient for outbreaks to occur when local settlements are connected by networks of primary and secondary infection mechanisms. To determine onset conditions, we derive general analytical expressions for a reproduction matrix , explicitly accounting for spatial distributions of human settlements and pathogen transmission via hydrological and human mobility networks. At disease onset, a generalized reproduction number (the dominant eigenvalue of ) must be larger than unity. We also show that geographical outbreak patterns in complex environments are linked to the dominant eigenvector and to spectral properties of . Tests against data and computations for the 2010 Haiti and 2000 KwaZulu-Natal cholera outbreaks, as well as against computations for metapopulation networks, demonstrate that eigenvectors of provide a synthetic and effective tool for predicting the disease course in space and time. Networked connectivity models, describing the interplay between hydrology, epidemiology, and social behavior sustaining human mobility, thus prove to be key tools for emergency management of waterborne infections. PMID:23150538

  17. Rift Valley fever vaccines: current and future needs.

    PubMed

    Dungu, Baptiste; Lubisi, Baratang A; Ikegami, Tetsuro

    2018-04-01

    Rift Valley fever (RVF) is a zoonotic mosquito-borne bunyaviral disease associated with high abortion rates, neonatal deaths, and fetal malformations in ruminants, and mild to severe disease in humans. Outbreaks of RVF cause huge economic losses and public health impacts in endemic countries in Africa and the Arabian Peninsula. A proper vaccination strategy is important for preventing or minimizing outbreaks. Vaccination against RVF is not practiced in many countries, however, due to absence or irregular occurrences of outbreaks, despite serological evidence of RVF viral activity. Nonetheless, effective vaccination strategies, and functional national and international multi-disciplinary networks, remain crucial for ensuring availability of vaccines and supporting execution of vaccination in high risk areas for efficient response to RVF alerts and outbreaks. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. An integrated web system to support veterinary activities in Italy for the management of information in epidemic emergencies.

    PubMed

    Iannetti, S; Savini, L; Palma, D; Calistri, P; Natale, F; Di Lorenzo, A; Cerella, A; Giovannini, A

    2014-03-01

    The management of public health emergencies is improved by quick, exhaustive and standardized flow of data on disease outbreaks, by using specific tools for data collection, registration and analysis. In this context, the National Information System for the Notification of Outbreaks of Animal Diseases (SIMAN) has been developed in Italy to collect and share data on the notifications of outbreaks of animal diseases. SIMAN is connected through web services to the national database of animals and holdings (BDN) and has been integrated with tools for the management of epidemic emergencies. The website has been updated with a section dedicated to the contingency planning in case of epidemic emergency. EpiTrace is one such useful tool also integrated in the BDN and based on the Social Network Analysis (SNA) and on network epidemiological models. This tool gives the possibility of assessing the risk associated to holdings and animals on the basis of their trade, in order to support the veterinary services in tracing back and forward the animals in case of outbreaks of infectious diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A review of nosocomial Salmonella outbreaks: infection control interventions found effective.

    PubMed

    Lee, M B; Greig, J D

    2013-03-01

    To review nosocomial salmonellosis outbreaks to identify: mode of transmission; morbidity and mortality patterns; and recommendations for control and prevention. Documented nosocomial salmonellosis outbreaks in hospitals published from January 1995 to November 2011, written in the English language, were systematically reviewed. The study methodology incorporated steps from the PRISMA statement for a high quality review process. Computer-aided searches of Scopus, CAB Global Health and CINAHL(®), the Cumulative Index to Nursing and Allied Health Literature were completed to identify relevant outbreak reports written in English. To validate the electronic search methodology, bibliographies and reference lists of relevant review articles were hand-searched. Public health and government websites were searched for nosocomial salmonellosis. Fifty-two relevant reports were identified. The most frequently reported routes of transmission were food 31/52 (59.6%) and person-to-person transmission 7/52 (13.5%). Actions taken during the outbreak to control transmission included improvements to: 1) infection control practices (41.8% of actions); isolation or cohorting patients, hand hygiene practices, and enhancing cleaning and disinfection in patient care areas; and 2) food handling practices (24.4% of actions); reviewing food preparation practices, enhancing cleaning and sanitation of the kitchen, and controlling food temperatures. Investigators made recommendations retrospectively in outbreak reports to provide direction to health centees but these recommendations were not statistically evaluated for effectiveness. More emphasis should be placed on improving food handling practices, such as training food workers, monitoring food temperatures, and not using raw foods of animal origin, to prevent nosocomial salmonellosis outbreaks in hospitals because almost 60% of the outbreaks were foodborne. Copyright © 2013 The Royal Institute of Public Health. All rights reserved.

  20. Understanding Virtual Epidemics: Children's Folk Conceptions of a Computer Virus

    ERIC Educational Resources Information Center

    Kafai, Yasmin B.

    2008-01-01

    Our work investigates the annual outbreak of Whypox, a virtual epidemic in Whyville.net, a virtual world with over 1.2 million registered players ages 8-16. We examined online and classroom participants' understanding of a computer virus using surveys and design activities. Our analyses reveal that students have a mostly naive understanding of a…

  1. A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens

    PubMed Central

    Katz, Lee S.; Griswold, Taylor; Williams-Newkirk, Amanda J.; Wagner, Darlene; Petkau, Aaron; Sieffert, Cameron; Van Domselaar, Gary; Deng, Xiangyu; Carleton, Heather A.

    2017-01-01

    Modern epidemiology of foodborne bacterial pathogens in industrialized countries relies increasingly on whole genome sequencing (WGS) techniques. As opposed to profiling techniques such as pulsed-field gel electrophoresis, WGS requires a variety of computational methods. Since 2013, United States agencies responsible for food safety including the CDC, FDA, and USDA, have been performing whole-genome sequencing (WGS) on all Listeria monocytogenes found in clinical, food, and environmental samples. Each year, more genomes of other foodborne pathogens such as Escherichia coli, Campylobacter jejuni, and Salmonella enterica are being sequenced. Comparing thousands of genomes across an entire species requires a fast method with coarse resolution; however, capturing the fine details of highly related isolates requires a computationally heavy and sophisticated algorithm. Most L. monocytogenes investigations employing WGS depend on being able to identify an outbreak clade whose inter-genomic distances are less than an empirically determined threshold. When the difference between a few single nucleotide polymorphisms (SNPs) can help distinguish between genomes that are likely outbreak-associated and those that are less likely to be associated, we require a fine-resolution method. To achieve this level of resolution, we have developed Lyve-SET, a high-quality SNP pipeline. We evaluated Lyve-SET by retrospectively investigating 12 outbreak data sets along with four other SNP pipelines that have been used in outbreak investigation or similar scenarios. To compare these pipelines, several distance and phylogeny-based comparison methods were applied, which collectively showed that multiple pipelines were able to identify most outbreak clusters and strains. Currently in the US PulseNet system, whole genome multi-locus sequence typing (wgMLST) is the preferred primary method for foodborne WGS cluster detection and outbreak investigation due to its ability to name standardized genomic profiles, its central database, and its ability to be run in a graphical user interface. However, creating a functional wgMLST scheme requires extended up-front development and subject-matter expertise. When a scheme does not exist or when the highest resolution is needed, SNP analysis is used. Using three Listeria outbreak data sets, we demonstrated the concordance between Lyve-SET SNP typing and wgMLST. Availability: Lyve-SET can be found at https://github.com/lskatz/Lyve-SET. PMID:28348549

  2. Responding to a cVDPV1 outbreak in Ukraine: Implications, challenges and opportunities.

    PubMed

    Khetsuriani, Nino; Perehinets, Ihor; Nitzan, Dorit; Popovic, Dragoslav; Moran, Thomas; Allahverdiyeva, Vusala; Huseynov, Shahin; Gavrilin, Eugene; Slobodianyk, Liudmyla; Izhyk, Olha; Sukhodolska, Anna; Hegazi, Sahar; Bulavinova, Katerina; Platov, Sergei; O'Connor, Patrick

    2017-08-24

    The European Region, certified polio-free in 2002, remains at risk of wild poliovirus reintroduction and emergence of circulating vaccine-derived polioviruses (cVDPV) until global polio eradication is achieved, as demonstrated by the cVDPV1 outbreak in Ukraine in 2015. We reviewed epidemiologic, clinical and virology data on cVDPV cases, surveillance and immunization coverage data, and reports of outbreak-related surveys, country missions, and expert group meetings. In Ukraine, 3-dose polio vaccine coverage declined from 91% in 2008 to 15% by mid-2015. In summer, 2015, two unrelated children from Zakarpattya province were paralyzed by a highly divergent cVDPV1. The isolates were 20 and 26 nucleotide divergent from prototype Sabin strain (with 18 identical mutations) consistent with their common origin and ∼2-year evolution. Outbreak response recommendations developed with international partner support included conducting three nationwide supplementary immunization activities (SIAs) with tOPV, strengthening surveillance and implementing communication interventions. SIAs were conducted during October 2015-February 2016 (officially reported coverage, round 1-64.4%, round 2-71.7%, and round 3-80.7%). Substantial challenges to outbreak response included lack of high-level support, resistance to OPV use, low perceived risk of polio, widespread vaccine hesitancy, anti-vaccine media environment, economic crisis and military conflict. Communication activities improved caregiver awareness of polio and confidence in vaccination. Surveillance was enhanced but did not consistently meet applicable performance standards. Post-outbreak assessments concluded that cVDPV1 transmission in Ukraine has likely stopped following the response, but significant gaps in population immunity and surveillance remained. Chronic under-vaccination in Ukraine resulted in the accumulation of children susceptible to polioviruses and created favorable conditions for VDPV1 emergence and circulation, leading to the outbreak. Until programmatic gaps in immunization and surveillance are addressed, Ukraine will remain at high-risk for VDPV emergence and circulation, as well as at risk for other vaccine-preventable diseases. Published by Elsevier Ltd.

  3. Novel Use of Flu Surveillance Data: Evaluating Potential of Sentinel Populations for Early Detection of Influenza Outbreaks.

    PubMed

    Daughton, Ashlynn R; Velappan, Nileena; Abeyta, Esteban; Priedhorsky, Reid; Deshpande, Alina

    2016-01-01

    Influenza causes significant morbidity and mortality each year, with 2-8% of weekly outpatient visits around the United States for influenza-like-illness (ILI) during the peak of the season. Effective use of existing flu surveillance data allows officials to understand and predict current flu outbreaks and can contribute to reductions in influenza morbidity and mortality. Previous work used the 2009-2010 influenza season to investigate the possibility of using existing military and civilian surveillance systems to improve early detection of flu outbreaks. Results suggested that civilian surveillance could help predict outbreak trajectory in local military installations. To further test that hypothesis, we compare pairs of civilian and military outbreaks in seven locations between 2000 and 2013. We find no predictive relationship between outbreak peaks or time series of paired outbreaks. This larger study does not find evidence to support the hypothesis that civilian data can be used as sentinel surveillance for military installations. We additionally investigate the effect of modifying the ILI case definition between the standard Department of Defense definition, a more specific definition proposed in literature, and confirmed Influenza A. We find that case definition heavily impacts results. This study thus highlights the importance of careful selection of case definition, and appropriate consideration of case definition in the interpretation of results.

  4. Prediction of gastrointestinal disease with over-the-counter diarrheal remedy sales records in the San Francisco Bay Area.

    PubMed

    Kirian, Michelle L; Weintraub, June M

    2010-07-20

    Water utilities continue to be interested in implementing syndromic surveillance for the enhanced detection of waterborne disease outbreaks. The authors evaluated the ability of sales of over-the-counter diarrheal remedies available from the National Retail Data Monitor to predict endemic and epidemic gastrointestinal disease in the San Francisco Bay Area. Time series models were fit to weekly diarrheal remedy sales and diarrheal illness case counts. Cross-correlations between the pre-whitened residual series were calculated. Diarrheal remedy sales model residuals were regressed on the number of weekly outbreaks and outbreak-associated cases. Diarrheal remedy sales models were used to auto-forecast one week-ahead sales. The sensitivity and specificity of signals, generated by observed diarrheal remedy sales exceeding the upper 95% forecast confidence interval, in predicting weekly outbreaks were calculated. No significant correlations were identified between weekly diarrheal remedy sales and diarrhea illness case counts, outbreak counts, or the number of outbreak-associated cases. Signals generated by forecasting with the diarrheal remedy sales model did not coincide with outbreak weeks more reliably than signals chosen randomly. This work does not support the implementation of syndromic surveillance for gastrointestinal disease with data available though the National Retail Data Monitor.

  5. Comparison of norovirus RNA levels in outbreak-related oysters with background environmental levels.

    PubMed

    Lowther, James A; Gustar, Nicole E; Hartnell, Rachel E; Lees, David N

    2012-02-01

    Norovirus is the principal agent of bivalve shellfish-associated gastroenteric illness worldwide. Numerous studies using PCR have demonstrated norovirus contamination in a significant proportion of both oyster and other bivalve shellfish production areas and ready-to-eat products. By comparison, the number of epidemiologically confirmed shellfish-associated outbreaks is relatively low. This suggests that factors other than the simple presence or absence of virus RNA are important contributors to the amount of illness reported. This study compares norovirus RNA levels in oyster samples strongly linked to norovirus or norovirus-type illness with the levels typically found in commercial production areas (non-outbreak-related samples). A statistically significant difference between norovirus levels in the two sets of samples was observed. The geometric mean of the levels in outbreak samples (1,048 copies per g) was almost one order of magnitude higher than for positive non-outbreak-related samples (121 copies per g). Further, while none of the outbreak-related samples contained fewer than 152 copies per g, the majority of positive results for non-outbreak-related samples was below this level. These observations support the concept of a dose-response for norovirus RNA levels in shellfish and could help inform the establishment of threshold criteria for risk management.

  6. Analysis and Modeling of Influenza Outbreaks as Driven by Weather

    NASA Astrophysics Data System (ADS)

    Thrastarson, H. T.; Teixeira, J.; Serman, E. A.; Parekh, A.; Yeo, E.

    2017-12-01

    Seasonal influenza outbreaks are a major source of illness, mortality and economic burden worldwide. Attributing what drives the seasonality of the outbreaks is still an unsettled problem. But in temperate regions absolute humidity conditions are a strong candidate (Shaman et al., 2010) and some studies have associated temperature conditions with influenza outbreaks. We use humidity and temperature data from NASA's AIRS (Atmospheric Infra-Red Sounder) instrument as well as data for influenza incidence in the US and South Africa to explore the connection between weather and influenza seasonality at different spatial scales. We also incorporate influenza surveillance data, satellite data and humidity forecasts into a numerical epidemiological prediction system. Our results give support for the role of local weather conditions as drivers of the seasonality of influenza in temperate regions. This can have implications for public health efforts where forecasting of the timing and intensity of influenza outbreaks has a great potential role (e.g., aiding management and organization of vaccines, drugs and other resources).

  7. Lessons from the Ebola Outbreak: Action Items for Emerging Infectious Disease Preparedness and Response.

    PubMed

    Jacobsen, Kathryn H; Aguirre, A Alonso; Bailey, Charles L; Baranova, Ancha V; Crooks, Andrew T; Croitoru, Arie; Delamater, Paul L; Gupta, Jhumka; Kehn-Hall, Kylene; Narayanan, Aarthi; Pierobon, Mariaelena; Rowan, Katherine E; Schwebach, J Reid; Seshaiyer, Padmanabhan; Sklarew, Dann M; Stefanidis, Anthony; Agouris, Peggy

    2016-03-01

    As the Ebola outbreak in West Africa wanes, it is time for the international scientific community to reflect on how to improve the detection of and coordinated response to future epidemics. Our interdisciplinary team identified key lessons learned from the Ebola outbreak that can be clustered into three areas: environmental conditions related to early warning systems, host characteristics related to public health, and agent issues that can be addressed through the laboratory sciences. In particular, we need to increase zoonotic surveillance activities, implement more effective ecological health interventions, expand prediction modeling, support medical and public health systems in order to improve local and international responses to epidemics, improve risk communication, better understand the role of social media in outbreak awareness and response, produce better diagnostic tools, create better therapeutic medications, and design better vaccines. This list highlights research priorities and policy actions the global community can take now to be better prepared for future emerging infectious disease outbreaks that threaten global public health and security.

  8. Three-Month Real-Time Dengue Forecast Models: An Early Warning System for Outbreak Alerts and Policy Decision Support in Singapore

    PubMed Central

    Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S.Y.; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R.

    2015-01-01

    Background: With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. Objectives: We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. Methods: We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Results: Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore’s dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Conclusions: Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Citation: Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369–1375; http://dx.doi.org/10.1289/ehp.1509981 PMID:26662617

  9. Establishment of a Research Pharmacy to Support Ebola Clinical Research in Liberia

    PubMed Central

    Pierson, Jerome F.; Kirchoff, Matthew Carl; Tyee, Rev Tegli; Rhie, Julie K.; Montello, Michael J

    2017-01-01

    Objective This paper describes the establishment of a research pharmacy to support the PREVAIL vaccine study for Ebola Virus Disease. Setting This paper describes the establishment of the pharmacy element to support the overall research program during an Ebola outbreak in Monrovia, Liberia in 2014 and 2015. Practice Innovation The need to rapidly establish infrastructure to support the Liberian-US joint clinical research partnership in response to the emerging Ebola Virus Disease provided the opportunity for collaboration among Liberian and US pharmacists. Evaluation and Results Experiences of the Liberian and US pharmacists involved in the program are described. Conclusion The partnership was successful in the conduct of the study, but more importantly, capacity for Liberian pharmacists to support clinical research was established. Additionally, the US team learned several important lessons that will help prepare them for responding to research needs in future infectious disease outbreaks. PMID:28610940

  10. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    PubMed

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and wildfires have increased autonomously due to recent climate variability, but this study does not support the expectation that post-beetle outbreak forests will alter fire severity, a result that has important implications for management and policy decisions.

  11. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening

    PubMed Central

    Condell, Orla; Wasunna, Christine; Kpaka, Jonathan; Zwizwai, Ruth; Nuha, Mahmood; Fallah, Mosoka; Freeman, Maxwell; Harris, Victoria; Miller, Mark; Baller, April; Massaquoi, Moses; Katawera, Victoria; Saindon, John; Bemah, Philip; Hamblion, Esther; Castle, Evelyn; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert

    2018-01-01

    The 2014–16 Ebola Virus Disease (EVD) outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH), World Health Organization (WHO) and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64–100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running costs and can be integrated into other national diagnostic algorithms. The technology has on average a 2-hour sample-to-result time and allows for single specimen testing to overcome potential delays of batching. This model of a mobile laboratory equipped with Xpert Ebola test, staffed by local laboratory technicians, could serve to strengthen outbreak preparedness and response for future outbreaks of EVD in Liberia and the region. PMID:29304039

  12. Establishing Ebola Virus Disease (EVD) diagnostics using GeneXpert technology at a mobile laboratory in Liberia: Impact on outbreak response, case management and laboratory systems strengthening.

    PubMed

    Raftery, Philomena; Condell, Orla; Wasunna, Christine; Kpaka, Jonathan; Zwizwai, Ruth; Nuha, Mahmood; Fallah, Mosoka; Freeman, Maxwell; Harris, Victoria; Miller, Mark; Baller, April; Massaquoi, Moses; Katawera, Victoria; Saindon, John; Bemah, Philip; Hamblion, Esther; Castle, Evelyn; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert

    2018-01-01

    The 2014-16 Ebola Virus Disease (EVD) outbreak in West Africa highlighted the necessity for readily available, accurate and rapid diagnostics. The magnitude of the outbreak and the re-emergence of clusters of EVD cases following the declaration of interrupted transmission in Liberia, reinforced the need for sustained diagnostics to support surveillance and emergency preparedness. We describe implementation of the Xpert Ebola Assay, a rapid molecular diagnostic test run on the GeneXpert platform, at a mobile laboratory in Liberia and the subsequent impact on EVD outbreak response, case management and laboratory system strengthening. During the period of operation, site coordination, management and operational capacity was supported through a successful collaboration between Ministry of Health (MoH), World Health Organization (WHO) and international partners. A team of Liberian laboratory technicians were trained to conduct EVD diagnostics and the laboratory had capacity to test 64-100 blood specimens per day. Establishment of the laboratory significantly increased the daily testing capacity for EVD in Liberia, from 180 to 250 specimens at a time when the effectiveness of the surveillance system was threatened by insufficient diagnostic capacity. During the 18 months of operation, the laboratory tested a total of 9,063 blood specimens, including 21 EVD positives from six confirmed cases during two outbreaks. Following clearance of the significant backlog of untested EVD specimens in November 2015, a new cluster of EVD cases was detected at the laboratory. Collaboration between surveillance and laboratory coordination teams during this and a later outbreak in March 2016, facilitated timely and targeted response interventions. Specimens taken from cases during both outbreaks were analysed at the laboratory with results informing clinical management of patients and discharge decisions. The GeneXpert platform is easy to use, has relatively low running costs and can be integrated into other national diagnostic algorithms. The technology has on average a 2-hour sample-to-result time and allows for single specimen testing to overcome potential delays of batching. This model of a mobile laboratory equipped with Xpert Ebola test, staffed by local laboratory technicians, could serve to strengthen outbreak preparedness and response for future outbreaks of EVD in Liberia and the region.

  13. EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith

    Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less

  14. EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases

    DOE PAGES

    Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith; ...

    2017-11-06

    Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less

  15. Assessing the impact of the Lebanese National Polio Immunization Campaign using a population-based computational model.

    PubMed

    Alawieh, Ali; Sabra, Zahraa; Langley, E Farris; Bizri, Abdul Rahman; Hamadeh, Randa; Zaraket, Fadi A

    2017-11-25

    After the re-introduction of poliovirus to Syria in 2013, Lebanon was considered at high transmission risk due to its proximity to Syria and the high number of Syrian refugees. However, after a large-scale national immunization initiative, Lebanon was able to prevent a potential outbreak of polio among nationals and refugees. In this work, we used a computational individual-simulation model to assess the risk of poliovirus threat to Lebanon prior and after the immunization campaign and to quantitatively assess the healthcare impact of the campaign and the required standards that need to be maintained nationally to prevent a future outbreak. Acute poliomyelitis surveillance in Lebanon was along with the design and coverage rate of the recent national polio immunization campaign were reviewed from the records of the Lebanese Ministry of Public Health. Lebanese population demographics including Syrian and Palestinian refugees were reviewed to design individual-based models that predicts the consequences of polio spread to Lebanon and evaluate the outcome of immunization campaigns. The model takes into account geographic, demographic and health-related features. Our simulations confirmed the high risk of polio outbreaks in Lebanon within 10 days of case introduction prior to the immunization campaign, and showed that the current immunization campaign significantly reduced the speed of the infection in the event poliomyelitis cases enter the country. A minimum of 90% national immunization coverage was found to be required to prevent exponential propagation of potential transmission. Both surveillance and immunization efforts should be maintained at high standards in Lebanon and other countries in the area to detect and limit any potential outbreak. The use of computational population simulation models can provide a quantitative approach to assess the impact of immunization campaigns and the burden of infectious diseases even in the context of population migration.

  16. Parasitic copepod (Lernaea cyprinacea) outbreaks in foothill yellow-legged frogs (Rana boylii) linked to unusually warm summers in northern California

    Treesearch

    Sarah J. Kupferberg; Alessandro Catenazzi; Kevin Lunde; Amy J. Lind; Wendy J. Palen

    2009-01-01

    How climate change may affect parasite–host assemblages and emerging infectious diseases is an important question in amphibian decline research. We present data supporting a link between periods of unusually warm summer water temperatures during 2006 and 2008 in a northern California river, outbreaks of the parasitic copepod Lernaea cyprinacea, and...

  17. Monitoring oak-hickory forest change during an unprecedented red oak borer outbreak in the Ozark Mountains: 1990 to 2006

    Treesearch

    Joshua S. Jones; Jason A. Tullis; Laurel J. Haavik; James M. Guldin; Fred M. Stephen

    2014-01-01

    Upland oak-hickory forests in Arkansas, Missouri, and Oklahoma experienced oak decline in the late 1990s and early 2000s during an unprecedented outbreak of a native beetle, the red oak borer (ROB), Enaphalodes rufulus (Haldeman). Although remote sensing supports frequent monitoring of continuously changing forests, comparable in situ observations are critical for...

  18. Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii on computer interface surfaces of hospital wards and association with clinical isolates

    PubMed Central

    2009-01-01

    Background Computer keyboards and mice are potential reservoirs of nosocomial pathogens, but routine disinfection for non-water-proof computer devices is a problem. With better hand hygiene compliance of health-care workers (HCWs), the impact of these potential sources of contamination on clinical infection needs to be clarified. Methods This study was conducted in a 1600-bed medical center of southern Taiwan with 47 wards and 282 computers. With education and monitoring program of hand hygiene for HCWs, the average compliance rate was 74% before our surveillance. We investigated the association of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Acinetobacter baumannii, three leading hospital-acquired pathogens, from ward computer keyboards, mice and from clinical isolates in non-outbreak period by pulsed field gel electrophoresis and antibiogram. Results Our results revealed a 17.4% (49/282) contamination rate of these computer devices by S. aureus, Acinetobacter spp. or Pseudomonas spp. The contamination rates of MRSA and A. baumannii in the ward computers were 1.1% and 4.3%, respectively. No P. aeruginosa was isolated. All isolates from computers and clinical specimens at the same ward showed different pulsotypes. However, A. baumannii isolates on two ward computers had the same pulsotype. Conclusion With good hand hygiene compliance, we found relatively low contamination rates of MRSA, P. aeruginosa and A. baumannii on ward computer interface, and without further contribution to nosocomial infection. Our results suggested no necessity of routine culture surveillance in non-outbreak situation. PMID:19796381

  19. The impact of work-related risk on nurses during the SARS outbreak in Hong Kong.

    PubMed

    Chan, Sophia S C; Leung, Gabriel M; Tiwari, Agnes F Y; Salili, Farideh; Leung, Sharron S K; Wong, David C N; Wong, Alan S F; Lai, Adela S F; Lam, Tai Hing

    2005-01-01

    Severe acute respiratory syndrome (SARS) is a highly infectious disease, with high potential for transmission to close contacts, particularly among healthcare workers. This is the first systematic study investigating hospital nurses' physical and psychological health status and the kinds of healthcare used-stratified by the level of contact with SARS patients-during the 2003 outbreak in Hong Kong. Nurses in moderate-risk areas appeared to have more stress symptoms than those working in high-risk areas. It is essential to design hospital support systems and occupational health policy to promote the psychological well-being of nurses during future outbreaks of emerging infections.

  20. Rapid Field Response to a Cluster of Illnesses and Deaths - Sinoe County, Liberia, April-May, 2017.

    PubMed

    Doedeh, John; Frimpong, Joseph Asamoah; Yealue, Kwuakuan D M; Wilson, Himiede W; Konway, Youhn; Wiah, Samson Q; Doedeh, Vivian; Bao, Umaru; Seneh, George; Gorwor, Lawrence; Toe, Sylvester; Ghartey, Emmanuel; Larway, Lawrence; Gweh, Dedesco; Gonotee, Philemon; Paasewe, Thomas; Tamatai, George; Yarkeh, James; Smith, Samuel; Brima-Davis, Annette; Dauda, George; Monger, Thomas; Gornor-Pewu, Leleh W; Lombeh, Siafa; Naiene, Jeremias; Dovillie, Nathaniel; Korvayan, Mark; George, Geraldine; Kerwillain, Garrison; Jetoh, Ralph; Friesen, Suzanne; Kinkade, Carl; Katawera, Victoria; Amo-Addae, Maame; George, Roseline N; Gbanya, Miatta Z; Dokubo, E Kainne

    2017-10-27

    On April 25, 2017, the Sinoe County Health Team (CHT) notified the Liberia Ministry of Health (MoH) and the National Public Health Institute of Liberia of an unknown illness among 14 persons that resulted in eight deaths in Sinoe County. On April 26, the National Rapid Response Team and epidemiologists from CDC, the World Health Organization (WHO) and the African Field Epidemiology Network (AFENET) in Liberia were deployed to support the county-led response. Measures were immediately implemented to identify all cases, ascertain the cause of illness, and control the outbreak. Illness was associated with attendance at a funeral event, and laboratory testing confirmed Neisseria meningitidis in biologic specimens from cases. The 2014-2015 Ebola virus disease (Ebola) outbreak in West Africa devastated Liberia's already fragile health system, and it took many months for the country to mount an effective response to control the outbreak. Substantial efforts have been made to strengthen Liberia's health system to prevent, detect, and respond to health threats. The rapid and efficient field response to this outbreak of N. meningitidis resulted in implementation of appropriate steps to prevent a widespread outbreak and reflects improved public health and outbreak response capacity in Liberia.

  1. [Hospital hygiene - outbreak management of nosocomial infections].

    PubMed

    Kerwat, Klaus; Wulf, Hinnerk

    2012-04-01

    According to §6, section 3 of the German Protection against Infections Act [Infektionsschutzgesetz (IfSG)] an outbreak is defined as the occurrence in large numbers of nosocomial infections for which an epidemiological relationship is probable or can be assumed. About 2-10% of nosocomial infections in hospitals (about 5% in intensive care wards) occur within the framework of an outbreak. The heaped occurrence of nosocomial infections can be declared according to the prescribed surveillance of nosocomial infections (§23 IfSG) when, in the course of this assessment, a statistically significant increase in the rate of infections becomes apparent. On the other hand, the occurrence of an outbreak can also be recognized through the vigilance of all involved personnel and a general sensibilization towards this subject. The names of patients involved in outbreaks need not be reported to the responsible health authorities. As a consequence of the report the health authorities become involved in the investigation to determine the cause and its elimination, and to provide support and advice. The outbreak management should be oriented on the respective recommendations of the Robert Koch Institute. © Georg Thieme Verlag Stuttgart · New York.

  2. Application of Humidity Data for Predictions of Influenza Outbreaks.

    NASA Astrophysics Data System (ADS)

    Teixeira, J.; Thrastarson, H. T.; Yeo, E.

    2016-12-01

    Seasonal influenza outbreaks infect millions of people, cause hundreds of thousands of deaths worldwide, and leave an immense economic footprint. Potential forecasting of the timing and intensity of these outbreaks can help mitigation and response efforts (e.g., the management and organization of vaccines, drugs and other resources). Absolute (or specific) humidity has been identified as an important driver of the seasonal behavior of influenza outbreaks in temperate regions. Building upon this result, we incorporate humidity data from both NASA's AIRS (Atmospheric Infra-Red Sounder) instrument and ERA-Interim re-analysis into a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical epidemiological model, comprising a prediction system for influenza outbreaks. Data for influenza activity is obtained from sources such as Google Flu Trends and the CDC (Center for Disease Control) and used for comparison and assimilation. The accuracy and limitations of the prediction system are tested with hindcasts of outbreaks in the United States for the years 2005-2015. Our results give support to the hypothesis that local weather conditions drive the seasonality of influenza in temperate regions. The implementation of influenza forecasts that make use of NCEP humidity forecasts is also discussed.

  3. Phylogenetic structure of European Salmonella Enteritidis outbreak correlates with national and international egg distribution network

    PubMed Central

    Inns, Thomas; Jombart, Thibaut; Ashton, Philip; Loman, Nicolas; Chatt, Carol; Messelhaeusser, Ute; Rabsch, Wolfgang; Simon, Sandra; Nikisins, Sergejs; Bernard, Helen; le Hello, Simon; Jourdan da-Silva, Nathalie; Kornschober, Christian; Mossong, Joel; Hawkey, Peter; de Pinna, Elizabeth; Grant, Kathie; Cleary, Paul

    2016-01-01

    Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods. PMID:28348865

  4. Natural Disasters and Cholera Outbreaks: Current Understanding and Future Outlook.

    PubMed

    Jutla, Antarpreet; Khan, Rakibul; Colwell, Rita

    2017-03-01

    Diarrheal diseases remain a serious global public health threat, especially for those populations lacking access to safe water and sanitation infrastructure. Although association of several diarrheal diseases, e.g., cholera, shigellosis, etc., with climatic processes has been documented, the global human population remains at heightened risk of outbreak of diseases after natural disasters, such as earthquakes, floods, or droughts. In this review, cholera was selected as a signature diarrheal disease and the role of natural disasters in triggering and transmitting cholera was analyzed. Key observations include identification of an inherent feedback loop that includes societal structure, prevailing climatic processes, and spatio-temporal seasonal variability of natural disasters. Data obtained from satellite-based remote sensing are concluded to have application, although limited, in predicting risks of a cholera outbreak(s). We argue that with the advent of new high spectral and spatial resolution data, earth observation systems should be seamlessly integrated in a decision support mechanism to be mobilize resources when a region suffers a natural disaster. A framework is proposed that can be used to assess the impact of natural disasters with response to outbreak of cholera, providing assessment of short- and long-term influence of climatic processes on disease outbreaks.

  5. Phylogenetic structure of European Salmonella Enteritidis outbreak correlates with national and international egg distribution network.

    PubMed

    Dallman, Tim; Inns, Thomas; Jombart, Thibaut; Ashton, Philip; Loman, Nicolas; Chatt, Carol; Messelhaeusser, Ute; Rabsch, Wolfgang; Simon, Sandra; Nikisins, Sergejs; Bernard, Helen; le Hello, Simon; Jourdan da-Silva, Nathalie; Kornschober, Christian; Mossong, Joel; Hawkey, Peter; de Pinna, Elizabeth; Grant, Kathie; Cleary, Paul

    2016-08-01

    Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods.

  6. CDC Grand Rounds: Modeling and Public Health Decision-Making.

    PubMed

    Fischer, Leah S; Santibanez, Scott; Hatchett, Richard J; Jernigan, Daniel B; Meyers, Lauren Ancel; Thorpe, Phoebe G; Meltzer, Martin I

    2016-12-09

    Mathematical models incorporate various data sources and advanced computational techniques to portray real-world disease transmission and translate the basic science of infectious diseases into decision-support tools for public health. Unlike standard epidemiologic methods that rely on complete data, modeling is needed when there are gaps in data. By combining diverse data sources, models can fill gaps when critical decisions must be made using incomplete or limited information. They can be used to assess the effect and feasibility of different scenarios and provide insight into the emergence, spread, and control of disease. During the past decade, models have been used to predict the likelihood and magnitude of infectious disease outbreaks, inform emergency response activities in real time (1), and develop plans and preparedness strategies for future events, the latter of which proved invaluable during outbreaks such as severe acute respiratory syndrome and pandemic influenza (2-6). Ideally, modeling is a multistep process that involves communication between modelers and decision-makers, allowing them to gain a mutual understanding of the problem to be addressed, the type of estimates that can be reliably generated, and the limitations of the data. As models become more detailed and relevant to real-time threats, the importance of modeling in public health decision-making continues to grow.

  7. Rapid response to Ebola outbreaks in remote areas - Liberia, July-November 2014.

    PubMed

    Kateh, Francis; Nagbe, Thomas; Kieta, Abraham; Barskey, Albert; Gasasira, Alex Ntale; Driscoll, Anne; Tucker, Anthony; Christie, Athalia; Karmo, Ben; Scott, Colleen; Bowah, Collin; Barradas, Danielle; Blackley, David; Dweh, Emmanuel; Warren, Felicia; Mahoney, Frank; Kassay, Gabriel; Calvert, Geoffrey M; Castro, Georgina; Logan, Gorbee; Appiah, Grace; Kirking, Hannah; Koon, Hawa; Papowitz, Heather; Walke, Henry; Cole, Isaac B; Montgomery, Joel; Neatherlin, John; Tappero, Jordan W; Hagan, Jose E; Forrester, Joseph; Woodring, Joseph; Mott, Joshua; Attfield, Kathleen; DeCock, Kevin; Lindblade, Kim A; Powell, Krista; Yeoman, Kristin; Adams, Laura; Broyles, Laura N; Slutsker, Laurence; Larway, Lawrence; Belcher, Lisa; Cooper, Lorraine; Santos, Marjorie; Westercamp, Matthew; Weinberg, Meghan Pearce; Massoudi, Mehran; Dea, Monica; Patel, Monita; Hennessey, Morgan; Fomba, Moses; Lubogo, Mutaawe; Maxwell, Nikki; Moonan, Patrick; Arzoaquoi, Sampson; Gee, Samuel; Zayzay, Samuel; Pillai, Satish; Williams, Seymour; Zarecki, Shauna Mettee; Yett, Sheldon; James, Stephen; Grube, Steven; Gupta, Sundeep; Nelson, Thelma; Malibiche, Theophil; Frank, Wilmont; Smith, Wilmot; Nyenswah, Tolbert

    2015-02-27

    West Africa is experiencing its first epidemic of Ebola virus disease (Ebola). As of February 9, Liberia has reported 8,864 Ebola cases, of which 3,147 were laboratory-confirmed. Beginning in August 2014, the Liberia Ministry of Health and Social Welfare (MOHSW), supported by CDC, the World Health Organization (WHO), and others, began systematically investigating and responding to Ebola outbreaks in remote areas. Because many of these areas lacked mobile telephone service, easy road access, and basic infrastructure, flexible and targeted interventions often were required. Development of a national strategy for the Rapid Isolation and Treatment of Ebola (RITE) began in early October. The strategy focuses on enhancing capacity of county health teams (CHT) to investigate outbreaks in remote areas and lead tailored responses through effective and efficient coordination of technical and operational assistance from the MOHSW central level and international partners. To measure improvements in response indicators and outcomes over time, data from investigations of 12 of 15 outbreaks in remote areas with illness onset dates of index cases during July 16-November 20, 2014, were analyzed. The times to initial outbreak alerts and durations of the outbreaks declined over that period while the proportions of patients who were isolated and treated increased. At the same time, the case-fatality rate in each outbreak declined. Implementation of strategies, such as RITE, to rapidly respond to rural outbreaks of Ebola through coordinated and tailored responses can successfully reduce transmission and improve outcomes.

  8. Surveillance and Outbreak Response Management System (SORMAS) to support the control of the Ebola virus disease outbreak in West Africa.

    PubMed

    Fähnrich, C; Denecke, K; Adeoye, O O; Benzler, J; Claus, H; Kirchner, G; Mall, S; Richter, R; Schapranow, M P; Schwarz, N; Tom-Aba, D; Uflacker, M; Poggensee, G; Krause, G

    2015-03-26

    In the context of controlling the current outbreak of Ebola virus disease (EVD), the World Health Organization claimed that 'critical determinant of epidemic size appears to be the speed of implementation of rigorous control measures', i.e. immediate follow-up of contact persons during 21 days after exposure, isolation and treatment of cases, decontamination, and safe burials. We developed the Surveillance and Outbreak Response Management System (SORMAS) to improve efficiency and timeliness of these measures. We used the Design Thinking methodology to systematically analyse experiences from field workers and the Ebola Emergency Operations Centre (EOC) after successful control of the EVD outbreak in Nigeria. We developed a process model with seven personas representing the procedures of EVD outbreak control. The SORMAS system architecture combines latest In-Memory Database (IMDB) technology via SAP HANA (in-memory, relational database management system), enabling interactive data analyses, and established SAP cloud tools, such as SAP Afaria (a mobile device management software). The user interface consists of specific front-ends for smartphones and tablet devices, which are independent from physical configurations. SORMAS allows real-time, bidirectional information exchange between field workers and the EOC, ensures supervision of contact follow-up, automated status reports, and GPS tracking. SORMAS may become a platform for outbreak management and improved routine surveillance of any infectious disease. Furthermore, the SORMAS process model may serve as framework for EVD outbreak modeling.

  9. Environmental scan of infection prevention and control practices for containment of hospital-acquired infectious disease outbreaks in acute care hospital settings across Canada.

    PubMed

    Ocampo, Wrechelle; Geransar, Rose; Clayden, Nancy; Jones, Jessica; de Grood, Jill; Joffe, Mark; Taylor, Geoffrey; Missaghi, Bayan; Pearce, Craig; Ghali, William; Conly, John

    2017-10-01

    Ward closure is a method of controlling hospital-acquired infectious diseases outbreaks and is often coupled with other practices. However, the value and efficacy of ward closures remains uncertain. To understand the current practices and perceptions with respect to ward closure for hospital-acquired infectious disease outbreaks in acute care hospital settings across Canada. A Web-based environmental scan survey was developed by a team of infection prevention and control (IPC) experts and distributed to 235 IPC professionals at acute care sites across Canada. Data were analyzed using a mixed-methods approach of descriptive statistics and thematic analysis. A total of 110 completed responses showed that 70% of sites reported at least 1 outbreak during 2013, 44% of these sites reported the use of ward closure. Ward closure was considered an "appropriate," "sometimes appropriate," or "not appropriate" strategy to control outbreaks by 50%, 45%, and 5% of participants, respectively. System capacity issues and overall risk assessment were main factors influencing the decision to close hospital wards following an outbreak. Results suggest the use of ward closure for containment of hospital-acquired infectious disease outbreaks in Canadian acute care health settings is mixed, with outbreak control methods varying. The successful implementation of ward closure was dependent on overall support for the IPC team within hospital administration. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  10. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Limaye, A. S.

    2011-12-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula. This presentation will provide an overview of these activities from a scientific and cloud computing applications perspective, identifying the strengths and weaknesses for deploying each project within an IaaS environment, and ways to collaborate with the Nebula or other cloud-user communities to collaborate on projects as they go forward.

  11. Pandemic influenza computer model (no soundtrack)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Los Alamos National Lab

    2009-05-01

    Simulation of a pandemic flu outbreak in the continental United States, initially introduced by the arrival of 10 infected individuals in Los Angeles. ----------The spatiotemporal dynamics of the prevalence (number of symptomatic cases at any point in

  12. Generalized reproduction numbers and the prediction of patterns in waterborne disease.

    PubMed

    Gatto, Marino; Mari, Lorenzo; Bertuzzo, Enrico; Casagrandi, Renato; Righetto, Lorenzo; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2012-11-27

    Understanding, predicting, and controlling outbreaks of waterborne diseases are crucial goals of public health policies, but pose challenging problems because infection patterns are influenced by spatial structure and temporal asynchrony. Although explicit spatial modeling is made possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is still lacking. Here we show that the requirement that all the local reproduction numbers R0 be larger than unity is neither necessary nor sufficient for outbreaks to occur when local settlements are connected by networks of primary and secondary infection mechanisms. To determine onset conditions, we derive general analytical expressions for a reproduction matrix G0, explicitly accounting for spatial distributions of human settlements and pathogen transmission via hydrological and human mobility networks. At disease onset, a generalized reproduction number Λ0 (the dominant eigenvalue of G0) must be larger than unity. We also show that geographical outbreak patterns in complex environments are linked to the dominant eigenvector and to spectral properties of G0. Tests against data and computations for the 2010 Haiti and 2000 KwaZulu-Natal cholera outbreaks, as well as against computations for metapopulation networks, demonstrate that eigenvectors of G0 provide a synthetic and effective tool for predicting the disease course in space and time. Networked connectivity models, describing the interplay between hydrology, epidemiology, and social behavior sustaining human mobility, thus prove to be key tools for emergency management of waterborne infections.

  13. Secondary Contact and Admixture between Independently Invading Populations of the Western Corn Rootworm, Diabrotica virgifera virgifera in Europe

    PubMed Central

    Bermond, Gérald; Ciosi, Marc; Lombaert, Eric; Blin, Aurélie; Boriani, Marco; Furlan, Lorenzo; Toepfer, Stefan; Guillemaud, Thomas

    2012-01-01

    The western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is one of the most destructive pests of corn in North America and is currently invading Europe. The two major invasive outbreaks of rootworm in Europe have occurred, in North-West Italy and in Central and South-Eastern Europe. These two outbreaks originated from independent introductions from North America. Secondary contact probably occurred in North Italy between these two outbreaks, in 2008. We used 13 microsatellite markers to conduct a population genetics study, to demonstrate that this geographic contact resulted in a zone of admixture in the Italian region of Veneto. We show that i) genetic variation is greater in the contact zone than in the parental outbreaks; ii) several signs of admixture were detected in some Venetian samples, in a Bayesian analysis of the population structure and in an approximate Bayesian computation analysis of historical scenarios and, finally, iii) allelic frequency clines were observed at microsatellite loci. The contact between the invasive outbreaks in North-West Italy and Central and South-Eastern Europe resulted in a zone of admixture, with particular characteristics. The evolutionary implications of the existence of a zone of admixture in Northern Italy and their possible impact on the invasion success of the western corn rootworm are discussed. PMID:23189184

  14. Building Cross-Country Networks for Laboratory Capacity and Improvement.

    PubMed

    Schneidman, Miriam; Matu, Martin; Nkengasong, John; Githui, Willie; Kalyesubula-Kibuuka, Simeon; Silva, Kelly Araujo

    2018-03-01

    Laboratory networks are vital to well-functioning public health systems and disease control efforts. Cross-country laboratory networks play a critical role in supporting epidemiologic surveillance, accelerating disease outbreak response, and tracking drug resistance. The East Africa Public Health Laboratory Network was established to bolster diagnostic and disease surveillance capacity. The network supports the introduction of regional quality standards; facilitates the rollout and evaluation of new diagnostic tools; and serves as a platform for training, research, and knowledge sharing. Participating facilities benefitted from state-of-the art investments, capacity building, and mentorship; conducted multicountry research studies; and contributed to disease outbreak response. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. [Cooperation and support activities of infection control after the Great East Japan Earthquake].

    PubMed

    Hatta, Masumitsu; Kaku, Mitsuo

    2013-12-01

    On 11 March 2011, an earthquake measuring 9.0 on the Richter scale occurred off the northeast coast of Honshu Island, Japan, produced a devastating tsunami that destroyed many towns and villages near the coast in Iwate, Miyagi, and Fukushima prefectures. Miyagi Prefecture was the area most severely devastated by the tsunami, with extensive loss of life and property; hundreds of thousands of people lost their houses and were forced to move to evacuation areas. In the days and weeks following devastating natural disasters, the threat of infectious disease outbreak is high. We initiated cooperation and support activities in terms of infection control at evacuation centers in the aftermath of the disaster. For example, we assessed sanitary and infectious risk factors in evacuation centers, in collaboration with Miyagi Prefectural Government and public health centers in the devastated area, to prevent the transmission of infectious diseases among evacuees. We also supported the control of two outbreaks of influenza A, which occurred in different centers in Miyagi Prefecture in the early period after the disaster. Both outbreaks subsided without any complicated or fatal cases of influenza as a result of the prompt implementation of a systemic approach with a bundle of control measures.

  16. Trypanosoma cruzi genotyping supports a common source of infection in a school-related oral outbreak of acute Chagas disease in Venezuela.

    PubMed

    Díaz-Bello, Z; Thomas, M C; López, M C; Zavala-Jaspe, R; Noya, O; DE Noya, B Alarcón; Abate, T

    2014-01-01

    Trypanosoma cruzi I, a discrete typing unit (DTU) found in human infections in Venezuela and other countries of the northern region of South America and in Central America, has been recently classified into five intra-DTU genotypes (Ia, Ib, Ic, Id, Ie) based on sequence polymorphisms found in the spliced leader intergenic region. In this paper we report the genotype identification of T. cruzi human isolates from one outbreak of acute orally acquired Chagas disease that occurred in a non-endemic region of Venezuela and from T. cruzi triatomine and rat isolates captured at a guava juice preparation site which was identified as the presumptive source of infection. The genotyping of all these isolates as TcId supports the view of a common source of infection in this oral Chagas disease outbreak through the ingestion of guava juice. Implications for clinical manifestations and dynamics of transmission cycles are discussed.

  17. Epidemiological investigation of infectious hematopoietic necrosis virus in salt water net-pen reared Atlantic salmon in British Columbia, Canada

    USGS Publications Warehouse

    St-Hilaire, Sophie; Ribble, Carl S.; Stephen, Craig; Anderson, Eric; Kurath, Gael; Kent, Michael L.

    2002-01-01

    The presentation of IHNV on farms, the spatial and temporal patterns of the outbreaks between 1992 and 1996, and the genetic similarity between isolates collected from nine outbreaks spanning a 5-year period, all supported the plausibility of farm-to-farm spread of the virus. Furthermore, the marked decrease in the incidence rate of IHN in farmed Atlantic salmon after the implementation of an area-based management plan aimed at reducing farm-to-farm spread of the virus also supported this hypothesis. Although the source of IHNV for the index case was not determined in this study, secondary spread of the virus between farms via management practices, such as movement of fish, co-habiting naı̈ve fish with survivors of the viral disease, and movement of equipment, likely accounted for some farm outbreaks. This suggested that many cases of IHN may be preventable using good on-farm biosecurity.

  18. "I Knew I Could Make a Difference": Motivations and Barriers to Engagement in Fighting the West African Ebola Outbreak Among U.S.-Based Health Professionals.

    PubMed

    Greenberg, Alexandra; Michlig, Georgia J; Larson, Elizabeth; Varallyay, Ilona; Chang, Karen; Enobun, Blessing; Schenk, Ellen; Whong, Benjamin; Surkan, Pamela; Kennedy, Caitlin E; Harvey, Steven A

    2018-04-01

    The 2014 West African Ebola outbreak was unprecedented in scale and required significant international assistance. Many U.S.-based health professionals traveled to West Africa to participate in the response, whereas others considered participation, but ultimately decided against it. This study explores motivators, facilitators, and barriers to international health care worker mobilization. We conducted 24 semistructured in-depth interviews and one focus group discussion with clinical and nonclinical responders and nonresponders. Responders reported feeling duty-bound to help, confidence in their training, and prior experience in humanitarian response. Media coverage was perceived to create environments of stigma and misinformation. Supportive workplaces and clear leave of absence policies facilitated engagement, whereas unsupportive workplaces posed barriers. Although nonresponders were included in the study, the dynamics of nonresponse were less clear and warrant further exploration. Understanding how to support health professionals in responding to outbreak situations may improve mobilization in future public health crises.

  19. Recombinant Temporal Aberration Detection Algorithms for Enhanced Biosurveillance

    PubMed Central

    Murphy, Sean Patrick; Burkom, Howard

    2008-01-01

    Objective Broadly, this research aims to improve the outbreak detection performance and, therefore, the cost effectiveness of automated syndromic surveillance systems by building novel, recombinant temporal aberration detection algorithms from components of previously developed detectors. Methods This study decomposes existing temporal aberration detection algorithms into two sequential stages and investigates the individual impact of each stage on outbreak detection performance. The data forecasting stage (Stage 1) generates predictions of time series values a certain number of time steps in the future based on historical data. The anomaly measure stage (Stage 2) compares features of this prediction to corresponding features of the actual time series to compute a statistical anomaly measure. A Monte Carlo simulation procedure is then used to examine the recombinant algorithms’ ability to detect synthetic aberrations injected into authentic syndromic time series. Results New methods obtained with procedural components of published, sometimes widely used, algorithms were compared to the known methods using authentic datasets with plausible stochastic injected signals. Performance improvements were found for some of the recombinant methods, and these improvements were consistent over a range of data types, outbreak types, and outbreak sizes. For gradual outbreaks, the WEWD MovAvg7+WEWD Z-Score recombinant algorithm performed best; for sudden outbreaks, the HW+WEWD Z-Score performed best. Conclusion This decomposition was found not only to yield valuable insight into the effects of the aberration detection algorithms but also to produce novel combinations of data forecasters and anomaly measures with enhanced detection performance. PMID:17947614

  20. Novel use of flu surveillance data: Evaluating potential of sentinel populations for early detection of influenza outbreaks

    DOE PAGES

    Daughton, Ashlynn R.; Velappan, Nileena; Abeyta, Esteban; ...

    2016-07-08

    Influenza causes significant morbidity and mortality each year, with 2–8% of weekly outpatient visits around the United States for influenza-like-illness (ILI) during the peak of the season. Effective use of existing flu surveillance data allows officials to understand and predict current flu outbreaks and can contribute to reductions in influenza morbidity and mortality. Previous work used the 2009–2010 influenza season to investigate the possibility of using existing military and civilian surveillance systems to improve early detection of flu outbreaks. Results suggested that civilian surveillance could help predict outbreak trajectory in local military installations. To further test that hypothesis, we comparemore » pairs of civilian and military outbreaks in seven locations between 2000 and 2013. We find no predictive relationship between outbreak peaks or time series of paired outbreaks. This larger study does not find evidence to support the hypothesis that civilian data can be used as sentinel surveillance for military installations. We additionally investigate the effect of modifying the ILI case definition between the standard Department of Defense definition, a more specific definition proposed in literature, and confirmed Influenza A. We find that case definition heavily impacts results. In conclusion, this study thus highlights the importance of careful selection of case definition, and appropriate consideration of case definition in the interpretation of results.« less

  1. Emergence and Pathogenicity of Highly Virulent Cryptococcus gattii Genotypes in the Northwest United States

    PubMed Central

    Ma, Hansong; Voelz, Kerstin; Ren, Ping; Carter, Dee A.; Chaturvedi, Vishnu; Bildfell, Robert J.; May, Robin C.; Heitman, Joseph

    2010-01-01

    Cryptococcus gattii causes life-threatening disease in otherwise healthy hosts and to a lesser extent in immunocompromised hosts. The highest incidence for this disease is on Vancouver Island, Canada, where an outbreak is expanding into neighboring regions including mainland British Columbia and the United States. This outbreak is caused predominantly by C. gattii molecular type VGII, specifically VGIIa/major. In addition, a novel genotype, VGIIc, has emerged in Oregon and is now a major source of illness in the region. Through molecular epidemiology and population analysis of MLST and VNTR markers, we show that the VGIIc group is clonal and hypothesize it arose recently. The VGIIa/IIc outbreak lineages are sexually fertile and studies support ongoing recombination in the global VGII population. This illustrates two hallmarks of emerging outbreaks: high clonality and the emergence of novel genotypes via recombination. In macrophage and murine infections, the novel VGIIc genotype and VGIIa/major isolates from the United States are highly virulent compared to similar non-outbreak VGIIa/major-related isolates. Combined MLST-VNTR analysis distinguishes clonal expansion of the VGIIa/major outbreak genotype from related but distinguishable less-virulent genotypes isolated from other geographic regions. Our evidence documents emerging hypervirulent genotypes in the United States that may expand further and provides insight into the possible molecular and geographic origins of the outbreak. PMID:20421942

  2. Novel use of flu surveillance data: Evaluating potential of sentinel populations for early detection of influenza outbreaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daughton, Ashlynn R.; Velappan, Nileena; Abeyta, Esteban

    Influenza causes significant morbidity and mortality each year, with 2–8% of weekly outpatient visits around the United States for influenza-like-illness (ILI) during the peak of the season. Effective use of existing flu surveillance data allows officials to understand and predict current flu outbreaks and can contribute to reductions in influenza morbidity and mortality. Previous work used the 2009–2010 influenza season to investigate the possibility of using existing military and civilian surveillance systems to improve early detection of flu outbreaks. Results suggested that civilian surveillance could help predict outbreak trajectory in local military installations. To further test that hypothesis, we comparemore » pairs of civilian and military outbreaks in seven locations between 2000 and 2013. We find no predictive relationship between outbreak peaks or time series of paired outbreaks. This larger study does not find evidence to support the hypothesis that civilian data can be used as sentinel surveillance for military installations. We additionally investigate the effect of modifying the ILI case definition between the standard Department of Defense definition, a more specific definition proposed in literature, and confirmed Influenza A. We find that case definition heavily impacts results. In conclusion, this study thus highlights the importance of careful selection of case definition, and appropriate consideration of case definition in the interpretation of results.« less

  3. Novel Use of Flu Surveillance Data: Evaluating Potential of Sentinel Populations for Early Detection of Influenza Outbreaks

    PubMed Central

    Velappan, Nileena; Abeyta, Esteban; Priedhorsky, Reid; Deshpande, Alina

    2016-01-01

    Influenza causes significant morbidity and mortality each year, with 2–8% of weekly outpatient visits around the United States for influenza-like-illness (ILI) during the peak of the season. Effective use of existing flu surveillance data allows officials to understand and predict current flu outbreaks and can contribute to reductions in influenza morbidity and mortality. Previous work used the 2009–2010 influenza season to investigate the possibility of using existing military and civilian surveillance systems to improve early detection of flu outbreaks. Results suggested that civilian surveillance could help predict outbreak trajectory in local military installations. To further test that hypothesis, we compare pairs of civilian and military outbreaks in seven locations between 2000 and 2013. We find no predictive relationship between outbreak peaks or time series of paired outbreaks. This larger study does not find evidence to support the hypothesis that civilian data can be used as sentinel surveillance for military installations. We additionally investigate the effect of modifying the ILI case definition between the standard Department of Defense definition, a more specific definition proposed in literature, and confirmed Influenza A. We find that case definition heavily impacts results. This study thus highlights the importance of careful selection of case definition, and appropriate consideration of case definition in the interpretation of results. PMID:27391232

  4. Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014.

    PubMed

    Bouwstra, R J; Koch, G; Heutink, R; Harders, F; van der Spek, A; Elbers, A R; Bossers, A

    2015-07-02

    Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus strains causing outbreaks in Dutch poultry farms in 2014 provides evidence for separate introduction of the virus in four outbreaks in farms located 16-112 km from each other and for between-farm transmission between the third and fourth outbreak in farms located 550 m from each other. In addition, the analysis showed that all European and two Japanese H5N8 virus strains are very closely related and seem to originate from a calculated common ancestor, which arose between July and September 2014. Our findings suggest that the Dutch outbreak virus strain 'Ter Aar' and the first German outbreak strain from 2014 shared a common ancestor. In addition, the data indicate that the Dutch outbreak viruses descended from an H5N8 virus that circulated around 2009 in Asia, possibly China, and subsequently spread to South Korea and Japan and finally also to Europe. Evolution of the virus seemed to follow a parallel track in Japan and Europe, which supports the hypothesis that H5N8 virus was exchanged between migratory wild waterfowl at their breeding grounds in Siberia and from there was carried by migrating waterfowl to Europe.

  5. Ageostrophic winds and vertical motion fields accompanying upper level jet streak propagation during the Red River Valley tornado outbreak

    NASA Technical Reports Server (NTRS)

    Moore, J. T.; Squires, M. F.

    1982-01-01

    Preliminary results are shown relating the ageostrophic wind field, through the terms of a semigeostrophic wind equation (assuming adiabatic conditions and the geostrophic momentum approximation) to both air parcel trajectories and their vertical motion fields computed from the parcels' displacement on isentropic surfaces, with respect to pressure. The analysis of results considers both upper-level (324 K) ageostrophic fields and low-level (304 K) fields. Preliminary results tend to support Uccellini and Johnson's (1979) hypothesis concerning upper-level-jet/low-level-jet (ULJ/LLJ) coupling in the exit region of the ULJ. Future plans are described briefly for research intended to clarify the mechanism behind ULJ streak propagation, LLJ development and their relationship to the initiation of severe convection.

  6. Using Social Media for Actionable Disease Surveillance and Outbreak Management: A Systematic Literature Review.

    PubMed

    Charles-Smith, Lauren E; Reynolds, Tera L; Cameron, Mark A; Conway, Mike; Lau, Eric H Y; Olsen, Jennifer M; Pavlin, Julie A; Shigematsu, Mika; Streichert, Laura C; Suda, Katie J; Corley, Courtney D

    2015-01-01

    Research studies show that social media may be valuable tools in the disease surveillance toolkit used for improving public health professionals' ability to detect disease outbreaks faster than traditional methods and to enhance outbreak response. A social media work group, consisting of surveillance practitioners, academic researchers, and other subject matter experts convened by the International Society for Disease Surveillance, conducted a systematic primary literature review using the PRISMA framework to identify research, published through February 2013, answering either of the following questions: Can social media be integrated into disease surveillance practice and outbreak management to support and improve public health?Can social media be used to effectively target populations, specifically vulnerable populations, to test an intervention and interact with a community to improve health outcomes?Examples of social media included are Facebook, MySpace, microblogs (e.g., Twitter), blogs, and discussion forums. For Question 1, 33 manuscripts were identified, starting in 2009 with topics on Influenza-like Illnesses (n = 15), Infectious Diseases (n = 6), Non-infectious Diseases (n = 4), Medication and Vaccines (n = 3), and Other (n = 5). For Question 2, 32 manuscripts were identified, the first in 2000 with topics on Health Risk Behaviors (n = 10), Infectious Diseases (n = 3), Non-infectious Diseases (n = 9), and Other (n = 10). The literature on the use of social media to support public health practice has identified many gaps and biases in current knowledge. Despite the potential for success identified in exploratory studies, there are limited studies on interventions and little use of social media in practice. However, information gleaned from the articles demonstrates the effectiveness of social media in supporting and improving public health and in identifying target populations for intervention. A primary recommendation resulting from the review is to identify opportunities that enable public health professionals to integrate social media analytics into disease surveillance and outbreak management practice.

  7. Using social media for actionable disease surveillance and outbreak management. A systematic literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles-Smith, Lauren E.; Reynolds, Tera L.; Cameron, Mark A.

    Here, research studies show that social media may be valuable tools in the disease surveillance toolkit used for improving public health professionals’ ability to detect disease outbreaks faster than traditional methods and to enhance outbreak response. A social media work group, consisting of surveillance practitioners, academic researchers, and other subject matter experts convened by the International Society for Disease Surveillance, conducted a systematic primary literature review using the PRISMA framework to identify research, published through February 2013, answering either of the following questions: 1) Can social media be integrated into disease surveillance practice and outbreak management to support and improvemore » public health? 2) Can social media be used to effectively target populations, specifically vulnerable populations, to test an intervention and interact with a community to improve health outcomes? Examples of social media included are Facebook, MySpace, microblogs (e.g., Twitter), blogs, and discussion forums. For Question 1, 33 manuscripts were identified, starting in 2009 with topics on Influenza-like Illnesses (n=15), Infectious Diseases (n = 6), Non-infectious Diseases (n=4), Medication and Vaccines (n=3), and Other (n=5). For Question 2, 32 manuscripts were identified, the first in 2000 with topics on Health Risk Behaviors (n=10), Infectious Diseases (n = 3), Non-infectious Diseases (n=9), and Other (n=10). The literature on the use of social media to support public health practice has identified many gaps and biases in current knowledge. Despite the potential for success identified in exploratory studies, there are limited studies on interventions and little use of social media in practice. However, information gleaned from the articles demonstrates the effectiveness of social media in supporting and improving public health and in identifying target populations for intervention. A primary recommendation resulting from the review is to identify opportunities that enable public health professionals to integrate social media analytics into disease surveillance and outbreak management practice.« less

  8. Using Social Media for Actionable Disease Surveillance and Outbreak Management: A Systematic Literature Review

    PubMed Central

    Charles-Smith, Lauren E.; Reynolds, Tera L.; Cameron, Mark A.; Conway, Mike; Lau, Eric H. Y.; Olsen, Jennifer M.; Pavlin, Julie A.; Shigematsu, Mika; Streichert, Laura C.; Suda, Katie J.; Corley, Courtney D.

    2015-01-01

    Objective Research studies show that social media may be valuable tools in the disease surveillance toolkit used for improving public health professionals’ ability to detect disease outbreaks faster than traditional methods and to enhance outbreak response. A social media work group, consisting of surveillance practitioners, academic researchers, and other subject matter experts convened by the International Society for Disease Surveillance, conducted a systematic primary literature review using the PRISMA framework to identify research, published through February 2013, answering either of the following questions: Can social media be integrated into disease surveillance practice and outbreak management to support and improve public health? Can social media be used to effectively target populations, specifically vulnerable populations, to test an intervention and interact with a community to improve health outcomes? Examples of social media included are Facebook, MySpace, microblogs (e.g., Twitter), blogs, and discussion forums. For Question 1, 33 manuscripts were identified, starting in 2009 with topics on Influenza-like Illnesses (n = 15), Infectious Diseases (n = 6), Non-infectious Diseases (n = 4), Medication and Vaccines (n = 3), and Other (n = 5). For Question 2, 32 manuscripts were identified, the first in 2000 with topics on Health Risk Behaviors (n = 10), Infectious Diseases (n = 3), Non-infectious Diseases (n = 9), and Other (n = 10). Conclusions The literature on the use of social media to support public health practice has identified many gaps and biases in current knowledge. Despite the potential for success identified in exploratory studies, there are limited studies on interventions and little use of social media in practice. However, information gleaned from the articles demonstrates the effectiveness of social media in supporting and improving public health and in identifying target populations for intervention. A primary recommendation resulting from the review is to identify opportunities that enable public health professionals to integrate social media analytics into disease surveillance and outbreak management practice. PMID:26437454

  9. Using social media for actionable disease surveillance and outbreak management. A systematic literature review

    DOE PAGES

    Charles-Smith, Lauren E.; Reynolds, Tera L.; Cameron, Mark A.; ...

