Machine learning and computer vision approaches for phenotypic profiling.
Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J
2017-01-02
With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.
Machine learning and computer vision approaches for phenotypic profiling
Morris, Quaid
2017-01-01
With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. PMID:27940887
Computational approaches to vision
NASA Technical Reports Server (NTRS)
Barrow, H. G.; Tenenbaum, J. M.
1986-01-01
Vision is examined in terms of a computational process, and the competence, structure, and control of computer vision systems are analyzed. Theoretical and experimental data on the formation of a computer vision system are discussed. Consideration is given to early vision, the recovery of intrinsic surface characteristics, higher levels of interpretation, and system integration and control. A computational visual processing model is proposed and its architecture and operation are described. Examples of state-of-the-art vision systems, which include some of the levels of representation and processing mechanisms, are presented.
A multidisciplinary approach to solving computer related vision problems.
Long, Jennifer; Helland, Magne
2012-09-01
This paper proposes a multidisciplinary approach to solving computer related vision issues by including optometry as a part of the problem-solving team. Computer workstation design is increasing in complexity. There are at least ten different professions who contribute to workstation design or who provide advice to improve worker comfort, safety and efficiency. Optometrists have a role identifying and solving computer-related vision issues and in prescribing appropriate optical devices. However, it is possible that advice given by optometrists to improve visual comfort may conflict with other requirements and demands within the workplace. A multidisciplinary approach has been advocated for solving computer related vision issues. There are opportunities for optometrists to collaborate with ergonomists, who coordinate information from physical, cognitive and organisational disciplines to enact holistic solutions to problems. This paper proposes a model of collaboration and examples of successful partnerships at a number of professional levels including individual relationships between optometrists and ergonomists when they have mutual clients/patients, in undergraduate and postgraduate education and in research. There is also scope for dialogue between optometry and ergonomics professional associations. A multidisciplinary approach offers the opportunity to solve vision related computer issues in a cohesive, rather than fragmented way. Further exploration is required to understand the barriers to these professional relationships. © 2012 The College of Optometrists.
NASA Astrophysics Data System (ADS)
Skrzypek, Josef; Mesrobian, Edmond; Gungner, David J.
1989-03-01
The development of autonomous land vehicles (ALV) capable of operating in an unconstrained environment has proven to be a formidable research effort. The unpredictability of events in such an environment calls for the design of a robust perceptual system, an impossible task requiring the programming of a system bases on the expectation of future, unconstrained events. Hence, the need for a "general purpose" machine vision system that is capable of perceiving and understanding images in an unconstrained environment in real-time. The research undertaken at the UCLA Machine Perception Laboratory addresses this need by focusing on two specific issues: 1) the long term goals for machine vision research as a joint effort between the neurosciences and computer science; and 2) a framework for evaluating progress in machine vision. In the past, vision research has been carried out independently within different fields including neurosciences, psychology, computer science, and electrical engineering. Our interdisciplinary approach to vision research is based on the rigorous combination of computational neuroscience, as derived from neurophysiology and neuropsychology, with computer science and electrical engineering. The primary motivation behind our approach is that the human visual system is the only existing example of a "general purpose" vision system and using a neurally based computing substrate, it can complete all necessary visual tasks in real-time.
An overview of computer vision
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1982-01-01
An overview of computer vision is provided. Image understanding and scene analysis are emphasized, and pertinent aspects of pattern recognition are treated. The basic approach to computer vision systems, the techniques utilized, applications, the current existing systems and state-of-the-art issues and research requirements, who is doing it and who is funding it, and future trends and expectations are reviewed.
Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades.
Orchard, Garrick; Jayawant, Ajinkya; Cohen, Gregory K; Thakor, Nitish
2015-01-01
Creating datasets for Neuromorphic Vision is a challenging task. A lack of available recordings from Neuromorphic Vision sensors means that data must typically be recorded specifically for dataset creation rather than collecting and labeling existing data. The task is further complicated by a desire to simultaneously provide traditional frame-based recordings to allow for direct comparison with traditional Computer Vision algorithms. Here we propose a method for converting existing Computer Vision static image datasets into Neuromorphic Vision datasets using an actuated pan-tilt camera platform. Moving the sensor rather than the scene or image is a more biologically realistic approach to sensing and eliminates timing artifacts introduced by monitor updates when simulating motion on a computer monitor. We present conversion of two popular image datasets (MNIST and Caltech101) which have played important roles in the development of Computer Vision, and we provide performance metrics on these datasets using spike-based recognition algorithms. This work contributes datasets for future use in the field, as well as results from spike-based algorithms against which future works can compare. Furthermore, by converting datasets already popular in Computer Vision, we enable more direct comparison with frame-based approaches.
Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J
2005-01-01
We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.
Computer vision syndrome: a review.
Blehm, Clayton; Vishnu, Seema; Khattak, Ashbala; Mitra, Shrabanee; Yee, Richard W
2005-01-01
As computers become part of our everyday life, more and more people are experiencing a variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation, redness, blurred vision, and double vision, collectively referred to as computer vision syndrome. This article describes both the characteristics and treatment modalities that are available at this time. Computer vision syndrome symptoms may be the cause of ocular (ocular-surface abnormalities or accommodative spasms) and/or extraocular (ergonomic) etiologies. However, the major contributor to computer vision syndrome symptoms by far appears to be dry eye. The visual effects of various display characteristics such as lighting, glare, display quality, refresh rates, and radiation are also discussed. Treatment requires a multidirectional approach combining ocular therapy with adjustment of the workstation. Proper lighting, anti-glare filters, ergonomic positioning of computer monitor and regular work breaks may help improve visual comfort. Lubricating eye drops and special computer glasses help relieve ocular surface-related symptoms. More work needs to be done to specifically define the processes that cause computer vision syndrome and to develop and improve effective treatments that successfully address these causes.
The Development of a Robot-Based Learning Companion: A User-Centered Design Approach
ERIC Educational Resources Information Center
Hsieh, Yi-Zeng; Su, Mu-Chun; Chen, Sherry Y.; Chen, Gow-Dong
2015-01-01
A computer-vision-based method is widely employed to support the development of a variety of applications. In this vein, this study uses a computer-vision-based method to develop a playful learning system, which is a robot-based learning companion named RobotTell. Unlike existing playful learning systems, a user-centered design (UCD) approach is…
Operational Assessment of Color Vision
2016-06-20
evaluated in this study. 15. SUBJECT TERMS Color vision, aviation, cone contrast test, Colour Assessment & Diagnosis , color Dx, OBVA 16. SECURITY...symbologies are frequently used to aid or direct critical activities such as aircraft landing approaches or railroad right-of-way designations...computer-generated display systems have facilitated the development of computer-based, automated tests of color vision [14,15]. The United Kingdom’s
NASA Technical Reports Server (NTRS)
Lewandowski, Leon; Struckman, Keith
1994-01-01
Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.
Integrating Mobile Robotics and Vision with Undergraduate Computer Science
ERIC Educational Resources Information Center
Cielniak, G.; Bellotto, N.; Duckett, T.
2013-01-01
This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision and is directly linked to the research conducted at the authors' institution. The paper describes the most relevant details of…
Identifying local structural states in atomic imaging by computer vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laanait, Nouamane; Ziatdinov, Maxim; He, Qian
The availability of atomically resolved imaging modalities enables an unprecedented view into the local structural states of materials, which manifest themselves by deviations from the fundamental assumptions of periodicity and symmetry. Consequently, approaches that aim to extract these local structural states from atomic imaging data with minimal assumptions regarding the average crystallographic configuration of a material are indispensable to advances in structural and chemical investigations of materials. Here, we present an approach to identify and classify local structural states that is rooted in computer vision. This approach introduces a definition of a structural state that is composed of both localmore » and non-local information extracted from atomically resolved images, and is wholly untethered from the familiar concepts of symmetry and periodicity. Instead, this approach relies on computer vision techniques such as feature detection, and concepts such as scale-invariance. We present the fundamental aspects of local structural state extraction and classification by application to simulated scanning transmission electron microscopy images, and analyze the robustness of this approach in the presence of common instrumental factors such as noise, limited spatial resolution, and weak contrast. Finally, we apply this computer vision-based approach for the unsupervised detection and classification of local structural states in an experimental electron micrograph of a complex oxides interface, and a scanning tunneling micrograph of a defect engineered multilayer graphene surface.« less
Identifying local structural states in atomic imaging by computer vision
Laanait, Nouamane; Ziatdinov, Maxim; He, Qian; ...
2016-11-02
The availability of atomically resolved imaging modalities enables an unprecedented view into the local structural states of materials, which manifest themselves by deviations from the fundamental assumptions of periodicity and symmetry. Consequently, approaches that aim to extract these local structural states from atomic imaging data with minimal assumptions regarding the average crystallographic configuration of a material are indispensable to advances in structural and chemical investigations of materials. Here, we present an approach to identify and classify local structural states that is rooted in computer vision. This approach introduces a definition of a structural state that is composed of both localmore » and non-local information extracted from atomically resolved images, and is wholly untethered from the familiar concepts of symmetry and periodicity. Instead, this approach relies on computer vision techniques such as feature detection, and concepts such as scale-invariance. We present the fundamental aspects of local structural state extraction and classification by application to simulated scanning transmission electron microscopy images, and analyze the robustness of this approach in the presence of common instrumental factors such as noise, limited spatial resolution, and weak contrast. Finally, we apply this computer vision-based approach for the unsupervised detection and classification of local structural states in an experimental electron micrograph of a complex oxides interface, and a scanning tunneling micrograph of a defect engineered multilayer graphene surface.« less
NASA Technical Reports Server (NTRS)
Murray, N. D.
1985-01-01
Current technology projections indicate a lack of availability of special purpose computing for Space Station applications. Potential functions for video image special purpose processing are being investigated, such as smoothing, enhancement, restoration and filtering, data compression, feature extraction, object detection and identification, pixel interpolation/extrapolation, spectral estimation and factorization, and vision synthesis. Also, architectural approaches are being identified and a conceptual design generated. Computationally simple algorithms will be research and their image/vision effectiveness determined. Suitable algorithms will be implimented into an overall architectural approach that will provide image/vision processing at video rates that are flexible, selectable, and programmable. Information is given in the form of charts, diagrams and outlines.
An Enduring Dialogue between Computational and Empirical Vision.
Martinez-Conde, Susana; Macknik, Stephen L; Heeger, David J
2018-04-01
In the late 1970s, key discoveries in neurophysiology, psychophysics, computer vision, and image processing had reached a tipping point that would shape visual science for decades to come. David Marr and Ellen Hildreth's 'Theory of edge detection', published in 1980, set out to integrate the newly available wealth of data from behavioral, physiological, and computational approaches in a unifying theory. Although their work had wide and enduring ramifications, their most important contribution may have been to consolidate the foundations of the ongoing dialogue between theoretical and empirical vision science. Copyright © 2018 Elsevier Ltd. All rights reserved.
Use of 3D vision for fine robot motion
NASA Technical Reports Server (NTRS)
Lokshin, Anatole; Litwin, Todd
1989-01-01
An integration of 3-D vision systems with robot manipulators will allow robots to operate in a poorly structured environment by visually locating targets and obstacles. However, by using computer vision for objects acquisition makes the problem of overall system calibration even more difficult. Indeed, in a CAD based manipulation a control architecture has to find an accurate mapping between the 3-D Euclidean work space and a robot configuration space (joint angles). If a stereo vision is involved, then one needs to map a pair of 2-D video images directly into the robot configuration space. Neural Network approach aside, a common solution to this problem is to calibrate vision and manipulator independently, and then tie them via common mapping into the task space. In other words, both vision and robot refer to some common Absolute Euclidean Coordinate Frame via their individual mappings. This approach has two major difficulties. First a vision system has to be calibrated over the total work space. And second, the absolute frame, which is usually quite arbitrary, has to be the same with a high degree of precision for both robot and vision subsystem calibrations. The use of computer vision to allow robust fine motion manipulation in a poorly structured world which is currently in progress is described along with the preliminary results and encountered problems.
Artificial intelligence, expert systems, computer vision, and natural language processing
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1984-01-01
An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.
Enhanced computer vision with Microsoft Kinect sensor: a review.
Han, Jungong; Shao, Ling; Xu, Dong; Shotton, Jamie
2013-10-01
With the invention of the low-cost Microsoft Kinect sensor, high-resolution depth and visual (RGB) sensing has become available for widespread use. The complementary nature of the depth and visual information provided by the Kinect sensor opens up new opportunities to solve fundamental problems in computer vision. This paper presents a comprehensive review of recent Kinect-based computer vision algorithms and applications. The reviewed approaches are classified according to the type of vision problems that can be addressed or enhanced by means of the Kinect sensor. The covered topics include preprocessing, object tracking and recognition, human activity analysis, hand gesture analysis, and indoor 3-D mapping. For each category of methods, we outline their main algorithmic contributions and summarize their advantages/differences compared to their RGB counterparts. Finally, we give an overview of the challenges in this field and future research trends. This paper is expected to serve as a tutorial and source of references for Kinect-based computer vision researchers.
Mogol, Burçe Ataç; Gökmen, Vural
2014-05-01
Computer vision-based image analysis has been widely used in food industry to monitor food quality. It allows low-cost and non-contact measurements of colour to be performed. In this paper, two computer vision-based image analysis approaches are discussed to extract mean colour or featured colour information from the digital images of foods. These types of information may be of particular importance as colour indicates certain chemical changes or physical properties in foods. As exemplified here, the mean CIE a* value or browning ratio determined by means of computer vision-based image analysis algorithms can be correlated with acrylamide content of potato chips or cookies. Or, porosity index as an important physical property of breadcrumb can be calculated easily. In this respect, computer vision-based image analysis provides a useful tool for automatic inspection of food products in a manufacturing line, and it can be actively involved in the decision-making process where rapid quality/safety evaluation is needed. © 2013 Society of Chemical Industry.
Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Douglas; Greitzer, Frank L.
We re-address the vision of human-computer symbiosis expressed by J. C. R. Licklider nearly a half-century ago, when he wrote: “The hope is that in not too many years, human brains and computing machines will be coupled together very tightly, and that the resulting partnership will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today.” (Licklider, 1960). Unfortunately, little progress was made toward this vision over four decades following Licklider’s challenge, despite significant advancements in the fields of human factors and computer science. Licklider’s vision wasmore » largely forgotten. However, recent advances in information science and technology, psychology, and neuroscience have rekindled the potential of making the Licklider’s vision a reality. This paper provides a historical context for and updates the vision, and it argues that such a vision is needed as a unifying framework for advancing IS&T.« less
Tracking by Identification Using Computer Vision and Radio
Mandeljc, Rok; Kovačič, Stanislav; Kristan, Matej; Perš, Janez
2013-01-01
We present a novel system for detection, localization and tracking of multiple people, which fuses a multi-view computer vision approach with a radio-based localization system. The proposed fusion combines the best of both worlds, excellent computer-vision-based localization, and strong identity information provided by the radio system, and is therefore able to perform tracking by identification, which makes it impervious to propagated identity switches. We present comprehensive methodology for evaluation of systems that perform person localization in world coordinate system and use it to evaluate the proposed system as well as its components. Experimental results on a challenging indoor dataset, which involves multiple people walking around a realistically cluttered room, confirm that proposed fusion of both systems significantly outperforms its individual components. Compared to the radio-based system, it achieves better localization results, while at the same time it successfully prevents propagation of identity switches that occur in pure computer-vision-based tracking. PMID:23262485
Computer vision for general purpose visual inspection: a fuzzy logic approach
NASA Astrophysics Data System (ADS)
Chen, Y. H.
In automatic visual industrial inspection, computer vision systems have been widely used. Such systems are often application specific, and therefore require domain knowledge in order to have a successful implementation. Since visual inspection can be viewed as a decision making process, it is argued that the integration of fuzzy logic analysis and computer vision systems provides a practical approach to general purpose visual inspection applications. This paper describes the development of an integrated fuzzy-rule-based automatic visual inspection system. Domain knowledge about a particular application is represented as a set of fuzzy rules. From the status of predefined fuzzy variables, the set of fuzzy rules are defuzzified to give the inspection results. A practical application where IC marks (often in the forms of English characters and a company logo) inspection is demonstrated, which shows a more consistent result as compared to a conventional thresholding method.
NASA Astrophysics Data System (ADS)
Terzopoulos, Demetri; Qureshi, Faisal Z.
Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.
NASA Astrophysics Data System (ADS)
Santagati, C.; Inzerillo, L.; Di Paola, F.
2013-07-01
3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS), the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases) to large scale buildings for practitioner purpose.
Metal surface corrosion grade estimation from single image
NASA Astrophysics Data System (ADS)
Chen, Yijun; Qi, Lin; Sun, Huyuan; Fan, Hao; Dong, Junyu
2018-04-01
Metal corrosion can cause many problems, how to quickly and effectively assess the grade of metal corrosion and timely remediation is a very important issue. Typically, this is done by trained surveyors at great cost. Assisting them in the inspection process by computer vision and artificial intelligence would decrease the inspection cost. In this paper, we propose a dataset of metal surface correction used for computer vision detection and present a comparison between standard computer vision techniques by using OpenCV and deep learning method for automatic metal surface corrosion grade estimation from single image on this dataset. The test has been performed by classifying images and calculating the accuracy for the two different approaches.
Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Douglas; Greitzer, Frank L.
In his 1960 paper Man-Machine Symbiosis, Licklider predicted that human brains and computing machines will be coupled in a tight partnership that will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today. Today we are on the threshold of resurrecting the vision of symbiosis. While Licklider’s original vision suggested a co-equal relationship, here we discuss an updated vision, neo-symbiosis, in which the human holds a superordinate position in an intelligent human-computer collaborative environment. This paper was originally published as a journal article and is being publishedmore » as a chapter in an upcoming book series, Advances in Novel Approaches in Cognitive Informatics and Natural Intelligence.« less
Head pose estimation in computer vision: a survey.
Murphy-Chutorian, Erik; Trivedi, Mohan Manubhai
2009-04-01
The capacity to estimate the head pose of another person is a common human ability that presents a unique challenge for computer vision systems. Compared to face detection and recognition, which have been the primary foci of face-related vision research, identity-invariant head pose estimation has fewer rigorously evaluated systems or generic solutions. In this paper, we discuss the inherent difficulties in head pose estimation and present an organized survey describing the evolution of the field. Our discussion focuses on the advantages and disadvantages of each approach and spans 90 of the most innovative and characteristic papers that have been published on this topic. We compare these systems by focusing on their ability to estimate coarse and fine head pose, highlighting approaches that are well suited for unconstrained environments.
Analog "neuronal" networks in early vision.
Koch, C; Marroquin, J; Yuille, A
1986-01-01
Many problems in early vision can be formulated in terms of minimizing a cost function. Examples are shape from shading, edge detection, motion analysis, structure from motion, and surface interpolation. As shown by Poggio and Koch [Poggio, T. & Koch, C. (1985) Proc. R. Soc. London, Ser. B 226, 303-323], quadratic variational problems, an important subset of early vision tasks, can be "solved" by linear, analog electrical, or chemical networks. However, in the presence of discontinuities, the cost function is nonquadratic, raising the question of designing efficient algorithms for computing the optimal solution. Recently, Hopfield and Tank [Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybern. 52, 141-152] have shown that networks of nonlinear analog "neurons" can be effective in computing the solution of optimization problems. We show how these networks can be generalized to solve the nonconvex energy functionals of early vision. We illustrate this approach by implementing a specific analog network, solving the problem of reconstructing a smooth surface from sparse data while preserving its discontinuities. These results suggest a novel computational strategy for solving early vision problems in both biological and real-time artificial vision systems. PMID:3459172
Computer vision based nacre thickness measurement of Tahitian pearls
NASA Astrophysics Data System (ADS)
Loesdau, Martin; Chabrier, Sébastien; Gabillon, Alban
2017-03-01
The Tahitian Pearl is the most valuable export product of French Polynesia contributing with over 61 million Euros to more than 50% of the total export income. To maintain its excellent reputation on the international market, an obligatory quality control for every pearl deemed for exportation has been established by the local government. One of the controlled quality parameters is the pearls nacre thickness. The evaluation is currently done manually by experts that are visually analyzing X-ray images of the pearls. In this article, a computer vision based approach to automate this procedure is presented. Even though computer vision based approaches for pearl nacre thickness measurement exist in the literature, the very specific features of the Tahitian pearl, namely the large shape variety and the occurrence of cavities, have so far not been considered. The presented work closes the. Our method consists of segmenting the pearl from X-ray images with a model-based approach, segmenting the pearls nucleus with an own developed heuristic circle detection and segmenting possible cavities with region growing. Out of the obtained boundaries, the 2-dimensional nacre thickness profile can be calculated. A certainty measurement to consider imaging and segmentation imprecisions is included in the procedure. The proposed algorithms are tested on 298 manually evaluated Tahitian pearls, showing that it is generally possible to automatically evaluate the nacre thickness of Tahitian pearls with computer vision. Furthermore the results show that the automatic measurement is more precise and faster than the manual one.
CT Image Sequence Analysis for Object Recognition - A Rule-Based 3-D Computer Vision System
Dongping Zhu; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman
1991-01-01
Research is now underway to create a vision system for hardwood log inspection using a knowledge-based approach. In this paper, we present a rule-based, 3-D vision system for locating and identifying wood defects using topological, geometric, and statistical attributes. A number of different features can be derived from the 3-D input scenes. These features and evidence...
A dental vision system for accurate 3D tooth modeling.
Zhang, Li; Alemzadeh, K
2006-01-01
This paper describes an active vision system based reverse engineering approach to extract the three-dimensional (3D) geometric information from dental teeth and transfer this information into Computer-Aided Design/Computer-Aided Manufacture (CAD/CAM) systems to improve the accuracy of 3D teeth models and at the same time improve the quality of the construction units to help patient care. The vision system involves the development of a dental vision rig, edge detection, boundary tracing and fast & accurate 3D modeling from a sequence of sliced silhouettes of physical models. The rig is designed using engineering design methods such as a concept selection matrix and weighted objectives evaluation chart. Reconstruction results and accuracy evaluation are presented on digitizing different teeth models.
A computer vision-based approach for structural displacement measurement
NASA Astrophysics Data System (ADS)
Ji, Yunfeng
2010-04-01
Along with the incessant advancement in optics, electronics and computer technologies during the last three decades, commercial digital video cameras have experienced a remarkable evolution, and can now be employed to measure complex motions of objects with sufficient accuracy, which render great assistance to structural displacement measurement in civil engineering. This paper proposes a computer vision-based approach for dynamic measurement of structures. One digital camera is used to capture image sequences of planar targets mounted on vibrating structures. The mathematical relationship between image plane and real space is established based on computer vision theory. Then, the structural dynamic displacement at the target locations can be quantified using point reconstruction rules. Compared with other tradition displacement measurement methods using sensors, such as accelerometers, linear-variable-differential-transducers (LVDTs) and global position system (GPS), the proposed approach gives the main advantages of great flexibility, a non-contact working mode and ease of increasing measurement points. To validate, four tests of sinusoidal motion of a point, free vibration of a cantilever beam, wind tunnel test of a cross-section bridge model, and field test of bridge displacement measurement, are performed. Results show that the proposed approach can attain excellent accuracy compared with the analytical ones or the measurements using conventional transducers, and proves to deliver an innovative and low cost solution to structural displacement measurement.
Convolutional neural networks and face recognition task
NASA Astrophysics Data System (ADS)
Sochenkova, A.; Sochenkov, I.; Makovetskii, A.; Vokhmintsev, A.; Melnikov, A.
2017-09-01
Computer vision tasks are remaining very important for the last couple of years. One of the most complicated problems in computer vision is face recognition that could be used in security systems to provide safety and to identify person among the others. There is a variety of different approaches to solve this task, but there is still no universal solution that would give adequate results in some cases. Current paper presents following approach. Firstly, we extract an area containing face, then we use Canny edge detector. On the next stage we use convolutional neural networks (CNN) to finally solve face recognition and person identification task.
Computer vision-based classification of hand grip variations in neurorehabilitation.
Zariffa, José; Steeves, John D
2011-01-01
The complexity of hand function is such that most existing upper limb rehabilitation robotic devices use only simplified hand interfaces. This is in contrast to the importance of the hand in regaining function after neurological injury. Computer vision technology has been used to identify hand posture in the field of Human Computer Interaction, but this approach has not been translated to the rehabilitation context. We describe a computer vision-based classifier that can be used to discriminate rehabilitation-relevant hand postures, and could be integrated into a virtual reality-based upper limb rehabilitation system. The proposed system was tested on a set of video recordings from able-bodied individuals performing cylindrical grasps, lateral key grips, and tip-to-tip pinches. The overall classification success rate was 91.2%, and was above 98% for 6 out of the 10 subjects. © 2011 IEEE
Quality Parameters of Six Cultivars of Blueberry Using Computer Vision
Celis Cofré, Daniela; Silva, Patricia; Enrione, Javier; Osorio, Fernando
2013-01-01
Background. Blueberries are considered an important source of health benefits. This work studied six blueberry cultivars: “Duke,” “Brigitta”, “Elliott”, “Centurion”, “Star,” and “Jewel”, measuring quality parameters such as °Brix, pH, moisture content using standard techniques and shape, color, and fungal presence obtained by computer vision. The storage conditions were time (0–21 days), temperature (4 and 15°C), and relative humidity (75 and 90%). Results. Significant differences (P < 0.05) were detected between fresh cultivars in pH, °Brix, shape, and color. However, the main parameters which changed depending on storage conditions, increasing at higher temperature, were color (from blue to red) and fungal presence (from 0 to 15%), both detected using computer vision, which is important to determine a shelf life of 14 days for all cultivars. Similar behavior during storage was obtained for all cultivars. Conclusion. Computer vision proved to be a reliable and simple method to objectively determine blueberry decay during storage that can be used as an alternative approach to currently used subjective measurements. PMID:26904598
Ma, Ji; Sun, Da-Wen; Qu, Jia-Huan; Liu, Dan; Pu, Hongbin; Gao, Wen-Hong; Zeng, Xin-An
2016-01-01
With consumer concerns increasing over food quality and safety, the food industry has begun to pay much more attention to the development of rapid and reliable food-evaluation systems over the years. As a result, there is a great need for manufacturers and retailers to operate effective real-time assessments for food quality and safety during food production and processing. Computer vision, comprising a nondestructive assessment approach, has the aptitude to estimate the characteristics of food products with its advantages of fast speed, ease of use, and minimal sample preparation. Specifically, computer vision systems are feasible for classifying food products into specific grades, detecting defects, and estimating properties such as color, shape, size, surface defects, and contamination. Therefore, in order to track the latest research developments of this technology in the agri-food industry, this review aims to present the fundamentals and instrumentation of computer vision systems with details of applications in quality assessment of agri-food products from 2007 to 2013 and also discuss its future trends in combination with spectroscopy.
Employment after Vision Loss: Results of a Collective Case Study.
ERIC Educational Resources Information Center
Crudden, Adele
2002-01-01
A collective case study approach was used to examine factors that influence the job retention of persons with vision loss. Computer technology was found to be a major positive influence and print access and technology were a source of stress for most participants (n=10). (Contains 7 references.) (Author/CR)
Camargo, Anyela; Papadopoulou, Dimitra; Spyropoulou, Zoi; Vlachonasios, Konstantinos; Doonan, John H; Gay, Alan P
2014-01-01
Computer-vision based measurements of phenotypic variation have implications for crop improvement and food security because they are intrinsically objective. It should be possible therefore to use such approaches to select robust genotypes. However, plants are morphologically complex and identification of meaningful traits from automatically acquired image data is not straightforward. Bespoke algorithms can be designed to capture and/or quantitate specific features but this approach is inflexible and is not generally applicable to a wide range of traits. In this paper, we have used industry-standard computer vision techniques to extract a wide range of features from images of genetically diverse Arabidopsis rosettes growing under non-stimulated conditions, and then used statistical analysis to identify those features that provide good discrimination between ecotypes. This analysis indicates that almost all the observed shape variation can be described by 5 principal components. We describe an easily implemented pipeline including image segmentation, feature extraction and statistical analysis. This pipeline provides a cost-effective and inherently scalable method to parameterise and analyse variation in rosette shape. The acquisition of images does not require any specialised equipment and the computer routines for image processing and data analysis have been implemented using open source software. Source code for data analysis is written using the R package. The equations to calculate image descriptors have been also provided.
NASA Astrophysics Data System (ADS)
Van Damme, T.
2015-04-01
Computer Vision Photogrammetry allows archaeologists to accurately record underwater sites in three dimensions using simple twodimensional picture or video sequences, automatically processed in dedicated software. In this article, I share my experience in working with one such software package, namely PhotoScan, to record a Dutch shipwreck site. In order to demonstrate the method's reliability and flexibility, the site in question is reconstructed from simple GoPro footage, captured in low-visibility conditions. Based on the results of this case study, Computer Vision Photogrammetry compares very favourably to manual recording methods both in recording efficiency, and in the quality of the final results. In a final section, the significance of Computer Vision Photogrammetry is then assessed from a historical perspective, by placing the current research in the wider context of about half a century of successful use of Analytical and later Digital photogrammetry in the field of underwater archaeology. I conclude that while photogrammetry has been used in our discipline for several decades now, for various reasons the method was only ever used by a relatively small percentage of projects. This is likely to change in the near future since, compared to the `traditional' photogrammetry approaches employed in the past, today Computer Vision Photogrammetry is easier to use, more reliable and more affordable than ever before, while at the same time producing more accurate and more detailed three-dimensional results.
Near real-time stereo vision system
NASA Technical Reports Server (NTRS)
Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)
1993-01-01
The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.
Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks
NASA Astrophysics Data System (ADS)
DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.
2017-03-01
By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.
Vector disparity sensor with vergence control for active vision systems.
Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo
2012-01-01
This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.
Vector Disparity Sensor with Vergence Control for Active Vision Systems
Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P.; Ros, Eduardo
2012-01-01
This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. PMID:22438737
NASA Astrophysics Data System (ADS)
Kardava, Irakli; Tadyszak, Krzysztof; Gulua, Nana; Jurga, Stefan
2017-02-01
For more flexibility of environmental perception by artificial intelligence it is needed to exist the supporting software modules, which will be able to automate the creation of specific language syntax and to make a further analysis for relevant decisions based on semantic functions. According of our proposed approach, of which implementation it is possible to create the couples of formal rules of given sentences (in case of natural languages) or statements (in case of special languages) by helping of computer vision, speech recognition or editable text conversion system for further automatic improvement. In other words, we have developed an approach, by which it can be achieved to significantly improve the training process automation of artificial intelligence, which as a result will give us a higher level of self-developing skills independently from us (from users). At the base of our approach we have developed a software demo version, which includes the algorithm and software code for the entire above mentioned component's implementation (computer vision, speech recognition and editable text conversion system). The program has the ability to work in a multi - stream mode and simultaneously create a syntax based on receiving information from several sources.
NASA Astrophysics Data System (ADS)
Kuvychko, Igor
2001-10-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.
Review On Applications Of Neural Network To Computer Vision
NASA Astrophysics Data System (ADS)
Li, Wei; Nasrabadi, Nasser M.
1989-03-01
Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.
Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase
Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling
2015-01-01
In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate. PMID:26378533
Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase.
Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling
2015-09-10
In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate.
Understanding and preventing computer vision syndrome.
Loh, Ky; Redd, Sc
2008-01-01
The invention of computer and advancement in information technology has revolutionized and benefited the society but at the same time has caused symptoms related to its usage such as ocular sprain, irritation, redness, dryness, blurred vision and double vision. This cluster of symptoms is known as computer vision syndrome which is characterized by the visual symptoms which result from interaction with computer display or its environment. Three major mechanisms that lead to computer vision syndrome are extraocular mechanism, accommodative mechanism and ocular surface mechanism. The visual effects of the computer such as brightness, resolution, glare and quality all are known factors that contribute to computer vision syndrome. Prevention is the most important strategy in managing computer vision syndrome. Modification in the ergonomics of the working environment, patient education and proper eye care are crucial in managing computer vision syndrome.
Camera calibration method of binocular stereo vision based on OpenCV
NASA Astrophysics Data System (ADS)
Zhong, Wanzhen; Dong, Xiaona
2015-10-01
Camera calibration, an important part of the binocular stereo vision research, is the essential foundation of 3D reconstruction of the spatial object. In this paper, the camera calibration method based on OpenCV (open source computer vision library) is submitted to make the process better as a result of obtaining higher precision and efficiency. First, the camera model in OpenCV and an algorithm of camera calibration are presented, especially considering the influence of camera lens radial distortion and decentering distortion. Then, camera calibration procedure is designed to compute those parameters of camera and calculate calibration errors. High-accurate profile extraction algorithm and a checkboard with 48 corners have also been used in this part. Finally, results of calibration program are presented, demonstrating the high efficiency and accuracy of the proposed approach. The results can reach the requirement of robot binocular stereo vision.
NASA Astrophysics Data System (ADS)
Hannachi, Ammar; Kohler, Sophie; Lallement, Alex; Hirsch, Ernest
2015-04-01
3D modeling of scene contents takes an increasing importance for many computer vision based applications. In particular, industrial applications of computer vision require efficient tools for the computation of this 3D information. Routinely, stereo-vision is a powerful technique to obtain the 3D outline of imaged objects from the corresponding 2D images. As a consequence, this approach provides only a poor and partial description of the scene contents. On another hand, for structured light based reconstruction techniques, 3D surfaces of imaged objects can often be computed with high accuracy. However, the resulting active range data in this case lacks to provide data enabling to characterize the object edges. Thus, in order to benefit from the positive points of various acquisition techniques, we introduce in this paper promising approaches, enabling to compute complete 3D reconstruction based on the cooperation of two complementary acquisition and processing techniques, in our case stereoscopic and structured light based methods, providing two 3D data sets describing respectively the outlines and surfaces of the imaged objects. We present, accordingly, the principles of three fusion techniques and their comparison based on evaluation criterions related to the nature of the workpiece and also the type of the tackled application. The proposed fusion methods are relying on geometric characteristics of the workpiece, which favour the quality of the registration. Further, the results obtained demonstrate that the developed approaches are well adapted for 3D modeling of manufactured parts including free-form surfaces and, consequently quality control applications using these 3D reconstructions.
Vision based flight procedure stereo display system
NASA Astrophysics Data System (ADS)
Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng
2008-03-01
A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.
Troiano, Luigi; Birtolo, Cosimo; Armenise, Roberto
2016-01-01
In many circumstances, concepts, ideas and emotions are mainly conveyed by colors. Color vision disorders can heavily limit the user experience in accessing Information Society. Therefore, color vision impairments should be taken into account in order to make information and services accessible to a broader audience. The task is not easy for designers that generally are not affected by any color vision disorder. In any case, the design of accessible user interfaces should not lead to to boring color schemes. The selection of appealing and harmonic color combinations should be preserved. In past research we investigated a generative approach led by evolutionary computing in supporting interface designers to make colors accessible to impaired users. This approach has also been followed by other authors. The contribution of this paper is to provide an experimental validation to the claim that this approach is actually beneficial to designers and users.
ERIC Educational Resources Information Center
Vakil, Sepehr
2018-01-01
In this essay, Sepehr Vakil argues that a more serious engagement with critical traditions in education research is necessary to achieve a justice-centered approach to equity in computer science (CS) education. With CS rapidly emerging as a distinct feature of K-12 public education in the United States, calls to expand CS education are often…
NASA Technical Reports Server (NTRS)
1972-01-01
A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.
Vision 2010: The Future of Higher Education Business and Learning Applications
ERIC Educational Resources Information Center
Carey, Patrick; Gleason, Bernard
2006-01-01
The global software industry is in the midst of a major evolutionary shift--one based on open computing--and this trend, like many transformative trends in technology, is being led by the IT staffs and academic computing faculty of the higher education industry. The elements of this open computing approach are open source, open standards, open…
Data, Analysis, and Visualization | Computational Science | NREL
Data, Analysis, and Visualization Data, Analysis, and Visualization Data management, data analysis . At NREL, our data management, data analysis, and scientific visualization capabilities help move the approaches to image analysis and computer vision. Data Management and Big Data Systems, software, and tools
Report: Unsupervised identification of malaria parasites using computer vision.
Khan, Najeed Ahmed; Pervaz, Hassan; Latif, Arsalan; Musharaff, Ayesha
2017-01-01
Malaria in human is a serious and fatal tropical disease. This disease results from Anopheles mosquitoes that are infected by Plasmodium species. The clinical diagnosis of malaria based on the history, symptoms and clinical findings must always be confirmed by laboratory diagnosis. Laboratory diagnosis of malaria involves identification of malaria parasite or its antigen / products in the blood of the patient. Manual diagnosis of malaria parasite by the pathologists has proven to become cumbersome. Therefore, there is a need of automatic, efficient and accurate identification of malaria parasite. In this paper, we proposed a computer vision based approach to identify the malaria parasite from light microscopy images. This research deals with the challenges involved in the automatic detection of malaria parasite tissues. Our proposed method is based on the pixel-based approach. We used K-means clustering (unsupervised approach) for the segmentation to identify malaria parasite tissues.
Frontiers in Human Information Processing Conference
2008-02-25
Frontiers in Human Information Processing - Vision, Attention , Memory , and Applications: A Tribute to George Sperling, a Festschrift. We are grateful...with focus on the formal, computational, and mathematical approaches that unify the areas of vision, attention , and memory . The conference also...Information Processing Conference Final Report AFOSR GRANT # FA9550-07-1-0346 The AFOSR Grant # FA9550-07-1-0346 provided partial support for the Conference
Image segmentation for enhancing symbol recognition in prosthetic vision.
Horne, Lachlan; Barnes, Nick; McCarthy, Chris; He, Xuming
2012-01-01
Current and near-term implantable prosthetic vision systems offer the potential to restore some visual function, but suffer from poor resolution and dynamic range of induced phosphenes. This can make it difficult for users of prosthetic vision systems to identify symbolic information (such as signs) except in controlled conditions. Using image segmentation techniques from computer vision, we show it is possible to improve the clarity of such symbolic information for users of prosthetic vision implants in uncontrolled conditions. We use image segmentation to automatically divide a natural image into regions, and using a fixation point controlled by the user, select a region to phosphenize. This technique improves the apparent contrast and clarity of symbolic information over traditional phosphenization approaches.
Vision-Based People Detection System for Heavy Machine Applications
Fremont, Vincent; Bui, Manh Tuan; Boukerroui, Djamal; Letort, Pierrick
2016-01-01
This paper presents a vision-based people detection system for improving safety in heavy machines. We propose a perception system composed of a monocular fisheye camera and a LiDAR. Fisheye cameras have the advantage of a wide field-of-view, but the strong distortions that they create must be handled at the detection stage. Since people detection in fisheye images has not been well studied, we focus on investigating and quantifying the impact that strong radial distortions have on the appearance of people, and we propose approaches for handling this specificity, adapted from state-of-the-art people detection approaches. These adaptive approaches nevertheless have the drawback of high computational cost and complexity. Consequently, we also present a framework for harnessing the LiDAR modality in order to enhance the detection algorithm for different camera positions. A sequential LiDAR-based fusion architecture is used, which addresses directly the problem of reducing false detections and computational cost in an exclusively vision-based system. A heavy machine dataset was built, and different experiments were carried out to evaluate the performance of the system. The results are promising, in terms of both processing speed and performance. PMID:26805838
Vision-Based People Detection System for Heavy Machine Applications.
Fremont, Vincent; Bui, Manh Tuan; Boukerroui, Djamal; Letort, Pierrick
2016-01-20
This paper presents a vision-based people detection system for improving safety in heavy machines. We propose a perception system composed of a monocular fisheye camera and a LiDAR. Fisheye cameras have the advantage of a wide field-of-view, but the strong distortions that they create must be handled at the detection stage. Since people detection in fisheye images has not been well studied, we focus on investigating and quantifying the impact that strong radial distortions have on the appearance of people, and we propose approaches for handling this specificity, adapted from state-of-the-art people detection approaches. These adaptive approaches nevertheless have the drawback of high computational cost and complexity. Consequently, we also present a framework for harnessing the LiDAR modality in order to enhance the detection algorithm for different camera positions. A sequential LiDAR-based fusion architecture is used, which addresses directly the problem of reducing false detections and computational cost in an exclusively vision-based system. A heavy machine dataset was built, and different experiments were carried out to evaluate the performance of the system. The results are promising, in terms of both processing speed and performance.
Pinto, Nicolas; Doukhan, David; DiCarlo, James J; Cox, David D
2009-11-01
While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.
Pinto, Nicolas; Doukhan, David; DiCarlo, James J.; Cox, David D.
2009-01-01
While many models of biological object recognition share a common set of “broad-stroke” properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model—e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct “parts” have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision. PMID:19956750
Capsule endoscope localization based on computer vision technique.
Liu, Li; Hu, Chao; Cai, Wentao; Meng, Max Q H
2009-01-01
To build a new type of wireless capsule endoscope with interactive gastrointestinal tract examination, a localization and orientation system is needed for tracking 3D location and 3D orientation of the capsule movement. The magnetic localization and orientation method produces only 5 DOF, but misses the information of rotation angle along capsule's main axis. In this paper, we presented a complementary orientation approach for the capsule endoscope, and the 3D rotation can be determined by applying computer vision technique on the captured endoscopic images. The experimental results show that the complementary orientation method has good accuracy and high feasibility.
Jaschinski, Wolfgang; König, Mirjam; Mekontso, Tiofil M; Ohlendorf, Arne; Welscher, Monique
2015-05-01
Two types of progressive addition lenses (PALs) were compared in an office field study: 1. General purpose PALs with continuous clear vision between infinity and near reading distances and 2. Computer vision PALs with a wider zone of clear vision at the monitor and in near vision but no clear distance vision. Twenty-three presbyopic participants wore each type of lens for two weeks in a double-masked four-week quasi-experimental procedure that included an adaptation phase (Weeks 1 and 2) and a test phase (Weeks 3 and 4). Questionnaires on visual and musculoskeletal conditions as well as preferences regarding the type of lenses were administered. After eight more weeks of free use of the spectacles, the preferences were assessed again. The ergonomic conditions were analysed from photographs. Head inclination when looking at the monitor was significantly lower by 2.3 degrees with the computer vision PALs than with the general purpose PALs. Vision at the monitor was judged significantly better with computer PALs, while distance vision was judged better with general purpose PALs; however, the reported advantage of computer vision PALs differed in extent between participants. Accordingly, 61 per cent of the participants preferred the computer vision PALs, when asked without information about lens design. After full information about lens characteristics and additional eight weeks of free spectacle use, 44 per cent preferred the computer vision PALs. On average, computer vision PALs were rated significantly better with respect to vision at the monitor during the experimental part of the study. In the final forced-choice ratings, approximately half of the participants preferred either the computer vision PAL or the general purpose PAL. Individual factors seem to play a role in this preference and in the rated advantage of computer vision PALs. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.
Distributed Algorithms for Probabilistic Solution of Computational Vision Problems.
1988-03-01
34 targets. Legters and Young (1982) developed an operator-based approach r% using foreground and background models and solved a least-squares minimiza...1960), "Finite Markov Chains", Van Nostrand, , - New York. Legters , G.R., and Young, T.Y. (1982), "A Mathematical Model for Computer Image Tracking
Deep hierarchies in the primate visual cortex: what can we learn for computer vision?
Krüger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodríguez-Sánchez, Antonio J; Wiskott, Laurenz
2013-08-01
Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchical processing in the primate visual system is characterized by a sequence of different levels of processing (on the order of 10) that constitute a deep hierarchy in contrast to the flat vision architectures predominantly used in today's mainstream computer vision. We hope that the functional description of the deep hierarchies realized in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive interaction between biological and computer vision research.
Perceptual organization in computer vision - A review and a proposal for a classificatory structure
NASA Technical Reports Server (NTRS)
Sarkar, Sudeep; Boyer, Kim L.
1993-01-01
The evolution of perceptual organization in biological vision, and its necessity in advanced computer vision systems, arises from the characteristic that perception, the extraction of meaning from sensory input, is an intelligent process. This is particularly so for high order organisms and, analogically, for more sophisticated computational models. The role of perceptual organization in computer vision systems is explored. This is done from four vantage points. First, a brief history of perceptual organization research in both humans and computer vision is offered. Next, a classificatory structure in which to cast perceptual organization research to clarify both the nomenclature and the relationships among the many contributions is proposed. Thirdly, the perceptual organization work in computer vision in the context of this classificatory structure is reviewed. Finally, the array of computational techniques applied to perceptual organization problems in computer vision is surveyed.
2011-02-07
Sensor UGVs (SUGV) or Disruptor UGVs, depending on their payload. The SUGVs included vision, GPS/IMU, and LIDAR systems for identifying and tracking...employed by all the MAGICian research groups. Objects of interest were tracked using standard LIDAR and Computer Vision template-based feature...tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous Locali- zation and Mapping ( SLAM ). Our system contains
The color-vision approach to emotional space: cortical evoked potential data.
Boucsein, W; Schaefer, F; Sokolov, E N; Schröder, C; Furedy, J J
2001-01-01
A framework for accounting for emotional phenomena proposed by Sokolov and Boucsein (2000) employs conceptual dimensions that parallel those of hue, brightness, and saturation in color vision. The approach that employs the concepts of emotional quality. intensity, and saturation has been supported by psychophysical emotional scaling data gathered from a few trained observers. We report cortical evoked potential data obtained during the change between different emotions expressed in schematic faces. Twenty-five subjects (13 male, 12 female) were presented with a positive, a negative, and a neutral computer-generated face with random interstimulus intervals in a within-subjects design, together with four meaningful and four meaningless control stimuli made up from the same elements. Frontal, central, parietal, and temporal ERPs were recorded from each hemisphere. Statistically significant outcomes in the P300 and N200 range support the potential fruitfulness of the proposed color-vision-model-based approach to human emotional space.
Three-camera stereo vision for intelligent transportation systems
NASA Astrophysics Data System (ADS)
Bergendahl, Jason; Masaki, Ichiro; Horn, Berthold K. P.
1997-02-01
A major obstacle in the application of stereo vision to intelligent transportation system is high computational cost. In this paper, a PC based three-camera stereo vision system constructed with off-the-shelf components is described. The system serves as a tool for developing and testing robust algorithms which approach real-time performance. We present an edge based, subpixel stereo algorithm which is adapted to permit accurate distance measurements to objects in the field of view using a compact camera assembly. Once computed, the 3D scene information may be directly applied to a number of in-vehicle applications, such as adaptive cruise control, obstacle detection, and lane tracking. Moreover, since the largest computational costs is incurred in generating the 3D scene information, multiple applications that leverage this information can be implemented in a single system with minimal cost. On-road applications, such as vehicle counting and incident detection, are also possible. Preliminary in-vehicle road trial results are presented.
The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data
NASA Astrophysics Data System (ADS)
Markiewicz, Jakub Stefan
2016-06-01
The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.
A Cellular Automata Approach to Computer Vision and Image Processing.
1980-09-01
the ACM, vol. 15, no. 9, pp. 827-837. [ Duda and Hart] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973...Center TR-738, 1979. [Farley] Arthur M. Farley and Andrzej Proskurowski, "Gossiping in Grid Graphs", University of Oregon Computer Science Department CS-TR
Adjustable typography: an approach to enhancing low vision text accessibility.
Arditi, Aries
2004-04-15
Millions of people have low vision, a disability condition caused by uncorrectable or partially correctable disorders of the eye. The primary goal of low vision rehabilitation is increasing access to printed material. This paper describes how adjustable typography, a computer graphic approach to enhancing text accessibility, can play a role in this process, by allowing visually-impaired users to customize fonts to maximize legibility according to their own visual needs. Prototype software and initial testing of the concept is described. The results show that visually-impaired users tend to produce a variety of very distinct fonts, and that the adjustment process results in greatly enhanced legibility. But this initial testing has not yet demonstrated increases in legibility over and above the legibility of highly legible standard fonts such as Times New Roman.
Hyperbolic Harmonic Mapping for Surface Registration
Shi, Rui; Zeng, Wei; Su, Zhengyu; Jiang, Jian; Damasio, Hanna; Lu, Zhonglin; Wang, Yalin; Yau, Shing-Tung; Gu, Xianfeng
2016-01-01
Automatic computation of surface correspondence via harmonic map is an active research field in computer vision, computer graphics and computational geometry. It may help document and understand physical and biological phenomena and also has broad applications in biometrics, medical imaging and motion capture inducstries. Although numerous studies have been devoted to harmonic map research, limited progress has been made to compute a diffeomorphic harmonic map on general topology surfaces with landmark constraints. This work conquers this problem by changing the Riemannian metric on the target surface to a hyperbolic metric so that the harmonic mapping is guaranteed to be a diffeomorphism under landmark constraints. The computational algorithms are based on Ricci flow and nonlinear heat diffusion methods. The approach is general and robust. We employ our algorithm to study the constrained surface registration problem which applies to both computer vision and medical imaging applications. Experimental results demonstrate that, by changing the Riemannian metric, the registrations are always diffeomorphic and achieve relatively high performance when evaluated with some popular surface registration evaluation standards. PMID:27187948
A Computer Vision Approach to Identify Einstein Rings and Arcs
NASA Astrophysics Data System (ADS)
Lee, Chien-Hsiu
2017-03-01
Einstein rings are rare gems of strong lensing phenomena; the ring images can be used to probe the underlying lens gravitational potential at every position angles, tightly constraining the lens mass profile. In addition, the magnified images also enable us to probe high-z galaxies with enhanced resolution and signal-to-noise ratios. However, only a handful of Einstein rings have been reported, either from serendipitous discoveries or or visual inspections of hundred thousands of massive galaxies or galaxy clusters. In the era of large sky surveys, an automated approach to identify ring pattern in the big data to come is in high demand. Here, we present an Einstein ring recognition approach based on computer vision techniques. The workhorse is the circle Hough transform that recognise circular patterns or arcs in the images. We propose a two-tier approach by first pre-selecting massive galaxies associated with multiple blue objects as possible lens, than use Hough transform to identify circular pattern. As a proof-of-concept, we apply our approach to SDSS, with a high completeness, albeit with low purity. We also apply our approach to other lenses in DES, HSC-SSP, and UltraVISTA survey, illustrating the versatility of our approach.
Global Methods for Image Motion Analysis
1992-10-01
a variant of the same error function as in Adiv [2]. Another related approach was presented by Maybank [46,45]. Nearly all researchers in motion...with an application to stereo vision. In Proc. 7th Intern. Joint Conference on AI, pages 674{679, Vancouver, 1981. [45] S. J. Maybank . Algorithm for...analysing optical ow based on the least-squares method. Image and Vision Computing, 4:38{42, 1986. [46] S. J. Maybank . A Theoretical Study of Optical
Quaternions in computer vision and robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pervin, E.; Webb, J.A.
1982-01-01
Computer vision and robotics suffer from not having good tools for manipulating three-dimensional objects. Vectors, coordinate geometry, and trigonometry all have deficiencies. Quaternions can be used to solve many of these problems. Many properties of quaternions that are relevant to computer vision and robotics are developed. Examples are given showing how quaternions can be used to simplify derivations in computer vision and robotics.
NASA Astrophysics Data System (ADS)
Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.
Benchmarking neuromorphic vision: lessons learnt from computer vision
Tan, Cheston; Lallee, Stephane; Orchard, Garrick
2015-01-01
Neuromorphic Vision sensors have improved greatly since the first silicon retina was presented almost three decades ago. They have recently matured to the point where they are commercially available and can be operated by laymen. However, despite improved availability of sensors, there remains a lack of good datasets, while algorithms for processing spike-based visual data are still in their infancy. On the other hand, frame-based computer vision algorithms are far more mature, thanks in part to widely accepted datasets which allow direct comparison between algorithms and encourage competition. We are presented with a unique opportunity to shape the development of Neuromorphic Vision benchmarks and challenges by leveraging what has been learnt from the use of datasets in frame-based computer vision. Taking advantage of this opportunity, in this paper we review the role that benchmarks and challenges have played in the advancement of frame-based computer vision, and suggest guidelines for the creation of Neuromorphic Vision benchmarks and challenges. We also discuss the unique challenges faced when benchmarking Neuromorphic Vision algorithms, particularly when attempting to provide direct comparison with frame-based computer vision. PMID:26528120
Three-Dimensional Images For Robot Vision
NASA Astrophysics Data System (ADS)
McFarland, William D.
1983-12-01
Robots are attracting increased attention in the industrial productivity crisis. As one significant approach for this nation to maintain technological leadership, the need for robot vision has become critical. The "blind" robot, while occupying an economical niche at present is severely limited and job specific, being only one step up from the numerical controlled machines. To successfully satisfy robot vision requirements a three dimensional representation of a real scene must be provided. Several image acquistion techniques are discussed with more emphasis on the laser radar type instruments. The autonomous vehicle is also discussed as a robot form, and the requirements for these applications are considered. The total computer vision system requirement is reviewed with some discussion of the major techniques in the literature for three dimensional scene analysis.
Can computational goals inform theories of vision?
Anderson, Barton L
2015-04-01
One of the most lasting contributions of Marr's posthumous book is his articulation of the different "levels of analysis" that are needed to understand vision. Although a variety of work has examined how these different levels are related, there is comparatively little examination of the assumptions on which his proposed levels rest, or the plausibility of the approach Marr articulated given those assumptions. Marr placed particular significance on computational level theory, which specifies the "goal" of a computation, its appropriateness for solving a particular problem, and the logic by which it can be carried out. The structure of computational level theory is inherently teleological: What the brain does is described in terms of its purpose. I argue that computational level theory, and the reverse-engineering approach it inspires, requires understanding the historical trajectory that gave rise to functional capacities that can be meaningfully attributed with some sense of purpose or goal, that is, a reconstruction of the fitness function on which natural selection acted in shaping our visual abilities. I argue that this reconstruction is required to distinguish abilities shaped by natural selection-"natural tasks" -from evolutionary "by-products" (spandrels, co-optations, and exaptations), rather than merely demonstrating that computational goals can be embedded in a Bayesian model that renders a particular behavior or process rational. Copyright © 2015 Cognitive Science Society, Inc.
Machine Vision For Industrial Control:The Unsung Opportunity
NASA Astrophysics Data System (ADS)
Falkman, Gerald A.; Murray, Lawrence A.; Cooper, James E.
1984-05-01
Vision modules have primarily been developed to relieve those pressures newly brought into existence by Inspection (QUALITY) and Robotic (PRODUCTIVITY) mandates. Industrial Control pressure stems on the other hand from the older first industrial revolution mandate of throughput. Satisfying such pressure calls for speed in both imaging and decision making. Vision companies have, however, put speed on a backburner or ignore it entirely because most modules are computer/software based which limits their speed potential. Increasingly, the keynote being struck at machine vision seminars is that "Visual and Computational Speed Must Be Increased and Dramatically!" There are modular hardwired-logic systems that are fast but, all too often, they are not very bright. Such units: Measure the fill factor of bottles as they spin by, Read labels on cans, Count stacked plastic cups or Monitor the width of parts streaming past the camera. Many are only a bit more complex than a photodetector. Once in place, most of these units are incapable of simple upgrading to a new task and are Vision's analog to the robot industry's pick and place (RIA TYPE E) robot. Vision thus finds itself amidst the same quandries that once beset the Robot Industry of America when it tried to define a robot, excluded dumb ones, and was left with only slow machines whose unit volume potential is shatteringly low. This paper develops an approach to meeting the need of a vision system that cuts a swath into the terra incognita of intelligent, high-speed vision processing. Main attention is directed to vision for industrial control. Some presently untapped vision application areas that will be serviced include: Electronics, Food, Sports, Pharmaceuticals, Machine Tools and Arc Welding.
(Computer) Vision without Sight
Manduchi, Roberto; Coughlan, James
2012-01-01
Computer vision holds great promise for helping persons with blindness or visual impairments (VI) to interpret and explore the visual world. To this end, it is worthwhile to assess the situation critically by understanding the actual needs of the VI population and which of these needs might be addressed by computer vision. This article reviews the types of assistive technology application areas that have already been developed for VI, and the possible roles that computer vision can play in facilitating these applications. We discuss how appropriate user interfaces are designed to translate the output of computer vision algorithms into information that the user can quickly and safely act upon, and how system-level characteristics affect the overall usability of an assistive technology. Finally, we conclude by highlighting a few novel and intriguing areas of application of computer vision to assistive technology. PMID:22815563
Microscope self-calibration based on micro laser line imaging and soft computing algorithms
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.
2018-06-01
A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.
Remote sensing of vegetation structure using computer vision
NASA Astrophysics Data System (ADS)
Dandois, Jonathan P.
High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal conditions under which forest structure measurements should be obtained with UAS-SFM remote sensing. Ultimately remote sensing of vegetation by computer vision offers the potential to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, but also seeing the trees in the forest and the leaves on the trees.
NASA Astrophysics Data System (ADS)
Meitzler, Thomas J.
The field of computer vision interacts with fields such as psychology, vision research, machine vision, psychophysics, mathematics, physics, and computer science. The focus of this thesis is new algorithms and methods for the computation of the probability of detection (Pd) of a target in a cluttered scene. The scene can be either a natural visual scene such as one sees with the naked eye (visual), or, a scene displayed on a monitor with the help of infrared sensors. The relative clutter and the temperature difference between the target and background (DeltaT) are defined and then used to calculate a relative signal -to-clutter ratio (SCR) from which the Pd is calculated for a target in a cluttered scene. It is shown how this definition can include many previous definitions of clutter and (DeltaT). Next, fuzzy and neural -fuzzy techniques are used to calculate the Pd and it is shown how these methods can give results that have a good correlation with experiment. The experimental design for actually measuring the Pd of a target by observers is described. Finally, wavelets are applied to the calculation of clutter and it is shown how this new definition of clutter based on wavelets can be used to compute the Pd of a target.
Modeling of the First Layers in the Fly's Eye
NASA Technical Reports Server (NTRS)
Moya, J. A.; Wilcox, M. J.; Donohoe, G. W.
1997-01-01
Increased autonomy of robots would yield significant advantages in the exploration of space. The shortfalls of computer vision can, however, pose significant limitations on a robot's potential. At the same time, simple insects which are largely hard-wired have effective visual systems. The understanding of insect vision systems thus may lead to improved approaches to visual tasks. A good starting point for the study of a vision system is its eye. In this paper, a model of the sensory portion of the fly's eye is presented. The effectiveness of the model is briefly addressed by a comparison of its performance to experimental data.
3D-model building of the jaw impression
NASA Astrophysics Data System (ADS)
Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.
1997-03-01
A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.
Thirty Years After Marr's Vision: Levels of Analysis in Cognitive Science.
Peebles, David; Cooper, Richard P
2015-04-01
Thirty years after the publication of Marr's seminal book Vision (Marr, 1982) the papers in this topic consider the contemporary status of his influential conception of three distinct levels of analysis for information-processing systems, and in particular the role of the algorithmic and representational level with its cognitive-level concepts. This level has (either implicitly or explicitly) been downplayed or eliminated both by reductionist neuroscience approaches from below that seek to account for behavior from the implementation level and by Bayesian approaches from above that seek to account for behavior in purely computational-level terms. Copyright © 2015 Cognitive Science Society, Inc.
Knowledge-based vision and simple visual machines.
Cliff, D; Noble, J
1997-01-01
The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong. PMID:9304684
Lee, Junhwa; Lee, Kyoung-Chan; Cho, Soojin
2017-01-01
The displacement responses of a civil engineering structure can provide important information regarding structural behaviors that help in assessing safety and serviceability. A displacement measurement using conventional devices, such as the linear variable differential transformer (LVDT), is challenging owing to issues related to inconvenient sensor installation that often requires additional temporary structures. A promising alternative is offered by computer vision, which typically provides a low-cost and non-contact displacement measurement that converts the movement of an object, mostly an attached marker, in the captured images into structural displacement. However, there is limited research on addressing light-induced measurement error caused by the inevitable sunlight in field-testing conditions. This study presents a computer vision-based displacement measurement approach tailored to a field-testing environment with enhanced robustness to strong sunlight. An image-processing algorithm with an adaptive region-of-interest (ROI) is proposed to reliably determine a marker’s location even when the marker is indistinct due to unfavorable light. The performance of the proposed system is experimentally validated in both laboratory-scale and field experiments. PMID:29019950
Advanced biologically plausible algorithms for low-level image processing
NASA Astrophysics Data System (ADS)
Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan
1999-08-01
At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.
On the performances of computer vision algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.
2012-01-01
Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.
Evolution of attention mechanisms for early visual processing
NASA Astrophysics Data System (ADS)
Müller, Thomas; Knoll, Alois
2011-03-01
Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism: mutation and cloning of the best performers and extinction of the worst performers considering computation of regions of attention. A fitness function can be derived by evaluating, whether relevant objects are found in the regions created. It can be seen from various experiments, that the approach significantly speeds up visual processing, especially regarding robust ealtime object recognition, compared to an approach not using saliency based preprocessing. Furthermore, the evolutionary algorithm improves the overall performance of the preprocessing system in terms of quality, as the system automatically and autonomously tunes the saliency parameters. The computational overhead produced by periodical clone/delete/mutation operations can be handled well within the realtime constraints of the experimental computer vision system. Nevertheless, limitations apply whenever the visual field does not contain any significant saliency information for some time, but the population still tries to tune the parameters - overfitting avoids generalization in this case and the evolutionary process may be reset by manual intervention.
DOT National Transportation Integrated Search
2014-07-01
Pavement Condition surveys are carried out periodically to gather information on pavement distresses that will guide decision-making for maintenance and preservation. Traditional methods involve manual pavement inspections which are time-consuming : ...
Volumetric segmentation of range images for printed circuit board inspection
NASA Astrophysics Data System (ADS)
Van Dop, Erik R.; Regtien, Paul P. L.
1996-10-01
Conventional computer vision approaches towards object recognition and pose estimation employ 2D grey-value or color imaging. As a consequence these images contain information about projections of a 3D scene only. The subsequent image processing will then be difficult, because the object coordinates are represented with just image coordinates. Only complicated low-level vision modules like depth from stereo or depth from shading can recover some of the surface geometry of the scene. Recent advances in fast range imaging have however paved the way towards 3D computer vision, since range data of the scene can now be obtained with sufficient accuracy and speed for object recognition and pose estimation purposes. This article proposes the coded-light range-imaging method together with superquadric segmentation to approach this task. Superquadric segments are volumetric primitives that describe global object properties with 5 parameters, which provide the main features for object recognition. Besides, the principle axes of a superquadric segment determine the phase of an object in the scene. The volumetric segmentation of a range image can be used to detect missing, false or badly placed components on assembled printed circuit boards. Furthermore, this approach will be useful to recognize and extract valuable or toxic electronic components on printed circuit boards scrap that currently burden the environment during electronic waste processing. Results on synthetic range images with errors constructed according to a verified noise model illustrate the capabilities of this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonior, Jason D; Hu, Zhen; Guo, Terry N.
This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.
Computer vision cracks the leaf code
Wilf, Peter; Zhang, Shengping; Chikkerur, Sharat; Little, Stefan A.; Wing, Scott L.; Serre, Thomas
2016-01-01
Understanding the extremely variable, complex shape and venation characters of angiosperm leaves is one of the most challenging problems in botany. Machine learning offers opportunities to analyze large numbers of specimens, to discover novel leaf features of angiosperm clades that may have phylogenetic significance, and to use those characters to classify unknowns. Previous computer vision approaches have primarily focused on leaf identification at the species level. It remains an open question whether learning and classification are possible among major evolutionary groups such as families and orders, which usually contain hundreds to thousands of species each and exhibit many times the foliar variation of individual species. Here, we tested whether a computer vision algorithm could use a database of 7,597 leaf images from 2,001 genera to learn features of botanical families and orders, then classify novel images. The images are of cleared leaves, specimens that are chemically bleached, then stained to reveal venation. Machine learning was used to learn a codebook of visual elements representing leaf shape and venation patterns. The resulting automated system learned to classify images into families and orders with a success rate many times greater than chance. Of direct botanical interest, the responses of diagnostic features can be visualized on leaf images as heat maps, which are likely to prompt recognition and evolutionary interpretation of a wealth of novel morphological characters. With assistance from computer vision, leaves are poised to make numerous new contributions to systematic and paleobotanical studies. PMID:26951664
Knowledge-based vision for space station object motion detection, recognition, and tracking
NASA Technical Reports Server (NTRS)
Symosek, P.; Panda, D.; Yalamanchili, S.; Wehner, W., III
1987-01-01
Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed.
Fast Legendre moment computation for template matching
NASA Astrophysics Data System (ADS)
Li, Bing C.
2017-05-01
Normalized cross correlation (NCC) based template matching is insensitive to intensity changes and it has many applications in image processing, object detection, video tracking and pattern recognition. However, normalized cross correlation implementation is computationally expensive since it involves both correlation computation and normalization implementation. In this paper, we propose Legendre moment approach for fast normalized cross correlation implementation and show that the computational cost of this proposed approach is independent of template mask sizes which is significantly faster than traditional mask size dependent approaches, especially for large mask templates. Legendre polynomials have been widely used in solving Laplace equation in electrodynamics in spherical coordinate systems, and solving Schrodinger equation in quantum mechanics. In this paper, we extend Legendre polynomials from physics to computer vision and pattern recognition fields, and demonstrate that Legendre polynomials can help to reduce the computational cost of NCC based template matching significantly.
Pyramidal neurovision architecture for vision machines
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Knopf, George K.
1993-08-01
The vision system employed by an intelligent robot must be active; active in the sense that it must be capable of selectively acquiring the minimal amount of relevant information for a given task. An efficient active vision system architecture that is based loosely upon the parallel-hierarchical (pyramidal) structure of the biological visual pathway is presented in this paper. Although the computational architecture of the proposed pyramidal neuro-vision system is far less sophisticated than the architecture of the biological visual pathway, it does retain some essential features such as the converging multilayered structure of its biological counterpart. In terms of visual information processing, the neuro-vision system is constructed from a hierarchy of several interactive computational levels, whereupon each level contains one or more nonlinear parallel processors. Computationally efficient vision machines can be developed by utilizing both the parallel and serial information processing techniques within the pyramidal computing architecture. A computer simulation of a pyramidal vision system for active scene surveillance is presented.
Computer vision in the poultry industry
USDA-ARS?s Scientific Manuscript database
Computer vision is becoming increasingly important in the poultry industry due to increasing use and speed of automation in processing operations. Growing awareness of food safety concerns has helped add food safety inspection to the list of tasks that automated computer vision can assist. Researc...
[Comparison study between biological vision and computer vision].
Liu, W; Yuan, X G; Yang, C X; Liu, Z Q; Wang, R
2001-08-01
The development and bearing of biology vision in structure and mechanism were discussed, especially on the aspects including anatomical structure of biological vision, tentative classification of reception field, parallel processing of visual information, feedback and conformity effect of visual cortical, and so on. The new advance in the field was introduced through the study of the morphology of biological vision. Besides, comparison between biological vision and computer vision was made, and their similarities and differences were pointed out.
Reinforcement learning in computer vision
NASA Astrophysics Data System (ADS)
Bernstein, A. V.; Burnaev, E. V.
2018-04-01
Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.