    2015-10-05

    Here, research studies show that social media may be valuable tools in the disease surveillance toolkit used for improving public health professionals’ ability to detect disease outbreaks faster than traditional methods and to enhance outbreak response. A social media work group, consisting of surveillance practitioners, academic researchers, and other subject matter experts convened by the International Society for Disease Surveillance, conducted a systematic primary literature review using the PRISMA framework to identify research, published through February 2013, answering either of the following questions: 1) Can social media be integrated into disease surveillance practice and outbreak management to support and improvemore » public health? 2) Can social media be used to effectively target populations, specifically vulnerable populations, to test an intervention and interact with a community to improve health outcomes? Examples of social media included are Facebook, MySpace, microblogs (e.g., Twitter), blogs, and discussion forums. For Question 1, 33 manuscripts were identified, starting in 2009 with topics on Influenza-like Illnesses (n=15), Infectious Diseases (n = 6), Non-infectious Diseases (n=4), Medication and Vaccines (n=3), and Other (n=5). For Question 2, 32 manuscripts were identified, the first in 2000 with topics on Health Risk Behaviors (n=10), Infectious Diseases (n = 3), Non-infectious Diseases (n=9), and Other (n=10). The literature on the use of social media to support public health practice has identified many gaps and biases in current knowledge. Despite the potential for success identified in exploratory studies, there are limited studies on interventions and little use of social media in practice. However, information gleaned from the articles demonstrates the effectiveness of social media in supporting and improving public health and in identifying target populations for intervention. A primary recommendation resulting from the review is to identify opportunities that enable public health professionals to integrate social media analytics into disease surveillance and outbreak management practice.« less

  10. Investigation of Outbreaks Complicated by Universal Exposure

    PubMed Central

    Bousema, Teun; Oliver, Isabel

    2012-01-01

    Outbreaks in which most or all persons were exposed to the same suspected source of infection, so-called universal exposure, are common. They represent a challenge for public health specialists because conducting analytical studies in such investigations is complicated by the absence of a nonexposed group. We describe different strategies that can support investigations of outbreaks with universal exposure. The value of descriptive epidemiology, extensive environmental investigation, and the hypothesis-generation phase cannot be overemphasized. An exposure that seems universal may in fact not be universal when additional aspects of the exposure are taken into account. Each exposure has unique characteristics that may not be captured when investigators rely on the tools readily at hand, such as standard questionnaires. We therefore encourage field epidemiologists to be creative and consider the use of alternative data sources or original techniques in their investigations of outbreaks with universal exposure. PMID:23092616

  11. Rethinking the Response to Emerging Microbes: Vaccines and Therapeutics in the Ebola Era--a Conference at Harvard Medical School.

    PubMed

    Knipe, David M; Whelan, Sean P

    2015-08-01

    Harvard Medical School convened a meeting of biomedical and clinical experts on 5 March 2015 on the topic of "Rethinking the Response to Emerging Microbes: Vaccines and Therapeutics in the Ebola Era," with the goals of discussing the lessons from the recent Ebola outbreak and using those lessons as a case study to aid preparations for future emerging infections. The speakers and audience discussed the special challenges in combatting an infectious agent that causes sporadic outbreaks in resource-poor countries. The meeting led to a call for improved basic medical care for all and continued support of basic discovery research to provide the foundation for preparedness for future outbreaks in addition to the targeted emergency response to outbreaks and targeted research programs against Ebola virus and other specific emerging pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term Evolution of an Emerging Pathogen

    PubMed Central

    Grad, Yonatan H.; Godfrey, Paul; Cerquiera, Gustavo C.; Mariani-Kurkdjian, Patricia; Gouali, Malika; Bingen, Edouard; Shea, Terrence P.; Haas, Brian J.; Griggs, Allison; Young, Sarah; Zeng, Qiandong; Lipsitch, Marc; Waldor, Matthew K.; Weill, François-Xavier; Wortman, Jennifer R.; Hanage, William P.

    2013-01-01

    ABSTRACT The large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli O104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identified E. coli serogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused by E. coli O104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associated E. coli O104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borne E. coli O104:H4 outbreaks. PMID:23341549

  13. Nuggets of Wisdom: Salmonella Enteritidis Outbreaks and the Case for New Rules on Uncooked Frozen Processed Chicken.

    PubMed

    Hobbs, J Leigh; Warshawsky, Bryna; Maki, Anne; Zittermann, Sandra; Murphy, Allana; Majury, Anna; Middleton, Dean

    2017-04-01

    In 2014 and 2015, three Canadian Salmonella serotype Enteritidis outbreak investigations implicated uncooked, frozen, processed chicken products produced at the same establishment, namely establishment A. In November 2014, a sustained increase in the number of reported domestically acquired Salmonella Enteritidis cases in Ontario led to the first outbreak investigation, which implicated uncooked, frozen, processed chicken products produced at establishment A. In June 2015, the identification of pulsed-field gel electrophoresis patterns that had not been previously reported in Canada led to a national Salmonella Enteritidis investigation. Of 51 cases reported nationally, 35 were from Ontario. Uncooked, frozen, processed chicken products produced at establishment A were identified as the source of the outbreak, and public health action was taken as a result of this second investigation. In September 2015, a sustained increase in the number of domestically acquired Salmonella Enteritidis PT13a cases in Ontario led to a third outbreak investigation, which identified a total of 36 PT13a cases. Uncooked, frozen, processed chicken products produced at establishment A were again identified as the source of the outbreak. Outbreaks have been linked to uncooked, frozen, processed chicken products since the late 1990s. Information collected during the three outbreak investigations, and from other jurisdictions, suggests that the breaded and prebrowned appearance of the product, as well as factors related to product packaging and marketing, result in consumer misperception that this raw product is cooked. This misperception may result in mishandling and improper cooking. The three outbreaks described in this article highlight the potential ongoing risks to consumers from these products and support interventions to prevent contamination at the source level and infection at the consumer level.

  14. Polio infrastructure strengthened disease outbreak preparedness and response in the WHO African Region.

    PubMed

    Kouadio, Koffi; Okeibunor, Joseph; Nsubuga, Peter; Mihigo, Richard; Mkanda, Pascal

    2016-10-10

    The continuous deployments of polio resources, infrastructures and systems for responding to other disease outbreaks in many African countries has led to a number of lessons considered as best practice that need to be documented for strengthening preparedness and response activities in future outbreaks. We reviewed and documented the influence of polio best practices in outbreak preparedness and response in Angola, Nigeria and Ethiopia. Data from relevant programmes of the WHO African Region were also analyzed to demonstrate clearly the relative contributions of PEI resources and infrastructure to effective disease outbreak preparedness and response. Polio resources including, human, financial, and logistic, tool and strategies have tremendously contributed to responding to diseases outbreaks across the African region. In Angola, Nigeria and Ethiopia, many disease epidemics including Marburg Hemorrhagic fever, Dengue fever, Ebola Virus Diseases (EVD), Measles, Anthrax and Shigella have been controlled using existing polio Eradication Initiatives resources. Polio staffs are usually deployed in occasions to supports outbreak response activities (coordination, surveillance, contact tracing, case investigation, finance, data management, etc.). Polio logistics such vehicles, laboratories were also used in the response activities to other infectious diseases. Many polio tools including micro planning, dashboard, guidelines, SOPs on preparedness and response have also benefited to other epidemic-prone diseases. The Countries' preparedness and response plan to WPV importation as well as the Polio Emergency Operation Center models were successfully used to develop, strengthen and respond to many other diseases outbreak with the implication of partners and the strong leadership and ownership of governments. This review has important implications for WHO/AFRO initiative to strengthening and improving disease outbreak preparedness and responses in the African Region in respect to the international health regulations core capacities. Copyright © 2016 World Health Organization Regional Office for Africa. Published by Elsevier Ltd.. All rights reserved.

  15. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks.

    PubMed

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S K; Mammel, Mark K; Tarr, Phillip I; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies.

  16. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks

    PubMed Central

    Rusconi, Brigida; Sanjar, Fatemeh; Koenig, Sara S. K.; Mammel, Mark K.; Tarr, Phillip I.; Eppinger, Mark

    2016-01-01

    Multi isolate whole genome sequencing (WGS) and typing for outbreak investigations has become a reality in the post-genomics era. We applied this technology to strains from Escherichia coli O157:H7 outbreaks. These include isolates from seven North America outbreaks, as well as multiple isolates from the same patient and from different infected individuals in the same household. Customized high-resolution bioinformatics sequence typing strategies were developed to assess the core genome and mobilome plasticity. Sequence typing was performed using an in-house single nucleotide polymorphism (SNP) discovery and validation pipeline. Discriminatory power becomes of particular importance for the investigation of isolates from outbreaks in which macrogenomic techniques such as pulse-field gel electrophoresis or multiple locus variable number tandem repeat analysis do not differentiate closely related organisms. We also characterized differences in the phage inventory, allowing us to identify plasticity among outbreak strains that is not detectable at the core genome level. Our comprehensive analysis of the mobilome identified multiple plasmids that have not previously been associated with this lineage. Applied phylogenomics approaches provide strong molecular evidence for exceptionally little heterogeneity of strains within outbreaks and demonstrate the value of intra-cluster comparisons, rather than basing the analysis on archetypal reference strains. Next generation sequencing and whole genome typing strategies provide the technological foundation for genomic epidemiology outbreak investigation utilizing its significantly higher sample throughput, cost efficiency, and phylogenetic relatedness accuracy. These phylogenomics approaches have major public health relevance in translating information from the sequence-based survey to support timely and informed countermeasures. Polymorphisms identified in this work offer robust phylogenetic signals that index both short- and long-term evolution and can complement currently employed typing schemes for outbreak ex- and inclusion, diagnostics, surveillance, and forensic studies. PMID:27446025

  17. Computer-assisted resilience training to prepare healthcare workers for pandemic influenza: a randomized trial of the optimal dose of training

    PubMed Central

    2010-01-01

    Background Working in a hospital during an extraordinary infectious disease outbreak can cause significant stress and contribute to healthcare workers choosing to reduce patient contact. Psychological training of healthcare workers prior to an influenza pandemic may reduce stress-related absenteeism, however, established training methods that change behavior and attitudes are too resource-intensive for widespread use. This study tests the feasibility and effectiveness of a less expensive alternative - an interactive, computer-assisted training course designed to build resilience to the stresses of working during a pandemic. Methods A "dose-finding" study compared pre-post changes in three different durations of training. We measured variables that are likely to mediate stress-responses in a pandemic before and after training: confidence in support and training, pandemic-related self-efficacy, coping style and interpersonal problems. Results 158 hospital workers took the course and were randomly assigned to the short (7 sessions, median cumulative duration 111 minutes), medium (12 sessions, 158 minutes) or long (17 sessions, 223 minutes) version. Using an intention-to-treat analysis, the course was associated with significant improvements in confidence in support and training, pandemic self-efficacy and interpersonal problems. Participants who under-utilized coping via problem-solving or seeking support or over-utilized escape-avoidance experienced improved coping. Comparison of doses showed improved interpersonal problems in the medium and long course but not in the short course. There was a trend towards higher drop-out rates with longer duration of training. Conclusions Computer-assisted resilience training in healthcare workers appears to be of significant benefit and merits further study under pandemic conditions. Comparing three "doses" of the course suggested that the medium course was optimal. PMID:20307302

  18. Evidence-based guidelines for supportive care of patients with Ebola virus disease.

    PubMed

    Lamontagne, François; Fowler, Robert A; Adhikari, Neill K; Murthy, Srinivas; Brett-Major, David M; Jacobs, Michael; Uyeki, Timothy M; Vallenas, Constanza; Norris, Susan L; Fischer, William A; Fletcher, Thomas E; Levine, Adam C; Reed, Paul; Bausch, Daniel G; Gove, Sandy; Hall, Andrew; Shepherd, Susan; Siemieniuk, Reed A; Lamah, Marie-Claude; Kamara, Rashida; Nakyeyune, Phiona; Soka, Moses J; Edwin, Ama; Hazzan, Afeez A; Jacob, Shevin T; Elkarsany, Mubarak Mustafa; Adachi, Takuya; Benhadj, Lynda; Clément, Christophe; Crozier, Ian; Garcia, Armando; Hoffman, Steven J; Guyatt, Gordon H

    2018-02-17

    The 2013-16 Ebola virus disease outbreak in west Africa was associated with unprecedented challenges in the provision of care to patients with Ebola virus disease, including absence of pre-existing isolation and treatment facilities, patients' reluctance to present for medical care, and limitations in the provision of supportive medical care. Case fatality rates in west Africa were initially greater than 70%, but decreased with improvements in supportive care. To inform optimal care in a future outbreak of Ebola virus disease, we employed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology to develop evidence-based guidelines for the delivery of supportive care to patients admitted to Ebola treatment units. Key recommendations include administration of oral and, as necessary, intravenous hydration; systematic monitoring of vital signs and volume status; availability of key biochemical testing; adequate staffing ratios; and availability of analgesics, including opioids, for pain relief. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A campylobacter outbreak associated with stir-fried food.

    PubMed Central

    Evans, M. R.; Lane, W.; Frost, J. A.; Nylen, G.

    1998-01-01

    An outbreak of gastrointestinal illness affecting 12 of 29 customers of a 'Hawaiian' theme restaurant specializing in stir-fried food occurred in Cardiff, Wales in February 1997. Campylobacter jejuni serotype HS50 phage type 49 (PT49) was isolated from 5 cases. A total of 47 isolates of C. jejuni HS50 PT49 were identified from Wales during 1997, of which 11 were isolated in late February or early March and from the Cardiff area. In the outbreak, illness was associated with eating stir-fried chicken pieces (relative risk 4.81, 95% confidence interval (CI) 0.76-30.44, P=0.03) and a dose-response relationship between risk of illness and amount of chicken consumed was observed (chi2-test for linear trend 3.96, P=0.047). Undercooking of chicken was probably due to a combination of inadequate cooking time and use of large chicken pieces. This is the first time that stir-fried food has been associated with a campylobacter outbreak. The incident also illustrates the value of routine campylobacter subtyping in supporting outbreak investigation. PMID:9825777

  20. Identifying Future Disease Hot Spots: Infectious Disease Vulnerability Index.

    PubMed

    Moore, Melinda; Gelfeld, Bill; Okunogbe, Adeyemi; Paul, Christopher

    2017-06-01

    Recent high-profile outbreaks, such as Ebola and Zika, have illustrated the transnational nature of infectious diseases. Countries that are most vulnerable to such outbreaks might be higher priorities for technical support. RAND created the Infectious Disease Vulnerability Index to help U.S. government and international agencies identify these countries and thereby inform programming to preemptively help mitigate the spread and effects of potential transnational outbreaks. The authors employed a rigorous methodology to identify the countries most vulnerable to disease outbreaks. They conducted a comprehensive review of relevant literature to identify factors influencing infectious disease vulnerability. Using widely available data, the authors created an index for identifying potentially vulnerable countries and then ranked countries by overall vulnerability score. Policymakers should focus on the 25 most-vulnerable countries with an eye toward a potential "disease belt" in the Sahel region of Africa. The infectious disease vulnerability scores for several countries were better than what would have been predicted on the basis of economic status alone. This suggests that low-income countries can overcome economic challenges and become more resilient to public health challenges, such as infectious disease outbreaks.

  1. Pathobiology of clade 2.3.4.4 H5Nx high pathogenicity avian influenza virus infections in minor gallinaceous poultry supports early backyard flock introductions in the Western United States in 2014-2015

    USDA-ARS?s Scientific Manuscript database

    In 2014 and 2015, the United States experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus. Initial cases affected mainly wild birds and mixed backyard poultry species, while later outbreaks affected mostly commercial chickens and turkeys. T...

  2. A multi-country outbreak of Salmonella Newport gastroenteritis in Europe associated with watermelon from Brazil, confirmed by whole genome sequencing: October 2011 to January 2012.

    PubMed

    Byrne, L; Fisher, I; Peters, T; Mather, A; Thomson, N; Rosner, B; Bernard, H; McKeown, P; Cormican, M; Cowden, J; Aiyedun, V; Lane, C

    2014-08-07

    In November 2011, the presence of Salmonella Newport in a ready-to-eat watermelon slice was confirmed as part of a local food survey in England. In late December 2011, cases of S. Newport were reported in England, Wales, Northern Ireland, Scotland, Ireland and Germany. During the outbreak, 63 confirmed cases of S. Newport were reported across all six countries with isolates indistinguishable by pulsed-field gel electrophoresis from the watermelon isolate.A subset of outbreak isolates were whole-genome sequenced and were identical to, or one single nucleotide polymorphism different from the watermelon isolate.In total, 46 confirmed cases were interviewed of which 27 reported watermelon consumption. Further investigations confirmed the outbreak was linked to the consumption of watermelon imported from Brazil.Although numerous Salmonella outbreaks associated with melons have been reported in the United States and elsewhere, this is the first of its kind in Europe.Expansion of the melon import market from Brazil represents a potential threat for future outbreaks. Whole genome sequencing is rapidly becoming more accessible and can provide a compelling level of evidence of linkage between human cases and sources of infection,to support public health interventions in global food markets.

  3. A multi-country outbreak of Salmonella Newport gastroenteritis in Europe associated with watermelon from Brazil, confirmed by whole genome sequencing: October 2011 to January 2012

    PubMed Central

    Byrne, L; Fisher, I; Peters, T; Mather, A; Thomson, N; Rosner, B; Bernard, H; McKeown, P; Cormican, M; Cowden, J; Aiyedun, V; Lane, C

    2015-01-01

    In November 2011, the presence of Salmonella Newport in a ready-to-eat watermelon slice was confirmed as part of a local food survey in England. In late December 2011, cases of S. Newport were reported in England, Wales, Northern Ireland, Scotland, Ireland and Germany. During the outbreak, 63 confirmed cases of S. Newport were reported across all six countries with isolates indistinguishable by pulsed-field gel electrophoresis from the watermelon isolate. A subset of outbreak isolates were whole-genome sequenced and were identical to, or one single nucleotide polymorphism different from the watermelon isolate. In total, 46 confirmed cases were interviewed of which 27 reported watermelon consumption. Further investigations confirmed the outbreak was linked to the consumption of watermelon imported from Brazil. Although numerous Salmonella outbreaks associated with melons have been reported in the United States and elsewhere, this is the first of its kind in Europe. Expansion of the melon import market from Brazil represents a potential threat for future outbreaks. Whole genome sequencing is rapidly becoming more accessible and can provide a compelling level of evidence of linkage between human cases and sources of infection, to support public health interventions in global food markets. PMID:25138971

  4. First record of epizootic ulcerative syndrome from the Upper Congo catchment: An outbreak in the Bangweulu swamps, Zambia.

    PubMed

    Huchzermeyer, C F; Huchzermeyer, K D A; Christison, K W; Macey, B M; Colly, P A; Hang'ombe, B M; Songe, M M

    2018-01-01

    We report on the first outbreak of epizootic ulcerative syndrome (EUS) amongst wild fish populations in the Bangweulu swamps, an inland delta, in the north of Zambia during 2014. The area supports a large and diverse fish fauna related to, but distinct from, that of the Zambezi River system where EUS outbreaks have occurred since 2006. A sizeable artisanal fishery, based on extensive fish weirs, is sustained by the annual flooding of the swamps, and observations of the disease outbreak by fishermen were recorded. Signs typical of infection with Aphanomyces invadans were observed in a number of species. Clinical observations, histology and molecular diagnostic methods were used to confirm infection with A. invadans in two of the most commonly and severely affected species. Several features of the wetland may have contributed to the outbreak and the annual recurrence of the disease. Modes by which the disease may have been introduced into the swamps are discussed. The outbreak is of great significance as the Bangweulu swamps drain into the Congo River in neighbouring Democratic Republic of Congo, Africa's largest drainage system with an extensive and diverse fish fauna previously unaffected by EUS. © 2017 John Wiley & Sons Ltd.

  5. Predictive accuracy of particle filtering in dynamic models supporting outbreak projections.

    PubMed

    Safarishahrbijari, Anahita; Teyhouee, Aydin; Waldner, Cheryl; Liu, Juxin; Osgood, Nathaniel D

    2017-09-26

    While a new generation of computational statistics algorithms and availability of data streams raises the potential for recurrently regrounding dynamic models with incoming observations, the effectiveness of such arrangements can be highly subject to specifics of the configuration (e.g., frequency of sampling and representation of behaviour change), and there has been little attempt to identify effective configurations. Combining dynamic models with particle filtering, we explored a solution focusing on creating quickly formulated models regrounded automatically and recurrently as new data becomes available. Given a latent underlying case count, we assumed that observed incident case counts followed a negative binomial distribution. In accordance with the condensation algorithm, each such observation led to updating of particle weights. We evaluated the effectiveness of various particle filtering configurations against each other and against an approach without particle filtering according to the accuracy of the model in predicting future prevalence, given data to a certain point and a norm-based discrepancy metric. We examined the effectiveness of particle filtering under varying times between observations, negative binomial dispersion parameters, and rates with which the contact rate could evolve. We observed that more frequent observations of empirical data yielded super-linearly improved accuracy in model predictions. We further found that for the data studied here, the most favourable assumptions to make regarding the parameters associated with the negative binomial distribution and changes in contact rate were robust across observation frequency and the observation point in the outbreak. Combining dynamic models with particle filtering can perform well in projecting future evolution of an outbreak. Most importantly, the remarkable improvements in predictive accuracy resulting from more frequent sampling suggest that investments to achieve efficient reporting mechanisms may be more than paid back by improved planning capacity. The robustness of the results on particle filter configuration in this case study suggests that it may be possible to formulate effective standard guidelines and regularized approaches for such techniques in particular epidemiological contexts. Most importantly, the work tentatively suggests potential for health decision makers to secure strong guidance when anticipating outbreak evolution for emerging infectious diseases by combining even very rough models with particle filtering method.

  6. Key Role of Sequencing to Trace Hepatitis A Viruses Circulating in Italy During a Large Multi-Country European Foodborne Outbreak in 2013

    PubMed Central

    Bruni, Roberto; Taffon, Stefania; Equestre, Michele; Chionne, Paola; Madonna, Elisabetta; Rizzo, Caterina; Tosti, Maria Elena; Alfonsi, Valeria; Ricotta, Lara; De Medici, Dario; Di Pasquale, Simona; Scavia, Gaia; Pavoni, Enrico; Losio, Marina Nadia; Romanò, Luisa; Zanetti, Alessandro Remo; Morea, Anna; Pacenti, Monia; Palù, Giorgio; Capobianchi, Maria Rosaria; Chironna, Maria; Pompa, Maria Grazia; Ciccaglione, Anna Rita

    2016-01-01

    Background Foodborne Hepatitis A Virus (HAV) outbreaks are being recognized as an emerging public health problem in industrialized countries. In 2013 three foodborne HAV outbreaks occurred in Europe and one in USA. During the largest of the three European outbreaks, most cases occurred in Italy (>1,200 cases as of March 31, 2014). A national Task Force was established at the beginning of the outbreak by the Ministry of Health. Mixed frozen berries were early demonstrated to be the source of infection by the identity of viral sequences in patients and in food. In the present study the molecular characterization of HAV isolates from 355 Italian cases is reported. Methods Molecular characterization was carried out by PCR/sequencing (VP1/2A region), comparison with reference strains and phylogenetic analysis. Results A unique strain was responsible for most characterized cases (235/355, 66.1%). Molecular data had a key role in tracing this outbreak, allowing 110 out of the 235 outbreak cases (46.8%) to be recognized in absence of any other link. The data also showed background circulation of further unrelated strains, both autochthonous and travel related, whose sequence comparison highlighted minor outbreaks and small clusters, most of them unrecognized on the basis of epidemiological data. Phylogenetic analysis showed most isolates from travel related cases clustering with reference strains originating from the same geographical area of travel. Conclusions In conclusion, the study documents, in a real outbreak context, the crucial role of molecular analysis in investigating an old but re-emerging pathogen. Improving the molecular knowledge of HAV strains, both autochthonous and circulating in countries from which potentially contaminated foods are imported, will become increasingly important to control outbreaks by supporting trace back activities, aiming to identify the geographical source(s) of contaminated food, as well as public health interventions. PMID:26901877

  7. Key Role of Sequencing to Trace Hepatitis A Viruses Circulating in Italy During a Large Multi-Country European Foodborne Outbreak in 2013.

    PubMed

    Bruni, Roberto; Taffon, Stefania; Equestre, Michele; Chionne, Paola; Madonna, Elisabetta; Rizzo, Caterina; Tosti, Maria Elena; Alfonsi, Valeria; Ricotta, Lara; De Medici, Dario; Di Pasquale, Simona; Scavia, Gaia; Pavoni, Enrico; Losio, Marina Nadia; Romanò, Luisa; Zanetti, Alessandro Remo; Morea, Anna; Pacenti, Monia; Palù, Giorgio; Capobianchi, Maria Rosaria; Chironna, Maria; Pompa, Maria Grazia; Ciccaglione, Anna Rita

    2016-01-01

    Foodborne Hepatitis A Virus (HAV) outbreaks are being recognized as an emerging public health problem in industrialized countries. In 2013 three foodborne HAV outbreaks occurred in Europe and one in USA. During the largest of the three European outbreaks, most cases occurred in Italy (>1,200 cases as of March 31, 2014). A national Task Force was established at the beginning of the outbreak by the Ministry of Health. Mixed frozen berries were early demonstrated to be the source of infection by the identity of viral sequences in patients and in food. In the present study the molecular characterization of HAV isolates from 355 Italian cases is reported. Molecular characterization was carried out by PCR/sequencing (VP1/2A region), comparison with reference strains and phylogenetic analysis. A unique strain was responsible for most characterized cases (235/355, 66.1%). Molecular data had a key role in tracing this outbreak, allowing 110 out of the 235 outbreak cases (46.8%) to be recognized in absence of any other link. The data also showed background circulation of further unrelated strains, both autochthonous and travel related, whose sequence comparison highlighted minor outbreaks and small clusters, most of them unrecognized on the basis of epidemiological data. Phylogenetic analysis showed most isolates from travel related cases clustering with reference strains originating from the same geographical area of travel. In conclusion, the study documents, in a real outbreak context, the crucial role of molecular analysis in investigating an old but re-emerging pathogen. Improving the molecular knowledge of HAV strains, both autochthonous and circulating in countries from which potentially contaminated foods are imported, will become increasingly important to control outbreaks by supporting trace back activities, aiming to identify the geographical source(s) of contaminated food, as well as public health interventions.

  8. Sharing experiences: towards an evidence based model of dengue surveillance and outbreak response in Latin America and Asia

    PubMed Central

    2013-01-01

    Background The increasing frequency and intensity of dengue outbreaks in endemic and non-endemic countries requires a rational, evidence based response. To this end, we aimed to collate the experiences of a number of affected countries, identify strengths and limitations in dengue surveillance, outbreak preparedness, detection and response and contribute towards the development of a model contingency plan adaptable to country needs. Methods The study was undertaken in five Latin American (Brazil, Colombia, Dominican Republic, Mexico, Peru) and five in Asian countries (Indonesia, Malaysia, Maldives, Sri Lanka, Vietnam). A mixed-methods approach was used which included document analysis, key informant interviews, focus-group discussions, secondary data analysis and consensus building by an international dengue expert meeting organised by the World Health Organization, Special Program for Research and Training in Tropical Diseases (WHO-TDR). Results Country information on dengue is based on compulsory notification and reporting (“passive surveillance”), with laboratory confirmation (in all participating Latin American countries and some Asian countries) or by using a clinical syndromic definition. Seven countries additionally had sentinel sites with active dengue reporting, some also had virological surveillance. Six had agreed a formal definition of a dengue outbreak separate to seasonal variation in case numbers. Countries collected data on a range of warning signs that may identify outbreaks early, but none had developed a systematic approach to identifying and responding to the early stages of an outbreak. Outbreak response plans varied in quality, particularly regarding the early response. The surge capacity of hospitals with recent dengue outbreaks varied; those that could mobilise additional staff, beds, laboratory support and resources coped best in comparison to those improvising a coping strategy during the outbreak. Hospital outbreak management plans were present in 9/22 participating hospitals in Latin-America and 8/20 participating hospitals in Asia. Conclusions Considerable variation between countries was observed with regard to surveillance, outbreak detection, and response. Through discussion at the expert meeting, suggestions were made for the development of a more standardised approach in the form of a model contingency plan, with agreed outbreak definitions and country-specific risk assessment schemes to initiate early response activities according to the outbreak phase. This would also allow greater cross-country sharing of ideas. PMID:23800243

  9. Sharing experiences: towards an evidence based model of dengue surveillance and outbreak response in Latin America and Asia.

    PubMed

    Badurdeen, Shiraz; Valladares, David Benitez; Farrar, Jeremy; Gozzer, Ernesto; Kroeger, Axel; Kuswara, Novia; Ranzinger, Silvia Runge; Tinh, Hien Tran; Leite, Priscila; Mahendradhata, Yodi; Skewes, Ronald; Verrall, Ayesha

    2013-06-24

    The increasing frequency and intensity of dengue outbreaks in endemic and non-endemic countries requires a rational, evidence based response. To this end, we aimed to collate the experiences of a number of affected countries, identify strengths and limitations in dengue surveillance, outbreak preparedness, detection and response and contribute towards the development of a model contingency plan adaptable to country needs. The study was undertaken in five Latin American (Brazil, Colombia, Dominican Republic, Mexico, Peru) and five in Asian countries (Indonesia, Malaysia, Maldives, Sri Lanka, Vietnam). A mixed-methods approach was used which included document analysis, key informant interviews, focus-group discussions, secondary data analysis and consensus building by an international dengue expert meeting organised by the World Health Organization, Special Program for Research and Training in Tropical Diseases (WHO-TDR). Country information on dengue is based on compulsory notification and reporting ("passive surveillance"), with laboratory confirmation (in all participating Latin American countries and some Asian countries) or by using a clinical syndromic definition. Seven countries additionally had sentinel sites with active dengue reporting, some also had virological surveillance. Six had agreed a formal definition of a dengue outbreak separate to seasonal variation in case numbers. Countries collected data on a range of warning signs that may identify outbreaks early, but none had developed a systematic approach to identifying and responding to the early stages of an outbreak. Outbreak response plans varied in quality, particularly regarding the early response. The surge capacity of hospitals with recent dengue outbreaks varied; those that could mobilise additional staff, beds, laboratory support and resources coped best in comparison to those improvising a coping strategy during the outbreak. Hospital outbreak management plans were present in 9/22 participating hospitals in Latin-America and 8/20 participating hospitals in Asia. Considerable variation between countries was observed with regard to surveillance, outbreak detection, and response. Through discussion at the expert meeting, suggestions were made for the development of a more standardised approach in the form of a model contingency plan, with agreed outbreak definitions and country-specific risk assessment schemes to initiate early response activities according to the outbreak phase. This would also allow greater cross-country sharing of ideas.

  10. Ebola viral hemorrhagic disease outbreak in West Africa- lessons from Uganda.

    PubMed

    Mbonye, Anthony K; Wamala, Joseph F; Nanyunja, Miriam; Opio, Alex; Makumbi, Issa; Aceng, Jane Ruth

    2014-09-01

    There has been a rapid spread of Ebola Viral Hemorrhagic disease in Guinea, Liberia and Sierra Leone since March 2014. Since this is the first time of a major Ebola outbreak in West Africa; it is possible there is lack of understanding of the epidemic in the communities, lack of experience among the health workers to manage the cases and limited capacities for rapid response. The main objective of this article is to share Uganda's experience in controlling similar Ebola outbreaks and to suggest some lessons that could inform the control of the Ebola outbreak in West Africa. The article is based on published papers, reports of previous Ebola outbreaks, response plans and experiences of individuals who have participated in the control of Ebola epidemics in Uganda. Lessons learnt: The success in the control of Ebola epidemics in Uganda has been due to high political support, effective coordination through national and district task forces. In addition there has been active surveillance, strong community mobilization using village health teams and other community resources persons, an efficient laboratory system that has capacity to provide timely results. These have coupled with effective case management and infection control and the involvement of development partners who commit resources with shared responsibility. Several factors have contributed to the successful quick containment of Ebola outbreaks in Uganda. West African countries experiencing Ebola outbreaks could draw some lessons from the Uganda experience and adapt them to contain the Ebola epidemic.

  11. Automated detection of hospital outbreaks: A systematic review of methods.

    PubMed

    Leclère, Brice; Buckeridge, David L; Boëlle, Pierre-Yves; Astagneau, Pascal; Lepelletier, Didier

    2017-01-01

    Several automated algorithms for epidemiological surveillance in hospitals have been proposed. However, the usefulness of these methods to detect nosocomial outbreaks remains unclear. The goal of this review was to describe outbreak detection algorithms that have been tested within hospitals, consider how they were evaluated, and synthesize their results. We developed a search query using keywords associated with hospital outbreak detection and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were initially imposed on publication languages and dates, although we subsequently excluded studies published before 2000. Every study that described a method to detect outbreaks within hospitals was included, without any exclusion based on study design. Additional studies were identified through citations in retrieved studies. Twenty-nine studies were included. The detection algorithms were grouped into 5 categories: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), traditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria were also investigated (n = 10). The performance measures varied widely between studies: e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%. Even if outbreak detection algorithms are useful complementary tools for traditional surveillance, the heterogeneity in results among published studies does not support quantitative synthesis of their performance. A standardized framework should be followed when evaluating outbreak detection methods to allow comparison of algorithms across studies and synthesis of results.

  12. A new prior for bayesian anomaly detection: application to biosurveillance.

    PubMed

    Shen, Y; Cooper, G F

    2010-01-01

    Bayesian anomaly detection computes posterior probabilities of anomalous events by combining prior beliefs and evidence from data. However, the specification of prior probabilities can be challenging. This paper describes a Bayesian prior in the context of disease outbreak detection. The goal is to provide a meaningful, easy-to-use prior that yields a posterior probability of an outbreak that performs at least as well as a standard frequentist approach. If this goal is achieved, the resulting posterior could be usefully incorporated into a decision analysis about how to act in light of a possible disease outbreak. This paper describes a Bayesian method for anomaly detection that combines learning from data with a semi-informative prior probability over patterns of anomalous events. A univariate version of the algorithm is presented here for ease of illustration of the essential ideas. The paper describes the algorithm in the context of disease-outbreak detection, but it is general and can be used in other anomaly detection applications. For this application, the semi-informative prior specifies that an increased count over baseline is expected for the variable being monitored, such as the number of respiratory chief complaints per day at a given emergency department. The semi-informative prior is derived based on the baseline prior, which is estimated from using historical data. The evaluation reported here used semi-synthetic data to evaluate the detection performance of the proposed Bayesian method and a control chart method, which is a standard frequentist algorithm that is closest to the Bayesian method in terms of the type of data it uses. The disease-outbreak detection performance of the Bayesian method was statistically significantly better than that of the control chart method when proper baseline periods were used to estimate the baseline behavior to avoid seasonal effects. When using longer baseline periods, the Bayesian method performed as well as the control chart method. The time complexity of the Bayesian algorithm is linear in the number of the observed events being monitored, due to a novel, closed-form derivation that is introduced in the paper. This paper introduces a novel prior probability for Bayesian outbreak detection that is expressive, easy-to-apply, computationally efficient, and performs as well or better than a standard frequentist method.

  13. Total Economic Consequences of an Influenza Outbreak in the United States.

    PubMed

    Prager, Fynnwin; Wei, Dan; Rose, Adam

    2017-01-01

    Pandemic influenza represents a serious threat not only to the population of the United States, but also to its economy. In this study, we analyze the total economic consequences of potential influenza outbreaks in the United States for four cases based on the distinctions between disease severity and the presence/absence of vaccinations. The analysis is based on data and parameters on influenza obtained from the Centers for Disease Control and the general literature. A state-of-the-art economic impact modeling approach, computable general equilibrium, is applied to analyze a wide range of potential impacts stemming from the outbreaks. This study examines the economic impacts from changes in medical expenditures and workforce participation, and also takes into consideration different types of avoidance behavior and resilience actions not previously fully studied. Our results indicate that, in the absence of avoidance and resilience effects, a pandemic influenza outbreak could result in a loss in U.S. GDP of $25.4 billion, but that vaccination could reduce the losses to $19.9 billion. When behavioral and resilience factors are taken into account, a pandemic influenza outbreak could result in GDP losses of $45.3 billion without vaccination and $34.4 billion with vaccination. These results indicate the importance of including a broader set of causal factors to achieve more accurate estimates of the total economic impacts of not just pandemic influenza but biothreats in general. The results also highlight a number of actionable items that government policymakers and public health officials can use to help reduce potential economic losses from the outbreaks. © 2016 Society for Risk Analysis.

  14. Characterization of the temporal and spatial distribution and reproductive ratio of vesicular stomatitis outbreaks in Mexico in 2008.

    PubMed

    Arroyo, Montserrat; Perez, Andres M; Rodriguez, Luis L

    2011-02-01

    To characterize the temporal and spatial distribution and reproductive ratio of vesicular stomatitis (VS) outbreaks reported in Mexico in 2008. Bovine herds in Mexico in which VS outbreaks were officially reported and confirmed from January 1 through December 31, 2008. The Poisson model of the space-time scan statistic was used to identify periods and geographical locations at highest risk for VS in Mexico in 2008. The herd reproductive ratio (R(h)) of the epidemic was computed by use of the doubling-time method. 1 significant space-time cluster of VS was detected in the state of Michoacan from September 4 through December 10, 2008. The temporal extent of the VS outbreaks and the value and pattern of decrease of the R(h) were different in the endemic zone of Tabasco and Chiapas, compared with findings in the region included in the space-time cluster. The large number of VS outbreaks reported in Mexico in 2008 was associated with the spread of the disease from the endemic zone in southern Mexico to areas sporadically affected by the disease. Results suggested that implementation of a surveillance system in the endemic zone of Mexico aimed at early detection of changes in the value of R(h) and space-time clustering of the disease could help predict occurrence of future VS outbreaks originating from this endemic zone. This information will help prevent VS spread into regions of Mexico and neighboring countries that are only sporadically affected by the disease.

  15. Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease.

    PubMed

    Lahodny, G E; Gautam, R; Ivanek, R

    2015-01-01

    Indirect transmission through the environment, pathogen shedding by infectious hosts, replication of free-living pathogens within the environment, and environmental decontamination are suspected to play important roles in the spread and control of environmentally transmitted infectious diseases. To account for these factors, the classic Susceptible-Infectious-Recovered-Susceptible epidemic model is modified to include a compartment representing the amount of free-living pathogen within the environment. The model accounts for host demography, direct and indirect transmission, replication of free-living pathogens in the environment, and removal of free-living pathogens by natural death or environmental decontamination. Based on the assumptions of the deterministic model, a continuous-time Markov chain model is developed. An estimate for the probability of disease extinction or a major outbreak is obtained by approximating the Markov chain with a multitype branching process. Numerical simulations illustrate important differences between the deterministic and stochastic counterparts, relevant for outbreak prevention, that depend on indirect transmission, pathogen shedding by infectious hosts, replication of free-living pathogens, and environmental decontamination. The probability of a major outbreak is computed for salmonellosis in a herd of dairy cattle as well as cholera in a human population. An explicit expression for the probability of disease extinction or a major outbreak in terms of the model parameters is obtained for systems with no direct transmission or replication of free-living pathogens.

  16. An intelligent and secure system for predicting and preventing Zika virus outbreak using Fog computing

    NASA Astrophysics Data System (ADS)

    Sareen, Sanjay; Gupta, Sunil Kumar; Sood, Sandeep K.

    2017-10-01

    Zika virus is a mosquito-borne disease that spreads very quickly in different parts of the world. In this article, we proposed a system to prevent and control the spread of Zika virus disease using integration of Fog computing, cloud computing, mobile phones and the Internet of things (IoT)-based sensor devices. Fog computing is used as an intermediary layer between the cloud and end users to reduce the latency time and extra communication cost that is usually found high in cloud-based systems. A fuzzy k-nearest neighbour is used to diagnose the possibly infected users, and Google map web service is used to provide the geographic positioning system (GPS)-based risk assessment to prevent the outbreak. It is used to represent each Zika virus (ZikaV)-infected user, mosquito-dense sites and breeding sites on the Google map that help the government healthcare authorities to control such risk-prone areas effectively and efficiently. The proposed system is deployed on Amazon EC2 cloud to evaluate its performance and accuracy using data set for 2 million users. Our system provides high accuracy of 94.5% for initial diagnosis of different users according to their symptoms and appropriate GPS-based risk assessment.

  17. A growing global network’s role in outbreak response: AFHSC-GEIS 2008-2009

    PubMed Central

    2011-01-01

    A cornerstone of effective disease surveillance programs comprises the early identification of infectious threats and the subsequent rapid response to prevent further spread. Effectively identifying, tracking and responding to these threats is often difficult and requires international cooperation due to the rapidity with which diseases cross national borders and spread throughout the global community as a result of travel and migration by humans and animals. From Oct.1, 2008 to Sept. 30, 2009, the United States Department of Defense’s (DoD) Armed Forces Health Surveillance Center Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) identified 76 outbreaks in 53 countries. Emerging infectious disease outbreaks were identified by the global network and included a wide spectrum of support activities in collaboration with host country partners, several of which were in direct support of the World Health Organization’s (WHO) International Health Regulations (IHR) (2005). The network also supported military forces around the world affected by the novel influenza A/H1N1 pandemic of 2009. With IHR (2005) as the guiding framework for action, the AFHSC-GEIS network of international partners and overseas research laboratories continues to develop into a far-reaching system for identifying, analyzing and responding to emerging disease threats. PMID:21388563

  18. Establishment of a research pharmacy to support Ebola clinical research in Liberia.

    PubMed

    Pierson, Jerome F; Kirchoff, Matthew Carl; Tyee, Rev Tijli; Montello, Michael J; Rhie, Julie K

    This article describes the establishment of a research pharmacy to support the Partnership for Research on Ebola Vaccines in Liberia (PREVAIL) vaccine study for Ebola virus disease. This article describes the establishment of the pharmacy element to support the overall research program during an Ebola outbreak in Monrovia, Liberia, in 2014 and 2015. The need for the rapid establishment of infrastructure to support the Liberia-United States joint clinical research partnership in response to the emerging Ebola virus disease provided the opportunity for collaboration among Liberian and U.S. pharmacists. Resource austere and research naïve. Research pharmacy prepared and randomized 1500 vaccinations in support of PREVAIL. Experiences of the Liberian and U.S. pharmacists involved in the program are described. The partnership was successful in the conduct of the study. More importantly, the capacity for Liberian pharmacists to support clinical research was established. In addition, the U.S. team learned several important lessons that will help prepare them for responding to research needs in future infectious disease outbreaks. Published by Elsevier Inc.

  19. Practical Value of Food Pathogen Traceability through Building a Whole-Genome Sequencing Network and Database

    PubMed Central

    Strain, Errol; Melka, David; Bunning, Kelly; Musser, Steven M.; Brown, Eric W.; Timme, Ruth

    2016-01-01

    The FDA has created a United States-based open-source whole-genome sequencing network of state, federal, international, and commercial partners. The GenomeTrakr network represents a first-of-its-kind distributed genomic food shield for characterizing and tracing foodborne outbreak pathogens back to their sources. The GenomeTrakr network is leading investigations of outbreaks of foodborne illnesses and compliance actions with more accurate and rapid recalls of contaminated foods as well as more effective monitoring of preventive controls for food manufacturing environments. An expanded network would serve to provide an international rapid surveillance system for pathogen traceback, which is critical to support an effective public health response to bacterial outbreaks. PMID:27008877

  20. Severe canine distemper outbreak in unvaccinated dogs in Mozambique.

    PubMed

    Zacarias, Julieta; Dimande, Alberto; Achá, Sara; Dias, Paula T; Leonel, Elisa M; Messa, Aurora; Macucule, Baltazar; Júnior, José L; Bila, Custódio G

    2016-07-15

    Although significant animal suffering caused by preventable diseases is frequently seen in developing countries, reports of this are scarce. This report describes avoidable animal suffering owing to a suspected canine distemper (CD) outbreak in unvaccinated dogs owned by low-income families in Mozambique that killed approximately 200 animals. Affected dogs exhibited clinical signs, and gross and microscopic lesions compatible with CD. Immunohistochemical staining confirmed the presence of canine distemper virus (CDV) in the kidney of one dog from the cohort. This brief communication again illustrates that large outbreaks of CDV in unvaccinated dogs occur and that large-scale avoidable suffering and threats to the health of dogs and wild canines continue. Mass vaccination supported by government and non-government organisations is recommended.

  1. A framework for responding to coral disease outbreaks that facilitates adaptive management.

    PubMed

    Beeden, Roger; Maynard, Jeffrey A; Marshall, Paul A; Heron, Scott F; Willis, Bette L

    2012-01-01

    Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.

  2. An expensive adult measles outbreak and response in office buildings during the era of accelerated measles elimination, Beijing, China.

    PubMed

    Ma, Rui; Lu, Li; Suo, Luodan; Li, Xiaomei; Yang, Fan; Zhou, Tao; Zhai, Lijun; Bai, Hongwei; Pang, Xinghuo

    2017-02-22

    Few measles outbreaks among adults are reported in China, and outbreak response costs are seldom documented. We report an adult measles outbreak and response in 4 linked office buildings in Beijing and its associated costs. The World Health Organization measles case definitions were used to determine suspected and confirmed measles cases. Surveillance data were used to describe the outbreak, and records and interviews of response staff were used to describe the response. Costs were determined by use of retrospective surveys of cases, review of records, and interviews of staff. The outbreak lasted 19days, and involved 22 cases aged 23-49years. Nineteen cases had a local household registration. All cases were employed by 8 companies in 4 linked office buildings. Among the 22 cases, 8 had temperature less than 38.5 degree, 18 had no Koplik spots and none had complications or hospitalizations. A total of 7930 contacts were identified, and of these, 6869 were employees in the office buildings. All the child contacts aged 8months-14years had been up-to-date for measles-containing vaccine (MCV); no adult could document their vaccination or measles history. Of contacts, about 96% were offered post-exposure vaccination. The total household costs were $13,298, or $605 per case. Control costs were $384,594, or $17,481 per case. Involved companies paid for 90.7% of control costs. Office buildings provide a mechanism for measles transmission. Timely control activities were challenged by the highly infectious nature of measles and mild presentations of cases. The outbreak response was very costly. Financial support by involved companies can provide needed resources for outbreak management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Collaborative Public Health Investigation of Clenbuterol-Adulterated Heroin Outbreak-Richmond, Virginia, March-April 2015.

    PubMed

    Gleason, Brigette; West, Angela; Avula, Danny; Utah, Okey; Vogt, Marshall; Cumpston, Kirk; Kelly, Michael; Brasler, Paul; Wyatt, Shane; Forlano, Laurie

    In March 2015, the Virginia Department of Health (VDH) was alerted by the Virginia Poison Center of a 6-patient cluster treated for severe clinical presentations after using heroin. Patients' symptoms were atypical for heroin use, and concern existed that patients were exposed to heroin that had been adulterated with or replaced by another substance. To understand the extent and characterization of the outbreak and implement response measures to prevent further cases. The purpose of this report is to highlight the collaborative nature of a public health investigation among a diverse group of stakeholders. Active surveillance and retrospective case finding. Richmond metro area community and hospitals. Regional poison centers, the Division of Consolidated Laboratory Services, the Department of Behavioral Health and Developmental Services, community partners, local law enforcement, and multiple VDH divisions. Outbreak investigation, communication to public health professionals, clinicians, and the community, and liaising with the local law enforcement. Outbreak control. Laboratory confirmation of clenbuterol in clinical specimens implicated it as the heroin adulterant. Thirteen patients met clinical and epidemiologic criteria for exposure to clenbuterol-adulterated heroin. All patients were associated with a localized area within Richmond, and patient interviews elucidated heroin supplier information. VDH collaborated with local law enforcement agents who investigated and arrested the supplier, leading to cessation of the outbreak. This outbreak highlights the value of policies and practices that support an integrated outbreak response among public health practitioners, poison center staff, laboratorians, clinicians, law enforcement agents, community groups, and other agencies. Collaboration enabled implementation of effective control measures-including those outside the purview of the health department-and should be standard practice in future outbreaks involving illicit substances.

  4. A Framework for Responding to Coral Disease Outbreaks that Facilitates Adaptive Management

    NASA Astrophysics Data System (ADS)

    Beeden, Roger; Maynard, Jeffrey A.; Marshall, Paul A.; Heron, Scott F.; Willis, Bette L.

    2012-01-01

    Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.

  5. Long-term surveillance of H7 influenza viruses in American wild aquatic birds: are the H7N3 influenza viruses in wild birds the precursors of highly pathogenic strains in domestic poultry?

    PubMed Central

    Krauss, Scott; Stucker, Karla M; Schobel, Seth A; Danner, Angela; Friedman, Kimberly; Knowles, James P; Kayali, Ghazi; Niles, Lawrence J; Dey, Amanda D; Raven, Garnet; Pryor, Paul; Lin, Xudong; Das, Suman R; Stockwell, Timothy B; Wentworth, David E; Webster, Robert G

    2015-01-01

    The emergence of influenza A virus (IAV) in domestic avian species and associated transmissions to mammals is unpredictable. In the Americas, the H7 IAVs are of particular concern, and there have been four separate outbreaks of highly pathogenic (HP) H7N3 in domestic poultry in North and South America between 2002 and 2012, with occasional spillover into humans. Here, we use long-term IAV surveillance in North American shorebirds at Delaware Bay, USA, from 1985 to 2012 and in ducks in Alberta, Canada, from 1976 to 2012 to determine which hemagglutinin (HA)–neuraminidase (NA) combinations predominated in Anseriformes (ducks) and Charadriiformes (shorebirds) and whether there is concordance between peaks of H7 prevalence and transmission in wild aquatic birds and the emergence of H7 IAVs in poultry and humans. Whole-genome sequencing supported phylogenetic and genomic constellation analyses to determine whether HP IAVs emerge in the context of specific internal gene segment sequences. Phylogenetic analysis of whole-genome sequences of the H7N3 influenza viruses from wild birds and HP H7N3 outbreaks in the Americas indicate that each HP outbreak was an independent emergence event and that the low pathogenic (LP) avian influenza precursors were most likely from dabbling ducks. The different polybasic cleavage sites in the four HP outbreaks support independent origins. At the 95% nucleotide percent identity-level phylogenetic analysis showed that the wild duck HA, PB1, and M sequences clustered with the poultry and human outbreak sequences. The genomic constellation analysis strongly suggests that gene segments/virus flow from wild birds to domestic poultry. PMID:26954883

  6. Next-Generation Sequence Analysis Reveals Transfer of Methicillin Resistance to a Methicillin-Susceptible Staphylococcus aureus Strain That Subsequently Caused a Methicillin-Resistant Staphylococcus aureus Outbreak: a Descriptive Study.

    PubMed

    Weterings, Veronica; Bosch, Thijs; Witteveen, Sandra; Landman, Fabian; Schouls, Leo; Kluytmans, Jan

    2017-09-01

    Resistance to methicillin in Staphylococcus aureus is caused primarily by the mecA gene, which is carried on a mobile genetic element, the staphylococcal cassette chromosome mec (SCC mec ). Horizontal transfer of this element is supposed to be an important factor in the emergence of new clones of methicillin-resistant Staphylococcus aureus (MRSA) but has been rarely observed in real time. In 2012, an outbreak occurred involving a health care worker (HCW) and three patients, all carrying a fusidic acid-resistant MRSA strain. The husband of the HCW was screened for MRSA carriage, but only a methicillin-susceptible S. aureus (MSSA) strain, which was also resistant to fusidic acid, was detected. Multiple-locus variable-number tandem-repeat analysis (MLVA) typing showed that both the MSSA and MRSA isolates were MT4053-MC0005. This finding led to the hypothesis that the MSSA strain acquired the SCC mec and subsequently caused an outbreak. To support this hypothesis, next-generation sequencing of the MSSA and MRSA isolates was performed. This study showed that the MSSA isolate clustered closely with the outbreak isolates based on whole-genome multilocus sequence typing and single-nucleotide polymorphism (SNP) analysis, with a genetic distance of 17 genes and 44 SNPs, respectively. Remarkably, there were relatively large differences in the mobile genetic elements in strains within and between individuals. The limited genetic distance between the MSSA and MRSA isolates in combination with a clear epidemiologic link supports the hypothesis that the MSSA isolate acquired a SCC mec and that the resulting MRSA strain caused an outbreak. Copyright © 2017 American Society for Microbiology.

  7. Laboratory Response to Ebola - West Africa and United States.

    PubMed

    Sealy, Tara K; Erickson, Bobbie R; Taboy, Céline H; Ströher, Ute; Towner, Jonathan S; Andrews, Sharon E; Rose, Laura E; Weirich, Elizabeth; Lowe, Luis; Klena, John D; Spiropoulou, Christina F; Rayfield, Mark A; Bird, Brian H

    2016-07-08

    The 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa highlighted the need to maintain organized laboratory systems or networks that can be effectively reorganized to implement new diagnostic strategies and laboratory services in response to large-scale events. Although previous Ebola outbreaks enabled establishment of critical laboratory practice safeguards and diagnostic procedures, this Ebola outbreak in West Africa highlighted the need for planning and preparedness activities that are better adapted to emerging pathogens or to pathogens that have attracted little commercial interest. The crisis underscored the need for better mechanisms to streamline development and evaluation of new diagnostic assays, transfer of material and specimens between countries and organizations, and improved processes for rapidly deploying health workers with specific laboratory expertise. The challenges and events of the outbreak forced laboratorians to examine not only the comprehensive capacities of existing national laboratory systems to recognize and respond to events, but also their sustainability over time and the mechanisms that need to be pre-established to ensure effective response. Critical to this assessment was the recognition of how response activities (i.e., infrastructure support, logistics, and workforce supplementation) can be used or repurposed to support the strengthening of national laboratory systems during the postevent transition to capacity building and recovery. This report compares CDC's domestic and international laboratory response engagements and lessons learned that can improve future responses in support of the International Health Regulations and Global Health Security Agenda initiatives.The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html).

  8. Diet pills and the cataract outbreak of 1935: reflections on the evolution of consumer protection legislation.

    PubMed

    Margo, Curtis E; Harman, Lynn E

    2014-01-01

    An outbreak of cataracts in 1935 caused by dinitrophenol (DNP), the active ingredient of popular diet pills, highlighted the inability of the U.S. Food and Drug Administration (FDA) to prevent harmful drugs from entering the marketplace. Just two years earlier, the FDA used horrific images of ocular surface injury caused by cosmetics at the World's Fair in Chicago to garner public support for legislative reform. The FDA had to walk a fine line between a public awareness campaign and lobbying Congress while lawmakers debated the need for consumer protection. The cataract outbreak of 1935 was conspicuous in the medical literature during the height of New Deal legislation, but questions persist as to how much it affected passage of the proposed Food, Drug, and Cosmetic Act (of 1938). The legislation languished in committee for years. The cataract outbreak probably had little impact on the eventual outcome, but medical opinion concerning the safety of DNP may have contributed to the voluntary withdrawal of the diet drug from the market. We review the DNP cataract outbreak and examine it in context of the challenges facing regulatory reform at that time. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The Epi Info Viral Hemorrhagic Fever (VHF) Application: A Resource for Outbreak Data Management and Contact Tracing in the 2014-2016 West Africa Ebola Epidemic.

    PubMed

    Schafer, Ilana J; Knudsen, Erik; McNamara, Lucy A; Agnihotri, Sachin; Rollin, Pierre E; Islam, Asad

    2016-10-15

    The Epi Info Viral Hemorrhagic Fever application (Epi Info VHF) was developed in response to challenges managing outbreak data during four 2012 filovirus outbreaks. Development goals included combining case and contact data in a relational database, facilitating data-driven contact tracing, and improving outbreak data consistency and use. The application was first deployed in Guinea, when the West Africa Ebola epidemic was detected, in March 2014, and has been used in 7 African countries and 2 US states. Epi Info VHF enabled reporting of compatible data from multiple countries, contributing to international Ebola knowledge. However, challenges were encountered in accommodating the epidemic's unexpectedly large magnitude, addressing country-specific needs within 1 software product, and using the application in settings with limited Internet access and information technology support. Use of Epi Info VHF in the West Africa Ebola epidemic highlighted the fundamental importance of good data management for effective outbreak response, regardless of the software used. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. The Role of Public Knowledge, Resources, and Innovation in Responding to the Ebola Outbreak.

    PubMed

    Goldstone, Brian J; Brown, Brandon

    2015-10-01

    Since the beginning of the recent Ebola outbreak, a sense of fear has developed among the public due to the novelty of our exposure to the virus and the ill-equipped nature of our health care systems. Media sensationalism, coupled with improper knowledge of Ebola, may have contributed to mass hysteria. Most support to tackle Ebola has been direct monetary aid. However, others are working on innovative methods to control the epidemic, including the development of rapid detection methods, experimental treatments, and a viable vaccine. Rapid screening and vaccine ideas are promising, but it is unlikely that they will be ready in the coming months. This raises the question of what other tools and technological innovation can be developed to effectively stem the spread of the outbreak. Although we hope the continued outpouring of aid and health care workers to West Africa will greatly reduce the impact of Ebola, communication, screenings, treatment, and vaccine are of central importance to stop this outbreak.

  11. Chikungunya virus infection.

    PubMed

    Sam, I-C; AbuBakar, S

    2006-06-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus which causes epidemic fever, rash and polyarthralgia in Africa and Asia. Two outbreaks have been reported in Malaysia, in Klang, Selangor (1998) and Bagan Panchor, Perak (2006). It is not known if the outbreaks were caused by the recent introduction of CHIKV, or if the virus was already circulating in Malaysia. Seroprevalence studies from the 1960s suggested previous disease activity in certain parts of the country. In Asia, CHIKV is thought to be transmitted by the same mosquitoes as dengue, Aedes aegypti and Ae. albopictus. Due to similarities in clinical presentation with dengue, limited awareness, and a lack of laboratory diagnostic capability, CHIKV is probably often underdiagnosed or misdiagnosed as dengue. Treatment is supportive. The prognosis is generally good, although some patients experience chronic arthritis. With no vaccine or antiviral available, prevention and control depends on surveillance, early identification of outbreaks, and vector control. CHIKV should be borne in mind in sporadic cases, and in patients epidemiologically linked to ongoing local or international outbreaks or endemic areas.

  12. Economic Impacts of Potential Foot and Mouth Disease Agro-terrorism in the United States: A Computable General Equilibrium Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oladosu, Gbadebo A; Rose, Adam; Bumsoo, Lee

    2013-01-01

    The foot and mouth disease (FMD) virus has high agro-terrorism potential because it is contagious, can be easily transmitted via inanimate objects and can be spread by wind. An outbreak of FMD in developed countries results in massive slaughtering of animals (for disease control) and disruptions in meat supply chains and trade, with potentially large economic losses. Although the United States has been FMD-free since 1929, the potential of FMD as a deliberate terrorist weapon calls for estimates of the physical and economic damage that could result from an outbreak. This paper estimates the economic impacts of three alternative scenariosmore » of potential FMD attacks using a computable general equilibrium (CGE) model of the US economy. The three scenarios range from a small outbreak successfully contained within a state to a large multi-state attack resulting in slaughtering of 30 percent of the national livestock. Overall, the value of total output losses in our simulations range between $37 billion (0.15% of 2006 baseline economic output) and $228 billion (0.92%). Major impacts stem from the supply constraint on livestock due to massive animal slaughtering. As expected, the economic losses are heavily concentrated in agriculture and food manufacturing sectors, with losses ranging from $23 billion to $61 billion in the two industries.« less

  13. Prototype Early Warning Systems for Vector-Borne Diseases in Europe

    PubMed Central

    Semenza, Jan C.

    2015-01-01

    Globalization and environmental change, social and demographic determinants and health system capacity are significant drivers of infectious diseases which can also act as epidemic precursors. Thus, monitoring changes in these drivers can help anticipate, or even forecast, an upsurge of infectious diseases. The European Environment and Epidemiology (E3) Network has been built for this purpose and applied to three early warning case studies: (1) The environmental suitability of malaria transmission in Greece was mapped in order to target epidemiological and entomological surveillance and vector control activities. Malaria transmission in these areas was interrupted in 2013 through such integrated preparedness and response activities. (2) Since 2010, recurrent West Nile fever outbreaks have ensued in South/eastern Europe. Temperature deviations from a thirty year average proved to be associated with the 2010 outbreak. Drivers of subsequent outbreaks were computed through multivariate logistic regression models and included monthly temperature anomalies for July and a normalized water index. (3) Dengue is a tropical disease but sustained transmission has recently emerged in Madeira. Autochthonous transmission has also occurred repeatedly in France and in Croatia mainly due to travel importation. The risk of dengue importation into Europe in 2010 was computed with the volume of international travelers from dengue affected areas worldwide.These prototype early warning systems indicate that monitoring drivers of infectious diseases can help predict vector-borne disease threats. PMID:26042370

  14. Prototype early warning systems for vector-borne diseases in Europe.

    PubMed

    Semenza, Jan C

    2015-06-02

    Globalization and environmental change, social and demographic determinants and health system capacity are significant drivers of infectious diseases which can also act as epidemic precursors. Thus, monitoring changes in these drivers can help anticipate, or even forecast, an upsurge of infectious diseases. The European Environment and Epidemiology (E3) Network has been built for this purpose and applied to three early warning case studies: (1) The environmental suitability of malaria transmission in Greece was mapped in order to target epidemiological and entomological surveillance and vector control activities. Malaria transmission in these areas was interrupted in 2013 through such integrated preparedness and response activities. (2) Since 2010, recurrent West Nile fever outbreaks have ensued in South/eastern Europe. Temperature deviations from a thirty year average proved to be associated with the 2010 outbreak. Drivers of subsequent outbreaks were computed through multivariate logistic regression models and included monthly temperature anomalies for July and a normalized water index. (3) Dengue is a tropical disease but sustained transmission has recently emerged in Madeira. Autochthonous transmission has also occurred repeatedly in France and in Croatia mainly due to travel importation. The risk of dengue importation into Europe in 2010 was computed with the volume of international travelers from dengue affected areas worldwide.These prototype early warning systems indicate that monitoring drivers of infectious diseases can help predict vector-borne disease threats.

  15. Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in Washington State.