Progress in building a cognitive vision system
NASA Astrophysics Data System (ADS)
Benjamin, D. Paul; Lyons, Damian; Yue, Hong
2016-05-01
We are building a cognitive vision system for mobile robots that works in a manner similar to the human vision system, using saccadic, vergence and pursuit movements to extract information from visual input. At each fixation, the system builds a 3D model of a small region, combining information about distance, shape, texture and motion to create a local dynamic spatial model. These local 3D models are composed to create an overall 3D model of the robot and its environment. This approach turns the computer vision problem into a search problem whose goal is the acquisition of sufficient spatial understanding for the robot to succeed at its tasks. The research hypothesis of this work is that the movements of the robot's cameras are only those that are necessary to build a sufficiently accurate world model for the robot's current goals. For example, if the goal is to navigate through a room, the model needs to contain any obstacles that would be encountered, giving their approximate positions and sizes. Other information does not need to be rendered into the virtual world, so this approach trades model accuracy for speed.
Vision-based calibration of parallax barrier displays
NASA Astrophysics Data System (ADS)
Ranieri, Nicola; Gross, Markus
2014-03-01
Static and dynamic parallax barrier displays became very popular over the past years. Especially for single viewer applications like tablets, phones and other hand-held devices, parallax barriers provide a convenient solution to render stereoscopic content. In our work we present a computer vision based calibration approach to relate image layer and barrier layer of parallax barrier displays with unknown display geometry for static or dynamic viewer positions using homographies. We provide the math and methods to compose the required homographies on the fly and present a way to compute the barrier without the need of any iteration. Our GPU implementation is stable and general and can be used to reduce latency and increase refresh rate of existing and upcoming barrier methods.
2015-08-21
using the Open Computer Vision ( OpenCV ) libraries [6] for computer vision and the Qt library [7] for the user interface. The software has the...depth. The software application calibrates the cameras using the plane based calibration model from the OpenCV calib3D module and allows the...6] OpenCV . 2015. OpenCV Open Source Computer Vision. [Online]. Available at: opencv.org [Accessed]: 09/01/2015. [7] Qt. 2015. Qt Project home
Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Choudhary, Alok Nidhi
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.
Adde, Lars; Helbostad, Jorunn; Jensenius, Alexander R; Langaas, Mette; Støen, Ragnhild
2013-08-01
This study evaluates the role of postterm age at assessment and the use of one or two video recordings for the detection of fidgety movements (FMs) and prediction of cerebral palsy (CP) using computer vision software. Recordings between 9 and 17 weeks postterm age from 52 preterm and term infants (24 boys, 28 girls; 26 born preterm) were used. Recordings were analyzed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analysis. Sensitivities, specificities, and area under curve were estimated for the first and second recording, or a mean of both. FMs were classified based on the Prechtl approach of general movement assessment. CP status was reported at 2 years. Nine children developed CP of whom all recordings had absent FMs. The mean variability of the centroid of motion (CSD) from two recordings was more accurate than using only one recording, and identified all children who were diagnosed with CP at 2 years. Age at assessment did not influence the detection of FMs or prediction of CP. The accuracy of computer vision techniques in identifying FMs and predicting CP based on two recordings should be confirmed in future studies.
Fast and robust generation of feature maps for region-based visual attention.
Aziz, Muhammad Zaheer; Mertsching, Bärbel
2008-05-01
Visual attention is one of the important phenomena in biological vision which can be followed to achieve more efficiency, intelligence, and robustness in artificial vision systems. This paper investigates a region-based approach that performs pixel clustering prior to the processes of attention in contrast to late clustering as done by contemporary methods. The foundation steps of feature map construction for the region-based attention model are proposed here. The color contrast map is generated based upon the extended findings from the color theory, the symmetry map is constructed using a novel scanning-based method, and a new algorithm is proposed to compute a size contrast map as a formal feature channel. Eccentricity and orientation are computed using the moments of obtained regions and then saliency is evaluated using the rarity criteria. The efficient design of the proposed algorithms allows incorporating five feature channels while maintaining a processing rate of multiple frames per second. Another salient advantage over the existing techniques is the reusability of the salient regions in the high-level machine vision procedures due to preservation of their shapes and precise locations. The results indicate that the proposed model has the potential to efficiently integrate the phenomenon of attention into the main stream of machine vision and systems with restricted computing resources such as mobile robots can benefit from its advantages.
Clinical efficacy of Ayurvedic management in computer vision syndrome: A pilot study.
Dhiman, Kartar Singh; Ahuja, Deepak Kumar; Sharma, Sanjeev Kumar
2012-07-01
Improper use of sense organs, violating the moral code of conduct, and the effect of the time are the three basic causative factors behind all the health problems. Computer, the knowledge bank of modern life, has emerged as a profession causing vision-related discomfort, ocular fatigue, and systemic effects. Computer Vision Syndrome (CVS) is the new nomenclature to the visual, ocular, and systemic symptoms arising due to the long time and improper working on the computer and is emerging as a pandemic in the 21(st) century. On critical analysis of the symptoms of CVS on Tridoshika theory of Ayurveda, as per the road map given by Acharya Charaka, it seems to be a Vata-Pittaja ocular cum systemic disease which needs systemic as well as topical treatment approach. Shatavaryaadi Churna (orally), Go-Ghrita Netra Tarpana (topically), and counseling regarding proper working conditions on computer were tried in 30 patients of CVS. In group I, where oral and local treatment was given, significant improvement in all the symptoms of CVS was observed, whereas in groups II and III, local treatment and counseling regarding proper working conditions, respectively, were given and showed insignificant results. The study verified the hypothesis that CVS in Ayurvedic perspective is a Vata-Pittaja disease affecting mainly eyes and body as a whole and needs a systemic intervention rather than topical ocular medication only.
Clinical efficacy of Ayurvedic management in computer vision syndrome: A pilot study
Dhiman, Kartar Singh; Ahuja, Deepak Kumar; Sharma, Sanjeev Kumar
2012-01-01
Improper use of sense organs, violating the moral code of conduct, and the effect of the time are the three basic causative factors behind all the health problems. Computer, the knowledge bank of modern life, has emerged as a profession causing vision-related discomfort, ocular fatigue, and systemic effects. Computer Vision Syndrome (CVS) is the new nomenclature to the visual, ocular, and systemic symptoms arising due to the long time and improper working on the computer and is emerging as a pandemic in the 21st century. On critical analysis of the symptoms of CVS on Tridoshika theory of Ayurveda, as per the road map given by Acharya Charaka, it seems to be a Vata–Pittaja ocular cum systemic disease which needs systemic as well as topical treatment approach. Shatavaryaadi Churna (orally), Go-Ghrita Netra Tarpana (topically), and counseling regarding proper working conditions on computer were tried in 30 patients of CVS. In group I, where oral and local treatment was given, significant improvement in all the symptoms of CVS was observed, whereas in groups II and III, local treatment and counseling regarding proper working conditions, respectively, were given and showed insignificant results. The study verified the hypothesis that CVS in Ayurvedic perspective is a Vata–Pittaja disease affecting mainly eyes and body as a whole and needs a systemic intervention rather than topical ocular medication only. PMID:23723647
Automated surface inspection for steel products using computer vision approach.
Xi, Jiaqi; Shentu, Lifeng; Hu, Jikang; Li, Mian
2017-01-10
Surface inspection is a critical step in ensuring the product quality in the steel-making industry. In order to relieve inspectors of laborious work and improve the consistency of inspection, much effort has been dedicated to the automated inspection using computer vision approaches over the past decades. However, due to non-uniform illumination conditions and similarity between the surface textures and defects, the present methods are usually applicable to very specific cases. In this paper a new framework for surface inspection has been proposed to overcome these limitations. By investigating the image formation process, a quantitative model characterizing the impact of illumination on the image quality is developed, based on which the non-uniform brightness in the image can be effectively removed. Then a simple classifier is designed to identify the defects among the surface textures. The significance of this approach lies in its robustness to illumination changes and wide applicability to different inspection scenarios. The proposed approach has been successfully applied to the real-time surface inspection of round billets in real manufacturing. Implemented on a conventional industrial PC, the algorithm can proceed at 12.5 frames per second with the successful detection rate being over 90% for turned and skinned billets.
Mapping Agricultural Fields in Sub-Saharan Africa with a Computer Vision Approach
NASA Astrophysics Data System (ADS)
Debats, S. R.; Luo, D.; Estes, L. D.; Fuchs, T.; Caylor, K. K.
2014-12-01
Sub-Saharan Africa is an important focus for food security research, because it is experiencing unprecedented population growth, agricultural activities are largely dominated by smallholder production, and the region is already home to 25% of the world's undernourished. One of the greatest challenges to monitoring and improving food security in this region is obtaining an accurate accounting of the spatial distribution of agriculture. Households are the primary units of agricultural production in smallholder communities and typically rely on small fields of less than 2 hectares. Field sizes are directly related to household crop productivity, management choices, and adoption of new technologies. As population and agriculture expand, it becomes increasingly important to understand both the distribution of field sizes as well as how agricultural communities are spatially embedded in the landscape. In addition, household surveys, a common tool for tracking agricultural productivity in Sub-Saharan Africa, would greatly benefit from spatially explicit accounting of fields. Current gridded land cover data sets do not provide information on individual agricultural fields or the distribution of field sizes. Therefore, we employ cutting edge approaches from the field of computer vision to map fields across Sub-Saharan Africa, including semantic segmentation, discriminative classifiers, and automatic feature selection. Our approach aims to not only improve the binary classification accuracy of cropland, but also to isolate distinct fields, thereby capturing crucial information on size and geometry. Our research focuses on the development of descriptive features across scales to increase the accuracy and geographic range of our computer vision algorithm. Relevant data sets include high-resolution remote sensing imagery and Landsat (30-m) multi-spectral imagery. Training data for field boundaries is derived from hand-digitized data sets as well as crowdsourcing.
Greene, Runyu L; Azari, David P; Hu, Yu Hen; Radwin, Robert G
2017-11-01
Patterns of physical stress exposure are often difficult to measure, and the metrics of variation and techniques for identifying them is underdeveloped in the practice of occupational ergonomics. Computer vision has previously been used for evaluating repetitive motion tasks for hand activity level (HAL) utilizing conventional 2D videos. The approach was made practical by relaxing the need for high precision, and by adopting a semi-automatic approach for measuring spatiotemporal characteristics of the repetitive task. In this paper, a new method for visualizing task factors, using this computer vision approach, is demonstrated. After videos are made, the analyst selects a region of interest on the hand to track and the hand location and its associated kinematics are measured for every frame. The visualization method spatially deconstructs and displays the frequency, speed and duty cycle components of tasks that are part of the threshold limit value for hand activity for the purpose of identifying patterns of exposure associated with the specific job factors, as well as for suggesting task improvements. The localized variables are plotted as a heat map superimposed over the video, and displayed in the context of the task being performed. Based on the intensity of the specific variables used to calculate HAL, we can determine which task factors most contribute to HAL, and readily identify those work elements in the task that contribute more to increased risk for an injury. Work simulations and actual industrial examples are described. This method should help practitioners more readily measure and interpret temporal exposure patterns and identify potential task improvements. Copyright © 2017. Published by Elsevier Ltd.
Computer vision for foreign body detection and removal in the food industry
USDA-ARS?s Scientific Manuscript database
Computer vision inspection systems are often used for quality control, product grading, defect detection and other product evaluation issues. This chapter focuses on the use of computer vision inspection systems that detect foreign bodies and remove them from the product stream. Specifically, we wi...
Chapter 11. Quality evaluation of apple by computer vision
USDA-ARS?s Scientific Manuscript database
Apple is one of the most consumed fruits in the world, and there is a critical need for enhanced computer vision technology for quality assessment of apples. This chapter gives a comprehensive review on recent advances in various computer vision techniques for detecting surface and internal defects ...
Deep Learning for Computer Vision: A Brief Review
Doulamis, Nikolaos; Doulamis, Anastasios; Protopapadakis, Eftychios
2018-01-01
Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein. PMID:29487619
Landmark navigation and autonomous landing approach with obstacle detection for aircraft
NASA Astrophysics Data System (ADS)
Fuerst, Simon; Werner, Stefan; Dickmanns, Dirk; Dickmanns, Ernst D.
1997-06-01
A machine perception system for aircraft and helicopters using multiple sensor data for state estimation is presented. By combining conventional aircraft sensor like gyros, accelerometers, artificial horizon, aerodynamic measuring devices and GPS with vision data taken by conventional CCD-cameras mounted on a pan and tilt platform, the position of the craft can be determined as well as the relative position to runways and natural landmarks. The vision data of natural landmarks are used to improve position estimates during autonomous missions. A built-in landmark management module decides which landmark should be focused on by the vision system, depending on the distance to the landmark and the aspect conditions. More complex landmarks like runways are modeled with different levels of detail that are activated dependent on range. A supervisor process compares vision data and GPS data to detect mistracking of the vision system e.g. due to poor visibility and tries to reinitialize the vision system or to set focus on another landmark available. During landing approach obstacles like trucks and airplanes can be detected on the runway. The system has been tested in real-time within a hardware-in-the-loop simulation. Simulated aircraft measurements corrupted by noise and other characteristic sensor errors have been fed into the machine perception system; the image processing module for relative state estimation was driven by computer generated imagery. Results from real-time simulation runs are given.
A computer vision for animal ecology.
Weinstein, Ben G
2018-05-01
A central goal of animal ecology is to observe species in the natural world. The cost and challenge of data collection often limit the breadth and scope of ecological study. Ecologists often use image capture to bolster data collection in time and space. However, the ability to process these images remains a bottleneck. Computer vision can greatly increase the efficiency, repeatability and accuracy of image review. Computer vision uses image features, such as colour, shape and texture to infer image content. I provide a brief primer on ecological computer vision to outline its goals, tools and applications to animal ecology. I reviewed 187 existing applications of computer vision and divided articles into ecological description, counting and identity tasks. I discuss recommendations for enhancing the collaboration between ecologists and computer scientists and highlight areas for future growth of automated image analysis. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.
Bag-of-visual-ngrams for histopathology image classification
NASA Astrophysics Data System (ADS)
López-Monroy, A. Pastor; Montes-y-Gómez, Manuel; Escalante, Hugo Jair; Cruz-Roa, Angel; González, Fabio A.
2013-11-01
This paper describes an extension of the Bag-of-Visual-Words (BoVW) representation for image categorization (IC) of histophatology images. This representation is one of the most used approaches in several high-level computer vision tasks. However, the BoVW representation has an important limitation: the disregarding of spatial information among visual words. This information may be useful to capture discriminative visual-patterns in specific computer vision tasks. In order to overcome this problem we propose the use of visual n-grams. N-grams based-representations are very popular in the field of natural language processing (NLP), in particular within text mining and information retrieval. We propose building a codebook of n-grams and then representing images by histograms of visual n-grams. We evaluate our proposal in the challenging task of classifying histopathology images. The novelty of our proposal lies in the fact that we use n-grams as attributes for a classification model (together with visual-words, i.e., 1-grams). This is common practice within NLP, although, to the best of our knowledge, this idea has not been explored yet within computer vision. We report experimental results in a database of histopathology images where our proposed method outperforms the traditional BoVWs formulation.
Misimi, E; Mathiassen, J R; Erikson, U
2007-01-01
Computer vision method was used to evaluate the color of Atlantic salmon (Salmo salar) fillets. Computer vision-based sorting of fillets according to their color was studied on 2 separate groups of salmon fillets. The images of fillets were captured using a digital camera of high resolution. Images of salmon fillets were then segmented in the regions of interest and analyzed in red, green, and blue (RGB) and CIE Lightness, redness, and yellowness (Lab) color spaces, and classified according to the Roche color card industrial standard. Comparisons of fillet color between visual evaluations were made by a panel of human inspectors, according to the Roche SalmoFan lineal standard, and the color scores generated from computer vision algorithm showed that there were no significant differences between the methods. Overall, computer vision can be used as a powerful tool to sort fillets by color in a fast and nondestructive manner. The low cost of implementing computer vision solutions creates the potential to replace manual labor in fish processing plants with automation.
Gamut relativity: a new computational approach to brightness and lightness perception.
Vladusich, Tony
2013-01-09
This article deconstructs the conventional theory that "brightness" and "lightness" constitute perceptual dimensions corresponding to the physical dimensions of luminance and reflectance, and builds in its place the theory that brightness and lightness correspond to computationally defined "modes," rather than dimensions, of perception. According to the theory, called gamut relativity, "blackness" and "whiteness" constitute the perceptual dimensions (forming a two-dimensional "blackness-whiteness" space) underlying achromatic color perception (black, white, and gray shades). These perceptual dimensions are postulated to be related to the neural activity levels in the ON and OFF channels of vision. The theory unifies and generalizes a number of extant concepts in the brightness and lightness literature, such as simultaneous contrast, anchoring, and scission, and quantitatively simulates several challenging perceptual phenomena, including the staircase Gelb effect and the effects of task instructions on achromatic color-matching behavior, all with a single free parameter. The theory also provides a new conception of achromatic color constancy in terms of the relative distances between points in blackness-whiteness space. The theory suggests a host of striking conclusions, the most important of which is that the perceptual dimensions of vision should be generically specified according to the computational properties of the brain, rather than in terms of "reified" physical dimensions. This new approach replaces the computational goal of estimating absolute physical quantities ("inverse optics") with the goal of computing object properties relatively.
Machine Learning, deep learning and optimization in computer vision
NASA Astrophysics Data System (ADS)
Canu, Stéphane
2017-03-01
As quoted in the Large Scale Computer Vision Systems NIPS workshop, computer vision is a mature field with a long tradition of research, but recent advances in machine learning, deep learning, representation learning and optimization have provided models with new capabilities to better understand visual content. The presentation will go through these new developments in machine learning covering basic motivations, ideas, models and optimization in deep learning for computer vision, identifying challenges and opportunities. It will focus on issues related with large scale learning that is: high dimensional features, large variety of visual classes, and large number of examples.
NASA Technical Reports Server (NTRS)
Ettinger, Scott M.; Nechyba, Michael C.; Ifju, Peter G.; Wazak, Martin
2002-01-01
Substantial progress has been made recently towards design building and test-flying remotely piloted Micro Air Vehicle's (MAVs). We seek to complement this progress in overcoming the aerodynamic obstacles to.flight at very small scales with a vision stability and autonomy system. The developed system based on a robust horizon detection algorithm which we discuss in greater detail in a companion paper. In this paper, we first motivate the use of computer vision for MAV autonomy arguing that given current sensor technology, vision may he the only practical approach to the problem. We then briefly review our statistical vision-based horizon detection algorithm, which has been demonstrated at 30Hz with over 99.9% correct horizon identification. Next we develop robust schemes for the detection of extreme MAV attitudes, where no horizon is visible, and for the detection of horizon estimation errors, due to external factors such as video transmission noise. Finally, we discuss our feed-back controller for self-stabilized flight, and report results on vision autonomous flights of duration exceeding ten minutes.
3-D Signal Processing in a Computer Vision System
Dongping Zhu; Richard W. Conners; Philip A. Araman
1991-01-01
This paper discusses the problem of 3-dimensional image filtering in a computer vision system that would locate and identify internal structural failure. In particular, a 2-dimensional adaptive filter proposed by Unser has been extended to 3-dimension. In conjunction with segmentation and labeling, the new filter has been used in the computer vision system to...
Experiences Using an Open Source Software Library to Teach Computer Vision Subjects
ERIC Educational Resources Information Center
Cazorla, Miguel; Viejo, Diego
2015-01-01
Machine vision is an important subject in computer science and engineering degrees. For laboratory experimentation, it is desirable to have a complete and easy-to-use tool. In this work we present a Java library, oriented to teaching computer vision. We have designed and built the library from the scratch with emphasis on readability and…
Object extraction in photogrammetric computer vision
NASA Astrophysics Data System (ADS)
Mayer, Helmut
This paper discusses state and promising directions of automated object extraction in photogrammetric computer vision considering also practical aspects arising for digital photogrammetric workstations (DPW). A review of the state of the art shows that there are only few practically successful systems on the market. Therefore, important issues for a practical success of automated object extraction are identified. A sound and most important powerful theoretical background is the basis. Here, we particularly point to statistical modeling. Testing makes clear which of the approaches are suited best and how useful they are for praxis. A key for commercial success of a practical system is efficient user interaction. As the means for data acquisition are changing, new promising application areas such as extremely detailed three-dimensional (3D) urban models for virtual television or mission rehearsal evolve.
Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.
NASA Astrophysics Data System (ADS)
Battiti, Roberto
1990-01-01
This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from multiple-purpose modules. In the last part of the thesis a well known optimization method (the Broyden-Fletcher-Goldfarb-Shanno memoryless quasi -Newton method) is applied to simple classification problems and shown to be superior to the "error back-propagation" algorithm for numerical stability, automatic selection of parameters, and convergence properties.
2011-11-01
RX-TY-TR-2011-0096-01) develops a novel computer vision sensor based upon the biological vision system of the common housefly , Musca domestica...01 summarizes the development of a novel computer vision sensor based upon the biological vision system of the common housefly , Musca domestica
NASA Astrophysics Data System (ADS)
Shatravin, V.; Shashev, D. V.
2018-05-01
Currently, robots are increasingly being used in every industry. One of the most high-tech areas is creation of completely autonomous robotic devices including vehicles. The results of various global research prove the efficiency of vision systems in autonomous robotic devices. However, the use of these systems is limited because of the computational and energy resources available in the robot device. The paper describes the results of applying the original approach for image processing on reconfigurable computing environments by the example of morphological operations over grayscale images. This approach is prospective for realizing complex image processing algorithms and real-time image analysis in autonomous robotic devices.
Vision-Based UAV Flight Control and Obstacle Avoidance
2006-01-01
denoted it by Vb = (Vb1, Vb2 , Vb3). Fig. 2 shows the block diagram of the proposed vision-based motion analysis and obstacle avoidance system. We denote...structure analysis often involve computation- intensive computer vision tasks, such as feature extraction and geometric modeling. Computation-intensive...First, we extract a set of features from each block. 2) Second, we compute the distance between these two sets of features. In conventional motion
Heterogeneous compute in computer vision: OpenCL in OpenCV
NASA Astrophysics Data System (ADS)
Gasparakis, Harris
2014-02-01
We explore the relevance of Heterogeneous System Architecture (HSA) in Computer Vision, both as a long term vision, and as a near term emerging reality via the recently ratified OpenCL 2.0 Khronos standard. After a brief review of OpenCL 1.2 and 2.0, including HSA features such as Shared Virtual Memory (SVM) and platform atomics, we identify what genres of Computer Vision workloads stand to benefit by leveraging those features, and we suggest a new mental framework that replaces GPU compute with hybrid HSA APU compute. As a case in point, we discuss, in some detail, popular object recognition algorithms (part-based models), emphasizing the interplay and concurrent collaboration between the GPU and CPU. We conclude by describing how OpenCL has been incorporated in OpenCV, a popular open source computer vision library, emphasizing recent work on the Transparent API, to appear in OpenCV 3.0, which unifies the native CPU and OpenCL execution paths under a single API, allowing the same code to execute either on CPU or on a OpenCL enabled device, without even recompiling.
Quality grading of Atlantic salmon (Salmo salar) by computer vision.
Misimi, E; Erikson, U; Skavhaug, A
2008-06-01
In this study, we present a promising method of computer vision-based quality grading of whole Atlantic salmon (Salmo salar). Using computer vision, it was possible to differentiate among different quality grades of Atlantic salmon based on the external geometrical information contained in the fish images. Initially, before the image acquisition, the fish were subjectively graded and labeled into grading classes by a qualified human inspector in the processing plant. Prior to classification, the salmon images were segmented into binary images, and then feature extraction was performed on the geometrical parameters of the fish from the grading classes. The classification algorithm was a threshold-based classifier, which was designed using linear discriminant analysis. The performance of the classifier was tested by using the leave-one-out cross-validation method, and the classification results showed a good agreement between the classification done by human inspectors and by the computer vision. The computer vision-based method classified correctly 90% of the salmon from the data set as compared with the classification by human inspector. Overall, it was shown that computer vision can be used as a powerful tool to grade Atlantic salmon into quality grades in a fast and nondestructive manner by a relatively simple classifier algorithm. The low cost of implementation of today's advanced computer vision solutions makes this method feasible for industrial purposes in fish plants as it can replace manual labor, on which grading tasks still rely.
A Constraint Generation Approach to Learning Stable Linear Dynamical Systems
2008-01-01
task of learning dynamic textures from image sequences as well as to modeling biosurveillance drug-sales data. The constraint generation approach...previous methods in our experiments. One application of LDSs in computer vision is learning dynamic textures from video data [8]. An advantage of...over-the-counter (OTC) drug sales for biosurveillance , and sunspot numbers from the UCR archive [9]. Comparison to the best alternative methods [7, 10
Introduction: The SERENITY vision
NASA Astrophysics Data System (ADS)
Maña, Antonio; Spanoudakis, George; Kokolakis, Spyros
In this chapter we present an overview of the SERENITY approach. We describe the SERENITY model of secure and dependable applications and show how it addresses the challenge of developing, integrating and dynamically maintaining security and dependability mechanisms in open, dynamic, distributed and heterogeneous computing systems and in particular Ambient Intelligence scenarios. The chapter describes the basic concepts used in the approach and introduces the different processes supported by SERENITY, along with the tools provided.
Vasconcelos, Francisco; Brandão, Patrick; Vercauteren, Tom; Ourselin, Sebastien; Deprest, Jan; Peebles, Donald; Stoyanov, Danail
2018-06-27
Intrauterine foetal surgery is the treatment option for several congenital malformations. For twin-to-twin transfusion syndrome (TTTS), interventions involve the use of laser fibre to ablate vessels in a shared placenta. The procedure presents a number of challenges for the surgeon, and computer-assisted technologies can potentially be a significant support. Vision-based sensing is the primary source of information from the intrauterine environment, and hence, vision approaches present an appealing approach for extracting higher level information from the surgical site. In this paper, we propose a framework to detect one of the key steps during TTTS interventions-ablation. We adopt a deep learning approach, specifically the ResNet101 architecture, for classification of different surgical actions performed during laser ablation therapy. We perform a two-fold cross-validation using almost 50 k frames from five different TTTS ablation procedures. Our results show that deep learning methods are a promising approach for ablation detection. To our knowledge, this is the first attempt at automating photocoagulation detection using video and our technique can be an important component of a larger assistive framework for enhanced foetal therapies. The current implementation does not include semantic segmentation or localisation of the ablation site, and this would be a natural extension in future work.
A cognitive approach to vision for a mobile robot
NASA Astrophysics Data System (ADS)
Benjamin, D. Paul; Funk, Christopher; Lyons, Damian
2013-05-01
We describe a cognitive vision system for a mobile robot. This system works in a manner similar to the human vision system, using saccadic, vergence and pursuit movements to extract information from visual input. At each fixation, the system builds a 3D model of a small region, combining information about distance, shape, texture and motion. These 3D models are embedded within an overall 3D model of the robot's environment. This approach turns the computer vision problem into a search problem, with the goal of constructing a physically realistic model of the entire environment. At each step, the vision system selects a point in the visual input to focus on. The distance, shape, texture and motion information are computed in a small region and used to build a mesh in a 3D virtual world. Background knowledge is used to extend this structure as appropriate, e.g. if a patch of wall is seen, it is hypothesized to be part of a large wall and the entire wall is created in the virtual world, or if part of an object is recognized, the whole object's mesh is retrieved from the library of objects and placed into the virtual world. The difference between the input from the real camera and from the virtual camera is compared using local Gaussians, creating an error mask that indicates the main differences between them. This is then used to select the next points to focus on. This approach permits us to use very expensive algorithms on small localities, thus generating very accurate models. It also is task-oriented, permitting the robot to use its knowledge about its task and goals to decide which parts of the environment need to be examined. The software components of this architecture include PhysX for the 3D virtual world, OpenCV and the Point Cloud Library for visual processing, and the Soar cognitive architecture, which controls the perceptual processing and robot planning. The hardware is a custom-built pan-tilt stereo color camera. We describe experiments using both static and moving objects.
The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.
1994-01-01
Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.
The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety
NASA Astrophysics Data System (ADS)
Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.
1994-02-01
Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.
NASA Astrophysics Data System (ADS)
Jain, A. K.; Dorai, C.
Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the "Grand Challenges" and also from its prominent role in the National Information Infrastructure. While the design of a general-purpose vision system continues to be elusive machine vision systems are being used successfully in specific application elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. The authors discuss and demonstrate advantages of (1) multi-sensor fusion, (2) combination of features and classifiers, (3) integration of visual modules, and (IV) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.
Bener, Abdulbari; Al-Mahdi, Huda S; Vachhani, Pankit J; Al-Nufal, Mohammed; Ali, Awab I
2010-12-01
The aim of this study is to determine whether excessive internet use, television viewing and the ensuing poor lifestyle habits affect low vision in school children in a rapidly developing country. This is a cross-sectional study and 3000 school students aged between six and 18 years were approached and 2467 (82.2%) students participated. Of the studied school children 12.6 percent had low vision. Most of the low vision school children were in the 6-10 years age group and came from middle income backgrounds (41.8%; p = 0.008). A large proportion of the children with low vision spent ≥ 3 hours per day on the internet (48.2%; p< 0.001) and ≥ 3 hours reclining (62.4%; p < 0.001). A significantly smaller frequency of studied children with low vision participated in each of the reviewed forms of physical activity (p < 0.001) yet a larger proportion consumed fast food (86.8%; p < 0.001). Highly significant positive correlations were found between low vision and BMI, hours spent reclining and on the internet respectively. Blurred vision was the most commonly complained of symptom among the studied children (p < 0.001). The current study suggested a strong association between spending prolonged hours on the computer or TV, fast food eating, poor lifestyle habits and low vision.
Can Humans Fly Action Understanding with Multiple Classes of Actors
2015-06-08
recognition using structure from motion point clouds. In European Conference on Computer Vision, 2008. [5] R. Caruana. Multitask learning. Machine Learning...tonomous driving ? the kitti vision benchmark suite. In IEEE Conference on Computer Vision and Pattern Recognition, 2012. [12] L. Gorelick, M. Blank
Automated design of image operators that detect interest points.
Trujillo, Leonardo; Olague, Gustavo
2008-01-01
This work describes how evolutionary computation can be used to synthesize low-level image operators that detect interesting points on digital images. Interest point detection is an essential part of many modern computer vision systems that solve tasks such as object recognition, stereo correspondence, and image indexing, to name but a few. The design of the specialized operators is posed as an optimization/search problem that is solved with genetic programming (GP), a strategy still mostly unexplored by the computer vision community. The proposed approach automatically synthesizes operators that are competitive with state-of-the-art designs, taking into account an operator's geometric stability and the global separability of detected points during fitness evaluation. The GP search space is defined using simple primitive operations that are commonly found in point detectors proposed by the vision community. The experiments described in this paper extend previous results (Trujillo and Olague, 2006a,b) by presenting 15 new operators that were synthesized through the GP-based search. Some of the synthesized operators can be regarded as improved manmade designs because they employ well-known image processing techniques and achieve highly competitive performance. On the other hand, since the GP search also generates what can be considered as unconventional operators for point detection, these results provide a new perspective to feature extraction research.
Computer vision in cell biology.
Danuser, Gaudenz
2011-11-23
Computer vision refers to the theory and implementation of artificial systems that extract information from images to understand their content. Although computers are widely used by cell biologists for visualization and measurement, interpretation of image content, i.e., the selection of events worth observing and the definition of what they mean in terms of cellular mechanisms, is mostly left to human intuition. This Essay attempts to outline roles computer vision may play and should play in image-based studies of cellular life. Copyright © 2011 Elsevier Inc. All rights reserved.
Randolph, Susan A
2017-07-01
With the increased use of electronic devices with visual displays, computer vision syndrome is becoming a major public health issue. Improving the visual status of workers using computers results in greater productivity in the workplace and improved visual comfort.
Classification of Normal and Pathological Gait in Young Children Based on Foot Pressure Data.
Guo, Guodong; Guffey, Keegan; Chen, Wenbin; Pergami, Paola
2017-01-01
Human gait recognition, an active research topic in computer vision, is generally based on data obtained from images/videos. We applied computer vision technology to classify pathology-related changes in gait in young children using a foot-pressure database collected using the GAITRite walkway system. As foot positioning changes with children's development, we also investigated the possibility of age estimation based on this data. Our results demonstrate that the data collected by the GAITRite system can be used for normal/pathological gait classification. Combining age information and normal/pathological gait classification increases the accuracy of the classifier. This novel approach could support the development of an accurate, real-time, and economic measure of gait abnormalities in children, able to provide important feedback to clinicians regarding the effect of rehabilitation interventions, and to support targeted treatment modifications.
Toward detection of marine vehicles on horizon from buoy camera
NASA Astrophysics Data System (ADS)
Fefilatyev, Sergiy; Goldgof, Dmitry B.; Langebrake, Lawrence
2007-10-01
This paper presents a new technique for automatic detection of marine vehicles in open sea from a buoy camera system using computer vision approach. Users of such system include border guards, military, port safety and flow management, sanctuary protection personnel. The system is intended to work autonomously, taking images of the surrounding ocean surface and analyzing them on the subject of presence of marine vehicles. The goal of the system is to detect an approximate window around the ship and prepare the small image for transmission and human evaluation. The proposed computer vision-based algorithm combines horizon detection method with edge detection and post-processing. The dataset of 100 images is used to evaluate the performance of proposed technique. We discuss promising results of ship detection and suggest necessary improvements for achieving better performance.
Computer vision techniques for rotorcraft low-altitude flight
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Cheng, Victor H. L.
1988-01-01
A description is given of research that applies techniques from computer vision to automation of rotorcraft navigation. The effort emphasizes the development of a methodology for detecting the ranges to obstacles in the region of interest based on the maximum utilization of passive sensors. The range map derived from the obstacle detection approach can be used as obstacle data for the obstacle avoidance in an automataic guidance system and as advisory display to the pilot. The lack of suitable flight imagery data, however, presents a problem in the verification of concepts for obstacle detection. This problem is being addressed by the development of an adequate flight database and by preprocessing of currently available flight imagery. Some comments are made on future work and how research in this area relates to the guidance of other autonomous vehicles.
Pun, Thierry; Alecu, Teodor Iulian; Chanel, Guillaume; Kronegg, Julien; Voloshynovskiy, Sviatoslav
2006-06-01
This paper describes the work being conducted in the domain of brain-computer interaction (BCI) at the Multimodal Interaction Group, Computer Vision and Multimedia Laboratory, University of Geneva, Geneva, Switzerland. The application focus of this work is on multimodal interaction rather than on rehabilitation, that is how to augment classical interaction by means of physiological measurements. Three main research topics are addressed. The first one concerns the more general problem of brain source activity recognition from EEGs. In contrast with classical deterministic approaches, we studied iterative robust stochastic based reconstruction procedures modeling source and noise statistics, to overcome known limitations of current techniques. We also developed procedures for optimal electroencephalogram (EEG) sensor system design in terms of placement and number of electrodes. The second topic is the study of BCI protocols and performance from an information-theoretic point of view. Various information rate measurements have been compared for assessing BCI abilities. The third research topic concerns the use of EEG and other physiological signals for assessing a user's emotional status.
Akkas, Oguz; Lee, Cheng Hsien; Hu, Yu Hen; Harris Adamson, Carisa; Rempel, David; Radwin, Robert G
2017-12-01
Two computer vision algorithms were developed to automatically estimate exertion time, duty cycle (DC) and hand activity level (HAL) from videos of workers performing 50 industrial tasks. The average DC difference between manual frame-by-frame analysis and the computer vision DC was -5.8% for the Decision Tree (DT) algorithm, and 1.4% for the Feature Vector Training (FVT) algorithm. The average HAL difference was 0.5 for the DT algorithm and 0.3 for the FVT algorithm. A sensitivity analysis, conducted to examine the influence that deviations in DC have on HAL, found it remained unaffected when DC error was less than 5%. Thus, a DC error less than 10% will impact HAL less than 0.5 HAL, which is negligible. Automatic computer vision HAL estimates were therefore comparable to manual frame-by-frame estimates. Practitioner Summary: Computer vision was used to automatically estimate exertion time, duty cycle and hand activity level from videos of workers performing industrial tasks.
2015-12-04
from back-office big - data analytics to fieldable hot-spot systems providing storage-processing-communication services for off- grid sensors. Speed...and power efficiency are the key metrics. Current state-of-the art approaches for big - data aim toward scaling out to many computers to meet...pursued within Lincoln Laboratory as well as external sponsors. Our vision is to bring new capabilities in big - data and internet-of-things applications
Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress
Fu, Longwen; Liu, Zuoyi
2018-01-01
Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented. PMID:29849612
A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors.
Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres
2016-05-28
Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.
Reconfigurable vision system for real-time applications
NASA Astrophysics Data System (ADS)
Torres-Huitzil, Cesar; Arias-Estrada, Miguel
2002-03-01
Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.
Modelling and representation issues in automated feature extraction from aerial and satellite images
NASA Astrophysics Data System (ADS)
Sowmya, Arcot; Trinder, John
New digital systems for the processing of photogrammetric and remote sensing images have led to new approaches to information extraction for mapping and Geographic Information System (GIS) applications, with the expectation that data can become more readily available at a lower cost and with greater currency. Demands for mapping and GIS data are increasing as well for environmental assessment and monitoring. Hence, researchers from the fields of photogrammetry and remote sensing, as well as computer vision and artificial intelligence, are bringing together their particular skills for automating these tasks of information extraction. The paper will review some of the approaches used in knowledge representation and modelling for machine vision, and give examples of their applications in research for image understanding of aerial and satellite imagery.
Design and implementation of a vision-based hovering and feature tracking algorithm for a quadrotor
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Chahl, J. S.
2016-10-01
This paper demonstrates an approach to the vision-based control of the unmanned quadrotors for hover and object tracking. The algorithms used the Speed Up Robust Features (SURF) algorithm to detect objects. The pose of the object in the image was then calculated in order to pass the pose information to the flight controller. Finally, the flight controller steered the quadrotor to approach the object based on the calculated pose data. The above processes was run using standard onboard resources found in the 3DR Solo quadrotor in an embedded computing environment. The obtained results showed that the algorithm behaved well during its missions, tracking and hovering, although there were significant latencies due to low CPU performance of the onboard image processing system.
Data Fusion for a Vision-Radiological System for Source Tracking and Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Andreas; Koppal, Sanjeev
2015-07-01
A multidisciplinary approach to allow the tracking of the movement of radioactive sources by fusing data from multiple radiological and visual sensors is under development. The goal is to improve the ability to detect, locate, track and identify nuclear/radiological threats. The key concept is that such widely available visual and depth sensors can impact radiological detection, since the intensity fall-off in the count rate can be correlated to movement in three dimensions. To enable this, we pose an important question; what is the right combination of sensing modalities and vision algorithms that can best compliment a radiological sensor, for themore » purpose of detection and tracking of radioactive material? Similarly what is the best radiation detection methods and unfolding algorithms suited for data fusion with tracking data? Data fusion of multi-sensor data for radiation detection have seen some interesting developments lately. Significant examples include intelligent radiation sensor systems (IRSS), which are based on larger numbers of distributed similar or identical radiation sensors coupled with position data for network capable to detect and locate radiation source. Other developments are gamma-ray imaging systems based on Compton scatter in segmented detector arrays. Similar developments using coded apertures or scatter cameras for neutrons have recently occurred. The main limitation of such systems is not so much in their capability but rather in their complexity and cost which is prohibitive for large scale deployment. Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development on two separate calibration algorithms for characterizing the fused sensor system. The deviation from a simple inverse square-root fall-off of radiation intensity is explored and accounted for. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked. Infrared, laser or stereoscopic vision sensors are all options for computer-vision implementation depending on interior vs exterior deployment, resolution desired and other factors. Similarly the radiation sensors will be focused on gamma-ray or neutron detection due to the long travel length and ability to penetrate even moderate shielding. There is a significant difference between the vision sensors and radiation sensors in the way the 'source' or signals are generated. A vision sensor needs an external light-source to illuminate the object and then detects the re-emitted illumination (or lack thereof). However, for a radiation detector, the radioactive material is the source itself. The only exception to this is the field of active interrogations where radiation is beamed into a material to entice new/additional radiation emission beyond what the material would emit spontaneously. The aspect of the nuclear material being the source itself means that all other objects in the environment are 'illuminated' or irradiated by the source. Most radiation will readily penetrate regular material, scatter in new directions or be absorbed. Thus if a radiation source is located near a larger object that object will in turn scatter some radiation that was initially emitted in a direction other than the direction of the radiation detector, this can add to the count rate that is observed. The effect of these scatter is a deviation from the traditional distance dependence of the radiation signal and is a key challenge that needs a combined system calibration solution and algorithms. Thus both an algebraic approach as well as a statistical approach have been developed and independently evaluated to investigate the sensitivity to this deviation from the simplified radiation fall-off as a function of distance. The resulting calibrated system algorithms are used and demonstrated in various laboratory scenarios, and later in realistic tracking scenarios. The selection and testing of radiological and computer-vision sensors for the additional specific scenarios will be the subject of ongoing and future work. (authors)« less
Buse, Kathleen; Hill, Catherine; Benson, Kathleen
2017-01-01
While there is an extensive body of research on gender equity in engineering and computing, there have been few efforts to glean insight from a dialog among experts. To encourage collaboration and to develop a shared vision of the future research agenda, a 2 day workshop of 50 scholars who work on the topic of gender in engineering and computing was held at a rural conference center. The structure of the conference and the location allowed for time to reflect, dialog, and to craft an innovative research agenda aimed at increasing the representation of women in engineering and computing. This paper has been written by the conference organizers and details the ideas and recommendations from the scholars. The result is an innovative, collaborative approach to future research that focuses on identifying effective interventions. The new approach includes the creation of partnerships with stakeholders including businesses, government agencies, non-profits and academic institutions to allow a broader voice in setting research priorities. Researchers recommend incorporating multiple disciplines and methodologies, while expanding the use of data analytics, merging and mining existing databases and creating new datasets. The future research agenda is detailed and includes studies focused on socio-cultural interventions particularly on career choice, within undergraduate and graduate programs, and for women in professional careers. The outcome is a vision for future research that can be shared with researchers, practitioners and other stakeholders that will lead to gender equity in the engineering and computing professions. PMID:28469591
Buse, Kathleen; Hill, Catherine; Benson, Kathleen
2017-01-01
While there is an extensive body of research on gender equity in engineering and computing, there have been few efforts to glean insight from a dialog among experts. To encourage collaboration and to develop a shared vision of the future research agenda, a 2 day workshop of 50 scholars who work on the topic of gender in engineering and computing was held at a rural conference center. The structure of the conference and the location allowed for time to reflect, dialog, and to craft an innovative research agenda aimed at increasing the representation of women in engineering and computing. This paper has been written by the conference organizers and details the ideas and recommendations from the scholars. The result is an innovative, collaborative approach to future research that focuses on identifying effective interventions. The new approach includes the creation of partnerships with stakeholders including businesses, government agencies, non-profits and academic institutions to allow a broader voice in setting research priorities. Researchers recommend incorporating multiple disciplines and methodologies, while expanding the use of data analytics, merging and mining existing databases and creating new datasets. The future research agenda is detailed and includes studies focused on socio-cultural interventions particularly on career choice, within undergraduate and graduate programs, and for women in professional careers. The outcome is a vision for future research that can be shared with researchers, practitioners and other stakeholders that will lead to gender equity in the engineering and computing professions.
Feasibility Study of a Vision-Based Landing System for Unmanned Fixed-Wing Aircraft
2017-06-01
International Journal of Computer Science and Network Security 7 no. 3: 112–117. Accessed April 7, 2017. http://www.sciencedirect.com/science/ article /pii...the feasibility of applying computer vision techniques and visual feedback in the control loop for an autonomous system. This thesis examines the...integration into an autonomous aircraft control system. 14. SUBJECT TERMS autonomous systems, auto-land, computer vision, image processing
A combined vision-inertial fusion approach for 6-DoF object pose estimation
NASA Astrophysics Data System (ADS)
Li, Juan; Bernardos, Ana M.; Tarrío, Paula; Casar, José R.
2015-02-01
The estimation of the 3D position and orientation of moving objects (`pose' estimation) is a critical process for many applications in robotics, computer vision or mobile services. Although major research efforts have been carried out to design accurate, fast and robust indoor pose estimation systems, it remains as an open challenge to provide a low-cost, easy to deploy and reliable solution. Addressing this issue, this paper describes a hybrid approach for 6 degrees of freedom (6-DoF) pose estimation that fuses acceleration data and stereo vision to overcome the respective weaknesses of single technology approaches. The system relies on COTS technologies (standard webcams, accelerometers) and printable colored markers. It uses a set of infrastructure cameras, located to have the object to be tracked visible most of the operation time; the target object has to include an embedded accelerometer and be tagged with a fiducial marker. This simple marker has been designed for easy detection and segmentation and it may be adapted to different service scenarios (in shape and colors). Experimental results show that the proposed system provides high accuracy, while satisfactorily dealing with the real-time constraints.
A Local Vision on Soil Hydrology (John Dalton Medal Lecture)
NASA Astrophysics Data System (ADS)
Roth, K.
2012-04-01
After shortly looking back to some research trails of the past decades, and touching on the role of soils in our environmental machinery, a vision on the future of soil hydrology is offered. It is local in the sense of being based on limited experience as well as in the sense of focussing on local spatial scales, from 1 m to 1 km. Cornerstones of this vision are (i) rapid developments of quantitative observation technology, illustrated with the example of ground-penetrating radar (GPR), and (ii) the availability of ever more powerful compute facilities which allow to simulate increasingly complicated model representations in unprecedented detail. Together, they open a powerful and flexible approach to the quantitative understanding of soil hydrology where two lines are fitted: (i) potentially diverse measurements of the system of interest and their analysis and (ii) a comprehensive model representation, including architecture, material properties, forcings, and potentially unknown aspects, together with the same analysis as for (i). This approach pushes traditional inversion to operate on analyses, not on the underlying state variables, and to become flexible with respect to architecture and unknown aspects. The approach will be demonstrated for simple situations at test sites.
Surpassing Humans and Computers with JellyBean: Crowd-Vision-Hybrid Counting Algorithms.
Sarma, Akash Das; Jain, Ayush; Nandi, Arnab; Parameswaran, Aditya; Widom, Jennifer
2015-11-01
Counting objects is a fundamental image processisng primitive, and has many scientific, health, surveillance, security, and military applications. Existing supervised computer vision techniques typically require large quantities of labeled training data, and even with that, fail to return accurate results in all but the most stylized settings. Using vanilla crowd-sourcing, on the other hand, can lead to significant errors, especially on images with many objects. In this paper, we present our JellyBean suite of algorithms, that combines the best of crowds and computer vision to count objects in images, and uses judicious decomposition of images to greatly improve accuracy at low cost. Our algorithms have several desirable properties: (i) they are theoretically optimal or near-optimal , in that they ask as few questions as possible to humans (under certain intuitively reasonable assumptions that we justify in our paper experimentally); (ii) they operate under stand-alone or hybrid modes, in that they can either work independent of computer vision algorithms, or work in concert with them, depending on whether the computer vision techniques are available or useful for the given setting; (iii) they perform very well in practice, returning accurate counts on images that no individual worker or computer vision algorithm can count correctly, while not incurring a high cost.
Biological Basis For Computer Vision: Some Perspectives
NASA Astrophysics Data System (ADS)
Gupta, Madan M.
1990-03-01
Using biology as a basis for the development of sensors, devices and computer vision systems is a challenge to systems and vision scientists. It is also a field of promising research for engineering applications. Biological sensory systems, such as vision, touch and hearing, sense different physical phenomena from our environment, yet they possess some common mathematical functions. These mathematical functions are cast into the neural layers which are distributed throughout our sensory regions, sensory information transmission channels and in the cortex, the centre of perception. In this paper, we are concerned with the study of the biological vision system and the emulation of some of its mathematical functions, both retinal and visual cortex, for the development of a robust computer vision system. This field of research is not only intriguing, but offers a great challenge to systems scientists in the development of functional algorithms. These functional algorithms can be generalized for further studies in such fields as signal processing, control systems and image processing. Our studies are heavily dependent on the the use of fuzzy - neural layers and generalized receptive fields. Building blocks of such neural layers and receptive fields may lead to the design of better sensors and better computer vision systems. It is hoped that these studies will lead to the development of better artificial vision systems with various applications to vision prosthesis for the blind, robotic vision, medical imaging, medical sensors, industrial automation, remote sensing, space stations and ocean exploration.
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Chen, Alexander Y. K.
1991-01-01
Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two articulated arms, one movable robot head, and two charged coupled device (CCD) cameras for producing the stereoscopic views, and articulated cylindrical-type lower body, and an optional mobile base. A functional prototype is demonstrated.
2006-07-27
unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to develop analytical and computational tools to make vision a Viable sensor for...vision.ucla. edu July 27, 2006 Abstract The goal of this project was to develop analytical and computational tools to make vision a viable sensor for the ... sensors . We have proposed the framework of stereoscopic segmentation where multiple images of the same obejcts were jointly processed to extract geometry
ERIC Educational Resources Information Center
Gil, Pablo
2017-01-01
University courses concerning Computer Vision and Image Processing are generally taught using a traditional methodology that is focused on the teacher rather than on the students. This approach is consequently not effective when teachers seek to attain cognitive objectives involving their students' critical thinking. This manuscript covers the…
Stereo Orthogonal Axonometric Perspective for the Teaching of Descriptive Geometry
ERIC Educational Resources Information Center
Méxas, José Geraldo Franco; Guedes, Karla Bastos; Tavares, Ronaldo da Silva
2015-01-01
Purpose: The purpose of this paper is to present the development of a software for stereo visualization of geometric solids, applied to the teaching/learning of Descriptive Geometry. Design/methodology/approach: The paper presents the traditional method commonly used in computer graphic stereoscopic vision (implemented in C language) and the…
Critical infrastructure monitoring using UAV imagery
NASA Astrophysics Data System (ADS)
Maltezos, Evangelos; Skitsas, Michael; Charalambous, Elisavet; Koutras, Nikolaos; Bliziotis, Dimitris; Themistocleous, Kyriacos
2016-08-01
The constant technological evolution in Computer Vision enabled the development of new techniques which in conjunction with the use of Unmanned Aerial Vehicles (UAVs) may extract high quality photogrammetric products for several applications. Dense Image Matching (DIM) is a Computer Vision technique that can generate a dense 3D point cloud of an area or object. The use of UAV systems and DIM techniques is not only a flexible and attractive solution to produce accurate and high qualitative photogrammetric results but also is a major contribution to cost effectiveness. In this context, this study aims to highlight the benefits of the use of the UAVs in critical infrastructure monitoring applying DIM. A Multi-View Stereo (MVS) approach using multiple images (RGB digital aerial and oblique images), to fully cover the area of interest, is implemented. The application area is an Olympic venue in Attica, Greece, at an area of 400 acres. The results of our study indicate that the UAV+DIM approach respond very well to the increasingly greater demands for accurate and cost effective applications when provided with, a 3D point cloud and orthomosaic.
Information-Driven Autonomous Exploration for a Vision-Based Mav
NASA Astrophysics Data System (ADS)
Palazzolo, E.; Stachniss, C.
2017-08-01
Most micro aerial vehicles (MAV) are flown manually by a pilot. When it comes to autonomous exploration for MAVs equipped with cameras, we need a good exploration strategy for covering an unknown 3D environment in order to build an accurate map of the scene. In particular, the robot must select appropriate viewpoints to acquire informative measurements. In this paper, we present an approach that computes in real-time a smooth flight path with the exploration of a 3D environment using a vision-based MAV. We assume to know a bounding box of the object or building to explore and our approach iteratively computes the next best viewpoints using a utility function that considers the expected information gain of new measurements, the distance between viewpoints, and the smoothness of the flight trajectories. In addition, the algorithm takes into account the elapsed time of the exploration run to safely land the MAV at its starting point after a user specified time. We implemented our algorithm and our experiments suggest that it allows for a precise reconstruction of the 3D environment while guiding the robot smoothly through the scene.
Computer vision for driver assistance systems
NASA Astrophysics Data System (ADS)
Handmann, Uwe; Kalinke, Thomas; Tzomakas, Christos; Werner, Martin; von Seelen, Werner
1998-07-01
Systems for automated image analysis are useful for a variety of tasks and their importance is still increasing due to technological advances and an increase of social acceptance. Especially in the field of driver assistance systems the progress in science has reached a level of high performance. Fully or partly autonomously guided vehicles, particularly for road-based traffic, pose high demands on the development of reliable algorithms due to the conditions imposed by natural environments. At the Institut fur Neuroinformatik, methods for analyzing driving relevant scenes by computer vision are developed in cooperation with several partners from the automobile industry. We introduce a system which extracts the important information from an image taken by a CCD camera installed at the rear view mirror in a car. The approach consists of a sequential and a parallel sensor and information processing. Three main tasks namely the initial segmentation (object detection), the object tracking and the object classification are realized by integration in the sequential branch and by fusion in the parallel branch. The main gain of this approach is given by the integrative coupling of different algorithms providing partly redundant information.
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures
Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo
2018-01-01
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034
Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures.
Sefa Orak, Mehmet; Nasrollahi, Amir; Ozturk, Turgut; Mas, David; Ferrer, Belen; Rizzo, Piervincenzo
2018-04-18
The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling.
A Scalable Distributed Approach to Mobile Robot Vision
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin; Browning, Robert L.; Gribble, William S.
1997-01-01
This paper documents our progress during the first year of work on our original proposal entitled 'A Scalable Distributed Approach to Mobile Robot Vision'. We are pursuing a strategy for real-time visual identification and tracking of complex objects which does not rely on specialized image-processing hardware. In this system perceptual schemas represent objects as a graph of primitive features. Distributed software agents identify and track these features, using variable-geometry image subwindows of limited size. Active control of imaging parameters and selective processing makes simultaneous real-time tracking of many primitive features tractable. Perceptual schemas operate independently from the tracking of primitive features, so that real-time tracking of a set of image features is not hurt by latency in recognition of the object that those features make up. The architecture allows semantically significant features to be tracked with limited expenditure of computational resources, and allows the visual computation to be distributed across a network of processors. Early experiments are described which demonstrate the usefulness of this formulation, followed by a brief overview of our more recent progress (after the first year).
Computer vision camera with embedded FPGA processing
NASA Astrophysics Data System (ADS)
Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel
2000-03-01
Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.
Research on three-dimensional reconstruction method based on binocular vision
NASA Astrophysics Data System (ADS)
Li, Jinlin; Wang, Zhihui; Wang, Minjun
2018-03-01
As the hot and difficult issue in computer vision, binocular stereo vision is an important form of computer vision,which has a broad application prospects in many computer vision fields,such as aerial mapping,vision navigation,motion analysis and industrial inspection etc.In this paper, a research is done into binocular stereo camera calibration, image feature extraction and stereo matching. In the binocular stereo camera calibration module, the internal parameters of a single camera are obtained by using the checkerboard lattice of zhang zhengyou the field of image feature extraction and stereo matching, adopted the SURF operator in the local feature operator and the SGBM algorithm in the global matching algorithm are used respectively, and the performance are compared. After completed the feature points matching, we can build the corresponding between matching points and the 3D object points using the camera parameters which are calibrated, which means the 3D information.
Possible Computer Vision Systems and Automated or Computer-Aided Edging and Trimming
Philip A. Araman
1990-01-01
This paper discusses research which is underway to help our industry reduce costs, increase product volume and value recovery, and market more accurately graded and described products. The research is part of a team effort to help the hardwood sawmill industry automate with computer vision systems, and computer-aided or computer controlled processing. This paper...
Smartphone, tablet computer and e-reader use by people with vision impairment.
Crossland, Michael D; Silva, Rui S; Macedo, Antonio F
2014-09-01
Consumer electronic devices such as smartphones, tablet computers, and e-book readers have become far more widely used in recent years. Many of these devices contain accessibility features such as large print and speech. Anecdotal experience suggests people with vision impairment frequently make use of these systems. Here we survey people with self-identified vision impairment to determine their use of this equipment. An internet-based survey was advertised to people with vision impairment by word of mouth, social media, and online. Respondents were asked demographic information, what devices they owned, what they used these devices for, and what accessibility features they used. One hundred and thirty-two complete responses were received. Twenty-six percent of the sample reported that they had no vision and the remainder reported they had low vision. One hundred and seven people (81%) reported using a smartphone. Those with no vision were as likely to use a smartphone or tablet as those with low vision. Speech was found useful by 59% of smartphone users. Fifty-one percent of smartphone owners used the camera and screen as a magnifier. Forty-eight percent of the sample used a tablet computer, and 17% used an e-book reader. The most frequently cited reason for not using these devices included cost and lack of interest. Smartphones, tablet computers, and e-book readers can be used by people with vision impairment. Speech is used by people with low vision as well as those with no vision. Many of our (self-selected) group used their smartphone camera and screen as a magnifier, and others used the camera flash as a spotlight. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Machine vision for real time orbital operations
NASA Technical Reports Server (NTRS)
Vinz, Frank L.
1988-01-01
Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).
Development of a Wireless Computer Vision Instrument to Detect Biotic Stress in Wheat
Casanova, Joaquin J.; O'Shaughnessy, Susan A.; Evett, Steven R.; Rush, Charles M.
2014-01-01
Knowledge of crop abiotic and biotic stress is important for optimal irrigation management. While spectral reflectance and infrared thermometry provide a means to quantify crop stress remotely, these measurements can be cumbersome. Computer vision offers an inexpensive way to remotely detect crop stress independent of vegetation cover. This paper presents a technique using computer vision to detect disease stress in wheat. Digital images of differentially stressed wheat were segmented into soil and vegetation pixels using expectation maximization (EM). In the first season, the algorithm to segment vegetation from soil and distinguish between healthy and stressed wheat was developed and tested using digital images taken in the field and later processed on a desktop computer. In the second season, a wireless camera with near real-time computer vision capabilities was tested in conjunction with the conventional camera and desktop computer. For wheat irrigated at different levels and inoculated with wheat streak mosaic virus (WSMV), vegetation hue determined by the EM algorithm showed significant effects from irrigation level and infection. Unstressed wheat had a higher hue (118.32) than stressed wheat (111.34). In the second season, the hue and cover measured by the wireless computer vision sensor showed significant effects from infection (p = 0.0014), as did the conventional camera (p < 0.0001). Vegetation hue obtained through a wireless computer vision system in this study is a viable option for determining biotic crop stress in irrigation scheduling. Such a low-cost system could be suitable for use in the field in automated irrigation scheduling applications. PMID:25251410
Exploring Architectural Details Through a Wearable Egocentric Vision Device
Alletto, Stefano; Abati, Davide; Serra, Giuseppe; Cucchiara, Rita
2016-01-01
Augmented user experiences in the cultural heritage domain are in increasing demand by the new digital native tourists of 21st century. In this paper, we propose a novel solution that aims at assisting the visitor during an outdoor tour of a cultural site using the unique first person perspective of wearable cameras. In particular, the approach exploits computer vision techniques to retrieve the details by proposing a robust descriptor based on the covariance of local features. Using a lightweight wearable board, the solution can localize the user with respect to the 3D point cloud of the historical landmark and provide him with information about the details at which he is currently looking. Experimental results validate the method both in terms of accuracy and computational effort. Furthermore, user evaluation based on real-world experiments shows that the proposal is deemed effective in enriching a cultural experience. PMID:26901197
Evaluating focused ion beam patterning for position-controlled nanowire growth using computer vision
NASA Astrophysics Data System (ADS)
Mosberg, A. B.; Myklebost, S.; Ren, D.; Weman, H.; Fimland, B. O.; van Helvoort, A. T. J.
2017-09-01
To efficiently evaluate the novel approach of focused ion beam (FIB) direct patterning of substrates for nanowire growth, a reference matrix of hole arrays has been used to study the effect of ion fluence and hole diameter on nanowire growth. Self-catalyzed GaAsSb nanowires were grown using molecular beam epitaxy and studied by scanning electron microscopy (SEM). To ensure an objective analysis, SEM images were analyzed with computer vision to automatically identify nanowires and characterize each array. It is shown that FIB milling parameters can be used to control the nanowire growth. Lower ion fluence and smaller diameter holes result in a higher yield (up to 83%) of single vertical nanowires, while higher fluence and hole diameter exhibit a regime of multiple nanowires. The catalyst size distribution and placement uniformity of vertical nanowires is best for low-value parameter combinations, indicating how to improve the FIB parameters for positioned-controlled nanowire growth.
Exploring Architectural Details Through a Wearable Egocentric Vision Device.
Alletto, Stefano; Abati, Davide; Serra, Giuseppe; Cucchiara, Rita
2016-02-17
Augmented user experiences in the cultural heritage domain are in increasing demand by the new digital native tourists of 21st century. In this paper, we propose a novel solution that aims at assisting the visitor during an outdoor tour of a cultural site using the unique first person perspective of wearable cameras. In particular, the approach exploits computer vision techniques to retrieve the details by proposing a robust descriptor based on the covariance of local features. Using a lightweight wearable board, the solution can localize the user with respect to the 3D point cloud of the historical landmark and provide him with information about the details at which he is currently looking. Experimental results validate the method both in terms of accuracy and computational effort. Furthermore, user evaluation based on real-world experiments shows that the proposal is deemed effective in enriching a cultural experience.
Gradual cut detection using low-level vision for digital video
NASA Astrophysics Data System (ADS)
Lee, Jae-Hyun; Choi, Yeun-Sung; Jang, Ok-bae
1996-09-01
Digital video computing and organization is one of the important issues in multimedia system, signal compression, or database. Video should be segmented into shots to be used for identification and indexing. This approach requires a suitable method to automatically locate cut points in order to separate shot in a video. Automatic cut detection to isolate shots in a video has received considerable attention due to many practical applications; our video database, browsing, authoring system, retrieval and movie. Previous studies are based on a set of difference mechanisms and they measured the content changes between video frames. But they could not detect more special effects which include dissolve, wipe, fade-in, fade-out, and structured flashing. In this paper, a new cut detection method for gradual transition based on computer vision techniques is proposed. And then, experimental results applied to commercial video are presented and evaluated.
Maximally Informative Statistics for Localization and Mapping
NASA Technical Reports Server (NTRS)
Deans, Matthew C.
2001-01-01
This paper presents an algorithm for localization and mapping for a mobile robot using monocular vision and odometry as its means of sensing. The approach uses the Variable State Dimension filtering (VSDF) framework to combine aspects of Extended Kalman filtering and nonlinear batch optimization. This paper describes two primary improvements to the VSDF. The first is to use an interpolation scheme based on Gaussian quadrature to linearize measurements rather than relying on analytic Jacobians. The second is to replace the inverse covariance matrix in the VSDF with its Cholesky factor to improve the computational complexity. Results of applying the filter to the problem of localization and mapping with omnidirectional vision are presented.
Kriegeskorte, Nikolaus
2015-11-24
Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.
Job-shop scheduling applied to computer vision
NASA Astrophysics Data System (ADS)
Sebastian y Zuniga, Jose M.; Torres-Medina, Fernando; Aracil, Rafael; Reinoso, Oscar; Jimenez, Luis M.; Garcia, David
1997-09-01
This paper presents a method for minimizing the total elapsed time spent by n tasks running on m differents processors working in parallel. The developed algorithm not only minimizes the total elapsed time but also reduces the idle time and waiting time of in-process tasks. This condition is very important in some applications of computer vision in which the time to finish the total process is particularly critical -- quality control in industrial inspection, real- time computer vision, guided robots. The scheduling algorithm is based on the use of two matrices, obtained from the precedence relationships between tasks, and the data obtained from the two matrices. The developed scheduling algorithm has been tested in one application of quality control using computer vision. The results obtained have been satisfactory in the application of different image processing algorithms.
NASA Astrophysics Data System (ADS)
Astafiev, A.; Orlov, A.; Privezencev, D.
2018-01-01
The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.
Artificial Intelligence (AI) Center of Excellence at the University of Pennsylvania
1995-07-01
that controls impact forces. Robust Location Estimation for MLR and Non-MLR Distributions (Dissertation Proposal) Gerda L. Kamberova MS-CIS-92-28...Bayesian Approach To Computer Vision Problems Gerda L. Kamberova MS-CIS-92-29 GRASP LAB 310 The object of our study is the Bayesian approach in...Estimation for MLR and Non-MLR Distributions (Dissertation) Gerda L. Kamberova MS-CIS-92-93 GRASP LAB 340 We study the problem of estimating an unknown
NASA Astrophysics Data System (ADS)
Åström, Anders; Forchheimer, Robert
2012-03-01
Based on the Near-Sensor Image Processing (NSIP) concept and recent results concerning optical flow and Time-to- Impact (TTI) computation with this architecture, we show how these results can be used and extended for robot vision applications. The first case involves estimation of the tilt of an approaching planar surface. The second case concerns the use of two NSIP cameras to estimate absolute distance and speed similar to a stereo-matching system but without the need to do image correlations. Going back to a one-camera system, the third case deals with the problem to estimate the shape of the approaching surface. It is shown that the previously developed TTI method not only gives a very compact solution with respect to hardware complexity, but also surprisingly high performance.
Texture and art with deep neural networks.
Gatys, Leon A; Ecker, Alexander S; Bethge, Matthias
2017-10-01
Although the study of biological vision and computer vision attempt to understand powerful visual information processing from different angles, they have a long history of informing each other. Recent advances in texture synthesis that were motivated by visual neuroscience have led to a substantial advance in image synthesis and manipulation in computer vision using convolutional neural networks (CNNs). Here, we review these recent advances and discuss how they can in turn inspire new research in visual perception and computational neuroscience. Copyright © 2017. Published by Elsevier Ltd.
Creating photorealistic virtual model with polarization-based vision system
NASA Astrophysics Data System (ADS)
Shibata, Takushi; Takahashi, Toru; Miyazaki, Daisuke; Sato, Yoichi; Ikeuchi, Katsushi
2005-08-01
Recently, 3D models are used in many fields such as education, medical services, entertainment, art, digital archive, etc., because of the progress of computational time and demand for creating photorealistic virtual model is increasing for higher reality. In computer vision field, a number of techniques have been developed for creating the virtual model by observing the real object in computer vision field. In this paper, we propose the method for creating photorealistic virtual model by using laser range sensor and polarization based image capture system. We capture the range and color images of the object which is rotated on the rotary table. By using the reconstructed object shape and sequence of color images of the object, parameter of a reflection model are estimated in a robust manner. As a result, then, we can make photorealistic 3D model in consideration of surface reflection. The key point of the proposed method is that, first, the diffuse and specular reflection components are separated from the color image sequence, and then, reflectance parameters of each reflection component are estimated separately. In separation of reflection components, we use polarization filter. This approach enables estimation of reflectance properties of real objects whose surfaces show specularity as well as diffusely reflected lights. The recovered object shape and reflectance properties are then used for synthesizing object images with realistic shading effects under arbitrary illumination conditions.