    PubMed

    Li, Zhen; Pérez-Osorio, Ailyn; Wang, Yu; Eckmann, Kaye; Glover, William A; Allard, Marc W; Brown, Eric W; Chen, Yi

    2017-06-15

    In 2015, in addition to a United States multistate outbreak linked to contaminated ice cream, another outbreak linked to ice cream was reported in the Pacific Northwest of the United States. It was a hospital-acquired outbreak linked to milkshakes, made from contaminated ice cream mixes and milkshake maker, served to patients. Here we performed multiple analyses on isolates associated with this outbreak: pulsed-field gel electrophoresis (PFGE), whole genome single nucleotide polymorphism (SNP) analysis, species-specific core genome multilocus sequence typing (cgMLST), lineage-specific cgMLST and whole genome-specific MLST (wgsMLST)/outbreak-specific cgMLST. We also analyzed the prophages and virulence genes. The outbreak isolates belonged to sequence type 1038, clonal complex 101, genetic lineage II. There were no pre-mature stop codons in inlA. Isolates contained Listeria Pathogenicity Island 1 and multiple internalins. PFGE and multiple whole genome sequencing (WGS) analyses all clustered together food, environmental and clinical isolates when compared to outgroup from the same clonal complex, which supported the finding that L. monocytogenes likely persisted in the soft serve ice cream/milkshake maker from November 2014 to November 2015 and caused 3 illnesses, and that the outbreak strain was transmitted between two ice cream production facilities. The whole genome SNP analysis, one of the two species-specific cgMLST, the lineage II-specific cgMLST and the wgsMLST/outbreak-specific cgMLST showed that L. monocytogenes cells persistent in the milkshake maker for a year formed a unique clade inside the outbreak cluster. This clustering was consistent with the cleaning practice after the outbreak was initially recognized in late 2014 and early 2015. Putative prophages were conserved among prophage-containing isolates. The loss of a putative prophage in two isolates resulted in the loss of the AscI restriction site in the prophage, which contributed to their AscI-PFGE banding pattern differences from other isolates. The high resolution of WGS analyses allowed the differentiation of epidemiologically unrelated isolates, as well as the elucidation of the microevolution and persistence of isolates within the scope of one outbreak. We applied a wgsMLST scheme which is essentially the outbreak-specific cgMLST. This scheme can be combined with lineage-specific cgMLST and species-specific cgMLST to maximize the resolution of WGS.

  16. The Ebola Outbreak of 2014-2015: From Coordinated Multilateral Action to Effective Disease Containment, Vaccine Development, and Beyond

    PubMed Central

    Wojda, Thomas R; Valenza, Pamela L; Cornejo, Kristine; McGinley, Thomas; Galwankar, Sagar C; Kelkar, Dhanashree; Sharpe, Richard P; Papadimos, Thomas J; Stawicki, Stanislaw P

    2015-01-01

    The Ebola outbreak of 2014-2015 exacted a terrible toll on major countries of West Africa. Latest estimates from the World Health Organization indicate that over 11,000 lives were lost to the deadly virus since the first documented case was officially recorded. However, significant progress in the fight against Ebola was made thanks to a combination of globally-supported containment efforts, dissemination of key information to the public, the use of modern information technology resources to better track the spread of the outbreak, as well as more effective use of active surveillance, targeted travel restrictions, and quarantine procedures. This article will outline the progress made by the global public health community toward containing and eventually extinguishing this latest outbreak of Ebola. Economic consequences of the outbreak will be discussed. The authors will emphasize policies and procedures thought to be effective in containing the outbreak. In addition, we will outline selected episodes that threatened inter-continental spread of the disease. The emerging topic of post-Ebola syndrome will also be presented. Finally, we will touch on some of the diagnostic (e.g., point-of-care [POC] testing) and therapeutic (e.g., new vaccines and pharmaceuticals) developments in the fight against Ebola, and how these developments may help the global public health community fight future epidemics. PMID:26752867

  17. Unusual Legionnaires' outbreak in cool, dry Western Canada: an investigation using genomic epidemiology.

    PubMed

    Knox, N C; Weedmark, K A; Conly, J; Ensminger, A W; Hosein, F S; Drews, S J

    2017-01-01

    An outbreak of Legionnaires' disease occurred in an inner city district in Calgary, Canada. This outbreak spanned a 3-week period in November-December 2012, and a total of eight cases were identified. Four of these cases were critically ill requiring intensive care admission but there was no associated mortality. All cases tested positive for Legionella pneumophila serogroup 1 (LP1) by urinary antigen testing. Five of the eight patients were culture positive for LP1 from respiratory specimens. These isolates were further identified as Knoxville monoclonal subtype and sequence subtype ST222. Whole-genome sequencing revealed that the isolates differed by no more than a single vertically acquired single nucleotide variant, supporting a single point-source outbreak. Hypothesis-based environmental investigation and sampling was conducted; however, a definitive source was not identified. Geomapping of case movements within the affected urban sector revealed a 1·0 km common area of potential exposure, which coincided with multiple active construction sites that used water spray to minimize transient dust. This community point-source Legionnaires' disease outbreak is unique due to its ST222 subtype and occurrence in a relatively dry and cold weather setting in Western Canada. This report suggests community outbreaks of Legionella should not be overlooked as a possibility during late autumn and winter months in the Northern Hemisphere.

  18. The Ebola Outbreak of 2014-2015: From Coordinated Multilateral Action to Effective Disease Containment, Vaccine Development, and Beyond.

    PubMed

    Wojda, Thomas R; Valenza, Pamela L; Cornejo, Kristine; McGinley, Thomas; Galwankar, Sagar C; Kelkar, Dhanashree; Sharpe, Richard P; Papadimos, Thomas J; Stawicki, Stanislaw P

    2015-01-01

    The Ebola outbreak of 2014-2015 exacted a terrible toll on major countries of West Africa. Latest estimates from the World Health Organization indicate that over 11,000 lives were lost to the deadly virus since the first documented case was officially recorded. However, significant progress in the fight against Ebola was made thanks to a combination of globally-supported containment efforts, dissemination of key information to the public, the use of modern information technology resources to better track the spread of the outbreak, as well as more effective use of active surveillance, targeted travel restrictions, and quarantine procedures. This article will outline the progress made by the global public health community toward containing and eventually extinguishing this latest outbreak of Ebola. Economic consequences of the outbreak will be discussed. The authors will emphasize policies and procedures thought to be effective in containing the outbreak. In addition, we will outline selected episodes that threatened inter-continental spread of the disease. The emerging topic of post-Ebola syndrome will also be presented. Finally, we will touch on some of the diagnostic (e.g., point-of-care [POC] testing) and therapeutic (e.g., new vaccines and pharmaceuticals) developments in the fight against Ebola, and how these developments may help the global public health community fight future epidemics.

  19. Phylogenetic Analysis of Rubella Virus Strains from an Outbreak in Madrid, Spain, from 2004 to 2005 ▿ †

    PubMed Central

    Martínez-Torres, A. O.; Mosquera, M. M.; Sanz, J. C.; Ramos, B.; Echevarría, J. E.

    2009-01-01

    An outbreak of rubella affected 460 individuals in 2004 and 2005 in the community of Madrid, Spain. Most of the patients were nonvaccinated Latin American immigrants or Spanish males. This study presents the first data on rubella virus genotypes in Spain. Forty selected clinical samples (2 urine, 5 serum, 3 blood, 2 saliva, and 28 pharyngeal exudate samples) from 40 cases were collected. The 739-nucleotide sequence recommended by the World Health Organization obtained from viral RNA in these samples was analyzed by using the MEGA v4.0 software. Seventeen isolates were obtained from 40 clinical samples from the outbreak, including two isolated from congenital rubella syndrome cases. Only viral RNA of genotype 1j was detected in both isolates and clinical specimens. Two variations in amino acids, G253C and T394S, which are involved in neutralization epitopes arose during the outbreak, but apparently there was no positive selection of either of them. The origin of the outbreak remains unknown because of poor virologic surveillance in Latin America and the African countries neighboring Spain. On the other hand, this is the first report of this genotype in Europe. The few published sequences of genotype 1j indicate that it comes from Japan and the Philippines, but there are no epidemiological data supporting this as the origin of the Madrid outbreak. PMID:19020066

  20. ID-Viewer: a visual analytics architecture for infectious diseases surveillance and response management in Pakistan.

    PubMed

    Ali, M A; Ahsan, Z; Amin, M; Latif, S; Ayyaz, A; Ayyaz, M N

    2016-05-01

    Globally, disease surveillance systems are playing a significant role in outbreak detection and response management of Infectious Diseases (IDs). However, in developing countries like Pakistan, epidemic outbreaks are difficult to detect due to scarcity of public health data and absence of automated surveillance systems. Our research is intended to formulate an integrated service-oriented visual analytics architecture for ID surveillance, identify key constituents and set up a baseline for easy reproducibility of such systems in the future. This research focuses on development of ID-Viewer, which is a visual analytics decision support system for ID surveillance. It is a blend of intelligent approaches to make use of real-time streaming data from Emergency Departments (EDs) for early outbreak detection, health care resource allocation and epidemic response management. We have developed a robust service-oriented visual analytics architecture for ID surveillance, which provides automated mechanisms for ID data acquisition, outbreak detection and epidemic response management. Classification of chief-complaints is accomplished using dynamic classification module, which employs neural networks and fuzzy-logic to categorize syndromes. Standard routines by Center for Disease Control (CDC), i.e. c1-c3 (c1-mild, c2-medium and c3-ultra), and spatial scan statistics are employed for detection of temporal and spatio-temporal disease outbreaks respectively. Prediction of imminent disease threats is accomplished using support vector regression for early warnings and response planning. Geographical visual analytics displays are developed that allow interactive visualization of syndromic clusters, monitoring disease spread patterns, and identification of spatio-temporal risk zones. We analysed performance of surveillance framework using ID data for year 2011-2015. Dynamic syndromic classifier is able to classify chief-complaints to appropriate syndromes with high classification accuracy. Outbreak detection methods are able to detect the ID outbreaks in start of epidemic time zones. Prediction model is able to forecast dengue trend for 20 weeks ahead with nominal normalized root mean square error of 0.29. Interactive geo-spatiotemporal displays, i.e. heat-maps, and choropleth are shown in respective sections. The proposed framework will set a standard and provide necessary details for future implementation of such a system for resource-constrained regions. It will improve early outbreak detection attributable to natural and man-made biological threats, monitor spatio-temporal epidemic trends and provide assurance that an outbreak has, or has not occurred. Advanced analytics features will be beneficial in timely organization/formulation of health management policies, disease control activities and efficient health care resource allocation. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  1. Automated detection of hospital outbreaks: A systematic review of methods

    PubMed Central

    Buckeridge, David L.; Lepelletier, Didier

    2017-01-01

    Objectives Several automated algorithms for epidemiological surveillance in hospitals have been proposed. However, the usefulness of these methods to detect nosocomial outbreaks remains unclear. The goal of this review was to describe outbreak detection algorithms that have been tested within hospitals, consider how they were evaluated, and synthesize their results. Methods We developed a search query using keywords associated with hospital outbreak detection and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were initially imposed on publication languages and dates, although we subsequently excluded studies published before 2000. Every study that described a method to detect outbreaks within hospitals was included, without any exclusion based on study design. Additional studies were identified through citations in retrieved studies. Results Twenty-nine studies were included. The detection algorithms were grouped into 5 categories: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), traditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria were also investigated (n = 10). The performance measures varied widely between studies: e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%. Conclusion Even if outbreak detection algorithms are useful complementary tools for traditional surveillance, the heterogeneity in results among published studies does not support quantitative synthesis of their performance. A standardized framework should be followed when evaluating outbreak detection methods to allow comparison of algorithms across studies and synthesis of results. PMID:28441422

  2. Partial Failure of Milk Pasteurization as a Risk for the Transmission of Campylobacter From Cattle to Humans

    PubMed Central

    Fernandes, Anand M.; Balasegaram, Sooria; Willis, Caroline; Wimalarathna, Helen M. L.; Maiden, Martin C.; McCarthy, Noel D.

    2015-01-01

    Background. Cattle are the second most common source of human campylobacteriosis. However, routes to account for this scale of transmission have not been identified. In contrast to chicken, red meat is not heavily contaminated at point of sale. Although effective pasteurization prevents milk-borne infection, apparently sporadic infections may include undetected outbreaks from raw or perhaps incompletely pasteurized milk. Methods. A rise in Campylobacter gastroenteritis in an isolated population was investigated using whole-genome sequencing (WGS), an epidemiological study, and environmental investigations. Results. A single strain was identified in 20 cases, clearly distinguishable from other local strains and a reference population by WGS. A case-case analysis showed association of infection with the outbreak strain and milk from a single dairy (odds ratio, 8; Fisher exact test P value = .023). Despite temperature records indicating effective pasteurization, mechanical faults likely to lead to incomplete pasteurization of part of the milk were identified by further testing and examination of internal components of dairy equipment. Conclusions. Here, milk distribution concentrated on a small area, including school-aged children with low background incidence of campylobacteriosis, facilitated outbreak identification. Low-level contamination of widely distributed milk would not produce as detectable an outbreak signal. Such hidden outbreaks may contribute to the substantial burden of apparently sporadic Campylobacter from cattle where transmission routes are not certain. The effective discrimination of outbreak isolates from a reference population using WGS shows that integrating these data and approaches into surveillance could support the detection as well as investigation of such outbreaks. PMID:26063722

  3. The Impact of the West Africa Ebola Outbreak on Obstetric Health Care in Sierra Leone.

    PubMed

    Brolin Ribacke, Kim J; van Duinen, Alex J; Nordenstedt, Helena; Höijer, Jonas; Molnes, Ragnhild; Froseth, Torunn Wigum; Koroma, A P; Darj, Elisabeth; Bolkan, Håkon Angel; Ekström, AnnaMia

    2016-01-01

    As Sierra Leone celebrates the end of the Ebola Virus Disease (EVD) outbreak, we can begin to fully grasp its impact on already weak health systems. The EVD outbreak in West Africa forced many hospitals to close down or reduce their activity, either to prevent nosocomial transmission or because of staff shortages. The aim of this study is to assess the potential impact of EVD on nationwide access to obstetric care in Sierra Leone. Community health officers collected weekly data between January 2014-May 2015 on in-hospital deliveries and caesarean sections (C-sections) from all open facilities (public, private for-profit and private non-profit sectors) offering emergency obstetrics in Sierra Leone. This was compared to official data of EVD cases per district. Logistic and Poisson regression analyses were used to compute risk and rate estimates. Nationwide, the number of in-hospital deliveries and C-sections decreased by over 20% during the EVD outbreak. The decline occurred early on in the EVD outbreak and was mainly attributable to the closing of private not-for-profit hospitals rather than government facilities. Due to difficulties in collecting data in the midst of an epidemic, limitations of this study include some missing data points. Both the number of in-hospital deliveries and C-sections substantially declined shortly after the onset of the EVD outbreak. Since access to emergency obstetric care, like C-sections, is associated with decreased maternal mortality, many women are likely to have died due to the reduced access to appropriate care during childbirth. Future research on indirect health effects of health system breakdown should ideally be nationwide and continue also into the recovery phase. It is also important to understand the mechanisms behind the deterioration so that important health services can be reestablished.

  4. Ascertaining the impact of catastrophic events on dengue outbreak: The 2014 gas explosions in Kaohsiung, Taiwan.

    PubMed

    Hsieh, Ying-Hen

    2017-01-01

    Infectious disease outbreaks often occur in the aftermath of catastrophic events, either natural or man-made. While natural disasters such as typhoons/hurricanes, flooding and earthquakes have been known to increase the risk of infectious disease outbreak, the impact of anthropogenic disasters is less well-understood. Kaohsiung City is located in southern Taiwan, where most dengue outbreaks had occurred in the past two decades. It is also the center of petrochemical industry in Taiwan with pipelines running underneath city streets. Multiple underground gas explosions occurred in Kaohsiung in the evening of July 31, 2014 due to chemical leaks in the pipelines. The explosions caused 32 deaths, including five firefighters and two volunteer firefighters, and injured 321 persons. Historically, dengue outbreaks in southern Taiwan occurred mostly in small numbers of around 2000 cases or less, except in 2002 with over 5000 cases. However, in the months after the gas explosions, the city reported 14528 lab-confirmed dengue cases from August to December. To investigate the possible impact, if any, of the gas explosions on this record-breaking dengue outbreak, a simple mathematical model, the Richards model, is utilized to study the temporal patterns of the spread of dengue in the districts of Kaohsiung in the proximity of the explosion sites and to pinpoint the waves of infections that had occurred in each district in the aftermath of the gas explosions. The reproduction number of each wave in each district is also computed. In the aftermath of the gas explosions, early waves occurred 4-5 days (which coincides with the minimum of human intrinsic incubation period for dengue) later in districts with multiple waves. The gas explosions likely impacted the timing of the waves, but their impact on the magnitude of the 2014 outbreak remains unclear. The modeling suggests the need for public health surveillance and preparedness in the aftermath of future disasters.

  5. Ascertaining the impact of catastrophic events on dengue outbreak: The 2014 gas explosions in Kaohsiung, Taiwan

    PubMed Central

    2017-01-01

    Infectious disease outbreaks often occur in the aftermath of catastrophic events, either natural or man-made. While natural disasters such as typhoons/hurricanes, flooding and earthquakes have been known to increase the risk of infectious disease outbreak, the impact of anthropogenic disasters is less well-understood. Kaohsiung City is located in southern Taiwan, where most dengue outbreaks had occurred in the past two decades. It is also the center of petrochemical industry in Taiwan with pipelines running underneath city streets. Multiple underground gas explosions occurred in Kaohsiung in the evening of July 31, 2014 due to chemical leaks in the pipelines. The explosions caused 32 deaths, including five firefighters and two volunteer firefighters, and injured 321 persons. Historically, dengue outbreaks in southern Taiwan occurred mostly in small numbers of around 2000 cases or less, except in 2002 with over 5000 cases. However, in the months after the gas explosions, the city reported 14528 lab-confirmed dengue cases from August to December. To investigate the possible impact, if any, of the gas explosions on this record-breaking dengue outbreak, a simple mathematical model, the Richards model, is utilized to study the temporal patterns of the spread of dengue in the districts of Kaohsiung in the proximity of the explosion sites and to pinpoint the waves of infections that had occurred in each district in the aftermath of the gas explosions. The reproduction number of each wave in each district is also computed. In the aftermath of the gas explosions, early waves occurred 4–5 days (which coincides with the minimum of human intrinsic incubation period for dengue) later in districts with multiple waves. The gas explosions likely impacted the timing of the waves, but their impact on the magnitude of the 2014 outbreak remains unclear. The modeling suggests the need for public health surveillance and preparedness in the aftermath of future disasters. PMID:28520740

  6. Community Care Centre (CCC) as adjunct in the management of Ebola Virus Disease (EVD) cases during outbreaks: experience from Sierra Leone

    PubMed Central

    Olu, Olushayo; Cormican, Martin; Kamara, Kande-Bure; Butt, Waqar

    2015-01-01

    Community Care Centres (CCCs) represent an innovative response to the containment of infection and the care of those infected in the context of an an Ebola Virus Disease (EVD) outbreak of unprecedented scale. This paper describes the implementation of this response in the Port Loko district of Sierra Leone in the last quarter of 2014. CCCs were effective in encouraging EVD patients to come forward, thus removing risk of transmission to their families and communities however there is significant scope for improvement in care for patients in the centres if the model is applied in future outbreaks of infectious disease. Changes in lay out of the centres, in staff training and support, in logistics and patient education are recommended. PMID:26740842

  7. Practical Value of Food Pathogen Traceability through Building a Whole-Genome Sequencing Network and Database.

    PubMed

    Allard, Marc W; Strain, Errol; Melka, David; Bunning, Kelly; Musser, Steven M; Brown, Eric W; Timme, Ruth

    2016-08-01

    The FDA has created a United States-based open-source whole-genome sequencing network of state, federal, international, and commercial partners. The GenomeTrakr network represents a first-of-its-kind distributed genomic food shield for characterizing and tracing foodborne outbreak pathogens back to their sources. The GenomeTrakr network is leading investigations of outbreaks of foodborne illnesses and compliance actions with more accurate and rapid recalls of contaminated foods as well as more effective monitoring of preventive controls for food manufacturing environments. An expanded network would serve to provide an international rapid surveillance system for pathogen traceback, which is critical to support an effective public health response to bacterial outbreaks. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Legionnaires' disease outbreak at an Atlanta, Georgia, Country Club: evidence for spread from an evaporative condenser.

    PubMed

    Cordes, L G; Fraser, D W; Skaliy, P; Perlino, C A; Elsea, W R; Mallison, G F; Hayes, P S

    1980-04-01

    During July 1978 an outbreak of Legionnaires' disease characterized by high fever, prostration, and pneumonia occurred at an Atlanta, Georgia, country club. All eight cases involved club members whose primary club activity was golfing. The degree of golfing activity during the likely exposure period was a risk factor for acquiring the illness. Legionella pneumophila was isolated from the evaporative condenser within the clubhouse. The fact that the stream of air blowing from the exhaust duct of the evaporative condenser was directed toward a nearby practice green and the 10th and 16th tees supports the hypothesis that this outbreak represents airborne dissemination of L. pneumophila from the evaporative condenser to an outdoor site where susceptible golfers contracted the illness.

  9. Community Care Centre (CCC) as adjunct in the management of Ebola Virus Disease (EVD) cases during outbreaks: experience from Sierra Leone.

    PubMed

    Olu, Olushayo; Cormican, Martin; Kamara, Kande-Bure; Butt, Waqar

    2015-01-01

    Community Care Centres (CCCs) represent an innovative response to the containment of infection and the care of those infected in the context of an an Ebola Virus Disease (EVD) outbreak of unprecedented scale. This paper describes the implementation of this response in the Port Loko district of Sierra Leone in the last quarter of 2014. CCCs were effective in encouraging EVD patients to come forward, thus removing risk of transmission to their families and communities however there is significant scope for improvement in care for patients in the centres if the model is applied in future outbreaks of infectious disease. Changes in lay out of the centres, in staff training and support, in logistics and patient education are recommended.

  10. Assessment of the core and support functions of the Integrated Disease Surveillance system in Maharashtra, India

    PubMed Central

    2013-01-01

    Background Monitoring the progress of the Integrated Disease Surveillance (IDS) strategy is an important component to ensure its sustainability in the state of Maharashtra in India. The purpose of the study was to document the baseline performance of the system on its core and support functions and to understand the challenges for its transition from an externally funded “project” to a state owned surveillance “program”. Methods Multi-centre, retrospective cross-sectional evaluation study to assess the structure, core and support surveillance functions using modified WHO generic questionnaires. All 34 districts in the state and randomly identified 46 facilities and 25 labs were included in the study. Results Case definitions were rarely used at the periphery. Limited laboratory capacity at all levels compromised case and outbreak confirmation. Only 53% districts could confirm all priority diseases. Stool sample processing was the weakest at the periphery. Availability of transport media, trained staff, and rapid diagnostic tests were main challenges at the periphery. Data analysis was weak at both district and facility levels. Outbreak thresholds were better understood at facility level (59%) than at the district (18%). None of the outbreak indicator targets were met and submission of final outbreak report was the weakest. Feedback and training was significantly better (p < 0.0001) at district level (65%; 76%) than at facility level (15%; 37%). Supervision was better at the facility level (37%) than at district (18%) and so were coordination, communication and logistic resources. Contractual part time positions, administrative delays in recruitment, and vacancies (30%) were main human resource issues that hampered system performance. Conclusions Significant progress has been made in the core and support surveillance functions in Maharashtra, however some challenges exist. Support functions (laboratory, transport and communication equipment, training, supervision, human and other resources) are particularly weak at the district level. Structural integration and establishing permanent state and district surveillance officer positions will ensure leadership; improve performance; support continuity; and offer sustainability to the program. Institutionalizing the integrated disease surveillance strategy through skills based personnel development and infrastructure strengthening at district levels is the only way to avoid it from ending up isolated! Improving surveillance quality should be the next on agenda for the state. PMID:23764137

  11. A Participatory System for Preventing Pandemics of Animal Origins: Pilot Study of the Participatory One Health Disease Detection (PODD) System

    PubMed Central

    Yano, Terdsak; Phornwisetsirikun, Somphorn; Susumpow, Patipat; Visrutaratna, Surasing; Chanachai, Karoon; Phetra, Polawat; Chaisowwong, Warangkhana; Trakarnsirinont, Pairat; Hemwan, Phonpat; Kaewpinta, Boontuan; Singhapreecha, Charuk; Kreausukon, Khwanchai; Charoenpanyanet, Arisara ; Robert, Chongchit Sripun; Robert, Lamar; Rodtian, Pranee; Mahasing, Suteerat; Laiya, Ekkachai; Pattamakaew, Sakulrat; Tankitiyanon, Taweesart; Sansamur, Chalutwan

    2018-01-01

    Background Aiming for early disease detection and prompt outbreak control, digital technology with a participatory One Health approach was used to create a novel disease surveillance system called Participatory One Health Disease Detection (PODD). PODD is a community-owned surveillance system that collects data from volunteer reporters; identifies disease outbreak automatically; and notifies the local governments (LGs), surrounding villages, and relevant authorities. This system provides a direct and immediate benefit to the communities by empowering them to protect themselves. Objective The objective of this study was to determine the effectiveness of the PODD system for the rapid detection and control of disease outbreaks. Methods The system was piloted in 74 LGs in Chiang Mai, Thailand, with the participation of 296 volunteer reporters. The volunteers and LGs were key participants in the piloting of the PODD system. Volunteers monitored animal and human diseases, as well as environmental problems, in their communities and reported these events via the PODD mobile phone app. LGs were responsible for outbreak control and provided support to the volunteers. Outcome mapping was used to evaluate the performance of the LGs and volunteers. Results LGs were categorized into one of the 3 groups based on performance: A (good), B (fair), and C (poor), with the majority (46%,34/74) categorized into group B. Volunteers were similarly categorized into 4 performance groups (A-D), again with group A showing the best performance, with the majority categorized into groups B and C. After 16 months of implementation, 1029 abnormal events had been reported and confirmed to be true reports. The majority of abnormal reports were sick or dead animals (404/1029, 39.26%), followed by zoonoses and other human diseases (129/1029, 12.54%). Many potentially devastating animal disease outbreaks were detected and successfully controlled, including 26 chicken high mortality outbreaks, 4 cattle disease outbreaks, 3 pig disease outbreaks, and 3 fish disease outbreaks. In all cases, the communities and animal authorities cooperated to apply community contingency plans to control these outbreaks, and community volunteers continued to monitor the abnormal events for 3 weeks after each outbreak was controlled. Conclusions By design, PODD initially targeted only animal diseases that potentially could emerge into human pandemics (eg, avian influenza) and then, in response to community needs, expanded to cover human health and environmental health issues. PMID:29563079

  12. A Support Group for Home-Quarantined College Students Exposed to SARS: Learning from Practice

    ERIC Educational Resources Information Center

    Pan, Peter J. D.; Chang, Shih-Hua; Yu, Yen-Yen

    2005-01-01

    This article is an initial description of a meaningful and valuable clinical experience in interacting with SARS home-quarantined college students in a support group in Taiwan. Information about SARS and home quarantine, the tasks of the Counseling Centers and group work after the SARS outbreak, the support group for home-quarantined members, the…

  13. The utility and public health implications of PCR and whole genome sequencing for the detection and investigation of an outbreak of Shiga toxin-producing Escherichia coli serogroup O26:H11.

    PubMed

    Dallman, T J; Byrne, L; Launders, N; Glen, K; Grant, K A; Jenkins, C

    2015-06-01

    Many serogroups of Shiga toxin-producing Escherichia coli (STEC) other than serogroup O157 (non-O157 STEC), for example STEC O26:H11, are highly pathogenic and capable of causing haemolytic uraemic syndrome. A recent increase in non-O157 STEC cases identified in England, resulting from a change in the testing paradigm, prompted a review of the current methods available for detection and typing of non-O157 STEC for surveillance and outbreak investigations. Nineteen STEC O26:H11 strains, including four from a nursery outbreak were selected to assess typing methods. Serotyping and multilocus sequence typing were not able to discriminate between the stx-producing strains in the dataset. However, genome sequencing provided rapid and robust confirmation that isolates of STEC O26:H11 associated with a nursery outbreak were linked at the molecular level, had a common source and were distinct from the other strains analysed. Virulence gene profiling of DNA extracted from a polymerase chain reaction (PCR)-positive/culture-negative faecal specimen from a case that was epidemiologically linked to the STEC O26:H11 nursery outbreak, provided evidence at the molecular level to support that link. During this study, we describe the utility of PCR and the genome sequencing approach in facilitating surveillance and enhancing the response to outbreaks of non-O157 STEC.

  14. Infectious respiratory disease outbreaks and pregnancy: occupational health and safety concerns of Canadian nurses.

    PubMed

    Phillips, Karen P; O'Sullivan, Tracey L; Dow, Darcie; Amaratunga, Carol A

    2011-04-01

    This paper is a report of a qualitative study of emergency and critical care nurses' perceptions of occupational response and preparedness during infectious respiratory disease outbreaks including severe acute respiratory syndrome (SARS) and influenza. Healthcare workers, predominantly female, face occupational and personal challenges in their roles as first responders/first receivers. Exposure to SARS or other respiratory pathogens during pregnancy represents additional occupational risk for healthcare workers. Perceptions of occupational reproductive risk during response to infectious respiratory disease outbreaks were assessed qualitatively by five focus groups comprised of 100 Canadian nurses conducted between 2005 and 2006. Occupational health and safety issues anticipated by Canadian nurses for future infectious respiratory disease outbreaks were grouped into four major themes: (1) apprehension about occupational risks to pregnant nurses; (2) unknown pregnancy risks of anti-infective therapy/prophylaxis; (3) occupational risk communication for pregnant nurses; and (4) human resource strategies required for pregnant nurses during outbreaks. The reproductive risk perceptions voiced by Canadian nurses generally were consistent with reported case reports of pregnant women infected with SARS or emerging influenza strains. Nurses' fears of fertility risks posed by exposure to infectious agents or anti-infective therapy and prophylaxis are not well supported by the literature, with the former not biologically plausible and the latter lacking sufficient data. Reproductive risk assessments should be performed for each infectious respiratory disease outbreak to provide female healthcare workers and in particular pregnant women with guidelines regarding infection control and use of anti-infective therapy and prophylaxis.

  15. Epidemiological information is key when interpreting whole genome sequence data – lessons learned from a large Legionella pneumophila outbreak in Warstein, Germany, 2013

    PubMed Central

    Petzold, Markus; Prior, Karola; Moran-Gilad, Jacob; Harmsen, Dag; Lück, Christian

    2017-01-01

    Introduction Whole genome sequencing (WGS) is increasingly used in Legionnaires’ disease (LD) outbreak investigations, owing to its higher resolution than sequence-based typing, the gold standard typing method for Legionella pneumophila, in the analysis of endemic strains. Recently, a gene-by-gene typing approach based on 1,521 core genes called core genome multilocus sequence typing (cgMLST) was described that enables a robust and standardised typing of L. pneumophila. Methods: We applied this cgMLST scheme to isolates obtained during the largest outbreak of LD reported so far in Germany. In this outbreak, the epidemic clone ST345 had been isolated from patients and four different environmental sources. In total 42 clinical and environmental isolates were retrospectively typed. Results: Epidemiologically unrelated ST345 isolates were clearly distinguishable from the epidemic clone. Remarkably, epidemic isolates split up into two distinct clusters, ST345-A and ST345-B, each respectively containing a mix of clinical and epidemiologically-related environmental samples. Discussion/conclusion: The outbreak was therefore likely caused by both variants of the single sequence type, which pre-existed in the environmental reservoirs. The two clusters differed by 40 alleles located in two neighbouring genomic regions of ca 42 and 26 kb. Additional analysis supported horizontal gene transfer of the two regions as responsible for the difference between the variants. Both regions comprise virulence genes and have previously been reported to be involved in recombination events. This corroborates the notion that genomic outbreak investigations should always take epidemiological information into consideration when making inferences. Overall, cgMLST proved helpful in disentangling the complex genomic epidemiology of the outbreak. PMID:29162202

  16. Evidence for the presence of African swine fever virus in an endemic region of Western Kenya in the absence of any reported outbreak.

    PubMed

    Thomas, Lian F; Bishop, Richard P; Onzere, Cynthia; Mcintosh, Michael T; Lemire, Karissa A; de Glanville, William A; Cook, E Anne J; Fèvre, Eric M

    2016-09-08

    African swine fever (ASF), caused by African swine fever virus (ASFV), is a severe haemorrhagic disease of pigs, outbreaks of which can have a devastating impact upon commercial and small-holder pig production. Pig production in western Kenya is characterised by low-input, free-range systems practised by poor farmers keeping between two and ten pigs. These farmers are particularly vulnerable to the catastrophic loss of livestock assets experienced in an ASF outbreak. This study wished to expand our understanding of ASFV epidemiology during a period when no outbreaks were reported. Two hundred and seventy six whole blood samples were analysed using two independent conventional and real time PCR assays to detect ASFV. Despite no recorded outbreak of clinical ASF during this time, virus was detected in 90/277 samples analysed by conventional PCR and 142/209 samples analysed by qPCR. Genotyping of a sub-set of these samples indicated that the viruses associated with the positive samples were classified within genotype IX and that these strains were therefore genetically similar to the virus associated with the 2006/2007 ASF outbreaks in Kenya. The detection of ASFV viral DNA in a relatively high number of pigs delivered for slaughter during a period with no reported outbreaks provides support for two hypotheses, which are not mutually exclusive: (1) that virus prevalence may be over-estimated by slaughter-slab sampling, relative to that prevailing in the wider pig population; (2) that sub-clinical, chronically infected or recovered pigs may be responsible for persistence of the virus in endemic areas.

  17. Epidemiological information is key when interpreting whole genome sequence data - lessons learned from a large Legionella pneumophila outbreak in Warstein, Germany, 2013.

    PubMed

    Petzold, Markus; Prior, Karola; Moran-Gilad, Jacob; Harmsen, Dag; Lück, Christian

    2017-11-01

    IntroductionWhole genome sequencing (WGS) is increasingly used in Legionnaires' disease (LD) outbreak investigations, owing to its higher resolution than sequence-based typing, the gold standard typing method for Legionella pneumophila, in the analysis of endemic strains. Recently, a gene-by-gene typing approach based on 1,521 core genes called core genome multilocus sequence typing (cgMLST) was described that enables a robust and standardised typing of L. pneumophila . Methods : We applied this cgMLST scheme to isolates obtained during the largest outbreak of LD reported so far in Germany. In this outbreak, the epidemic clone ST345 had been isolated from patients and four different environmental sources. In total 42 clinical and environmental isolates were retrospectively typed. Results : Epidemiologically unrelated ST345 isolates were clearly distinguishable from the epidemic clone. Remarkably, epidemic isolates split up into two distinct clusters, ST345-A and ST345-B, each respectively containing a mix of clinical and epidemiologically-related environmental samples. Discussion/conclusion : The outbreak was therefore likely caused by both variants of the single sequence type, which pre-existed in the environmental reservoirs. The two clusters differed by 40 alleles located in two neighbouring genomic regions of ca 42 and 26 kb. Additional analysis supported horizontal gene transfer of the two regions as responsible for the difference between the variants. Both regions comprise virulence genes and have previously been reported to be involved in recombination events. This corroborates the notion that genomic outbreak investigations should always take epidemiological information into consideration when making inferences. Overall, cgMLST proved helpful in disentangling the complex genomic epidemiology of the outbreak.

  18. Partial Failure of Milk Pasteurization as a Risk for the Transmission of Campylobacter From Cattle to Humans.

    PubMed

    Fernandes, Anand M; Balasegaram, Sooria; Willis, Caroline; Wimalarathna, Helen M L; Maiden, Martin C; McCarthy, Noel D

    2015-09-15

    Cattle are the second most common source of human campylobacteriosis. However, routes to account for this scale of transmission have not been identified. In contrast to chicken, red meat is not heavily contaminated at point of sale. Although effective pasteurization prevents milk-borne infection, apparently sporadic infections may include undetected outbreaks from raw or perhaps incompletely pasteurized milk. A rise in Campylobacter gastroenteritis in an isolated population was investigated using whole-genome sequencing (WGS), an epidemiological study, and environmental investigations. A single strain was identified in 20 cases, clearly distinguishable from other local strains and a reference population by WGS. A case-case analysis showed association of infection with the outbreak strain and milk from a single dairy (odds ratio, 8; Fisher exact test P value = .023). Despite temperature records indicating effective pasteurization, mechanical faults likely to lead to incomplete pasteurization of part of the milk were identified by further testing and examination of internal components of dairy equipment. Here, milk distribution concentrated on a small area, including school-aged children with low background incidence of campylobacteriosis, facilitated outbreak identification. Low-level contamination of widely distributed milk would not produce as detectable an outbreak signal. Such hidden outbreaks may contribute to the substantial burden of apparently sporadic Campylobacter from cattle where transmission routes are not certain. The effective discrimination of outbreak isolates from a reference population using WGS shows that integrating these data and approaches into surveillance could support the detection as well as investigation of such outbreaks. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  19. Molecular characterization of a nosocomial outbreak of influenza B virus in an acute-care hospital setting.

    PubMed

    Sansone, Martina; Wiman, Åsa; Karlberg, Maria Lind; Brytting, Maria; Bohlin, Lars; Andersson, Lars-Magnus; Westin, Johan; Nordén, Rickard

    2018-06-14

    To describe a hospital outbreak of influenza B (InfB) virus infection during season 2015/2016 by combining clinical and epidemiological data with molecular methods. Twenty patients diagnosed with InfB from a hospital outbreak during a four-week-period were included. Nasopharyngeal swabs (NPS) positive for InfB by multiplex real-time PCR were sent for lineage typing and whole genome sequencing (WGS). Medical records were retrospectively reviewed for data regarding patient characteristics, localisation, exposure and outcome and assembled into a timeline. In order to find possible connections to the hospital outbreak, all patients with a positive NPS for influenza from the region during an extended time period were also reviewed. All 20 cases of InfB were of subtype B/Yamagata and 17/20 patients could be linked to each other by either shared room or shared ward. WGS was successful or partially successful for 15 of the 17 viral isolates and corroborated the epidemiological link supporting a close relationship. In the main affected ward, 19/75 in-patients were infected with InfB during the outbreak period resulting in an attack rate of 25%. One probable case of influenza-related death was identified. We present evidence that InfB virus may spread within an acute-care hospital and that advanced molecular methods may facilitate assessment of the source and extent of the outbreak. We believe a multifaceted approach including rapid diagnosis, early recognition of outbreak situations, simple rules for patient management and the use of regular infection control measures may efficiently prevent nosocomial transmission of influenza virus. Copyright © 2018. Published by Elsevier Ltd.

  20. A Supervised Statistical Learning Approach for Accurate Legionella pneumophila Source Attribution during Outbreaks

    PubMed Central

    Buultjens, Andrew H.; Chua, Kyra Y. L.; Baines, Sarah L.; Kwong, Jason; Gao, Wei; Cutcher, Zoe; Adcock, Stuart; Ballard, Susan; Schultz, Mark B.; Tomita, Takehiro; Subasinghe, Nela; Carter, Glen P.; Pidot, Sacha J.; Franklin, Lucinda; Seemann, Torsten; Gonçalves Da Silva, Anders

    2017-01-01

    ABSTRACT Public health agencies are increasingly relying on genomics during Legionnaires' disease investigations. However, the causative bacterium (Legionella pneumophila) has an unusual population structure, with extreme temporal and spatial genome sequence conservation. Furthermore, Legionnaires' disease outbreaks can be caused by multiple L. pneumophila genotypes in a single source. These factors can confound cluster identification using standard phylogenomic methods. Here, we show that a statistical learning approach based on L. pneumophila core genome single nucleotide polymorphism (SNP) comparisons eliminates ambiguity for defining outbreak clusters and accurately predicts exposure sources for clinical cases. We illustrate the performance of our method by genome comparisons of 234 L. pneumophila isolates obtained from patients and cooling towers in Melbourne, Australia, between 1994 and 2014. This collection included one of the largest reported Legionnaires' disease outbreaks, which involved 125 cases at an aquarium. Using only sequence data from L. pneumophila cooling tower isolates and including all core genome variation, we built a multivariate model using discriminant analysis of principal components (DAPC) to find cooling tower-specific genomic signatures and then used it to predict the origin of clinical isolates. Model assignments were 93% congruent with epidemiological data, including the aquarium Legionnaires' disease outbreak and three other unrelated outbreak investigations. We applied the same approach to a recently described investigation of Legionnaires' disease within a UK hospital and observed a model predictive ability of 86%. We have developed a promising means to breach L. pneumophila genetic diversity extremes and provide objective source attribution data for outbreak investigations. IMPORTANCE Microbial outbreak investigations are moving to a paradigm where whole-genome sequencing and phylogenetic trees are used to support epidemiological investigations. It is critical that outbreak source predictions are accurate, particularly for pathogens, like Legionella pneumophila, which can spread widely and rapidly via cooling system aerosols, causing Legionnaires' disease. Here, by studying hundreds of Legionella pneumophila genomes collected over 21 years around a major Australian city, we uncovered limitations with the phylogenetic approach that could lead to a misidentification of outbreak sources. We implement instead a statistical learning technique that eliminates the ambiguity of inferring disease transmission from phylogenies. Our approach takes geolocation information and core genome variation from environmental L. pneumophila isolates to build statistical models that predict with high confidence the environmental source of clinical L. pneumophila during disease outbreaks. We show the versatility of the technique by applying it to unrelated Legionnaires' disease outbreaks in Australia and the UK. PMID:28821546

  1. Enterprise digital assistants: the progression of wireless clinical computing.

    PubMed

    Bergeron, Bryan P

    2002-01-01

    By virtue of increasingly pervasive wireless connectivity, the proliferation of wireless handheld devices in clinical care is rapidly transforming the concept of the personal digital assistant (PDA) to the enterprise digital assistant (EDA). Wireless handheld devices are becoming extensions of the central hospital information system, in which it's understood that the health care enterprise, not the clinician carrying the information-dispensing device, owns the data. The practical implication for clinicians is that, despite the potential long-term benefits of seamless, just-in-time clinical data access, this paradigm shift portends decreased efficiency in the short term, as clinicians duplicate clinical data collection on private devices. Assuming eventual clinician acceptance, EDAs can form the basis of a national real-time clinical data acquisition system that ensures uniform prescribing, decision support, and diagnosis, and the means for tracking unusual disease presentation patterns that could be indicative of bioterrorism or natural disease outbreaks.

  2. Working experiences of nurses during the Middle East respiratory syndrome outbreak.

    PubMed

    Kang, Hee Sun; Son, Ye Dong; Chae, Sun-Mi; Corte, Colleen

    2018-05-30

    To explore working experiences of nurses during Middle East respiratory syndrome outbreak. Since the first case of Middle East respiratory syndrome was reported on May 20, 2015 in South Korea, 186 people, including health care workers, were infected, and 36 died. A qualitative descriptive study. Seven focus groups and 3 individual in-depth interviews were conducted from August to December 2015. Content analysis was used. The following 4 major themes emerged: "experiencing burnout owing to the heavy workload," "relying on personal protective equipment for safety," "being busy with catching up with the new guidelines related to Middle East respiratory syndrome," and "caring for suspected or infected patients with caution." Participants experienced burnout because of the high volume of work and expressed safety concerns about being infected. Unclear and frequently changing guidelines were 1 of the common causes of confusion. Participants expressed that they need to be supported while caring for suspected or infected patients. This study showed that creating a supportive and safe work environment is essential by ensuring adequate nurse staffing, supplying best-quality personal protective equipment, and improving communication to provide the quality of care during infection outbreak. © 2018 John Wiley & Sons Australia, Ltd.

  3. Bayesian data assimilation provides rapid decision support for vector-borne diseases

    PubMed Central

    Jewell, Chris P.; Brown, Richard G.

    2015-01-01

    Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host–vector–pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks. PMID:26136225

  4. Flexibility of mobile laboratory unit in support of patient management during the 2007 Ebola-Zaire outbreak in the Democratic Republic of Congo.

    PubMed

    Grolla, A; Jones, S; Kobinger, G; Sprecher, A; Girard, G; Yao, M; Roth, C; Artsob, H; Feldmann, H; Strong, J E

    2012-09-01

    The mobile laboratory provides a safe, rapid and flexible platform to provide effective diagnosis of Ebola virus as well as additional differential diagnostic agents in remote settings of equatorial Africa. During the 2007 Democratic Republic of Congo outbreak of Ebola-Zaire, the mobile laboratory was set up in two different locations by two separate teams within a day of equipment arriving in each location. The first location was in Mweka where our laboratory took over the diagnostic laboratory space of the local hospital, whereas the second location, approximately 50 km south near Kampungu at the epicentre of the outbreak, required local labour to fabricate a tent structure as a suitable pre-existing structure was not available. In both settings, the laboratory was able to quickly set up, providing accurate and efficient molecular diagnostics (within 3 h of receiving samples) for 67 individuals, including four cases of Ebola, seven cases of Shigella and 13 cases of malaria. This rapid turn-around time provides an important role in the support of patient management and epidemiological surveillance. © 2012 Blackwell Verlag GmbH.

  5. Feature mapping on extensive landscapes using GPS-enabled computers

    USDA-ARS?s Scientific Manuscript database

    Landscapes in the western United States are vast yet managers are called upon to know them intimately so they can respond to natural events such as anthropogenic disturbance, fire, insect outbreaks, and invasive species. These landscapes are not static and naturally change with season and the progr...

  6. Bacterial Population Genetics in a Forensic Context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velsko, S P

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population geneticsmore » by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations augmented by phylogenetic representations of relatedness will not and enzootic outbreaks noted through international outbreak surveillance systems, and 'representative' genetic sequences from each outbreak. (5) Interpretation of genetic comparisons between an attack strain and reference strains requires a model for the network structure of maintenance foci, enzootic outbreaks, and human outbreaks of that disease, coupled with estimates of mutational rate constants. Validation of the model requires a set of sequences from exemplary outbreaks and laboratory data on mutation rates during animal passage. The necessary number of isolates in each validation set is determined by disease transmission network theory, and is based on the 'network diameter' of the outbreak. (6) The 8 bacteria in this study can be classified into 4 categories based on the complexity of the transmission network structure of their natural maintenance foci and their outbreaks, both enzootic and zoonotic. (7) For B. anthracis, Y. pestis, E. coli O157, and Brucella melitensis, and their primary natural animal hosts, most of the fundamental parameters needed for modeling genetic change within natural host or human transmission networks have been determined or can be estimated from existing field and laboratory studies. (8) For Burkholderia mallei, plausible approaches to transmission network models exist, but much of the fundamental parameterization does not. In addition, a validated high-resolution typing system for characterizing genetic change within outbreaks or foci has not yet been demonstrated, although a candidate system exists. (9) For Francisella tularensis, the increased complexity of the transmission network and unresolved questions about maintenance and transmission suggest that it will be more complex and difficult to develop useful models based on currently available data. (10) For Burkholderia pseudomallei and Clostridium botulinum, the transmission and maintenance networks involve complex soil communities and metapopulations about which very little is known. It is not clear that these pathogens can be brought into the inference-on-networks framework without additional conceptual advances. (11) For all 8 bacteria some combination of field studies, computational modeling, and laboratory experiments are needed to provide a useful forensic capability for bacterial genetic inference.« less

  7. Mumps virus F gene and HN gene sequencing as a molecular tool to study mumps virus transmission.

    PubMed

    Gouma, Sigrid; Cremer, Jeroen; Parkkali, Saara; Veldhuijzen, Irene; van Binnendijk, Rob S; Koopmans, Marion P G

    2016-11-01

    Various mumps outbreaks have occurred in the Netherlands since 2004, particularly among persons who had received 2 doses of measles, mumps, and rubella (MMR) vaccination. Genomic typing of pathogens can be used to track outbreaks, but the established genotyping of mumps virus based on the small hydrophobic (SH) gene sequences did not provide sufficient resolution. Therefore, we expanded the sequencing to include fusion (F) gene and haemagglutinin-neuraminidase (HN) gene sequences in addition to the SH gene sequences from 109 mumps virus genotype G strains obtained between 2004 and mid 2015 in the Netherlands. When the molecular information from these 3 genes was combined, we were able to identify separate mumps virus clusters and track mumps virus transmission. The analyses suggested that multiple mumps virus introductions occurred in the Netherlands between 2004 and 2015 resulting in several mumps outbreaks throughout this period, whereas during some local outbreaks the molecular data pointed towards endemic circulation. Combined analysis of epidemiological data and sequence data collected in 2015 showed good support for the phylogenetic clustering. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. An Outbreak of Human Fascioliasis gigantica in Southwest China

    PubMed Central

    Ai, Lin; Xu, Xue-Nian; Jiao, Jian-Ming; Zhu, Ting-Jun; Su, Hui-Yong; Zang, Wei; Luo, Jia-Jun; Guo, Yun-Hai; Lv, Shan; Zhou, Xiao-Nong

    2013-01-01

    Fascioliasis is a common parasitic disease in livestock in China. However, human fascioliasis is rarely reported in the country. Here we describe an outbreak of human fascioliasis in Yunnan province. We reviewed the complete clinical records of 29 patients and performed an epidemiological investigation on the general human population and animals in the outbreak locality. Our findings support an outbreak due to Fasciola gigantica with a peak in late November, 2011. The most common symptoms were remittent fever, epigastric tenderness, and hepatalgia. Eosinophilia and tunnel-like lesions in ultrasound imaging in the liver were also commonly seen. Significant improvement of patients’ condition was achieved by administration of triclabendazole®. Fasciola spp. were discovered in local cattle (28.6%) and goats (26.0%). Molecular evidence showed a coexistence of F. gigantica and F. hepatica. However, all eggs seen in humans were confirmed to be F. gigantica. Herb (Houttuynia cordata) was most likely the source of infections. Our findings indicate that human fascioliasis is a neglected disease in China. The distribution of triclabendazole®, the only efficacious drug against human fascioliasis, should be promoted. PMID:23951181

  9. An Outbreak of Human Fascioliasis gigantica in Southwest China.

    PubMed

    Chen, Jia-Xu; Chen, Mu-Xin; Ai, Lin; Xu, Xue-Nian; Jiao, Jian-Ming; Zhu, Ting-Jun; Su, Hui-Yong; Zang, Wei; Luo, Jia-Jun; Guo, Yun-Hai; Lv, Shan; Zhou, Xiao-Nong

    2013-01-01

    Fascioliasis is a common parasitic disease in livestock in China. However, human fascioliasis is rarely reported in the country. Here we describe an outbreak of human fascioliasis in Yunnan province. We reviewed the complete clinical records of 29 patients and performed an epidemiological investigation on the general human population and animals in the outbreak locality. Our findings support an outbreak due to Fasciola gigantica with a peak in late November, 2011. The most common symptoms were remittent fever, epigastric tenderness, and hepatalgia. Eosinophilia and tunnel-like lesions in ultrasound imaging in the liver were also commonly seen. Significant improvement of patients' condition was achieved by administration of triclabendazole®. Fasciola spp. were discovered in local cattle (28.6%) and goats (26.0%). Molecular evidence showed a coexistence of F. gigantica and F. hepatica. However, all eggs seen in humans were confirmed to be F. gigantica. Herb (Houttuynia cordata) was most likely the source of infections. Our findings indicate that human fascioliasis is a neglected disease in China. The distribution of triclabendazole®, the only efficacious drug against human fascioliasis, should be promoted.

  10. Diagnostics in Ebola Virus Disease in Resource-Rich and Resource-Limited Settings

    PubMed Central

    Shorten, Robert J; Brown, Colin S; Jacobs, Michael; Rattenbury, Simon; Simpson, Andrew J.; Mepham, Stephen

    2016-01-01

    The Ebola virus disease (EVD) outbreak in West Africa was unprecedented in scale and location. Limited access to both diagnostic and supportive pathology assays in both resource-rich and resource-limited settings had a detrimental effect on the identification and isolation of cases as well as individual patient management. Limited access to such assays in resource-rich settings resulted in delays in differentiating EVD from other illnesses in returning travellers, in turn utilising valuable resources until a diagnosis could be made. This had a much greater impact in West Africa, where it contributed to the initial failure to contain the outbreak. This review explores diagnostic assays of use in EVD in both resource-rich and resource-limited settings, including their respective limitations, and some novel assays and approaches that may be of use in future outbreaks. PMID:27788135

  11. Community-Centered Responses to Ebola in Urban Liberia: The View from Below

    PubMed Central

    Abramowitz, Sharon Alane; McLean, Kristen E.; McKune, Sarah Lindley; Bardosh, Kevin Louis; Fallah, Mosoka; Monger, Josephine; Tehoungue, Kodjo; Omidian, Patricia A.

    2015-01-01

    Background The West African Ebola epidemic has demonstrated that the existing range of medical and epidemiological responses to emerging disease outbreaks is insufficient, especially in post-conflict contexts with exceedingly poor healthcare infrastructures. In this context, community-based responses have proven vital for containing Ebola virus disease (EVD) and shifting the epidemic curve. Despite a surge in interest in local innovations that effectively contained the epidemic, the mechanisms for community-based response remain unclear. This study provides baseline information on community-based epidemic control priorities and identifies innovative local strategies for containing EVD in Liberia. Methodology/Principal Findings This study was conducted in September 2014 in 15 communities in Monrovia and Montserrado County, Liberia – one of the epicenters of the Ebola outbreak. Findings from 15 focus group discussions with 386 community leaders identified strategies being undertaken and recommendations for what a community-based response to Ebola should look like under then-existing conditions. Data were collected on the following topics: prevention, surveillance, care-giving, community-based treatment and support, networks and hotlines, response teams, Ebola treatment units (ETUs) and hospitals, the management of corpses, quarantine and isolation, orphans, memorialization, and the need for community-based training and education. Findings have been presented as community-based strategies and recommendations for (1) prevention, (2) treatment and response, and (3) community sequelae and recovery. Several models for community-based management of the current Ebola outbreak were proposed. Additional findings indicate positive attitudes towards early Ebola survivors, and the need for community-based psychosocial support. Conclusions/Significance Local communities’ strategies and recommendations give insight into how urban Liberian communities contained the EVD outbreak while navigating the systemic failures of the initial state and international response. Communities in urban Liberia adapted to the epidemic using multiple coping strategies. In the absence of health, infrastructural and material supports, local people engaged in self-reliance in order to contain the epidemic at the micro-social level. These innovations were regarded as necessary, but as less desirable than a well-supported health-systems based response; and were seen as involving considerable individual, social, and public health costs, including heightened vulnerability to infection. PMID:25856072

  12. Community-centered responses to Ebola in urban Liberia: the view from below.

    PubMed

    Abramowitz, Sharon Alane; McLean, Kristen E; McKune, Sarah Lindley; Bardosh, Kevin Louis; Fallah, Mosoka; Monger, Josephine; Tehoungue, Kodjo; Omidian, Patricia A

    2015-04-01

    The West African Ebola epidemic has demonstrated that the existing range of medical and epidemiological responses to emerging disease outbreaks is insufficient, especially in post-conflict contexts with exceedingly poor healthcare infrastructures. In this context, community-based responses have proven vital for containing Ebola virus disease (EVD) and shifting the epidemic curve. Despite a surge in interest in local innovations that effectively contained the epidemic, the mechanisms for community-based response remain unclear. This study provides baseline information on community-based epidemic control priorities and identifies innovative local strategies for containing EVD in Liberia. This study was conducted in September 2014 in 15 communities in Monrovia and Montserrado County, Liberia--one of the epicenters of the Ebola outbreak. Findings from 15 focus group discussions with 386 community leaders identified strategies being undertaken and recommendations for what a community-based response to Ebola should look like under then-existing conditions. Data were collected on the following topics: prevention, surveillance, care-giving, community-based treatment and support, networks and hotlines, response teams, Ebola treatment units (ETUs) and hospitals, the management of corpses, quarantine and isolation, orphans, memorialization, and the need for community-based training and education. Findings have been presented as community-based strategies and recommendations for (1) prevention, (2) treatment and response, and (3) community sequelae and recovery. Several models for community-based management of the current Ebola outbreak were proposed. Additional findings indicate positive attitudes towards early Ebola survivors, and the need for community-based psychosocial support. Local communities' strategies and recommendations give insight into how urban Liberian communities contained the EVD outbreak while navigating the systemic failures of the initial state and international response. Communities in urban Liberia adapted to the epidemic using multiple coping strategies. In the absence of health, infrastructural and material supports, local people engaged in self-reliance in order to contain the epidemic at the micro-social level. These innovations were regarded as necessary, but as less desirable than a well-supported health-systems based response; and were seen as involving considerable individual, social, and public health costs, including heightened vulnerability to infection.

  13. Using an agent-based model to evaluate the effect of producer specialization on the epidemiological resilience of livestock production networks.

    PubMed

    Wiltshire, Serge W

    2018-01-01

    An agent-based computer model that builds representative regional U.S. hog production networks was developed and employed to assess the potential impact of the ongoing trend towards increased producer specialization upon network-level resilience to catastrophic disease outbreaks. Empirical analyses suggest that the spatial distribution and connectivity patterns of contact networks often predict epidemic spreading dynamics. Our model heuristically generates realistic systems composed of hog producer, feed mill, and slaughter plant agents. Network edges are added during each run as agents exchange livestock and feed. The heuristics governing agents' contact patterns account for factors including their industry roles, physical proximities, and the age of their livestock. In each run, an infection is introduced, and may spread according to probabilities associated with the various modes of contact. For each of three treatments-defined by one-phase, two-phase, and three-phase production systems-a parameter variation experiment examines the impact of the spatial density of producer agents in the system upon the length and size of disease outbreaks. Resulting data show phase transitions whereby, above some density threshold, systemic outbreaks become possible, echoing findings from percolation theory. Data analysis reveals that multi-phase production systems are vulnerable to catastrophic outbreaks at lower spatial densities, have more abrupt percolation transitions, and are characterized by less-predictable outbreak scales and durations. Key differences in network-level metrics shed light on these results, suggesting that the absence of potentially-bridging producer-producer edges may be largely responsible for the superior disease resilience of single-phase "farrow to finish" production systems.

  14. Best practices to prevent transmission and control outbreaks of hand, foot, and mouth disease in childcare facilities: a systematic review.

    PubMed

    Chan, J Hy; Law, C K; Hamblion, E; Fung, H; Rudge, J

    2017-04-01

    Hand, foot, and mouth disease continues to cause seasonal epidemics in the Asia-Pacific Region. Since the current Enterovirus 71 vaccines do not provide cross-protection for all Enterovirus species that cause hand, foot, and mouth disease, there is an urgent need to identify appropriate detection tools and best practice to prevent its transmission and to effectively control its outbreaks. This systematic review aimed to identify characteristics of outbreak and assess the impact and effectiveness of detection tools and public health preventive measures to interrupt transmission. The findings will be used to recommend policy on the most effective responses and interventions in Hong Kong to effectively minimise and contain the spread of the disease within childcare facilities. We searched the following databases for primary studies written in Chinese or English: MEDLINE, EMBASE, Global Health, WHO Western Pacific Region Index Medicus database, China National Knowledge Infrastructure Databases, and Chinese Scientific Journals Database. Studies conducted during or retrospective to outbreaks of hand, foot, and mouth disease caused by Enterovirus 71 from 1980 to 2012 within childcare facilities and with a study population of 0 to 6 years old were included. Sixteen studies conducted on outbreaks in China showed that hand, foot, and mouth disease spread rapidly within the facility, with an outbreak length of 4 to 46 days, especially in those with delayed notification (after 24 hours) of clustered outbreak (with five or more cases discovered within the facility) to the local Center for Disease Control and Prevention and delayed implementation of a control response. The number of classes affected ranged from 1 to 13, and the attack rate for children ranged from 0.97% to 28.18%. Communication between key stakeholders about outbreak confirmation, risk assessment, and surveillance should be improved. Effective communication facilitates timely notification (within 24 hours) of clustered outbreaks to a local Center for Disease Control and Prevention. Timely implementation of a control response is effective in minimising incidence and length of an outbreak in childcare facilities. The government should provide incentives for childcare facilities to train infection control specialists who can serve as the first contact, knowledge, and communication points, as well as facilitate exchange of information and provision of support across stakeholders during a communicable disease epidemic.

  15. Designing and Testing Broadly-Protective Filoviral Vaccines Optimized for Cytotoxic T-Lymphocyte Epitope Coverage

    PubMed Central

    Fenimore, Paul W.; Foley, Brian T.; Bakken, Russell R.; Thurmond, James R.; Yusim, Karina; Yoon, Hyejin; Parker, Michael; Hart, Mary Kate; Dye, John M.; Korber, Bette; Kuiken, Carla

    2012-01-01

    We report the rational design and in vivo testing of mosaic proteins for a polyvalent pan-filoviral vaccine using a computational strategy designed for the Human Immunodeficiency Virus type 1 (HIV-1) but also appropriate for Hepatitis C virus (HCV) and potentially other diverse viruses. Mosaics are sets of artificial recombinant proteins that are based on natural proteins. The recombinants are computationally selected using a genetic algorithm to optimize the coverage of potential cytotoxic T lymphocyte (CTL) epitopes. Because evolutionary history differs markedly between HIV-1 and filoviruses, we devised an adapted computational technique that is effective for sparsely sampled taxa; our first significant result is that the mosaic technique is effective in creating high-quality mosaic filovirus proteins. The resulting coverage of potential epitopes across filovirus species is superior to coverage by any natural variants, including current vaccine strains with demonstrated cross-reactivity. The mosaic cocktails are also robust: mosaics substantially outperformed natural strains when computationally tested against poorly sampled species and more variable genes. Furthermore, in a computational comparison of cross-reactive potential a design constructed prior to the Bundibugyo outbreak performed nearly as well against all species as an updated design that included Bundibugyo. These points suggest that the mosaic designs would be more resilient than natural-variant vaccines against future Ebola outbreaks dominated by novel viral variants. We demonstrate in vivo immunogenicity and protection against a heterologous challenge in a mouse model. This design work delineates the likely requirements and limitations on broadly-protective filoviral CTL vaccines. PMID:23056184

  16. Ebola, jobs and economic activity in Liberia

    PubMed Central

    Bowles, Jeremy; Hjort, Jonas; Melvin, Timothy; Werker, Eric

    2016-01-01

    Background The 2014 Ebola virus disease (EVD) outbreak in the neighbouring West African countries of Guinea, Liberia and Sierra Leone represents the most significant setback to the region's development in over a decade. This study provides evidence on the extent to which economic activity declined and jobs disappeared in Liberia during the outbreak. Methods To estimate how the level of activity and number of jobs in a given set of firms changed during the outbreak, we use a unique panel data set of registered firms surveyed by the business-development non-profit organisation, Building Markets. We also compare the change in economic activity during the outbreak, across regions of the country that had more versus fewer Ebola cases in a difference-in-differences approach. Findings We find a large decrease in economic activity and jobs in all of Liberia during the Ebola outbreak, and an especially large decline in Monrovia. Outside of Monrovia, the restaurants, and food and beverages sectors have suffered the most among the surveyed sectors, and in Monrovia, the construction and restaurant sectors have shed the most employees, while the food and beverages sectors experienced the largest drop in new contracts. We find little association between the incidence of Ebola cases and declines in economic activity outside of Monrovia. Conclusions If the large decline in economic activity that occurred during the Ebola outbreak persists, a focus on economic recovery may need to be added to the efforts to rebuild and support the healthcare system in order for Liberia to regain its footing. PMID:26438188

  17. The A-Z of Zika drug discovery.

    PubMed

    Mottin, Melina; Borba, Joyce V V B; Braga, Rodolpho C; Torres, Pedro H M; Martini, Matheus C; Proenca-Modena, Jose Luiz; Judice, Carla C; Costa, Fabio T M; Ekins, Sean; Perryman, Alexander L; Andrade, Carolina Horta

    2018-06-20

    Despite the recent outbreak of Zika virus (ZIKV), there are still no approved treatments, and early-stage compounds are probably many years away from approval. A comprehensive A-Z review of the recent advances in ZIKV drug discovery efforts is presented, highlighting drug repositioning and computationally guided compounds, including discovered viral and host cell inhibitors. Promising ZIKV molecular targets are also described and discussed, as well as targets belonging to the host cell, as new opportunities for ZIKV drug discovery. All this knowledge is not only crucial to advancing the fight against the Zika virus and other flaviviruses but also helps us prepare for the next emerging virus outbreak to which we will have to respond. Copyright © 2018. Published by Elsevier Ltd.

  18. Invasion and transmission of Salmonella Kentucky in an adult dairy herd using approximate Bayesian computation

    USDA-ARS?s Scientific Manuscript database

    An outbreak of Salmonella Kentucky followed by a high level of sustained endemic prevalence was recently observed in a US adult dairy herd enrolled in a longitudinal study involving intensive fecal sampling. To understand the invasion ability and transmission dynamics of Salmonella Kentucky in dairy...

  19. "A time of fear": local, national, and international responses to a large Ebola outbreak in Uganda.

    PubMed

    Kinsman, John

    2012-06-13

    This paper documents and analyses some of the responses to the largest Ebola outbreak on record, which took place in Uganda between September 2000 and February 2001. Four hundred and twenty five people developed clinical symptoms in three geographically distinct parts of the country (Gulu, Masindi, and Mbarara), of whom 224 (53%) died. Given the focus of previous social scientific Ebola research on experiences in communities that have been directly affected, this article expands the lens to include responses to the outbreak in local, national, and international contexts over the course of the outbreak. Responses to the outbreak were gauged through the articles, editorials, cartoons, and letters that were published in the country's two main English language daily national newspapers: the New Vision and the Monitor (now the Daily Monitor). All the relevant pieces from these two sources over the course of the epidemic were cut out, entered onto a computer, and the originals filed. The three a priori codes, based on the local, national, and international levels, were expanded into six, to include issues that emerged inductively during analysis. The data within each code were subsequently worked into coherent, chronological narratives. A total of 639 cuttings were included in the analysis. Strong and varied responses to the outbreak were identified from across the globe. These included, among others: confusion, anger, and serious stigma in affected communities; medical staff working themselves to exhaustion, with some quitting their posts; patients fleeing from hospitals; calls on spiritual forces for protection against infection; a well-coordinated national control strategy; and the imposition of some international travel restrictions. Responses varied both quantitatively and qualitatively according to the level (i.e. local, national, or international) at which they were manifested. The Ugandan experience of 2000/2001 demonstrates that responses to an Ebola outbreak can be very dramatic, but perhaps disproportionate to the actual danger presented. An important objective for any future outbreak control strategy must be to prevent excessive fear, which, it is expected, would reduce stigma and other negative outcomes. To this end, the value of openness in the provision of public information, and critically, of being seen to be open, cannot be overstated.

  20. “A time of fear”: local, national, and international responses to a large Ebola outbreak in Uganda

    PubMed Central

    2012-01-01

    Background This paper documents and analyses some of the responses to the largest Ebola outbreak on record, which took place in Uganda between September 2000 and February 2001. Four hundred and twenty five people developed clinical symptoms in three geographically distinct parts of the country (Gulu, Masindi, and Mbarara), of whom 224 (53%) died. Given the focus of previous social scientific Ebola research on experiences in communities that have been directly affected, this article expands the lens to include responses to the outbreak in local, national, and international contexts over the course of the outbreak. Methods Responses to the outbreak were gauged through the articles, editorials, cartoons, and letters that were published in the country’s two main English language daily national newspapers: the New Vision and the Monitor (now the Daily Monitor). All the relevant pieces from these two sources over the course of the epidemic were cut out, entered onto a computer, and the originals filed. The three a priori codes, based on the local, national, and international levels, were expanded into six, to include issues that emerged inductively during analysis. The data within each code were subsequently worked into coherent, chronological narratives. Results A total of 639 cuttings were included in the analysis. Strong and varied responses to the outbreak were identified from across the globe. These included, among others: confusion, anger, and serious stigma in affected communities; medical staff working themselves to exhaustion, with some quitting their posts; patients fleeing from hospitals; calls on spiritual forces for protection against infection; a well-coordinated national control strategy; and the imposition of some international travel restrictions. Responses varied both quantitatively and qualitatively according to the level (i.e. local, national, or international) at which they were manifested. Conclusions The Ugandan experience of 2000/2001 demonstrates that responses to an Ebola outbreak can be very dramatic, but perhaps disproportionate to the actual danger presented. An important objective for any future outbreak control strategy must be to prevent excessive fear, which, it is expected, would reduce stigma and other negative outcomes. To this end, the value of openness in the provision of public information, and critically, of being seen to be open, cannot be overstated. PMID:22695277

  1. Development, Use, and Impact of a Global Laboratory Database During the 2014 Ebola Outbreak in West Africa.

    PubMed

    Durski, Kara N; Singaravelu, Shalini; Teo, Junxiong; Naidoo, Dhamari; Bawo, Luke; Jambai, Amara; Keita, Sakoba; Yahaya, Ali Ahmed; Muraguri, Beatrice; Ahounou, Brice; Katawera, Victoria; Kuti-George, Fredson; Nebie, Yacouba; Kohar, T Henry; Hardy, Patrick Jowlehpah; Djingarey, Mamoudou Harouna; Kargbo, David; Mahmoud, Nuha; Assefa, Yewondwossen; Condell, Orla; N'Faly, Magassouba; Van Gurp, Leon; Lamanu, Margaret; Ryan, Julia; Diallo, Boubacar; Daffae, Foday; Jackson, Dikena; Malik, Fayyaz Ahmed; Raftery, Philomena; Formenty, Pierre

    2017-06-15

    The international impact, rapid widespread transmission, and reporting delays during the 2014 Ebola outbreak in West Africa highlighted the need for a global, centralized database to inform outbreak response. The World Health Organization and Emerging and Dangerous Pathogens Laboratory Network addressed this need by supporting the development of a global laboratory database. Specimens were collected in the affected countries from patients and dead bodies meeting the case definitions for Ebola virus disease. Test results were entered in nationally standardized spreadsheets and consolidated onto a central server. From March 2014 through August 2016, 256343 specimens tested for Ebola virus disease were captured in the database. Thirty-one specimen types were collected, and a variety of diagnostic tests were performed. Regular analysis of data described the functionality of laboratory and response systems, positivity rates, and the geographic distribution of specimens. With data standardization and end user buy-in, the collection and analysis of large amounts of data with multiple stakeholders and collaborators across various user-access levels was made possible and contributed to outbreak response needs. The usefulness and value of a multifunctional global laboratory database is far reaching, with uses including virtual biobanking, disease forecasting, and adaption to other disease outbreaks. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks

    PubMed Central

    Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya

    2017-01-01

    ABSTRACT The consequences of the 2013–16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks. PMID:27925844

  3. Community-wide outbreak of haemolytic uraemic syndrome associated with Shiga toxin 2-producing Escherichia coli O26:H11 in southern Italy, summer 2013

    PubMed Central

    Germinario, Cinzia; Caprioli, Alfredo; Giordano, Mario; Chironna, Maria; Gallone, Maria Serena; Tafuri, Silvio; Minelli, Fabio; Maugliani, Antonella; Michelacci, Valeria; Santangelo, Luisa; Mongelli, Onofrio; Montagna, Cosimo; Scavia, Gaia

    2016-01-01

    In summer 2013, an excess of paediatric cases of haemolytic uraemic syndrome (HUS) in a southern region of Italy prompted the investigation of a community-wide outbreak of Shiga toxin 2-producing Escherichia coli (STEC) O26:H11 infections. Case finding was based on testing patients with HUS or bloody diarrhoea for STEC infection by microbiological and serological methods. A case–control study was conducted to identify the source of the outbreak. STEC O26 infection was identified in 20 children (median age 17 months) with HUS, two of whom reported severe neurological sequelae. No cases in adults were detected. Molecular typing showed that two distinct STEC O26:H11 strains were involved. The case–control study showed an association between STEC O26 infection and consumption of dairy products from two local plants, but not with specific ready-to-eat products. E.coli O26:H11 strains lacking the stx genes were isolated from bulk milk and curd samples, but their PFGE profiles did not match those of the outbreak isolates. This outbreak supports the view that infections with Stx2-producing E. coli O26 in children have a high probability of progressing to HUS and represent an emerging public health problem in Europe. PMID:27684204

  4. Community-wide outbreak of haemolytic uraemic syndrome associated with Shiga toxin 2-producing Escherichia coli O26:H11 in southern Italy, summer 2013.

    PubMed

    Germinario, Cinzia; Caprioli, Alfredo; Giordano, Mario; Chironna, Maria; Gallone, Maria Serena; Tafuri, Silvio; Minelli, Fabio; Maugliani, Antonella; Michelacci, Valeria; Santangelo, Luisa; Mongelli, Onofrio; Montagna, Cosimo; Scavia, Gaia

    2016-09-22

    In summer 2013, an excess of paediatric cases of haemolytic uraemic syndrome (HUS) in a southern region of Italy prompted the investigation of a community-wide outbreak of Shiga toxin 2-producing Escherichia coli (STEC) O26:H11 infections. Case finding was based on testing patients with HUS or bloody diarrhoea for STEC infection by microbiological and serological methods. A case-control study was conducted to identify the source of the outbreak. STEC O26 infection was identified in 20 children (median age 17 months) with HUS, two of whom reported severe neurological sequelae. No cases in adults were detected. Molecular typing showed that two distinct STEC O26:H11 strains were involved. The case-control study showed an association between STEC O26 infection and consumption of dairy products from two local plants, but not with specific ready-to-eat products. E.coli O26:H11 strains lacking the stx genes were isolated from bulk milk and curd samples, but their PFGE profiles did not match those of the outbreak isolates. This outbreak supports the view that infections with Stx2-producing E. coli O26 in children have a high probability of progressing to HUS and represent an emerging public health problem in Europe. This article is copyright of The Authors, 2016.

  5. Independent Emergence of the Cosmopolitan Asian Chikungunya Virus, Philippines 2012.

    PubMed

    Tan, Kim-Kee; Sy, Ava Kristy D; Tandoc, Amado O; Khoo, Jing-Jing; Sulaiman, Syuhaida; Chang, Li-Yen; AbuBakar, Sazaly

    2015-07-23

    Outbreaks involving the Asian genotype Chikungunya virus (CHIKV) caused over one million infections in the Americas recently. The outbreak was preceded by a major nationwide outbreak in the Philippines. We examined the phylogenetic and phylogeographic relationships of representative CHIKV isolates obtained from the 2012 Philippines outbreak with other CHIKV isolates collected globally. Asian CHIKV isolated from the Philippines, China, Micronesia and Caribbean regions were found closely related, herein denoted as Cosmopolitan Asian CHIKV (CACV). Three adaptive amino acid substitutions in nsP3 (D483N), E1 (P397L) and E3 (Q19R) were identified among CACV. Acquisition of the nsP3-483N mutation in Compostela Valley followed by E1-397L/E3-19R in Laguna preceded the nationwide spread in the Philippines. The China isolates possessed two of the amino acid substitutions, nsP3-D483N and E1-P397L whereas the Micronesian and Caribbean CHIKV inherited all the three amino acid substitutions. The unique amino acid substitutions observed among the isolates suggest multiple independent virus dissemination events. The possible biological importance of the specific genetic signatures associated with the rapid global of the virus is not known and warrant future in-depth study and epidemiological follow-up. Molecular evidence, however, supports the Philippines outbreak as the possible origin of the CACV.

  6. Independent Emergence of the Cosmopolitan Asian Chikungunya Virus, Philippines 2012

    PubMed Central

    Tan, Kim-Kee; Sy, Ava Kristy D.; Tandoc, Amado O.; Khoo, Jing-Jing; Sulaiman, Syuhaida; Chang, Li-Yen; AbuBakar, Sazaly

    2015-01-01

    Outbreaks involving the Asian genotype Chikungunya virus (CHIKV) caused over one million infections in the Americas recently. The outbreak was preceded by a major nationwide outbreak in the Philippines. We examined the phylogenetic and phylogeographic relationships of representative CHIKV isolates obtained from the 2012 Philippines outbreak with other CHIKV isolates collected globally. Asian CHIKV isolated from the Philippines, China, Micronesia and Caribbean regions were found closely related, herein denoted as Cosmopolitan Asian CHIKV (CACV). Three adaptive amino acid substitutions in nsP3 (D483N), E1 (P397L) and E3 (Q19R) were identified among CACV. Acquisition of the nsP3-483N mutation in Compostela Valley followed by E1-397L/E3-19R in Laguna preceded the nationwide spread in the Philippines. The China isolates possessed two of the amino acid substitutions, nsP3-D483N and E1-P397L whereas the Micronesian and Caribbean CHIKV inherited all the three amino acid substitutions. The unique amino acid substitutions observed among the isolates suggest multiple independent virus dissemination events. The possible biological importance of the specific genetic signatures associated with the rapid global of the virus is not known and warrant future in-depth study and epidemiological follow-up. Molecular evidence, however, supports the Philippines outbreak as the possible origin of the CACV. PMID:26201250

  7. Rodent-borne infectious disease outbreaks after flooding disasters: Epidemiology, management, and prevention.

    PubMed

    Diaz, James H

    2015-01-01

    To alert clinicians to the climatic conditions that can precipitate outbreaks of the rodent-borne infectious diseases most often associated with flooding disasters, leptospirosis (LS), and the Hantavirus-caused diseases, hemorrhagic fever with renal syndrome (HFRS) and Hantavirus pulmonary syndrome (HPS); to describe the epidemiology and presenting clinical manifestations and outcomes of these rodent-borne infectious diseases; and to recommend both prophylactic therapies and effective control and prevention strategies for rodent-borne infectious diseases. Internet search engines, including Google®, Google Scholar®, Pub Med, Medline, and Ovid, were queried with the key words as search terms to examine the latest scientific articles on rodent-borne infectious disease outbreaks in the United States and worldwide to describe the epidemiology and presenting clinical manifestations and outcomes of LS and Hantavirus outbreaks. Not applicable. Not applicable. Not applicable. Rodent-borne infectious disease outbreaks following heavy rainfall and flooding disasters. Heavy rainfall encourages excessive wild grass seed production that supports increased outdoor rodent population densities; and flooding forces rodents from their burrows near water sources into the built environment and closer to humans. Healthcare providers should maintain high levels of suspicion for LS in patients developing febrile illnesses after contaminated freshwater exposures following heavy rainfall, flooding, and even freshwater recreational events; and for Hantavirus-caused infectious diseases in patients with hemorrhagic fevers that progress rapidly to respiratory or renal failure following rodent exposures.

  8. The role of the Biological Weapons Convention in disease surveillance and response.

    PubMed

    Enemark, Christian

    2010-11-01

    This article assesses the role and significance of the Biological Weapons Convention (BWC) with respect to infectious disease surveillance and response to outbreaks. Increasingly, the BWC is being used as a platform for addressing infectious disease threats arising naturally as well as traditional concerns about malicious dissemination of pathogenic microorganisms. The latter have long had a place on the security agenda, but natural disease outbreaks too are now being partially 'securitized' through the use of the BWC as a forum for exchanging information and ideas on disease surveillance and response. The article focuses on two prominent issues discussed at recent meetings of BWC member states: enhancing capacity for disease surveillance and response; and responding to allegations of biological weapons use and investigating outbreaks deemed suspicious. It concludes, firstly, that the BWC supports the efforts of international health organizations to enhance disease surveillance and response capacity worldwide. And secondly, that the BWC, rather than the World Health Organization (WHO), is the appropriate institution to deal with biological weapons allegations and investigations of suspicious outbreaks. The overall message is that securitization in the health sphere cuts both ways. Adding a security dimension (BW) alongside the task of detecting and responding to naturally occurring disease outbreaks is beneficial, but requiring a non-security organization (the WHO) to assume a security role would be counterproductive.

  9. [The EHEC O104:H4 outbreak in Germany 2011 - lessons learned?!].

    PubMed

    Rissland, J; Kielstein, J T; Stark, K; Wichmann-Schauer, H; Stümpel, F; Pulz, M

    2013-04-01

    The EHEC O104:H4 outbreak 2011 in Germany provided numerous insights into the recognition and control of such epidemic situations. Food-borne outbreaks and their related dynamics may lead to a critical burden of disease and an eventual capacity overload of the medical care system. Possible difficulties in the microbiological diagnostics of new or significantly altered infectious agents may result in a delayed detection of the outbreak as well as the launching of interventional measures. Besides an early notification of the local public health office by the affected institutions, in which a complete electronic procedure and additional sentinel or surveillance instruments (e. g., in emergency departments of hospitals) may be of great help, an interdisciplinary cooperation of the local public health and food safety agencies is the key to an effective outbreak control. Corresponding organizations on the state and federal level should support the investigation process by microbiological diagnostics and advanced epidemiological analysis as well as examination of the food chains. Finally, successful crisis communication relies on "speaking with one voice" (not necessarily one person). Immediate, transparent, appropriate and honest information of the general public concerning the reasons, consequences and (counter-) measures of a crisis are the best means to keep the trust of the population and to counteract the otherwise inevitable speculations. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Enhanced surveillance during a public health emergency in a resource-limited setting: Experience from a large dengue outbreak in Solomon Islands, 2016-17.

    PubMed

    Craig, Adam T; Joshua, Cynthia A; Sio, Alison R; Teobasi, Bobby; Dofai, Alfred; Dalipanda, Tenneth; Hardie, Kate; Kaldor, John; Kolbe, Anthony

    2018-01-01

    Between August-2016 and April-2017, Solomon Islands experienced the largest and longest-running dengue outbreak on record in the country, with 12,329 suspected cases, 877 hospitalisations and 16 deaths. We conducted a retrospective review of related data and documents, and conducted key informant interviews to characterise the event and investigate the adaptability of syndromic surveillance for enhanced and expanded data collection during a public health emergency in a low resource country setting. While the outbreak quickly consumed available public and clinical resources, we found that authorities were able to scale up the conventional national syndrome-based early warning surveillance system to support the increased information demands during the event demonstrating the flexibility of the system and syndromic surveillance more broadly. Challenges in scaling up included upskilling and assisting staff with no previous experience of the tasks required; managing large volumes of data; maintaining data quality for the duration of the outbreak; harmonising routine and enhanced surveillance data and maintaining surveillance for other diseases; producing information optimally useful for response planning; and managing staff fatigue. Solomon Islands, along with other countries of the region remains vulnerable to outbreaks of dengue and other communicable diseases. Ensuring surveillance systems are robust and able to adapt to changing demands during emergencies should be a health protection priority.

  11. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks.

    PubMed

    Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya

    2017-02-01

    The consequences of the 2013-16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks.

  12. GHOST: global hepatitis outbreak and surveillance technology.

    PubMed

    Longmire, Atkinson G; Sims, Seth; Rytsareva, Inna; Campo, David S; Skums, Pavel; Dimitrova, Zoya; Ramachandran, Sumathi; Medrzycki, Magdalena; Thai, Hong; Ganova-Raeva, Lilia; Lin, Yulin; Punkova, Lili T; Sue, Amanda; Mirabito, Massimo; Wang, Silver; Tracy, Robin; Bolet, Victor; Sukalac, Thom; Lynberg, Chris; Khudyakov, Yury

    2017-12-06

    Hepatitis C is a major public health problem in the United States and worldwide. Outbreaks of hepatitis C virus (HCV) infections associated with unsafe injection practices, drug diversion, and other exposures to blood are difficult to detect and investigate. Effective HCV outbreak investigation requires comprehensive surveillance and robust case investigation. We previously developed and validated a methodology for the rapid and cost-effective identification of HCV transmission clusters. Global Hepatitis Outbreak and Surveillance Technology (GHOST) is a cloud-based system enabling users, regardless of computational expertise, to analyze and visualize transmission clusters in an independent, accurate and reproducible way. We present and explore performance of several GHOST implemented algorithms using next-generation sequencing data experimentally obtained from hypervariable region 1 of genetically related and unrelated HCV strains. GHOST processes data from an entire MiSeq run in approximately 3 h. A panel of seven specimens was used for preparation of six repeats of MiSeq libraries. Testing sequence data from these libraries by GHOST showed a consistent transmission linkage detection, testifying to high reproducibility of the system. Lack of linkage among genetically unrelated HCV strains and constant detection of genetic linkage between HCV strains from known transmission pairs and from follow-up specimens at different levels of MiSeq-read sampling indicate high specificity and sensitivity of GHOST in accurate detection of HCV transmission. GHOST enables automatic extraction of timely and relevant public health information suitable for guiding effective intervention measures. It is designed as a virtual diagnostic system intended for use in molecular surveillance and outbreak investigations rather than in research. The system produces accurate and reproducible information on HCV transmission clusters for all users, irrespective of their level of bioinformatics expertise. Improvement in molecular detection capacity will contribute to increasing the rate of transmission detection, thus providing opportunity for rapid, accurate and effective response to outbreaks of hepatitis C. Although GHOST was originally developed for hepatitis C surveillance, its modular structure is readily applicable to other infectious diseases. Worldwide availability of GHOST for the detection of HCV transmissions will foster deeper involvement of public health researchers and practitioners in hepatitis C outbreak investigation.

  13. Psychosocial impacts of quarantine during disease outbreaks and interventions that may help to relieve strain.

    PubMed

    Johal, Sarbjit S

    2009-06-05

    The threat of outbreak of infectious disease such as non-seasonal influenza A (H1N1), commonly referred to as Swine Flu, can provoke the implementation of public health control measures such as quarantine. This paper summarises the psychosocial consequences that may follow for patients and health care and other front-line workers when using quarantine controls. Those affected by quarantine are likely to report distress due to fear and risk perceptions. This distress can be amplified in the face of unclear information and communication that is common in the initial period of disease outbreaks. This paper outlines recommendations for care of those in quarantine and those working with them, such as helping to identify stressors and normalising their impact as much as possible. This should take place at all levels of response, from public information and communication messages to individual face-to-face advice and support.

  14. Infectious Dose of Listeria monocytogenes in Outbreak Linked to Ice Cream, United States, 2015

    PubMed Central

    Klontz, Karl C.; Chen, Yi; Burall, Laurel S.; Macarisin, Dumitru; Doyle, Matthew; Bally, Kären M.; Strain, Errol; Datta, Atin R.; Hammack, Thomas S.; Van Doren, Jane M.

    2016-01-01

    The relationship between the number of ingested Listeria monocytogenes cells in food and the likelihood of developing listeriosis is not well understood. Data from an outbreak of listeriosis linked to milkshakes made from ice cream produced in 1 factory showed that contaminated products were distributed widely to the public without any reported cases, except for 4 cases of severe illness in persons who were highly susceptible. The ingestion of high doses of L. monocytogenes by these patients infected through milkshakes was unlikely if possible additional contamination associated with the preparation of the milkshake is ruled out. This outbreak illustrated that the vast majority of the population did not become ill after ingesting a low level of L. monocytogenes but raises the question of listeriosis cases in highly susceptible persons after distribution of low-level contaminated products that did not support the growth of this pathogen. PMID:27869595

  15. Infectious Dose of Listeria monocytogenes in Outbreak Linked to Ice Cream, United States, 2015.

    PubMed

    Pouillot, Régis; Klontz, Karl C; Chen, Yi; Burall, Laurel S; Macarisin, Dumitru; Doyle, Matthew; Bally, Kären M; Strain, Errol; Datta, Atin R; Hammack, Thomas S; Van Doren, Jane M

    2016-12-01

    The relationship between the number of ingested Listeria monocytogenes cells in food and the likelihood of developing listeriosis is not well understood. Data from an outbreak of listeriosis linked to milkshakes made from ice cream produced in 1 factory showed that contaminated products were distributed widely to the public without any reported cases, except for 4 cases of severe illness in persons who were highly susceptible. The ingestion of high doses of L. monocytogenes by these patients infected through milkshakes was unlikely if possible additional contamination associated with the preparation of the milkshake is ruled out. This outbreak illustrated that the vast majority of the population did not become ill after ingesting a low level of L. monocytogenes but raises the question of listeriosis cases in highly susceptible persons after distribution of low-level contaminated products that did not support the growth of this pathogen.

  16. Transmission, Human Population, and Pathogenicity: the Ebola Case in Point.

    PubMed

    Delgado, Rafael; Simón, Fernando

    2018-03-01

    The 2013-2016 Ebola outbreak in West Africa has been the largest ever of a known disease in a new context that produced an unprecedented impact and is changing the international approach to responding to public health emergencies. The unprecedented scale of the outbreak, the use of advanced technology for detecting and characterizing the infectious agent, along with the opportunity to treat patients in modern facilities have greatly increased our knowledge of the disease and its transmission. Also, for the first time, an important international effort has been deployed to control the spread of the epidemic by providing care to patients and by adopting basic measures of public health control. Apart from supportive treatment and intensive therapy with fluids and electrolytes, no new compounds have been proved to be clinically effective to treat Ebola virus disease; however, a specific vaccine has shown significant protection in clinical trials in Guinea, opening an expectation for controlling future outbreaks.

  17. Nipah virus: transmission of a zoonotic paramyxovirus.

    PubMed

    Clayton, Bronwyn Anne

    2017-02-01

    Nipah virus is a recently-recognised, zoonotic paramyxovirus that causes severe disease and high fatality rates in people. Outbreaks have occurred in Malaysia, Singapore, India and Bangladesh, and a putative Nipah virus was also recently associated with human disease in the Philippines. Worryingly, human-to-human transmission is common in Bangladesh, where outbreaks occur with near-annual frequency. Onward human transmission of Nipah virus in Bangladesh is associated with close contact with clinically-unwell patients or their infectious secretions. While Nipah virus isolates associated with outbreaks of human infection have not resulted in sustained transmission to date, specific exposures carry a high risk of person-to-person transmission, an observation which is supported by recent findings in animal models. Novel paramyxoviruses continue to emerge from wildlife hosts, and represent an ongoing threat to human health globally. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. Using electronic health record alerts to provide public health situational awareness to clinicians.

    PubMed

    Lurio, Joseph; Morrison, Frances P; Pichardo, Michelle; Berg, Rachel; Buck, Michael D; Wu, Winfred; Kitson, Kwame; Mostashari, Farzad; Calman, Neil

    2010-01-01

    Alerting providers to public health situations requires timeliness and context-relevance, both lacking in current systems. Incorporating decision support tools into electronic health records may provide a way to deploy public health alerts to clinicians at the point of care. A timely process for responding to Health Alert Network messages sent by the New York City Department of Health and Mental Hygiene was developed by a network of community health centers. Alerts with order sets and recommended actions were created to notify primary care providers of local disease outbreaks. The process, effect, and lessons learned from alerts for Legionella, toxogenic E coli, and measles outbreaks are described. Electronic alerts have the potential to improve management of diseases during an outbreak, including appropriate laboratory testing, management guidance, and diagnostic assistance as well as to enhance bi-directional data exchange between clinical and public health organizations.

  19. Analysing trends and forecasting malaria epidemics in Madagascar using a sentinel surveillance network: a web-based application.

    PubMed

    Girond, Florian; Randrianasolo, Laurence; Randriamampionona, Lea; Rakotomanana, Fanjasoa; Randrianarivelojosia, Milijaona; Ratsitorahina, Maherisoa; Brou, Télesphore Yao; Herbreteau, Vincent; Mangeas, Morgan; Zigiumugabe, Sixte; Hedje, Judith; Rogier, Christophe; Piola, Patrice

    2017-02-13

    The use of a malaria early warning system (MEWS) to trigger prompt public health interventions is a key step in adding value to the epidemiological data routinely collected by sentinel surveillance systems. This study describes a system using various epidemic thresholds and a forecasting component with the support of new technologies to improve the performance of a sentinel MEWS. Malaria-related data from 21 sentinel sites collected by Short Message Service are automatically analysed to detect malaria trends and malaria outbreak alerts with automated feedback reports. Roll Back Malaria partners can, through a user-friendly web-based tool, visualize potential outbreaks and generate a forecasting model. The system already demonstrated its ability to detect malaria outbreaks in Madagascar in 2014. This approach aims to maximize the usefulness of a sentinel surveillance system to predict and detect epidemics in limited-resource environments.

  20. Outbreak of rove beetle (Staphylinid) pustular contact dermatitis in Pakistan among deployed U.S. personnel.

    PubMed

    Dursteler, Brian B; Nyquist, Robert A

    2004-01-01

    Deployed military personnel are often faced with a variety of exposures unfamiliar to U.S. physicians. This is the first report to describe an outbreak of a pustular disease among U.S. personnel deployed to Pakistan in support of Operation Enduring Freedom. Up to 10% of the base population was afflicted with a pustular eruption and an accompanying halo of erythema. A retrospective chart review and ongoing patient care resulted in 191 cases. Various therapies were used, including "watchful waiting." Gradual resolution occurred with residual area(s) of hypo- or hyperpigmentation. An irritant contact dermatitis was suspected based upon clinical presentation; staphylinid (rove) beetles were implicated. Rove beetle dermatitis from a pederin toxin has occurred in other parts of the world but has not been previously reported in Pakistan. We discuss the nature and progression of the dermatitis, treatments, outcomes, measures to control exposures, and the implications of such outbreaks.

  1. Using electronic health record alerts to provide public health situational awareness to clinicians

    PubMed Central

    Lurio, Joseph; Pichardo, Michelle; Berg, Rachel; Buck, Michael D; Wu, Winfred; Kitson, Kwame; Mostashari, Farzad; Calman, Neil

    2010-01-01

    Alerting providers to public health situations requires timeliness and context-relevance, both lacking in current systems. Incorporating decision support tools into electronic health records may provide a way to deploy public health alerts to clinicians at the point of care. A timely process for responding to Health Alert Network messages sent by the New York City Department of Health and Mental Hygiene was developed by a network of community health centers. Alerts with order sets and recommended actions were created to notify primary care providers of local disease outbreaks. The process, effect, and lessons learned from alerts for Legionella, toxogenic E coli, and measles outbreaks are described. Electronic alerts have the potential to improve management of diseases during an outbreak, including appropriate laboratory testing, management guidance, and diagnostic assistance as well as to enhance bi-directional data exchange between clinical and public health organizations. PMID:20190067

  2. Earthquakes and plague during Byzantine times: can lessons from the past improve epidemic preparedness.

    PubMed

    Tsiamis, Costas; Poulakou-Rebelakou, Effie; Marketos, Spyros

    2013-01-01

    Natural disasters have always been followed by a fear of infectious diseases. This raised historical debate about one of the most feared scenarios: the outbreak of bubonic plague caused by Yersinia pestis. One such event was recorded in the Indian state Maharashtra in 1994 after an earthquake. In multidisciplinary historical approach to the evolution of plague, many experts ignore the possibility of natural foci and their activation. This article presents historical records from the Byzantine Empire about outbreaks of the Plague of Justinian occurring months or even up to a year after high-magnitude earthquakes. Historical records of plague outbreaks can be used to document existence of natural foci all over the world. Knowledge of these historical records and the contemporary examples of plague support the assumption that, in terms of organising humanitarian aid, poor monitoring of natural foci could lead to unpredictable epidemiological consequences after high-magnitude earthquakes.

  3. Zika virus and pregnancy in Brazil: What happened?

    PubMed Central

    Pereira, Alessandra Mendelski; Monteiro, Denise Leite Maia; Werner, Heron; Daltro, Pedro; Fazecas, Tatiana; Guedes, Bianca; Tonni, Gabriele; Peixoto, Alberto Borges; Júnior, Edward Araujo

    2018-01-01

    The recent epidemic of Zika virus (ZIKV) infection in Central and South America is one of the most serious global public health emergencies since the Ebola outbreak in West Africa. In Brazil, especially in the north, northeast, and southeast parts of the country, the ZIKV outbreak is a cause of concern for pregnant women because ZIKV intrauterine infection has been found to be associated with multiple brain malformations and microcephaly. In Brazil, the number of newborns with confirmed microcephaly per year recorded during the ZIKV outbreak, has been approximately 15 times greater than previously reported. Considering that the infection is self-limiting and symptomatic, it is usually diagnosed at the time of routine prenatal scan, especially in the third trimester. In other cases, the disease is detected after childbirth through neuroimaging. This study provides an insight into the history and evolution of ZIKV in Brazil, including current knowledge concerning the transmission, diagnosis, and pathogenesis of the infection. In addition, this review describes the pre- and postnatal neuroimaging findings obtained using ultrasound, magnetic resonance imaging, and computed tomography. PMID:29503261

  4. Global nursing in an Ebola viral haemorrhagic fever outbreak: before, during and after deployment

    PubMed Central

    von Strauss, Eva; Paillard-Borg, Stéphanie; Holmgren, Jessica; Saaristo, Panu

    2017-01-01

    ABSTRACT Background: Nurses are on the forefront and play a key role in global disaster responses. Nevertheless, they are often not prepared for the challenges they are facing and research is scarce regarding the nursing skills required for first responders during a disaster situation. Objectives: To investigate how returnee nursing staff experienced deployment before, during and after having worked for the Red Cross at an Ebola Treatment Center in Kenema, West Africa, and to supply knowledge on how to better prepare and support staff for viral haemorrhagic fever outbreaks. Methods: A descriptive, cross-sectional approach. Questionnaires were administered to nurses having worked with patients suffering from Ebola in 2014 and 2015. Data collection covered aspects of pre-, during and post-deployment on clinical training, personal health, stress management, leadership styles, socio-cultural exposure and knowledge transfer, as well as attitudes from others. Data was analysed using both quantitative and qualitative methods. Results: Response-rate was 88%: forty-four nurses from 15 different countries outside West Africa answered the questionnaire. The respondents identified the following needs for improvement: increased mental health and psychosocial support and hands-on coping strategies with focus on pre- and post-deployment; more pre-deployment task-oriented clinical training; and workload reduction, as exhaustion is a risk for safety. Conclusions: This study supplies knowledge on how to better prepare health care staff for future viral haemorrhagic fever outbreaks and other disasters. Participants were satisfied with their pre-deployment physical health preparation, whereas they stressed the importance of mental health support combined with psychosocial support after deployment. Furthermore, additional pre-clinical training was requested. PMID:29017025

  5. Integrated permanent plot and aerial monitoring for the spruce budworm decision support system

    Treesearch

    David A. MacLean

    2000-01-01

    Spruce budworm (Choristoneura fumiferana Clem.) outbreaks cause severe mortality and growth loss of spruce and fir forest over ranch of eastern North America. The Spruce Budworm Decision Support System (DSS) links prediction and interpretation models to the ARC/1NFO GIS, under an ArcView graphical user interface. It helps forest managers predict...

  6. Integrated sequence and immunology filovirus database at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusim, Karina; Yoon, Hyejin; Foley, Brian

    The Ebola outbreak of 2013–15 infected more than 28,000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. We report that as this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of knownmore » natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy.« less

  7. Integrated sequence and immunology filovirus database at Los Alamos

    PubMed Central

    Yoon, Hyejin; Foley, Brian; Feng, Shihai; Macke, Jennifer; Dimitrijevic, Mira; Abfalterer, Werner; Szinger, James; Fischer, Will; Kuiken, Carla; Korber, Bette

    2016-01-01

    The Ebola outbreak of 2013–15 infected more than 28 000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. As this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of known natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy. Database URL: www.hfv.lanl.gov PMID:27103629

  8. Integrated sequence and immunology filovirus database at Los Alamos

    DOE PAGES

    Yusim, Karina; Yoon, Hyejin; Foley, Brian; ...

    2016-01-01

    The Ebola outbreak of 2013–15 infected more than 28,000 people and claimed more lives than all previous filovirus outbreaks combined. Governmental agencies, clinical teams, and the world scientific community pulled together in a multifaceted response ranging from prevention and disease control, to evaluating vaccines and therapeutics in human trials. We report that as this epidemic is finally coming to a close, refocusing on long-term prevention strategies becomes paramount. Given the very real threat of future filovirus outbreaks, and the inherent uncertainty of the next outbreak virus and geographic location, it is prudent to consider the extent and implications of knownmore » natural diversity in advancing vaccines and therapeutic approaches. To facilitate such consideration, we have updated and enhanced the content of the filovirus portion of Los Alamos Hemorrhagic Fever Viruses Database. We have integrated and performed baseline analysis of all family Filoviridae sequences deposited into GenBank, with associated immune response data, and metadata, and we have added new computational tools with web-interfaces to assist users with analysis. Here, we (i) describe the main features of updated database, (ii) provide integrated views and some basic analyses summarizing evolutionary patterns as they relate to geo-temporal data captured in the database and (iii) highlight the most conserved regions in the proteome that may be useful for a T cell vaccine strategy.« less

  9. Intoxications from the seas: ciguatera, scombroid, and paralytic shellfish poisoning.

    PubMed

    Sanders, W E

    1987-09-01

    Sporadic cases and outbreaks of intoxications borne by fish and shellfish have increased in frequency during recent years. Ciguatera, scombroid, and paralytic shellfish poisoning account for nearly 16 per cent of all reported foodborne outbreaks of disease in the United States. Fishborne ciguatera and paralytic shellfish poisoning are characterized by gastrointestinal and neuromuscular manifestations attributable to toxins of dinoflagellates. These toxins impair sodium transport in cell membranes. Treatment is primarily supportive. Scombroid fish intoxication resembles histamine poisoning and may be treated effectively with antihistamines or cimetidine. Prevention of these intoxications at present depends upon avoidance of potential vectors.

  10. Ebola virus disease - pathogenesis, clinical presentation and management.

    PubMed

    Bociaga-Jasik, Monika; Piatek, Anna; Garlicki, Aleksander

    2014-01-01

    On March 2014 the WHO notified the outbreak of Ebola virus disease (EVD) in Guinea, and infection quickly spread to another West African countries including Sierra Leone, Liberia and Nigeria. Current outbreak is the largest in the history, since discovery of the virus in 1976. Imported cases and infection among healthcare workers in Europe and United States have elucidated necessity of better education of medical staff. Clinicians must be familiar with clinical picture of EVD, differential diagnosis and therapeutic approach, as rapid diagnosis and prompt introduction of supportive therapy can have a significant impact on the survival.

  11. The Ebola virus disease outbreak and the mineral sectors of Guinea, Liberia, and Sierra Leone

    USGS Publications Warehouse

    Bermúdez-Lugo, Omayra; Menzie, William D.

    2015-01-01

    In response to the uncertainty surrounding the status of mineral projects in Guinea, Liberia, and Sierra Leone, the National Minerals Information Center compiled information on the distribution of mines, mineral facilities, and mineral projects under development in the three countries. This fact sheet provides information on the role that the mineral sector plays in their respective economies, on the operating status of mining projects through yearend 2014, and on the coordinated actions by mining companies to support governments and international relief organizations in their efforts to contain the EVD outbreak.

  12. Category-Specific Comparison of Univariate Alerting Methods for Biosurveillance Decision Support

    PubMed Central

    Elbert, Yevgeniy; Hung, Vivian; Burkom, Howard

    2013-01-01

    Objective For a multi-source decision support application, we sought to match univariate alerting algorithms to surveillance data types to optimize detection performance. Introduction Temporal alerting algorithms commonly used in syndromic surveillance systems are often adjusted for data features such as cyclic behavior but are subject to overfitting or misspecification errors when applied indiscriminately. In a project for the Armed Forces Health Surveillance Center to enable multivariate decision support, we obtained 4.5 years of out-patient, prescription and laboratory test records from all US military treatment facilities. A proof-of-concept project phase produced 16 events with multiple evidence corroboration for comparison of alerting algorithms for detection performance. We used the representative streams from each data source to compare sensitivity of 6 algorithms to injected spikes, and we used all data streams from 16 known events to compare them for detection timeliness. Methods The six methods compared were: Holt-Winters generalized exponential smoothing method (1)automated choice between daily methods, regression and an exponential weighted moving average (2)adaptive daily Shewhart-type chartadaptive one-sided daily CUSUMEWMA applied to 7-day means with a trend correction; and7-day temporal scan statistic Sensitivity testing: We conducted comparative sensitivity testing for categories of time series with similar scales and seasonal behavior. We added multiples of the standard deviation of each time series as single-day injects in separate algorithm runs. For each candidate method, we then used as a sensitivity measure the proportion of these runs for which the output of each algorithm was below alerting thresholds estimated empirically for each algorithm using simulated data streams. We identified the algorithm(s) whose sensitivity was most consistently high for each data category. For each syndromic query applied to each data source (outpatient, lab test orders, and prescriptions), 502 authentic time series were derived, one for each reporting treatment facility. Data categories were selected in order to group time series with similar expected algorithm performance: Median > 100 < Median ≤ 10Median = 0Lag 7 Autocorrelation Coefficient ≥ 0.2Lag 7 Autocorrelation Coefficient < 0.2 Timeliness testing: For the timeliness testing, we avoided artificiality of simulated signals by measuring alerting detection delays in the 16 corroborated outbreaks. The multiple time series from these events gave a total of 141 time series with outbreak intervals for timeliness testing. The following measures were computed to quantify timeliness of detection: Median Detection Delay – median number of days to detect the outbreak.Penalized Mean Detection Delay –mean number of days to detect the outbreak with outbreak misses penalized as 1 day plus the maximum detection time. Results Based on the injection results, the Holt-Winters algorithm was most sensitive among time series with positive medians. The adaptive CUSUM and the Shewhart methods were most sensitive for data streams with median zero. Table 1 provides timeliness results using the 141 outbreak-associated streams on sparse (Median=0) and non-sparse data categories. [Insert table #1 here] Data median Detection Delay, days Holt-winters Regression EWMA Adaptive Shewhart Adaptive CUSUM 7-day Trend-adj. EWMA 7-day Temporal Scan Median 0 Median 3 2 4 2 4.5 2 Penalized Mean 7.2 7 6.6 6.2 7.3 7.6 Median >0 Median 2 2 2.5 2 6 4 Penalized Mean 6.1 7 7.2 7.1 7.7 6.6 The gray shading in the table 1 indicates methods with shortest detection delays for sparse and non-sparse data streams. The Holt-Winters method was again superior for non-sparse data. For data with median=0, the adaptive CUSUM was superior for a daily false alarm probability of 0.01, but the Shewhart method was timelier for more liberal thresholds. Conclusions Both kinds of detection performance analysis showed the method based on Holt-Winters exponential smoothing superior on non-sparse time series with day-of-week effects. The adaptive CUSUM and She-whart methods proved optimal on sparse data and data without weekly patterns.

  13. Bayesian data assimilation provides rapid decision support for vector-borne diseases.

    PubMed

    Jewell, Chris P; Brown, Richard G

    2015-07-06

    Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host-vector-pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Computer-aided diagnosis with potential application to rapid detection of disease outbreaks.

    PubMed

    Burr, Tom; Koster, Frederick; Picard, Rick; Forslund, Dave; Wokoun, Doug; Joyce, Ed; Brillman, Judith; Froman, Phil; Lee, Jack

    2007-04-15

    Our objectives are to quickly interpret symptoms of emergency patients to identify likely syndromes and to improve population-wide disease outbreak detection. We constructed a database of 248 syndromes, each syndrome having an estimated probability of producing any of 85 symptoms, with some two-way, three-way, and five-way probabilities reflecting correlations among symptoms. Using these multi-way probabilities in conjunction with an iterative proportional fitting algorithm allows estimation of full conditional probabilities. Combining these conditional probabilities with misdiagnosis error rates and incidence rates via Bayes theorem, the probability of each syndrome is estimated. We tested a prototype of computer-aided differential diagnosis (CADDY) on simulated data and on more than 100 real cases, including West Nile Virus, Q fever, SARS, anthrax, plague, tularaemia and toxic shock cases. We conclude that: (1) it is important to determine whether the unrecorded positive status of a symptom means that the status is negative or that the status is unknown; (2) inclusion of misdiagnosis error rates produces more realistic results; (3) the naive Bayes classifier, which assumes all symptoms behave independently, is slightly outperformed by CADDY, which includes available multi-symptom information on correlations; as more information regarding symptom correlations becomes available, the advantage of CADDY over the naive Bayes classifier should increase; (4) overlooking low-probability, high-consequence events is less likely if the standard output summary is augmented with a list of rare syndromes that are consistent with observed symptoms, and (5) accumulating patient-level probabilities across a larger population can aid in biosurveillance for disease outbreaks. c 2007 John Wiley & Sons, Ltd.

  15. The Ebola Outbreak: Catalyzing a "Shift" in Global Health Governance?

    PubMed

    Mackey, Tim K

    2016-11-24

    As the 2014 Ebola virus disease outbreak (EVD) transitions to its post-endemic phase, its impact on the future of global public health, particularly the World Health Organization (WHO), is the subject of continued debate. Criticism of WHO's performance grew louder in the outbreak's wake, placing this international health UN-specialized agency in the difficult position of navigating a complex series of reform recommendations put forth by different stakeholders. Decisions on WHO governance reform and the broader role of the United Nations could very well shape the future landscape of 21st century global health and how the international community responds to health emergencies. In order to better understand the implications of the EVD outbreak on global health and infectious disease governance, this debate article critically examines a series of reports issued by four high-level commissions/panels convened to specifically assess WHO's performance post-Ebola. Collectively, these recommendations add increasing complexity to the urgent need for WHO reform, a process that the agency must carry out in order to maintain its legitimacy. Proposals that garnered strong support included the formation of an independent WHO Centre for Emergency Preparedness and Response, the urgent need to increase WHO infectious disease funding and capacity, and establishing better operational and policy coordination between WHO, UN agencies, and other global health partners. The recommendations also raise more fundamental questions about restructuring the global health architecture, and whether the UN should play a more active role in global health governance. Despite the need for a fully modernized WHO, reform proposals recently announced by WHO fail to achieve the "evolution" in global health governance needed in order to ensure that global society is adequately protected against the multifaceted and increasingly complex nature of modern public health emergencies. Instead, the lasting legacy of the EVD outbreak may be its foreshadowing of a governance "shift" in formal sharing of the complex responsibilities of global health, health security, outbreak response, and managing health emergencies to other international structures, most notably the United Nations. Only time will tell if the legacy of EVD will include a WHO that has the full support of the international community and is capable of leading human society in this brave new era of the globalization of infectious diseases.

  16. Analysis of patient data from laboratories during the Ebola virus disease outbreak in Liberia, April 2014 to March 2015

    PubMed Central

    Fallah, Mosoka; Oshitani, Hitoshi; Kituyi, Ling; Mahmoud, Nuha; Musa, Emmanuel; Gasasira, Alex; Nyenswah, Tolbert; Dahn, Bernice; Bawo, Luke

    2017-01-01

    An outbreak of Ebola virus disease (EVD) in Liberia began in March 2014 and ended in January 2016. Epidemiological information on the EVD cases was collected and managed nationally; however, collection and management of the data were challenging at the time because surveillance and reporting systems malfunctioned during the outbreak. EVD diagnostic laboratories, however, were able to register basic demographic and clinical information of patients more systematically. Here we present data on 16,370 laboratory samples that were tested between April 4, 2014 and March 29, 2015. A total of 10,536 traceable individuals were identified, of whom 3,897 were confirmed cases (positive for Ebola virus RNA). There were significant differences in sex, age, and place of residence between confirmed and suspected cases that tested negative for Ebola virus RNA. Age (young children and the elderly) and place of residence (rural areas) were the risk factors for death due to the disease. The case fatality rate of confirmed cases decreased from 80% to 63% during the study period. These findings may help support future investigations and lead to a fuller understanding of the outbreak in Liberia. PMID:28732038

  17. Analysis of patient data from laboratories during the Ebola virus disease outbreak in Liberia, April 2014 to March 2015.

    PubMed

    Furuse, Yuki; Fallah, Mosoka; Oshitani, Hitoshi; Kituyi, Ling; Mahmoud, Nuha; Musa, Emmanuel; Gasasira, Alex; Nyenswah, Tolbert; Dahn, Bernice; Bawo, Luke

    2017-07-01

    An outbreak of Ebola virus disease (EVD) in Liberia began in March 2014 and ended in January 2016. Epidemiological information on the EVD cases was collected and managed nationally; however, collection and management of the data were challenging at the time because surveillance and reporting systems malfunctioned during the outbreak. EVD diagnostic laboratories, however, were able to register basic demographic and clinical information of patients more systematically. Here we present data on 16,370 laboratory samples that were tested between April 4, 2014 and March 29, 2015. A total of 10,536 traceable individuals were identified, of whom 3,897 were confirmed cases (positive for Ebola virus RNA). There were significant differences in sex, age, and place of residence between confirmed and suspected cases that tested negative for Ebola virus RNA. Age (young children and the elderly) and place of residence (rural areas) were the risk factors for death due to the disease. The case fatality rate of confirmed cases decreased from 80% to 63% during the study period. These findings may help support future investigations and lead to a fuller understanding of the outbreak in Liberia.

  18. The 2012 Madeira dengue outbreak: epidemiological determinants and future epidemic potential.

    PubMed

    Lourenço, José; Recker, Mario

    2014-08-01

    Dengue, a vector-borne viral disease of increasing global importance, is classically associated with tropical and sub-tropical regions around the world. Urbanisation, globalisation and climate trends, however, are facilitating the geographic spread of its mosquito vectors, thereby increasing the risk of the virus establishing itself in previously unaffected areas and causing large-scale epidemics. On 3 October 2012, two autochthonous dengue infections were reported within the Autonomous Region of Madeira, Portugal. During the following seven months, this first 'European' dengue outbreak caused more than 2000 local cases and 81 exported cases to mainland Europe. Here, using an ento-epidemiological mathematical framework, we estimate that the introduction of dengue to Madeira occurred around a month before the first official cases, during the period of maximum influx of airline travel, and that the naturally declining temperatures of autumn were the determining factor for the outbreak's demise in early December 2012. Using key estimates, together with local climate data, we further propose that there is little support for dengue endemicity on this island, but a high potential for future epidemic outbreaks when seeded between May and August-a period when detection of imported cases is crucial for Madeira's public health planning.

  19. Avalanche outbreaks emerging in cooperative contagions

    NASA Astrophysics Data System (ADS)

    Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter

    2015-11-01

    The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.

  20. The 2012 Madeira Dengue Outbreak: Epidemiological Determinants and Future Epidemic Potential

    PubMed Central

    Lourenço, José; Recker, Mario

    2014-01-01

    Dengue, a vector-borne viral disease of increasing global importance, is classically associated with tropical and sub-tropical regions around the world. Urbanisation, globalisation and climate trends, however, are facilitating the geographic spread of its mosquito vectors, thereby increasing the risk of the virus establishing itself in previously unaffected areas and causing large-scale epidemics. On 3 October 2012, two autochthonous dengue infections were reported within the Autonomous Region of Madeira, Portugal. During the following seven months, this first ‘European’ dengue outbreak caused more than 2000 local cases and 81 exported cases to mainland Europe. Here, using an ento-epidemiological mathematical framework, we estimate that the introduction of dengue to Madeira occurred around a month before the first official cases, during the period of maximum influx of airline travel, and that the naturally declining temperatures of autumn were the determining factor for the outbreak's demise in early December 2012. Using key estimates, together with local climate data, we further propose that there is little support for dengue endemicity on this island, but a high potential for future epidemic outbreaks when seeded between May and August—a period when detection of imported cases is crucial for Madeira's public health planning. PMID:25144749

  1. A multi-jurisdictional outbreak of hepatitis A related to a youth camp--implications for catering operations and mass gatherings.

    PubMed

    Munnoch, Sally A; Ashbolt, Rosie H; Coleman, David J; Walton, Nerissa; Beers-Deeble, Mary Y; Taylor, Roscoe

    2004-01-01

    In June 2003, Australian state and territory health departments were notified of an outbreak of Hepatitis A in people who had attended a five-day youth camp. Approximately 350 people attended the event in Central Australia between 24 and 28 April 2003. The public health investigation comprised of case identification, food handler interviews, an environmental health investigation of the campground and associated food premises, laboratory analysis of blood specimens and food/water samples, and an epidemiological study. Twenty-one cases fitted the case definition for the outbreak. A retrospective cohort study involving four states was conducted, with 213 people interviewed. Coleslaw and cordial were significantly associated with illness, however when the two exposures were adjusted for each other to account for confounding, only coleslaw remained significantly associated with illness (adjusted RR 2.5, 95% CI 1.09 - 5.77). The investigation highlighted a number of food hygiene and safety issues relating to the catering of mass gatherings. Implementation of food safety programs in these settings are likely to reduce the occurrence of such outbreaks. The recent proposal by Food Standards Australia New Zealand to mandate food safety programs for catering operations is supported.

  2. The public health impact of food-related illness.

    PubMed

    O'Brien, Sarah J

    2012-10-01

    The purpose of this review is to provide an update on the public health impact of food-related illness in light of recent high-profile outbreaks and advances in the methodology to estimate illness burden. It includes mainly literature from high-income countries, as burden of illness estimations have been focussed in these countries. The public health burden of food-related illness is very high, no matter what method is used to measure it. Outbreaks provide only a partial insight because they represent a small proportion of all cases of food-related illness. Recent outbreaks have demonstrated a very wide variety of contaminated food vehicles and illustrated the challenges in investigations when the contaminated foodstuff is an ingredient of many other food items. Outbreaks will continue to challenge public health responses so that maintaining capacity to respond rapidly is crucial. Technological advances, such as whole genome sequencing, pave the way for identifying food-related illness much more rapidly than at present. There is a need to improve diagnostic yield in clinical laboratories and culturing organisms will remain important. Perhaps one of the greatest challenges, though, is to maintain the interest and support of the public when investigating food-related illness.

  3. An epidemiologic simulation model of the spread and control of highly pathogenic avian influenza (H5N1) among commercial and backyard poultry flocks in South Carolina, United States.

    PubMed

    Patyk, Kelly A; Helm, Julie; Martin, Michael K; Forde-Folle, Kimberly N; Olea-Popelka, Francisco J; Hokanson, John E; Fingerlin, Tasha; Reeves, Aaron

    2013-07-01

    Epidemiologic simulation modeling of highly pathogenic avian influenza (HPAI) outbreaks provides a useful conceptual framework with which to estimate the consequences of HPAI outbreaks and to evaluate disease control strategies. The purposes of this study were to establish detailed and informed input parameters for an epidemiologic simulation model of the H5N1 strain of HPAI among commercial and backyard poultry in the state of South Carolina in the United States using a highly realistic representation of this poultry population; to estimate the consequences of an outbreak of HPAI in this population with a model constructed from these parameters; and to briefly evaluate the sensitivity of model outcomes to several parameters. Parameters describing disease state durations; disease transmission via direct contact, indirect contact, and local-area spread; and disease detection, surveillance, and control were established through consultation with subject matter experts, a review of the current literature, and the use of several computational tools. The stochastic model constructed from these parameters produced simulated outbreaks ranging from 2 to 111 days in duration (median 25 days), during which 1 to 514 flocks were infected (median 28 flocks). Model results were particularly sensitive to the rate of indirect contact that occurs among flocks. The baseline model established in this study can be used in the future to evaluate various control strategies, as a tool for emergency preparedness and response planning, and to assess the costs associated with disease control and the economic consequences of a disease outbreak. Published by Elsevier B.V.

  4. Using an agent-based model to evaluate the effect of producer specialization on the epidemiological resilience of livestock production networks

    PubMed Central

    2018-01-01

    An agent-based computer model that builds representative regional U.S. hog production networks was developed and employed to assess the potential impact of the ongoing trend towards increased producer specialization upon network-level resilience to catastrophic disease outbreaks. Empirical analyses suggest that the spatial distribution and connectivity patterns of contact networks often predict epidemic spreading dynamics. Our model heuristically generates realistic systems composed of hog producer, feed mill, and slaughter plant agents. Network edges are added during each run as agents exchange livestock and feed. The heuristics governing agents’ contact patterns account for factors including their industry roles, physical proximities, and the age of their livestock. In each run, an infection is introduced, and may spread according to probabilities associated with the various modes of contact. For each of three treatments—defined by one-phase, two-phase, and three-phase production systems—a parameter variation experiment examines the impact of the spatial density of producer agents in the system upon the length and size of disease outbreaks. Resulting data show phase transitions whereby, above some density threshold, systemic outbreaks become possible, echoing findings from percolation theory. Data analysis reveals that multi-phase production systems are vulnerable to catastrophic outbreaks at lower spatial densities, have more abrupt percolation transitions, and are characterized by less-predictable outbreak scales and durations. Key differences in network-level metrics shed light on these results, suggesting that the absence of potentially-bridging producer–producer edges may be largely responsible for the superior disease resilience of single-phase “farrow to finish” production systems. PMID:29522574

  5. Treating and preventing influenza in aged care facilities: a cluster randomised controlled trial.

    PubMed

    Booy, Robert; Lindley, Richard I; Dwyer, Dominic E; Yin, Jiehui K; Heron, Leon G; Moffatt, Cameron R M; Chiu, Clayton K; Rosewell, Alexander E; Dean, Anna S; Dobbins, Timothy; Philp, David J; Gao, Zhanhai; MacIntyre, C Raina

    2012-01-01

    Influenza is an important cause of morbidity and mortality for frail older people. Whilst the antiviral drug oseltamivir (a neuraminidase inhibitor) is approved for treatment and prophylaxis of influenza during outbreaks, there have been no trials comparing treatment only (T) versus treatment and prophylaxis (T&P) in Aged Care Facilities (ACFs). Our objective was to compare a policy of T versus T&P for influenza outbreaks in ACFs. We performed a cluster randomised controlled trial in 16 ACFs, that followed a policy of either "T"-oseltamivir treatment (75 mg twice a day for 5 days)-or "T&P"-treatment and prophylaxis (75 mg once a day for 10 days) for influenza outbreaks over three years, in addition to enhanced surveillance. The primary outcome measure was the attack rate of influenza. Secondary outcomes measures were deaths, hospitalisation, pneumonia and adverse events. Laboratory testing was performed to identify the viral cause of influenza-like illness (ILI) outbreaks. The study period 30 June 2006 to 23 December 2008 included three southern hemisphere winters. During that time, influenza was confirmed as the cause of nine of the 23 ILI outbreaks that occurred amongst the 16 ACFs. The policy of T&P resulted in a significant reduction in the influenza attack rate amongst residents: 93/255 (36%) in residents in T facilities versus 91/397 (23%) in T&P facilities (p=0.002). We observed a non-significant reduction in staff: 46/216 (21%) in T facilities versus 47/350 (13%) in T&P facilities (p=0.5). There was a significant reduction in mean duration of outbreaks (T=24 days, T&P=11 days, p=0.04). Deaths, hospitalisations and pneumonia were non-significantly reduced in the T&P allocated facilities. Drug adverse events were common but tolerated. Our trial lacked power but these results provide some support for a policy of "treatment and prophylaxis" with oseltamivir in controlling influenza outbreaks in ACFs. [corrected] Australian Clinical Trials Registry ACTRN12606000278538.

  6. Public perceptions, anxiety, and behaviour change in relation to the swine flu outbreak: cross sectional telephone survey.

    PubMed

    Rubin, G James; Amlôt, Richard; Page, Lisa; Wessely, Simon

    2009-07-02

    To assess whether perceptions of the swine flu outbreak predicted changes in behaviour among members of the public in England, Scotland, and Wales. Cross sectional telephone survey using random digit dialling. Interviews by telephone between 8 and 12 May. 997 adults aged 18 or more who had heard of swine flu and spoke English. Recommended change in behaviour (increases in handwashing and surface cleaning or plans made with a "flu friend") and avoidance behaviours (engaged in one or more of six behaviours such as avoiding large crowds or public transport). 37.8% of participants (n=377) reported performing any recommended behaviour change "over the past four days . . . because of swine flu." 4.9% (n=49) had carried out any avoidance behaviour. Controlling for personal details and anxiety, recommended changes were associated with perceptions that swine flu is severe, that the risk of catching it is high risk, that the outbreak will continue for a long time, that the authorities can be trusted, that good information has been provided, that people can control their risk of catching swine flu, and that specific behaviours are effective in reducing the risk. Being uncertain about the outbreak and believing that the outbreak had been exaggerated were associated with a lower likelihood of change. The strongest predictor of behaviour change was ethnicity, with participants from ethnic minority groups being more likely to make recommended changes (odds ratio 3.2, 95% confidence interval 2.0 to 5.3) and carry out avoidance behaviours (4.1, 2.0 to 8.4). The results support efforts to inform the public about specific actions that can reduce the risks from swine flu and to communicate about the government's plans and resources. Tackling the perception that the outbreak has been "over-hyped" may be difficult but worthwhile. Additional research is required into differing reactions to the outbreak among ethnic groups.

  7. Improved tools and strategies for the prevention and control of arboviral diseases: A research-to-policy forum.

    PubMed

    Olliaro, Piero; Fouque, Florence; Kroeger, Axel; Bowman, Leigh; Velayudhan, Raman; Santelli, Ana Carolina; Garcia, Diego; Skewes Ramm, Ronald; Sulaiman, Lokman H; Tejeda, Gustavo Sanchez; Morales, Fabiàn Correa; Gozzer, Ernesto; Garrido, César Basso; Quang, Luong Chan; Gutierrez, Gamaliel; Yadon, Zaida E; Runge-Ranzinger, Silvia

    2018-02-01

    Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases. A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research. The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period. The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled.

  8. Improved tools and strategies for the prevention and control of arboviral diseases: A research-to-policy forum

    PubMed Central

    Olliaro, Piero; Fouque, Florence; Kroeger, Axel; Bowman, Leigh; Velayudhan, Raman; Santelli, Ana Carolina; Garcia, Diego; Skewes Ramm, Ronald; Sulaiman, Lokman H.; Tejeda, Gustavo Sanchez; Morales, Fabiàn Correa; Gozzer, Ernesto; Garrido, César Basso; Quang, Luong Chan; Gutierrez, Gamaliel; Yadon, Zaida E.

    2018-01-01

    Background Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases. Method A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research. Results The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period. Conclusions The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled. PMID:29389959

  9. Our sense of Snow: the myth of John Snow in medical geography.

    PubMed

    McLeod, K S

    2000-04-01

    In 1854, Dr. John Snow identified the Broad Street pump as the source of an intense cholera outbreak by plotting the location of cholera deaths on a dot-map. He had the pump handle removed and the outbreak ended...or so one version of the story goes. In medical geography, the story of Snow and the Broad Street cholera outbreak is a common example of the discipline in action. While authors in other health-related disciplines focus on Snow's "shoe-leather epidemiology", his development of a water-borne theory of cholera transmission, and/or his pioneering role in anaesthesia, it is the dot-map that makes him a hero in medical geography. The story forms part of our disciplinary identity. Geographers have helped to shape the Snow narrative: the map has become part of the myth. Many of the published accounts of Snow are accompanied by versions of the map, but which map did Snow use? What happens to the meaning of our story when the determinative use of the map is challenged? In his book On the Mode of Communication of Cholera (2nd ed., John Churchill, London, 1855), Snow did not write that he used a map to identify the source of the outbreak. The map that accompanies his text shows cholera deaths in Golden Square (the subdistrict of London's Soho district where the outbreak occurred) from August 19 to September 30, a period much longer than the intense outbreak. What happens to the meaning of the myth when the causal connection between the pump's disengagement and the end of the outbreak is examined? Snow's data and text do not support this link but show that the number of cholera deaths was abating before the handle was removed. With the drama of the pump handle being questioned and the map, our artifact, occupying a more illustrative than central role, what is our sense of Snow?

  10. Case study of early detection and intervention of infectious disease outbreaks in an institution using Nursery School Absenteeism Surveillance Systems (NSASSy) of the Public Health Center.

    PubMed

    Matsumoto, Kayo; Hirayama, Chifumi; Sakuma, Yoko; Itoi, Yoichi; Sunadori, Asami; Kitamura, Junko; Nakahashi, Takeshi; Sugawara, Tamie; Ohkusa, Yasushi

    2016-01-01

    Objectives Detecting outbreaks early and then activating countermeasures based on such information is extremely important for infection control at childcare facilities. The Sumida ward began operating the Nursery School Absenteeism Surveillance System (NSASSy) in August 2013, and has since conducted real-time monitoring at nursery schools. The Public Health Center can detect outbreaks early and support appropriate intervention. This paper describes the experiences of Sumida Public Health Center related to early detection and intervention since the initiation of the system.Methods In this study, we investigated infectious disease outbreaks detected at 62 nursery schools in the Sumida ward, which were equipped with NSASSy from early November 2013 through late March 2015. We classified the information sources of the detected outbreak and responses of the public health center. The sources were (1) direct contact from some nursery schools, (2) messages from public officers with jurisdiction over nursery schools, (3) automatic detection by NSASSy, and (4) manual detection by public health center officers using NSASSy. The responses made by the health center were described and classified into 11 categories including verification of outbreak and advice for caregivers.Results The number of outbreaks detected by the aforementioned four information sources was zero, 25, 15, and 7 events, respectively, during the first 5 months after beginning NSASSy. These numbers became 5, 7, 53, and 25 events, respectively, during the subsequent 12 months. The number of outbreaks detected increased by 47% during the first 5 months, and by 87% in the following 12 months. The responses were primarily confirming the situation and offering advice to caregivers.Conclusion The Sumida Public Health Center ward could achieve early detection with automatic or manual detection of NSASSy. This system recently has become an important detection resource, and has contributed greatly to early detection. Because the Public Health Center can use it to achieve real-time monitoring, they can recognize emergent situations and intervene earlier, and thereby give feedback to the nursery schools. The system can contribute to providing effective countermeasures in these settings.