Deep learning-based artificial vision for grasp classification in myoelectric hands
NASA Astrophysics Data System (ADS)
Ghazaei, Ghazal; Alameer, Ali; Degenaar, Patrick; Morgan, Graham; Nazarpour, Kianoush
2017-06-01
Objective. Computer vision-based assistive technology solutions can revolutionise the quality of care for people with sensorimotor disorders. The goal of this work was to enable trans-radial amputees to use a simple, yet efficient, computer vision system to grasp and move common household objects with a two-channel myoelectric prosthetic hand. Approach. We developed a deep learning-based artificial vision system to augment the grasp functionality of a commercial prosthesis. Our main conceptual novelty is that we classify objects with regards to the grasp pattern without explicitly identifying them or measuring their dimensions. A convolutional neural network (CNN) structure was trained with images of over 500 graspable objects. For each object, 72 images, at {{5}\\circ} intervals, were available. Objects were categorised into four grasp classes, namely: pinch, tripod, palmar wrist neutral and palmar wrist pronated. The CNN setting was first tuned and tested offline and then in realtime with objects or object views that were not included in the training set. Main results. The classification accuracy in the offline tests reached 85 % for the seen and 75 % for the novel objects; reflecting the generalisability of grasp classification. We then implemented the proposed framework in realtime on a standard laptop computer and achieved an overall score of 84 % in classifying a set of novel as well as seen but randomly-rotated objects. Finally, the system was tested with two trans-radial amputee volunteers controlling an i-limb UltraTM prosthetic hand and a motion controlTM prosthetic wrist; augmented with a webcam. After training, subjects successfully picked up and moved the target objects with an overall success of up to 88 % . In addition, we show that with training, subjects’ performance improved in terms of time required to accomplish a block of 24 trials despite a decreasing level of visual feedback. Significance. The proposed design constitutes a substantial conceptual improvement for the control of multi-functional prosthetic hands. We show for the first time that deep-learning based computer vision systems can enhance the grip functionality of myoelectric hands considerably.
Impact of computer use on children's vision.
Kozeis, N
2009-10-01
Today, millions of children use computers on a daily basis. Extensive viewing of the computer screen can lead to eye discomfort, fatigue, blurred vision and headaches, dry eyes and other symptoms of eyestrain. These symptoms may be caused by poor lighting, glare, an improper work station set-up, vision problems of which the person was not previously aware, or a combination of these factors. Children can experience many of the same symptoms related to computer use as adults. However, some unique aspects of how children use computers may make them more susceptible than adults to the development of these problems. In this study, the most common eye symptoms related to computer use in childhood, the possible causes and ways to avoid them are reviewed.
Multiresolution Approach for Noncontact Measurements of Arterial Pulse Using Thermal Imaging
NASA Astrophysics Data System (ADS)
Chekmenev, Sergey Y.; Farag, Aly A.; Miller, William M.; Essock, Edward A.; Bhatnagar, Aruni
This chapter presents a novel computer vision methodology for noncontact and nonintrusive measurements of arterial pulse. This is the only investigation that links the knowledge of human physiology and anatomy, advances in thermal infrared (IR) imaging and computer vision to produce noncontact and nonintrusive measurements of the arterial pulse in both time and frequency domains. The proposed approach has a physical and physiological basis and as such is of a fundamental nature. A thermal IR camera was used to capture the heat pattern from superficial arteries, and a blood vessel model was proposed to describe the pulsatile nature of the blood flow. A multiresolution wavelet-based signal analysis approach was applied to extract the arterial pulse waveform, which lends itself to various physiological measurements. We validated our results using a traditional contact vital signs monitor as a ground truth. Eight people of different age, race and gender have been tested in our study consistent with Health Insurance Portability and Accountability Act (HIPAA) regulations and internal review board approval. The resultant arterial pulse waveforms exactly matched the ground truth oximetry readings. The essence of our approach is the automatic detection of region of measurement (ROM) of the arterial pulse, from which the arterial pulse waveform is extracted. To the best of our knowledge, the correspondence between noncontact thermal IR imaging-based measurements of the arterial pulse in the time domain and traditional contact approaches has never been reported in the literature.
A variational approach to multi-phase motion of gas, liquid and solid based on the level set method
NASA Astrophysics Data System (ADS)
Yokoi, Kensuke
2009-07-01
We propose a simple and robust numerical algorithm to deal with multi-phase motion of gas, liquid and solid based on the level set method [S. Osher, J.A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988) 12; M. Sussman, P. Smereka, S. Osher, A level set approach for capturing solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146; J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999; S. Osher, R. Fedkiw, Level Set Methods and Dynamics Implicit Surface, Applied Mathematical Sciences, vol. 153, Springer, 2003]. In Eulerian framework, to simulate interaction between a moving solid object and an interfacial flow, we need to define at least two functions (level set functions) to distinguish three materials. In such simulations, in general two functions overlap and/or disagree due to numerical errors such as numerical diffusion. In this paper, we resolved the problem using the idea of the active contour model [M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321; V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, International Journal of Computer Vision 22 (1997) 61; G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001; R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer-Verlag, 2003] introduced in the field of image processing.
A computational visual saliency model based on statistics and machine learning.
Lin, Ru-Je; Lin, Wei-Song
2014-08-01
Identifying the type of stimuli that attracts human visual attention has been an appealing topic for scientists for many years. In particular, marking the salient regions in images is useful for both psychologists and many computer vision applications. In this paper, we propose a computational approach for producing saliency maps using statistics and machine learning methods. Based on four assumptions, three properties (Feature-Prior, Position-Prior, and Feature-Distribution) can be derived and combined by a simple intersection operation to obtain a saliency map. These properties are implemented by a similarity computation, support vector regression (SVR) technique, statistical analysis of training samples, and information theory using low-level features. This technique is able to learn the preferences of human visual behavior while simultaneously considering feature uniqueness. Experimental results show that our approach performs better in predicting human visual attention regions than 12 other models in two test databases. © 2014 ARVO.
Hu, Qijun; He, Songsheng; Wang, Shilong; Liu, Yugang; Zhang, Zutao; He, Leping; Wang, Fubin; Cai, Qijie; Shi, Rendan; Yang, Yuan
2017-06-06
Bus Rapid Transit (BRT) has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT) object tracking algorithm is adopted and further developed together with oriented brief (ORB) keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable.
Hu, Qijun; He, Songsheng; Wang, Shilong; Liu, Yugang; Zhang, Zutao; He, Leping; Wang, Fubin; Cai, Qijie; Shi, Rendan; Yang, Yuan
2017-01-01
Bus Rapid Transit (BRT) has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT) object tracking algorithm is adopted and further developed together with oriented brief (ORB) keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable. PMID:28587275
Computer Vision Syndrome: Implications for the Occupational Health Nurse.
Lurati, Ann Regina
2018-02-01
Computers and other digital devices are commonly used both in the workplace and during leisure time. Computer vision syndrome (CVS) is a new health-related condition that negatively affects workers. This article reviews the pathology of and interventions for CVS with implications for the occupational health nurse.
Location Estimation of Urban Images Based on Geographical Neighborhoods
NASA Astrophysics Data System (ADS)
Huang, Jie; Lo, Sio-Long
2018-04-01
Estimating the location of an image is a challenging computer vision problem, and the recent decade has witnessed increasing research efforts towards the solution of this problem. In this paper, we propose a new approach to the location estimation of images taken in urban environments. Experiments are conducted to quantitatively compare the estimation accuracy of our approach, against three representative approaches in the existing literature, using a recently published dataset of over 150 thousand Google Street View images and 259 user uploaded images as queries. According to the experimental results, our approach outperforms three baseline approaches and shows its robustness across different distance thresholds.
A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors
Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres
2016-01-01
Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms. PMID:27240382
Computer programming for generating visual stimuli.
Bukhari, Farhan; Kurylo, Daniel D
2008-02-01
Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.
Galaxy morphology - An unsupervised machine learning approach
NASA Astrophysics Data System (ADS)
Schutter, A.; Shamir, L.
2015-09-01
Structural properties poses valuable information about the formation and evolution of galaxies, and are important for understanding the past, present, and future universe. Here we use unsupervised machine learning methodology to analyze a network of similarities between galaxy morphological types, and automatically deduce a morphological sequence of galaxies. Application of the method to the EFIGI catalog show that the morphological scheme produced by the algorithm is largely in agreement with the De Vaucouleurs system, demonstrating the ability of computer vision and machine learning methods to automatically profile galaxy morphological sequences. The unsupervised analysis method is based on comprehensive computer vision techniques that compute the visual similarities between the different morphological types. Rather than relying on human cognition, the proposed system deduces the similarities between sets of galaxy images in an automatic manner, and is therefore not limited by the number of galaxies being analyzed. The source code of the method is publicly available, and the protocol of the experiment is included in the paper so that the experiment can be replicated, and the method can be used to analyze user-defined datasets of galaxy images.
Algorithms and architectures for robot vision
NASA Technical Reports Server (NTRS)
Schenker, Paul S.
1990-01-01
The scope of the current work is to develop practical sensing implementations for robots operating in complex, partially unstructured environments. A focus in this work is to develop object models and estimation techniques which are specific to requirements of robot locomotion, approach and avoidance, and grasp and manipulation. Such problems have to date received limited attention in either computer or human vision - in essence, asking not only how perception is in general modeled, but also what is the functional purpose of its underlying representations. As in the past, researchers are drawing on ideas from both the psychological and machine vision literature. Of particular interest is the development 3-D shape and motion estimates for complex objects when given only partial and uncertain information and when such information is incrementally accrued over time. Current studies consider the use of surface motion, contour, and texture information, with the longer range goal of developing a fused sensing strategy based on these sources and others.
Generic decoding of seen and imagined objects using hierarchical visual features.
Horikawa, Tomoyasu; Kamitani, Yukiyasu
2017-05-22
Object recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category is represented by a set of features rendered invariant through hierarchical processing. We show that visual features, including those derived from a deep convolutional neural network, can be predicted from fMRI patterns, and that greater accuracy is achieved for low-/high-level features with lower-/higher-level visual areas, respectively. Predicted features are used to identify seen/imagined object categories (extending beyond decoder training) from a set of computed features for numerous object images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-to-lower visual representations. Our results demonstrate a homology between human and machine vision and its utility for brain-based information retrieval.
Towards an Autonomic Cluster Management System (ACMS) with Reflex Autonomicity
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Hinchey, Mike; Sterritt, Roy
2005-01-01
Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of providing a fault-tolerant environment and achieving significant computational capabilities for high-performance computing applications. However, the task of manually managing and configuring a cluster quickly becomes daunting as the cluster grows in size. Autonomic computing, with its vision to provide self-management, can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Autonomic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management and its evolution to include reflex reactions via pulse monitoring.
Fast Markerless Tracking for Augmented Reality in Planar Environment
NASA Astrophysics Data System (ADS)
Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim
2015-12-01
Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.
Colour calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams.
Valous, Nektarios A; Mendoza, Fernando; Sun, Da-Wen; Allen, Paul
2009-01-01
Due to the high variability and complex colour distribution in meats and meat products, the colour signal calibration of any computer vision system used for colour quality evaluations, represents an essential condition for objective and consistent analyses. This paper compares two methods for CIE colour characterization using a computer vision system (CVS) based on digital photography; namely the polynomial transform procedure and the transform proposed by the sRGB standard. Also, it presents a procedure for evaluating the colour appearance and presence of pores and fat-connective tissue on pre-sliced hams made from pork, turkey and chicken. Our results showed high precision, in colour matching, for device characterization when the polynomial transform was used to match the CIE tristimulus values in comparison with the sRGB standard approach as indicated by their ΔE(ab)(∗) values. The [3×20] polynomial transfer matrix yielded a modelling accuracy averaging below 2.2 ΔE(ab)(∗) units. Using the sRGB transform, high variability was appreciated among the computed ΔE(ab)(∗) (8.8±4.2). The calibrated laboratory CVS, implemented with a low-cost digital camera, exhibited reproducible colour signals in a wide range of colours capable of pinpointing regions-of-interest and allowed the extraction of quantitative information from the overall ham slice surface with high accuracy. The extracted colour and morphological features showed potential for characterizing the appearance of ham slice surfaces. CVS is a tool that can objectively specify colour and appearance properties of non-uniformly coloured commercial ham slices.
NASA Technical Reports Server (NTRS)
Gennery, D.; Cunningham, R.; Saund, E.; High, J.; Ruoff, C.
1981-01-01
The field of computer vision is surveyed and assessed, key research issues are identified, and possibilities for a future vision system are discussed. The problems of descriptions of two and three dimensional worlds are discussed. The representation of such features as texture, edges, curves, and corners are detailed. Recognition methods are described in which cross correlation coefficients are maximized or numerical values for a set of features are measured. Object tracking is discussed in terms of the robust matching algorithms that must be devised. Stereo vision, camera control and calibration, and the hardware and systems architecture are discussed.
Chatterjee, Pranab Kr; Bairagi, Debasis; Roy, Sudipta; Majumder, Nilay Kr; Paul, Ratish Ch; Bagchi, Sunil Ch
2005-07-01
A comparative double-blind placebo-controlled clinical trial of a herbal eye drop (itone) was conducted to find out its efficacy and safety in 120 patients with computer vision syndrome. Patients using computers for more than 3 hours continuously per day having symptoms of watering, redness, asthenia, irritation, foreign body sensation and signs of conjunctival hyperaemia, corneal filaments and mucus were studied. One hundred and twenty patients were randomly given either placebo, tears substitute (tears plus) or itone in identical vials with specific code number and were instructed to put one drop four times daily for 6 weeks. Subjective and objective assessments were done at bi-weekly intervals. In computer vision syndrome both subjective and objective improvements were noticed with itone drops. Itone drop was found significantly better than placebo (p<0.01) and almost identical results were observed with tears plus (difference was not statistically significant). Itone is considered to be a useful drug in computer vision syndrome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhr, L.
1987-01-01
This book is written by research scientists involved in the development of massively parallel, but hierarchically structured, algorithms, architectures, and programs for image processing, pattern recognition, and computer vision. The book gives an integrated picture of the programs and algorithms that are being developed, and also of the multi-computer hardware architectures for which these systems are designed.
Rationale, Design and Implementation of a Computer Vision-Based Interactive E-Learning System
ERIC Educational Resources Information Center
Xu, Richard Y. D.; Jin, Jesse S.
2007-01-01
This article presents a schematic application of computer vision technologies to e-learning that is synchronous, peer-to-peer-based, and supports an instructor's interaction with non-computer teaching equipments. The article first discusses the importance of these focused e-learning areas, where the properties include accurate bidirectional…
Computer Vision Assisted Virtual Reality Calibration
NASA Technical Reports Server (NTRS)
Kim, W.
1999-01-01
A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.
Sensor Control of Robot Arc Welding
NASA Technical Reports Server (NTRS)
Sias, F. R., Jr.
1983-01-01
The potential for using computer vision as sensory feedback for robot gas-tungsten arc welding is investigated. The basic parameters that must be controlled while directing the movement of an arc welding torch are defined. The actions of a human welder are examined to aid in determining the sensory information that would permit a robot to make reproducible high strength welds. Special constraints imposed by both robot hardware and software are considered. Several sensory modalities that would potentially improve weld quality are examined. Special emphasis is directed to the use of computer vision for controlling gas-tungsten arc welding. Vendors of available automated seam tracking arc welding systems and of computer vision systems are surveyed. An assessment is made of the state of the art and the problems that must be solved in order to apply computer vision to robot controlled arc welding on the Space Shuttle Main Engine.
Toothguide Trainer tests with color vision deficiency simulation monitor.
Borbély, Judit; Varsányi, Balázs; Fejérdy, Pál; Hermann, Péter; Jakstat, Holger A
2010-01-01
The aim of this study was to evaluate whether simulated severe red and green color vision deficiency (CVD) influenced color matching results and to investigate whether training with Toothguide Trainer (TT) computer program enabled better color matching results. A total of 31 color normal dental students participated in the study. Every participant had to pass the Ishihara Test. Participants with a red/green color vision deficiency were excluded. A lecture on tooth color matching was given, and individual training with TT was performed. To measure the individual tooth color matching results in normal and color deficient display modes, the TT final exam was displayed on a calibrated monitor that served as a hardware-based method of simulating protanopy and deuteranopy. Data from the TT final exams were collected in normal and in severe red and green CVD-simulating monitor display modes. Color difference values for each participant in each display mode were computed (∑ΔE(ab)(*)), and the respective means and standard deviations were calculated. The Student's t-test was used in statistical evaluation. Participants made larger ΔE(ab)(*) errors in severe color vision deficient display modes than in the normal monitor mode. TT tests showed significant (p<0.05) difference in the tooth color matching results of severe green color vision deficiency simulation mode compared to normal vision mode. Students' shade matching results were significantly better after training (p=0.009). Computer-simulated severe color vision deficiency mode resulted in significantly worse color matching quality compared to normal color vision mode. Toothguide Trainer computer program improved color matching results. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Meibomian gland disfunction in computer vision syndrome].
Pimenidi, M K; Polunin, G S; Safonova, T N
2010-01-01
This article reviews ethiology and pathogenesis of dry eye syndrome due to meibomian gland disfunction (MDG). It is showed that blink rate influences meibomian gland functioning and computer vision syndrome development. Current diagnosis and treatment options of MDG are presented.
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Arévalo, John; Judkins, Alexander; Madabhushi, Anant; González, Fabio
2015-12-01
Convolutional neural networks (CNN) have been very successful at addressing different computer vision tasks thanks to their ability to learn image representations directly from large amounts of labeled data. Features learned from a dataset can be used to represent images from a different dataset via an approach called transfer learning. In this paper we apply transfer learning to the challenging task of medulloblastoma tumor differentiation. We compare two different CNN models which were previously trained in two different domains (natural and histopathology images). The first CNN is a state-of-the-art approach in computer vision, a large and deep CNN with 16-layers, Visual Geometry Group (VGG) CNN. The second (IBCa-CNN) is a 2-layer CNN trained for invasive breast cancer tumor classification. Both CNNs are used as visual feature extractors of histopathology image regions of anaplastic and non-anaplastic medulloblastoma tumor from digitized whole-slide images. The features from the two models are used, separately, to train a softmax classifier to discriminate between anaplastic and non-anaplastic medulloblastoma image regions. Experimental results show that the transfer learning approach produce competitive results in comparison with the state of the art approaches for IBCa detection. Results also show that features extracted from the IBCa-CNN have better performance in comparison with features extracted from the VGG-CNN. The former obtains 89.8% while the latter obtains 76.6% in terms of average accuracy.
Detecting personnel around UGVs using stereo vision
NASA Astrophysics Data System (ADS)
Bajracharya, Max; Moghaddam, Baback; Howard, Andrew; Matthies, Larry H.
2008-04-01
Detecting people around unmanned ground vehicles (UGVs) to facilitate safe operation of UGVs is one of the highest priority issues in the development of perception technology for autonomous navigation. Research to date has not achieved the detection ranges or reliability needed in deployed systems to detect upright pedestrians in flat, relatively uncluttered terrain, let alone in more complex environments and with people in postures that are more difficult to detect. Range data is essential to solve this problem. Combining range data with high resolution imagery may enable higher performance than range data alone because image appearance can complement shape information in range data and because cameras may offer higher angular resolution than typical range sensors. This makes stereo vision a promising approach for several reasons: image resolution is high and will continue to increase, the physical size and power dissipation of the cameras and computers will continue to decrease, and stereo cameras provide range data and imagery that are automatically spatially and temporally registered. We describe a stereo vision-based pedestrian detection system, focusing on recent improvements to a shape-based classifier applied to the range data, and present frame-level performance results that show great promise for the overall approach.
Friedman, Robert J; Gutkowicz-Krusin, Dina; Farber, Michele J; Warycha, Melanie; Schneider-Kels, Lori; Papastathis, Nicole; Mihm, Martin C; Googe, Paul; King, Roy; Prieto, Victor G; Kopf, Alfred W; Polsky, David; Rabinovitz, Harold; Oliviero, Margaret; Cognetta, Armand; Rigel, Darrell S; Marghoob, Ashfaq; Rivers, Jason; Johr, Robert; Grant-Kels, Jane M; Tsao, Hensin
2008-04-01
To evaluate the performance of dermoscopists in diagnosing small pigmented skin lesions (diameter = 6 mm) compared with an automatic multispectral computer-vision system. Blinded comparison study. Dermatologic hospital-based clinics and private practice offices. Patients From a computerized skin imaging database of 990 small (= 6-mm) pigmented skin lesions, all 49 melanomas from 49 patients were included in this study. Fifty randomly selected nonmelanomas from 46 patients served as a control. Ten dermoscopists independently examined dermoscopic images of 99 pigmented skin lesions and decided whether they identified the lesions as melanoma and whether they would recommend biopsy to rule out melanoma. Diagnostic and biopsy sensitivity and specificity were computed and then compared with the results of the computer-vision system. Dermoscopists were able to correctly identify small melanomas with an average diagnostic sensitivity of 39% and a specificity of 82% and recommended small melanomas for biopsy with a sensitivity of 71% and specificity of 49%, with only fair interobserver agreement (kappa = 0.31 for diagnosis and 0.34 for biopsy). In comparison, in recommending biopsy to rule out melanoma, the computer-vision system achieved 98% sensitivity and 44% specificity. Differentiation of small melanomas from small benign pigmented lesions challenges even expert physicians. Computer-vision systems can facilitate early detection of small melanomas and may limit the number of biopsies to rule out melanoma performed on benign lesions.
2014-08-12
Nolan Warner, Mubarak Shah. Tracking in Dense Crowds Using Prominenceand Neighborhood Motion Concurrence, IEEE Transactions on Pattern Analysis...of computer vision, computer graphics and evacuation dynamics by providing a common platform, and provides...areas that includes Computer Vision, Computer Graphics , and Pedestrian Evacuation Dynamics. Despite the
Computer vision syndrome: a review of ocular causes and potential treatments.
Rosenfield, Mark
2011-09-01
Computer vision syndrome (CVS) is the combination of eye and vision problems associated with the use of computers. In modern western society the use of computers for both vocational and avocational activities is almost universal. However, CVS may have a significant impact not only on visual comfort but also occupational productivity since between 64% and 90% of computer users experience visual symptoms which may include eyestrain, headaches, ocular discomfort, dry eye, diplopia and blurred vision either at near or when looking into the distance after prolonged computer use. This paper reviews the principal ocular causes for this condition, namely oculomotor anomalies and dry eye. Accommodation and vergence responses to electronic screens appear to be similar to those found when viewing printed materials, whereas the prevalence of dry eye symptoms is greater during computer operation. The latter is probably due to a decrease in blink rate and blink amplitude, as well as increased corneal exposure resulting from the monitor frequently being positioned in primary gaze. However, the efficacy of proposed treatments to reduce symptoms of CVS is unproven. A better understanding of the physiology underlying CVS is critical to allow more accurate diagnosis and treatment. This will enable practitioners to optimize visual comfort and efficiency during computer operation. Ophthalmic & Physiological Optics © 2011 The College of Optometrists.
Using advanced computer vision algorithms on small mobile robots
NASA Astrophysics Data System (ADS)
Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.
2006-05-01
The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, K.W.; Scott, K.P.
2000-11-01
Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceivedmore » computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.« less
ERIC Educational Resources Information Center
Magosso, Elisa; Ursino, Mauro; di Pellegrino, Giuseppe; Ladavas, Elisabetta; Serino, Andrea
2010-01-01
Visual peripersonal space (i.e., the space immediately surrounding the body) is represented by multimodal neurons integrating tactile stimuli applied on a body part with visual stimuli delivered near the same body part, e.g., the hand. Tool use may modify the boundaries of the peri-hand area, where vision and touch are integrated. The neural…
Invariant visual object recognition and shape processing in rats
Zoccolan, Davide
2015-01-01
Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421
Low computation vision-based navigation for a Martian rover
NASA Technical Reports Server (NTRS)
Gavin, Andrew S.; Brooks, Rodney A.
1994-01-01
Construction and design details of the Mobot Vision System, a small, self-contained, mobile vision system, are presented. This system uses the view from the top of a small, roving, robotic vehicle to supply data that is processed in real-time to safely navigate the surface of Mars. A simple, low-computation algorithm for constructing a 3-D navigational map of the Martian environment to be used by the rover is discussed.
Computational models of human vision with applications
NASA Technical Reports Server (NTRS)
Wandell, B. A.
1985-01-01
Perceptual problems in aeronautics were studied. The mechanism by which color constancy is achieved in human vision was examined. A computable algorithm was developed to model the arrangement of retinal cones in spatial vision. The spatial frequency spectra are similar to the spectra of actual cone mosaics. The Hartley transform as a tool of image processing was evaluated and it is suggested that it could be used in signal processing applications, GR image processing.
Intercell scheduling: A negotiation approach using multi-agent coalitions
NASA Astrophysics Data System (ADS)
Tian, Yunna; Li, Dongni; Zheng, Dan; Jia, Yunde
2016-10-01
Intercell scheduling problems arise as a result of intercell transfers in cellular manufacturing systems. Flexible intercell routes are considered in this article, and a coalition-based scheduling (CBS) approach using distributed multi-agent negotiation is developed. Taking advantage of the extended vision of the coalition agents, the global optimization is improved and the communication cost is reduced. The objective of the addressed problem is to minimize mean tardiness. Computational results show that, compared with the widely used combinatorial rules, CBS provides better performance not only in minimizing the objective, i.e. mean tardiness, but also in minimizing auxiliary measures such as maximum completion time, mean flow time and the ratio of tardy parts. Moreover, CBS is better than the existing intercell scheduling approach for the same problem with respect to the solution quality and computational costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doak, J. E.; Prasad, Lakshman
2002-01-01
This paper discusses the use of Python in a computer vision (CV) project. We begin by providing background information on the specific approach to CV employed by the project. This includes a brief discussion of Constrained Delaunay Triangulation (CDT), the Chordal Axis Transform (CAT), shape feature extraction and syntactic characterization, and normalization of strings representing objects. (The terms 'object' and 'blob' are used interchangeably, both referring to an entity extracted from an image.) The rest of the paper focuses on the use of Python in three critical areas: (1) interactions with a MySQL database, (2) rapid prototyping of algorithms, andmore » (3) gluing together all components of the project including existing C and C++ modules. For (l), we provide a schema definition and discuss how the various tables interact to represent objects in the database as tree structures. (2) focuses on an algorithm to create a hierarchical representation of an object, given its string representation, and an algorithm to match unknown objects against objects in a database. And finally, (3) discusses the use of Boost Python to interact with the pre-existing C and C++ code that creates the CDTs and CATS, performs shape feature extraction and syntactic characterization, and normalizes object strings. The paper concludes with a vision of the future use of Python for the CV project.« less
Luo, Jiebo; Boutell, Matthew
2005-05-01
Automatic image orientation detection for natural images is a useful, yet challenging research topic. Humans use scene context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result, existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture. Discrepant detection rates have been reported for these methods in the literature. We have developed a probabilistic approach to image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current accuracy is 90 percent for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems and is applicable to other problems involving semantic scene content understanding.
A design approach for small vision-based autonomous vehicles
NASA Astrophysics Data System (ADS)
Edwards, Barrett B.; Fife, Wade S.; Archibald, James K.; Lee, Dah-Jye; Wilde, Doran K.
2006-10-01
This paper describes the design of a small autonomous vehicle based on the Helios computing platform, a custom FPGA-based board capable of supporting on-board vision. Target applications for the Helios computing platform are those that require lightweight equipment and low power consumption. To demonstrate the capabilities of FPGAs in real-time control of autonomous vehicles, a 16 inch long R/C monster truck was outfitted with a Helios board. The platform provided by such a small vehicle is ideal for testing and development. The proof of concept application for this autonomous vehicle was a timed race through an environment with obstacles. Given the size restrictions of the vehicle and its operating environment, the only feasible on-board sensor is a small CMOS camera. The single video feed is therefore the only source of information from the surrounding environment. The image is then segmented and processed by custom logic in the FPGA that also controls direction and speed of the vehicle based on visual input.
A computer vision system for diagnosing scoliosis using moiré images.
Batouche, M; Benlamri, R; Kholladi, M K
1996-07-01
For young people, scoliosis deformities are an evolving process which must be detected and treated as early as possible. The moiré technique is simple, inexpensive, not aggressive and especially convenient for detecting spinal deformations. Doctors make their diagnosis by analysing the symmetry of fringes obtained by such techniques. In this paper, we present a computer vision system for help diagnosing spinal deformations using noisy moiré images of the human back. The approach adopted in this paper consists of extracting fringe contours from moiré images, then localizing some anatomical features (the spinal column, lumbar hollow and shoulder blades) which are crucial for 3D surface generation carried out using Mota's relaxation operator. Finally, rules furnished by doctors are used to derive the kind of spinal deformation and to yield the diagnosis. The proposed system has been tested on a set of noisy moiré images, and the experimental result have shown its robustness and reliability for the recognition of most scoliosis deformities.
Neuro-inspired smart image sensor: analog Hmax implementation
NASA Astrophysics Data System (ADS)
Paindavoine, Michel; Dubois, Jérôme; Musa, Purnawarman
2015-03-01
Neuro-Inspired Vision approach, based on models from biology, allows to reduce the computational complexity. One of these models - The Hmax model - shows that the recognition of an object in the visual cortex mobilizes V1, V2 and V4 areas. From the computational point of view, V1 corresponds to the area of the directional filters (for example Sobel filters, Gabor filters or wavelet filters). This information is then processed in the area V2 in order to obtain local maxima. This new information is then sent to an artificial neural network. This neural processing module corresponds to area V4 of the visual cortex and is intended to categorize objects present in the scene. In order to realize autonomous vision systems (consumption of a few milliwatts) with such treatments inside, we studied and realized in 0.35μm CMOS technology prototypes of two image sensors in order to achieve the V1 and V2 processing of Hmax model.
Traffic light detection and intersection crossing using mobile computer vision
NASA Astrophysics Data System (ADS)
Grewei, Lynne; Lagali, Christopher
2017-05-01
The solution for Intersection Detection and Crossing to support the development of blindBike an assisted biking system for the visually impaired is discussed. Traffic light detection and intersection crossing are key needs in the task of biking. These problems are tackled through the use of mobile computer vision, in the form of a mobile application on an Android phone. This research builds on previous Traffic Light detection algorithms with a focus on efficiency and compatibility on a resource-limited platform. Light detection is achieved through blob detection algorithms utilizing training data to detect patterns of Red, Green and Yellow in complex real world scenarios where multiple lights may be present. Also, issues of obscurity and scale are addressed. Safe Intersection crossing in blindBike is also discussed. This module takes a conservative "assistive" technology approach. To achieve this blindBike use's not only the Android device but, an external bike cadence Bluetooth/Ant enabled sensor. Real world testing results are given and future work is discussed.
m-BIRCH: an online clustering approach for computer vision applications
NASA Astrophysics Data System (ADS)
Madan, Siddharth K.; Dana, Kristin J.
2015-03-01
We adapt a classic online clustering algorithm called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), to incrementally cluster large datasets of features commonly used in multimedia and computer vision. We call the adapted version modified-BIRCH (m-BIRCH). The algorithm uses only a fraction of the dataset memory to perform clustering, and updates the clustering decisions when new data comes in. Modifications made in m-BIRCH enable data driven parameter selection and effectively handle varying density regions in the feature space. Data driven parameter selection automatically controls the level of coarseness of the data summarization. Effective handling of varying density regions is necessary to well represent the different density regions in data summarization. We use m-BIRCH to cluster 840K color SIFT descriptors, and 60K outlier corrupted grayscale patches. We use the algorithm to cluster datasets consisting of challenging non-convex clustering patterns. Our implementation of the algorithm provides an useful clustering tool and is made publicly available.
Exploring Human Cognition Using Large Image Databases.
Griffiths, Thomas L; Abbott, Joshua T; Hsu, Anne S
2016-07-01
Most cognitive psychology experiments evaluate models of human cognition using a relatively small, well-controlled set of stimuli. This approach stands in contrast to current work in neuroscience, perception, and computer vision, which have begun to focus on using large databases of natural images. We argue that natural images provide a powerful tool for characterizing the statistical environment in which people operate, for better evaluating psychological theories, and for bringing the insights of cognitive science closer to real applications. We discuss how some of the challenges of using natural images as stimuli in experiments can be addressed through increased sample sizes, using representations from computer vision, and developing new experimental methods. Finally, we illustrate these points by summarizing recent work using large image databases to explore questions about human cognition in four different domains: modeling subjective randomness, defining a quantitative measure of representativeness, identifying prior knowledge used in word learning, and determining the structure of natural categories. Copyright © 2016 Cognitive Science Society, Inc.
Computer vision syndrome-A common cause of unexplained visual symptoms in the modern era.
Munshi, Sunil; Varghese, Ashley; Dhar-Munshi, Sushma
2017-07-01
The aim of this study was to assess the evidence and available literature on the clinical, pathogenetic, prognostic and therapeutic aspects of Computer vision syndrome. Information was collected from Medline, Embase & National Library of Medicine over the last 30 years up to March 2016. The bibliographies of relevant articles were searched for additional references. Patients with Computer vision syndrome present to a variety of different specialists, including General Practitioners, Neurologists, Stroke physicians and Ophthalmologists. While the condition is common, there is a poor awareness in the public and among health professionals. Recognising this condition in the clinic or in emergency situations like the TIA clinic is crucial. The implications are potentially huge in view of the extensive and widespread use of computers and visual display units. Greater public awareness of Computer vision syndrome and education of health professionals is vital. Preventive strategies should form part of work place ergonomics routinely. Prompt and correct recognition is important to allow management and avoid unnecessary treatments. © 2017 John Wiley & Sons Ltd.
Biswas, N R; Nainiwal, S K; Das, G K; Langan, U; Dadeya, S C; Mongre, P K; Ravi, A K; Baidya, P
2003-03-01
A comparative randomised double masked multicentric clinical trial has been conducted to find out the efficacy and safety of a herbal eye drop preparation, itone eye drops with artificial tear and placebo in 120 patients with computer vision syndrome. Patients using computer for at least 2 hours continuosly per day having symptoms of irritation, foreign body sensation, watering, redness, headache, eyeache and signs of conjunctival congestion, mucous/debris, corneal filaments, corneal staining or lacrimal lake were included in this study. Every patient was instructed to put two drops of either herbal drugs or placebo or artificial tear in the eyes regularly four times for 6 weeks. Objective and subjective findings were recorded at bi-weekly intervals up to six weeks. Side-effects, if any, were also noted. In computer vision syndrome the herbal eye drop preparation was found significantly better than artificial tear (p < 0.01). No side-effects were noted by any of the drugs. Both subjective and objective improvements were observed in itone treated cases. So, itone can be considered as a useful drug in computer vision syndrome.