  11. Sellers' Revisited: A Big Data Reassessment of Historical Outbreaks of Bluetongue and African Horse Sickness due to the Long-Distance Wind Dispersion of Culicoides Midges.

    PubMed

    Durr, Peter A; Graham, Kerryne; van Klinken, Rieks D

    2017-01-01

    The possibility that outbreaks of bluetongue (BT) and African horse sickness (AHS) might occur via long-distance wind dispersion (LDWD) of their insect vector ( Culicoides spp.) was proposed by R. F. Sellers in a series of papers published between 1977 and 1991. These investigated the role of LDWD by means of visual examination of the wind direction of synoptic weather charts. Based on the hypothesis that simple wind direction analysis, which does not allow for wind speed, might have led to spurious conclusions, we reanalyzed six of the outbreak scenarios described in Sellers' papers. For this reanalysis, we used a custom-built Big Data application (" TAPPAS ") which couples a user-friendly web-interface with an established atmospheric dispersal model (" HYSPLIT "), thus enabling more sophisticated modeling than was possible when Sellers undertook his analyzes. For the two AHS outbreaks, there was strong support from our reanalysis of the role of LDWD for that in Spain (1966), and to a lesser degree, for the outbreak in Cyprus (1960). However, for the BT outbreaks, the reassessments were more complex, and for one of these (western Turkey, 1977) we could discount LDWD as the means of direct introduction of the virus. By contrast, while the outbreak in Cyprus (1977) showed LDWD was a possible means of introduction, there is an apparent inconsistency in that the outbreaks were localized while the dispersion events covered much of the island. For Portugal (1956), LDWD from Morocco on the dates suggested by Sellers is very unlikely to have been the pathway for introduction, and for the detection of serotype 2 in Florida (1982), LDWD from Cuba would require an assumption of a lengthy survival time of the midges in the air column. Except for western Turkey, the BT reanalyses show the limitation of LDWD modeling when used by itself, and indicates the need to integrate susceptible host population distribution (and other covariate) data into the modeling process. A further refinement, which will become increasingly important to assess LDWD, will be the use of virus and vector genome sequence data collected from potential source and the incursion sites.

  12. Evidence for Emergency Vaccination Having Played a Crucial Role to Control the 1965/66 Foot-and-Mouth Disease Outbreak in Switzerland

    PubMed Central

    Zingg, Dana; Häsler, Stephan; Schuepbach-Regula, Gertraud; Schwermer, Heinzpeter; Dürr, Salome

    2015-01-01

    Foot-and-mouth disease (FMD) is a highly contagious disease that caused several large outbreaks in Europe in the last century. The last important outbreak in Switzerland took place in 1965/66 and affected more than 900 premises and more than 50,000 animals were slaughtered. Large-scale emergency vaccination of the cattle and pig population has been applied to control the epidemic. In recent years, many studies have used infectious disease models to assess the impact of different disease control measures, including models developed for diseases exotic for the specific region of interest. Often, the absence of real outbreak data makes a validation of such models impossible. This study aimed to evaluate whether a spatial, stochastic simulation model (the Davis Animal Disease Simulation model) can predict the course of a Swiss FMD epidemic based on the available historic input data on population structure, contact rates, epidemiology of the virus, and quality of the vaccine. In addition, the potential outcome of the 1965/66 FMD epidemic without application of vaccination was investigated. Comparing the model outcomes to reality, only the largest 10% of the simulated outbreaks approximated the number of animals being culled. However, the simulation model highly overestimated the number of culled premises. While the outbreak duration could not be well reproduced by the model compared to the 1965/66 epidemic, it was able to accurately estimate the size of the area infected. Without application of vaccination, the model predicted a much higher mean number of culled animals than with vaccination, demonstrating that vaccination was likely crucial in disease control for the Swiss FMD outbreak in 1965/66. The study demonstrated the feasibility to analyze historical outbreak data with modern analytical tools. However, it also confirmed that predicted epidemics from a most carefully parameterized model cannot integrate all eventualities of a real epidemic. Therefore, decision makers need to be aware that infectious disease models are useful tools to support the decision-making process but their results are not equal valuable as real observations and should always be interpreted with caution. PMID:26697436

  13. Academic Medical Support to the Ebola Virus Disease Outbreak in Liberia.

    PubMed

    McQuilkin, Patricia A; Niescierenko, Michelle; Beddoe, Ann Marie; Goentzel, Jarrod; Graham, Elinor A; Henwood, Patricia C; Rehwaldt, Lise; Teklu, Sisay; Tupesis, Janis; Marshall, Roseda

    2017-12-01

    During the Ebola Virus Disease (EVD) epidemic in West Africa (2014-2016), many faculty, staff, and trainees from U.S. academic medical centers (i.e., teaching hospitals and their affiliated medical schools; AMCs) wished to contribute to the response to the outbreak, but many barriers prevented their participation. Here, the authors describe a successful long-term academic collaboration in Liberia that facilitated participation in the EVD response. This Perspective outlines the role the authors played in the response (providing equipment and training, supporting the return of medical education), the barriers they faced (logistical and financial), and elements that contributed to their success (partnering and coordinating their response with both U.S. and African institutions). There is a paucity of literature discussing the role of AMCs in disaster response, so the authors discuss the lessons learned and offer suggestions about the responsibilities that AMCs have and the roles they can play in responding to disaster situations.

  14. Nurses' experience with vancomycin-resistant enterococci (VRE).

    PubMed

    Mitchell, Ann; Cummins, Teresa; Spearing, Natalie; Adams, June; Gilroy, Lisa

    2002-01-01

    The emergence and spread of resistant organisms, in particular vancomycin-resistant enterococci (VRE), is an issue facing all staff in acute hospitals. This study explored how nurses coped with the responsibility of halting further spread of this organism during an outbreak. VRE-positive patients were cohorted with nurses who cared for them in an endeavour to contain the spread of VRE. The majority of nurses found the situation extremely stressful because of the need to act as 'gatekeepers' responsible for educating and monitoring the practices of staff and visitors. The nurses reported that they felt they were inadequately supported, were blamed for the outbreak, and that they had an increased workload as they took on duties of other staff. The results reinforce the need for a multidisciplinary team approach to education and control of VRE, more support for nursing staff cohorted with VRE-positive patients, and stringent adherence to infection control measures by all hospital staff.

  15. Design and evaluation of a web-based decision support tool for district-level disease surveillance in a low-resource setting

    PubMed Central

    Pore, Meenal; Sengeh, David M.; Mugambi, Purity; Purswani, Nuri V.; Sesay, Tom; Arnold, Anna Lena; Tran, Anh-Minh A.; Myers, Ralph

    2017-01-01

    During the 2014 West African Ebola Virus outbreak it became apparent that the initial response to the outbreak was hampered by limitations in the collection, aggregation, analysis and use of data for intervention planning. As part of the post-Ebola recovery phase, IBM Research Africa partnered with the Port Loko District Health Management Team (DHMT) in Sierra Leone and GOAL Global, to design, implement and deploy a web-based decision support tool for district-level disease surveillance. This paper discusses the design process and the functionality of the first version of the system. The paper presents evaluation results prior to a pilot deployment and identifies features for future iterations. A qualitative assessment of the tool prior to pilot deployment indicates that it improves the timeliness and ease of using data for making decisions at the DHMT level. PMID:29854209

  16. Smallpox virus plaque phenotypes: genetic, geographical and case fatality relationships.

    PubMed

    Olson, Victoria A; Karem, Kevin L; Smith, Scott K; Hughes, Christine M; Damon, Inger K

    2009-04-01

    Smallpox (infection with Orthopoxvirus variola) remains a feared illness more than 25 years after its eradication. Historically, case-fatality rates (CFRs) varied between outbreaks (<1 to approximately 40 %), the reasons for which are incompletely understood. The extracellular enveloped virus (EEV) form of orthopoxvirus progeny is hypothesized to disseminate infection. Investigations with the closely related Orthopoxvirus vaccinia have associated increased comet formation (EEV production) with increased mouse mortality (pathogenicity). Other vaccinia virus genetic manipulations which affect EEV production inconsistently support this association. However, antisera against vaccinia virus envelope protect mice from lethal challenge, further supporting a critical role for EEV in pathogenicity. Here, we show that the increased comet formation phenotypes of a diverse collection of variola viruses associate with strain phylogeny and geographical origin, but not with increased outbreak-related CFRs; within clades, there may be an association of plaque size with CFR. The mechanisms for variola virus pathogenicity probably involves multiple host and pathogen factors.

  17. Swine Outbreak of Pandemic Influenza A Virus on a Canadian Research Farm Supports Human-to-Swine Transmission

    PubMed Central

    Keenliside, Julia; Wilkinson, Craig; Webby, Richard; Lu, Patricia; Sorensen, Ole; Fonseca, Kevin; Barman, Subrata; Rubrum, Adam; Stigger, Evelyn; Marrie, Thomas J.; Marshall, Frank; Spady, Donald W.; Hu, Jia; Loeb, Mark; Russell, Margaret L.; Babiuk, Lorne A.

    2011-01-01

    Background. Swine outbreaks of pandemic influenza A (pH1N1) suggest human introduction of the virus into herds. This study investigates a pH1N1 outbreak occurring on a swine research farm with 37 humans and 1300 swine in Alberta, Canada, from 12 June through 4 July 2009. Methods. The staff was surveyed about symptoms, vaccinations, and livestock exposures. Clinical findings were recorded, and viral testing and molecular characterization of isolates from humans and swine were performed. Human serological testing and performance of the human influenza-like illness (ILI) case definition were also studied. Results. Humans were infected before swine. Seven of 37 humans developed ILI, and 2 (including the index case) were positive for pH1N1 by reverse-transcriptase polymerase chain reaction (RT-PCR). Swine were positive for pH1N1 by RT-PCR 6 days after contact with the human index case and developed symptoms within 24 h of their positive viral test results. Molecular characterization of the entire viral genomes from both species showed minor nucleotide heterogeneity, with 1 amino acid change each in the hemagglutinin and nucleoprotein genes. Sixty-seven percent of humans with positive serological test results and 94% of swine with positive swab specimens had few or no symptoms. Compared with serological testing, the human ILI case definition had a specificity of 100% and sensitivity of 33.3%. The only factor associated with seropositivity was working in the swine nursery. Conclusions. Epidemiologic data support human-to-swine transmission, and molecular characterization confirms that virtually identical viruses infected humans and swine in this outbreak. Both species had mild illness and recovered without sequelae. PMID:21148514

  18. The Use of Chemoprophylaxis after Floods to Reduce the Occurrence and Impact of Leptospirosis Outbreaks.

    PubMed

    Schneider, Maria Cristina; Velasco-Hernandez, Jorge; Min, Kyung-Duk; Leonel, Deise Galan; Baca-Carrasco, David; Gompper, Matthew E; Hartskeerl, Rudy; Munoz-Zanzi, Claudia

    2017-06-03

    Record-breaking and devastating rainfall events have occurred in the past decade. Rain and floods are considered the main risk factors for leptospirosis and several outbreaks have been reported following extreme weather events. In such situations, one possible intervention to prevent leptospirosis cases in high-risk groups is the use of chemoprophylaxis. However, not enough evidence of its effect is available. The objectives of this study were to review the literature on the current practices of chemoprophylaxis for leptospirosis and to explore, using a mathematical model, how various chemoprophylaxis scenarios may affect the progression of a leptospirosis outbreak. Twenty-six peer-reviewed publications were selected (10 quantitative studies, two systematic reviews and 14 articles of other types). Oral doxycycline was the most used antibiotic for chemoprophylaxis of leptospirosis. Post-exposure prophylaxis was assessed in four studies following a natural disaster. Although evidence of the effectiveness of post-exposure prophylaxis is inconsistent, the direction of association supported a protective effect for morbidity and mortality. The theoretical model showed how the assumed benefit of chemoprophylaxis was influenced by the time and rate of administration. Future models should consider the heterogeneity of affected communities, improved estimates of the effect of chemoprophylaxis on leptospirosis infection and disease, as well as potential detrimental impacts. Additional research is critical to provide clear evidence-based recommendations for leptospirosis control during an outbreak. The results of this study suggest that chemoprophylaxis may provide some protection in reducing the number of leptospirosis cases after a high-risk exposure; however, the effective benefit may depend on a variety of factors such as the timing and coverage of prophylaxis. The information summarized can be used to support decision-making during a high-risk event.

  19. The Use of Chemoprophylaxis after Floods to Reduce the Occurrence and Impact of Leptospirosis Outbreaks

    PubMed Central

    Schneider, Maria Cristina; Velasco-Hernandez, Jorge; Min, Kyung-duk; Leonel, Deise Galan; Baca-Carrasco, David; Gompper, Matthew E.; Hartskeerl, Rudy; Munoz-Zanzi, Claudia

    2017-01-01

    Record-breaking and devastating rainfall events have occurred in the past decade. Rain and floods are considered the main risk factors for leptospirosis and several outbreaks have been reported following extreme weather events. In such situations, one possible intervention to prevent leptospirosis cases in high-risk groups is the use of chemoprophylaxis. However, not enough evidence of its effect is available. The objectives of this study were to review the literature on the current practices of chemoprophylaxis for leptospirosis and to explore, using a mathematical model, how various chemoprophylaxis scenarios may affect the progression of a leptospirosis outbreak. Twenty-six peer-reviewed publications were selected (10 quantitative studies, two systematic reviews and 14 articles of other types). Oral doxycycline was the most used antibiotic for chemoprophylaxis of leptospirosis. Post-exposure prophylaxis was assessed in four studies following a natural disaster. Although evidence of the effectiveness of post-exposure prophylaxis is inconsistent, the direction of association supported a protective effect for morbidity and mortality. The theoretical model showed how the assumed benefit of chemoprophylaxis was influenced by the time and rate of administration. Future models should consider the heterogeneity of affected communities, improved estimates of the effect of chemoprophylaxis on leptospirosis infection and disease, as well as potential detrimental impacts. Additional research is critical to provide clear evidence-based recommendations for leptospirosis control during an outbreak. The results of this study suggest that chemoprophylaxis may provide some protection in reducing the number of leptospirosis cases after a high-risk exposure; however, the effective benefit may depend on a variety of factors such as the timing and coverage of prophylaxis. The information summarized can be used to support decision-making during a high-risk event. PMID:28587195

  20. Ebola, jobs and economic activity in Liberia.

    PubMed

    Bowles, Jeremy; Hjort, Jonas; Melvin, Timothy; Werker, Eric

    2016-03-01

    The 2014 Ebola virus disease (EVD) outbreak in the neighbouring West African countries of Guinea, Liberia and Sierra Leone represents the most significant setback to the region's development in over a decade. This study provides evidence on the extent to which economic activity declined and jobs disappeared in Liberia during the outbreak. To estimate how the level of activity and number of jobs in a given set of firms changed during the outbreak, we use a unique panel data set of registered firms surveyed by the business-development non-profit organisation, Building Markets. We also compare the change in economic activity during the outbreak, across regions of the country that had more versus fewer Ebola cases in a difference-in-differences approach. We find a large decrease in economic activity and jobs in all of Liberia during the Ebola outbreak, and an especially large decline in Monrovia. Outside of Monrovia, the restaurants, and food and beverages sectors have suffered the most among the surveyed sectors, and in Monrovia, the construction and restaurant sectors have shed the most employees, while the food and beverages sectors experienced the largest drop in new contracts. We find little association between the incidence of Ebola cases and declines in economic activity outside of Monrovia. If the large decline in economic activity that occurred during the Ebola outbreak persists, a focus on economic recovery may need to be added to the efforts to rebuild and support the healthcare system in order for Liberia to regain its footing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. An outbreak of acute delirium from exposure to the synthetic cannabinoid AB-CHMINACA.

    PubMed

    Tyndall, Joseph A; Gerona, Roy; De Portu, Giuliano; Trecki, Jordan; Elie, Marie-Carmelle; Lucas, Judith; Slish, John; Rand, Kenneth; Bazydlo, Lindsay; Holder, Martina; Ryan, Matthew F; Myers, Paul; Iovine, Nicole; Plourde, Michelle; Weeks, Emily; Hanley, James R; Endres, Greg; St Germaine, Danielle; Dobrowolski, Paul J; Schwartz, Michael

    2015-01-01

    Synthetic cannabinoid containing products are a public health threat as reflected by a number of outbreaks of serious adverse health effects over the past 4 years. The designer drug epidemic is characterized by the rapid turnover of synthetic cannabinoid compounds on the market which creates a challenge in identifying the particular etiology of an outbreak, confirming exposure in cases, and providing current information to law enforcement. Between 28 May 2014 and 8 June 2014, 35 patients were evaluated and treated at the University of Florida Health Medical Center in Gainesville following reported exposure to a synthetic cannabinoid containing product obtained from a common source. Patients demonstrated acute delirium (24) and seizures (14), and five required ventilator support and ICU-level care; none died. The presence of N-[(1S)-1-(aminocarbonyl)-2-methylpropyl]-1-(cyclohexylmethyl)-1H-indazole-3-carboxamide (AB-CHMINACA), or one of its predicted metabolites was confirmed in 15 of 21 cases. A rapid public health response and aggressive public messaging prevented further morbidity, identified the source, and led to law enforcement seizure of the implicated product. The significance of this outbreak lies as much in the rapid occurrence of unpredictable, life-threatening adverse health effects from a newly identified synthetic cannabinoid compound as it does in the multidisciplinary investigation and novel partnership between local public health, the laboratory, and the chemical industry, resulting in termination of the outbreak. A coordinated response and collaboration between law enforcement, the local public health, emergency medical services and Health Center staff, were all key interventions in preventing a more substantial public health outbreak resulting from use of a novel synthetic cannabinoid compound. Real time collaborations between toxicology laboratories, suppliers of analytical standards and the public health system may be useful in the face of future novel chemical exposures.

  2. Characterization of an unusual Salmonella phage type DT7a and report of a foodborne outbreak of salmonellosis.

    PubMed

    Lettini, A A; Saccardin, C; Ramon, E; Longo, A; Cortini, E; Dalla Pozza, M C; Barco, L; Guerra, B; Luzzi, I; Ricci, A

    2014-10-17

    Salmonella enterica subsp. enterica serovar 4,[5],12,i:- is a monophasic variant of Salmonella Typhimurium and its occurrence has markedly increased in several European countries in the last ten years. In June 2011, an outbreak of Salmonella 4,[5],12,i:- was reported among attendees of a wedding reception in the North-East of Italy. The source of this outbreak was identified as a cooked pork product served during the wedding reception. All Salmonella isolates from humans and the contaminated pork products were identified as Salmonella 4,[5],12,i:- and phage typed as DT7a. Afterwards, the farm where the pigs were raised was identified and sampled, and Salmonella Typhimurium was isolated from swine fecal samples. Despite the difference in serovar, these Salmonella Typhimurium isolates were also phage typed as DT7a. In the present study, Salmonella isolates from animals, humans and pork products during the outbreak investigation were subtyped by pulsed-field gel electrophoresis (PFGE), Multiple-Locus Variable number tandem repeats Analysis (MLVA), and resistance patterns, aiming to identify the most suitable subtyping methods to characterize isolates associated with this outbreak. In addition, a collection of epidemiologically unrelated strains of Salmonella 4,[5],12,i:- and Salmonella Typhimurium sharing the same phage type (DT7a) was similarly characterized in order to investigate their genetic relationship. This study provides a first snapshot of a rare Salmonella phage type, DT7a, associated with both Salmonella 4,[5],12,i:- and Salmonella Typhimurium. Moreover, the study demonstrated that in this specific context MLVA could be a reliable tool to support outbreak investigations as well as to assess the genetic relatedness among Salmonella isolates. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Eco-virological approach for assessing the role of wild birds in the spread of avian influenza H5N1 along the Central Asian Flyway.

    PubMed

    Newman, Scott H; Hill, Nichola J; Spragens, Kyle A; Janies, Daniel; Voronkin, Igor O; Prosser, Diann J; Yan, Baoping; Lei, Fumin; Batbayar, Nyambayar; Natsagdorj, Tseveenmyadag; Bishop, Charles M; Butler, Patrick J; Wikelski, Martin; Balachandran, Sivananinthaperumal; Mundkur, Taej; Douglas, David C; Takekawa, John Y

    2012-01-01

    A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this 'thoroughfare'. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005-2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.

  4. Acceptability of temporary suspension of visiting during norovirus outbreaks: investigating patient, visitor and public opinion.

    PubMed

    Currie, K; Price, L; Curran, E; Bunyan, D; Knussen, C

    2016-06-01

    Noroviruses are a leading cause of outbreaks globally and the most common cause of service disruption due to ward closures. Temporary suspension of visiting (TSV) is increasingly a recommended public health measure to reduce exposure, transmission and impact during norovirus outbreaks; however, preventing patient-visitor contact may contravene the ethos of person-centred care, and public acceptability of this measure is not known. To investigate the acceptability of TSV during norovirus outbreaks from the perspectives of patients, visitors and the wider public. Cross-sectional survey of patients (N = 153), visitors (N = 175) and the public (N = 224) in three diverse areas in Scotland. Health Belief Model constructs were applied to understand ratings of acceptability of TSV during norovirus outbreaks, and to determine associations between these levels and various predictor variables. The majority (84.6%) of respondents indicated that the possible benefits of TSV are greater than the possible disadvantages. Conversely, the majority (70%) of respondents disagreed that TSV 'is wrong as it ignores people's rights to have contact with family and friends'. The majority (81.6%) of respondents agreed that TSV would be more acceptable if exceptions were made for seriously ill or dying patients. Correlational analysis demonstrated that overall acceptability was positively related to perceived severity (r = 0.65), identified benefits (r = 0.54) and implementing additional communication strategies (r = 0.60); acceptability was negatively related to potential barriers (r = -0.49). There is greater service user and public support for the use of TSV than concerns around impinging upon patients' rights to have visitors. TSV should be considered as an acceptable infection control measure that could be implemented consistently during norovirus outbreaks. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. Evolution of Cocirculating Varicella-Zoster Virus Genotypes during a Chickenpox Outbreak in Guinea-Bissau

    PubMed Central

    Gray, Eleanor R.; Kundu, Samit; Cooray, Samantha; Poulsen, Anja; Aaby, Peter; Breuer, Judith

    2014-01-01

    ABSTRACT Varicella-zoster virus (VZV), a double-stranded DNA alphaherpesvirus, is associated with seasonal outbreaks of varicella in nonimmunized populations. Little is known about whether these outbreaks are associated with a single or multiple viral genotypes and whether new mutations rapidly accumulate during transmission. Here, we take advantage of a well-characterized population cohort in Guinea-Bissau and produce a unique set of 23 full-length genome sequences, collected over 7 months from eight households. Comparative sequence analysis reveals that four distinct genotypes cocirculated among the population, three of which were present during the first week of the outbreak, although no patients were coinfected, which indicates that exposure to infectious virus from multiple sources is common during VZV outbreaks. Transmission of VZV was associated with length polymorphisms in the R1 repeat region and the origin of DNA replication. In two cases, these were associated with the formation of distinct lineages and point to the possible coevolution of these loci, despite the lack of any known functional link in VZV or related herpesviruses. We show that these and all other sequenced clade 5 viruses possess a distinct R1 repeat motif that increases the acidity of an ORF11p protein domain and postulate that this has either arisen or been lost following divergence of the major clades. Thus, sequencing of whole VZV genomes collected during an outbreak has provided novel insights into VZV biology, transmission patterns, and (recent) natural history. IMPORTANCE VZV is a highly infectious virus and the causative agent of chickenpox and shingles, the latter being particularly associated with the risk of painful complications. Seasonal outbreaks of chickenpox are very common among young children, yet little is known about the dynamics of the virus during person-to-person to transmission or whether multiple distinct viruses seed and/or cocirculate during an outbreak. In this study, we have sequenced chickenpox viruses from an outbreak in Guinea-Bissau that are supported by detailed epidemiological data. Our data show that multiple different virus strains seeded and were maintained throughout the 6-month outbreak period and that viruses transmitted between individuals accumulated new mutations in specific genomic regions. Of particular interest is the potential coevolution of two distinct parts of the genomes and our calculations of the rate of viral mutation, both of which increase our understanding of how VZV evolves over short periods of time in human populations. PMID:25275123

  6. Evolution of cocirculating varicella-zoster virus genotypes during a chickenpox outbreak in Guinea-Bissau.

    PubMed

    Depledge, Daniel P; Gray, Eleanor R; Kundu, Samit; Cooray, Samantha; Poulsen, Anja; Aaby, Peter; Breuer, Judith

    2014-12-01

    Varicella-zoster virus (VZV), a double-stranded DNA alphaherpesvirus, is associated with seasonal outbreaks of varicella in nonimmunized populations. Little is known about whether these outbreaks are associated with a single or multiple viral genotypes and whether new mutations rapidly accumulate during transmission. Here, we take advantage of a well-characterized population cohort in Guinea-Bissau and produce a unique set of 23 full-length genome sequences, collected over 7 months from eight households. Comparative sequence analysis reveals that four distinct genotypes cocirculated among the population, three of which were present during the first week of the outbreak, although no patients were coinfected, which indicates that exposure to infectious virus from multiple sources is common during VZV outbreaks. Transmission of VZV was associated with length polymorphisms in the R1 repeat region and the origin of DNA replication. In two cases, these were associated with the formation of distinct lineages and point to the possible coevolution of these loci, despite the lack of any known functional link in VZV or related herpesviruses. We show that these and all other sequenced clade 5 viruses possess a distinct R1 repeat motif that increases the acidity of an ORF11p protein domain and postulate that this has either arisen or been lost following divergence of the major clades. Thus, sequencing of whole VZV genomes collected during an outbreak has provided novel insights into VZV biology, transmission patterns, and (recent) natural history. VZV is a highly infectious virus and the causative agent of chickenpox and shingles, the latter being particularly associated with the risk of painful complications. Seasonal outbreaks of chickenpox are very common among young children, yet little is known about the dynamics of the virus during person-to-person to transmission or whether multiple distinct viruses seed and/or cocirculate during an outbreak. In this study, we have sequenced chickenpox viruses from an outbreak in Guinea-Bissau that are supported by detailed epidemiological data. Our data show that multiple different virus strains seeded and were maintained throughout the 6-month outbreak period and that viruses transmitted between individuals accumulated new mutations in specific genomic regions. Of particular interest is the potential coevolution of two distinct parts of the genomes and our calculations of the rate of viral mutation, both of which increase our understanding of how VZV evolves over short periods of time in human populations. Copyright © 2014 Depledge et al.

  7. Awareness and support of release of genetically modified "sterile" mosquitoes, Key West, Florida, USA.

    PubMed

    Ernst, Kacey C; Haenchen, Steven; Dickinson, Katherine; Doyle, Michael S; Walker, Kathleen; Monaghan, Andrew J; Hayden, Mary H

    2015-02-01

    After a dengue outbreak in Key West, Florida, during 2009-2010, authorities, considered conducting the first US release of male Aedes aegypti mosquitoes genetically modified to prevent reproduction. Despite outreach and media attention, only half of the community was aware of the proposal; half of those were supportive. Novel public health strategies require community engagement.

  8. Discovery of a missing disease spreader

    NASA Astrophysics Data System (ADS)

    Maeno, Yoshiharu

    2011-10-01

    This study presents a method to discover an outbreak of an infectious disease in a region for which data are missing, but which is at work as a disease spreader. Node discovery for the spread of an infectious disease is defined as discriminating between the nodes which are neighboring to a missing disease spreader node, and the rest, given a dataset on the number of cases. The spread is described by stochastic differential equations. A perturbation theory quantifies the impact of the missing spreader on the moments of the number of cases. Statistical discriminators examine the mid-body or tail-ends of the probability density function, and search for the disturbance from the missing spreader. They are tested with computationally synthesized datasets, and applied to the SARS outbreak and flu pandemic.

  9. A Participatory System for Preventing Pandemics of Animal Origins: Pilot Study of the Participatory One Health Disease Detection (PODD) System.

    PubMed

    Yano, Terdsak; Phornwisetsirikun, Somphorn; Susumpow, Patipat; Visrutaratna, Surasing; Chanachai, Karoon; Phetra, Polawat; Chaisowwong, Warangkhana; Trakarnsirinont, Pairat; Hemwan, Phonpat; Kaewpinta, Boontuan; Singhapreecha, Charuk; Kreausukon, Khwanchai; Charoenpanyanet, Arisara; Robert, Chongchit Sripun; Robert, Lamar; Rodtian, Pranee; Mahasing, Suteerat; Laiya, Ekkachai; Pattamakaew, Sakulrat; Tankitiyanon, Taweesart; Sansamur, Chalutwan; Srikitjakarn, Lertrak

    2018-03-21

    Aiming for early disease detection and prompt outbreak control, digital technology with a participatory One Health approach was used to create a novel disease surveillance system called Participatory One Health Disease Detection (PODD). PODD is a community-owned surveillance system that collects data from volunteer reporters; identifies disease outbreak automatically; and notifies the local governments (LGs), surrounding villages, and relevant authorities. This system provides a direct and immediate benefit to the communities by empowering them to protect themselves. The objective of this study was to determine the effectiveness of the PODD system for the rapid detection and control of disease outbreaks. The system was piloted in 74 LGs in Chiang Mai, Thailand, with the participation of 296 volunteer reporters. The volunteers and LGs were key participants in the piloting of the PODD system. Volunteers monitored animal and human diseases, as well as environmental problems, in their communities and reported these events via the PODD mobile phone app. LGs were responsible for outbreak control and provided support to the volunteers. Outcome mapping was used to evaluate the performance of the LGs and volunteers. LGs were categorized into one of the 3 groups based on performance: A (good), B (fair), and C (poor), with the majority (46%,34/74) categorized into group B. Volunteers were similarly categorized into 4 performance groups (A-D), again with group A showing the best performance, with the majority categorized into groups B and C. After 16 months of implementation, 1029 abnormal events had been reported and confirmed to be true reports. The majority of abnormal reports were sick or dead animals (404/1029, 39.26%), followed by zoonoses and other human diseases (129/1029, 12.54%). Many potentially devastating animal disease outbreaks were detected and successfully controlled, including 26 chicken high mortality outbreaks, 4 cattle disease outbreaks, 3 pig disease outbreaks, and 3 fish disease outbreaks. In all cases, the communities and animal authorities cooperated to apply community contingency plans to control these outbreaks, and community volunteers continued to monitor the abnormal events for 3 weeks after each outbreak was controlled. By design, PODD initially targeted only animal diseases that potentially could emerge into human pandemics (eg, avian influenza) and then, in response to community needs, expanded to cover human health and environmental health issues. ©Terdsak Yano, Somphorn Phornwisetsirikun, Patipat Susumpow, Surasing Visrutaratna, Karoon Chanachai, Polawat Phetra, Warangkhana Chaisowwong, Pairat Trakarnsirinont, Phonpat Hemwan, Boontuan Kaewpinta, Charuk Singhapreecha, Khwanchai Kreausukon, Arisara  Charoenpanyanet, Chongchit Sripun Robert, Lamar Robert, Pranee Rodtian, Suteerat Mahasing, Ekkachai Laiya, Sakulrat Pattamakaew, Taweesart Tankitiyanon, Chalutwan Sansamur, Lertrak Srikitjakarn. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 21.03.2018.

  10. Assessment of area spread of porcine reproductive and respiratory syndrome (PRRS) virus in three clusters of swine farms.

    PubMed

    Arruda, A G; Sanhueza, J; Corzo, C; Vilalta, C

    2018-04-14

    Despite decades of porcine reproductive and respiratory syndrome (PRRS) research, outbreaks with emerging and re-emerging PRRS virus (PRRSV) strains are not uncommon in North America. The role of area spread, commonly referred but not limited to airborne transmission, in originating such outbreaks is currently unknown. The main objective of this study was to explore the role of area spread on the occurrence of new PRRSV cases by combining information on genetic similarity among recovered PRRSV isolate's open-reading frame (ORF) 5 sequences and publicly available weather data. Three small regions were enrolled in the study for which high farm-level participation rate was achieved, and swine sites within those regions were readily sampled after reporting of an outbreak in a sow farm. Oral fluid PCR testing was used to determine PRRSV status of farms, and wind roses were generated for assessment of prevailing wind directions during 2-14 days preceding the outbreak. Under the conditions of this study, the data did not support the area spread theory as the main cause for these outbreaks. We suggest that for future studies, analysis of animal movement and other links between farms such as personnel, equipment and sharing of service providers should be incorporated for better insights on source of the virus. Furthermore, the development of rapid and easy diagnostic methods for ruling out resident PRRSV is urgently needed. © 2018 Blackwell Verlag GmbH.

  11. It's not only what you say, it's also how you say it: communicating nipah virus prevention messages during an outbreak in Bangladesh.

    PubMed

    Parveen, Shahana; Islam, M Saiful; Begum, Momtaz; Alam, Mahbub-Ul; Sazzad, Hossain M S; Sultana, Rebeca; Rahman, Mahmudur; Gurley, Emily S; Hossain, M Jahangir; Luby, Stephen P

    2016-08-05

    During a fatal Nipah virus (NiV) outbreak in Bangladesh, residents rejected biomedical explanations of NiV transmission and treatment and lost trust in the public healthcare system. Field anthropologists developed and communicated a prevention strategy to bridge the gap between the biomedical and local explanation of the outbreak. We explored residents' beliefs and perceptions about the illness and care-seeking practices and explained prevention messages following an interactive strategy with the aid of photos showed the types of contact that can lead to NiV transmission from bats to humans by drinking raw date palm sap and from person-to-person. The residents initially believed that the outbreak was caused by supernatural forces and continued drinking raw date palm sap despite messages from local health authorities to stop. Participants in community meetings stated that the initial messages did not explain that bats were the source of this virus. After our intervention, participants responded that they now understood how NiV could be transmitted and would abstain from raw sap consumption and maintain safer behaviours while caring for patients. During outbreaks, one-way behaviour change communication without meaningful causal explanations is unlikely to be effective. Based on the cultural context, interactive communication strategies in lay language with supporting evidence can make biomedical prevention messages credible in affected communities, even among those who initially invoke supernatural causal explanations.

  12. How Will Climate Change Impact Cholera Outbreaks?

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.

    2014-12-01

    Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.

  13. Giardia spp. Are Commonly Found in Mixed Assemblages in Surface Water, as Revealed by Molecular and Whole-Genome Characterization

    PubMed Central

    Tsui, Clement K.-M.; Hsiao, William W. L.; Uyaguari-Diaz, Miguel I.; Ho, Jordan; Tang, Patrick; Isaac-Renton, Judith

    2015-01-01

    Giardia is the most common parasitic cause of gastrointestinal infections worldwide, with transmission through surface water playing an important role in various parts of the world. Giardia duodenalis (synonyms: G. intestinalis and G. lamblia), a multispecies complex, has two zoonotic subtypes, assemblages A and B. When British Columbia (BC), a western Canadian province, experienced several waterborne giardiasis outbreaks due to unfiltered surface drinking water in the late 1980s, collection of isolates from surface water, as well as from humans and beavers (Castor canadensis), throughout the province was carried out. To better understand Giardia in surface water, 71 isolates, including 29 from raw surface water samples, 29 from human giardiasis cases, and 13 from beavers in watersheds from this historical library were characterized by PCR. Study isolates also included isolates from waterborne giardiasis outbreaks. Both assemblages A and B were identified in surface water, human, and beavers samples, including a mixture of both assemblages A and B in waterborne outbreaks. PCR results were confirmed by whole-genome sequencing (WGS) for one waterborne outbreak and supported the clustering of human, water, and beaver isolates within both assemblages. We concluded that contamination of surface water by Giardia is complex, that the majority of our surface water isolates were assemblage B, and that both assemblages A and B may cause waterborne outbreaks. The higher-resolution data provided by WGS warrants further study to better understand the spread of Giardia. PMID:25956776

  14. Hospitalization and mortality among primarily nonbreastfed children during a large outbreak of diarrhea and malnutrition in Botswana, 2006.

    PubMed

    Creek, Tracy L; Kim, Andrea; Lu, Lydia; Bowen, Anna; Masunge, Japhter; Arvelo, Wences; Smit, Molly; Mach, Ondrej; Legwaila, Keitumetse; Motswere, Catherine; Zaks, Laurel; Finkbeiner, Thomas; Povinelli, Laura; Maruping, Maruping; Ngwaru, Gibson; Tebele, Goitebetswe; Bopp, Cheryl; Puhr, Nancy; Johnston, Stephanie P; Dasilva, Alexandre J; Bern, Caryn; Beard, R S; Davis, Margarett K

    2010-01-01

    In 2006, a pediatric diarrhea outbreak occurred in Botswana, coinciding with heavy rains. Surveillance recorded a 3 times increase in cases and a 25 fold increase in deaths between January and March. Botswana has high HIV prevalence among pregnant women (33.4% in 2005), and an estimated 35% of all infants under the age of 6 months are not breastfed. We followed all children <5 years old with diarrhea in the country's second largest referral hospital at the peak of the outbreak by chart review, interviewed mothers, and conducted laboratory testing for HIV and enteric pathogens. Of 153 hospitalized children with diarrhea, 97% were <2 years old; 88% of these were not breastfeeding. HIV was diagnosed in 18% of children and 64% of mothers. Cryptosporidium and enteropathogenic Escherichia coli were common; many children had multiple pathogens. Severe acute malnutrition (kwashiorkor or marasmus) developed in 38 (25%) patients, and 33 (22%) died. Kwashiorkor increased risk for death (relative risk 2.0; P = 0.05); only one breastfeeding child died. Many children who died had been undersupplied with formula. Most of the severe morbidity and mortality in this outbreak occurred in children who were HIV negative and not breastfed. Feeding and nutritional factors were the most important determinants of severe illness and death. Breastfeeding is critical to infant survival in the developing world, and support for breastfeeding among HIV-negative women, and HIV-positive women who cannot formula feed safely, may prevent further high-mortality outbreaks.

  15. Effect of intervention on the control of Highly Pathogenic Avian Influenza in Nigeria.

    PubMed

    Oladokun, Agnes Tinuke; Meseko, Clement Adebajo; Ighodalo, Edelokun; John, Benshak; Ekong, Pius Stephen

    2012-01-01

    The advent of HPAI in Nigeria was a traumatic experience for the poultry industry. Wealth and resources were lost to the ravages of the virus. The Government of Nigeria with the support of International donor agencies came up with a policy for the prevention of spread of the disease leading to the eventual control and eradication of the virus in Nigeria. The various measures implemented in the control of the outbreaks, and their effects on eradication of the virus in the country are highlighted. Using combined data from passive and active surveillance for HPAI in poultry farms, wetlands and live bird markets in Nigeria during 2006 - 2009, with laboratory diagnostic findings, we describe the characteristics of the control strategies implemented. The control measures include immediate reports of suspected outbreaks, prompt laboratory confirmation and rapid modified stamping out with compensations paid to affected farmers. Decontamination of infected farm premises, re-organization of live bird market were carried out, and bio security measures put in place before re-stocking. Three years following initial outbreak, the number of laboratory confirmed cases drastically reduced from 140 in 2006 and 160 in 2007 to only 2 cases of field outbreak in 2008. Only one case of human infection was documented during the period and no field outbreak or detection by surveillance was reported throughout 2009 and 2010. The measures employed by the Government through its agencies in the control of HPAI in Nigeria brought the incidence of the disease to naught.

  16. Positive Network Assortativity of Influenza Vaccination at a High School: Implications for Outbreak Risk and Herd Immunity

    PubMed Central

    He, Jianping; Cao, Guohong; Rainey, Jeanette J.; Gao, Hongjiang; Uzicanin, Amra; Salathé, Marcel

    2014-01-01

    Schools are known to play a significant role in the spread of influenza. High vaccination coverage can reduce infectious disease spread within schools and the wider community through vaccine-induced immunity in vaccinated individuals and through the indirect effects afforded by herd immunity. In general, herd immunity is greatest when vaccination coverage is highest, but clusters of unvaccinated individuals can reduce herd immunity. Here, we empirically assess the extent of such clustering by measuring whether vaccinated individuals are randomly distributed or demonstrate positive assortativity across a United States high school contact network. Using computational models based on these empirical measurements, we further assess the impact of assortativity on influenza disease dynamics. We found that the contact network was positively assortative with respect to influenza vaccination: unvaccinated individuals tended to be in contact more often with other unvaccinated individuals than with vaccinated individuals, and these effects were most pronounced when we analyzed contact data collected over multiple days. Of note, unvaccinated males contributed substantially more than unvaccinated females towards the measured positive vaccination assortativity. Influenza simulation models using a positively assortative network resulted in larger average outbreak size, and outbreaks were more likely, compared to an otherwise identical network where vaccinated individuals were not clustered. These findings highlight the importance of understanding and addressing heterogeneities in seasonal influenza vaccine uptake for prevention of large, protracted school-based outbreaks of influenza, in addition to continued efforts to increase overall vaccine coverage. PMID:24505274

  17. Design of a Randomized Controlled Trial for Ebola Virus Disease Medical Countermeasures: PREVAIL II, the Ebola MCM Study.

    PubMed

    Dodd, Lori E; Proschan, Michael A; Neuhaus, Jacqueline; Koopmeiners, Joseph S; Neaton, James; Beigel, John D; Barrett, Kevin; Lane, Henry Clifford; Davey, Richard T

    2016-06-15

    Unique challenges posed by emerging infectious diseases often expose inadequacies in the conventional phased investigational therapeutic development paradigm. The recent Ebola outbreak in West Africa presents a critical case-study highlighting barriers to faster development. During the outbreak, clinical trials were implemented with unprecedented speed. Yet, in most cases, this fast-tracked approach proved too slow for the rapidly evolving epidemic. Controversy abounded as to the most appropriate study designs to yield safety and efficacy data, potentially causing delays in pivotal studies. Preparation for research during future outbreaks may require acceptance of a paradigm that circumvents, accelerates, or reorders traditional phases, without losing sight of the traditional benchmarks by which drug candidates must be assessed for activity, safety and efficacy. We present the design of an adaptive, parent protocol, ongoing in West Africa until January 2016. The exigent circumstances of the outbreak and limited prior clinical experience with experimental treatments, led to more direct bridging from preclinical studies to human trials than the conventional paradigm would typically have sanctioned, and required considerable design flexibility. Preliminary evaluation of the "barely Bayesian" design was provided through computer simulation studies. The understanding and public discussion of the study design will help its future implementation. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. A synthetic computational environment: To control the spread of respiratory infections in a virtual university

    NASA Astrophysics Data System (ADS)

    Ge, Yuanzheng; Chen, Bin; liu, Liang; Qiu, Xiaogang; Song, Hongbin; Wang, Yong

    2018-02-01

    Individual-based computational environment provides an effective solution to study complex social events by reconstructing scenarios. Challenges remain in reconstructing the virtual scenarios and reproducing the complex evolution. In this paper, we propose a framework to reconstruct a synthetic computational environment, reproduce the epidemic outbreak, and evaluate management interventions in a virtual university. The reconstructed computational environment includes 4 fundamental components: the synthetic population, behavior algorithms, multiple social networks, and geographic campus environment. In the virtual university, influenza H1N1 transmission experiments are conducted, and gradually enhanced interventions are evaluated and compared quantitatively. The experiment results indicate that the reconstructed virtual environment provides a solution to reproduce complex emergencies and evaluate policies to be executed in the real world.

  19. Awareness and Support of Release of Genetically Modified “Sterile” Mosquitoes, Key West, Florida, USA

    PubMed Central

    Haenchen, Steven; Dickinson, Katherine; Doyle, Michael S.; Walker, Kathleen; Monaghan, Andrew J.; Hayden, Mary H.

    2015-01-01

    After a dengue outbreak in Key West, Florida, during 2009–2010, authorities, considered conducting the first US release of male Aedes aegypti mosquitoes genetically modified to prevent reproduction. Despite outreach and media attention, only half of the community was aware of the proposal; half of those were supportive. Novel public health strategies require community engagement. PMID:25625795

  20. Extinction Dynamics and Control in Adaptive Networks

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira; Shaw, Leah; Hindes, Jason

    Disease control is of paramount importance in public health. Moreover, models of disease spread are an important component in implementing effective vaccination and treatment campaigns. However, human behavior in response to an outbreak has only recently been included in epidemic models on networks. Here we develop the mathematical machinery to describe the dynamics of extinction in finite populations that include human adaptive behavior. The formalism enables us to compute the optimal, fluctuation-induced path to extinction, and predict the average extinction time in adaptive networks as a function of the adaptation rate. We find that both observables have several unique scalings depending on the relative speed of infection and adaptivity. Finally, we discuss how the theory can be used to design optimal control programs in general networks, by coupling the effective force of noise with treatment and human behavior. Research supported by U.S. Naval Research Laboratory funding (Grant No. N0001414WX00023) and the Office of Naval Research (Grant No. N0001414WX20610).

  1. Intra- and Interseasonal Autoregressive Prediction of Dengue Outbreaks Using Local Weather and Regional Climate for a Tropical Environment in Colombia

    PubMed Central

    Eastin, Matthew D.; Delmelle, Eric; Casas, Irene; Wexler, Joshua; Self, Cameron

    2014-01-01

    Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito vectors—all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of 2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined between 18°C and 32°C—the optimal range for mosquito survival and viral transmission. Two environment-based, multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately supporting public health decisions on the timing and scale of vector control efforts. PMID:24957546

  2. Academic Institutions' Critical Guidelines for Health Care Workers Who Deploy to West Africa for the Ebola Response and Future Crises.

    PubMed

    Cranmer, Hilarie; Aschkenasy, Miriam; Wildes, Ryan; Kayden, Stephanie; Bangsberg, David; Niescierenko, Michelle; Kemen, Katie; Hsiao, Kai-Hsun; VanRooyen, Michael; Burkle, Frederick M; Biddinger, Paul D

    2015-10-01

    The unprecedented Ebola Virus Disease (EVD) outbreak in West Africa, with its first cases documented in March 2014, has claimed the lives of thousands of people, and it has devastated the health care infrastructure and workforce in affected countries. Throughout this outbreak, there has been a critical lack of health care workers (HCW), including physicians, nurses, and other essential non-clinical staff, who have been needed, in most of the affected countries, to support the medical response to EVD, to attend to the health care needs of the population overall, and to be trained effectively in infection protection and control. This lack of sufficient and qualified HCW is due in large part to three factors: 1) limited HCW staff prior to the outbreak, 2) disproportionate illness and death among HCWs caused by EVD directly, and 3) valid concerns about personal safety among international HCWs who are considering responding to the affected areas. These guidelines are meant to inform institutions who deploy professional HCWs.

  3. Investigating the Effects of Mass Media Exposure on the Uptake of Preventive Measures by Hong Kong Residents during the 2015 MERS Outbreak: The Mediating Role of Interpersonal Communication and the Perception of Concern.

    PubMed

    Ludolph, Ramona; Schulz, Peter J; Chen, Ling

    2018-01-01

    In 2015, South Korea experienced the largest outbreak to date of the Middle East Respiratory Syndrome (MERS-CoV) outside the Middle East. Fears related to a potential spread of the disease led to an increased alert level as well as heightened media coverage in the neighboring Hong Kong. A cross-sectional survey (N = 533) among residents of Hong Kong was conducted to assess the relationships between the effects of outbreak-related mass media coverage, interpersonal communication, the perceived level of concern in one's close environment, and the uptake of preventive measures. A serial multiple mediator model finds that interpersonal communication and higher perceived concern indirectly influence the effects of media coverage on the engagement in preventive actions. These results expand previous research on the mediating role of interpersonal communication and support assumptions about a modified two-step flow of communication in the context of a public health emergency.

  4. Lack of airborne transmission during outbreak of pandemic (H1N1) 2009 among tour group members, China, June 2009.

    PubMed

    Han, Ke; Zhu, Xiaoping; He, Fan; Liu, Lunguang; Zhang, Lijie; Ma, Huilai; Tang, Xinyu; Huang, Ting; Zeng, Guang; Zhu, Bao Ping

    2009-10-01

    During June 2-8, 2009, an outbreak of influenza A pandemic (H1N1) 2009 occurred among 31 members of a tour group in China. To identify the mode of transmission and risk factors, we conducted a retrospective cohort investigation. The index case-patient was a female tourist from the United States. Secondary cases developed in 9 (30%) tour group members who had talked with the index case-patient and in 1 airline passenger (not a tour group member) who had sat within 2 rows of her. None of the 14 tour group members who had not talked with the index case-patient became ill. This outbreak was apparently caused by droplet transmission during coughing or talking. That airborne transmission was not a factor is supported by lack of secondary cases among fellow bus and air travelers. Our findings highlight the need to prevent transmission by droplets and fomites during a pandemic.

  5. Lack of Airborne Transmission during Outbreak of Pandemic (H1N1) 2009 among Tour Group Members, China, June 2009

    PubMed Central

    Han, Ke; Zhu, Xiaoping; He, Fan; Liu, Lunguang; Zhang, Lijie; Ma, Huilai; Tang, Xinyu; Huang, Ting; Zhu, Bao-Ping

    2009-01-01

    During June 2–8, 2009, an outbreak of influenza A pandemic (H1N1) 2009 occurred among 31 members of a tour group in China. To identify the mode of transmission and risk factors, we conducted a retrospective cohort investigation. The index case-patient was a female tourist from the United States. Secondary cases developed in 9 (30%) tour group members who had talked with the index case-patient and in 1 airline passenger (not a tour group member) who had sat within 2 rows of her. None of the 14 tour group members who had not talked with the index case-patient became ill. This outbreak was apparently caused by droplet transmission during coughing or talking. That airborne transmission was not a factor is supported by lack of secondary cases among fellow bus and air travelers. Our findings highlight the need to prevent transmission by droplets and fomites during a pandemic. PMID:19861048

  6. Full genome analysis of enterovirus D-68 strains circulating in Alberta, Canada.

    PubMed

    Pabbaraju, Kanti; Wong, Sallene; Drews, Steven J; Tipples, Graham; Tellier, Raymond

    2016-07-01

    A widespread outbreak of enterovirus (EV)-D68 that started in the summer of 2014 has been reported in the USA and Canada. During the course of this outbreak, EV-D68 was identified as a possible cause of acute, unexplained severe respiratory illness and a temporal association was observed between acute flaccid paralysis with anterior myelitis and EV-D68 detection in the upper respiratory tract. In this study, four nasopharyngeal samples collected from patients in Alberta, Canada with a laboratory diagnosis of EV-D68 were used to determine the near full-length genome sequence directly from the specimens. Phylogenetic analysis was performed to study the genotypes and pathogenesis of the circulating strains. Our results support the contention that mutations in the VP1 gene and other regions of the genome causing altered antigenicity, as well as lack of immunity in the younger population, may be responsible for the increased severe respiratory disease outbreaks of EV-D68 worldwide. © 2015 Wiley Periodicals, Inc.

  7. Role of air sampling in investigation of an outbreak of legionnaires' disease associated with exposure to aerosols from an evaporative condenser.

    PubMed

    Breiman, R F; Cozen, W; Fields, B S; Mastro, T D; Carr, S J; Spika, J S; Mascola, L

    1990-06-01

    Epidemiologic studies have suggested that legionnaires' disease can be transmitted to susceptible hosts by contaminated aerosolized water from cooling towers and evaporative condensers; however, epidemic strains of Legionella have not been isolated by air sampling at such sites during epidemiologic investigations. An outbreak of legionnaires' disease occurred at a retirement hotel; Legionella pneumophila serogroup 1 was isolated from an evaporative condenser and from potable water. A case-control study showed that the only significant exposure risk was in area A. L. pneumophila serogroup 1 was isolated during air sampling near the evaporative condenser exhaust site, the air conditioning intake vent, and an air vent in area A, but not in shower stalls. Monoclonal antibody subtype patterns of L. pneumophila serogroup 1 isolates from patients matched those from the evaporative condenser but not from shower water. Air sampling and monoclonal antibody subtyping results support epidemiologic evidence that the evaporative condenser was the source of this outbreak.

  8. Overview of avian influenza.

    PubMed

    Khare, Shashi; Agarwal, Ramesh; Singh, Ranjana; Lal, Shiv

    2006-07-01

    The current outbreak of H5N 1 avian influenza affecting an unprecedented number of countries is a cause of concern worldwide. As on 26th June, 2006 outbreaks in poultry or wild birds have been reported from 54 countries. In India the first outbreak of avian influenza virus Awas reported in Navapur district in Maharashtra in February 2006 followed by detection of H5N1 in a neighbouring district of Gujarat. No case of human infection has yet been reported in India. Avian influenza virus belongs to influenza type A which is a part of family orthomyxoviridae. Transmission occurs by direct or indirect contact. Clinical symptoms on human is of typical influenza like. Laboratory investigations involves a number of tests confirming diagnosis of avian influenza. The treatment includes general supportive and antiviral therapy with oseltamivir. Prevention and control strategies can held to minimise the public health risk to highly pathogenic avian influenza. There are some dos and don'ts for the community which should be strictly followed.

  9. Genetic Evidence of Importation of Drug-Resistant Plasmodium falciparum to Guatemala from the Democratic Republic of the Congo

    PubMed Central

    Taylor, Steve M.; Juliao, Patricia C.; Parobek, Christian M.; Janko, Mark; Gonzalez, Luis Demetrio; Ortiz, Lucia; Padilla, Norma; Tshefu, Antoinette K.; Emch, Michael; Udhayakumar, Venkatachalam; Lindblade, Kim; Meshnick, Steven R.

    2014-01-01

    Imported malaria threatens control and elimination efforts in countries that have low rates of transmission. In 2010, an outbreak of Plasmodium falciparum malaria was reported among United Nations peacekeeping soldiers from Guatemala who had recently returned from the Democratic Republic of the Congo (DRC). Epidemiologic evidence suggested that the soldiers were infected in the DRC, but local transmission could not be ruled out in all cases. We used population genetic analyses of neutral microsatellites to determine the outbreak source. Genetic relatedness was compared among parasites found in samples from the soldiers and parasite populations collected in the DRC and Guatemala; parasites identified in the soldiers were more closely related to those from the DRC. A phylogenetic clustering analysis confirms this identification with >99.9% confidence. Thus, results support the hypothesis that the soldiers likely imported malaria from the DRC. This study demonstrates the utility of molecular genotyping in outbreak investigations. PMID:24856348

  10. Genetic Evidence of Importation of Drug-Resistant Plasmodium falciparum to Guatemala from the Democratic Republic of the Congo.

    PubMed

    Patel, Jaymin C; Taylor, Steve M; Juliao, Patricia C; Parobek, Christian M; Janko, Mark; Gonzalez, Luis Demetrio; Ortiz, Lucia; Padilla, Norma; Tshefu, Antoinette K; Emch, Michael; Udhayakumar, Venkatachalam; Lindblade, Kim; Meshnick, Steven R

    2014-06-01

    Imported malaria threatens control and elimination efforts in countries that have low rates of transmission. In 2010, an outbreak of Plasmodium falciparum malaria was reported among United Nations peacekeeping soldiers from Guatemala who had recently returned from the Democratic Republic of the Congo (DRC). Epidemiologic evidence suggested that the soldiers were infected in the DRC, but local transmission could not be ruled out in all cases. We used population genetic analyses of neutral microsatellites to determine the outbreak source. Genetic relatedness was compared among parasites found in samples from the soldiers and parasite populations collected in the DRC and Guatemala; parasites identified in the soldiers were more closely related to those from the DRC. A phylogenetic clustering analysis confirms this identification with >99.9% confidence. Thus, results support the hypothesis that the soldiers likely imported malaria from the DRC. This study demonstrates the utility of molecular genotyping in outbreak investigations.

  11. Evidence of a louse-borne outbreak involving typhus in Douai, 1710-1712 during the war of Spanish succession.

    PubMed

    Nguyen-Hieu, Tung; Aboudharam, Gérard; Signoli, Michel; Rigeade, Catherine; Drancourt, Michel; Raoult, Didier

    2010-10-27

    The new field of paleomicrobiology allows past outbreaks to be identified by testing dental pulp of human remains with PCR. We identified a mass grave in Douai, France dating from the early XVIII(th) century. This city was besieged during the European war of Spanish succession. We tested dental pulp from 1192 teeth (including 40 from Douai) by quantitative PCR (qPCR) for R. prowazekii and B. quintana. We also used ultra-sensitive suicide PCR to detect R. prowazekii and genotyped positive samples. In the Douai remains, we identified one case of B. quintana infection (by qPCR) and R. prowazekii (by suicide PCR) in 6/21 individuals (29%). The R. prowazekii was genotype B, a genotype previously found in a Spanish isolate obtained in the first part of the XX(th) century. Louse-borne outbreaks were raging during the XVIII(th) century; our results support the hypothesis that typhus was imported into Europe by Spanish soldiers from America.

  12. Evidence of a Louse-Borne Outbreak Involving Typhus in Douai, 1710-1712 during the War of Spanish Succession

    PubMed Central

    Nguyen-Hieu, Tung; Aboudharam, Gérard; Signoli, Michel; Rigeade, Catherine; Drancourt, Michel; Raoult, Didier

    2010-01-01

    Background The new field of paleomicrobiology allows past outbreaks to be identified by testing dental pulp of human remains with PCR. Methods We identified a mass grave in Douai, France dating from the early XVIIIth century. This city was besieged during the European war of Spanish succession. We tested dental pulp from 1192 teeth (including 40 from Douai) by quantitative PCR (qPCR) for R. prowazekii and B. quintana. We also used ultra-sensitive suicide PCR to detect R. prowazekii and genotyped positive samples. Results and Discussion In the Douai remains, we identified one case of B. quintana infection (by qPCR) and R. prowazekii (by suicide PCR) in 6/21 individuals (29%). The R. prowazekii was genotype B, a genotype previously found in a Spanish isolate obtained in the first part of the XXth century. Conclusion Louse-borne outbreaks were raging during the XVIIIth century; our results support the hypothesis that typhus was imported into Europe by Spanish soldiers from America. PMID:21060879

  13. The Ebola epidemic and public health response.

    PubMed

    Moll, R; Reece, S; Cosford, P; Kessel, A

    2016-03-01

    An unprecedented global effort has been required to tackle the Ebola outbreak in West Africa. In this paper, we describe the contribution of Public Health England (PHE) in West Africa and the UK. Public Health England The epidemic has been a humanitarian crisis for the three worst affected countries. PHE contributions have included expertise in outbreak control and microbiology services in West Africa, and UK preparedness for an imported case. National and international systems require change to enhance the response to the next international public health crisis. Legacy planning following the epidemic will be crucial, supporting the recovery of the health and public health systems in West Africa and ensuring that the knowledge gained during this outbreak is put to best use. Ongoing PHE-associated research includes efforts to understand the pathogenicity of Ebola virus disease, improve diagnostic capability, explore therapeutic options and develop new vaccines. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Public health incident management: Logistical and operational aspects of the 2009 initial outbreak of H1N1 influenza in Mexico.

    PubMed

    Cruz, Miguel A; Hawk, Nicole M; Poulet, Christopher; Rovira, Jose; Rouse, Edward N

    2015-01-01

    Hosting an international outbreak response team can pose a challenge to jurisdictions not familiar with incident management frameworks. Basic principles of team forming, organizing, and executing mission critical activities require simple and flexible communication that can be easily understood by the host country's public health leadership and international support agencies. Familiarity with incident command system principles before a public health emergency could save time and effort during the initial phases of the response and aid in operationalizing and sustaining complex field activities throughout the response. The 2009 initial outbreak of H1N1 in Mexico highlighted the importance of adequately organizing and managing limited resources and expertise using incident management principles. This case study describes logistical and operational aspects of the response and highlights challenges faced during this response that may be relevant to the organization of public health responses and incidents requiring international assistance and cooperation.

  15. Public health incident management: logistical and operational aspects of the 2009 initial outbreak of H1N1 influenza in Mexico.

    PubMed

    Cruz, Miguel A; Hawk, Nicole M; Poulet, Christopher; Rovira, Jose; Rouse, Edward N

    2015-01-01

    Hosting an international outbreak response team can pose a challenge to jurisdictions not familiar with incident management frameworks. Basic principles of team forming, organizing, and executing mission critical activities require simple and flexible communication that can be easily understood by the host country's public health leadership and international support agencies. Familiarity with incident command system principles before a public health emergency could save time and effort during the initial phases of the response and aid in operationalizing and sustaining complex field activities throughout the response. The 2009 initial outbreak of H1N1 in Mexico highlighted the importance of adequately organizing and managing limited resources and expertise using incident management principles. This case study describes logistical and operational aspects of the response and highlights challenges faced during this response that may be relevant to the organization of public health responses and incidents requiring international assistance and cooperation.

  16. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest

    PubMed Central

    Eng, Christine L. P.; Tong, Joo Chuan; Tan, Tin Wee

    2017-01-01

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak. PMID:28587080

  17. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2017-05-25

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  18. Predictive analysis effectiveness in determining the epidemic disease infected area

    NASA Astrophysics Data System (ADS)

    Ibrahim, Najihah; Akhir, Nur Shazwani Md.; Hassan, Fadratul Hafinaz

    2017-10-01

    Epidemic disease outbreak had caused nowadays community to raise their great concern over the infectious disease controlling, preventing and handling methods to diminish the disease dissemination percentage and infected area. Backpropagation method was used for the counter measure and prediction analysis of the epidemic disease. The predictive analysis based on the backpropagation method can be determine via machine learning process that promotes the artificial intelligent in pattern recognition, statistics and features selection. This computational learning process will be integrated with data mining by measuring the score output as the classifier to the given set of input features through classification technique. The classification technique is the features selection of the disease dissemination factors that likely have strong interconnection between each other in causing infectious disease outbreaks. The predictive analysis of epidemic disease in determining the infected area was introduced in this preliminary study by using the backpropagation method in observation of other's findings. This study will classify the epidemic disease dissemination factors as the features for weight adjustment on the prediction of epidemic disease outbreaks. Through this preliminary study, the predictive analysis is proven to be effective method in determining the epidemic disease infected area by minimizing the error value through the features classification.

  19. Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test.

    PubMed

    Sved, J A; Yu, H; Dominiak, B; Gilchrist, A S

    2003-02-01

    Long-range dispersal of a species may involve either a single long-distance movement from a core population or spreading via unobserved intermediate populations. Where the new populations originate as small propagules, genetic drift may be extreme and gene frequency or assignment methods may not prove useful in determining the relation between the core population and outbreak samples. We describe computationally simple resampling methods for use in this situation to distinguish between the different modes of dispersal. First, estimates of heterozygosity can be used to test for direct sampling from the core population and to estimate the effective size of intermediate populations. Second, a test of sharing of alleles, particularly rare alleles, can show whether outbreaks are related to each other rather than arriving as independent samples from the core population. The shared-allele statistic also serves as a genetic distance measure that is appropriate for small samples. These methods were applied to data on a fruit fly pest species, Bactrocera tryoni, which is quarantined from some horticultural areas in Australia. We concluded that the outbreaks in the quarantine zone came from a heterogeneous set of genetically differentiated populations, possibly ones that overwinter in the vicinity of the quarantine zone.

  20. [Integrating clinical research into epidemic response: the field perspective in the Ebola experience].

    PubMed

    Malvy, Denis; Sissoko, Daouda; Camara, Alseny-Modet

    2017-10-01

    During the 2013-2016 west African Ebola outbreak that affected West Africa, accelerated clinical trials, testing unproven but promising and potentially lifesaving experimental interventions emerged as a key component of the global outbreak. In 2017, no Ebola medical countermeasures had proven antiviral efficacy in patients. However, in September 2014, the World Health Organization inventoried a list of potential drug candidates developed or repurposed with demonstrated antiviral efficacy in vitro or in animal models. Numerous therapeutics were considered or explored during the outbreak, including nucleoside and nucleotide analogues, nucleic acid-based drugs and immunotherapeutics. Drugs in clinical trials were tested within the framework of optimized supportive care with fluids and electrolytes and management of severe compromise of multiple organs resulting from viral cytopathology and immune-mediated cell damage. Assessment of those therapeutics with encouraging preliminary efficacy or safety profile, like the repurposed direct antiviral agent favipiravir or the combination of antibodies ZMapp requires further investigation to confirm their efficacy in humans, propose appropriate doses and evaluate the possibility of treatment combinations. During the lull before the next epidemic, major challenges for managing future Ebola epidemics include scientific, clinical and public health preparedness with establishment of innovative patient care and clinical research support in remote poor areas where Ebola and other deadly infectious diseases typically reemerge. © 2017 médecine/sciences – Inserm.

  1. Advances in Significance Testing for Cluster Detection

    NASA Astrophysics Data System (ADS)

    Coleman, Deidra Andrea

    Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic surveillance data while controlling the Bayesian False Discovery Rate (BFDR). The procedure entails choosing an appropriate Bayesian model that captures the spatial dependency inherent in epidemiological data and considers all days of interest, selecting a test statistic based on a chosen measure that provides the magnitude of the maximumal spatial cluster for each day, and identifying a cutoff value that controls the BFDR for rejecting the collective null hypothesis of no outbreak over a collection of days for a specified region.We use our procedure to analyze botulism-like syndrome data collected by the North Carolina Disease Event Tracking and Epidemiologic Collection Tool (NC DETECT).

  2. An outbreak of chickenpox in an asylum seeker centre in Italy: outbreak investigation and validity of reported chickenpox history, December 2015-May 2016.

    PubMed

    Vairo, Francesco; Di Bari, Virginia; Panella, Vincenzo; Quintavalle, Giuseppe; Torchia, Saul; Serra, Maria Cristina; Sinopoli, Maria Teresa; Lopalco, Maurizio; Ceccarelli, Giancarlo; Ferraro, Federica; Valle, Sabrina; Bordi, Licia; Capobianchi, Maria Rosaria; Puro, Vincenzo; Scognamiglio, Paola; Ippolito, Giuseppe

    2017-11-01

    An outbreak of chickenpox occurred between December 2015 and May 2016 among asylum seekers in a reception centre in Latium, Italy. We describe the epidemiological and laboratory investigations, control measures and validity of reported history of chickenpox infection. Serological screening of all residents and incoming asylum seekers was performed, followed by vaccine offer to all susceptible individuals without contraindication. Forty-six cases were found and 41 were associated with the outbreak. No complications, hospitalisations or deaths occurred. Serological testing was performed in 1,278 individuals and 169 were found to be susceptible, with a seroprevalence of 86.8%. A questionnaire was administered to 336 individuals consecutively attending the CARA health post to collect their serological result. The sensitivity, specificity and the positive and negative predictive value (PPV and NPV) of the reported history of chickenpox were 45.0%, 76.1%, 88.3% and 25.6%, respectively. We observed an increasing trend for the PPV and decreasing trend for the NPV with increasing age. Our report confirms that, in the asylum seeker population, chickenpox history is not the optimal method to identify susceptible individuals. Our experience supports the need for additional prevention and control measures and highlights the importance of national and local surveillance systems for reception centres.

  3. Novel application of the matched case-control design to compare food supply chains during an Escherichia coli O157 outbreak, United Kingdom, 2016.

    PubMed

    Inns, Thomas; Cleary, Paul; Bundle, Nick; Foulkes, Sarah; Sharp, Ashley; Utsi, Lara; McBrien, Chris; Teagle, Rehman; Waldram, Alison; Williams, Chris; McCann, Cathy; Smith, Rob; Saleh, Sepeedeh; McCarthy, Noel; Vivancos, Roberto; Hawker, Jeremy; Decraene, Valerie

    2018-05-01

    There is a need for innovative methods to investigate outbreaks of food-borne infection linked to produce with a complex distribution network. The investigation of a large outbreak of Escherichia coli O157 PT34 infection in the United Kingdom in 2016 indicated that catering venues associated with multiple cases had used salad leaves sourced from one supplier. Our aim was to investigate whether catering venues linked to cases were more likely to have used salad leaves from this supplier. We conducted a matched case-control study, with catering venues as the units of analysis. We compared venues linked to cases to those without known linked cases. We included 43 study pairs and obtained information on salad leaf products received by each venue. The odds of a case venue being supplied with salad leaves by Supplier A were 7.67 times (95% confidence interval: 2.30-25.53) those of control venues. This association provided statistical evidence to support the findings of the other epidemiological investigations undertaken for this outbreak. This is a novel approach which is labour-intensive but which addresses the challenge of investigating exposures to food across a complex distribution network.

  4. Assessing the impact of public health interventions on the transmission of pandemic H1N1 influenza a virus aboard a Peruvian navy ship

    PubMed Central

    Vera, Delphis M; Hora, Ricardo A; Murillo, Anarina; Wong, Juan F; Torre, Armando J; Wang, David; Boulay, Darbi; Hancock, Kathy; Katz, Jacqueline M; Ramos, Mariana; Loayza, Luis; Quispe, Jose; Reaves, Erik J; Bausch, Daniel G; Chowell, Gerardo; Montgomery, Joel M

    2014-01-01

    Background Limited data exist on transmission dynamics and effectiveness of control measures for influenza in confined settings. Objectives To investigate the transmission dynamics of a 2009 pandemic H1N1 influenza A outbreak aboard a Peruvian Navy ship and quantify the effectiveness of the implemented control measures. Methods We used surveillance data and a simple stochastic epidemic model to characterize and evaluate the effectiveness of control interventions implemented during an outbreak of 2009 pandemic H1N1 influenza A aboard a Peruvian Navy ship. Results The serological attack rate for the outbreak was 49·1%, with younger cadets and low-ranking officers at greater risk of infection than older, higher-ranking officers. Our transmission model yielded a good fit to the daily time series of new influenza cases by date of symptom onset. We estimated a reduction of 54·4% in the reproduction number during the period of intense control interventions. Conclusion Our results indicate that the patient isolation strategy and other control measures put in place during the outbreak reduced the infectiousness of isolated individuals by 86·7%. Our findings support that early implementation of control interventions can limit the spread of influenza epidemics in confined settings. PMID:24506160

  5. Investigation of a mumps outbreak among university students with two measles-mumps-rubella (MMR) vaccinations, Virginia, September-December 2006.

    PubMed

    Rota, J S; Turner, J C; Yost-Daljev, M K; Freeman, M; Toney, D M; Meisel, E; Williams, N; Sowers, S B; Lowe, L; Rota, P A; Nicolai, L A; Peake, L; Bellini, W J

    2009-10-01

    Following the clinical diagnosis of the first case of mumps on September 22, 2006 at the University of Virginia (UVA), 52 suspected cases were identified through active surveillance for mumps by the end of December 2006. Samples were collected from 47 students who presented with parotitis despite a documented history of two doses of measles, mumps, and rubella (MMR) vaccine. Six of 47 serum samples (13%) were positive for mumps IgM, and 46/47 specimens were positive for mumps IgG. Endpoint titration of acute phase serum samples from laboratory-confirmed cases did not provide evidence that elevated serum IgG is a consistent marker for infection among cases due to secondary vaccine failure. Buccal swab samples from 39 of the 47 students were tested by real-time reverse transcription-polymerase chain reaction (RT-PCR) and/or viral culture. Mumps virus or mumps RNA was detected in 12 of 39 buccal samples (31%). Genetic analysis of the virus from the outbreak at UVA indicated that the outbreak was not linked to the large mumps outbreak in the Midwestern US that occurred earlier in 2006. Our findings support the use of viral detection to improve laboratory diagnosis of mumps among persons who have received two doses of MMR.

  6. Discovery of a Leptospirosis Cluster Amidst a Pneumonic Plague Outbreak in a Miners’ Camp in the Democratic Republic of the Congo

    PubMed Central

    Bertherat, Eric; Mueller, Melissa J.; Shako, Jean-Christophe; Picardeau, Mathieu

    2014-01-01

    Conditions in the Democratic Republic of the Congo provide an ideal environment for leptospirosis and plague, both of which can cause severe pulmonary manifestations. In December 2004, an outbreak of lethal pneumonia occurred in a local mining camp, affecting 130 persons and killing 57 of them. Clinical signs, fast disease spread, and initial laboratory investigations suggested pneumonic plague. While leptospirosis had not recently been described in the region, it was considered as a differential diagnosis. Anti-Leptospira antibodies were detected by microscopic agglutination test (MAT). A confirmed case of leptospirosis was defined as having consistent clinical signs and any one of the following: seroconversion or four-fold increase in MAT titre for paired serum samples, or a MAT titre ≥ 1:400 for acute-phase serum samples. Twenty-nine of the 54 patients or convalescents tested for leptospirosis were seropositive. Two cases showed a confirmed infection for both plague and leptospirosis. While evidence supports the plague nature of this outbreak, the results suggest that some of the suspected plague cases might be due to leptospirosis. In any case, this diagnosis will have to be evoked in the future if a similar outbreak occurs in this region of Africa. PMID:24514425

  7. Discovery of a leptospirosis cluster amidst a pneumonic plague outbreak in a miners' camp in the Democratic Republic of the Congo.

    PubMed

    Bertherat, Eric; Mueller, Melissa J; Shako, Jean-Christophe; Picardeau, Mathieu

    2014-02-07

    Conditions in the Democratic Republic of the Congo provide an ideal environment for leptospirosis and plague, both of which can cause severe pulmonary manifestations. In December 2004, an outbreak of lethal pneumonia occurred in a local mining camp, affecting 130 persons and killing 57 of them. Clinical signs, fast disease spread, and initial laboratory investigations suggested pneumonic plague. While leptospirosis had not recently been described in the region, it was considered as a differential diagnosis. Anti-Leptospira antibodies were detected by microscopic agglutination test (MAT). A confirmed case of leptospirosis was defined as having consistent clinical signs and any one of the following: seroconversion or four-fold increase in MAT titre for paired serum samples, or a MAT titre ≥ 1:400 for acute-phase serum samples. Twenty-nine of the 54 patients or convalescents tested for leptospirosis were seropositive. Two cases showed a confirmed infection for both plague and leptospirosis. While evidence supports the plague nature of this outbreak, the results suggest that some of the suspected plague cases might be due to leptospirosis. In any case, this diagnosis will have to be evoked in the future if a similar outbreak occurs in this region of Africa.

  8. Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study

    PubMed Central

    Camacho, Anton; Ballesteros, Sébastien; Graham, Andrea L.; Carrat, Fabrice; Ratmann, Oliver; Cazelles, Bernard

    2011-01-01

    Influenza usually spreads through the human population in multiple-wave outbreaks. Successive reinfection of individuals over a short time interval has been explicitly reported during past pandemics. However, the causes of rapid reinfection and the role of reinfection in driving multiple-wave outbreaks remain poorly understood. To investigate these issues, we focus on a two-wave influenza A/H3N2 epidemic that occurred on the remote island of Tristan da Cunha in 1971. Over 59 days, 273 (96%) of 284 islanders experienced at least one attack and 92 (32%) experienced two attacks. We formulate six mathematical models invoking a variety of antigenic and immunological reinfection mechanisms. Using a maximum-likelihood analysis to confront model predictions with the reported incidence time series, we demonstrate that only two mechanisms can be retained: some hosts with either a delayed or deficient humoral immune response to the primary influenza infection were reinfected by the same strain, thus initiating the second epidemic wave. Both mechanisms are supported by previous empirical studies and may arise from a combination of genetic and ecological causes. We advocate that a better understanding and account of heterogeneity in the human immune response are essential to analysis of multiple-wave influenza outbreaks and pandemic planning. PMID:21525058

  9. Pseudomonas aeruginosa intensive care unit outbreak: winnowing of transmissions with molecular and genomic typing.

    PubMed

    Parcell, B J; Oravcova, K; Pinheiro, M; Holden, M T G; Phillips, G; Turton, J F; Gillespie, S H

    2018-03-01

    Pseudomonas aeruginosa healthcare outbreaks can be time consuming and difficult to investigate. Guidance does not specify which typing technique is most practical for decision-making. To explore the usefulness of whole-genome sequencing (WGS) in the investigation of a P. aeruginosa outbreak, describing how it compares with pulsed-field gel electrophoresis (PFGE) and variable number tandem repeat (VNTR) analysis. Six patient isolates and six environmental samples from an intensive care unit (ICU) positive for P. aeruginosa over two years underwent VNTR, PFGE and WGS. VNTR and PFGE were required to fully determine the potential source of infection and rule out others. WGS results unambiguously distinguished linked isolates, giving greater assurance of the transmission route between wash-hand basin water and two patients, supporting the control measures employed. WGS provided detailed information without the need for further typing. When allied to epidemiological information, WGS can be used to understand outbreak situations rapidly and with certainty. Implementation of WGS in real-time would be a major advance in day-to-day practice. It could become a standard of care as it becomes more widespread due to its reproducibility and lower costs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Management of animal botulism outbreaks: from clinical suspicion to practical countermeasures to prevent or minimize outbreaks.

    PubMed

    Anniballi, Fabrizio; Fiore, Alfonsina; Löfström, Charlotta; Skarin, Hanna; Auricchio, Bruna; Woudstra, Cédric; Bano, Luca; Segerman, Bo; Koene, Miriam; Båverud, Viveca; Hansen, Trine; Fach, Patrick; Tevell Aberg, Annica; Hedeland, Mikael; Olsson Engvall, Eva; De Medici, Dario

    2013-09-01

    Botulism is a severe neuroparalytic disease that affects humans, all warm-blooded animals, and some fishes. The disease is caused by exposure to toxins produced by Clostridium botulinum and other botulinum toxin-producing clostridia. Botulism in animals represents a severe environmental and economic concern because of its high mortality rate. Moreover, meat or other products from affected animals entering the food chain may result in a public health problem. To this end, early diagnosis is crucial to define and apply appropriate veterinary public health measures. Clinical diagnosis is based on clinical findings eliminating other causes of neuromuscular disorders and on the absence of internal lesions observed during postmortem examination. Since clinical signs alone are often insufficient to make a definitive diagnosis, laboratory confirmation is required. Botulinum antitoxin administration and supportive therapies are used to treat sick animals. Once the diagnosis has been made, euthanasia is frequently advisable. Vaccine administration is subject to health authorities' permission, and it is restricted to a small number of animal species. Several measures can be adopted to prevent or minimize outbreaks. In this article we outline all phases of management of animal botulism outbreaks occurring in wet wild birds, poultry, cattle, horses, and fur farm animals.

  11. Optimizing Hybrid Spreading in Metapopulations

    PubMed Central

    Zhang, Changwang; Zhou, Shi; Miller, Joel C.; Cox, Ingemar J.; Chain, Benjamin M.

    2015-01-01

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics. PMID:25923411

  12. Optimizing hybrid spreading in metapopulations.

    PubMed

    Zhang, Changwang; Zhou, Shi; Miller, Joel C; Cox, Ingemar J; Chain, Benjamin M

    2015-04-29

    Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics.

  13. Evaluation of strategies for the eradication of Pseudorabies virus (Aujeszky's disease) in commercial swine farms in Chiang-Mai and Lampoon Provinces, Thailand, using a simulation disease spread model.

    PubMed

    Ketusing, N; Reeves, A; Portacci, K; Yano, T; Olea-Popelka, F; Keefe, T; Salman, M

    2014-04-01

    Several strategies for eradicating Pseudorabies virus (Aujeszky's disease) in Chiang-Mai and Lampoon Provinces, Thailand, were compared using a computer simulation model, the North American Animal Disease Spread Model (NAADSM). The duration of the outbreak, the number of affected herds and the number of destroyed herds were compared during these simulated outbreaks. Depopulation, zoning for restricted movement and improved detection and vaccination strategies were assessed. The most effective strategies to eradicate Pseudorabies as per the findings from this study are applying depopulation strategies with MOVEMENT RESTRICTIONS in 3-, 8- and 16-km ZONES surrounding infected herds and enhancing the eradication with vaccination campaign on 16-km radius surrounding infected herds. © 2012 Blackwell Verlag GmbH.

  14. Implementation of a physically-based scheme representing light-absorbing impurities deposition, evolution and radiative impacts in the SURFEX/Crocus model

    NASA Astrophysics Data System (ADS)

    Tuzet, F.; Dumont, M.; Lafaysse, M.; Hagenmuller, P.; Arnaud, L.; Picard, G.; Morin, S.

    2017-12-01

    Light-absorbing impurities decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive impact is to accelerate snow melt. However the presence of a layer highly concentrated in light-absorbing impurities in the snowpack also modify its temperature profile affecting snow metamorphism. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities deposition and evolution within the snowpack (Tuzet et al., 2017, TCD). Once deposited, the model computes impurities mass evolution until snow melts out. Taking benefits of the recent inclusion of the spectral radiative transfer model TARTES in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. In the Pyrenees mountain range, strong sporadic Saharan dust deposition (referred to as dust outbreaks) can occur during the snow season leading some snow layers in the snowpack to contain high concentrations of mineral dust. One of the major events of the past years occurred on February 2014, affecting the whole southern Europe. During the weeks following this dust outbreak a strong avalanche activity was reported in the Aran valley (Pyrenees, Spain). For now, the link between the dust outbreak and the avalanche activity is not demonstrated.We investigate the impact of this dust outbreak on the snowpack stability in the Aran valley using the Crocus model, trying to determine whether the snowpack instability observed after the dust outbreak can be related to the presence of dust. SAFRAN-reanalysis meteorological data are used to drive the model on several altitudes, slopes and aspects. For each slope configuration two different simulations are run; one without dust and one simulating the dust outbreak of February 2014.The two corresponding simulations are then compared to assess the role of impurities on snow metamorphism and stability.On this example, we numerically prove that under specific meteorological conditions the presence of a dusty layer in the snowpack causes an enhanced temperature gradient at the interface, favoring the formation of faceted crystals.These preliminary results need to be evaluated against field measurements and with respect to uncertainties in Crocus model.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J; Velsko, S

    This report explores the question of whether meaningful conclusions can be drawn regarding the transmission relationship between two microbial samples on the basis of differences observed between the two sample's respective genomes. Unlike similar forensic applications using human DNA, the rapid rate of microbial genome evolution combined with the dynamics of infectious disease require a shift in thinking on what it means for two samples to 'match' in support of a forensic hypothesis. Previous outbreaks for SARS-CoV, FMDV and HIV were examined to investigate the question of how microbial sequence data can be used to draw inferences that link twomore » infected individuals by direct transmission. The results are counter intuitive with respect to human DNA forensic applications in that some genetic change rather than exact matching improve confidence in inferring direct transmission links, however, too much genetic change poses challenges, which can weaken confidence in inferred links. High rates of infection coupled with relatively weak selective pressure observed in the SARS-CoV and FMDV data lead to fairly low confidence for direct transmission links. Confidence values for forensic hypotheses increased when testing for the possibility that samples are separated by at most a few intermediate hosts. Moreover, the observed outbreak conditions support the potential to provide high confidence values for hypothesis that exclude direct transmission links. Transmission inferences are based on the total number of observed or inferred genetic changes separating two sequences rather than uniquely weighing the importance of any one genetic mismatch. Thus, inferences are surprisingly robust in the presence of sequencing errors provided the error rates are randomly distributed across all samples in the reference outbreak database and the novel sequence samples in question. When the number of observed nucleotide mutations are limited due to characteristics of the outbreak or the availability of only partial rather than whole genome sequencing, indel information was shown to have the potential to improve performance but only for select outbreak conditions. In examined HIV transmission cases, extended evolution proved to be the limiting factor in assigning high confidence to transmission links, however, the potential to correct for extended evolution not associated with transmission events is demonstrated. Outbreak specific conditions such as selective pressure (in the form of varying mutation rate), are shown to impact the strength of inference made and a Monte Carlo simulation tool is introduced, which is used to provide upper and lower bounds on the confidence values associated with a forensic hypothesis.« less

  16. Evaluation of the zoonotic potential of transmissible mink encephalopathy

    USDA-ARS?s Scientific Manuscript database

    Successful transmission of Transmissible Mink Encephalopathy (TME) to cattle supports the bovine hypothesis to the still controversial origin of TME outbreaks. Human and primate susceptibility to classical Bovine Spongiform Encephalopathy (c-BSE) and the transmissibility of L-type BSE to macaques as...

  17. Sellers’ Revisited: A Big Data Reassessment of Historical Outbreaks of Bluetongue and African Horse Sickness due to the Long-Distance Wind Dispersion of Culicoides Midges

    PubMed Central

    Durr, Peter A.; Graham, Kerryne; van Klinken, Rieks D.

    2017-01-01

    The possibility that outbreaks of bluetongue (BT) and African horse sickness (AHS) might occur via long-distance wind dispersion (LDWD) of their insect vector (Culicoides spp.) was proposed by R. F. Sellers in a series of papers published between 1977 and 1991. These investigated the role of LDWD by means of visual examination of the wind direction of synoptic weather charts. Based on the hypothesis that simple wind direction analysis, which does not allow for wind speed, might have led to spurious conclusions, we reanalyzed six of the outbreak scenarios described in Sellers’ papers. For this reanalysis, we used a custom-built Big Data application (“TAPPAS”) which couples a user-friendly web-interface with an established atmospheric dispersal model (“HYSPLIT”), thus enabling more sophisticated modeling than was possible when Sellers undertook his analyzes. For the two AHS outbreaks, there was strong support from our reanalysis of the role of LDWD for that in Spain (1966), and to a lesser degree, for the outbreak in Cyprus (1960). However, for the BT outbreaks, the reassessments were more complex, and for one of these (western Turkey, 1977) we could discount LDWD as the means of direct introduction of the virus. By contrast, while the outbreak in Cyprus (1977) showed LDWD was a possible means of introduction, there is an apparent inconsistency in that the outbreaks were localized while the dispersion events covered much of the island. For Portugal (1956), LDWD from Morocco on the dates suggested by Sellers is very unlikely to have been the pathway for introduction, and for the detection of serotype 2 in Florida (1982), LDWD from Cuba would require an assumption of a lengthy survival time of the midges in the air column. Except for western Turkey, the BT reanalyses show the limitation of LDWD modeling when used by itself, and indicates the need to integrate susceptible host population distribution (and other covariate) data into the modeling process. A further refinement, which will become increasingly important to assess LDWD, will be the use of virus and vector genome sequence data collected from potential source and the incursion sites. PMID:28775987

  18. Factors influencing emergency nurses' ethical problems during the outbreak of MERS-CoV.

    PubMed

    Choi, Jeong-Sil; Kim, Ji-Soo

    2018-05-01

    Whenever there has been a worldwide contagious disease outbreak, there have been reports of infection and death of healthcare workers. Particularly because emergency nurses have contact with patients on the front line, they experience ethical problems in nursing while struggling with infectious diseases in an unfavorable environment. The objective of this study was to explore emergency nurses' ethical problems and to identify factors influencing these problems during the outbreak of Middle East respiratory syndrome-coronavirus in Korea. For this cross-sectional study, a questionnaire survey was conducted with emergency nurses working in six hospitals selected through convenience sampling from the hospitals designated for Middle East respiratory syndrome-coronavirus patients in the capital area. Data were collected from 169 emergency nurses in Korea during August 2015. Ethical considerations: This research was approved by the Institutional Review Board of G University in Korea. The findings of this study suggest that during the Middle East respiratory syndrome-coronavirus outbreak, emergency nurses experienced ethical problems tied to a mind-set of avoiding patients. Three factors were found to influence emergency nurses' ethical problems (in order of influence): cognition of social stigmatization, level of agreement with infection control measures, and perceived risk. Through this study, we obtained information on emergency nurses' ethical problems during the Middle East respiratory syndrome-coronavirus outbreak and identified the factors that influence them. As found in this study, nurses' ethical problems were influenced most by cognitions of social stigmatization. Accordingly, to support nurses confidently care for people during future health disasters, it is most urgent to promote appropriate public consciousness that encourages healthcare workers.

  19. A large prolonged outbreak of hepatitis A associated with consumption of frozen berries, Italy, 2013-14.

    PubMed

    Scavia, Gaia; Alfonsi, Valeria; Taffon, Stefania; Escher, Martina; Bruni, Roberto; Medici, Dario De; Pasquale, Simona Di; Guizzardi, Sarah; Cappelletti, Benedetta; Iannazzo, Stefania; Losio, Nadia Marina; Pavoni, Enrico; Decastelli, Lucia; Ciccaglione, Anna Rita; Equestre, Michele; Tosti, Maria Elena; Rizzo, Caterina; National Italian Task Force On Hepatitis A

    2017-03-01

    In 2013/2014, Italy experienced one of the largest community-wide prolonged outbreaks of hepatitis A virus (HAV) throughout the country. The article provides a comprehensive description of the outbreak and the investigation carried out by a multidisciplinary National Task Force, in collaboration with regional and local public health authorities. Control strategies of food-borne HAV infection in both the human and food sectors are also described. Enhanced human epidemiological and microbiological surveillance together with microbiological monitoring of HAV in food and trace-back investigation were conducted. A total of 1803 HAV cases were identified from 1 January 2013 to 31 August 2014, in Italy. Sequencing was possible for 368 cases (20.4 %), mostly collected between 1 January 2013 and 28 February 2014, and 246 cases (66.8 %) harboured an HAV outbreak strain. Imported frozen berries contaminated with HAV were identified as the vehicle of the outbreak which also involved many other European countries in 2013 and 2014. Epidemiological evidence obtained through a case-control study was supported by the finding of a 100 % nucleotide similarity of the VP1/2A sequences of HAVs detected in human and food samples. Trace-back investigation revealed an extremely complex supplying network with no possibility for a point source potentially explaining the vast contamination of berries found in Italy. The investigation benefited from an excellent collaboration among different sectors who shared proactively the available information. Our findings highlight the importance of considering frozen berries among the highest risk factors for HAV.

  20. Tracing outbreaks of Streptococcus equi infection (strangles) in horses using sequence variation in the seM gene and pulsed-field gel electrophoresis.

    PubMed

    Lindahl, Susanne; Söderlund, Robert; Frosth, Sara; Pringle, John; Båverud, Viveca; Aspán, Anna

    2011-11-21

    Strangles is a serious respiratory disease in horses caused by Streptococcus equi subspecies equi (S. equi). Transmission of the disease occurs by direct contact with an infected horse or contaminated equipment. Genetically, S. equi strains are highly homogenous and differentiation of strains has proven difficult. However, the S. equi M-protein SeM contains a variable N-terminal region and has been proposed as a target gene to distinguish between different strains of S. equi and determine the source of an outbreak. In this study, strains of S. equi (n=60) from 32 strangles outbreaks in Sweden during 1998-2003 and 2008-2009 were genetically characterized by sequencing the SeM protein gene (seM), and by pulsed-field gel electrophoresis (PFGE). Swedish strains belonged to 10 different seM types, of which five have not previously been described. Most were identical or highly similar to allele types from strangles outbreaks in the UK. Outbreaks in 2008/2009 sharing the same seM type were associated by geographic location and/or type of usage of the horses (racing stables). Sequencing of the seM gene generally agreed with pulsed-field gel electrophoresis profiles. Our data suggest that seM sequencing as a epidemiological tool is supported by the agreement between seM and PFGE and that sequencing of the SeM protein gene is more sensitive than PFGE in discriminating strains of S. equi. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Dengue virus type 1 clade replacement in recurring homotypic outbreaks

    PubMed Central

    2013-01-01

    Background Recurring dengue outbreaks occur in cyclical pattern in most endemic countries. The recurrences of dengue virus (DENV) infection predispose the population to increased risk of contracting the severe forms of dengue. Understanding the DENV evolutionary mechanism underlying the recurring dengue outbreaks has important implications for epidemic prediction and disease control. Results We used a set of viral envelope (E) gene to reconstruct the phylogeny of DENV-1 isolated between the periods of 1987–2011 in Malaysia. Phylogenetic analysis of DENV-1 E gene revealed that genotype I virus clade replacements were associated with the cyclical pattern of major DENV-1 outbreaks in Malaysia. A total of 9 non-conservative amino acid substitutions in the DENV-1 E gene consensus were identified; 4 in domain I, 3 in domain II and 2 in domain III. Selection pressure analyses did not reveal any positively selected codon site within the full length E gene sequences (1485 nt, 495 codons). A total of 183 (mean dN/dS = 0.0413) negatively selected sites were found within the Malaysian isolates; neither positive nor negative selection was noted for the remaining 312 codons. All the viruses were cross-neutralized by the respective patient sera suggesting no strong support for immunological advantage of any of the amino acid substitutions. Conclusion DENV-1 clade replacement is associated with recurrences of major DENV-1 outbreaks in Malaysia. Our findings are consistent with those of other studies that the DENV-1 clade replacement is a stochastic event independent of positive selection. PMID:24073945

  2. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks

    PubMed Central

    Donato, Daniel C.; Raffa, Kenneth F.; Turner, Monica G.

    2016-01-01

    Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes. PMID:27821739

  3. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks.

    PubMed

    Seidl, Rupert; Donato, Daniel C; Raffa, Kenneth F; Turner, Monica G

    2016-11-15

    Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes.

  4. Integrated genomic and interfacility patient-transfer data reveal the transmission pathways of multidrug-resistant Klebsiella pneumoniae in a regional outbreak.

    PubMed

    Snitkin, Evan S; Won, Sarah; Pirani, Ali; Lapp, Zena; Weinstein, Robert A; Lolans, Karen; Hayden, Mary K

    2017-11-22

    Development of effective strategies to limit the proliferation of multidrug-resistant organisms requires a thorough understanding of how such organisms spread among health care facilities. We sought to uncover the chains of transmission underlying a 2008 U.S. regional outbreak of carbapenem-resistant Klebsiella pneumoniae by performing an integrated analysis of genomic and interfacility patient-transfer data. Genomic analysis yielded a high-resolution transmission network that assigned directionality to regional transmission events and discriminated between intra- and interfacility transmission when epidemiologic data were ambiguous or misleading. Examining the genomic transmission network in the context of interfacility patient transfers (patient-sharing networks) supported the role of patient transfers in driving the outbreak, with genomic analysis revealing that a small subset of patient-transfer events was sufficient to explain regional spread. Further integration of the genomic and patient-sharing networks identified one nursing home as an important bridge facility early in the outbreak-a role that was not apparent from analysis of genomic or patient-transfer data alone. Last, we found that when simulating a real-time regional outbreak, our methodology was able to accurately infer the facility at which patients acquired their infections. This approach has the potential to identify facilities with high rates of intra- or interfacility transmission, data that will be useful for triggering targeted interventions to prevent further spread of multidrug-resistant organisms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Treating and Preventing Influenza in Aged Care Facilities: A Cluster Randomised Controlled Trial

    PubMed Central

    Booy, Robert; Lindley, Richard I.; Dwyer, Dominic E.; Yin, Jiehui K.; Heron, Leon G.; Moffatt, Cameron R. M.; Chiu, Clayton K.; Rosewell, Alexander E.; Dean, Anna S.; Dobbins, Timothy; Philp, David J.; Gao, Zhanhai; MacIntyre, C. Raina

    2012-01-01

    Background Influenza is an important cause of morbidity and mortality for frail older people. Whilst the antiviral drug oseltamivir (a neuraminidase inhibitor) is approved for treatment and prophylaxis of influenza during outbreaks, there have been no trials comparing treatment only (T) versus treatment and prophylaxis (T&P) in Aged Care Facilities (ACFs). Our objective was to compare a policy of T versus T&P for influenza outbreaks in ACFs. Methods and Findings We performed a cluster randomised controlled trial in 16 ACFs, that followed a policy of either “T”—oseltamivir treatment (75 mg twice a day for 5 days)—or “T&P”—treatment and prophylaxis (75 mg once a day for 10 days) for influenza outbreaks over three years, in addition to enhanced surveillance. The primary outcome measure was the attack rate of influenza. Secondary outcomes measures were deaths, hospitalisation, pneumonia and adverse events. Laboratory testing was performed to identify the viral cause of influenza-like illness (ILI) outbreaks. The study period 30 June 2006 to 23 December 2008 included three southern hemisphere winters. During that time, influenza was confirmed as the cause of nine of the 23 ILI outbreaks that occurred amongst the 16 ACFs. The policy of T&P resulted in a significant reduction in the influenza attack rate amongst residents: 93/255 (36%) in residents in T facilities versus 91/397 (23%) in T&P facilities (p = 0.002). We observed a non-significant reduction in staff: 46/216 (21%) in T facilities versus 47/350 (13%) in T&P facilities (p = 0.5). There was a significant reduction in mean duration of outbreaks (T = 24 days, T&P = 11 days, p = 0.04). Deaths, hospitalisations and pneumonia were non-significantly reduced in the T&P allocated facilities. Drug adverse events were common but tolerated. Conclusion Our trial lacked power but these results provide some support for a policy of “treatment and prophylaxis” with oseltamivir in controlling influenza outbreaks in ACFs. Trail Registration Australian Clinical Trials Registry ACTRN12606000278538 PMID:23082123

  6. Community-based health care is an essential component of a resilient health system: evidence from Ebola outbreak in Liberia.

    PubMed

    Siekmans, Kendra; Sohani, Salim; Boima, Tamba; Koffa, Florence; Basil, Luay; Laaziz, Saïd

    2017-01-17

    Trained community health workers (CHW) enhance access to essential primary health care services in contexts where the health system lacks capacity to adequately deliver them. In Liberia, the Ebola outbreak further disrupted health system function. The objective of this study is to examine the value of a community-based health system in ensuring continued treatment of child illnesses during the outbreak and the role that CHWs had in Ebola prevention activities. A descriptive observational study design used mixed methods to collect data from CHWs (structured survey, n = 60; focus group discussions, n = 16), government health facility workers and project staff. Monthly data on child diarrhea and pneumonia treatment were gathered from CHW case registers and local health facility records. Coverage for community-based treatment of child diarrhea and pneumonia continued throughout the outbreak in project areas. A slight decrease in cases treated during the height of the outbreak, from 50 to 28% of registers with at least one treatment per month, was attributed to directives not to touch others, lack of essential medicines and fear of contracting Ebola. In a climate of distrust, where health workers were reluctant to treat patients, sick people were afraid to self-identify and caregivers were afraid to take children to the clinic, CHWs were a trusted source of advice and Ebola prevention education. These findings reaffirm the value of recruiting and training local workers who are trusted by the community and understand the social and cultural complexities of this relationship. "No touch" integrated community case management (iCCM) guidelines distributed at the height of the outbreak gave CHWs renewed confidence in assessing and treating sick children. Investments in community-based health service delivery contributed to continued access to lifesaving treatment for child pneumonia and diarrhea during the Ebola outbreak, making communities more resilient when facility-based health services were impacted by the crisis. To maximize the effectiveness of these interventions during a crisis, proactive training of CHWs in infection prevention and "no touch" iCCM guidelines, strengthening drug supply chain management and finding alternative ways to provide supportive supervision when movements are restricted are recommended.

  7. Spatial-temporal analysis of the of the risk of Rift Valley Fever in Kenya

    NASA Astrophysics Data System (ADS)

    Bett, B.; Omolo, A.; Hansen, F.; Notenbaert, A.; Kemp, S.

    2012-04-01

    Historical data on Rift Valley Fever (RVF) outbreaks in Kenya covering the period 1951 - 2010 were analyzed using a logistic regression model to identify factors associated with RVF occurrence. The analysis used a division, an administrative unit below a district, as the unit of analysis. The infection status of each division was defined on a monthly time scale and used as a dependent variable. Predictors investigated include: monthly precipitation (minimum, maximum and total), normalized difference vegetation index, altitude, agro-ecological zone, presence of game, livestock and human population densities, the number of times a division has had an outbreak before and time interval in months between successive outbreaks (used as a proxy for immunity). Both univariable and multivariable analyses were conducted. The models used incorporated an auto-regressive correlation matrix to account for clustering of observations in time, while dummy variables were fitted in the multivariable model to account for spatial relatedness/topology between divisions. This last procedure was followed because it is expected that the risk of RVF occurring in a given division increases when its immediate neighbor gets infected. Functional relationships between the continuous and the outcome variables were assessed to ensure that the linearity assumption was met. Deviance and leverage residuals were also generated from the final model and used for evaluating the goodness of fit of the model. Descriptive analyzes indicate that a total of 91 divisions in 42 districts (of the original 69 districts in place by 1999) reported RVF outbreaks at least once over the period. The mean interval between outbreaks was determined to be about 43 months. Factors that were positively associated with RVF occurrence include increased precipitation, high outbreak interval and the number of times a division has been infected or reported an outbreak. The model will be validated and used for developing an RVF forecasting system. This forecasting system can then be used with the existing regional RVF prediction tools such as EMPRES-i to downscale RVF risk predictions to country-specific scales and subsequently link them with decision support systems. The ultimate aim is to increase the capacity of the national institutions to formulate appropriate RVF mitigation measures.

  8. Both Epistasis and Diversifying Selection Drive the Structural Evolution of the Ebola Virus Glycoprotein Mucin-Like Domain.

    PubMed

    Ibeh, Neke; Nshogozabahizi, Jean Claude; Aris-Brosou, Stéphane

    2016-06-01

    Throughout the last 3 decades, Ebola virus (EBOV) outbreaks have been confined to isolated areas within Central Africa; however, the 2014 variant reached unprecedented transmission and mortality rates. While the outbreak was still under way, it was reported that the variant leading up to this outbreak evolved faster than previous EBOV variants, but evidence for diversifying selection was undetermined. Here, we test this selection hypothesis and show that while previous EBOV outbreaks were preceded by bursts of diversification, evidence for site-specific diversifying selection during the emergence of the 2014 EBOV clade is weak. However, we show strong evidence supporting an interplay between selection and correlated evolution (epistasis), particularly in the mucin-like domain (MLD) of the EBOV glycoprotein. By reconstructing ancestral structures of the MLD, we further propose a structural mechanism explaining how the substitutions that accumulated between 1918 and 1969 distorted the MLD, while more recent epistatic substitutions restored part of the structure, with the most recent substitution being adaptive. We suggest that it is this complex interplay between weak selection, epistasis, and structural constraints that has shaped the evolution of the 2014 EBOV variant. The role that selection plays in the emergence of viral epidemics remains debated, particularly in the context of the 2014 EBOV outbreak. Most critically, should such evidence exist, it is generally unclear how this relates to function and increased virulence. Here, we show that the viral lineage leading up to the 2014 outbreak underwent a complex interplay between selection and correlated evolution (epistasis) in a protein region that is critical for immune evasion. We then reconstructed the three-dimensional structure of this domain and showed that the initial mutations in this lineage deformed the structure, while subsequent mutations restored part of the structure. Along this mutational path, the first and last mutations were adaptive, while the intervening ones were epistatic. Altogether, we provide a mechanistic model that explains how selection and epistasis acted on the structural constraints that materialized during the 2014 EBOV outbreak. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. The Role of a Lid in the 31 May 1985 Tornado Outbreak

    DTIC Science & Technology

    1988-05-01

    severe convection. Subjective analysis necessary to use this mode], however, is much too time consuming for operational forecasting . Therefore, a...analysis necessary to use this conceptual model, however, is much too time consuming for operational forecasting . Therefore, a computer application was...the forecasting of these systems continue to be desirable. Most severe convective storms in mid-latitudes are mesoscale phenomena. The term mesoscale

  10. Integrating malaria surveillance with climate data for outbreak detection and forecasting: the EPIDEMIA system.

    PubMed

    Merkord, Christopher L; Liu, Yi; Mihretie, Abere; Gebrehiwot, Teklehaymanot; Awoke, Worku; Bayabil, Estifanos; Henebry, Geoffrey M; Kassa, Gebeyaw T; Lake, Mastewal; Wimberly, Michael C

    2017-02-23

    Early indication of an emerging malaria epidemic can provide an opportunity for proactive interventions. Challenges to the identification of nascent malaria epidemics include obtaining recent epidemiological surveillance data, spatially and temporally harmonizing this information with timely data on environmental precursors, applying models for early detection and early warning, and communicating results to public health officials. Automated web-based informatics systems can provide a solution to these problems, but their implementation in real-world settings has been limited. The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) computer system was designed and implemented to integrate disease surveillance with environmental monitoring in support of operational malaria forecasting in the Amhara region of Ethiopia. A co-design workshop was held with computer scientists, epidemiological modelers, and public health partners to develop an initial list of system requirements. Subsequent updates to the system were based on feedback obtained from system evaluation workshops and assessments conducted by a steering committee of users in the public health sector. The system integrated epidemiological data uploaded weekly by the Amhara Regional Health Bureau with remotely-sensed environmental data freely available from online archives. Environmental data were acquired and processed automatically by the EASTWeb software program. Additional software was developed to implement a public health interface for data upload and download, harmonize the epidemiological and environmental data into a unified database, automatically update time series forecasting models, and generate formatted reports. Reporting features included district-level control charts and maps summarizing epidemiological indicators of emerging malaria outbreaks, environmental risk factors, and forecasts of future malaria risk. Successful implementation and use of EPIDEMIA is an important step forward in the use of epidemiological and environmental informatics systems for malaria surveillance. Developing software to automate the workflow steps while remaining robust to continual changes in the input data streams was a key technical challenge. Continual stakeholder involvement throughout design, implementation, and operation has created a strong enabling environment that will facilitate the ongoing development, application, and testing of the system.

  11. Dengue Outbreak in Hadramout, Yemen, 2010: An Epidemiological Perspective

    PubMed Central

    Ghouth, Abdulla Salim Bin; Amarasinghe, Ananda; Letson, G. William

    2012-01-01

    We analyzed surveillance data of a dengue outbreak (2010) reported to the Hadramout Health Office (Yemen) and retrospectively analyzed dengue-related epidemiological and entomological events reported in Hadramout from 2005 to 2009. A total of 630 immunoglobulin M (IgM) -confirmed dengue cases of 982 febrile cases was reported during the period from February to June of 2010; 12 cases died, giving case fatality a rate of 1.9%. Among febrile cases, the highest proportion of dengue cases (37.3%) was reported in the 15- to 24-year-old age group. The overall attack rate was 0.89/1,000. The average number of cases reported by month over the preceding 5-year period compared with the 2010 data is consistent with endemicity of dengue in the region and supports epidemic designation for the dengue activity in 2010. Recognition of endemic dengue transmission and potential for substantial dengue epidemics highlight the need for consistent laboratory-based surveillance that can support prevention and control activities accordingly. PMID:22665621

  12. Patient-Centred Coordinated Care in Times of Emerging Diseases and Epidemics. Contribution of the IMIA Working Group on Patient Safety.

    PubMed

    Borycki, E; Cummings, E; Dexheimer, J W; Gong, Y; Kennebeck, S; Kushniruk, A; Kuziemsky, C; Saranto, K; Weber, J; Takeda, H

    2015-08-13

    In this paper the researchers describe how existing health information technologies (HIT) can be repurposed and new technologies can be innovated to provide patient-centered care to individuals affected by new and emerging diseases. The researchers conducted a focused review of the published literature describing how HIT can be used to support safe, patient-centred, coordinated care to patients who are affected by Ebola (an emerging disease). New and emerging diseases present opportunities for repurposing existing technologies and for stimulating the development of new HIT innovation. Innovative technologies may be developed such as new software used for tracking patients during new or emerging disease outbreaks or by repurposing and extending existing technologies so they can be used to support patients, families and health professionals who may have been exposed to a disease. The paper describes the development of new technologies and the repurposing and extension of existing ones (such as electronic health records) using the most recent outbreak of Ebola as an example.

  13. Need for speed: An optimized gridding approach for spatially explicit disease simulations.

    PubMed

    Sellman, Stefan; Tsao, Kimberly; Tildesley, Michael J; Brommesson, Peter; Webb, Colleen T; Wennergren, Uno; Keeling, Matt J; Lindström, Tom

    2018-04-01

    Numerical models for simulating outbreaks of infectious diseases are powerful tools for informing surveillance and control strategy decisions. However, large-scale spatially explicit models can be limited by the amount of computational resources they require, which poses a problem when multiple scenarios need to be explored to provide policy recommendations. We introduce an easily implemented method that can reduce computation time in a standard Susceptible-Exposed-Infectious-Removed (SEIR) model without introducing any further approximations or truncations. It is based on a hierarchical infection process that operates on entire groups of spatially related nodes (cells in a grid) in order to efficiently filter out large volumes of susceptible nodes that would otherwise have required expensive calculations. After the filtering of the cells, only a subset of the nodes that were originally at risk are then evaluated for actual infection. The increase in efficiency is sensitive to the exact configuration of the grid, and we describe a simple method to find an estimate of the optimal configuration of a given landscape as well as a method to partition the landscape into a grid configuration. To investigate its efficiency, we compare the introduced methods to other algorithms and evaluate computation time, focusing on simulated outbreaks of foot-and-mouth disease (FMD) on the farm population of the USA, the UK and Sweden, as well as on three randomly generated populations with varying degree of clustering. The introduced method provided up to 500 times faster calculations than pairwise computation, and consistently performed as well or better than other available methods. This enables large scale, spatially explicit simulations such as for the entire continental USA without sacrificing realism or predictive power.

  14. Need for speed: An optimized gridding approach for spatially explicit disease simulations

    PubMed Central

    Tildesley, Michael J.; Brommesson, Peter; Webb, Colleen T.; Wennergren, Uno; Lindström, Tom

    2018-01-01

    Numerical models for simulating outbreaks of infectious diseases are powerful tools for informing surveillance and control strategy decisions. However, large-scale spatially explicit models can be limited by the amount of computational resources they require, which poses a problem when multiple scenarios need to be explored to provide policy recommendations. We introduce an easily implemented method that can reduce computation time in a standard Susceptible-Exposed-Infectious-Removed (SEIR) model without introducing any further approximations or truncations. It is based on a hierarchical infection process that operates on entire groups of spatially related nodes (cells in a grid) in order to efficiently filter out large volumes of susceptible nodes that would otherwise have required expensive calculations. After the filtering of the cells, only a subset of the nodes that were originally at risk are then evaluated for actual infection. The increase in efficiency is sensitive to the exact configuration of the grid, and we describe a simple method to find an estimate of the optimal configuration of a given landscape as well as a method to partition the landscape into a grid configuration. To investigate its efficiency, we compare the introduced methods to other algorithms and evaluate computation time, focusing on simulated outbreaks of foot-and-mouth disease (FMD) on the farm population of the USA, the UK and Sweden, as well as on three randomly generated populations with varying degree of clustering. The introduced method provided up to 500 times faster calculations than pairwise computation, and consistently performed as well or better than other available methods. This enables large scale, spatially explicit simulations such as for the entire continental USA without sacrificing realism or predictive power. PMID:29624574

  15. Eco-virological approach for assessing the role of wild birds in the spread of avian influenza H5N1 along the central Asian flyway

    USGS Publications Warehouse

    Newman, Scott H.; Hill, Nichola J.; Spragens, Kyle A.; Janies, Daniel; Voronkin, Igor O.; Prosser, Diann J.; Yan, Baoping; Lei, Fumin; Batbayar, Nyambayar; Natsagdorj, Tseveenmyadag; Bishop, Charles M.; Butler, Patrick J.; Wikelski, Martin; Balachandran, Sivananinthaperumal; Mundkur, Taej; Douglas, David C.; Takekawa, John Y.

    2012-01-01

    A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this ‘thoroughfare’. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005–2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.

  16. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in Eastern Asia

    USGS Publications Warehouse

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  17. Assessing the stability of polio eradication after the withdrawal of oral polio vaccine

    PubMed Central

    Selinger, Christian; McCarthy, Kevin A.; Eckhoff, Philip A.; Chabot-Couture, Guillaume

    2018-01-01

    The oral polio vaccine (OPV) contains live-attenuated polioviruses that induce immunity by causing low virulence infections in vaccine recipients and their close contacts. Widespread immunization with OPV has reduced the annual global burden of paralytic poliomyelitis by a factor of 10,000 or more and has driven wild poliovirus (WPV) to the brink of eradication. However, in instances that have so far been rare, OPV can paralyze vaccine recipients and generate vaccine-derived polio outbreaks. To complete polio eradication, OPV use should eventually cease, but doing so will leave a growing population fully susceptible to infection. If poliovirus is reintroduced after OPV cessation, under what conditions will OPV vaccination be required to interrupt transmission? Can conditions exist in which OPV and WPV reintroduction present similar risks of transmission? To answer these questions, we built a multi-scale mathematical model of infection and transmission calibrated to data from clinical trials and field epidemiology studies. At the within-host level, the model describes the effects of vaccination and waning immunity on shedding and oral susceptibility to infection. At the between-host level, the model emulates the interaction of shedding and oral susceptibility with sanitation and person-to-person contact patterns to determine the transmission rate in communities. Our results show that inactivated polio vaccine (IPV) is sufficient to prevent outbreaks in low transmission rate settings and that OPV can be reintroduced and withdrawn as needed in moderate transmission rate settings. However, in high transmission rate settings, the conditions that support vaccine-derived outbreaks have only been rare because population immunity has been high. Absent population immunity, the Sabin strains from OPV will be nearly as capable of causing outbreaks as WPV. If post-cessation outbreak responses are followed by new vaccine-derived outbreaks, strategies to restore population immunity will be required to ensure the stability of polio eradication. PMID:29702638

  18. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    PubMed

    Newman, Scott H; Iverson, Samuel A; Takekawa, John Y; Gilbert, Martin; Prosser, Diann J; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C

    2009-05-28

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  19. Migration of Whooper Swans and Outbreaks of Highly Pathogenic Avian Influenza H5N1 Virus in Eastern Asia

    PubMed Central

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003–2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds. PMID:19479053

  20. Eco-Virological Approach for Assessing the Role of Wild Birds in the Spread of Avian Influenza H5N1 along the Central Asian Flyway

    PubMed Central

    Newman, Scott H.; Hill, Nichola J.; Spragens, Kyle A.; Janies, Daniel; Voronkin, Igor O.; Prosser, Diann J.; Yan, Baoping; Lei, Fumin; Batbayar, Nyambayar; Natsagdorj, Tseveenmyadag; Bishop, Charles M.; Butler, Patrick J.; Wikelski, Martin; Balachandran, Sivananinthaperumal; Mundkur, Taej; Douglas, David C.; Takekawa, John Y.

    2012-01-01

    A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this ‘thoroughfare’. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005–2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations. PMID:22347393

  1. Epidemiology of restaurant-associated foodborne disease outbreaks, United States, 1998-2013.

    PubMed

    Angelo, K M; Nisler, A L; Hall, A J; Brown, L G; Gould, L H

    2017-02-01

    Although contamination of food can occur at any point from farm to table, restaurant food workers are a common source of foodborne illness. We describe the characteristics of restaurant-associated foodborne disease outbreaks and explore the role of food workers by analysing outbreaks associated with restaurants from 1998 to 2013 reported to the Centers for Disease Control and Prevention's Foodborne Disease Outbreak Surveillance System. We identified 9788 restaurant-associated outbreaks. The median annual number of outbreaks was 620 (interquartile range 618-629). In 3072 outbreaks with a single confirmed aetiology reported, norovirus caused the largest number of outbreaks (1425, 46%). Of outbreaks with a single food reported and a confirmed aetiology, fish (254 outbreaks, 34%) was most commonly implicated, and these outbreaks were commonly caused by scombroid toxin (219 outbreaks, 86% of fish outbreaks). Most outbreaks (79%) occurred at sit-down establishments. The most commonly reported contributing factors were those related to food handling and preparation practices in the restaurant (2955 outbreaks, 61%). Food workers contributed to 2415 (25%) outbreaks. Knowledge of the foods, aetiologies, and contributing factors that result in foodborne disease restaurant outbreaks can help guide efforts to prevent foodborne illness.

  2. Fault tree analysis of the causes of waterborne outbreaks.

    PubMed

    Risebro, Helen L; Doria, Miguel F; Andersson, Yvonne; Medema, Gertjan; Osborn, Keith; Schlosser, Olivier; Hunter, Paul R

    2007-01-01

    Prevention and containment of outbreaks requires examination of the contribution and interrelation of outbreak causative events. An outbreak fault tree was developed and applied to 61 enteric outbreaks related to public drinking water supplies in the EU. A mean of 3.25 causative events per outbreak were identified; each event was assigned a score based on percentage contribution per outbreak. Source and treatment system causative events often occurred concurrently (in 34 outbreaks). Distribution system causative events occurred less frequently (19 outbreaks) but were often solitary events contributing heavily towards the outbreak (a mean % score of 87.42). Livestock and rainfall in the catchment with no/inadequate filtration of water sources contributed concurrently to 11 of 31 Cryptosporidium outbreaks. Of the 23 protozoan outbreaks experiencing at least one treatment causative event, 90% of these events were filtration deficiencies; by contrast, for bacterial, viral, gastroenteritis and mixed pathogen outbreaks, 75% of treatment events were disinfection deficiencies. Roughly equal numbers of groundwater and surface water outbreaks experienced at least one treatment causative event (18 and 17 outbreaks, respectively). Retrospective analysis of multiple outbreaks of enteric disease can be used to inform outbreak investigations, facilitate corrective measures, and further develop multi-barrier approaches.

  3. Reasons for measles cases not being vaccinated with MMR: investigation into parents' and carers' views following a large measles outbreak.

    PubMed

    McHale, P; Keenan, A; Ghebrehewet, S

    2016-03-01

    Uptake rates for the combined measles, mumps and rubella (MMR) vaccine have been below the required 95% in the UK since a retracted and discredited article linking the MMR vaccine with autism and inflammatory bowel disease was released in 1998. This study undertook semi-structured telephone interviews among parents or carers of 47 unvaccinated measles cases who were aged between 13 months and 9 years, during a large measles outbreak in Merseyside. Results showed that concerns over the specific links with autism remain an important cause of refusal to vaccinate, with over half of respondents stating this as a reason. A quarter stated child illness during scheduled vaccination time, while other reasons included general safety concerns and access issues. Over half of respondents felt that more information or a discussion with a health professional would help the decision-making process, while a third stated improved access. There was clear support for vaccination among respondents when asked about current opinions regarding MMR vaccine. The findings support the hypothesis that safety concerns remain a major barrier to MMR vaccination, and also support previous evidence that experience of measles is an important determinant in the decision to vaccinate.

  4. Contagious Comments: What Was the Online Buzz About the 2011 Quebec Measles Outbreak?

    PubMed Central

    Pereira, Jennifer A.; Quach, Susan; Dao, Huy Hao; Kwong, Jeffrey C.; Deeks, Shelley L.; Crowcroft, Natasha S.; Quan, Sherman D.; Guay, Maryse

    2013-01-01

    Background Although interruption of endemic measles was achieved in the Americas in 2002, Quebec experienced an outbreak in 2011 of 776 reported cases; 80% of these individuals had not been fully vaccinated. We analyzed readers’ online responses to Canadian news articles regarding the outbreak to better understand public perceptions of measles and vaccination. Methods We searched Canadian online English and French news sites for articles posted between April 2011 and March 2012 containing the words “measles” and “Quebec”. We included articles that i) concerned the outbreak or related vaccination strategies; and ii) generated at least ten comments. Two English and two bilingual researchers coded the unedited comments, categorizing codes to allow themes to emerge. Results We analyzed 448 comments from 188 individuals, in response to three French articles and six English articles; 112 individuals expressed positive perceptions of measles vaccination (2.2 comments/person), 38 were negative (4.2 comments/person), 11 had mixed feelings (1.5 comments/person), and 27 expressed no opinion (1.1 comments/person). Vaccine-supportive themes involved the success of vaccination in preventing disease spread, societal responsibility to vaccinate for herd immunity, and refutation of the autism link. Those against measles vaccination felt it was a personal rather than societal choice, and conveyed a distrust of vaccine manufacturers, believing that measles infection is not only safe but safer than vaccination. Commenters with mixed feelings expressed uncertainty of the infection’s severity, and varied in support of all vaccines based on perceived risk/benefit ratios. Conclusion The anti-vaccine minority’s volume of comments translates to a disproportionately high representation on online boards. Public health messages should address concerns by emphasizing that immunization is always a personal choice in Canada, and that the pharmaceutical industry is strictly controlled. Illustrating the dangers of measles through personal stories, rather than scientific data only, may also serve to strengthen messaging. PMID:23691152

  5. Emerging and Reemerging Diseases in the World Health Organization (WHO) Eastern Mediterranean Region-Progress, Challenges, and WHO Initiatives.

    PubMed

    Buliva, Evans; Elhakim, Mohamed; Tran Minh, Nhu Nguyen; Elkholy, Amgad; Mala, Peter; Abubakar, Abdinasir; Malik, Sk Md Mamunur Rahman

    2017-01-01

    The Eastern Mediterranean Region (EMR) of the World Health Organization (WHO) continues to be a hotspot for emerging and reemerging infectious diseases and the need to prevent, detect, and respond to any infectious diseases that pose a threat to global health security remains a priority. Many risk factors contribute in the emergence and rapid spread of epidemic diseases in the Region including acute and protracted humanitarian emergencies, resulting in fragile health systems, increased population mobility, rapid urbanization, climate change, weak surveillance and limited laboratory diagnostic capacity, and increased human-animal interaction. In EMR, several infectious disease outbreaks were detected, investigated, and rapidly contained over the past 5 years including: yellow fever in Sudan, Middle East respiratory syndrome in Bahrain, Oman, Qatar, Saudi Arabia, United Arab Emirates, and Yemen, cholera in Iraq, avian influenza A (H5N1) infection in Egypt, and dengue fever in Yemen, Sudan, and Pakistan. Dengue fever remains an important public health concern, with at least eight countries in the region being endemic for the disease. The emergence of MERS-CoV in the region in 2012 and its continued transmission currently poses one of the greatest threats. In response to the growing frequency, duration, and scale of disease outbreaks, WHO has worked closely with member states in the areas of improving public health preparedness, surveillance systems, outbreak response, and addressing critical knowledge gaps. A Regional network for experts and technical institutions has been established to facilitate support for international outbreak response. Major challenges are faced as a result of protracted humanitarian crises in the region. Funding gaps, lack of integrated approaches, weak surveillance systems, and absence of comprehensive response plans are other areas of concern. Accelerated efforts are needed by Regional countries, with the continuous support of WHO, to build and maintain a resilient public health system for detection and response to all acute public health events.

  6. Emerging and Reemerging Diseases in the World Health Organization (WHO) Eastern Mediterranean Region—Progress, Challenges, and WHO Initiatives

    PubMed Central

    Buliva, Evans; Elhakim, Mohamed; Tran Minh, Nhu Nguyen; Elkholy, Amgad; Mala, Peter; Abubakar, Abdinasir; Malik, Sk Md Mamunur Rahman

    2017-01-01

    The Eastern Mediterranean Region (EMR) of the World Health Organization (WHO) continues to be a hotspot for emerging and reemerging infectious diseases and the need to prevent, detect, and respond to any infectious diseases that pose a threat to global health security remains a priority. Many risk factors contribute in the emergence and rapid spread of epidemic diseases in the Region including acute and protracted humanitarian emergencies, resulting in fragile health systems, increased population mobility, rapid urbanization, climate change, weak surveillance and limited laboratory diagnostic capacity, and increased human–animal interaction. In EMR, several infectious disease outbreaks were detected, investigated, and rapidly contained over the past 5 years including: yellow fever in Sudan, Middle East respiratory syndrome in Bahrain, Oman, Qatar, Saudi Arabia, United Arab Emirates, and Yemen, cholera in Iraq, avian influenza A (H5N1) infection in Egypt, and dengue fever in Yemen, Sudan, and Pakistan. Dengue fever remains an important public health concern, with at least eight countries in the region being endemic for the disease. The emergence of MERS-CoV in the region in 2012 and its continued transmission currently poses one of the greatest threats. In response to the growing frequency, duration, and scale of disease outbreaks, WHO has worked closely with member states in the areas of improving public health preparedness, surveillance systems, outbreak response, and addressing critical knowledge gaps. A Regional network for experts and technical institutions has been established to facilitate support for international outbreak response. Major challenges are faced as a result of protracted humanitarian crises in the region. Funding gaps, lack of integrated approaches, weak surveillance systems, and absence of comprehensive response plans are other areas of concern. Accelerated efforts are needed by Regional countries, with the continuous support of WHO, to build and maintain a resilient public health system for detection and response to all acute public health events. PMID:29098145

  7. Increase in Multistate Foodborne Disease Outbreaks-United States, 1973-2010.

    PubMed

    Nguyen, Von D; Bennett, Sarah D; Mungai, Elisabeth; Gieraltowski, Laura; Hise, Kelley; Gould, L Hannah

    2015-11-01

    Changes in food production and distribution have increased opportunities for foods contaminated early in the supply chain to be distributed widely, increasing the possibility of multistate outbreaks. In recent decades, surveillance systems for foodborne disease have been improved, allowing officials to more effectively identify related cases and to trace and identify an outbreak's source. We reviewed multistate foodborne disease outbreaks reported to the Centers for Disease Control and Prevention's Foodborne Disease Outbreak Surveillance System during 1973-2010. We calculated the percentage of multistate foodborne disease outbreaks relative to all foodborne disease outbreaks and described characteristics of multistate outbreaks, including the etiologic agents and implicated foods. Multistate outbreaks accounted for 234 (0.8%) of 27,755 foodborne disease outbreaks, 24,003 (3%) of 700,600 outbreak-associated illnesses, 2839 (10%) of 29,756 outbreak-associated hospitalizations, and 99 (16%) of 628 outbreak-associated deaths. The median annual number of multistate outbreaks increased from 2.5 during 1973-1980 to 13.5 during 2001-2010; the number of multistate outbreak-associated illnesses, hospitalizations, and deaths also increased. Most multistate outbreaks were caused by Salmonella (47%) and Shiga toxin-producing Escherichia coli (26%). Foods most commonly implicated were beef (22%), fruits (13%), and leafy vegetables (13%). The number of identified and reported multistate foodborne disease outbreaks has increased. Improvements in detection, investigation, and reporting of foodborne disease outbreaks help explain the increasing number of reported multistate outbreaks and the increasing percentage of outbreaks that were multistate. Knowing the etiologic agents and foods responsible for multistate outbreaks can help to identify sources of food contamination so that the safety of the food supply can be improved.

  8. Observation of gravity waves during the extreme tornado outbreak of 3 April 1974

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Phan, T.; Smith, R. E.

    1978-01-01

    A continuous wave-spectrum high-frequency radiowave Doppler sounder array was used to observe upper-atmospheric disturbances during an extreme tornado outbreak. The observations indicated that gravity waves with two harmonic wave periods were detected at the F-region ionospheric height. Using a group ray path computational technique, the observed gravity waves were traced in order to locate potential sources. The signals were apparently excited 1-3 hours before tornado touchdown. Reverse ray tracing indicated that the wave source was located at the aurora zone with a Kp index of 6 at the time of wave excitation. The summation of the 24-hour Kp index for the day was 36. The results agree with existing theories (Testud, 1970; Titheridge, 1971; Kato, 1976) for the excitation of large-scale traveling ionospheric disturbances associated with geomagnetic activity in the aurora zone.

  9. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.

    PubMed

    Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S

    2017-09-01

    We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.

  10. Individual-based approach to epidemic processes on arbitrary dynamic contact networks

    NASA Astrophysics Data System (ADS)

    Rocha, Luis E. C.; Masuda, Naoki

    2016-08-01

    The dynamics of contact networks and epidemics of infectious diseases often occur on comparable time scales. Ignoring one of these time scales may provide an incomplete understanding of the population dynamics of the infection process. We develop an individual-based approximation for the susceptible-infected-recovered epidemic model applicable to arbitrary dynamic networks. Our framework provides, at the individual-level, the probability flow over time associated with the infection dynamics. This computationally efficient framework discards the correlation between the states of different nodes, yet provides accurate results in approximating direct numerical simulations. It naturally captures the temporal heterogeneities and correlations of contact sequences, fundamental ingredients regulating the timing and size of an epidemic outbreak, and the number of secondary infections. The high accuracy of our approximation further allows us to detect the index individual of an epidemic outbreak in real-life network data.