Laghari, Samreen; Niazi, Muaz A
2016-01-01
Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.
Computer vision syndrome in presbyopia and beginning presbyopia: effects of spectacle lens type.
Jaschinski, Wolfgang; König, Mirjam; Mekontso, Tiofil M; Ohlendorf, Arne; Welscher, Monique
2015-05-01
This office field study investigated the effects of different types of spectacle lenses habitually worn by computer users with presbyopia and in the beginning stages of presbyopia. Computer vision syndrome was assessed through reported complaints and ergonomic conditions. A questionnaire regarding the type of habitually worn near-vision lenses at the workplace, visual conditions and the levels of different types of complaints was administered to 175 participants aged 35 years and older (mean ± SD: 52.0 ± 6.7 years). Statistical factor analysis identified five specific aspects of the complaints. Workplace conditions were analysed based on photographs taken in typical working conditions. In the subgroup of 25 users between the ages of 36 and 57 years (mean 44 ± 5 years), who wore distance-vision lenses and performed more demanding occupational tasks, the reported extents of 'ocular strain', 'musculoskeletal strain' and 'headache' increased with the daily duration of computer work and explained up to 44 per cent of the variance (rs = 0.66). In the other subgroups, this effect was smaller, while in the complete sample (n = 175), this correlation was approximately rs = 0.2. The subgroup of 85 general-purpose progressive lens users (mean age 54 years) adopted head inclinations that were approximately seven degrees more elevated than those of the subgroups with single vision lenses. The present questionnaire was able to assess the complaints of computer users depending on the type of spectacle lenses worn. A missing near-vision addition among participants in the early stages of presbyopia was identified as a risk factor for complaints among those with longer daily durations of demanding computer work. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.
Vision-Based Steering Control, Speed Assistance and Localization for Inner-City Vehicles
Olivares-Mendez, Miguel Angel; Sanchez-Lopez, Jose Luis; Jimenez, Felipe; Campoy, Pascual; Sajadi-Alamdari, Seyed Amin; Voos, Holger
2016-01-01
Autonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors have been presented in the literature. However, most of these approaches apply quite sophisticated and expensive sensors, and hence, the development of a cost-efficient solution still remains a challenging problem. This work proposes the use of a single monocular camera sensor for an automatic steering control, speed assistance for the driver and localization of the vehicle on a road. Herein, we assume that the vehicle is mainly traveling along a predefined path, such as in public transport. A computer vision approach is presented to detect a line painted on the road, which defines the path to follow. Visual markers with a special design painted on the road provide information to localize the vehicle and to assist in its speed control. Furthermore, a vision-based control system, which keeps the vehicle on the predefined path under inner-city speed constraints, is also presented. Real driving tests with a commercial car on a closed circuit finally prove the applicability of the derived approach. In these tests, the car reached a maximum speed of 48 km/h and successfully traveled a distance of 7 km without the intervention of a human driver and any interruption. PMID:26978365
Vision-Based Steering Control, Speed Assistance and Localization for Inner-City Vehicles.
Olivares-Mendez, Miguel Angel; Sanchez-Lopez, Jose Luis; Jimenez, Felipe; Campoy, Pascual; Sajadi-Alamdari, Seyed Amin; Voos, Holger
2016-03-11
Autonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors have been presented in the literature. However, most of these approaches apply quite sophisticated and expensive sensors, and hence, the development of a cost-efficient solution still remains a challenging problem. This work proposes the use of a single monocular camera sensor for an automatic steering control, speed assistance for the driver and localization of the vehicle on a road. Herein, we assume that the vehicle is mainly traveling along a predefined path, such as in public transport. A computer vision approach is presented to detect a line painted on the road, which defines the path to follow. Visual markers with a special design painted on the road provide information to localize the vehicle and to assist in its speed control. Furthermore, a vision-based control system, which keeps the vehicle on the predefined path under inner-city speed constraints, is also presented. Real driving tests with a commercial car on a closed circuit finally prove the applicability of the derived approach. In these tests, the car reached a maximum speed of 48 km/h and successfully traveled a distance of 7 km without the intervention of a human driver and any interruption.
Computer vision syndrome (CVS) - Thermographic Analysis
NASA Astrophysics Data System (ADS)
Llamosa-Rincón, L. E.; Jaime-Díaz, J. M.; Ruiz-Cardona, D. F.
2017-01-01
The use of computers has reported an exponential growth in the last decades, the possibility of carrying out several tasks for both professional and leisure purposes has contributed to the great acceptance by the users. The consequences and impact of uninterrupted tasks with computers screens or displays on the visual health, have grabbed researcher’s attention. When spending long periods of time in front of a computer screen, human eyes are subjected to great efforts, which in turn triggers a set of symptoms known as Computer Vision Syndrome (CVS). Most common of them are: blurred vision, visual fatigue and Dry Eye Syndrome (DES) due to unappropriate lubrication of ocular surface when blinking decreases. An experimental protocol was de-signed and implemented to perform thermographic studies on healthy human eyes during exposure to dis-plays of computers, with the main purpose of comparing the existing differences in temperature variations of healthy ocular surfaces.
Delivering The Benefits of Chemical-Biological Integration in ...
Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intention of this research program is to quickly evaluate thousands of chemicals for potential risk but with much reduced cost relative to historical approaches. This work involves computational and data driven approaches including high-throughput screening, modeling, text-mining and the integration of chemistry, exposure and biological data. We have developed a number of databases and applications that are delivering on the vision of developing a deeper understanding of chemicals and their effects on exposure and biological processes that are supporting a large community of scientists in their research efforts. This presentation will provide an overview of our work to bring together diverse large scale data from the chemical and biological domains, our approaches to integrate and disseminate these data, and the delivery of models supporting computational toxicology. This abstract does not reflect U.S. EPA policy. Presentation at ACS TOXI session on Computational Chemistry and Toxicology in Chemical Discovery and Assessement (QSARs).
Sabel, Bernhard A; Cárdenas-Morales, Lizbeth; Gao, Ying
2018-01-01
How to cite this article: Sabel BA, Cárdenas-Morales L, Gao Y. Vision Restoration in Glaucoma by activating Residual Vision with a Holistic, Clinical Approach: A Review. J Curr Glaucoma Pract 2018;12(1):1-9.
Pattern recognition for passive polarimetric data using nonparametric classifiers
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.
2005-08-01
Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.
Milestones on the road to independence for the blind
NASA Astrophysics Data System (ADS)
Reed, Kenneth
1997-02-01
Ken will talk about his experiences as an end user of technology. Even moderate technological progress in the field of pattern recognition and artificial intelligence can be, often surprisingly, of great help to the blind. An example is the providing of portable bar code scanners so that a blind person knows what he is buying and what color it is. In this age of microprocessors controlling everything, how can a blind person find out what his VCR is doing? Is there some technique that will allow a blind musician to convert print music into midi files to drive a synthesizer? Can computer vision help the blind cross a road including predictions of where oncoming traffic will be located? Can computer vision technology provide spoken description of scenes so a blind person can figure out where doors and entrances are located, and what the signage on the building says? He asks 'can computer vision help me flip a pancake?' His challenge to those in the computer vision field is 'where can we go from here?'
A large-scale solar dynamics observatory image dataset for computer vision applications.
Kucuk, Ahmet; Banda, Juan M; Angryk, Rafal A
2017-01-01
The National Aeronautics Space Agency (NASA) Solar Dynamics Observatory (SDO) mission has given us unprecedented insight into the Sun's activity. By capturing approximately 70,000 images a day, this mission has created one of the richest and biggest repositories of solar image data available to mankind. With such massive amounts of information, researchers have been able to produce great advances in detecting solar events. In this resource, we compile SDO solar data into a single repository in order to provide the computer vision community with a standardized and curated large-scale dataset of several hundred thousand solar events found on high resolution solar images. This publicly available resource, along with the generation source code, will accelerate computer vision research on NASA's solar image data by reducing the amount of time spent performing data acquisition and curation from the multiple sources we have compiled. By improving the quality of the data with thorough curation, we anticipate a wider adoption and interest from the computer vision to the solar physics community.
Probabilistic Modeling and Visualization of the Flexibility in Morphable Models
NASA Astrophysics Data System (ADS)
Lüthi, M.; Albrecht, T.; Vetter, T.
Statistical shape models, and in particular morphable models, have gained widespread use in computer vision, computer graphics and medical imaging. Researchers have started to build models of almost any anatomical structure in the human body. While these models provide a useful prior for many image analysis task, relatively little information about the shape represented by the morphable model is exploited. We propose a method for computing and visualizing the remaining flexibility, when a part of the shape is fixed. Our method, which is based on Probabilistic PCA, not only leads to an approach for reconstructing the full shape from partial information, but also allows us to investigate and visualize the uncertainty of a reconstruction. To show the feasibility of our approach we performed experiments on a statistical model of the human face and the femur bone. The visualization of the remaining flexibility allows for greater insight into the statistical properties of the shape.
[Computer eyeglasses--aspects of a confusing topic].
Huber-Spitzy, V; Janeba, E
1997-01-01
With the coming into force of the new Austrian Employee Protection Act the issue of the so called "computer glasses" will also gain added importance in our country. Such glasses have been defined as vision aids to be exclusively used for the work on computer monitors and include single-vision glasses solely intended for reading computer screen, glasses with bifocal lenses for reading computer screen and hard-copy documents as well as those with varifocal lenses featuring a thickened central section. There is still a considerable controversy among those concerned as to who will bear the costs for such glasses--most likely it will be the employer. Prescription of such vision aids will be exclusively restricted to ophthalmologists, based on a thorough ophthalmological examination under adequate consideration of the specific working environment and the workplace requirements of the individual employee concerned.
Divilov, Konstantin; Wiesner-Hanks, Tyr; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I
2017-12-01
Quantitative phenotyping of downy mildew sporulation is frequently used in plant breeding and genetic studies, as well as in studies focused on pathogen biology such as chemical efficacy trials. In these scenarios, phenotyping a large number of genotypes or treatments can be advantageous but is often limited by time and cost. We present a novel computational pipeline dedicated to estimating the percent area of downy mildew sporulation from images of inoculated grapevine leaf discs in a manner that is time and cost efficient. The pipeline was tested on images from leaf disc assay experiments involving two F 1 grapevine families, one that had glabrous leaves (Vitis rupestris B38 × 'Horizon' [RH]) and another that had leaf trichomes (Horizon × V. cinerea B9 [HC]). Correlations between computer vision and manual visual ratings reached 0.89 in the RH family and 0.43 in the HC family. Additionally, we were able to use the computer vision system prior to sporulation to measure the percent leaf trichome area. We estimate that an experienced rater scoring sporulation would spend at least 90% less time using the computer vision system compared with the manual visual method. This will allow more treatments to be phenotyped in order to better understand the genetic architecture of downy mildew resistance and of leaf trichome density. We anticipate that this computer vision system will find applications in other pathosystems or traits where responses can be imaged with sufficient contrast from the background.
Approaches to a cortical vision prosthesis: implications of electrode size and placement
NASA Astrophysics Data System (ADS)
Christie, Breanne P.; Ashmont, Kari R.; House, Paul A.; Greger, Bradley
2016-04-01
Objective. In order to move forward with the development of a cortical vision prosthesis, the critical issues in the field must be identified. Approach. To begin this process, we performed a brief review of several different cortical and retinal stimulation techniques that can be used to restore vision. Main results. Intracortical microelectrodes and epicortical macroelectrodes have been evaluated as the basis of a vision prosthesis. We concluded that an important knowledge gap necessitates an experimental in vivo performance evaluation of microelectrodes placed on the surface of the visual cortex. A comparison of the level of vision restored by intracortical versus epicortical microstimulation is necessary. Because foveal representation in the primary visual cortex involves more cortical columns per degree of visual field than does peripheral vision, restoration of foveal vision may require a large number of closely spaced microelectrodes. Based on previous studies of epicortical macrostimulation, it is possible that stimulation via surface microelectrodes could produce a lower spatial resolution, making them better suited for restoring peripheral vision. Significance. The validation of epicortical microstimulation in addition to the comparison of epicortical and intracortical approaches for vision restoration will fill an important knowledge gap and may have important implications for surgical strategies and device longevity. It is possible that the best approach to vision restoration will utilize both epicortical and intracortical microstimulation approaches, applying them appropriately to different visual representations in the primary visual cortex.
Convolutional networks for fast, energy-efficient neuromorphic computing
Esser, Steven K.; Merolla, Paul A.; Arthur, John V.; Cassidy, Andrew S.; Appuswamy, Rathinakumar; Andreopoulos, Alexander; Berg, David J.; McKinstry, Jeffrey L.; Melano, Timothy; Barch, Davis R.; di Nolfo, Carmelo; Datta, Pallab; Amir, Arnon; Taba, Brian; Flickner, Myron D.; Modha, Dharmendra S.
2016-01-01
Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware’s underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer. PMID:27651489
Convolutional networks for fast, energy-efficient neuromorphic computing.
Esser, Steven K; Merolla, Paul A; Arthur, John V; Cassidy, Andrew S; Appuswamy, Rathinakumar; Andreopoulos, Alexander; Berg, David J; McKinstry, Jeffrey L; Melano, Timothy; Barch, Davis R; di Nolfo, Carmelo; Datta, Pallab; Amir, Arnon; Taba, Brian; Flickner, Myron D; Modha, Dharmendra S
2016-10-11
Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.
Detection and Tracking of Moving Objects with Real-Time Onboard Vision System
NASA Astrophysics Data System (ADS)
Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.
2017-05-01
Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.
Project Photofly: New 3d Modeling Online Web Service (case Studies and Assessments)
NASA Astrophysics Data System (ADS)
Abate, D.; Furini, G.; Migliori, S.; Pierattini, S.
2011-09-01
During summer 2010, Autodesk has released a still ongoing project called Project Photofly, freely downloadable from AutodeskLab web site until August 1 2011. Project Photofly based on computer-vision and photogrammetric principles, exploiting the power of cloud computing, is a web service able to convert collections of photographs into 3D models. Aim of our research was to evaluate the Project Photofly, through different case studies, for 3D modeling of cultural heritage monuments and objects, mostly to identify for which goals and objects it is suitable. The automatic approach will be mainly analyzed.
An adhered-particle analysis system based on concave points
NASA Astrophysics Data System (ADS)
Wang, Wencheng; Guan, Fengnian; Feng, Lin
2018-04-01
Particles adhered together will influence the image analysis in computer vision system. In this paper, a method based on concave point is designed. First, corner detection algorithm is adopted to obtain a rough estimation of potential concave points after image segmentation. Then, it computes the area ratio of the candidates to accurately localize the final separation points. Finally, it uses the separation points of each particle and the neighboring pixels to estimate the original particles before adhesion and provides estimated profile images. The experimental results have shown that this approach can provide good results that match the human visual cognitive mechanism.
Machine Learning and Computer Vision System for Phenotype Data Acquisition and Analysis in Plants.
Navarro, Pedro J; Pérez, Fernando; Weiss, Julia; Egea-Cortines, Marcos
2016-05-05
Phenomics is a technology-driven approach with promising future to obtain unbiased data of biological systems. Image acquisition is relatively simple. However data handling and analysis are not as developed compared to the sampling capacities. We present a system based on machine learning (ML) algorithms and computer vision intended to solve the automatic phenotype data analysis in plant material. We developed a growth-chamber able to accommodate species of various sizes. Night image acquisition requires near infrared lightning. For the ML process, we tested three different algorithms: k-nearest neighbour (kNN), Naive Bayes Classifier (NBC), and Support Vector Machine. Each ML algorithm was executed with different kernel functions and they were trained with raw data and two types of data normalisation. Different metrics were computed to determine the optimal configuration of the machine learning algorithms. We obtained a performance of 99.31% in kNN for RGB images and a 99.34% in SVM for NIR. Our results show that ML techniques can speed up phenomic data analysis. Furthermore, both RGB and NIR images can be segmented successfully but may require different ML algorithms for segmentation.
NASA Astrophysics Data System (ADS)
Assadi, Amir H.
2001-11-01
Perceptual geometry is an emerging field of interdisciplinary research whose objectives focus on study of geometry from the perspective of visual perception, and in turn, apply such geometric findings to the ecological study of vision. Perceptual geometry attempts to answer fundamental questions in perception of form and representation of space through synthesis of cognitive and biological theories of visual perception with geometric theories of the physical world. Perception of form and space are among fundamental problems in vision science. In recent cognitive and computational models of human perception, natural scenes are used systematically as preferred visual stimuli. Among key problems in perception of form and space, we have examined perception of geometry of natural surfaces and curves, e.g. as in the observer's environment. Besides a systematic mathematical foundation for a remarkably general framework, the advantages of the Gestalt theory of natural surfaces include a concrete computational approach to simulate or recreate images whose geometric invariants and quantities might be perceived and estimated by an observer. The latter is at the very foundation of understanding the nature of perception of space and form, and the (computer graphics) problem of rendering scenes to visually invoke virtual presence.
Synthetic Vision Systems - Operational Considerations Simulation Experiment
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.
2007-01-01
Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents/accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.
Synthetic vision systems: operational considerations simulation experiment
NASA Astrophysics Data System (ADS)
Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.
2007-04-01
Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents / accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.
Magician Simulator. A Realistic Simulator for Heterogenous Teams of Autonomous Robots
2011-01-18
IMU, and LIDAR systems for identifying and tracking mobile OOI at long range (>20m), providing early warnings and allowing neutralization from a... LIDAR and Computer Vision template-based feature tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous...Locali- zation and Mapping ( SLAM ). Our system contains two maps, a physical map and an influence map (location of hostile OOI, explored and unexplored
Prototype for Meta-Algorithmic, Content-Aware Image Analysis
2015-03-01
PROTOTYPE FOR META-ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS UNIVERSITY OF VIRGINIA MARCH 2015 FINAL TECHNICAL REPORT...ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS 5a. CONTRACT NUMBER FA8750-12-C-0181 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62305E 6. AUTHOR(S) S...approaches were studied in detail and their results on a sample dataset are presented. 15. SUBJECT TERMS Image Analysis , Computer Vision, Content
MRF energy minimization and beyond via dual decomposition.
Komodakis, Nikos; Paragios, Nikos; Tziritas, Georgios
2011-03-01
This paper introduces a new rigorous theoretical framework to address discrete MRF-based optimization in computer vision. Such a framework exploits the powerful technique of Dual Decomposition. It is based on a projected subgradient scheme that attempts to solve an MRF optimization problem by first decomposing it into a set of appropriately chosen subproblems, and then combining their solutions in a principled way. In order to determine the limits of this method, we analyze the conditions that these subproblems have to satisfy and demonstrate the extreme generality and flexibility of such an approach. We thus show that by appropriately choosing what subproblems to use, one can design novel and very powerful MRF optimization algorithms. For instance, in this manner we are able to derive algorithms that: 1) generalize and extend state-of-the-art message-passing methods, 2) optimize very tight LP-relaxations to MRF optimization, and 3) take full advantage of the special structure that may exist in particular MRFs, allowing the use of efficient inference techniques such as, e.g., graph-cut-based methods. Theoretical analysis on the bounds related with the different algorithms derived from our framework and experimental results/comparisons using synthetic and real data for a variety of tasks in computer vision demonstrate the extreme potentials of our approach.
Gong, Yuanzheng; Seibel, Eric J.
2017-01-01
Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection. PMID:28286351
NASA Astrophysics Data System (ADS)
Gong, Yuanzheng; Seibel, Eric J.
2017-01-01
Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.
Vision and art: an interdisciplinary approach to neuroscience education.
Lafer-Sousa, Rosa; Conway, Bevil R
2009-01-01
Undergraduate institutions are increasingly adopting neuroscience within their curricula, although it is unclear how best to implement this material given the interdisciplinary nature of the field, which requires knowledge of basic physics, chemistry, biology and psychology. This difficulty is compounded by declines over recent decades in the amount of physics education that students receive in high school, which hinders students' ability to grasp basic principles of neuroscience. Here we discuss our experiences as teacher (BRC) and student (RLS) with an undergraduate course in Vision and Art. The course capitalizes on students' prior interest in visual art to motivate an understanding of the physiological and computational neural processes that underlie vision; our aim is that the learning strategies that students acquire as a result of the format and interdisciplinary approach of the course will increase students' critical thinking skills and benefit them as they pursue other domains of inquiry. The course includes both expert lectures on central themes of vision along with a problem-based learning (PBL) laboratory component that directly engages the students as empirical scientists. We outline the syllabus, the motivation for using PBL, and describe a number of hands-on laboratory exercises, many of which require only inexpensive and readily available equipment. We have developed a website that we hope will facilitate student-driven inquiry beyond the classroom and foster inter-institutional collaboration in this endeavor. We conclude the paper with a discussion of the potential limitations of the course and how to evaluate the success of the course and the website.
1994-02-15
0. Faugeras. Three dimensional vision, a geometric viewpoint. MIT Press, 1993. [19] 0 . D. Faugeras and S. Maybank . Motion from point mathces...multiplicity of solutions. Int. J. of Computer Vision, 1990. 1201 0.D. Faugeras, Q.T. Luong, and S.J. Maybank . Camera self-calibration: theory and...Kalrnan filter-based algorithms for estimating depth from image sequences. Int. J. of computer vision, 1989. [41] S. Maybank . Theory of
Computational Vision: A Critical Review
1989-10-01
Optic News, 15:9-25, 1989. [8] H. B . Barlow and R. W. Levick . The mechanism of directional selectivity in the rabbit’s retina. J. Physiol., 173:477...comparison, other formulations, e.g., [64], used 16 @V A \\E(t=t2) (a) \\ E(t-tl) ( b ) Figure 7: An illustration of the aperture problem. Left: a bar E is...Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1982. [7] D. H. Ballard, R. C. Nelson, and B . Yamauchi. Animate vision
Marking parts to aid robot vision
NASA Technical Reports Server (NTRS)
Bales, J. W.; Barker, L. K.
1981-01-01
The premarking of parts for subsequent identification by a robot vision system appears to be beneficial as an aid in the automation of certain tasks such as construction in space. A simple, color coded marking system is presented which allows a computer vision system to locate an object, calculate its orientation, and determine its identity. Such a system has the potential to operate accurately, and because the computer shape analysis problem has been simplified, it has the ability to operate in real time.
Computer vision-based automated peak picking applied to protein NMR spectra.
Klukowski, Piotr; Walczak, Michal J; Gonczarek, Adam; Boudet, Julien; Wider, Gerhard
2015-09-15
A detailed analysis of multidimensional NMR spectra of macromolecules requires the identification of individual resonances (peaks). This task can be tedious and time-consuming and often requires support by experienced users. Automated peak picking algorithms were introduced more than 25 years ago, but there are still major deficiencies/flaws that often prevent complete and error free peak picking of biological macromolecule spectra. The major challenges of automated peak picking algorithms is both the distinction of artifacts from real peaks particularly from those with irregular shapes and also picking peaks in spectral regions with overlapping resonances which are very hard to resolve by existing computer algorithms. In both of these cases a visual inspection approach could be more effective than a 'blind' algorithm. We present a novel approach using computer vision (CV) methodology which could be better adapted to the problem of peak recognition. After suitable 'training' we successfully applied the CV algorithm to spectra of medium-sized soluble proteins up to molecular weights of 26 kDa and to a 130 kDa complex of a tetrameric membrane protein in detergent micelles. Our CV approach outperforms commonly used programs. With suitable training datasets the application of the presented method can be extended to automated peak picking in multidimensional spectra of nucleic acids or carbohydrates and adapted to solid-state NMR spectra. CV-Peak Picker is available upon request from the authors. gsw@mol.biol.ethz.ch; michal.walczak@mol.biol.ethz.ch; adam.gonczarek@pwr.edu.pl Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Three degree-of-freedom force feedback control for robotic mating of umbilical lines
NASA Technical Reports Server (NTRS)
Fullmer, R. Rees
1988-01-01
The use of robotic manipulators for the mating and demating of umbilical fuel lines to the Space Shuttle Vehicle prior to launch is investigated. Force feedback control is necessary to minimize the contact forces which develop during mating. The objective is to develop and demonstrate a working robotic force control system. Initial experimental force control tests with an ASEA IRB-90 industrial robot using the system's Adaptive Control capabilities indicated that control stability would by a primary problem. An investigation of the ASEA system showed a 0.280 second software delay between force input commands and the output of command voltages to the servo system. This computational delay was identified as the primary cause of the instability. Tests on a second path into the ASEA's control computer using the MicroVax II supervisory computer show that time delay would be comparable, offering no stability improvement. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servosystem directly, allowing the robot to use force feedback control while in rigid contact with a moving three-degree-of-freedom target. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servo system directly. This method allowed the robot to use force feedback control while in rigid contact with moving three degree-of-freedom target. Tests on this approach indicated adequate force feedback control even under worst case conditions. A strategy to digitally-controlled vision system was developed. This requires switching between the digital controller when using vision control and the analog controller when using force control, depending on whether or not the mating plates are in contact.
A Practical Solution Using A New Approach To Robot Vision
NASA Astrophysics Data System (ADS)
Hudson, David L.
1984-01-01
Up to now, robot vision systems have been designed to serve both application development and operational needs in inspection, assembly and material handling. This universal approach to robot vision is too costly for many practical applications. A new industrial vision system separates the function of application program development from on-line operation. A Vision Development System (VDS) is equipped with facilities designed to simplify and accelerate the application program development process. A complimentary but lower cost Target Application System (TASK) runs the application program developed with the VDS. This concept is presented in the context of an actual robot vision application that improves inspection and assembly for a manufacturer of electronic terminal keyboards. Applications developed with a VDS experience lower development cost when compared with conventional vision systems. Since the TASK processor is not burdened with development tools, it can be installed at a lower cost than comparable "universal" vision systems that are intended to be used for both development and on-line operation. The VDS/TASK approach opens more industrial applications to robot vision that previously were not practical because of the high cost of vision systems. Although robot vision is a new technology, it has been applied successfully to a variety of industrial needs in inspection, manufacturing, and material handling. New developments in robot vision technology are creating practical, cost effective solutions for a variety of industrial needs. A year or two ago, researchers and robot manufacturers interested in implementing a robot vision application could take one of two approaches. The first approach was to purchase all the necessary vision components from various sources. That meant buying an image processor from one company, a camera from another and lens and light sources from yet others. The user then had to assemble the pieces, and in most instances he had to write all of his own software to test, analyze and process the vision application. The second and most common approach was to contract with the vision equipment vendor for the development and installation of a turnkey inspection or manufacturing system. The robot user and his company paid a premium for their vision system in an effort to assure the success of the system. Since 1981, emphasis on robotics has skyrocketed. New groups have been formed in many manufacturing companies with the charter to learn about, test and initially apply new robot and automation technologies. Machine vision is one of new technologies being tested and applied. This focused interest has created a need for a robot vision system that makes it easy for manufacturing engineers to learn about, test, and implement a robot vision application. A newly developed vision system addresses those needs. Vision Development System (VDS) is a complete hardware and software product for the development and testing of robot vision applications. A complimentary, low cost Target Application System (TASK) runs the application program developed with the VDS. An actual robot vision application that demonstrates inspection and pre-assembly for keyboard manufacturing is used to illustrate the VDS/TASK approach.
Stereo-vision-based cooperative-vehicle positioning using OCC and neural networks
NASA Astrophysics Data System (ADS)
Ifthekhar, Md. Shareef; Saha, Nirzhar; Jang, Yeong Min
2015-10-01
Vehicle positioning has been subjected to extensive research regarding driving safety measures and assistance as well as autonomous navigation. The most common positioning technique used in automotive positioning is the global positioning system (GPS). However, GPS is not reliably accurate because of signal blockage caused by high-rise buildings. In addition, GPS is error prone when a vehicle is inside a tunnel. Moreover, GPS and other radio-frequency-based approaches cannot provide orientation information or the position of neighboring vehicles. In this study, we propose a cooperative-vehicle positioning (CVP) technique by using the newly developed optical camera communications (OCC). The OCC technique utilizes image sensors and cameras to receive and decode light-modulated information from light-emitting diodes (LEDs). A vehicle equipped with an OCC transceiver can receive positioning and other information such as speed, lane change, driver's condition, etc., through optical wireless links of neighboring vehicles. Thus, the target vehicle position that is too far away to establish an OCC link can be determined by a computer-vision-based technique combined with the cooperation of neighboring vehicles. In addition, we have devised a back-propagation (BP) neural-network learning method for positioning and range estimation for CVP. The proposed neural-network-based technique can estimate target vehicle position from only two image points of target vehicles using stereo vision. For this, we use rear LEDs on target vehicles as image points. We show from simulation results that our neural-network-based method achieves better accuracy than that of the computer-vision method.
AstroCV: Astronomy computer vision library
NASA Astrophysics Data System (ADS)
González, Roberto E.; Muñoz, Roberto P.; Hernández, Cristian A.
2018-04-01
AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Kramer, Lynda J.; Arthur, Trey; Parrish, Russell V.; Barry, John S.
2003-01-01
Limited visibility is the single most critical factor affecting the safety and capacity of worldwide aviation operations. Synthetic Vision Systems (SVS) technology can solve this visibility problem with a visibility solution. These displays employ computer-generated terrain imagery to present 3D, perspective out-the-window scenes with sufficient information and realism to enable operations equivalent to those of a bright, clear day, regardless of weather conditions. To introduce SVS display technology into as many existing aircraft as possible, a retrofit approach was defined that employs existing HDD display capabilities for glass cockpits and HUD capabilities for the other aircraft. This retrofit approach was evaluated for typical nighttime airline operations at a major international airport. Overall, 6 evaluation pilots performed 75 research approaches, accumulating 18 hours flight time evaluating SVS display concepts that used the NASA LaRC's Boeing B-757-200 aircraft at Dallas/Fort Worth International Airport. Results from this flight test establish the SVS retrofit concept, regardless of display size, as viable for tested conditions. Future assessments need to extend evaluation of the approach to operations in an appropriate, terrain-challenged environment with daytime test conditions.
Topographic Mapping of Residual Vision by Computer
ERIC Educational Resources Information Center
MacKeben, Manfred
2008-01-01
Many persons with low vision have diseases that damage the retina only in selected areas, which can lead to scotomas (blind spots) in perception. The most frequent of these diseases is age-related macular degeneration (AMD), in which foveal vision is often impaired by a central scotoma that impairs vision of fine detail and causes problems with…
Quality Control by Artificial Vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Edmond Y.; Gleason, Shaun Scott; Niel, Kurt S.
2010-01-01
Computational technology has fundamentally changed many aspects of our lives. One clear evidence is the development of artificial-vision systems, which have effectively automated many manual tasks ranging from quality inspection to quantitative assessment. In many cases, these machine-vision systems are even preferred over manual ones due to their repeatability and high precision. Such advantages come from significant research efforts in advancing sensor technology, illumination, computational hardware, and image-processing algorithms. Similar to the Special Section on Quality Control by Artificial Vision published two years ago in Volume 17, Issue 3 of the Journal of Electronic Imaging, the present one invited papersmore » relevant to fundamental technology improvements to foster quality control by artificial vision, and fine-tuned the technology for specific applications. We aim to balance both theoretical and applied work pertinent to this special section theme. Consequently, we have seven high-quality papers resulting from the stringent peer-reviewing process in place at the Journal of Electronic Imaging. Some of the papers contain extended treatment of the authors work presented at the SPIE Image Processing: Machine Vision Applications conference and the International Conference on Quality Control by Artificial Vision. On the broad application side, Liu et al. propose an unsupervised texture image segmentation scheme. Using a multilayer data condensation spectral clustering algorithm together with wavelet transform, they demonstrate the effectiveness of their approach on both texture and synthetic aperture radar images. A problem related to image segmentation is image extraction. For this, O'Leary et al. investigate the theory of polynomial moments and show how these moments can be compared to classical filters. They also show how to use the discrete polynomial-basis functions for the extraction of 3-D embossed digits, demonstrating superiority over Fourier-basis functions for this task. Image registration is another important task for machine vision. Bingham and Arrowood investigate the implementation and results in applying Fourier phase matching for projection registration, with a particular focus on nondestructive testing using computed tomography. Readers interested in enriching their arsenal of image-processing algorithms for machine-vision tasks should find these papers enriching. Meanwhile, we have four papers dealing with more specific machine-vision tasks. The first one, Yahiaoui et al., is quantitative in nature, using machine vision for real-time passenger counting. Occulsion is a common problem in counting objects and people, and they circumvent this issue with a dense stereovision system, achieving 97 to 99% accuracy in their tests. On the other hand, the second paper by Oswald-Tranta et al. focuses on thermographic crack detection. An infrared camera is used to detect inhomogeneities, which may indicate surface cracks. They describe the various steps in developing fully automated testing equipment aimed at a high throughput. Another paper describing an inspection system is Molleda et al., which handles flatness inspection of rolled products. They employ optical-laser triangulation and 3-D surface reconstruction for this task, showing how these can be achieved in real time. Last but not least, Presles et al. propose a way to monitor the particle-size distribution of batch crystallization processes. This is achieved through a new in situ imaging probe and image-analysis methods. While it is unlikely any reader may be working on these four specific problems at the same time, we are confident that readers will find these papers inspiring and potentially helpful to their own machine-vision system developments.« less
ERIC Educational Resources Information Center
Rosner, Yotam; Perlman, Amotz
2018-01-01
Introduction: The Israel Ministry of Social Affairs and Social Services subsidizes computer-based assistive devices for individuals with visual impairments (that is, those who are blind or have low vision) to assist these individuals in their interactions with computers and thus to enhance their independence and quality of life. The aim of this…
Software for Real-Time Analysis of Subsonic Test Shot Accuracy
2014-03-01
used the C++ programming language, the Open Source Computer Vision ( OpenCV ®) software library, and Microsoft Windows® Application Programming...video for comparison through OpenCV image analysis tools. Based on the comparison, the software then computed the coordinates of each shot relative to...DWB researchers wanted to use the Open Source Computer Vision ( OpenCV ) software library for capturing and analyzing frames of video. OpenCV contains
[Ophthalmologist and "computer vision syndrome"].