  11. Outbreak of Influenza A(H1N1) in a Kidney Transplant Unit-Protective Effect of Vaccination.

    PubMed

    Helanterä, I; Anttila, V-J; Lappalainen, M; Lempinen, M; Isoniemi, H

    2015-09-01

    Seasonal influenza vaccination is recommended for patients with end-stage renal disease (ESRD), despite suggested inferior efficacy among these patients. We characterize an outbreak of influenza A(H1N1) in a kidney transplant unit. Altogether 23 patients were treated on the ward for postoperative care after kidney transplantation during the outbreak. After the first positive case, all patients were tested with nasopharyngeal swab tests and 7 patients were diagnosed with influenza A(H1N1). Altogether 17/23 patients had received adequate seasonal influenza vaccination, of whom 2/17 tested positive for influenza (one asymptomatic, one with mild cough). Five of six unvaccinated patients were diagnosed with influenza A(H1N1); 3/5 suffered from severe respiratory failure and were treated with ventilator support in the ICU, but all died due to acute respiratory distress syndrome, whereas 2/5 suffered from mild viral pneumonitis and recovered fully. The risk of influenza infection and mortality was significantly increased in unvaccinated patients (odds ratio 37.5 [95% CI 2.7-507.5, p = 0.01] and 6.7 [95% CI 2.3-18.9, p = 0.003], respectively). Influenza A(H1N1) had a high mortality in our cohort of nonvaccinated immunosuppressed patients early after kidney transplantation. None of the vaccinated patients developed serious disease, supporting the role of vaccination also for ESRD patients. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. Rift Valley Fever Outbreak in Livestock in Kenya, 2006–2007

    PubMed Central

    Munyua, Peninah; Murithi, Rees M.; Wainwright, Sherrilyn; Githinji, Jane; Hightower, Allen; Mutonga, David; Macharia, Joseph; Ithondeka, Peter M.; Musaa, Joseph; Breiman, Robert F.; Bloland, Peter; Njenga, M. Kariuki

    2010-01-01

    We analyzed the extent of livestock involvement in the latest Rift Valley fever (RVF) outbreak in Kenya that started in December 2006 and continued until June 2007. When compared with previous RVF outbreaks in the country, the 2006–07 outbreak was the most extensive in cattle, sheep, goats, and camels affecting thousands of animals in 29 of 69 administrative districts across six of the eight provinces. This contrasted with the distribution of approximately 700 human RVF cases in the country, where over 85% of these cases were located in four districts; Garissa and Ijara districts in Northeastern Province, Baringo district in Rift Valley Province, and Kilifi district in Coast Province. Analysis of livestock and human data suggests that livestock infections occur before virus detection in humans, as supported by clustering of human RVF cases around livestock cases in Baringo district. The highest livestock morbidity and mortality rates were recorded in Garissa and Baringo districts, the same districts that recorded a high number of human cases. The districts that reported RVF in livestock for the first time in 2006/07 included Kitui, Tharaka, Meru South, Meru central, Mwingi, Embu, and Mbeere in Eastern Province, Malindi and Taita taveta in Coast Province, Kirinyaga and Murang'a in Central Province, and Baringo and Samburu in Rift Valley Province, indicating that the disease was occurring in new regions in the country. PMID:20682907

  13. An outbreak of chickenpox in an asylum seeker centre in Italy: outbreak investigation and validity of reported chickenpox history, December 2015–May 2016

    PubMed Central

    Vairo, Francesco; Di Bari, Virginia; Panella, Vincenzo; Quintavalle, Giuseppe; Torchia, Saul; Serra, Maria Cristina; Sinopoli, Maria Teresa; Lopalco, Maurizio; Ceccarelli, Giancarlo; Ferraro, Federica; Valle, Sabrina; Bordi, Licia; Capobianchi, Maria Rosaria; Puro, Vincenzo; Scognamiglio, Paola; Ippolito, Giuseppe

    2017-01-01

    An outbreak of chickenpox occurred between December 2015 and May 2016 among asylum seekers in a reception centre in Latium, Italy. We describe the epidemiological and laboratory investigations, control measures and validity of reported history of chickenpox infection. Serological screening of all residents and incoming asylum seekers was performed, followed by vaccine offer to all susceptible individuals without contraindication. Forty-six cases were found and 41 were associated with the outbreak. No complications, hospitalisations or deaths occurred. Serological testing was performed in 1,278 individuals and 169 were found to be susceptible, with a seroprevalence of 86.8%. A questionnaire was administered to 336 individuals consecutively attending the CARA health post to collect their serological result. The sensitivity, specificity and the positive and negative predictive value (PPV and NPV) of the reported history of chickenpox were 45.0%, 76.1%, 88.3% and 25.6%, respectively. We observed an increasing trend for the PPV and decreasing trend for the NPV with increasing age. Our report confirms that, in the asylum seeker population, chickenpox history is not the optimal method to identify susceptible individuals. Our experience supports the need for additional prevention and control measures and highlights the importance of national and local surveillance systems for reception centres. PMID:29162209

  14. Recognition and management of rodent-borne infectious disease outbreaks after heavy rainfall and flooding.

    PubMed

    Diaz, James H

    2014-01-01

    Climatic events, especially heavy rains and flooding following periods of relative drought, have precipitated both arthropod-borne and rodent-borne infectious disease outbreaks. Heavy rainfall encourages excessive wild grass seed production that supports increased outdoor rodent populations, and flooding forces rodents from their burrows near water sources into the built environment and closer to humans. The objectives of this review are to alert clinicians to the climatic conditions common to hurricane-prone regions, such as Louisiana, that can precipitate outbreaks of the two rodent-borne diseases most often associated with periods of heavy rainfall and flooding, leptospirosis (LS) and hantavirus pulmonary syndrome (HPS). It will also describe the epidemiology, presenting clinical manifestations and outcomes of these rodent-borne infectious diseases, and recommend both prophylactic therapies and effective control and prevention strategies for rodent-borne infectious disease outbreaks. Healthcare providers should maintain high levels of suspicion for LS in patients developing febrile illnesses after contaminated freshwater exposures during flooding or recreational events, and for HPS in patients with febrile illnesses that progress rapidly to respiratory failure following rodent exposures in enclosed spaces. Public health educational strategies should encourage limiting human contact with all wild and peridomestic rats and mice, avoiding all contact with rodent excreta, safely disposing of all rodent excreta, and modifying the built environment to deter rodents from colonizing households and workplaces.

  15. Respiratory syncytial virus outbreak in the basic military training cAMP of the republic of Korea Air Force.

    PubMed

    Park, Won-Ju; Yoo, Seok-Ju; Lee, Suk-Ho; Chung, Jae-Woo; Jang, Keun-Ho; Moon, Jai-Dong

    2015-01-01

    An outbreak of acute febrile illness occurred in the Republic of Korea Air Force boot camp from May to July 2011. An epidemiological investigation of the causative agent, which was of a highly infective nature, was conducted. Throat swabs were carried out and a multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) assay was performed to identify possible causative factors. The mean age of patients who had febrile illness during the study period was 20.24 years. The multiplex RT-PCR assay identified respiratory syncytial virus (RSV) as the causative agent. The main symptoms were sore throat (76.0%), sputum (72.8%), cough (72.1%), tonsillar hypertrophy (67.9%), and rhinorrhea (55.9%). The mean temperature was 38.75°C and the attack rate among the recruits was 15.7% (588 out of 3750 recruits), while the mean duration of fever was 2.3 days. The prognosis was generally favorable with supportive care but recurrent fever occurred in 10.1% of the patients within a month. This is the first epidemiological study of an RSV outbreak that developed in a healthy young adult group. In the event of an outbreak of an acute febrile illness of a highly infective nature in facilities used by a young adult group, RSV should be considered among the possible causative agents.

  16. Cholera Epidemics of the Past Offer New Insights Into an Old Enemy

    PubMed Central

    Phelps, Matthew; Perner, Mads Linnet; Pitzer, Virginia E; Andreasen, Viggo; Jensen, Peter K M; Simonsen, Lone

    2018-01-01

    Abstract Background Although cholera is considered the quintessential long-cycle waterborne disease, studies have emphasized the existence of short-cycle (food, household) transmission. We investigated singular Danish cholera epidemics (in 1853) to elucidate epidemiological parameters and modes of spread. Methods Using time series data from cities with different water systems, we estimated the intrinsic transmissibility (R0). Accessing cause-specific mortality data, we studied clinical severity and age-specific impact. From physicians’ narratives we established transmission chains and estimated serial intervals. Results Epidemics were seeded by travelers from cholera-affected cities; initial transmission chains involving household members and caretakers ensued. Cholera killed 3.4%–8.9% of the populations, with highest mortality among seniors (16%) and lowest in children (2.7%). Transmissibility (R0) was 1.7–2.6 and the serial interval was estimated at 3.7 days (95% confidence interval, 2.9–4.7 days). The case fatality ratio (CFR) was high (54%–68%); using R0 we computed an adjusted CFR of 4%–5%. Conclusions Short-cycle transmission was likely critical to early secondary transmission in historic Danish towns. The outbreaks resembled the contemporary Haiti outbreak with respect to transmissibility, age patterns, and CFR, suggesting a role for broader hygiene/sanitation interventions to control contemporary outbreaks. PMID:29165706

  17. Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test.

    PubMed Central

    Sved, J A; Yu, H; Dominiak, B; Gilchrist, A S

    2003-01-01

    Long-range dispersal of a species may involve either a single long-distance movement from a core population or spreading via unobserved intermediate populations. Where the new populations originate as small propagules, genetic drift may be extreme and gene frequency or assignment methods may not prove useful in determining the relation between the core population and outbreak samples. We describe computationally simple resampling methods for use in this situation to distinguish between the different modes of dispersal. First, estimates of heterozygosity can be used to test for direct sampling from the core population and to estimate the effective size of intermediate populations. Second, a test of sharing of alleles, particularly rare alleles, can show whether outbreaks are related to each other rather than arriving as independent samples from the core population. The shared-allele statistic also serves as a genetic distance measure that is appropriate for small samples. These methods were applied to data on a fruit fly pest species, Bactrocera tryoni, which is quarantined from some horticultural areas in Australia. We concluded that the outbreaks in the quarantine zone came from a heterogeneous set of genetically differentiated populations, possibly ones that overwinter in the vicinity of the quarantine zone. PMID:12618417

  18. Treatment of ebola virus disease.

    PubMed

    Kilgore, Paul E; Grabenstein, John D; Salim, Abdulbaset M; Rybak, Michael

    2015-01-01

    In March 2014, the largest Ebola outbreak in history exploded across West Africa. As of November 14, 2014, the World Health Organization has reported a total of 21,296 Ebola virus disease (EVD) cases, including 13,427 laboratory-confirmed EVD cases reported from the three most affected countries (Guinea, Liberia, and Sierra Leone). As the outbreak of EVD has spread, clinical disease severity and national EVD case-fatality rates have remained high (21.2-60.8%). Prior to 2013, several EVD outbreaks were controlled by using routine public health interventions; however, the widespread nature of the current EVD outbreak as well as cultural practices in the affected countries have challenged even the most active case identification efforts. In addition, although treatment centers provide supportive care, no effective therapeutic agents are available for EVD-endemic countries. The ongoing EVD outbreak has stimulated investigation of several different therapeutic strategies that target specific viral structures and mechanisms of Ebola viruses. Six to eight putative pharmacotherapies or immunologically based treatments have demonstrated promising results in animal studies. In addition, agents composed of small interfering RNAs targeting specific proteins of Ebola viruses, traditional hyperimmune globulin isolated from Ebola animal models, monoclonal antibodies, and morpholino oligomers (small molecules used to block viral gene expression). A number of EVD therapeutic agents are now entering accelerated human trials in EVD-endemic countries. The goal of therapeutic agent development includes postexposure prevention and EVD cure. As knowledge of Ebola virus virology and pathogenesis grows, it is likely that new therapeutic tools will be developed. Deployment of novel Ebola therapies will require unprecedented cooperation as well as investment to ensure that therapeutic tools become available to populations at greatest risk for EVD and its complications. In this article, we review several agents and strategies that are now under active development. © 2015 Pharmacotherapy Publications, Inc.

  19. [Marburg and Ebola hemorrhagic fevers--pathogens, epidemiology and therapy].

    PubMed

    Stock, Ingo

    2014-09-01

    Marburg and Ebola hemorrhagic fevers are severe, systemic viral diseases affecting humans and non-human primates. They are characterized by multiple symptoms such as hemorrhages, fever, headache, muscle and abdominal pain, chills, sore throat, nausea, vomiting and diarrhea. Elevated liver-associated enzyme levels and coagulopathy are also associated with these diseases. Marburg and Ebola hemorrhagic fevers are caused by (Lake victoria) Marburg virus and different species of Ebola viruses, respectively. They are enveloped, single-stranded RNA viruses and belong to the family of filoviridae. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, ranging from 25 to 90% or more. Outbreaks of Marburg and Ebola hemorrhagic fever occur in certain regions of equatorial Africa at irregular intervals. Since 2000, the number of outbreaks has increased. In 2014, the biggest outbreak of a filovirus-induced hemorrhagic fever that has been documented so far occurred from March to July 2014 in Guinea, Sierra Leone, Liberia and Nigeria. The outbreak was caused by a new variant of Zaire Ebola-Virus, affected more than 2600 people (stated 20 August) and was associated with case-fatality rates of up to 67% (Guinea). Treatment of Marburg and Ebola hemorrhagic fevers is symptomatic and supportive, licensed antiviral agents are currently not available. Recently, BCX4430, a promising synthetic adenosine analogue with high in vitro and in vivo activity against filoviruses and other RNA viruses, has been described. BCX4430 inhibits viral RNA polymerase activity and protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. Nucleic acid-based products, recombinant vaccines and antibodies appear to be less suitable for the treatment of Marburg and Ebola hemorrhagic fevers.

  20. The influence of meteorology on the spread of influenza: survival analysis of an equine influenza (A/H3N8) outbreak.

    PubMed

    Firestone, Simon M; Cogger, Naomi; Ward, Michael P; Toribio, Jenny-Ann L M L; Moloney, Barbara J; Dhand, Navneet K

    2012-01-01

    The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20-25°C. Wind speeds >30 km hour(-1) from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions.

  1. Differences in the Comparative Stability of Ebola Virus Makona-C05 and Yambuku-Mayinga in Blood

    PubMed Central

    Schuit, Michael; Miller, David M.; Reddick-Elick, Mary S.; Wlazlowski, Carly B.; Filone, Claire Marie; Herzog, Artemas; Colf, Leremy A.; Wahl-Jensen, Victoria; Hevey, Michael; Noah, James W.

    2016-01-01

    In support of the response to the 2013–2016 Ebola virus disease (EVD) outbreak in Western Africa, we investigated the persistence of Ebola virus/H.sapiens-tc/GIN/2014/Makona-C05 (EBOV/Mak-C05) on non-porous surfaces that are representative of hospitals, airplanes, and personal protective equipment. We performed persistence studies in three clinically-relevant human fluid matrices (blood, simulated vomit, and feces), and at environments representative of in-flight airline passenger cabins, environmentally-controlled hospital rooms, and open-air Ebola treatment centers in Western Africa. We also compared the surface stability of EBOV/Mak-C05 to that of the prototype Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga (EBOV/Yam-May), in a subset of these conditions. We show that on inert, non-porous surfaces, EBOV decay rates are matrix- and environment-dependent. Among the clinically-relevant matrices tested, EBOV persisted longest in dried human blood, had limited viability in dried simulated vomit, and did not persist in feces. EBOV/Mak-C05 and EBOV/Yam-May decay rates in dried matrices were not significantly different. However, during the drying process in human blood, EBOV/Yam-May showed significantly greater loss in viability than EBOV/Mak-C05 under environmental conditions relevant to the outbreak region, and to a lesser extent in conditions relevant to an environmentally-controlled hospital room. This factor may contribute to increased communicability of EBOV/Mak-C05 when surfaces contaminated with dried human blood are the vector and may partially explain the magnitude of the most recent outbreak, compared to prior outbreaks. These EBOV persistence data will improve public health efforts by informing risk assessments, structure remediation decisions, and response procedures for future EVD outbreaks. PMID:26849135

  2. Controlling equine influenza: policy networks and decision-making during the 2007 Australian equine influenza outbreak.

    PubMed

    Schemann, K; Gillespie, J A; Toribio, J-A L M L; Ward, M P; Dhand, N K

    2014-10-01

    Rapid, evidence-based decision-making is critical during a disease outbreak response; however, compliance by stakeholders is necessary to ensure that such decisions are effective - especially if the response depends on voluntary action. This mixed method study evaluated technical policy decision-making processes during the 2007 outbreak of equine influenza in Australia by identifying and analysing the stakeholder network involved and the factors driving policy decision-making. The study started with a review of the outbreak literature and published policy documents. This identified six policy issues regarding policy modifications or differing interpretations by different state agencies. Data on factors influencing the decision-making process for these six issues and on stakeholder interaction were collected using a pre-tested, semi-structured questionnaire. Face-to-face interviews were conducted with 24 individuals representing 12 industry and government organizations. Quantitative data were analysed using social network analysis. Qualitative data were coded and patterns matched to test a pre-determined general theory using a method called theory-oriented process-tracing. Results revealed that technical policy decisions were framed by social, political, financial, strategic and operational considerations. Industry stakeholders had influence through formal pre-existing channels, yet specific gaps in stakeholder interaction were overcome by reactive alliances formed during the outbreak response but outside the established system. Overall, the crisis management system and response were seen as positive, and 75-100% of individuals interviewed were supportive of, had interest in and considered the outcome as good for the majority of policy decisions, yet only 46-75% of those interviewed considered that they had influence on these decisions. Training to increase awareness and knowledge of emergency animal diseases (EADs) and response systems will improve stakeholder participation in emergency disease management and preparedness for future EAD incursions. © 2012 Blackwell Verlag GmbH.

  3. Hybrid Vibrio cholerae El Tor Lacking SXT Identified as the Cause of a Cholera Outbreak in the Philippines

    PubMed Central

    Klinzing, David C.; Choi, Seon Young; Hasan, Nur A.; Matias, Ronald R.; Tayag, Enrique; Geronimo, Josefina; Skowronski, Evan; Rashed, Shah M.; Kawashima, Kent; Rosenzweig, C. Nicole; Gibbons, Henry S.; Torres, Brian C.; Liles, Veni; Alfon, Alicia C.; Juan, Maria Luisa; Natividad, Filipinas F.; Cebula, Thomas A.

    2015-01-01

    ABSTRACT Cholera continues to be a global threat, with high rates of morbidity and mortality. In 2011, a cholera outbreak occurred in Palawan, Philippines, affecting more than 500 people, and 20 individuals died. Vibrio cholerae O1 was confirmed as the etiological agent. Source attribution is critical in cholera outbreaks for proper management of the disease, as well as to control spread. In this study, three V. cholerae O1 isolates from a Philippines cholera outbreak were sequenced and their genomes analyzed to determine phylogenetic relatedness to V. cholerae O1 isolates from recent outbreaks of cholera elsewhere. The Philippines V. cholerae O1 isolates were determined to be V. cholerae O1 hybrid El Tor belonging to the seventh-pandemic clade. They clustered tightly, forming a monophyletic clade closely related to V. cholerae O1 hybrid El Tor from Asia and Africa. The isolates possess a unique multilocus variable-number tandem repeat analysis (MLVA) genotype (12-7-9-18-25 and 12-7-10-14-21) and lack SXT. In addition, they possess a novel 15-kb genomic island (GI-119) containing a predicted type I restriction-modification system. The CTXΦ-RS1 array of the Philippines isolates was similar to that of V. cholerae O1 MG116926, a hybrid El Tor strain isolated in Bangladesh in 1991. Overall, the data indicate that the Philippines V. cholerae O1 isolates are unique, differing from recent V. cholerae O1 isolates from Asia, Africa, and Haiti. Furthermore, the results of this study support the hypothesis that the Philippines isolates of V. cholerae O1 are indigenous and exist locally in the aquatic ecosystem of the Philippines. PMID:25900650

  4. Benefit-cost analysis of spruce budworm (Choristoneura fumiferana Clem.) control: incorporating market and non-market values.

    PubMed

    Chang, Wei-Yew; Lantz, Van A; Hennigar, Chris R; MacLean, David A

    2012-01-01

    This study employs a benefit-cost analysis framework to estimate market and non-market benefits and costs of controlling future spruce budworm (Choristoneura fumiferana) outbreaks on Crown forest lands in New Brunswick, Canada. We used: (i) an advanced timber supply model to project potential timber volume saved, timber value benefits, and costs of pest control efforts; and (ii) a recent contingent valuation method analysis that evaluated non-market benefits (i.e., changes in recreation opportunities and existence values) of controlling future spruce budworm outbreaks in the Province. A total of six alternative scenarios were evaluated, including two uncontrolled future budworm outbreak severities (moderate vs. severe) and, for each severity, three control program levels (protecting 10%, 20%, or 40% of the susceptible Crown land forest area). The economic criteria used to evaluate each scenario included benefit-cost ratios and net present values. Under severe outbreak conditions, results indicated that the highest benefit-cost ratio (4.04) occurred when protecting 10% (284,000 ha) of the susceptible area, and the highest net present value ($111 M) occurred when protecting 20% (568,000 ha) of the susceptible area. Under moderate outbreak conditions, the highest benefit-cost ratio (3.24) and net present value ($58.7 M) occurred when protecting 10% (284,000 ha) of the susceptible area. Inclusion of non-market values generally increased the benefit-cost ratios and net present values of the control programs, and in some cases, led to higher levels of control being supported. Results of this study highlight the importance of including non-market values into the decision making process of forest pest management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Local Food Systems Food Safety Concerns.

    PubMed

    Chapman, Benjamin; Gunter, Chris

    2018-04-01

    Foodborne disease causes an estimated 48 million illnesses and 3,000 deaths annually (Scallan E, et al., Emerg Infect Dis 17:7-15, 2011), with U.S. economic costs estimated at $152 billion to $1.4 trillion annually (Roberts T, Am J Agric Econ 89:1183-1188, 2007; Scharff RL, http://www.pewtrusts.org/en/research-and-analysis/reports/0001/01/01/healthrelated-costs-from-foodborne-illness-in-the-united-states, 2010). An increasing number of these illnesses are associated with fresh fruits and vegetables. An analysis of outbreaks from 1990 to 2003 found that 12% of outbreaks and 20% of outbreak-related illnesses were associated with produce (Klein S, Smith DeWaal CS, Center for Science in the Public Interest, https://cspinet.org/sites/default/files/attachment/ddreport.pdf, June 2008; Lynch M, Tauxe R, Hedberg C, Epidemiol Infect 137:307-315, 2009). These food safety problems have resulted in various stakeholders recommending the shift to a more preventative and risk-based food safety system. A modern risk-based food safety system takes a farm-to-fork preventative approach to food safety and relies on the proactive collection and analysis of data to better understand potential hazards and risk factors, to design and evaluate interventions, and to prioritize prevention efforts. Such a system focuses limited resources at the points in the food system with the likelihood of having greatest benefit to public health. As shared kitchens, food hubs, and local food systems such as community supported agriculture are becoming more prevalent throughout the United States, so are foodborne illness outbreaks at these locations. At these locations, many with limited resources, food safety methods of prevention are rarely the main focus. This lack of focus on food safety knowledge is why a growing number of foodborne illness outbreaks are occurring at these locations.

  6. Salmonella enterica serovar Oranienburg outbreak in a veterinary medical teaching hospital with evidence of nosocomial and on-farm transmission.

    PubMed

    Cummings, Kevin J; Rodriguez-Rivera, Lorraine D; Mitchell, Katharyn J; Hoelzer, Karin; Wiedmann, Martin; McDonough, Patrick L; Altier, Craig; Warnick, Lorin D; Perkins, Gillian A

    2014-07-01

    Nosocomial salmonellosis continues to pose an important threat to veterinary medical teaching hospitals. The objectives of this study were to describe an outbreak of salmonellosis caused by Salmonella enterica serovar Oranienburg within our hospital and to highlight its unique features, which can be used to help mitigate or prevent nosocomial outbreaks in the future. We retrospectively analyzed data from patients that were fecal culture-positive for Salmonella Oranienburg between January 1, 2006, and June 1, 2011, including historical, clinical, and pulsed-field gel electrophoresis (PFGE) data. Salmonella Oranienburg was identified in 20 horses, five alpacas, and three cows during this time frame, with dates of admission spanning the period from August, 2006, through January, 2008. We consider most of these patients to have become infected through either nosocomial or on-farm transmission, as evidenced by molecular subtyping results and supportive epidemiologic data. Interpretation of PFGE results in this outbreak was challenging because of the identification of several closely related Salmonella Oranienburg subtypes. Furthermore, a high percentage of cases were fecal culture-positive for Salmonella Oranienburg within 24 h of admission. These patients initially appeared to represent new introductions of Salmonella into the hospital, but closer inspection of their medical records revealed epidemiologic links to the hospital following the index case. Cessation of this outbreak was observed following efforts to further heighten biosecurity efforts, with no known cases or positive environmental samples after January, 2008. This study demonstrates that a Salmonella-positive culture result within 24 h of admission does not exclude the hospital as the source of infection, and it underscores the important role played by veterinary medical teaching hospitals as nodes of Salmonella infection that can promote transmission outside of the hospital setting.

  7. Characterization of synoptic patterns causing dust outbreaks that affect the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Hermida, L.; Merino, A.; Sánchez, J. L.; Fernández-González, S.; García-Ortega, E.; López, L.

    2018-01-01

    Dust storms pose serious weather hazards in arid and semiarid regions of the earth. Understanding the main synoptic conditions that give rise to dust outbreaks is important for issuing forecasts and warnings to the public in cases of severe storms. The aim of the present study is to determine synoptic patterns that are associated with or even favor dust outbreaks over the Arabian Peninsula. In this respect, red-green-blue dust composite images from the Meteosat Second Generation (MSG) satellite are used to detect dust outbreaks affecting the Arabian Peninsula, with possible influences in southwestern Asia and northeastern Africa, between 2005 and 2013. The Meteosat imagery yielded a sample of 95 dust storm days. Meteorological fields from NCEP/NCAR reanalysis data of wind fields at 10 m and 250 hPa, mean sea level pressure, and geopotential heights at 850 and 500 hPa were obtained for the dust storm days. Using principal component analysis in T-mode and non-hierarchical k-means clustering, we obtained four major atmospheric circulation patterns associated with dust outbreaks during the study days. Cluster 4 had the largest number of days with dust events, which were constrained to summer, and cluster 3 had the fewest. In clusters 1, 2 and 3, the jet stream favored the entry of a low-pressure area or trough that varied in location between the three clusters. Their most northerly location was found in cluster 4, along with an extensive low-pressure area supporting strong winds over the Arabian Peninsula. The spatial distribution of aerosol optical depth for each cluster obtained was characterized using the Moderate Resolution Imaging Spectroradiometer data. Then, using METAR stations, clusters were also characterized in terms of frequency and visibility.

  8. Detection of West Nile Virus - Lineage 2 in Culex pipiens mosquitoes, associated with disease outbreak in Greece, 2017.

    PubMed

    Mavridis, Konstantinos; Fotakis, Emmanouil A; Kioulos, Ilias; Mpellou, Spiridoula; Konstantas, Spiros; Varela, Evangelia; Gewehr, Sandra; Diamantopoulos, Vasilis; Vontas, John

    2018-06-01

    During July-October 2017 a WNV outbreak took place in the Peloponnese, Southern Greece with five confirmed deaths. During routine monitoring survey in the Peloponnese, supported by the local Prefecture, we have confirmed the presence of all three Culex pipiens biotypes in the region, with a high percentage of Culex pipiens/molestus hybrids (37.0%) which are considered a highly competent vector of WNV. Kdr mutations related to pyrethroid resistance were found at relatively low levels (14.3% homozygosity) while no mosquitoes harboring the recently identified chitin synthase diflubenzuron-resistance mutations were detected in the region. As an immediate action, following the disease outbreak (within days), we collected a large number of mosquitoes using CO 2 CDC traps from the villages in the Argolis area of the Peloponnese, where high incidence of WNV human infections were reported. WNV lineage 2 was detected in 3 out of 47 Cx. pipiens mosquito pools (detection rate = 6.38%). The virus was not detected in any other mosquito species, such as Aedes albopictus, sampled from the region at the time of the disease outbreak. Our results show that detection of WNV lineage 2 in Cx. pipiens pools is spatially and chronologically associated with human clinical cases, thus implicating Cx. pipiens mosquitoes as the most likely WNV vector. The absence of diflubenzuron resistance mutations and the low frequency of pyrethroid (kdr) resistance mutations indicates the suitability of these insecticides for Cx. pipiens control, in the format of larvicides and/or residual spraying applications respectively, which was indeed the main (evidence based) response, following the disease outbreak. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Influence of Meteorology on the Spread of Influenza: Survival Analysis of an Equine Influenza (A/H3N8) Outbreak

    PubMed Central

    Firestone, Simon M.; Cogger, Naomi; Ward, Michael P.; Toribio, Jenny-Ann L. M. L.; Moloney, Barbara J.; Dhand, Navneet K.

    2012-01-01

    The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20–25°C. Wind speeds >30 km hour−1 from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions. PMID:22536366

  10. [Syndromic surveillance in circumstances of bioterrorism threat--the essence, application abilities and superiority over a traditional epidemiological surveillance].

    PubMed

    Osemek, Paweł; Kocik, Janusz; Paśnik, Krzysztof

    2009-12-01

    This article provides a short review about trends of developing current syndromic surveillance systems. To improve methods of early detection of natural or bioterrorism-related outbreaks, it has to be established a new way of epidemiological thinking, which uses innovative real-time surveillance systems. Syndromic surveillance has been created for an early detection, to monitor the temporo-spatial spread of an outbreak, and to provide prompt data for immediate analysis and feedback to public health authorities. It supports timely decision making process for countermeasure procedures. Framework of syndromic surveillance system requires a proper electronic infrastructure to be build up. Optimal syndrome definitions and data sources for continuing specific diseases outbreak surveillance have not been determined so far. Systems of interest might enhance collaboration among clinical providers, primary care providers, emergency services, information-systems professionals and public health agencies. However economic scope of this undertakings effectively limits ability to implement it in Polish public health service right now. Besides, syndromic surveillance cannot replace traditional public health surveillance with a post-factum epidemiological investigation and laboratory analysis. It can be a useful supplement.

  11. Surges of advanced medical support associated with influenza outbreaks.

    PubMed

    King, J C; Schweinle, J E; Hatchett, R J; Gao, Y; Lichenstein, R; Zhou, J

    2017-08-01

    We utilized de-identified data to evaluate increases in four outcomes during influenza outbreak periods (IOPs) including: hospitalization, intensive care unit admission, mechanical ventilation or death for adults aged 18 years or older with medically attended acute respiratory illnesses (MAARI) admitted to any of Maryland's 50 acute-care hospitals over 12 years. Weekly numbers of positive influenza tests in the Maryland area were obtained from the US Center for Disease Control and Prevention interactive website. The fewest consecutive weeks around the peak week containing at least 85% of the positive tests defined the IOP. Weekly counts of individual study outcomes were positively correlated with regional weekly counts of positive influenza tests during all the IOPs over 12 years. Also, rate ratios comparing daily occurrences of each study outcome between the IOP and non-IOP were significantly elevated. These results confirm conclusions of previous studies that influenza outbreaks are clearly associated with deaths and increased use of advanced medical resources by patients with MAARI. These data analyses suggest that increased efforts to develop more effective influenza vaccines and therapeutics should be a priority.

  12. An Inactivated Rabies Virus–Based Ebola Vaccine, FILORAB1, Adjuvanted With Glucopyranosyl Lipid A in Stable Emulsion Confers Complete Protection in Nonhuman Primate Challenge Models

    PubMed Central

    Johnson, Reed F.; Kurup, Drishya; Hagen, Katie R.; Fisher, Christine; Keshwara, Rohan; Papaneri, Amy; Perry, Donna L.; Cooper, Kurt; Jahrling, Peter B.; Wang, Jonathan T.; ter Meulen, Jan; Wirblich, Christoph; Schnell, Matthias J.

    2016-01-01

    The 2013–2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine. To this end, we demonstrate the immunogenicity and protective efficacy of FILORAB1, a recombinant, bivalent, inactivated rabies virus–based EBOV vaccine, in rhesus and cynomolgus monkeys. Our results demonstrate that the use of the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid A in stable emulsion (GLA-SE) as an adjuvant increased the efficacy of FILORAB1 to 100% protection against lethal EBOV challenge, with no to mild clinical signs of disease. Furthermore, all vaccinated subjects developed protective anti–rabies virus antibody titers. Taken together, these results support further development of FILORAB1/GLA-SE as an effective preexposure EBOV vaccine. PMID:27456709

  13. Understanding scale dependency of climatic processes with diarrheal disease

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, F.; Jutla, A.; Akanda, A. S. S.; Colwell, R. R.

    2015-12-01

    The issue of scales in linking climatic processes with diarrheal diseases is perhaps one of the most challenging aspect to develop any predictive algorithm for outbreaks and to understand impacts of changing climate. Majority of diarrheal diseases have shown to be strongly associated with climate modulated environmental processes where pathogens survive. Using cholera as an example of characteristic diarrheal diseases, this study will provide methodological insights on dominant scale variability in climatic processes that are linked with trigger and transmission of disease. Cholera based epidemiological models use human to human interaction as a main transmission mechanism, however, environmental conditions for creating seasonality in outbreaks is not explicitly modeled. For example, existing models cannot create seasonality, unless some of the model parameters are a-priori chosen to vary seasonally. A systems based feedback approach will be presented to understand role of climatic processes on trigger and transmission disease. In order to investigate effect of changing climate on cholera, a downscaling approach using support vector machine will be used. Our preliminary results using three climate models, ECHAM5, GFDL, and HADCM show that varying modalities in future cholera outbreaks.

  14. Satellite data based method for general survey of forest insect disturbance in British Columbia

    NASA Astrophysics Data System (ADS)

    Ranson, J.; Montesano, P.

    2008-12-01

    Regional forest disturbances caused by insects are important to monitor and quantify because of their influence on local ecosystems and the global carbon cycle. Local damage to forest trees disrupts food supplies and shelter for a variety of organisms. Changes in the global carbon budget, its sources and its sinks affect the way the earth functions as a whole, and has an impact on global climate. Furthermore, the ability to detect nascent outbreaks and monitor the spread of regional infestations helps managers mitigate the damage done by catastrophic insect outbreaks. While detection is needed at a fine scale to support local mitigation efforts, detection at a broad regional scale is important for carbon flux modeling on the landscape scale, and needed to direct the local efforts. This paper presents a method for routinely detecting insect damage to coniferous forests using MODIS vegetation indices, thermal anomalies and land cover. The technique is validated using insect outbreak maps and accounts for fire disturbance effects. The range of damage detected may be used to interpret and quantify possible forest damage by insects.

  15. Zika virus infection and once again the risk from other neglected diseases.

    PubMed

    Porrino, Pedro

    2016-07-01

    Since the first cases of Zika were identified and reported in Brazil, the magnitude and consequences of the outbreak in the Americas have increased tremendously, leading the World Health Organization to consider Zika and its link with clusters of microcephaly a Public Health Emergency of International Concern. Only a previous large outbreak in French Polynesia was known and no neurological anomalies have been reported. Differences in African and Asian lineage and differences in genetic evolution of the Zika virus may possibly provide an explanation for the development of the recent outbreaks and their variable presentation. However, the similar clinical presentation between Zika and other diseases like Dengue and Chikungunya can support that Zika has been circulating and spreading inadvertently. This hypothesis gains strength when rates of laboratory confirmation diagnosis for Dengue are observed in Brazil and Colombia, two of the most affected countries by Zika virus (ZIKV) infection.The lack of attention and resources on neglected diseases supposes a huge risk that new lethal pathogens camouflage themselves to spread into large areas and populations. © The Author(s) 2016.

  16. Solving the patient zero inverse problem by using generalized simulated annealing

    NASA Astrophysics Data System (ADS)

    Menin, Olavo H.; Bauch, Chris T.

    2018-01-01

    Identifying patient zero - the initially infected source of a given outbreak - is an important step in epidemiological investigations of both existing and emerging infectious diseases. Here, the use of the Generalized Simulated Annealing algorithm (GSA) to solve the inverse problem of finding the source of an outbreak is studied. The classical disease natural histories susceptible-infected (SI), susceptible-infected-susceptible (SIS), susceptible-infected-recovered (SIR) and susceptible-infected-recovered-susceptible (SIRS) in a regular lattice are addressed. Both the position of patient zero and its time of infection are considered unknown. The algorithm performance with respect to the generalization parameter q˜v and the fraction ρ of infected nodes for whom infection was ascertained is assessed. Numerical experiments show the algorithm is able to retrieve the epidemic source with good accuracy, even when ρ is small, but present no evidence to support that GSA performs better than its classical version. Our results suggest that simulated annealing could be a helpful tool for identifying patient zero in an outbreak where not all cases can be ascertained.

  17. Sustainable thresholds for cooperative epidemiological models.

    PubMed

    Barrios, Edwin; Gajardo, Pedro; Vasilieva, Olga

    2018-05-22

    In this paper, we introduce a method for computing sustainable thresholds for controlled cooperative models described by a system of ordinary differential equations, a property shared by a wide class of compartmental models in epidemiology. The set of sustainable thresholds refers to constraints (e.g., maximal "allowable" number of human infections; maximal "affordable" budget for disease prevention, diagnosis and treatments; etc.), parameterized by thresholds, that can be sustained by applying an admissible control strategy starting at the given initial state and lasting the whole period of the control intervention. This set, determined by the initial state of the dynamical system, virtually provides useful information for more efficient (or cost-effective) decision-making by exhibiting the trade-offs between different types of constraints and allowing the user to assess future outcomes of control measures on transient behavior of the dynamical system. In order to accentuate the originality of our approach and to reveal its potential significance in real-life applications, we present an example relying on the 2013 dengue outbreak in Cali, Colombia, where we compute the set of sustainable thresholds (in terms of the maximal "affordable" budget and the maximal "allowable" levels of active infections among human and vector populations) that could be sustained during the epidemic outbreak. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Parameter inference in small world network disease models with approximate Bayesian Computational methods

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Allingham, David; Lee, Heung Wing Joseph; Small, Michael

    2010-02-01

    Small world network models have been effective in capturing the variable behaviour of reported case data of the SARS coronavirus outbreak in Hong Kong during 2003. Simulations of these models have previously been realized using informed “guesses” of the proposed model parameters and tested for consistency with the reported data by surrogate analysis. In this paper we attempt to provide statistically rigorous parameter distributions using Approximate Bayesian Computation sampling methods. We find that such sampling schemes are a useful framework for fitting parameters of stochastic small world network models where simulation of the system is straightforward but expressing a likelihood is cumbersome.

  19. Food- and waterborne disease outbreaks in Australian long-term care facilities, 2001-2008.

    PubMed

    Kirk, Martyn D; Lalor, Karin; Raupach, Jane; Combs, Barry; Stafford, Russell; Hall, Gillian V; Becker, Niels

    2011-01-01

    Abstract Food- or waterborne diseases in long-term care facilities (LTCF) can result in serious outcomes, including deaths, and they are potentially preventable. We analyzed data collected by OzFoodNet on food- and waterborne disease outbreaks occurring in LTCF in Australia from 2001 to 2008. We compared outbreaks by the number of persons affected, etiology, and implicated vehicle. During 8 years of surveillance, 5.9% (55/936) of all food- and waterborne outbreaks in Australia occurred in LTCF. These LTCF outbreaks affected a total of 909 people, with 66 hospitalized and 23 deaths. The annual incidence of food- or waterborne outbreaks was 1.9 (95% confidence intervals 1.0-3.7) per 1000 facilities. Salmonella caused 17 outbreaks, Clostridium perfringens 14 outbreaks, Campylobacter 8 outbreaks, and norovirus 1 outbreak. Residents were at higher risk of death during outbreaks of salmonellosis than for all other outbreaks combined (relative risk 7.8, 95% confidence intervals 1.8-33.8). Of 15 outbreaks of unknown etiology, 11 were suspected to be due to C. perfringens intoxication. Food vehicles were only identified in 27% (14/52) of outbreaks, with six outbreak investigations implicating pureed foods. Dishes containing raw eggs were implicated as the cause of four outbreaks. Three outbreaks of suspected waterborne disease were attributed to rainwater collected from facility roofs. To prevent disease outbreaks, facilities need to improve handling of pureed foods, avoid feeding residents raw or undercooked eggs, and ensure that rainwater tanks have a scheduled maintenance and disinfection program.

  20. Changes in Soldier Nutritional Status and Immune Function During the Ranger Training Course

    DTIC Science & Technology

    1992-09-10

    Appendix Ill. Finally, the support and encouragement of USARIEM Commander COL Gerald P. Krueger and USAMRDC Research Area III Director COL David D...Glono S, Hierholzer J, Ostrofl S, Groover J, Musher D, Martinez L, Brelman R, and the Pneumococcal Pneumonia Study Group: Pneumococcal pneumonia outbreak

  1. Links between type E botulism outbreaks, lake levels, and surface water temperatures in Lake Michigan, 1963-2008

    USGS Publications Warehouse

    Lafrancois, Brenda Moraska; Riley, Stephen C.; Blehert, David S.; Ballmann, Anne E.

    2011-01-01

    Relationships between large-scale environmental factors and the incidence of type E avian botulism outbreaks in Lake Michigan were examined from 1963 to 2008. Avian botulism outbreaks most frequently occurred in years with low mean annual water levels, and lake levels were significantly lower in outbreak years than in non-outbreak years. Mean surface water temperatures in northern Lake Michigan during the period when type E outbreaks tend to occur (July through September) were significantly higher in outbreak years than in non-outbreak years. Trends in fish populations did not strongly correlate with botulism outbreaks, although botulism outbreaks in the 1960s coincided with high alewife abundance, and recent botulism outbreaks coincided with rapidly increasing round goby abundance. Botulism outbreaks occurred cyclically, and the frequency of outbreaks did not increase over the period of record. Climate change scenarios for the Great Lakes predict lower water levels and warmer water temperatures. As a consequence, the frequency and magnitude of type E botulism outbreaks in the Great Lakes may increase.

  2. Two Linked Enteroinvasive Escherichia coli Outbreaks, Nottingham, UK, June 2014

    PubMed Central

    MacGregor, Vanessa; Robbins, Vivienne; Bayliss, Laura; Chattaway, Marie Anne; Dallman, Tim; Ready, Derren; Aird, Heather; Puleston, Richard; Hawker, Jeremy

    2016-01-01

    Enteroinvasive Escherichia coli (EIEC) outbreaks are uncommon in Europe. In June 2014, two EIEC outbreaks occurred in Nottingham, UK, within 2 days; outbreak A was linked to a takeaway restaurant and outbreak B to a wedding party. We conducted 2 analytical studies: a case–control study for outbreak A and a cohort study for outbreak B. We tested microbiological and environmental samples, including by using whole-genome sequencing. For both outbreaks combined, we identified 157 probable case-patients; 27 were laboratory-confirmed as EIEC O96:H19–positive. Combined epidemiologic, microbiological, and environmental findings implicated lettuce as the vehicle of infection in outbreak A, but the source of the organism remained unknown. Whole-genome sequencing identified the same organism in cases from both outbreaks, but no epidemiologic link was confirmed. These outbreaks highlight that EIEC has the capacity to cause large and severe gastrointestinal disease outbreaks and should be considered as a potential pathogen in foodborne outbreaks in Europe. PMID:27314432

  3. Two Linked Enteroinvasive Escherichia coli Outbreaks, Nottingham, UK, June 2014.

    PubMed

    Newitt, Sophie; MacGregor, Vanessa; Robbins, Vivienne; Bayliss, Laura; Chattaway, Marie Anne; Dallman, Tim; Ready, Derren; Aird, Heather; Puleston, Richard; Hawker, Jeremy

    2016-07-01

    Enteroinvasive Escherichia coli (EIEC) outbreaks are uncommon in Europe. In June 2014, two EIEC outbreaks occurred in Nottingham, UK, within 2 days; outbreak A was linked to a takeaway restaurant and outbreak B to a wedding party. We conducted 2 analytical studies: a case-control study for outbreak A and a cohort study for outbreak B. We tested microbiological and environmental samples, including by using whole-genome sequencing. For both outbreaks combined, we identified 157 probable case-patients; 27 were laboratory-confirmed as EIEC O96:H19-positive. Combined epidemiologic, microbiological, and environmental findings implicated lettuce as the vehicle of infection in outbreak A, but the source of the organism remained unknown. Whole-genome sequencing identified the same organism in cases from both outbreaks, but no epidemiologic link was confirmed. These outbreaks highlight that EIEC has the capacity to cause large and severe gastrointestinal disease outbreaks and should be considered as a potential pathogen in foodborne outbreaks in Europe.

  4. Ebola Virus Epidemiology and Evolution in Nigeria.

    PubMed

    Folarin, Onikepe A; Ehichioya, Deborah; Schaffner, Stephen F; Winnicki, Sarah M; Wohl, Shirlee; Eromon, Philomena; West, Kendra L; Gladden-Young, Adrianne; Oyejide, Nicholas E; Matranga, Christian B; Deme, Awa Bineta; James, Ayorinde; Tomkins-Tinch, Christopher; Onyewurunwa, Kenneth; Ladner, Jason T; Palacios, Gustavo; Nosamiefan, Iguosadolo; Andersen, Kristian G; Omilabu, Sunday; Park, Daniel J; Yozwiak, Nathan L; Nasidi, Abdusallam; Garry, Robert F; Tomori, Oyewale; Sabeti, Pardis C; Happi, Christian T

    2016-10-15

    Containment limited the 2014 Nigerian Ebola virus (EBOV) disease outbreak to 20 reported cases and 8 fatalities. We present here clinical data and contact information for at least 19 case patients, and full-length EBOV genome sequences for 12 of the 20. The detailed contact data permits nearly complete reconstruction of the transmission tree for the outbreak. The EBOV genomic data are consistent with that tree. It confirms that there was a single source for the Nigerian infections, shows that the Nigerian EBOV lineage nests within a lineage previously seen in Liberia but is genetically distinct from it, and supports the conclusion that transmission from Nigeria to elsewhere did not occur. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  5. Toxic effects of mycotoxins in humans.

    PubMed Central

    Peraica, M.; Radić, B.; Lucić, A.; Pavlović, M.

    1999-01-01

    Mycotoxicoses are diseases caused by mycotoxins, i.e. secondary metabolites of moulds. Although they occur more frequently in areas with a hot and humid climate, favourable for the growth of moulds, they can also be found in temperate zones. Exposure to mycotoxins is mostly by ingestion, but also occurs by the dermal and inhalation routes. Mycotoxicoses often remain unrecognized by medical professionals, except when large numbers of people are involved. The present article reviews outbreaks of mycotoxicoses where the mycotoxic etiology of the disease is supported by mycotoxin analysis or identification of mycotoxin-producing fungi. Epidemiological, clinical and histological findings (when available) in outbreaks of mycotoxicoses resulting from exposure to aflatoxins, ergot, trichothecenes, ochratoxins, 3-nitropropionic acid, zearalenone and fumonisins are discussed. PMID:10534900

  6. BCG protects toddlers during a tuberculosis outbreak.

    PubMed

    Gaensbauer, J T; Vandaleur, M; O'Neil, M; Altaf, A; Ní Chróinín, M

    2009-05-01

    In 2007, an outbreak of tuberculosis occurred in a toddler population attending two child care centres in Cork, Ireland. Of 268 children exposed, 18 were eventually diagnosed with active tuberculosis. We present the initial clinical and radiographic characteristics of the active disease group. Mantoux testing was positive in only 66% of cases. All cases were either pulmonary or involved hilar adenopathy on chest radiograph; there were no cases of disseminated disease or meningitis. 24% of the exposed children had been previously vaccinated with BCG, and no case of active disease was found in this group (p = 0.016), suggesting a profound protective effect of BCG in this population. Our experience provides evidence supporting a protective effect of BCG against pulmonary disease in young children.

  7. Characteristics of the Shiga-toxin-producing enteroaggregative Escherichia coli O104:H4 German outbreak strain and of STEC strains isolated in Spain.

    PubMed

    Mora, Azucena; Herrrera, Alexandra; López, Cecilia; Dahbi, Ghizlane; Mamani, Rosalia; Pita, Julia M; Alonso, María P; Llovo, José; Bernárdez, María I; Blanco, Jesús E; Blanco, Miguel; Blanco, Jorge

    2011-09-01

    A Shiga-toxin-producing Escherichia coli (STEC) strain belonging to serotype O104:H4, phylogenetic group B1 and sequence type ST678, with virulence features common to the enteroaggregative E. coli (EAEC) pathotype, was reported as the cause of the recent 2011 outbreak in Germany. The outbreak strain was determined to carry several virulence factors of extraintestinal pathogenic E. coli (ExPEC) and to be resistant to a wide range of antibiotics. There are only a few reports of serotype O104:H4, which is very rare in humans and has never been detected in animals or food. Several research groups obtained the complete genome sequence of isolates of the German outbreak strain as well as the genome sequences of EAEC of serotype O104:H4 strains from Africa. Those findings suggested that horizontal genetic transfer allowed the emergence of the highly virulent Shiga-toxin-producing enteroaggregative E. coli (STEAEC) O104:H4 strain responsible for the outbreak in Germany. Epidemiologic investigations supported a linkage between the outbreaks in Germany and France and traced their origin to fenugreek seeds imported from Africa. However, there has been no isolation of the causative strain O104:H4 from any of the samples of fenugreek seeds analyzed. Following the German outbreak, we conducted a large sampling to analyze the presence of STEC, EAEC, and other types of diarrheagenic E. coli strains in Spanish vegetables. During June and July 2011, 200 vegetable samples from different origins were analyzed. All were negative for the virulent serotype O104:H4 and only one lettuce sample (0.6%) was positive for a STEC strain of serotype O146:H21 (stx1, stx2), considered of low virulence. Despite the single positive case, the hygienic and sanitary quality of Spanish vegetables proved to be quite good. In 195 of the 200 samples (98%), <10 colony-forming units (cfu) of E. coli per gram were detected, and the microbiological levels of all samples were satisfactory (<100 cfu/g). The samples were also negative for other pathotypes of diarrheagenic E. coli (EAEC, ETEC, tEPEC, and EIEC). Consistent with data from other countries, STEC belonging to serotype O157:H7 and other serotypes have been isolated from beef, milk, cheese, and domestic (cattle, sheep, goats) and wild (deer, boar, fox) animals in Spain. Nevertheless, STEC outbreaks in Spain are rare.

  8. Establishing a milkborne disease outbreak profile: potential food defense implications.

    PubMed

    Newkirk, Ryan; Hedberg, Craig; Bender, Jeff

    2011-03-01

    The main objectives of this study were to establish baseline characteristics for milkborne outbreaks, establish an expected milkborne outbreak profile, and identify potential indicators of food terrorism. This study used 1990-2006 data from the Centers for Disease Control and Prevention Annual Listings of Disease Outbreaks and the Foodborne Outbreak Database (FOOD) to establish epidemiologic baseline characteristics for disease outbreaks associated with fluid milk. FOOD data from 2007 were used to qualitatively validate the potential of the baseline characteristics and the expected outbreak profile. Eighty-three fluid milkborne outbreaks were reported between 1990 and 2006, resulting in 3621 illnesses. The mean number of illnesses per outbreak was 43.6 (illness range: 2-1644). Consumption of unpasteurized milk was associated with 55.4% of reported outbreaks. Campylobacter spp., Escherichia coli, and Salmonella spp. caused 51.2%, 10.8%, and 9.6% of reported outbreaks, respectively. Private homes accounted for 41.0% of outbreak locations. Number ill, outbreak location, and etiology were the primary characteristics which could signal a potential intentional contamination event. In 2007, one pasteurized milk outbreak caused by Listeria was flagged as aberrative compared with the expected outbreak profile. The creation and dissemination of expected outbreak profiles and epidemiologic baseline characteristics allow public health and Homeland Security officials to quickly assess the potential of intentional food contamination. A faster public health and medical system response can result in decreased morbidity and mortality.

  9. [Epidemiological characteristics of influenza outbreaks in China, 2005-2013].

    PubMed

    Li, Ming; Feng, Luzhao; Cao, Yu; Peng, Zhibin; Yu, Hongjie

    2015-07-01

    To understand the epidemiological characteristics of influenza outbreaks in China from 2005 to 2013. The data of influenza-like illness outbreaks involving 10 or more cases were collected through Public Health Emergency Management Information System and National Influenza Surveillance Information System in China, and the influenza outbreaks were identified according to the laboratory detection results. Descriptive epidemiological analysis was conducted to understand the type/subtype of influenza virus and outbreak time, area, place and extent. From 2005 to 2013, a total of 3 252 influenza-like illness outbreaks were reported in the mainland of China, in which 2 915 influenza outbreaks were laboratory confirmed, and influenza A (H1N1) pdm09 virus and influenza B virus were predominant. More influenza outbreaks were reported in the influenza A (H1N1) pandemic during 2009-2010. Influenza outbreaks mainly occurred during winter-spring, and less influenza outbreaks occurred in winter and summer vacations of schools. More influenza outbreaks were reported in southern provinces, accounting for 79% of the total. Influenza outbreaks mainly occurred in primary and middle schools, where 2 763 outbreaks were reported, accounting for 85% of the total. Average 30-99 people were involved in an outbreak. A large number of influenza outbreaks occur during influenza season every year in China, the predominant virus type or subtype varies with season. Primary and middle schools are mainly affected by influenza outbreaks.

  10. Antimicrobial resistance in Salmonella that caused foodborne disease outbreaks: United States, 2003–2012

    PubMed Central

    BROWN, A. C.; GRASS, J. E.; RICHARDSON, L. C.; NISLER, A. L.; BICKNESE, A. S.; GOULD, L. H.

    2016-01-01

    SUMMARY Although most non-typhoidal Salmonella illnesses are self-limiting, antimicrobial treatment is critical for invasive infections. To describe resistance in Salmonella that caused foodborne outbreaks in the United States, we linked outbreaks submitted to the Foodborne Disease Outbreak Surveillance System to isolate susceptibility data in the National Antimicrobial Resistance Monitoring System. Resistant outbreaks were defined as those linked to one or more isolates with resistance to at least one antimicrobial drug. Multidrug resistant (MDR) outbreaks had at least one isolate resistant to three or more antimicrobial classes. Twenty-one per cent (37/176) of linked outbreaks were resistant. In outbreaks attributed to a single food group, 73% (16/22) of resistant outbreaks and 46% (31/68) of non-resistant outbreaks were attributed to foods from land animals (P < 0.05). MDR Salmonella with clinically important resistance caused 29% (14/48) of outbreaks from land animals and 8% (3/40) of outbreaks from plant products (P < 0.01). In our study, resistant Salmonella infections were more common in outbreaks attributed to foods from land animals than outbreaks from foods from plants or aquatic animals. Antimicrobial susceptibility data on isolates from foodborne Salmonella outbreaks can help determine which foods are associated with resistant infections. PMID:27919296

  11. Antimicrobial resistance in Salmonella that caused foodborne disease outbreaks: United States, 2003-2012.

    PubMed

    Brown, A C; Grass, J E; Richardson, L C; Nisler, A L; Bicknese, A S; Gould, L H

    2017-03-01

    Although most non-typhoidal Salmonella illnesses are self-limiting, antimicrobial treatment is critical for invasive infections. To describe resistance in Salmonella that caused foodborne outbreaks in the United States, we linked outbreaks submitted to the Foodborne Disease Outbreak Surveillance System to isolate susceptibility data in the National Antimicrobial Resistance Monitoring System. Resistant outbreaks were defined as those linked to one or more isolates with resistance to at least one antimicrobial drug. Multidrug resistant (MDR) outbreaks had at least one isolate resistant to three or more antimicrobial classes. Twenty-one per cent (37/176) of linked outbreaks were resistant. In outbreaks attributed to a single food group, 73% (16/22) of resistant outbreaks and 46% (31/68) of non-resistant outbreaks were attributed to foods from land animals (P < 0·05). MDR Salmonella with clinically important resistance caused 29% (14/48) of outbreaks from land animals and 8% (3/40) of outbreaks from plant products (P < 0·01). In our study, resistant Salmonella infections were more common in outbreaks attributed to foods from land animals than outbreaks from foods from plants or aquatic animals. Antimicrobial susceptibility data on isolates from foodborne Salmonella outbreaks can help determine which foods are associated with resistant infections.

  12. Increase in outbreaks of gastroenteritis linked to bathing water in Finland in summer 2014

    PubMed Central

    Kauppinen, Ari; Al-Hello, Haider; Zacheus, Outi; Kilponen, Jaana; Maunula, Leena; Huusko, Sari; Lappalainen, Maija; Miettinen, Ilkka; Blomqvist, Soile; Rimhanen-Finne, Ruska

    2017-01-01

    An increased number of suspected outbreaks of gastroenteritis linked to bathing water were reported to the Finnish food- and waterborne outbreak (FWO) registry in July and August 2014. The investigation reports were assessed by a national outbreak investigation panel. Eight confirmed outbreaks were identified among the 15 suspected outbreaks linked to bathing water that had been reported to the FWO registry. According to the outbreak investigation reports, 1,453 persons fell ill during these outbreaks. Epidemiological and microbiological data revealed noroviruses as the main causative agents. During the outbreaks, exceptionally warm weather had boosted the use of beaches. Six of eight outbreaks occurred at small lakes; for those, the investigation strongly suggested that the beach users were the source of contamination. In one of those eight outbreaks, an external source of contamination was identified and elevated levels of faecal indicator bacteria (FIB) were noted in water. In the remaining outbreaks, FIB analyses were insufficient to describe the hygienic quality of the water. Restrictions against bathing proved effective in controlling the outbreaks. In spring 2015, the National Institute for Health and Welfare (THL) and the National Supervisory Authority for Welfare and Health (Valvira) published guidelines for outbreak control to prevent bathing water outbreaks. PMID:28251888

  13. Fresh Produce-Associated Listeriosis Outbreaks, Sources of Concern, Teachable Moments, and Insights.

    PubMed

    Garner, Danisha; Kathariou, Sophia

    2016-02-01

    Foodborne transmission of Listeria monocytogenes was first demonstrated through the investigation of the 1981 Maritime Provinces outbreak involving coleslaw. In the following two decades, most listeriosis outbreaks involved foods of animal origin, e.g., deli meats, hot dogs, and soft cheeses. L. monocytogenes serotype 4b, especially epidemic clones I, II, and Ia, were frequently implicated in these outbreaks. However, since 2008 several outbreaks have been linked to diverse types of fresh produce: sprouts, celery, cantaloupe, stone fruit, and apples. The 2011 cantaloupe-associated outbreak was one of the deadliest foodborne outbreaks in recent U.S. history. This review discusses produce-related outbreaks of listeriosis with a focus on special trends, unusual findings, and potential paradigm shifts. With the exception of sprouts, implicated produce types were novel, and outbreaks were one-time events. Several involved serotype 1/2a, and in the 2011 cantaloupe-associated outbreak, serotype 1/2b was for the first time conclusively linked to a common-source outbreak of invasive listeriosis. Also in this outbreak, for the first time multiple strains were implicated in a common-source outbreak. In 2014, deployment of whole genome sequencing as part of outbreak investigation validated this technique as a pivotal tool for outbreak detection and speedy resolution. In spite of the unusual attributes of produce-related outbreaks, in all but one of the investigated cases (the possible exception being the coleslaw outbreak) contamination was traced to the same sources as those for outbreaks associated with other vehicles (e.g., deli meats), i.e., the processing environment and equipment. The public health impact of farm-level contamination remains uncharacterized. This review highlights knowledge gaps regarding virulence and other potentially unique attributes of produce outbreak strains, the potential for novel fresh produce items to become unexpectedly implicated in outbreaks, and the key role of good control strategies in the processing environment.

  14. Modelling the time at which overcrowding and feed interruption emerge on the swine premises under movement restrictions during a classical swine fever outbreak.

    PubMed

    Weng, H Y; Yadav, S; Olynk Widmar, N J; Croney, C; Ash, M; Cooper, M

    2017-03-01

    A stochastic risk model was developed to estimate the time elapsed before overcrowding (TOC) or feed interruption (TFI) emerged on the swine premises under movement restrictions during a classical swine fever (CSF) outbreak in Indiana, USA. Nursery (19 to 65 days of age) and grow-to-finish (40 to 165 days of age) pork production operations were modelled separately. Overcrowding was defined as the total weight of pigs on premises exceeding 100% to 115% of the maximum capacity of the premises, which was computed as the total weight of the pigs at harvest/transition age. Algorithms were developed to estimate age-specific weight of the pigs on premises and to compare the daily total weight of the pigs with the threshold weight defining overcrowding to flag the time when the total weight exceeded the threshold (i.e. when overcrowding occurred). To estimate TFI, an algorithm was constructed to model a swine producer's decision to discontinue feed supply by incorporating the assumptions that a longer estimated epidemic duration, a longer time interval between the age of pigs at the onset of the outbreak and the harvest/transition age, or a longer progression of an ongoing outbreak would increase the probability of a producer's decision to discontinue the feed supply. Adverse animal welfare conditions were modelled to emerge shortly after an interruption of feed supply. Simulations were run with 100 000 iterations each for a 365-day period. Overcrowding occurred in all simulated iterations, and feed interruption occurred in 30% of the iterations. The median (5th and 95th percentiles) TOC was 24 days (10, 43) in nursery operations and 78 days (26, 134) in grow-to-finish operations. Most feed interruptions, if they emerged, occurred within 15 days of an outbreak. The median (5th and 95th percentiles) time at which either overcrowding or feed interruption emerged was 19 days (4, 42) in nursery and 57 days (4, 130) in grow-to-finish operations. The study findings suggest that overcrowding and feed interruption could emerge early during a CSF outbreak among swine premises under movement restrictions. The outputs derived from the risk model could be used to estimate and evaluate associated mitigation strategies for alleviating adverse animal welfare conditions resulting from movement restrictions.

  15. Outbreaks attributed to pork in the United States, 1998-2015.

    PubMed

    Self, J L; Luna-Gierke, R E; Fothergill, A; Holt, K G; Vieira, A R

    2017-10-01

    Each year in the United States, an estimated 525 000 infections, 2900 hospitalizations, and 82 deaths are attributed to consumption of pork. We analyzed the epidemiology of outbreaks attributed to pork in the United States reported to the Centers for Disease Control and Prevention (CDC) 1998-2015. During that period, 288 outbreaks were attributed to pork, resulting in 6372 illnesses, 443 hospitalizations, and four deaths. The frequency of outbreaks attributed to pork decreased by 37% during this period, consistent with a decline in total foodborne outbreaks. However, outbreaks attributed to pork increased by 73% in 2015 (19 outbreaks) compared with the previous 3 years (average of 11 outbreaks per year), without a similar increase in total foodborne outbreaks. Most (>99%) of these outbreaks occurred among people exposed in the same state. The most frequent etiology shifted from Staphylococcus aureus toxin during 1998-2001 (19%) to Salmonella during 2012-2015 (46%). Outbreaks associated with ham decreased from eight outbreaks per year during 1998-2001, to one per year during 2012-2015 (P < 0·01). Additional efforts are necessary to reduce outbreaks and sporadic illnesses associated with pork products.