Barar, A; Apatachioaie, Ioana Daniela; Apatachioaie, C; Marceanu-Brasov, L
2007-01-01
The authors had tried to collect the data available on the Internet about a subject that we consider as being totally ignored in the Romanian scientific literature and unexpectedly insufficiently treated in the specialized ophthalmologic literature. Known in the specialty literature under the generic name of "Computer vision syndrome", it is defined by the American Optometric Association as a complex of eye and vision problems related to the activities which stress the near vision and which are experienced in relation, or during, the use of the computer. During the consultations we hear frequent complaints of eye-strain - asthenopia, headaches, blurred distance and/or near vision, dry and irritated eyes, slow refocusing, neck and backache, photophobia, sensation of diplopia, light sensitivity, and double vision, but because of the lack of information, we overlooked them too easily, without going thoroughly into the real motives. In most of the developed countries, there are recommendations issued by renowned medical associations with regard to the definition, the diagnosis, and the methods for the prevention, treatment and periodical control of the symptoms found in computer users, in conjunction with an extremely detailed ergonomic legislation. We found out that these problems incite a much too low interest in our country. We would like to rouse the interest of our ophthalmologist colleagues in the understanding and the recognition of these symptoms and in their treatment, or at least their improvement, through specialized measures or through the cooperation with our specialist occupational medicine colleagues.
Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-03-01
Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila.
Bath, Daniel E; Stowers, John R; Hörmann, Dorothea; Poehlmann, Andreas; Dickson, Barry J; Straw, Andrew D
2014-07-01
Rapidly and selectively modulating the activity of defined neurons in unrestrained animals is a powerful approach in investigating the circuit mechanisms that shape behavior. In Drosophila melanogaster, temperature-sensitive silencers and activators are widely used to control the activities of genetically defined neuronal cell types. A limitation of these thermogenetic approaches, however, has been their poor temporal resolution. Here we introduce FlyMAD (the fly mind-altering device), which allows thermogenetic silencing or activation within seconds or even fractions of a second. Using computer vision, FlyMAD targets an infrared laser to freely walking flies. As a proof of principle, we demonstrated the rapid silencing and activation of neurons involved in locomotion, vision and courtship. The spatial resolution of the focused beam enabled preferential targeting of neurons in the brain or ventral nerve cord. Moreover, the high temporal resolution of FlyMAD allowed us to discover distinct timing relationships for two neuronal cell types previously linked to courtship song.
A simple approach to a vision-guided unmanned vehicle
NASA Astrophysics Data System (ADS)
Archibald, Christopher; Millar, Evan; Anderson, Jon D.; Archibald, James K.; Lee, Dah-Jye
2005-10-01
This paper describes the design and implementation of a vision-guided autonomous vehicle that represented BYU in the 2005 Intelligent Ground Vehicle Competition (IGVC), in which autonomous vehicles navigate a course marked with white lines while avoiding obstacles consisting of orange construction barrels, white buckets and potholes. Our project began in the context of a senior capstone course in which multi-disciplinary teams of five students were responsible for the design, construction, and programming of their own robots. Each team received a computer motherboard, a camera, and a small budget for the purchase of additional hardware, including a chassis and motors. The resource constraints resulted in a simple vision-based design that processes the sequence of images from the single camera to determine motor controls. Color segmentation separates white and orange from each image, and then the segmented image is examined using a 10x10 grid system, effectively creating a low resolution picture for each of the two colors. Depending on its position, each filled grid square influences the selection of an appropriate turn magnitude. Motor commands determined from the white and orange images are then combined to yield the final motion command for video frame. We describe the complete algorithm and the robot hardware and we present results that show the overall effectiveness of our control approach.
Robust algebraic image enhancement for intelligent control systems
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morrelli, Michael
1993-01-01
Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.
A comparison of symptoms after viewing text on a computer screen and hardcopy.
Chu, Christina; Rosenfield, Mark; Portello, Joan K; Benzoni, Jaclyn A; Collier, Juanita D
2011-01-01
Computer vision syndrome (CVS) is a complex of eye and vision problems experienced during or related to computer use. Ocular symptoms may include asthenopia, accommodative and vergence difficulties and dry eye. CVS occurs in up to 90% of computer workers, and given the almost universal use of these devices, it is important to identify whether these symptoms are specific to computer operation, or are simply a manifestation of performing a sustained near-vision task. This study compared ocular symptoms immediately following a sustained near task. 30 young, visually-normal subjects read text aloud either from a desktop computer screen or a printed hardcopy page at a viewing distance of 50 cm for a continuous 20 min period. Identical text was used in the two sessions, which was matched for size and contrast. Target viewing angle and luminance were similar for the two conditions. Immediately following completion of the reading task, subjects completed a written questionnaire asking about their level of ocular discomfort during the task. When comparing the computer and hardcopy conditions, significant differences in median symptom scores were reported with regard to blurred vision during the task (t = 147.0; p = 0.03) and the mean symptom score (t = 102.5; p = 0.04). In both cases, symptoms were higher during computer use. Symptoms following sustained computer use were significantly worse than those reported after hard copy fixation under similar viewing conditions. A better understanding of the physiology underlying CVS is critical to allow more accurate diagnosis and treatment. This will allow practitioners to optimize visual comfort and efficiency during computer operation.
Lumber Grading With A Computer Vision System
Richard W. Conners; Tai-Hoon Cho; Philip A. Araman
1989-01-01
Over the past few years significant progress has been made in developing a computer vision system for locating and identifying defects on surfaced hardwood lumber. Unfortunately, until September of 1988 little research had gone into developing methods for analyzing rough lumber. This task is arguably more complex than the analysis of surfaced lumber. The prime...
Range Image Flow using High-Order Polynomial Expansion
2013-09-01
included as a default algorithm in the OpenCV library [2]. The research of estimating the motion between range images, or range flow, is much more...Journal of Computer Vision, vol. 92, no. 1, pp. 1‒31. 2. G. Bradski and A. Kaehler. 2008. Learning OpenCV : Computer Vision with the OpenCV Library
Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control.
1983-08-15
obtainable from real data, rather than relying on a stock database. Often, computer vision and image processing algorithms become subconsciously tuned to...two coils on the same mount structure. Since it was not possible to reprogram the binary system, we turned to the POPEYE system for both its grey
NASA Astrophysics Data System (ADS)
Mishra, Deependra K.; Umbaugh, Scott E.; Lama, Norsang; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph
2016-09-01
CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants - a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.
NASA Astrophysics Data System (ADS)
McKinley, John B.; Pierson, Roger; Ertem, M. C.; Krone, Norris J., Jr.; Cramer, James A.
2008-04-01
Flight tests were conducted at Greenbrier Valley Airport (KLWB) and Easton Municipal Airport / Newnam Field (KESN) in a Cessna 402B aircraft using a head-up display (HUD) and a Norris Electro Optical Systems Corporation (NEOC) developmental ultraviolet (UV) sensor. These flights were sponsored by NEOC under a Federal Aviation Administration program, and the ultraviolet concepts, technology, system mechanization, and hardware for landing during low visibility landing conditions have been patented by NEOC. Imagery from the UV sensor, HUD guidance cues, and out-the-window videos were separately recorded at the engineering workstation for each approach. Inertial flight path data were also recorded. Various configurations of portable UV emitters were positioned along the runway edge and threshold. The UV imagery of the runway outline was displayed on the HUD along with guidance generated from the mission computer. Enhanced Flight Vision System (EFVS) approaches with the UV sensor were conducted from the initial approach fix to the ILS decision height in both VMC and IMC. Although the availability of low visibility conditions during the flight test period was limited, results from previous fog range testing concluded that UV EFVS has the performance capability to penetrate CAT II runway visual range obscuration. Furthermore, independent analysis has shown that existing runway light emit sufficient UV radiation without the need for augmentation other than lens replacement with UV transmissive quartz lenses. Consequently, UV sensors should qualify as conforming to FAA requirements for EFVS approaches. Combined with Synthetic Vision System (SVS), UV EFVS would function as both a precision landing aid, as well as an integrity monitor for the GPS and SVS database.
Development of embedded real-time and high-speed vision platform
NASA Astrophysics Data System (ADS)
Ouyang, Zhenxing; Dong, Yimin; Yang, Hua
2015-12-01
Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.
Bali, Jatinder; Navin, Neeraj; Thakur, Bali Renu
2007-01-01
To study the knowledge, attitude and practices (KAP) towards computer vision syndrome prevalent in Indian ophthalmologists and to assess whether 'computer use by practitioners' had any bearing on the knowledge and practices in computer vision syndrome (CVS). A random KAP survey was carried out on 300 Indian ophthalmologists using a 34-point spot-questionnaire in January 2005. All the doctors who responded were aware of CVS. The chief presenting symptoms were eyestrain (97.8%), headache (82.1%), tiredness and burning sensation (79.1%), watering (66.4%) and redness (61.2%). Ophthalmologists using computers reported that focusing from distance to near and vice versa (P =0.006, chi2 test), blurred vision at a distance (P =0.016, chi2 test) and blepharospasm (P =0.026, chi2 test) formed part of the syndrome. The main mode of treatment used was tear substitutes. Half of ophthalmologists (50.7%) were not prescribing any spectacles. They did not have any preference for any special type of glasses (68.7%) or spectral filters. Computer-users were more likely to prescribe sedatives/anxiolytics (P = 0.04, chi2 test), spectacles (P = 0.02, chi2 test) and conscious frequent blinking (P = 0.003, chi2 test) than the non-computer-users. All respondents were aware of CVS. Confusion regarding treatment guidelines was observed in both groups. Computer-using ophthalmologists were more informed of symptoms and diagnostic signs but were misinformed about treatment modalities.
A Novel Interdisciplinary Approach to Socio-Technical Complexity
NASA Astrophysics Data System (ADS)
Bassetti, Chiara
The chapter presents a novel interdisciplinary approach that integrates micro-sociological analysis into computer-vision and pattern-recognition modeling and algorithms, the purpose being to tackle socio-technical complexity at a systemic yet micro-grounded level. The approach is empirically-grounded and both theoretically- and analytically-driven, yet systemic and multidimensional, semi-supervised and computable, and oriented towards large scale applications. The chapter describes the proposed approach especially as for its sociological foundations, and as applied to the analysis of a particular setting --i.e. sport-spectator crowds. Crowds, better defined as large gatherings, are almost ever-present in our societies, and capturing their dynamics is crucial. From social sciences to public safety management and emergency response, modeling and predicting large gatherings' presence and dynamics, thus possibly preventing critical situations and being able to properly react to them, is fundamental. This is where semi/automated technologies can make the difference. The work presented in this chapter is intended as a scientific step towards such an objective.
An Approach to Dynamic Service Management in Pervasive Computing Systems
2005-01-01
standard interface to them that is easily accessible by any user. This paper outlines the design of Centaurus , an infrastructure for presenting...based on Extensi- ble Markup Language (XML) for communication, giving the system a uniform and easily adaptable interface. Centaurus defines a...easy and automatic usage. This is the vision that guides our re- search on the Centaurus system. We define a SmartSpace as a dynamic environment that
Tai-Hoon Cho; Richard W. Conners; Philip A. Araman
1990-01-01
A sawmill cuts logs into lumber and sells this lumber to secondary remanufacturers. The price a sawmiller can charge for a volume of lumber depends on its grade. For a number of species the price of a given volume of material can double in going from one grade to the next higher grade. Thus, accurately establishing the grade of a volume of hardwood lumber is very...
Fusion of Multiple Sensing Modalities for Machine Vision
1994-05-31
Modeling of Non-Homogeneous 3-D Objects for Thermal and Visual Image Synthesis," Pattern Recognition, in press. U [11] Nair, Dinesh , and J. K. Aggarwal...20th AIPR Workshop: Computer Vision--Meeting the Challenges, McLean, Virginia, October 1991. Nair, Dinesh , and J. K. Aggarwal, "An Object Recognition...Computer Engineering August 1992 Sunil Gupta Ph.D. Student Mohan Kumar M.S. Student Sandeep Kumar M.S. Student Xavier Lebegue Ph.D., Computer
The Implications of Pervasive Computing on Network Design
NASA Astrophysics Data System (ADS)
Briscoe, R.
Mark Weiser's late-1980s vision of an age of calm technology with pervasive computing disappearing into the fabric of the world [1] has been tempered by an industry-driven vision with more of a feel of conspicuous consumption. In the modified version, everyone carries around consumer electronics to provide natural, seamless interactions both with other people and with the information world, particularly for eCommerce, but still through a pervasive computing fabric.
2016-01-01
Background Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. Purpose It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. Method We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. Results The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach. PMID:26812235
Riemann tensor of motion vision revisited.
Brill, M
2001-07-02
This note shows that the Riemann-space interpretation of motion vision developed by Barth and Watson is neither necessary for their results, nor sufficient to handle an intrinsic coordinate problem. Recasting the Barth-Watson framework as a classical velocity-solver (as in computer vision) solves these problems.
Evaluation of the Waggoner Computerized Color Vision Test.
Ng, Jason S; Self, Eriko; Vanston, John E; Nguyen, Andrew L; Crognale, Michael A
2015-04-01
Clinical color vision evaluation has been based primarily on the same set of tests for the past several decades. Recently, computer-based color vision tests have been devised, and these have several advantages but are still not widely used. In this study, we evaluated the Waggoner Computerized Color Vision Test (CCVT), which was developed for widespread use with common computer systems. A sample of subjects with (n = 59) and without (n = 361) color vision deficiency (CVD) were tested on the CCVT, the anomaloscope, the Richmond HRR (Hardy-Rand-Rittler) (4th edition), and the Ishihara test. The CCVT was administered in two ways: (1) on a computer monitor using its default settings and (2) on one standardized to a correlated color temperature (CCT) of 6500 K. Twenty-four subjects with CVD performed the CCVT both ways. Sensitivity, specificity, and correct classification rates were determined. The screening performance of the CCVT was good (95% sensitivity, 100% specificity). The CCVT classified subjects as deutan or protan in agreement with anomaloscopy 89% of the time. It generally classified subjects as having a more severe defect compared with other tests. Results from 18 of the 24 subjects with CVD tested under both default and calibrated CCT conditions were the same, whereas the results from 6 subjects had better agreement with other test results when the CCT was set. The Waggoner CCVT is an adequate color vision screening test with several advantages and appears to provide a fairly accurate diagnosis of deficiency type. Used in conjunction with other color vision tests, it may be a useful addition to a color vision test battery.
An Omnidirectional Vision Sensor Based on a Spherical Mirror Catadioptric System.
Barone, Sandro; Carulli, Marina; Neri, Paolo; Paoli, Alessandro; Razionale, Armando Viviano
2018-01-31
The combination of mirrors and lenses, which defines a catadioptric sensor, is widely used in the computer vision field. The definition of a catadioptric sensors is based on three main features: hardware setup, projection modelling and calibration process. In this paper, a complete description of these aspects is given for an omnidirectional sensor based on a spherical mirror. The projection model of a catadioptric system can be described by the forward projection task (FP, from 3D scene point to 2D pixel coordinates) and backward projection task (BP, from 2D coordinates to 3D direction of the incident light). The forward projection of non-central catadioptric vision systems, typically obtained by using curved mirrors, is usually modelled by using a central approximation and/or by adopting iterative approaches. In this paper, an analytical closed-form solution to compute both forward and backward projection for a non-central catadioptric system with a spherical mirror is presented. In particular, the forward projection is reduced to a 4th order polynomial by determining the reflection point on the mirror surface through the intersection between a sphere and an ellipse. A matrix format of the implemented models, suitable for fast point clouds handling, is also described. A robust calibration procedure is also proposed and applied to calibrate a catadioptric sensor by determining the mirror radius and center with respect to the camera.
Multidisciplinary unmanned technology teammate (MUTT)
NASA Astrophysics Data System (ADS)
Uzunovic, Nenad; Schneider, Anne; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark
2013-01-01
The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) held an autonomous robot competition called CANINE in June 2012. The goal of the competition was to develop innovative and natural control methods for robots. This paper describes the winning technology, including the vision system, the operator interaction, and the autonomous mobility. The rules stated only gestures or voice commands could be used for control. The robots would learn a new object at the start of each phase, find the object after it was thrown into a field, and return the object to the operator. Each of the six phases became more difficult, including clutter of the same color or shape as the object, moving and stationary obstacles, and finding the operator who moved from the starting location to a new location. The Robotic Research Team integrated techniques in computer vision, speech recognition, object manipulation, and autonomous navigation. A multi-filter computer vision solution reliably detected the objects while rejecting objects of similar color or shape, even while the robot was in motion. A speech-based interface with short commands provided close to natural communication of complicated commands from the operator to the robot. An innovative gripper design allowed for efficient object pickup. A robust autonomous mobility and navigation solution for ground robotic platforms provided fast and reliable obstacle avoidance and course navigation. The research approach focused on winning the competition while remaining cognizant and relevant to real world applications.
An Omnidirectional Vision Sensor Based on a Spherical Mirror Catadioptric System
Barone, Sandro; Carulli, Marina; Razionale, Armando Viviano
2018-01-01
The combination of mirrors and lenses, which defines a catadioptric sensor, is widely used in the computer vision field. The definition of a catadioptric sensors is based on three main features: hardware setup, projection modelling and calibration process. In this paper, a complete description of these aspects is given for an omnidirectional sensor based on a spherical mirror. The projection model of a catadioptric system can be described by the forward projection task (FP, from 3D scene point to 2D pixel coordinates) and backward projection task (BP, from 2D coordinates to 3D direction of the incident light). The forward projection of non-central catadioptric vision systems, typically obtained by using curved mirrors, is usually modelled by using a central approximation and/or by adopting iterative approaches. In this paper, an analytical closed-form solution to compute both forward and backward projection for a non-central catadioptric system with a spherical mirror is presented. In particular, the forward projection is reduced to a 4th order polynomial by determining the reflection point on the mirror surface through the intersection between a sphere and an ellipse. A matrix format of the implemented models, suitable for fast point clouds handling, is also described. A robust calibration procedure is also proposed and applied to calibrate a catadioptric sensor by determining the mirror radius and center with respect to the camera. PMID:29385051
Vision requirements for Space Station applications
NASA Technical Reports Server (NTRS)
Crouse, K. R.
1985-01-01
Problems which will be encountered by computer vision systems in Space Station operations are discussed, along with solutions be examined at Johnson Space Station. Lighting cannot be controlled in space, nor can the random presence of reflective surfaces. Task-oriented capabilities are to include docking to moving objects, identification of unexpected objects during autonomous flights to different orbits, and diagnoses of damage and repair requirements for autonomous Space Station inspection robots. The approaches being examined to provide these and other capabilities are television IR sensors, advanced pattern recognition programs feeding on data from laser probes, laser radar for robot eyesight and arrays of SMART sensors for automated location and tracking of target objects. Attention is also being given to liquid crystal light valves for optical processing of images for comparisons with on-board electronic libraries of images.
HOPIS: hybrid omnidirectional and perspective imaging system for mobile robots.
Lin, Huei-Yung; Wang, Min-Liang
2014-09-04
In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach.
HOPIS: Hybrid Omnidirectional and Perspective Imaging System for Mobile Robots
Lin, Huei-Yung.; Wang, Min-Liang.
2014-01-01
In this paper, we present a framework for the hybrid omnidirectional and perspective robot vision system. Based on the hybrid imaging geometry, a generalized stereo approach is developed via the construction of virtual cameras. It is then used to rectify the hybrid image pair using the perspective projection model. The proposed method not only simplifies the computation of epipolar geometry for the hybrid imaging system, but also facilitates the stereo matching between the heterogeneous image formation. Experimental results for both the synthetic data and real scene images have demonstrated the feasibility of our approach. PMID:25192317
NASA Technical Reports Server (NTRS)
Wilcox, Mike
1993-01-01
The number of pixels per unit area sampling an image determines Nyquist resolution. Therefore, the highest pixel density is the goal. Unfortunately, as reduction in pixel size approaches the wavelength of light, sensitivity is lost and noise increases. Animals face the same problems and have achieved novel solutions. Emulating these solutions offers potentially unlimited sensitivity with detector size approaching the diffraction limit. Once an image is 'captured', cellular preprocessing of information allows extraction of high resolution information from the scene. Computer simulation of this system promises hyperacuity for machine vision.
Real-time motion artifacts compensation of ToF sensors data on GPU
NASA Astrophysics Data System (ADS)
Lefloch, Damien; Hoegg, Thomas; Kolb, Andreas
2013-05-01
Over the last decade, ToF sensors attracted many computer vision and graphics researchers. Nevertheless, ToF devices suffer from severe motion artifacts for dynamic scenes as well as low-resolution depth data which strongly justifies the importance of a valid correction. To counterbalance this effect, a pre-processing approach is introduced to greatly improve range image data on dynamic scenes. We first demonstrate the robustness of our approach using simulated data to finally validate our method using sensor range data. Our GPU-based processing pipeline enhances range data reliability in real-time.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.
2007-01-01
The use of enhanced vision systems in civil aircraft is projected to increase rapidly as the Federal Aviation Administration recently changed the aircraft operating rules under Part 91, revising the flight visibility requirements for conducting approach and landing operations. Operators conducting straight-in instrument approach procedures may now operate below the published approach minimums when using an approved enhanced flight vision system that shows the required visual references on the pilot's Head-Up Display. An experiment was conducted to evaluate the complementary use of synthetic vision systems and enhanced vision system technologies, focusing on new techniques for integration and/or fusion of synthetic and enhanced vision technologies and crew resource management while operating under these newly adopted rules. Experimental results specific to flight crew response to non-normal events using the fused synthetic/enhanced vision system are presented.
Using Vision System Technologies for Offset Approaches in Low Visibility Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K.
2015-01-01
Flight deck-based vision systems, such as Synthetic Vision Systems (SVS) and Enhanced Flight Vision Systems (EFVS), have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in Next Generation Air Transportation System low visibility approach and landing operations at Chicago O'Hare airport. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and three instrument approach types (straight-in, 3-degree offset, 15-degree offset) were experimentally varied to test the efficacy of the SVS/EFVS HUD concepts for offset approach operations. The findings suggest making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD appear feasible. Regardless of offset approach angle or HUD concept being flown, all approaches had comparable ILS tracking during the instrument segment and were within the lateral confines of the runway with acceptable sink rates during the visual segment of the approach. Keywords: Enhanced Flight Vision Systems; Synthetic Vision Systems; Head-up Display; NextGen
Research on an autonomous vision-guided helicopter
NASA Technical Reports Server (NTRS)
Amidi, Omead; Mesaki, Yuji; Kanade, Takeo
1994-01-01
Integration of computer vision with on-board sensors to autonomously fly helicopters was researched. The key components developed were custom designed vision processing hardware and an indoor testbed. The custom designed hardware provided flexible integration of on-board sensors with real-time image processing resulting in a significant improvement in vision-based state estimation. The indoor testbed provided convenient calibrated experimentation in constructing real autonomous systems.
Aguilar, Mario; Peot, Mark A; Zhou, Jiangying; Simons, Stephen; Liao, Yuwei; Metwalli, Nader; Anderson, Mark B
2012-03-01
The mammalian visual system is still the gold standard for recognition accuracy, flexibility, efficiency, and speed. Ongoing advances in our understanding of function and mechanisms in the visual system can now be leveraged to pursue the design of computer vision architectures that will revolutionize the state of the art in computer vision.
Automated Grading of Rough Hardwood Lumber
Richard W. Conners; Tai-Hoon Cho; Philip A. Araman
1989-01-01
Any automatic hardwood grading system must have two components. The first of these is a computer vision system for locating and identifying defects on rough lumber. The second is a system for automatically grading boards based on the output of the computer vision system. This paper presents research results aimed at developing the first of these components. The...
Computer Vision Systems for Hardwood Logs and Lumber
Philip A. Araman; Tai-Hoon Cho; D. Zhu; R. Conners
1991-01-01
Computer vision systems being developed at Virginia Tech University with the support and cooperation from the U.S. Forest Service are presented. Researchers at Michigan State University, West Virginia University, and Mississippi State University are also members of the research team working on various parts of this research. Our goals are to help U.S. hardwood...
NASA Technical Reports Server (NTRS)
1992-01-01
Mestech's X-15 "Eye in the Sky," a traffic monitoring system, incorporates NASA imaging and robotic vision technology. A camera or "sensor box" is mounted in a housing. The sensor detects vehicles approaching an intersection and sends the information to a computer, which controls the traffic light according to the traffic rate. Jet Propulsion Laboratory technical support packages aided in the company's development of the system. The X-15's "smart highway" can also be used to count vehicles on a highway and compute the number in each lane and their speeds, important information for freeway control engineers. Additional applications are in airport and railroad operations. The system is intended to replace loop-type traffic detectors.
A computer-vision-based rotating speed estimation method for motor bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Wang, Xiaoxian; Guo, Jie; Lu, Siliang; Shen, Changqing; He, Qingbo
2017-06-01
Diagnosis of motor bearing faults under variable speed is a problem. In this study, a new computer-vision-based order tracking method is proposed to address this problem. First, a video recorded by a high-speed camera is analyzed with the speeded-up robust feature extraction and matching algorithm to obtain the instantaneous rotating speed (IRS) of the motor. Subsequently, an audio signal recorded by a microphone is equi-angle resampled for order tracking in accordance with the IRS curve, through which the frequency-domain signal is transferred to an angular-domain one. The envelope order spectrum is then calculated to determine the fault characteristic order, and finally the bearing fault pattern is determined. The effectiveness and robustness of the proposed method are verified with two brushless direct-current motor test rigs, in which two defective bearings and a healthy bearing are tested separately. This study provides a new noninvasive measurement approach that simultaneously avoids the installation of a tachometer and overcomes the disadvantages of tacholess order tracking methods for motor bearing fault diagnosis under variable speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Sumit Kumar; Pullum, Laura L; Ramanathan, Arvind
Embedded intelligent systems ranging from tiny im- plantable biomedical devices to large swarms of autonomous un- manned aerial systems are becoming pervasive in our daily lives. While we depend on the flawless functioning of such intelligent systems, and often take their behavioral correctness and safety for granted, it is notoriously difficult to generate test cases that expose subtle errors in the implementations of machine learning algorithms. Hence, the validation of intelligent systems is usually achieved by studying their behavior on representative data sets, using methods such as cross-validation and bootstrapping.In this paper, we present a new testing methodology for studyingmore » the correctness of intelligent systems. Our approach uses symbolic decision procedures coupled with statistical hypothesis testing to. We also use our algorithm to analyze the robustness of a human detection algorithm built using the OpenCV open-source computer vision library. We show that the human detection implementation can fail to detect humans in perturbed video frames even when the perturbations are so small that the corresponding frames look identical to the naked eye.« less
Real-Time Evaluation of Breast Self-Examination Using Computer Vision
Mohammadi, Eman; Dadios, Elmer P.; Gan Lim, Laurence A.; Cabatuan, Melvin K.; Naguib, Raouf N. G.; Avila, Jose Maria C.; Oikonomou, Andreas
2014-01-01
Breast cancer is the most common cancer among women worldwide and breast self-examination (BSE) is considered as the most cost-effective approach for early breast cancer detection. The general objective of this paper is to design and develop a computer vision algorithm to evaluate the BSE performance in real-time. The first stage of the algorithm presents a method for detecting and tracking the nipples in frames while a woman performs BSE; the second stage presents a method for localizing the breast region and blocks of pixels related to palpation of the breast, and the third stage focuses on detecting the palpated blocks in the breast region. The palpated blocks are highlighted at the time of BSE performance. In a correct BSE performance, all blocks must be palpated, checked, and highlighted, respectively. If any abnormality, such as masses, is detected, then this must be reported to a doctor to confirm the presence of this abnormality and proceed to perform other confirmatory tests. The experimental results have shown that the BSE evaluation algorithm presented in this paper provides robust performance. PMID:25435860
Real-time evaluation of breast self-examination using computer vision.
Mohammadi, Eman; Dadios, Elmer P; Gan Lim, Laurence A; Cabatuan, Melvin K; Naguib, Raouf N G; Avila, Jose Maria C; Oikonomou, Andreas
2014-01-01
Breast cancer is the most common cancer among women worldwide and breast self-examination (BSE) is considered as the most cost-effective approach for early breast cancer detection. The general objective of this paper is to design and develop a computer vision algorithm to evaluate the BSE performance in real-time. The first stage of the algorithm presents a method for detecting and tracking the nipples in frames while a woman performs BSE; the second stage presents a method for localizing the breast region and blocks of pixels related to palpation of the breast, and the third stage focuses on detecting the palpated blocks in the breast region. The palpated blocks are highlighted at the time of BSE performance. In a correct BSE performance, all blocks must be palpated, checked, and highlighted, respectively. If any abnormality, such as masses, is detected, then this must be reported to a doctor to confirm the presence of this abnormality and proceed to perform other confirmatory tests. The experimental results have shown that the BSE evaluation algorithm presented in this paper provides robust performance.
Cloud computing approaches to accelerate drug discovery value chain.
Garg, Vibhav; Arora, Suchir; Gupta, Chitra
2011-12-01
Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.
Quantification of color vision using a tablet display.
Chacon, Alicia; Rabin, Jeff; Yu, Dennis; Johnston, Shawn; Bradshaw, Timothy
2015-01-01
Accurate color vision is essential for optimal performance in aviation and space environments using nonredundant color coding to convey critical information. Most color tests detect color vision deficiency (CVD) but fail to diagnose type or severity of CVD, which are important to link performance to occupational demands. The computer-based Cone Contrast Test (CCT) diagnoses type and severity of CVD. It is displayed on a netbook computer for clinical application, but a more portable version may prove useful for deployments, space and aviation cockpits, as well as accident and sports medicine settings. Our purpose was to determine if the CCT can be conducted on a tablet display (Windows 8, Microsoft, Seattle, WA) using touch-screen response input. The CCT presents colored letters visible only to red (R), green (G), and blue (B) sensitive retinal cones to determine the lowest R, G, and B cone contrast visible to the observer. The CCT was measured in 16 color vision normals (CVN) and 16 CVDs using the standard netbook computer and a Windows 8 tablet display calibrated to produce equal color contrasts. Both displays showed 100% specificity for confirming CVN and 100% sensitivity for detecting CVD. In CVNs there was no difference between scores on netbook vs. tablet displays. G cone CVDs showed slightly lower G cone CCT scores on the tablet. CVD can be diagnosed with a tablet display. Ease-of-use, portability, and complete computer capabilities make tablets ideal for multiple settings, including aviation, space, military deployments, accidents and rescue missions, and sports vision. Chacon A, Rabin J, Yu D, Johnston S, Bradshaw T. Quantification of color vision using a tablet display.
Heinrich, Andreas; Güttler, Felix; Wendt, Sebastian; Schenkl, Sebastian; Hubig, Michael; Wagner, Rebecca; Mall, Gita; Teichgräber, Ulf
2018-06-18
In forensic odontology the comparison between antemortem and postmortem panoramic radiographs (PRs) is a reliable method for person identification. The purpose of this study was to improve and automate identification of unknown people by comparison between antemortem and postmortem PR using computer vision. The study includes 43 467 PRs from 24 545 patients (46 % females/54 % males). All PRs were filtered and evaluated with Matlab R2014b including the toolboxes image processing and computer vision system. The matching process used the SURF feature to find the corresponding points between two PRs (unknown person and database entry) out of the whole database. From 40 randomly selected persons, 34 persons (85 %) could be reliably identified by corresponding PR matching points between an already existing scan in the database and the most recent PR. The systematic matching yielded a maximum of 259 points for a successful identification between two different PRs of the same person and a maximum of 12 corresponding matching points for other non-identical persons in the database. Hence 12 matching points are the threshold for reliable assignment. Operating with an automatic PR system and computer vision could be a successful and reliable tool for identification purposes. The applied method distinguishes itself by virtue of its fast and reliable identification of persons by PR. This Identification method is suitable even if dental characteristics were removed or added in the past. The system seems to be robust for large amounts of data. · Computer vision allows an automated antemortem and postmortem comparison of panoramic radiographs (PRs) for person identification.. · The present method is able to find identical matching partners among huge datasets (big data) in a short computing time.. · The identification method is suitable even if dental characteristics were removed or added.. · Heinrich A, Güttler F, Wendt S et al. Forensic Odontology: Automatic Identification of Persons Comparing Antemortem and Postmortem Panoramic Radiographs Using Computer Vision. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0632-4744. © Georg Thieme Verlag KG Stuttgart · New York.
Error analysis of satellite attitude determination using a vision-based approach
NASA Astrophysics Data System (ADS)
Carozza, Ludovico; Bevilacqua, Alessandro
2013-09-01
Improvements in communication and processing technologies have opened the doors to exploit on-board cameras to compute objects' spatial attitude using only the visual information from sequences of remote sensed images. The strategies and the algorithmic approach used to extract such information affect the estimation accuracy of the three-axis orientation of the object. This work presents a method for analyzing the most relevant error sources, including numerical ones, possible drift effects and their influence on the overall accuracy, referring to vision-based approaches. The method in particular focuses on the analysis of the image registration algorithm, carried out through on-purpose simulations. The overall accuracy has been assessed on a challenging case study, for which accuracy represents the fundamental requirement. In particular, attitude determination has been analyzed for small satellites, by comparing theoretical findings to metric results from simulations on realistic ground-truth data. Significant laboratory experiments, using a numerical control unit, have further confirmed the outcome. We believe that our analysis approach, as well as our findings in terms of error characterization, can be useful at proof-of-concept design and planning levels, since they emphasize the main sources of error for visual based approaches employed for satellite attitude estimation. Nevertheless, the approach we present is also of general interest for all the affine applicative domains which require an accurate estimation of three-dimensional orientation parameters (i.e., robotics, airborne stabilization).