  16. The Vagaries Of Public Support For Government Actions In Case Of A Pandemic

    PubMed Central

    Hilyard, Karen M.; Freimuth, Vicki S.; Musa, Donald; Kumar, Supriya; Quinn, Sandra Crouse

    2011-01-01

    Government health measures in a pandemic are effective only with strong support and compliance from the public. A survey of 1,583 US adults early in the 2009 H1N1 (swine influenza) pandemic shows surprisingly mixed support for possible government efforts to control the spread of the disease, with strong support for more extreme measures such as closing borders and weak support for more basic, and potentially more effective, policies such as encouraging sick people to stay home from work. The results highlight challenges that public health officials and policy makers must address in formulating strategies to respond to a pandemic before a more severe outbreak occurs. PMID:21134932

  17. [Study of tuberculosis outbreaks reported in Catalonia, 1998-2002].

    PubMed

    Bran, Carlos M; Caylá, Joan A; Domínguez, Angela; Camps, Neus; Godoy, Pere; Orcau, Angels; Barrabeig, Irene; Alcaide, José; Altet, Neus; Alvarez, Pep

    2006-06-01

    To analyze the characteristics of tuberculosis outbreaks declared under vigilance programs in Catalonia. Descriptive study of outbreaks from 1998 through 2002 for which reports were available. An outbreak was defined as 3 or more associated cases appearing within a year. For 2 health care regions, outbreaks for which there were full surveillance reports with contact tracing were compared to outbreaks identified but which had not been fully reported. Twenty-seven outbreaks were analyzed. Nineteen (70%) occurred within families. A total of 22 outbreaks were declared upon identification of the true index case and 5 upon detection of secondary cases. The mean annual incidence of outbreaks was 0.40/100,100 inhabitants. Most cases were in males 16 to 40 years of age and involved cavitary lesions and a clinically significant diagnostic delay. Twenty-seven outbreaks caused 69 secondary cases. A longer diagnostic delay was seen to correspond to a larger number of secondary cases (P=.08). In the 2 health care regions analyzed, full surveillance reports with contact tracing were issued for 2 of the 14 outbreaks detected (14.4%). Tuberculosis outbreaks are common but investigative follow-up is scarce. The size of the outbreak is related to the length of diagnostic delay. Rapid diagnosis, contact tracing, and the issuance of a public health report should be priorities in all outbreaks detected.

  18. Surveillance for waterborne disease outbreaks associated with drinking water and other nonrecreational water - United States, 2009-2010.

    PubMed

    2013-09-06

    Despite advances in water management and sanitation, waterborne disease outbreaks continue to occur in the United States. CDC collects data on waterborne disease outbreaks submitted from all states and territories through the Waterborne Disease and Outbreak Surveillance System. During 2009-2010, the most recent years for which finalized data are available, 33 drinking water-associated outbreaks were reported, comprising 1,040 cases of illness, 85 hospitalizations, and nine deaths. Legionella accounted for 58% of outbreaks and 7% of illnesses, and Campylobacter accounted for 12% of outbreaks and 78% of illnesses. The most commonly identified outbreak deficiencies in drinking water-associated outbreaks were Legionella in plumbing systems (57.6%), untreated ground water (24.2%), and distribution system deficiencies (12.1%), suggesting that efforts to identify and correct these deficiencies could prevent many outbreaks and illnesses associated with drinking water. In addition to the drinking water outbreaks, 12 outbreaks associated with other nonrecreational water were reported, comprising 234 cases of illness, 51 hospitalizations, and six deaths. Legionella accounted for 58% of these outbreaks, 42% of illnesses, 96% of hospitalizations, and all deaths. Public health, regulatory, and industry professionals can use this information to target prevention efforts against pathogens, infrastructure problems, and water sources associated with waterborne disease outbreaks.

  19. Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015.

    PubMed

    Alhamlan, F S; Majumder, M S; Brownstein, J S; Hawkins, J; Al-Abdely, H M; Alzahrani, A; Obaid, D A; Al-Ahdal, M N; BinSaeed, A

    2017-01-12

    As of 1 November 2015, the Saudi Ministry of Health had reported 1273 cases of Middle East respiratory syndrome (MERS); among these cases, which included 9 outbreaks at several hospitals, 717 (56%) patients recovered, 14 (1%) remain hospitalised and 543 (43%) died. This study aimed to determine the epidemiological, demographic and clinical characteristics that distinguished cases of MERS contracted during outbreaks from those contracted sporadically (ie, non-outbreak) between 2012 and 2015 in Saudi Arabia. Data from the Saudi Ministry of Health of confirmed outbreak and non-outbreak cases of MERS coronavirus (CoV) infections from September 2012 through October 2015 were abstracted and analysed. Univariate and descriptive statistical analyses were conducted, and the time between disease onset and confirmation, onset and notification and onset and death were examined. A total of 1250 patients (aged 0-109 years; mean, 50.825 years) were reported infected with MERS-CoV. Approximately two-thirds of all MERS cases were diagnosed in men for outbreak and non-outbreak cases. Healthcare workers comprised 22% of all MERS cases for outbreak and non-outbreak cases. Nosocomial infections comprised one-third of all Saudi MERS cases; however, nosocomial infections occurred more frequently in outbreak than non-outbreak cases (p<0.001). Patients contracting MERS during an outbreak were significantly more likely to die of MERS (p<0.001). To date, nosocomial infections have fuelled MERS outbreaks. Given that the Kingdom of Saudi Arabia is a worldwide religious travel destination, localised outbreaks may have massive global implications and effective outbreak preventive measures are needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Case characteristics among Middle East respiratory syndrome coronavirus outbreak and non-outbreak cases in Saudi Arabia from 2012 to 2015

    PubMed Central

    Alhamlan, F S; Majumder, M S; Brownstein, J S; Hawkins, J; Al-Abdely, H M; Alzahrani, A; Obaid, D A; Al-Ahdal, M N; BinSaeed, A

    2017-01-01

    Objectives As of 1 November 2015, the Saudi Ministry of Health had reported 1273 cases of Middle East respiratory syndrome (MERS); among these cases, which included 9 outbreaks at several hospitals, 717 (56%) patients recovered, 14 (1%) remain hospitalised and 543 (43%) died. This study aimed to determine the epidemiological, demographic and clinical characteristics that distinguished cases of MERS contracted during outbreaks from those contracted sporadically (ie, non-outbreak) between 2012 and 2015 in Saudi Arabia. Design Data from the Saudi Ministry of Health of confirmed outbreak and non-outbreak cases of MERS coronavirus (CoV) infections from September 2012 through October 2015 were abstracted and analysed. Univariate and descriptive statistical analyses were conducted, and the time between disease onset and confirmation, onset and notification and onset and death were examined. Results A total of 1250 patients (aged 0–109 years; mean, 50.825 years) were reported infected with MERS-CoV. Approximately two-thirds of all MERS cases were diagnosed in men for outbreak and non-outbreak cases. Healthcare workers comprised 22% of all MERS cases for outbreak and non-outbreak cases. Nosocomial infections comprised one-third of all Saudi MERS cases; however, nosocomial infections occurred more frequently in outbreak than non-outbreak cases (p<0.001). Patients contracting MERS during an outbreak were significantly more likely to die of MERS (p<0.001). Conclusions To date, nosocomial infections have fuelled MERS outbreaks. Given that the Kingdom of Saudi Arabia is a worldwide religious travel destination, localised outbreaks may have massive global implications and effective outbreak preventive measures are needed. PMID:28082362

  1. Outbreaks, gene flow and effective population size in the migratory locust, Locusta migratoria: a regional-scale comparative survey.

    PubMed

    Chapuis, Marie-Pierre; Loiseau, Anne; Michalakis, Yannis; Lecoq, Michel; Franc, Alex; Estoup, Arnaud

    2009-03-01

    The potential effect of population outbreaks on within and between genetic variation of populations in pest species has rarely been assessed. In this study, we compare patterns of genetic variation in different sets of historically frequently outbreaking and rarely outbreaking populations of an agricultural pest of major importance, the migratory locust, Locusta migratoria. We analyse genetic variation within and between 24 populations at 14 microsatellites in Western Europe, where only ancient and low-intensity outbreaks have been reported (non-outbreaking populations), and in Madagascar and Northern China, where frequent and intense outbreak events have been recorded over the last century (outbreaking populations). Our comparative survey shows that (i) the long-term effective population size is similar in outbreaking and non-outbreaking populations, as evidenced by similar estimates of genetic diversity, and (ii) gene flow is substantially larger among outbreaking populations than among non-outbreaking populations, as evidenced by a fourfold to 30-fold difference in FST values. We discuss the implications for population dynamics and the consequences for management strategies of the observed patterns of genetic variation in L. migratoria populations with contrasting historical outbreak frequency and extent.

  2. Distributed micro-releases of bioterror pathogens : threat characterizations and epidemiology from uncertain patient observables.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Michael M.; Marzouk, Youssef M.; Adams, Brian M.

    2008-10-01

    Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern since the anthrax attacks of 2001. The ability to characterize the parameters of such attacks, i.e., to estimate the number of people infected, the time of infection, the average dose received, and the rate of disease spread in contemporary American society (for contagious diseases), is important when planning a medical response. For non-contagious diseases, we address the characterization problem by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To keep the approach relevant for response planning, we limitmore » ourselves to 3.5 days of data. In computational tests performed for anthrax, we usually find these observation windows sufficient, especially if the outbreak model employed in the inverse problem is accurate. For contagious diseases, we formulated a Bayesian inversion technique to infer both pathogenic transmissibility and the social network from outbreak observations, ensuring that the two determinants of spreading are identified separately. We tested this technique on data collected from a 1967 smallpox epidemic in Abakaliki, Nigeria. We inferred, probabilistically, different transmissibilities in the structured Abakaliki population, the social network, and the chain of transmission. Finally, we developed an individual-based epidemic model to realistically simulate the spread of a rare (or eradicated) disease in a modern society. This model incorporates the mixing patterns observed in an (American) urban setting and accepts, as model input, pathogenic transmissibilities estimated from historical outbreaks that may have occurred in socio-economic environments with little resemblance to contemporary society. Techniques were also developed to simulate disease spread on static and sampled network reductions of the dynamic social networks originally in the individual-based model, yielding faster, though approximate, network-based epidemic models. These reduced-order models are useful in scenario analysis for medical response planning, as well as in computationally intensive inverse problems.« less

  3. Spatial cluster detection using dynamic programming.

    PubMed

    Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F

    2012-03-25

    The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.

  4. Spatial cluster detection using dynamic programming

    PubMed Central

    2012-01-01

    Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103

  5. The current situation with Phytophthora ramorum in England and Wales

    Treesearch

    David Slawson; Lynne Bennett; Nicola Parry; Charles Lane

    2006-01-01

    Since the first finding of Phytophthora ramorum in England in April 2002, an intensive campaign, supported by the European Community (EC) and national legislation, has been conducted to locate and eradicate all interceptions and outbreaks of P. ramorum. A summary of the findings made during these surveys is presented, along with an...

  6. A comment on “Management for mountain pine beetle outbreak suppression: Does relevant science support current policy?"

    Treesearch

    Christopher J. Fettig; Kenneth E. Gibson; A. Steven Munson; Jose F. Negrón

    2014-01-01

    There are two general approaches for reducing the negative impacts of mountain pine beetle, Dendroctonus ponderosae Hopkins, on forests. Direct control involves short-term tactics designed to address current infestations by manipulating mountain pine beetle populations, and includes the use of fire, insecticides, semiochemicals, sanitation harvests...

  7. Controlling the last known cluster of Ebola virus disease - Liberia, January-February 2015.

    PubMed

    Nyenswah, Tolbert; Fallah, Mosoka; Sieh, Sonpon; Kollie, Karsor; Badio, Moses; Gray, Alvin; Dilah, Priscilla; Shannon, Marnijina; Duwor, Stanley; Ihekweazu, Chikwe; Cordier-Lassalle, Thierry; Cordier-Lasalle, Thierry; Shinde, Shivam A; Hamblion, Esther; Davies-Wayne, Gloria; Ratnesh, Murugan; Dye, Christopher; Yoder, Jonathan S; McElroy, Peter; Hoots, Brooke; Christie, Athalia; Vertefeuille, John; Olsen, Sonja J; Laney, A Scott; Neal, Joyce J; Yaemsiri, Sirin; Navin, Thomas R; Coulter, Stewart; Pordell, Paran; Lo, Terrence; Kinkade, Carl; Mahoney, Frank

    2015-05-15

    As one of the three West African countries highly affected by the 2014-2015 Ebola virus disease (Ebola) epidemic, Liberia reported approximately 10,000 cases. The Ebola epidemic in Liberia was marked by intense urban transmission, multiple community outbreaks with source cases occurring in patients coming from the urban areas, and outbreaks in health care facilities (HCFs). This report, based on data from routine case investigations and contact tracing, describes efforts to stop the last known chain of Ebola transmission in Liberia. The index patient became ill on December 29, 2014, and the last of 21 associated cases was in a patient admitted into an Ebola treatment unit (ETU) on February 18, 2015. The chain of transmission was stopped because of early detection of new cases; identification, monitoring, and support of contacts in acceptable settings; effective triage within the health care system; and rapid isolation of symptomatic contacts. In addition, a "sector" approach, which divided Montserrado County into geographic units, facilitated the ability of response teams to rapidly respond to community needs. In the final stages of the outbreak, intensive coordination among partners and engagement of community leaders were needed to stop transmission in densely populated Montserrado County. A companion report describes the efforts to enhance infection prevention and control efforts in HCFs. After February 19, no additional clusters of Ebola cases have been detected in Liberia. On May 9, the World Health Organization declared the end of the Ebola outbreak in Liberia.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Braeton J.; Starks, Shirley J.; Loose, Verne W.

    Pandemic influenza has become a serious global health concern; in response, governments around the world have allocated increasing funds to containment of public health threats from this disease. Pandemic influenza is also recognized to have serious economic implications, causing illness and absence that reduces worker productivity and economic output and, through mortality, robs nations of their most valuable assets - human resources. This paper reports two studies that investigate both the short- and long-term economic implications of a pandemic flu outbreak. Policy makers can use the growing number of economic impact estimates to decide how much to spend to combatmore » the pandemic influenza outbreaks. Experts recognize that pandemic influenza has serious global economic implications. The illness causes absenteeism, reduced worker productivity, and therefore reduced economic output. This, combined with the associated mortality rate, robs nations of valuable human resources. Policy makers can use economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. In this paper economists examine two studies which investigate both the short- and long-term economic implications of a pandemic influenza outbreak. Resulting policy implications are also discussed. The research uses the Regional Economic Modeling, Inc. (REMI) Policy Insight + Model. This model provides a dynamic, regional, North America Industrial Classification System (NAICS) industry-structured framework for forecasting. It is supported by a population dynamics model that is well-adapted to investigating macro-economic implications of pandemic influenza, including possible demand side effects. The studies reported in this paper exercise all of these capabilities.« less

  9. Prevention of Tetanus Outbreak Following Natural Disaster in Indonesia: Lessons Learned from Previous Disasters.

    PubMed

    Pascapurnama, Dyshelly Nurkartika; Murakami, Aya; Chagan-Yasutan, Haorile; Hattori, Toshio; Sasaki, Hiroyuki; Egawa, Shinichi

    2016-03-01

    In Indonesia, the Aceh earthquake and tsunami in 2004 killed 127,000 people and caused half a million injuries, while the Yogyakarta earthquake in 2006 caused 5,700 deaths and 37,000 injuries. Because disaster-affected areas are vulnerable to epidemic-prone diseases and tetanus is one such disease that is preventable, we systematically reviewed the literature related to tetanus outbreaks following previous two natural disasters in Indonesia. Based on our findings, recommendations for proper vaccination and education can be made for future countermeasures. Using specified keywords related to tetanus and disasters, relevant documents were screened from PubMed, the WHO website, and books. Reports offering limited data and those released before 2004 were excluded. In all, 16 publications were reviewed systematically. Results show that 106 cases of tetanus occurred in Aceh, with a case fatality ratio (CFR) of 18.9%; 71 cases occurred in Yogyakarta, with CFR of 36.6%. For both outbreaks, most patients had been wounded during scavenging or evacuation after the disaster occurred. Poor access to health care because of limited transportation or hospital facilities, and low vaccination coverage and lack of awareness of tetanus risk contributed to delayed treatment and case severity. Tetanus outbreaks after disasters are preventable by increasing vaccination coverage, improving wound care treatment, and establishing a regular surveillance system, in addition to good practices of disaster management and supportive care following national guidelines. Furthermore, health education for communities should be provided to raise awareness of tetanus risk reduction.

  10. Natural transmission of dengue virus serotype 3 by Aedes albopictus (Skuse) during an outbreak in Havelock Island: Entomological characteristics.

    PubMed

    Sivan, Arun; Shriram, A N; Sugunan, A P; Anwesh, Maile; Muruganandam, N; Kartik, C; Vijayachari, P

    2016-04-01

    From May to June 2014, an outbreak of dengue virus (DENV) illness occurred in the Havelock Island, South Andaman. Entomological investigations were undertaken during the peak of the outbreak, from 26th May-4th June, to identify the primary vector(s) involved in the transmission so that appropriate public health measures could be implemented. Adult mosquitoes were collected by BG-Sentinel traps in houses and neighborhoods of clinically ill patients. Water holding containers were inspected for the presence of mosquito larvae and pupae. Adult mosquitoes were analyzed by RT-PCR for the presence of nucleic acids of DENV and CHIKV. A total of 498 mosquitoes were collected and processed in 27 pools. The species composition comprised of 58.3% Aedes albopictus, 7.5% Aedes aegypti and 4.2% Aedes edwardsi and 3.1% constituted others. Two A. albopictus pools were found to be positive for DENV RNA. Sequencing of the RT PCR 511 base pair amplicon positive samples showed homology with DENV-3, suggesting that serotype-3 was responsible for the outbreak and A. albopictus was the primary vector responsible. This was supported by high container (10.1%), premise (25.4%) and Breteau (27.9) indices, with miscellaneous receptacles (2.4%), tree holes (1.2%) and discarded tires (1.2%) registering relatively higher container indices. This is the first report of detection of DENV in A. albopictus from Andaman and Nicobar Islands. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effectiveness of hepatitis A vaccination as post-exposure prophylaxis

    PubMed Central

    Parrón, Ignasi; Planas, Caritat; Manzanares-Laya, Sandra; Martínez, Ana; Sala, Maria Rosa; Minguell, Sofia; Jané, Mireia

    2017-01-01

    ABSTRACT Hepatitis A (HA) has been a vaccine-preventable disease since 1995. In Catalonia, a universal combined hepatitis A+B vaccination program of preadolescents was initiated at the end of 1998. However, outbreaks are reported each year and post-exposure prophylaxis (PEP) with hepatitis A virus (HAV) vaccine or immunoglobulin (IG) is recommended to avoid cases. The aim of this study was to assess the effectiveness of HAV vaccine and IG in preventing hepatitis A cases in susceptible exposed people. A retrospective cohort study of contacts of HA cases involved in outbreaks reported in Catalonia between January 2006 and December 2012 was made. The rate ratios and 95% confidence intervals (CI) of HA in susceptible contacts receiving HAV or IG versus those without PEP were calculated. There were 3550 exposed persons in the outbreaks studied: 2381 received one dose of HAV vaccine (Hepatitis A or hepatitis A+B), 190 received IG, and 611 received no PEP. 368 exposed subjects received one dose of HAV vaccine and IG simultaneously and were excluded from the study. The effectiveness of PEP was 97.6% (95% CI 96.2–98.6) for HAV vaccine and 98.3% (95% CI 91.3–99.9) for IG; the differences were not statistically significant (p = 0.36). The elevated effectiveness of HAV vaccination for PEP in HA outbreaks, similar to that of IG, and the long-term protection of active immunization, supports the preferential use of vaccination to avoid secondary cases. PMID:27925847

  12. Genomic paradigms for food-borne enteric pathogen analysis at the USFDA: case studies highlighting method utility, integration and resolution.

    PubMed

    Elkins, C A; Kotewicz, M L; Jackson, S A; Lacher, D W; Abu-Ali, G S; Patel, I R

    2013-01-01

    Modern risk control and food safety practices involving food-borne bacterial pathogens are benefiting from new genomic technologies for rapid, yet highly specific, strain characterisations. Within the United States Food and Drug Administration (USFDA) Center for Food Safety and Applied Nutrition (CFSAN), optical genome mapping and DNA microarray genotyping have been used for several years to quickly assess genomic architecture and gene content, respectively, for outbreak strain subtyping and to enhance retrospective trace-back analyses. The application and relative utility of each method varies with outbreak scenario and the suspect pathogen, with comparative analytical power enhanced by database scale and depth. Integration of these two technologies allows high-resolution scrutiny of the genomic landscapes of enteric food-borne pathogens with notable examples including Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica serovars from a variety of food commodities. Moreover, the recent application of whole genome sequencing technologies to food-borne pathogen outbreaks and surveillance has enhanced resolution to the single nucleotide scale. This new wealth of sequence data will support more refined next-generation custom microarray designs, targeted re-sequencing and "genomic signature recognition" approaches involving a combination of genes and single nucleotide polymorphism detection to distil strain-specific fingerprinting to a minimised scale. This paper examines the utility of microarrays and optical mapping in analysing outbreaks, reviews best practices and the limits of these technologies for pathogen differentiation, and it considers future integration with whole genome sequencing efforts.

  13. Effectiveness of hepatitis A vaccination as post-exposure prophylaxis.

    PubMed

    Parrón, Ignasi; Planas, Caritat; Godoy, Pere; Manzanares-Laya, Sandra; Martínez, Ana; Sala, Maria Rosa; Minguell, Sofia; Torner, Nuria; Jané, Mireia; Domínguez, Angela

    2017-02-01

    Hepatitis A (HA) has been a vaccine-preventable disease since 1995. In Catalonia, a universal combined hepatitis A+B vaccination program of preadolescents was initiated at the end of 1998. However, outbreaks are reported each year and post-exposure prophylaxis (PEP) with hepatitis A virus (HAV) vaccine or immunoglobulin (IG) is recommended to avoid cases. The aim of this study was to assess the effectiveness of HAV vaccine and IG in preventing hepatitis A cases in susceptible exposed people. A retrospective cohort study of contacts of HA cases involved in outbreaks reported in Catalonia between January 2006 and December 2012 was made. The rate ratios and 95% confidence intervals (CI) of HA in susceptible contacts receiving HAV or IG versus those without PEP were calculated. There were 3550 exposed persons in the outbreaks studied: 2381 received one dose of HAV vaccine (Hepatitis A or hepatitis A+B), 190 received IG, and 611 received no PEP. 368 exposed subjects received one dose of HAV vaccine and IG simultaneously and were excluded from the study. The effectiveness of PEP was 97.6% (95% CI 96.2-98.6) for HAV vaccine and 98.3% (95% CI 91.3-99.9) for IG; the differences were not statistically significant (p = 0.36). The elevated effectiveness of HAV vaccination for PEP in HA outbreaks, similar to that of IG, and the long-term protection of active immunization, supports the preferential use of vaccination to avoid secondary cases.

  14. Handling Practices of Fresh Leafy Greens in Restaurants: Receiving and Training†

    PubMed Central

    COLEMAN, ERIK; DELEA, KRISTIN; EVERSTINE, KAREN; REIMANN, DAVID; RIPLEY, DANNY

    2015-01-01

    Multiple foodborne illness outbreaks have been associated with the consumption of fresh produce. Investigations have indicated that microbial contamination throughout the farm-to-fork continuum often contributed to these outbreaks. Researchers have hypothesized that handling practices for leafy greens in restaurants may support contamination by and proliferation and amplification of pathogens that cause foodborne illness outbreaks. However, limited data are available on how workers handle leafy greens in restaurants. The purpose of this study was to collect descriptive data on handling practices of leafy greens in restaurants, including restaurant characteristics, types of leafy greens used, produce receipt, and food safety training and certification. As a federal collaborative partner with the Environmental Health Specialists Network (EHS-Net) of the Centers for Disease Control and Prevention, the U.S. Food and Drug Administration (FDA) recommended that EHS-Net participants survey handling practices for leafy greens in restaurants. The recommendations in the FDA’s Guide to Minimize Microbial Food Safety Hazards of Leafy Greens are significant to this study for comparison of the results. The survey revealed that appropriate handling procedures assist in the mitigation of other unsafe handling practices for leafy greens. These results are significant because the FDA guidance for the safe handling of leafy greens was not available until 2009, after the survey had been completed. The information provided from this study can be used to promote additional efforts that will assist in developing interventions to prevent future foodborne illness outbreaks associated with leafy greens. PMID:24290691

  15. Assessment of the Legionnaires' disease outbreak in Flint, Michigan.

    PubMed

    Zahran, Sammy; McElmurry, Shawn P; Kilgore, Paul E; Mushinski, David; Press, Jack; Love, Nancy G; Sadler, Richard C; Swanson, Michele S

    2018-02-20

    The 2014-2015 Legionnaires' disease (LD) outbreak in Genesee County, MI, and the outbreak resolution in 2016 coincided with changes in the source of drinking water to Flint's municipal water system. Following the switch in water supply from Detroit to Flint River water, the odds of a Flint resident presenting with LD increased 6.3-fold (95% CI: 2.5, 14.0). This risk subsided following boil water advisories, likely due to residents avoiding water, and returned to historically normal levels with the switch back in water supply. During the crisis, as the concentration of free chlorine in water delivered to Flint residents decreased, their risk of acquiring LD increased. When the average weekly chlorine level in a census tract was <0.5 mg/L or <0.2 mg/L, the odds of an LD case presenting from a Flint neighborhood increased by a factor of 2.9 (95% CI: 1.4, 6.3) or 3.9 (95% CI: 1.8, 8.7), respectively. During the switch, the risk of a Flint neighborhood having a case of LD increased by 80% per 1 mg/L decrease in free chlorine, as calculated from the extensive variation in chlorine observed. In communities adjacent to Flint, the probability of LD occurring increased with the flow of commuters into Flint. Together, the results support the hypothesis that a system-wide proliferation of legionellae was responsible for the LD outbreak in Genesee County, MI.

  16. CDC's Emergency Management Program activities - worldwide, 2003-2012.

    PubMed

    2013-09-06

    In 2003, recognizing the increasing frequency and complexity of disease outbreaks and disasters and a greater risk for terrorism, CDC established the Emergency Operations Center (EOC), bringing together CDC staff members who respond to public health emergencies to enhance communication and coordination. To complement the physical EOC environment, CDC implemented the Incident Management System (IMS), a staffing structure and set of standard operational protocols and services to support and monitor CDC program-led responses to complex public health emergencies. The EOC and IMS are key components of CDC's Emergency Management Program (EMP), which applies emergency management principles to public health practice. To enumerate activities conducted by the EMP during 2003-2012, CDC analyzed data from daily reports and activity logs. The results of this analysis determined that, during 2003-2012, the EMP fully activated the EOC and IMS on 55 occasions to support responses to infectious disease outbreaks, natural disasters, national security events (e.g., conventions, presidential addresses, and international summits), mass gatherings (e.g., large sports and social events), and man-made disasters. On 109 other occasions, the EMP was used to support emergency responses that did not require full EOC activation, and the EMP also conducted 30 exercises and drills. This report provides an overview of those 194 EMP activities.

  17. Support services for survivors of ebola virus disease - Sierra Leone, 2014.

    PubMed

    Lee-Kwan, Seung Hee; DeLuca, Nickolas; Adams, Monica; Dalling, Matthew; Drevlow, Elizabeth; Gassama, Gladys; Davies, Tina

    2014-12-19

    As of December 6, 2014, Sierra Leone reported 6,317 laboratory-confirmed cases of Ebola virus disease (Ebola), the highest number of reported cases in the current West Africa epidemic. The Sierra Leone Ministry of Health and Sanitation reported that as of December 6, 2014, there were 1,181 persons who had survived and were discharged. Survivors from previous Ebola outbreaks have reported major barriers to resuming normal lives after release from treatment, such as emotional distress, health issues, loss of possessions, and difficulty regaining their livelihoods. In August 2014, a knowledge, attitude, and practice survey regarding the Ebola outbreak in Sierra Leone, administered by a consortium of partners that included the Ministry of Health and Sanitation, UNICEF, CDC, and a local nongovernmental organization, Focus 1000, found that 96% of the general population respondents reported some discriminatory attitude towards persons with suspected or known Ebola. Access to increased psychosocial support, provision of goods, and family and community reunification programs might reduce these barriers. Survivors also have unique potential to contribute to the Ebola response, particularly because survivors might have some immunity to the same virus strain. In previous outbreaks, survivors served as burial team members, contact tracers, and community educators promoting messages that seeking treatment improves the chances for survival and that persons who survived Ebola can help their communities. As caregivers in Ebola treatment units, survivors have encouraged patients to stay hydrated and eat and inspired them to believe that they, too, can survive. Survivors regaining livelihood through participation in the response might offset the stigma associated with Ebola.

  18. Major incidents in rural areas: managing a pandemic A/H1N1/2009 cluster.

    PubMed

    Stark, Cameron; Garman, Elaine; McMenamin, Jim; McCormick, Duncan; Oates, Ken

    2010-01-01

    Pandemic Influenza (A/H1N1/2009) caused worldwide concern because of its potential to spread rapidly in human populations. In Scotland, Government policy had been to seek to contain the spread of the virus for as long as possible in order to allow time for service preparations, and for vaccine development and supply. The first major Scottish outbreak of pandemic A/H1N1/2009 was in the rural area of Cowal and Bute. After two initial cases were identified, contact tracing found a cluster of cases associated with a football supporters' bus. Within 3 weeks, 130 cases had been identified in the area. Rapid provision of treatment doses of anti-viral medication to cases and prophylactic treatment of asymptomatic close contacts, advice on self-isolation and, where required, interruption of transmission by temporary school closure, were successful in containing the outbreak. Pre-existing Major Incident and Pandemic Flu plans were used and adapted to the particular circumstances of the outbreak and the area. Supporting operational decision-making as close to the cases as possible allowed for speed and flexibility of response. Contact tracing and tracking of cases and results was performed by specialist public health staff who were geographically removed from the cases. This was possible because of effective use of existing telephone conferencing facilities, clarity of roles, and frequent communication among staff working on all areas of the response. Basing the work on established plans, staff experience of rural areas and rural service provision was successful.

  19. Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests.

    PubMed

    Haynes, Kyle J; Allstadt, Andrew J; Klimetzek, Dietrich

    2014-06-01

    To identify general patterns in the effects of climate change on the outbreak dynamics of forest-defoliating insect species, we examined a 212-year record (1800-2011) of outbreaks of five pine-defoliating species (Bupalus piniarius, Panolis flammea, Lymantria monacha, Dendrolimus pini, and Diprion pini) in Bavaria, Germany for the evidence of climate-driven changes in the severity, cyclicity, and frequency of outbreaks. We also accounted for historical changes in forestry practices and examined effects of past insecticide use to suppress outbreaks. Analysis of relationships between severity or occurrence of outbreaks and detrended measures of temperature and precipitation revealed a mixture of positive and negative relationships between temperature and outbreak activity. Two moth species (P. flammea and Dendrolimus pini) exhibited lower outbreak activity following years or decades of unusually warm temperatures, whereas a sawfly (Diprion pini), for which voltinism is influenced by temperature, displayed increased outbreak occurrence in years of high summer temperatures. We detected only one apparent effect of precipitation, which showed Dendrolimus pini outbreaks tending to follow drought. Wavelet analysis of outbreak time series suggested climate change may be associated with collapse of L. monacha and Dendrolimus pini outbreak cycles (loss of cyclicity and discontinuation of outbreaks, respectively), but high-frequency cycles for B. piniarius and P. flammea in the late 1900s. Regional outbreak severity was generally not related to past suppression efforts (area treated with insecticides). Recent shifts in forestry practices affecting tree species composition roughly coincided with high-frequency outbreak cycles in B. piniarius and P. flammea but are unlikely to explain the detected relationships between climate and outbreak severity or collapses of outbreak cycles. Our results highlight both individualistic responses of different pine-defoliating species to climate changes and some patterns that are consistent across defoliator species in this and other forest systems, including collapsing of population cycles. © 2014 John Wiley & Sons Ltd.

  20. Infection prevention and control interventions in the first outbreak of methicillin-resistant Staphylococcus aureus infections in an equine hospital in Sweden.

    PubMed

    Bergström, Karin; Nyman, Görel; Widgren, Stefan; Johnston, Christopher; Grönlund-Andersson, Ulrika; Ransjö, Ulrika

    2012-03-08

    The first outbreak of methicillin-resistant Staphylococcus aureus (MRSA) infection in horses in Sweden occurred in 2008 at the University Animal Hospital and highlighted the need for improved infection prevention and control. The present study describes interventions and infection prevention control in an equine hospital setting July 2008 - April 2010. This descriptive study of interventions is based on examination of policy documents, medical records, notes from meetings and cost estimates. MRSA cases were identified through clinical sampling and telephone enquiries about horses post-surgery. Prospective sampling in the hospital environment with culture for MRSA and genotyping of isolates by spa-typing and pulsed-field gel electrophoresis (PFGE) were performed. Interventions focused on interruption of indirect contact spread of MRSA between horses via staff and equipment and included: Temporary suspension of elective surgery; and identification and isolation of MRSA-infected horses; collaboration was initiated between authorities in animal and human public health, human medicine infection control and the veterinary hospital; extensive cleaning and disinfection was performed; basic hygiene and cleaning policies, staff training, equipment modification and interior renovation were implemented over seven months.Ten (11%) of 92 surfaces sampled between July 2008 and April 2010 tested positive for MRSA spa-type 011, seven of which were from the first of nine sampling occasions. PFGE typing showed the isolates to be the outbreak strain (9 of 10) or a closely related strain. Two new cases of MRSA infection occurred 14 and 19 months later, but had no proven connections to the outbreak cases. Collaboration between relevant authorities and the veterinary hospital and formation of an infection control committee with an executive working group were required to move the intervention process forward. Support from hospital management and the dedication of staff were essential for the development and implementation of new, improved routines. Demonstration of the outbreak strain in the environment was useful for interventions such as improvement of cleaning routines and interior design, and increased compliance with basic hygienic precautions. The interventions led to a reduction in MRSA-positive samples and the outbreak was considered curbed as no new cases occurred for over a year.

  1. Healthcare system cost evaluation of antiviral stockpiling for pandemic influenza preparedness.

    PubMed

    Li, Yang; Hsu, Edbert B; Links, Jonathan M

    2010-06-01

    Healthcare workers need to be protected during a severe influenza outbreak; therefore, we evaluated 4 different antiviral strategies: (1) using antiviral medication for outbreak prophylaxis of all hospital employees; (2) using antiviral medication for postexposure prophylaxis (PEP) or treatment of all hospital employees; (3) using a combination of antiviral medication for outbreak prophylaxis of high-risk clinical staff and postexposure prophylaxis or treatment for all other staff; and (4) using antiviral medication for postexposure prophylaxis or treatment of high-risk clinical staff only. Three different purchasing options were applied to each of the 4 antiviral strategies: (1) just-in-time purchase during a severe influenza outbreak, (2) prepandemic stockpiling, or (3) stockpiling through contracts with pharmaceutical manufacturers to reserve a predetermined antiviral supply. Although outbreak prophylaxis of all hospital employees would offer the maximum protection, the large costs associated with such a purchase make this option unrealistic and impractical. In addition, even though postexposure prophylaxis or treatment of only high-risk clinical staff would incur the least expense, the assumed level of protection if these options were offered only to high-risk clinical staff may not be sufficient to maintain routine hospital operations, since needed non-high-risk staff would not be protected. Considering the potential benefits and drawbacks of stockpiling antiviral medication from a cost perspective, it does not appear feasible for hospitals to stockpile antiviral medication in large quantities prior to a severe influenza outbreak. This article focuses on the financial viability of stockpiling antiviral medication, but the potential impact of other factors on the decision to stockpile was also considered and will be explored in future analyses. While legal hurdles related to prescribing, storing, and dispensing antiviral medication can be addressed, unavailability of a suitable vaccine supply may strongly support a decision to stockpile antiviral medication. Other issues to be addressed include antiviral resistance specifically related to the efficacy of oseltamivir, coupled with a high frequency of secondary bacterial infections; uncertainties about the degree of government assistance; potential government seizures of stockpiled assets; and legal and ethical concerns related to fair access to stockpiled medication. These issues may all be perceived as barriers to the feasibility of stockpiling antiviral medication.

  2. An account of the Ebola virus disease outbreak in Nigeria: implications and lessons learnt.

    PubMed

    Otu, Akaninyene; Ameh, Soter; Osifo-Dawodu, Egbe; Alade, Enoma; Ekuri, Susan; Idris, Jide

    2017-07-10

    The 2014 Ebola virus disease (EVD) outbreak remains unprecedented both in the number of cases, deaths and geographic scope. The first case of EVD was confirmed in Lagos Nigeria on 23 July 2014 and spread to involve 19 laboratory-confirmed EVD cases. The EVD cases were not limited to Lagos State as Rivers State recorded 2 confirmed cases of EVD with 1 out of the 2 dying. Swift implementation of public health measures were sufficient to forestall a country -wide spread of this dreaded disease. This exploratory formative research describes the events of the Nigeria Ebola crisis in 2014. This research was implemented through key informant in-depth interviews involving 15 stakeholders in the EVD outbreak in Nigeria by a team of two or three interviewers. Most of the interviews were conducted face-to-face at the various offices of the respondents and others were via the telephone. The interviews which lasted an hour on average were conducted in English, digitally recorded and notes were also taken. This study elucidated the public health response to the Ebola outbreak led by Lagos State Government in conjunction with the Federal Ministry of Health. The principal strategy was an incident management approach which saw them identify and successfully follow up 894 contacts. The infected EVD cases were quarantined and treated. The Nigerian private sector and international organizations made significant contributions to the control efforts. Public health enlightenment programmes using multimodal communication strategies were rapidly deployed. Water and sanitary facilities were provided in many public schools in Lagos. The 2014 Ebola outbreak in Nigeria was effectively controlled using the incident management approach with massive support provided by the private sector and international community. Eight of the confirmed cases of EVD in Nigeria eventually died (case fatality rate of 42.1%) and twelve were nursed back to good health. On October 20 2014 Nigeria was declared fee of EVD by the World Health Organization. The Nigerian EVD experience provides valuable insights to guide reforms of African health systems in preparation for future infectious diseases outbreaks.

  3. Listeriosis Outbreaks and Associated Food Vehicles, United States, 1998–2008

    PubMed Central

    Cartwright, Emily J.; Jackson, Kelly A.; Johnson, Shacara D.; Graves, Lewis M.; Mahon, Barbara E.

    2013-01-01

    Listeria monocytogenes, a bacterial foodborne pathogen, can cause meningitis, bacteremia, and complications during pregnancy. This report summarizes listeriosis outbreaks reported to the Foodborne Disease Outbreak Surveillance System of the Centers for Disease Control and Prevention during 1998–2008. The study period includes the advent of PulseNet (a national molecular subtyping network for outbreak detection) in 1998 and the Listeria Initiative (enhanced surveillance for outbreak investigation) in 2004. Twenty-four confirmed listeriosis outbreaks were reported during 1998–2008, resulting in 359 illnesses, 215 hospitalizations, and 38 deaths. Outbreaks earlier in the study period were generally larger and longer. Serotype 4b caused the largest number of outbreaks and outbreak-associated cases. Ready-to-eat meats caused more early outbreaks, and novel vehicles (i.e., sprouts, taco/nacho salad) were associated with outbreaks later in the study period. These changes may reflect the effect of PulseNet and the Listeria Initiative and regulatory initiatives designed to prevent contamination in ready-to-eat meat and poultry products. PMID:23260661

  4. A survey of North American migratory waterfowl for duck plague (duck virus enteritis) virus

    USGS Publications Warehouse

    Brand, Christopher J.; Docherty, Douglas E.

    1984-01-01

    A survey of migratory waterfowl for duck plague (DP) virus was conducted in the Mississippi and Central flyways during 1982 and in the Atlantic and Pacific flyways during 1983. Cloacal and pharyngeal swabs were collected from 3,169 migratory waterfowl in these four flyways, principally mallards (Anas platyrhynchos L.), black ducks (Anas rubripes Brewster), and pintails (Anas acuta L). In addition 1,033 birds were sampled from areas of recurrent DP outbreaks among nonmigratory and captive waterfowl, and 590 from Lake Andes National Wildlife Refuge, the site of the only known major DP outbreak in migratory waterfowl. Duck plague virus was not found in any of the samples. Results support the hypothesis that DP is not established in North American migratory waterfowl as an enzootic disease.

  5. Declining wild salmon populations in relation to parasites from farm salmon.

    PubMed

    Krkosek, Martin; Ford, Jennifer S; Morton, Alexandra; Lele, Subhash; Myers, Ransom A; Lewis, Mark A

    2007-12-14

    Rather than benefiting wild fish, industrial aquaculture may contribute to declines in ocean fisheries and ecosystems. Farm salmon are commonly infected with salmon lice (Lepeophtheirus salmonis), which are native ectoparasitic copepods. We show that recurrent louse infestations of wild juvenile pink salmon (Oncorhynchus gorbuscha), all associated with salmon farms, have depressed wild pink salmon populations and placed them on a trajectory toward rapid local extinction. The louse-induced mortality of pink salmon is commonly over 80% and exceeds previous fishing mortality. If outbreaks continue, then local extinction is certain, and a 99% collapse in pink salmon population abundance is expected in four salmon generations. These results suggest that salmon farms can cause parasite outbreaks that erode the capacity of a coastal ecosystem to support wild salmon populations.

  6. Surveillance for waterborne-disease outbreaks--United States, 1995-1996.

    PubMed

    Levy, D A; Bens, M S; Craun, G F; Calderon, R L; Herwaldt, B L

    1998-12-11

    Since 1971, CDC and the U.S. Environmental Protection Agency have maintained a collaborative surveillance system for collecting and periodically reporting data that relate to occurrences and causes of waterborne-disease outbreaks (WBDOs). This summary includes data for January 1995 through December 1996 and previously unreported outbreaks in 1994. The surveillance system includes data about outbreaks associated with drinking water and recreational water. State, territorial, and local public health departments are primarily responsible for detecting and investigating WBDOs and for voluntarily reporting them to CDC on a standard form. For the period 1995-1996, 13 states reported a total of 22 outbreaks associated with drinking water. These outbreaks caused an estimated total of 2,567 persons to become ill. No deaths were reported. The microbe or chemical that caused the outbreak was identified for 14 (63.6%) of the 22 outbreaks. Giardia lamblia and Shigella sonnei each caused two (9.1%) of the 22 outbreaks; Escherichia coli O157:H7, Plesiomonas shigelloides, and a small round structured virus were implicated for one outbreak (4.5%) each. One of the two outbreaks of giardiasis involved the largest number of cases, with an estimated 1,449 ill persons. Seven outbreaks (31.8% of 22) of chemical poisoning, which involved a total of 90 persons, were reported. Copper and nitrite were associated with two outbreaks (9.1% of 22) each and sodium hydroxide, chlorine, and concentrated liquid soap with one outbreak (4.5%) each. Eleven (50.0%) of the 22 outbreaks were linked to well water, eight in noncommunity and three in community systems. Only three of the 10 outbreaks associated with community water systems were caused by problems at water treatment plants; the other seven resulted from problems in the water distribution systems and plumbing of individual facilities (e.g., a restaurant). Six of the seven outbreaks were associated with chemical contamination of the drinking water; the seventh outbreak was attributed to a small round structured virus. Four of the seven outbreaks occurred because of backflow or backsiphonage through a cross-connection, and two occurred because of high levels of copper that leached into water after the installation of new plumbing. For three of the four outbreaks caused by contamination from a cross-connection, an improperly installed vacuum breaker or a faulty backflow prevention device was identified; no protection against backsiphonage was found for the fourth outbreak. Thirty-seven outbreaks from 17 states were attributed to recreational water exposure and affected an estimated 9,129 persons, including 8,449 persons in two large outbreaks of cryptosporidiosis. Twenty-two (59.5%) of these 37 were outbreaks of gastroenteritis; nine (24.3%) were outbreaks of dermatitis; and six (16.2%) were single cases of primary amebic meningoencephalitis caused by Naegleria fowleri, all of which were fatal. The etiologic agent was identified for 33 (89.2%) of the 37 outbreaks. Six (27.3%) of the 22 outbreaks of gastroenteritis were caused by Cryptosporidium parvum and six (27.3%) by E. coli O157:H7. All of the latter were associated with unchlorinated water (i.e., in lakes) or inadequately chlorinated water (i.e., in a pool). Thirteen (59.1%) of these 22 outbreaks were associated with lake water, eight (36.4%) with swimming or wading pools, and one(4.5%) with a hot spring. Of the nine outbreaks of dermatitis, seven (77.8%) were outbreaks of Pseudomonas dermatitis associated with hot tubs, and two (22.2%) were lake-associated outbreaks of swimmer's itch caused by Schistosoma species. WBDOs caused by E. coli O157:H7 were reported more frequently than in previous years and were associated primarily with recreational lake water. This finding suggests the need for better monitoring of water quality and identification of sources of

  7. Epidemiology of Foodborne Disease Outbreaks Caused by Clostridium perfringens, United States, 1998–2010

    PubMed Central

    Grass, Julian E.; Gould, L. Hannah; Mahon, Barbara E.

    2015-01-01

    Clostridium perfringens is estimated to be the second most common bacterial cause of foodborne illness in the United States, causing one million illnesses each year. Local, state, and territorial health departments voluntarily report C. perfringens outbreaks to the U.S. Centers for Disease Control and Prevention through the Foodborne Disease Outbreak Surveillance System. Our analysis included outbreaks confirmed by laboratory evidence during 1998–2010. A food item was implicated if C. perfringens was isolated from food or based on epidemiologic evidence. Implicated foods were classified into one of 17 standard food commodities when possible. From 1998 to 2010, 289 confirmed outbreaks of C. perfringens illness were reported with 15,208 illnesses, 83 hospitalizations, and eight deaths. The number of outbreaks reported each year ranged from 16 to 31 with no apparent trend over time. The annual number of outbreak-associated illnesses ranged from 359 to 2,173, and the median outbreak size was 24 illnesses. Outbreaks occurred year round, with the largest number in November and December. Restaurants (43%) were the most common setting of food preparation. Other settings included catering facility (19%), private home (16%), prison or jail (11%), and other (10%). Among the 144 (50%) outbreaks attributed to a single food commodity, beef was the most common commodity (66 outbreaks, 46%), followed by poultry (43 outbreaks, 30%), and pork (23 outbreaks, 16%). Meat and poultry outbreaks accounted for 92% of outbreaks with an identified single food commodity. Outbreaks caused by C. perfringens occur regularly, are often large, and can cause substantial morbidity yet are preventable if contamination of raw meat and poultry products is prevented at the farm or slaughterhouse or, after contamination, if these products are properly handled and prepared, particularly in restaurants and catering facilities. PMID:23379281

  8. Food Source Prediction of Shiga Toxin-Producing Escherichia coli Outbreaks Using Demographic and Outbreak Characteristics, United States, 1998-2014.

    PubMed

    White, Alice; Cronquist, Alicia; Bedrick, Edward J; Scallan, Elaine

    2016-10-01

    Foodborne illness is a continuing public health problem in the United States. Although outbreak-associated illnesses represent a fraction of all foodborne illnesses, foodborne outbreak investigations provide critical information on the pathogens, foods, and food-pathogen pairs causing illness. Therefore, identification of a food source in an outbreak investigation is key to impacting food safety. The objective of this study was to systematically identify outbreak-associated case demographic and outbreak characteristics that are predictive of food sources using Shiga toxin-producing Escherichia coli (STEC) outbreaks reported to Centers for Disease Control and Prevention (CDC) from 1998 to 2014 with a single ingredient identified. Differences between STEC food sources by all candidate predictors were assessed univariately. Multinomial logistic regression was used to build a prediction model, which was internally validated using a split-sample approach. There were 206 single-ingredient STEC outbreaks reported to CDC, including 125 (61%) beef outbreaks, 30 (14%) dairy outbreaks, and 51 (25%) vegetable outbreaks. The model differentiated food sources, with an overall sensitivity of 80% in the derivation set and 61% in the validation set. This study demonstrates the feasibility for a tool for public health professionals to rule out food sources during hypothesis generation in foodborne outbreak investigation and to improve efficiency while complementing existing methods.

  9. Discrete epidemic models with arbitrary stage distributions and applications to disease control.

    PubMed

    Hernandez-Ceron, Nancy; Feng, Zhilan; Castillo-Chavez, Carlos

    2013-10-01

    W.O. Kermack and A.G. McKendrick introduced in their fundamental paper, A Contribution to the Mathematical Theory of Epidemics, published in 1927, a deterministic model that captured the qualitative dynamic behavior of single infectious disease outbreaks. A Kermack–McKendrick discrete-time general framework, motivated by the emergence of a multitude of models used to forecast the dynamics of epidemics, is introduced in this manuscript. Results that allow us to measure quantitatively the role of classical and general distributions on disease dynamics are presented. The case of the geometric distribution is used to evaluate the impact of waiting-time distributions on epidemiological processes or public health interventions. In short, the geometric distribution is used to set up the baseline or null epidemiological model used to test the relevance of realistic stage-period distribution on the dynamics of single epidemic outbreaks. A final size relationship involving the control reproduction number, a function of transmission parameters and the means of distributions used to model disease or intervention control measures, is computed. Model results and simulations highlight the inconsistencies in forecasting that emerge from the use of specific parametric distributions. Examples, using the geometric, Poisson and binomial distributions, are used to highlight the impact of the choices made in quantifying the risk posed by single outbreaks and the relative importance of various control measures.

  10. Case-Control Studies of Sporadic Enteric Infections: A Review and Discussion of Studies Conducted Internationally from 1990 to 2009

    PubMed Central

    Fullerton, Kathleen E.; Scallan, Elaine; Kirk, Martyn D.; Mahon, Barbara E.; Angulo, Frederick J.; de Valk, Henriette; van Pelt, Wilfrid; Gauci, Charmaine; Hauri, Anja M.; Majowicz, Shannon; O’Brien, Sarah J.

    2015-01-01

    Epidemiologists have used case-control studies to investigate enteric disease outbreaks for many decades. Increasingly, case-control studies are also used to investigate risk factors for sporadic (not outbreak-associated) disease. While the same basic approach is used, there are important differences between outbreak and sporadic disease settings that need to be considered in the design and implementation of the case-control study for sporadic disease. Through the International Collaboration on Enteric Disease “Burden of Illness” Studies (the International Collaboration), we reviewed 79 case-control studies of sporadic enteric infections caused by nine pathogens that were conducted in 22 countries and published from 1990 through to 2009. We highlight important methodological and study design issues (including case definition, control selection, and exposure assessment) and discuss how approaches to the study of sporadic enteric disease have changed over the last 20 years (e.g., making use of more sensitive case definitions, databases of controls, and computer-assisted interviewing). As our understanding of sporadic enteric infections grows, methods and topics for case-control studies are expected to continue to evolve; for example, advances in understanding of the role of immunity can be used to improve control selection, the apparent protective effects of certain foods can be further explored, and case-control studies can be used to provide population-based measures of the burden of disease. PMID:22443481

  11. Outbreak investigations--a perspective.

    PubMed Central

    Reingold, A. L.

    1998-01-01

    Outbreak investigations, an important and challenging component of epidemiology and public health, can help identify the source of ongoing outbreaks and prevent additional cases. Even when an outbreak is over, a thorough epidemiologic and environmental investigation often can increase our knowledge of a given disease and prevent future outbreaks. Finally, outbreak investigations provide epidemiologic training and foster cooperation between the clinical and public health communities. PMID:9452395

  12. Analysis of outbreaks of infectious intestinal disease in Ireland: 1998 and 1999.

    PubMed

    Bonner, C; Foley, B; Wall, P; Fitzgerald, M

    2001-05-01

    Surveillance of general outbreaks of infectious gastroenteritis was introduced in 1998 by the Food Safety Authority of Ireland (FSAI), in co-operation with the eight health boards. A total of 67 general outbreaks of gastroenteritis in Ireland were reported to the FSAI in 1998 and 1999. Over 1900 people were ill as a result of these outbreaks. Four percent required hospitalisation and there were two deaths. The duration of the outbreaks varied between one day and 38 days. Salmonellae (44%) and small round structured viruses (SRSV) (12%) were the most commonly reported pathogens. In 25% of the outbreaks the aetiology was unknown. The commonest settings were restaurants, hotels and take-aways, which accounted for 45% (30/67) of all outbreaks. Sixteen percent of all outbreaks occurred in hospitals and residential institutions. Over half of the outbreaks were reported to be foodborne, 63% of which were due to various serotypes of Salmonella enterica. Eggs were implicated as the vehicle of infection in 13% of all outbreaks. An infected food handler was identified in almost one third of outbreaks, although it could not be established if this had contributed directly to the outbreak.

  13. Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Romme, William H; Turner, Monica G

    The degree to which recent bark beetle (Dendroctonus ponderosae) outbreaks may influence fire severity and postfire tree regeneration is of heightened interest to resource managers throughout western North America, but empirical data on actual fire effects are lacking. Outcomes may depend on burning conditions (i.e., weather during fire), outbreak severity, or intervals between outbreaks and subsequent fire. We studied recent fires that burned through green-attack/red-stage (outbreaks <3 years before fire) and gray-stage (outbreaks 3–15 years before fire) subalpine forests dominated by lodgepole pine (Pinus contorta var. latifolia) in Greater Yellowstone, Wyoming, USA, to determine if fire severity was linked to prefire beetle outbreak severity and whether these two disturbances produced compound ecological effects on postfire tree regeneration. With field data from 143 postfire plots that burned under different conditions, we assessed canopy and surface fire severity, and postfire tree seedling density against prefire outbreak severity. In the green-attack/red stage, several canopy fire-severity measures increased with prefire outbreak severity under moderate burning conditions. Under extreme conditions, few fire-severity measures were related to prefire outbreak severity, and effect sizes were of marginal biological significance. The percentage of tree stems and basal area killed by fire increased with more green-attack vs. red-stage trees (i.e., the earliest stages of outbreak). In the gray stage, by contrast, most fire-severity measures declined with increasing outbreak severity under moderate conditions, and fire severity was unrelated to outbreak severity under extreme burning conditions. Postfire lodgepole pine seedling regeneration was unrelated to prefire outbreak severity in either post-outbreak stage, but increased with prefire serotiny. Results suggest bark beetle outbreaks can affect fire severity in subalpine forests under moderate burning conditions, but have little effect on fire severity under extreme burning conditions when most large wildfires occur in this system. Thus, beetle outbreak severity was moderately linked to fire severity, but the strength and direction of the linkage depended on both endogenous (outbreak stage) and exogenous (fire weather) factors. Closely timed beetle outbreak and fire did not impart compound effects on tree regeneration, suggesting the presence of a canopy seedbank may enhance resilience to their combined effects.

  14. An operational epidemiological model for calibrating agent-based simulations of pandemic influenza outbreaks.

    PubMed

    Prieto, D; Das, T K

    2016-03-01

    Uncertainty of pandemic influenza viruses continue to cause major preparedness challenges for public health policymakers. Decisions to mitigate influenza outbreaks often involve tradeoff between the social costs of interventions (e.g., school closure) and the cost of uncontrolled spread of the virus. To achieve a balance, policymakers must assess the impact of mitigation strategies once an outbreak begins and the virus characteristics are known. Agent-based (AB) simulation is a useful tool for building highly granular disease spread models incorporating the epidemiological features of the virus as well as the demographic and social behavioral attributes of tens of millions of affected people. Such disease spread models provide excellent basis on which various mitigation strategies can be tested, before they are adopted and implemented by the policymakers. However, to serve as a testbed for the mitigation strategies, the AB simulation models must be operational. A critical requirement for operational AB models is that they are amenable for quick and simple calibration. The calibration process works as follows: the AB model accepts information available from the field and uses those to update its parameters such that some of its outputs in turn replicate the field data. In this paper, we present our epidemiological model based calibration methodology that has a low computational complexity and is easy to interpret. Our model accepts a field estimate of the basic reproduction number, and then uses it to update (calibrate) the infection probabilities in a way that its effect combined with the effects of the given virus epidemiology, demographics, and social behavior results in an infection pattern yielding a similar value of the basic reproduction number. We evaluate the accuracy of the calibration methodology by applying it for an AB simulation model mimicking a regional outbreak in the US. The calibrated model is shown to yield infection patterns closely replicating the input estimates of the basic reproduction number. The calibration method is also tested to replicate an initial infection incidence trend for a H1N1 outbreak like that of 2009.

  15. Diagnosis of Ebola Virus Disease: Past, Present, and Future

    PubMed Central

    Brooks, Tim J. G.

    2016-01-01

    SUMMARY Laboratory diagnosis of Ebola virus disease plays a critical role in outbreak response efforts; however, establishing safe and expeditious testing strategies for this high-biosafety-level pathogen in resource-poor environments remains extremely challenging. Since the discovery of Ebola virus in 1976 via traditional viral culture techniques and electron microscopy, diagnostic methodologies have trended toward faster, more accurate molecular assays. Importantly, technological advances have been paired with increasing efforts to support decentralized diagnostic testing capacity that can be deployed at or near the point of patient care. The unprecedented scope of the 2014-2015 West Africa Ebola epidemic spurred tremendous innovation in this arena, and a variety of new diagnostic platforms that have the potential both to immediately improve ongoing surveillance efforts in West Africa and to transform future outbreak responses have reached the field. In this review, we describe the evolution of Ebola virus disease diagnostic testing and efforts to deploy field diagnostic laboratories in prior outbreaks. We then explore the diagnostic challenges pervading the 2014-2015 epidemic and provide a comprehensive examination of novel diagnostic tests that are likely to address some of these challenges moving forward. PMID:27413095

  16. A spatial model of socioeconomic and environmental determinants of dengue fever in Cali, Colombia.

    PubMed

    Delmelle, Eric; Hagenlocher, Michael; Kienberger, Stefan; Casas, Irene

    2016-12-01

    Dengue fever has gradually re-emerged across the global South, particularly affecting urban areas of the tropics and sub-tropics. The dynamics of dengue fever transmission are sensitive to changes in environmental conditions, as well as local demographic and socioeconomic factors. In 2010, the municipality of Cali, Colombia, experienced one of its worst outbreaks, however the outbreak was not spatially homogeneous across the city. In this paper, we evaluate the role of socioeconomic and environmental factors associated with this outbreak at the neighborhood level, using a Geographically Weighted Regression model. Key socioeconomic factors include population density and socioeconomic stratum, whereas environmental factors are proximity to both tire shops and plant nurseries and the presence of a sewage system (R 2 =0.64). The strength of the association between these factors and the incidence of dengue fever is spatially heterogeneous at the neighborhood level. The findings provide evidence to support public health strategies in allocating resources locally, which will enable a better detection of high risk areas, a reduction of the risk of infection and to strengthen the resilience of the population. Published by Elsevier B.V.

  17. Isolation of caprine herpesvirus 1 from a major outbreak of infectious pustular vulvovaginitis in goats.

    PubMed

    Piper, K L; Fitzgerald, C J; Ficorilli, N; Studdert, M J

    2008-04-01

    We describe an outbreak of infectious pustular vulvovaginitis caused by Caprine herpesvirus 1 (CpHV1) in a group of approximately 200, 8 month old virgin does that were imported to Victoria from New Zealand. CpHV1 was isolated in cell cultures from vaginal swabs from three of three affected does but not from two bucks that had been with the does. The identity of the virus as a herpesvirus was confirmed by negative stain electron microscopy. Restriction endonuclease DNA fingerprint analysis showed that the DNA fingerprints were similar, but not identical, to previously described CpHV1 isolates made in New Zealand, New South Wales, and in other parts of the world. Acute and convalescent phase sera from selected does supported the diagnosis of CpHV1 infection. It is most likely that the disease was initiated by reactivation of latent virus in at least one of four bucks that served the does, since each was positive for CpHV neutralising antibody when first tested. This is the first report of CpHV infectious pustular vulvovaginitis in goats in Victoria and to our knowledge appears to be one of the largest outbreaks recorded anywhere.

  18. Impediments to global surveillance of infectious diseases: consequences of open reporting in a global economy.

    PubMed Central

    Cash, R. A.; Narasimhan, V.

    2000-01-01

    Globalization has led to an increase in the spread of emerging and re-emerging infectious diseases. International efforts are being launched to control their dissemination through global surveillance, a major hindrance to which is the failure of some countries to report outbreaks. Current guidelines and regulations on emerging and re-emerging infectious diseases do not sufficiently take into account the fact that when developing countries report outbreaks they often derive few benefits and suffer disproportionately heavy social and economic consequences. In order to facilitate full participation in global surveillance by developing countries there should be: better and more affordable diagnostic capabilities to allow for timely and accurate information to be delivered in an open and transparent fashion; accurate, less sensationalist news reporting of outbreaks of diseases; adherence by countries to international regulations, including those of the World Trade Organization and the International Health Regulations; financial support for countries that are economically damaged by the diseases in question. The article presents two cases--plague in India and cholera in Peru--that illuminate some of the limitations of current practices. Recommendations are made on measures that could be taken by WHO and the world community to make global surveillance acceptable. PMID:11143197

  19. Incompletely matched influenza vaccine still provides protection in frail elderly.

    PubMed

    Dean, Anna S; Moffatt, Cameron R M; Rosewell, Alexander; Dwyer, Dominic E; Lindley, Richard I; Booy, Robert; MacIntyre, C Raina

    2010-01-08

    A cluster-randomised controlled trial of antiviral treatment to control influenza outbreaks in aged-care facilities (ACFs) provided an opportunity to assess VE in the frail, institutionalised elderly. Data were pooled from five influenza outbreaks in 2007. Rapid testing methods for influenza were used to confirm outbreaks and/or identify further cases. Vaccination coverage among ACF residents ranged from 59% to 100%, whereas it was consistently low in staff (11-33%). The attack rates for laboratory-confirmed influenza in residents ranged from 9% to 24%, with the predominate strain determined to be influenza A. Sequencing of the hemagglutinin gene from a sub-sample demonstrated an incomplete match with the 2007 southern hemisphere influenza vaccine. Influenza VE was estimated to be 61% (95%CI 6%, 84%) against laboratory-confirmed influenza, 51% (95%CI -16%, 79%) against influenza-like illness, 82% (95%CI 27%, 96%) against pneumonia-related and influenza-related hospitalisations and 71% (95%CI -28%, 95%) against death from all causes. This supports the continued policy of targeted vaccination of the institutionalised, frail elderly. There is also reassurance that influenza vaccine can be effective against disease and severe outcomes, despite an incomplete vaccine match. This benefit is additional to protection from antivirals.

  20. Single-dose live-attenuated vesicular stomatitis virus-based vaccine protects African green monkeys from Nipah virus disease.

    PubMed

    Prescott, Joseph; DeBuysscher, Blair L; Feldmann, Friederike; Gardner, Donald J; Haddock, Elaine; Martellaro, Cynthia; Scott, Dana; Feldmann, Heinz

    2015-06-04

    Nipah virus is a zoonotic paramyxovirus that causes severe respiratory and/or encephalitic disease in humans, often resulting in death. It is transmitted from pteropus fruit bats, which serve as the natural reservoir of the virus, and outbreaks occur on an almost annual basis in Bangladesh or India. Outbreaks are small and sporadic, and several cases of human-to-human transmission have been documented as an important feature of the epidemiology of Nipah virus disease. There are no approved countermeasures to combat infection and medical intervention is supportive. We recently generated a recombinant replication-competent vesicular stomatitis virus-based vaccine that encodes a Nipah virus glycoprotein as an antigen and is highly efficacious in the hamster model of Nipah virus disease. Herein, we show that this vaccine protects African green monkeys, a well-characterized model of Nipah virus disease, from disease one month after a single intramuscular administration of the vaccine. Vaccination resulted in a rapid and strong virus-specific immune response which inhibited virus shedding and replication. This vaccine platform provides a rapid means to afford protection from Nipah virus in an outbreak situation. Published by Elsevier Ltd.

Top