Object tracking using plenoptic image sequences
NASA Astrophysics Data System (ADS)
Kim, Jae Woo; Bae, Seong-Joon; Park, Seongjin; Kim, Do Hyung
2017-05-01
Object tracking is a very important problem in computer vision research. Among the difficulties of object tracking, partial occlusion problem is one of the most serious and challenging problems. To address the problem, we proposed novel approaches to object tracking on plenoptic image sequences. Our approaches take advantage of the refocusing capability that plenoptic images provide. Our approaches input the sequences of focal stacks constructed from plenoptic image sequences. The proposed image selection algorithms select the sequence of optimal images that can maximize the tracking accuracy from the sequence of focal stacks. Focus measure approach and confidence measure approach were proposed for image selection and both of the approaches were validated by the experiments using thirteen plenoptic image sequences that include heavily occluded target objects. The experimental results showed that the proposed approaches were satisfactory comparing to the conventional 2D object tracking algorithms.
Computer Vision Research and its Applications to Automated Cartography
1985-09-01
D Scene Geometry Thomas M. Strat and Martin A. Fischler Appendix D A New Sense for Depth of Field Alex P. Pentland iv 9.* qb CONTENTS (cont’d...D modeling. A. Baseline Stereo System As a framework for integration and evaluation of our research in modeling * 3-D scene geometry , as well as a...B. New Methods for Stereo Compilation As we previously indicated, the conventional approach to recovering scene geometry from a stereo pair of
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1983-01-01
Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.
A computer vision based candidate for functional balance test.
Nalci, Alican; Khodamoradi, Alireza; Balkan, Ozgur; Nahab, Fatta; Garudadri, Harinath
2015-08-01
Balance in humans is a motor skill based on complex multimodal sensing, processing and control. Ability to maintain balance in activities of daily living (ADL) is compromised due to aging, diseases, injuries and environmental factors. Center for Disease Control and Prevention (CDC) estimate of the costs of falls among older adults was $34 billion in 2013 and is expected to reach $54.9 billion in 2020. In this paper, we present a brief review of balance impairments followed by subjective and objective tools currently used in clinical settings for human balance assessment. We propose a novel computer vision (CV) based approach as a candidate for functional balance test. The test will take less than a minute to administer and expected to be objective, repeatable and highly discriminative in quantifying ability to maintain posture and balance. We present an informal study with preliminary data from 10 healthy volunteers, and compare performance with a balance assessment system called BTrackS Balance Assessment Board. Our results show high degree of correlation with BTrackS. The proposed system promises to be a good candidate for objective functional balance tests and warrants further investigations to assess validity in clinical settings, including acute care, long term care and assisted living care facilities. Our long term goals include non-intrusive approaches to assess balance competence during ADL in independent living environments.
Computing Optic Flow with ArduEye Vision Sensor
2013-01-01
processing algorithm that can be applied to the flight control of other robotic platforms. 15. SUBJECT TERMS Optical flow, ArduEye, vision based ...2 Figure 2. ArduEye vision chip on Stonyman breakout board connected to Arduino Mega (8) (left) and the Stonyman vision chips (7...robotic platforms. There is a significant need for small, light , less power-hungry sensors and sensory data processing algorithms in order to control the
Insect vision as model for machine vision
NASA Astrophysics Data System (ADS)
Osorio, D.; Sobey, Peter J.
1992-11-01
The neural architecture, neurophysiology and behavioral abilities of insect vision are described, and compared with that of mammals. Insects have a hardwired neural architecture of highly differentiated neurons, quite different from the cerebral cortex, yet their behavioral abilities are in important respects similar to those of mammals. These observations challenge the view that the key to the power of biological neural computation is distributed processing by a plastic, highly interconnected, network of individually undifferentiated and unreliable neurons that has been a dominant picture of biological computation since Pitts and McCulloch's seminal work in the 1940's.
Optimized feature-detection for on-board vision-based surveillance
NASA Astrophysics Data System (ADS)
Gond, Laetitia; Monnin, David; Schneider, Armin
2012-06-01
The detection and matching of robust features in images is an important step in many computer vision applications. In this paper, the importance of the keypoint detection algorithms and their inherent parameters in the particular context of an image-based change detection system for IED detection is studied. Through extensive application-oriented experiments, we draw an evaluation and comparison of the most popular feature detectors proposed by the computer vision community. We analyze how to automatically adjust these algorithms to changing imaging conditions and suggest improvements in order to achieve more exibility and robustness in their practical implementation.
Modeling Drug- and Chemical-Induced Hepatotoxicity with Systems Biology Approaches
Bhattacharya, Sudin; Shoda, Lisl K.M.; Zhang, Qiang; Woods, Courtney G.; Howell, Brett A.; Siler, Scott Q.; Woodhead, Jeffrey L.; Yang, Yuching; McMullen, Patrick; Watkins, Paul B.; Andersen, Melvin E.
2012-01-01
We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of “toxicity pathways” is described in the context of the 2007 US National Academies of Science report, “Toxicity testing in the 21st Century: A Vision and A Strategy.” Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity) – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular “virtual tissue” model of the liver lobule that combines molecular circuits in individual hepatocytes with cell–cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the aryl hydrocarbon receptor toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsym™) to understand drug-induced liver injury (DILI), the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales. PMID:23248599
Differences in children and adolescents' ability of reporting two CVS-related visual problems.
Hu, Liang; Yan, Zheng; Ye, Tiantian; Lu, Fan; Xu, Peng; Chen, Hao
2013-01-01
The present study examined whether children and adolescents can correctly report dry eyes and blurred distance vision, two visual problems associated with computer vision syndrome. Participants are 913 children and adolescents aged 6-17. They were asked to report their visual problems, including dry eyes and blurred distance vision, and received an eye examination, including tear film break-up time (TFBUT) and visual acuity (VA). Inconsistency was found between participants' reports of dry eyes and TFBUT results among all 913 participants as well as for all of four subgroups. In contrast, consistency was found between participants' reports of blurred distance vision and VA results among 873 participants who had never worn glasses as well as for the four subgroups. It was concluded that children and adolescents are unable to report dry eyes correctly; however, they are able to report blurred distance vision correctly. Three practical implications of the findings were discussed. Little is known about children's ability to report their visual problems, an issue critical to diagnosis and treatment of children's computer vision syndrome. This study compared children's self-reports and clinic examination results and found children can correctly report blurred distance vision but not dry eyes.
Analysis of Global Properties of Shapes
2010-06-01
Conference on Computer Vision (ICCV) ( Bejing , China , 2005), IEEE. [113] Thrun, S., and Wegbreit, B. Shape from symmetry. In Proceedings of the...International Conference on Computer Vision (ICCV) ( Bejing , China , 2005), IEEE. [114] Toshev, A., Shi, J., and Daniilidis, K. Image matching via saliency...applications ranging from sampling points to finding correspondences to shape simplification. Discrete variants of the Laplace-Beltrami opera - tor [108] and
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.
2003-01-01
A simulation study was conducted in 1994 at Langley Research Center that used 12 commercial airline pilots repeatedly flying complex Microwave Landing System (MLS)-type approaches to parallel runways under Category IIIc weather conditions. Two sensor insert concepts of 'Synthetic Vision Systems' (SVS) were used in the simulated flights, with a more conventional electro-optical display (similar to a Head-Up Display with raster capability for sensor imagery), flown under less restrictive visibility conditions, used as a control condition. The SVS concepts combined the sensor imagery with a computer-generated image (CGI) of an out-the-window scene based on an onboard airport database. Various scenarios involving runway traffic incursions (taxiing aircraft and parked fuel trucks) and navigational system position errors (both static and dynamic) were used to assess the pilots' ability to manage the approach task with the display concepts. The two SVS sensor insert concepts contrasted the simple overlay of sensor imagery on the CGI scene without additional image processing (the SV display) to the complex integration (the AV display) of the CGI scene with pilot-decision aiding using both object and edge detection techniques for detection of obstacle conflicts and runway alignment errors.
When Dijkstra Meets Vanishing Point: A Stereo Vision Approach for Road Detection.
Zhang, Yigong; Su, Yingna; Yang, Jian; Ponce, Jean; Kong, Hui
2018-05-01
In this paper, we propose a vanishing-point constrained Dijkstra road model for road detection in a stereo-vision paradigm. First, the stereo-camera is used to generate the u- and v-disparity maps of road image, from which the horizon can be extracted. With the horizon and ground region constraints, we can robustly locate the vanishing point of road region. Second, a weighted graph is constructed using all pixels of the image, and the detected vanishing point is treated as the source node of the graph. By computing a vanishing-point constrained Dijkstra minimum-cost map, where both disparity and gradient of gray image are used to calculate cost between two neighbor pixels, the problem of detecting road borders in image is transformed into that of finding two shortest paths that originate from the vanishing point to two pixels in the last row of image. The proposed approach has been implemented and tested over 2600 grayscale images of different road scenes in the KITTI data set. The experimental results demonstrate that this training-free approach can detect horizon, vanishing point, and road regions very accurately and robustly. It can achieve promising performance.
Monitoring system of multiple fire fighting based on computer vision
NASA Astrophysics Data System (ADS)
Li, Jinlong; Wang, Li; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke
2010-10-01
With the high demand of fire control in spacious buildings, computer vision is playing a more and more important role. This paper presents a new monitoring system of multiple fire fighting based on computer vision and color detection. This system can adjust to the fire position and then extinguish the fire by itself. In this paper, the system structure, working principle, fire orientation, hydrant's angle adjusting and system calibration are described in detail; also the design of relevant hardware and software is introduced. At the same time, the principle and process of color detection and image processing are given as well. The system runs well in the test, and it has high reliability, low cost, and easy nodeexpanding, which has a bright prospect of application and popularization.
1985-01-01
The NASA imaging processing technology, an advanced computer technique to enhance images sent to Earth in digital form by distant spacecraft, helped develop a new vision screening process. The Ocular Vision Screening system, an important step in preventing vision impairment, is a portable device designed especially to detect eye problems in children through the analysis of retinal reflexes.
Institutional Vision at Proprietary Schools: Advising for Profit
ERIC Educational Resources Information Center
Abelman, Robert; Dalessandro, Amy; Janstova, Patricie; Snyder-Suhy, Sharon
2007-01-01
A college or university's general approach to students and student support services, as reflected in its institutional vision, can serve to advocate the adoption of one type of advising structure, approach, and delivery system over another. A content analysis of a nationwide sample of institutional vision statements from NACADA-membership colleges…
... in Your Area Stories of Hope Videos Resources Low Vision Specialists Retinal Physicians My Retina Tracker Registry Genetic ... a treatment is discovered, help is available through low-vision aids, including optical, electronic, and computer-based devices. ...
Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition.
Grossberg, Stephen
2007-01-01
A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of preattentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.
A self-learning camera for the validation of highly variable and pseudorandom patterns
NASA Astrophysics Data System (ADS)
Kelley, Michael
2004-05-01
Reliable and productive manufacturing operations have depended on people to quickly detect and solve problems whenever they appear. Over the last 20 years, more and more manufacturing operations have embraced machine vision systems to increase productivity, reliability and cost-effectiveness, including reducing the number of human operators required. Although machine vision technology has long been capable of solving simple problems, it has still not been broadly implemented. The reason is that until now, no machine vision system has been designed to meet the unique demands of complicated pattern recognition. The ZiCAM family was specifically developed to be the first practical hardware to meet these needs. To be able to address non-traditional applications, the machine vision industry must include smart camera technology that meets its users" demands for lower costs, better performance and the ability to address applications of irregular lighting, patterns and color. The next-generation smart cameras will need to evolve as a fundamentally different kind of sensor, with new technology that behaves like a human but performs like a computer. Neural network based systems, coupled with self-taught, n-space, non-linear modeling, promises to be the enabler of the next generation of machine vision equipment. Image processing technology is now available that enables a system to match an operator"s subjectivity. A Zero-Instruction-Set-Computer (ZISC) powered smart camera allows high-speed fuzzy-logic processing, without the need for computer programming. This can address applications of validating highly variable and pseudo-random patterns. A hardware-based implementation of a neural network, Zero-Instruction-Set-Computer, enables a vision system to "think" and "inspect" like a human, with the speed and reliability of a machine.
Eyesight quality and Computer Vision Syndrome.
Bogdănici, Camelia Margareta; Săndulache, Diana Elena; Nechita, Corina Andreea
2017-01-01
The aim of the study was to analyze the effects that gadgets have on eyesight quality. A prospective observational study was conducted from January to July 2016, on 60 people who were divided into two groups: Group 1 - 30 middle school pupils with a mean age of 11.9 ± 1.86 and Group 2 - 30 patients evaluated in the Ophthalmology Clinic, "Sf. Spiridon" Hospital, Iași, with a mean age of 21.36 ± 7.16 years. The clinical parameters observed were the following: visual acuity (VA), objective refraction, binocular vision (BV), fusional amplitude (FA), Schirmer's test. A questionnaire was also distributed, which contained 8 questions that highlighted the gadget's impact on the eyesight. The use of different gadgets, such as computer, laptops, mobile phones or other displays become part of our everyday life and people experience a variety of ocular symptoms or vision problems related to these. Computer Vision Syndrome (CVS) represents a group of visual and extraocular symptoms associated with sustained use of visual display terminals. Headache, blurred vision, and ocular congestion are the most frequent manifestations determined by the long time use of gadgets. Mobile phones and laptops are the most frequently used gadgets. People who use gadgets for a long time have a sustained effort for accommodation. A small amount of refractive errors (especially myopic shift) was objectively recorded by various studies on near work. Dry eye syndrome could also be identified, and an improvement of visual comfort could be observed after the instillation of artificial tears drops. Computer Vision Syndrome is still under-diagnosed, and people should be made aware of the bad effects the prolonged use of gadgets has on eyesight.
Eyesight quality and Computer Vision Syndrome
Bogdănici, Camelia Margareta; Săndulache, Diana Elena; Nechita, Corina Andreea
2017-01-01
The aim of the study was to analyze the effects that gadgets have on eyesight quality. A prospective observational study was conducted from January to July 2016, on 60 people who were divided into two groups: Group 1 – 30 middle school pupils with a mean age of 11.9 ± 1.86 and Group 2 – 30 patients evaluated in the Ophthalmology Clinic, “Sf. Spiridon” Hospital, Iași, with a mean age of 21.36 ± 7.16 years. The clinical parameters observed were the following: visual acuity (VA), objective refraction, binocular vision (BV), fusional amplitude (FA), Schirmer’s test. A questionnaire was also distributed, which contained 8 questions that highlighted the gadget’s impact on the eyesight. The use of different gadgets, such as computer, laptops, mobile phones or other displays become part of our everyday life and people experience a variety of ocular symptoms or vision problems related to these. Computer Vision Syndrome (CVS) represents a group of visual and extraocular symptoms associated with sustained use of visual display terminals. Headache, blurred vision, and ocular congestion are the most frequent manifestations determined by the long time use of gadgets. Mobile phones and laptops are the most frequently used gadgets. People who use gadgets for a long time have a sustained effort for accommodation. A small amount of refractive errors (especially myopic shift) was objectively recorded by various studies on near work. Dry eye syndrome could also be identified, and an improvement of visual comfort could be observed after the instillation of artificial tears drops. Computer Vision Syndrome is still under-diagnosed, and people should be made aware of the bad effects the prolonged use of gadgets has on eyesight. PMID:29450383
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.
2010-01-01
New foundational ideas are used to define a novel approach to generic visual pattern recognition. These ideas proceed from the starting point of the intrinsic equivalence of noise reduction and pattern recognition when noise reduction is taken to its theoretical limit of explicit matched filtering. This led us to think of the logical extension of sparse coding using basis function transforms for both de-noising and pattern recognition to the full pattern specificity of a lexicon of matched filter pattern templates. A key hypothesis is that such a lexicon can be constructed and is, in fact, a generic visual alphabet of spatial vision. Hence it provides a tractable solution for the design of a generic pattern recognition engine. Here we present the key scientific ideas, the basic design principles which emerge from these ideas, and a preliminary design of the Spatial Vision Tree (SVT). The latter is based upon a cryptographic approach whereby we measure a large aggregate estimate of the frequency of occurrence (FOO) for each pattern. These distributions are employed together with Hamming distance criteria to design a two-tier tree. Then using information theory, these same FOO distributions are used to define a precise method for pattern representation. Finally the experimental performance of the preliminary SVT on computer generated test images and complex natural images is assessed.
Audible vision for the blind and visually impaired in indoor open spaces.
Yu, Xunyi; Ganz, Aura
2012-01-01
In this paper we introduce Audible Vision, a system that can help blind and visually impaired users navigate in large indoor open spaces. The system uses computer vision to estimate the location and orientation of the user, and enables the user to perceive his/her relative position to a landmark through 3D audio. Testing shows that Audible Vision can work reliably in real-life ever-changing environment crowded with people.
2012-09-01
The Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance (CTA): Scientific Vision, Approach, and Translational Paths by...The Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance (CTA): Scientific Vision, Approach, and Translational Paths Kelvin S. Oie...REPORT DATE (DD-MM-YYYY) September 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE The Cognition and Neuroergonomics
... magnifying reading glasses or loupes for seeing the computer screen , sheet music, or for sewing telescopic glasses ... for the Blind services. The Low Vision Pilot Project The American Foundation for the Blind (AFB) has ...
The infection algorithm: an artificial epidemic approach for dense stereo correspondence.
Olague, Gustavo; Fernández, Francisco; Pérez, Cynthia B; Lutton, Evelyne
2006-01-01
We present a new bio-inspired approach applied to a problem of stereo image matching. This approach is based on an artificial epidemic process, which we call the infection algorithm. The problem at hand is a basic one in computer vision for 3D scene reconstruction. It has many complex aspects and is known as an extremely difficult one. The aim is to match the contents of two images in order to obtain 3D information that allows the generation of simulated projections from a viewpoint that is different from the ones of the initial photographs. This process is known as view synthesis. The algorithm we propose exploits the image contents in order to produce only the necessary 3D depth information, while saving computational time. It is based on a set of distributed rules, which propagate like an artificial epidemic over the images. Experiments on a pair of real images are presented, and realistic reprojected images have been generated.
Development of a Vision-Based Situational Awareness Capability for Unmanned Surface Vessels
2017-09-01
used to provide an SA capability for USVs. This thesis addresses the following research questions: (1) Can a computer vision– based technique be...BLANK 51 VI. CONCLUSION AND RECOMMENDATIONS A. CONCLUSION This research demonstrated the feasibility of using a computer vision– based ...VISION- BASED SITUATIONAL AWARENESS CAPABILITY FOR UNMANNED SURFACE VESSELS by Ying Jie Benjemin Toh September 2017 Thesis Advisor: Oleg
Heliophysics Data Environment: What's next? (Invited)
NASA Astrophysics Data System (ADS)
Martens, P.
2010-12-01
In the last two decades the Heliophysics community has witnessed the societal recognition of the importance of space weather and space climate for our technology and ecology, resulting in a renewed priority for and investment in Heliophysics. As a result of that and the explosive development of information technology, Heliophysics has experienced an exponential growth in the amount and variety of data acquired, as well as the easy electronic storage and distribution of these data. The Heliophysics community has responded well to these challenges. The first, most obvious and most needed response, was the development of Virtual Heliophysics Observatories. While the VxOs of Heliophysics still need a lot of work with respect to the expansion of search options and interoperability, I believe the basic structures and functionalities have been established, and that they meet the needs of the community. In the future we'll see a refinement, completion, and integration of VxOs, not a fundamentally different approach -- in my opinion. The challenge posed by the huge increase in amount of data is not met by VxOs alone. No individual scientist or group, even with the assistance of tons of graduate students, can analyze the torrent of data currently coming down from the fleet of heliospheric observatories. Once more information technology provides an opportunity: Automated feature recognition of solar imagery is feasible, has been implemented in a number of instances, and is strongly supported by NASA. For example, the SDO Feature Finding Team is developing a suite of 16 feature recognition modules for SDO imagery that operates in near-real time, produces space-weather warnings, and populates on-line event catalogs. Automated feature recognition -- "computer vision" -- not only save enormous amounts of time in the analysis of events, it also allows for a shift from the analysis of single events to that of sets of features and events -- the latter being by far the most important implication of computer vision. Consider some specific examples of possibilities here: From the on-line SDO metadata a user can produce with a few IDL line commands information that previously would have taken years to compile, e.g.: - Draw a butterfly diagram for Active Regions, - Find all filaments that coincide with sigmoids and correlate the automatically detected sigmoid handedness with filament chirality, - Correlate EUV jets with small scale flux emergence in coronal holes only, - Draw PIL maps with regions of high shear and large magnetic field gradients overlayed, to pinpoint potential flaring regions. Then correlate with actual flare occurrence. I emphasize that the access to those metadata will be provided by VxOs, and that the interplay between computer vision codes and data will be facilitated by VxOs. My vision for the near and medium future for the VxOs is then to provide a simple and seamless interface between data, cataloged metadata, and computer vision software, either existing or newly developed by the user. Heliospheric virtual observatories and computer vision systems will work together to constantly monitor the Sun, provide space weather warnings, populate catalogs of metadata, analyze trends, and produce real-time on-line imagery of current events.
NASA Astrophysics Data System (ADS)
Valberg, Arne
2005-04-01
Light Vision Color takes a well-balanced, interdisciplinary approach to our most important sensory system. The book successfully combines basics in vision sciences with recent developments from different areas such as neuroscience, biophysics, sensory psychology and philosophy. Originally published in 1998 this edition has been extensively revised and updated to include new chapters on clinical problems and eye diseases, low vision rehabilitation and the basic molecular biology and genetics of colour vision. Takes a broad interdisciplinary approach combining basics in vision sciences with the most recent developments in the area Includes an extensive list of technical terms and explanations to encourage student understanding Successfully brings together the most important areas of the subject in to one volume
Bio-inspired vision based robot control using featureless estimations of time-to-contact.
Zhang, Haijie; Zhao, Jianguo
2017-01-31
Marvelous vision based dynamic behaviors of insects and birds such as perching, landing, and obstacle avoidance have inspired scientists to propose the idea of time-to-contact, which is defined as the time for a moving observer to contact an object or surface if the current velocity is maintained. Since with only a vision sensor, time-to-contact can be directly estimated from consecutive images, it is widely used for a variety of robots to fulfill various tasks such as obstacle avoidance, docking, chasing, perching and landing. However, most of existing methods to estimate the time-to-contact need to extract and track features during the control process, which is time-consuming and cannot be applied to robots with limited computation power. In this paper, we adopt a featureless estimation method, extend this method to more general settings with angular velocities, and improve the estimation results using Kalman filtering. Further, we design an error based controller with gain scheduling strategy to control the motion of mobile robots. Experiments for both estimation and control are conducted using a customized mobile robot platform with low-cost embedded systems. Onboard experimental results demonstrate the effectiveness of the proposed approach, with the robot being controlled to successfully dock in front of a vertical wall. The estimation and control methods presented in this paper can be applied to computation-constrained miniature robots for agile locomotion such as landing, docking, or navigation.
Design And Implementation Of Integrated Vision-Based Robotic Workcells
NASA Astrophysics Data System (ADS)
Chen, Michael J.
1985-01-01
Reports have been sparse on large-scale, intelligent integration of complete robotic systems for automating the microelectronics industry. This paper describes the application of state-of-the-art computer-vision technology for manufacturing of miniaturized electronic components. The concepts of FMS - Flexible Manufacturing Systems, work cells, and work stations and their control hierarchy are illustrated in this paper. Several computer-controlled work cells used in the production of thin-film magnetic heads are described. These cells use vision for in-process control of head-fixture alignment and real-time inspection of production parameters. The vision sensor and other optoelectronic sensors, coupled with transport mechanisms such as steppers, x-y-z tables, and robots, have created complete sensorimotor systems. These systems greatly increase the manufacturing throughput as well as the quality of the final product. This paper uses these automated work cells as examples to exemplify the underlying design philosophy and principles in the fabrication of vision-based robotic systems.
Illumination-based synchronization of high-speed vision sensors.
Hou, Lei; Kagami, Shingo; Hashimoto, Koichi
2010-01-01
To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.
Demongeot, Jacques; Fouquet, Yannick; Tayyab, Muhammad; Vuillerme, Nicolas
2009-01-01
Background Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. Methodology First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. Conclusions We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery. PMID:19547712
Image Understanding Architecture
1991-09-01
architecture to support real-time, knowledge -based image understanding , and develop the software support environment that will be needed to utilize...NUMBER OF PAGES Image Understanding Architecture, Knowledge -Based Vision, AI Real-Time Computer Vision, Software Simulator, Parallel Processor IL PRICE... information . In addition to sensory and knowledge -based processing it is useful to introduce a level of symbolic processing. Thus, vision researchers
Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.
Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O
2014-12-01
Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dietary Approaches to Protect Against Eye Blast Induced Oxidative Stress and Vision Loss
2016-11-01
supplementation of antioxidants and antioxidant enzymes. The ultimate goal of this study was to identify a dietary intervention that could protect...AWARD NUMBER: W81XWH-15-1-0096 TITLE: Dietary Approaches to Protect Against Eye Blast-Induced Oxidative Stress and Vision Loss PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Dietary Approaches to Protect Against Eye Blast-Induced Oxidative Stress and Vision Loss 5b. GRANT NUMBER
Guidance of visual attention by semantic information in real-world scenes
Wu, Chia-Chien; Wick, Farahnaz Ahmed; Pomplun, Marc
2014-01-01
Recent research on attentional guidance in real-world scenes has focused on object recognition within the context of a scene. This approach has been valuable for determining some factors that drive the allocation of visual attention and determine visual selection. This article provides a review of experimental work on how different components of context, especially semantic information, affect attentional deployment. We review work from the areas of object recognition, scene perception, and visual search, highlighting recent studies examining semantic structure in real-world scenes. A better understanding on how humans parse scene representations will not only improve current models of visual attention but also advance next-generation computer vision systems and human-computer interfaces. PMID:24567724
Deformation-based augmented reality for hepatic surgery.
Haouchine, Nazim; Dequidt, Jérémie; Berger, Marie-Odile; Cotin, Stéphane
2013-01-01
In this paper we introduce a method for augmenting the laparoscopic view during hepatic tumor resection. Using augmented reality techniques, vessels, tumors and cutting planes computed from pre-operative data can be overlaid onto the laparoscopic video. Compared to current techniques, which are limited to a rigid registration of the pre-operative liver anatomy with the intra-operative image, we propose a real-time, physics-based, non-rigid registration. The main strength of our approach is that the deformable model can also be used to regularize the data extracted from the computer vision algorithms. We show preliminary results on a video sequence which clearly highlights the interest of using physics-based model for elastic registration.
Zhou, Ji; Applegate, Christopher; Alonso, Albor Dobon; Reynolds, Daniel; Orford, Simon; Mackiewicz, Michal; Griffiths, Simon; Penfield, Steven; Pullen, Nick
2017-01-01
Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat ( Triticum aestivum ) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.
Low Vision Aids and Low Vision Rehabilitation
... SeeingAI), magnify, or illuminate. Another app, EyeNote, is free for Apple products. It scans and identifies the denomination of U.S. paper money. Computers that can read aloud or magnify what ...
Supporting Real-Time Computer Vision Workloads using OpenVX on Multicore+GPU Platforms
2015-05-01
a registered trademark of the NVIDIA Corporation . Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection...from NVIDIA , we adapted an alpha- version of an NVIDIA OpenVX implementation called VisionWorks® [3] to run atop PGMRT (a graph-based mid- dleware...time support to an OpenVX implementation by NVIDIA called VisionWorks. Our modifications were applied to an alpha-version of VisionWorks. This alpha
Real-time depth processing for embedded platforms
NASA Astrophysics Data System (ADS)
Rahnama, Oscar; Makarov, Aleksej; Torr, Philip
2017-05-01
Obtaining depth information of a scene is an important requirement in many computer-vision and robotics applications. For embedded platforms, passive stereo systems have many advantages over their active counterparts (i.e. LiDAR, Infrared). They are power efficient, cheap, robust to lighting conditions and inherently synchronized to the RGB images of the scene. However, stereo depth estimation is a computationally expensive task that operates over large amounts of data. For embedded applications which are often constrained by power consumption, obtaining accurate results in real-time is a challenge. We demonstrate a computationally and memory efficient implementation of a stereo block-matching algorithm in FPGA. The computational core achieves a throughput of 577 fps at standard VGA resolution whilst consuming less than 3 Watts of power. The data is processed using an in-stream approach that minimizes memory-access bottlenecks and best matches the raster scan readout of modern digital image sensors.
Vision Based Autonomous Robotic Control for Advanced Inspection and Repair
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2014-01-01
The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.
NASA Astrophysics Data System (ADS)
Moore, Linda A.; Ferreira, Jannie T.
2003-03-01
Sports vision encompasses the visual assessment and provision of sports-specific visual performance enhancement and ocular protection for athletes of all ages, genders and levels of participation. In recent years, sports vision has been identified as one of the key performance indicators in sport. It is built on four main cornerstones: corrective eyewear, protective eyewear, visual skills enhancement and performance enhancement. Although clinically well established in the US, it is still a relatively new area of optometric specialisation elsewhere in the world and is gaining increasing popularity with eyecare practitioners and researchers. This research is often multi-disciplinary and involves input from a variety of subject disciplines, mainly those of optometry, medicine, physiology, psychology, physics, chemistry, computer science and engineering. Collaborative research projects are currently underway between staff of the Schools of Physics and Computing (DIT) and the Academy of Sports Vision (RAU).
Database Integrity Monitoring for Synthetic Vision Systems Using Machine Vision and SHADE
NASA Technical Reports Server (NTRS)
Cooper, Eric G.; Young, Steven D.
2005-01-01
In an effort to increase situational awareness, the aviation industry is investigating technologies that allow pilots to visualize what is outside of the aircraft during periods of low-visibility. One of these technologies, referred to as Synthetic Vision Systems (SVS), provides the pilot with real-time computer-generated images of obstacles, terrain features, runways, and other aircraft regardless of weather conditions. To help ensure the integrity of such systems, methods of verifying the accuracy of synthetically-derived display elements using onboard remote sensing technologies are under investigation. One such method is based on a shadow detection and extraction (SHADE) algorithm that transforms computer-generated digital elevation data into a reference domain that enables direct comparison with radar measurements. This paper describes machine vision techniques for making this comparison and discusses preliminary results from application to actual flight data.
Global spectral graph wavelet signature for surface analysis of carpal bones
NASA Astrophysics Data System (ADS)
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.
2018-02-01
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
Global spectral graph wavelet signature for surface analysis of carpal bones.
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A
2018-02-05
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
NASA Astrophysics Data System (ADS)
Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien
2012-09-01
This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.
Automatic Reconstruction of Spacecraft 3D Shape from Imagery
NASA Astrophysics Data System (ADS)
Poelman, C.; Radtke, R.; Voorhees, H.
We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences
NASA Technical Reports Server (NTRS)
Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri
2014-01-01
This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.
Remote media vision-based computer input device
NASA Astrophysics Data System (ADS)
Arabnia, Hamid R.; Chen, Ching-Yi
1991-11-01
In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.
Weidling, Patrick; Jaschinski, Wolfgang
2015-01-01
When presbyopic employees are wearing general-purpose progressive lenses, they have clear vision only with a lower gaze inclination to the computer monitor, given the head assumes a comfortable inclination. Therefore, in the present intervention field study the monitor position was lowered, also with the aim to reduce musculoskeletal symptoms. A comparison group comprised users of lenses that do not restrict the field of clear vision. The lower monitor positions led the participants to lower their head inclination, which was linearly associated with a significant reduction in musculoskeletal symptoms. However, for progressive lenses a lower head inclination means a lower zone of clear vision, so that clear vision of the complete monitor was not achieved, rather the monitor should have been placed even lower. The procedures of this study may be useful for optimising the individual monitor position depending on the comfortable head and gaze inclination and the vertical zone of clear vision of progressive lenses. For users of general-purpose progressive lenses, it is suggested that low monitor positions allow for clear vision at the monitor and for a physiologically favourable head inclination. Employees may improve their workplace using a flyer providing ergonomic-optometric information.
Computer vision syndrome: A review.
Gowrisankaran, Sowjanya; Sheedy, James E
2015-01-01
Computer vision syndrome (CVS) is a collection of symptoms related to prolonged work at a computer display. This article reviews the current knowledge about the symptoms, related factors and treatment modalities for CVS. Relevant literature on CVS published during the past 65 years was analyzed. Symptoms reported by computer users are classified into internal ocular symptoms (strain and ache), external ocular symptoms (dryness, irritation, burning), visual symptoms (blur, double vision) and musculoskeletal symptoms (neck and shoulder pain). The major factors associated with CVS are either environmental (improper lighting, display position and viewing distance) and/or dependent on the user's visual abilities (uncorrected refractive error, oculomotor disorders and tear film abnormalities). Although the factors associated with CVS have been identified the physiological mechanisms that underlie CVS are not completely understood. Additionally, advances in technology have led to the increased use of hand-held devices, which might impose somewhat different visual challenges compared to desktop displays. Further research is required to better understand the physiological mechanisms underlying CVS and symptoms associated with the use of hand-held and stereoscopic displays.
Feedforward object-vision models only tolerate small image variations compared to human
Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi
2014-01-01
Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modeling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well in image categorization under more complex image variations. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e., briefly presented masked stimuli with complex image variations), human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modeling. We show that this approach is not of significant help in solving the computational crux of object recognition (i.e., invariant object recognition) when the identity-preserving image variations become more complex. PMID:25100986
Parallel Algorithms for Computer Vision
1990-04-01
NA86-1, Thinking Machines Corporation, Cambridge, MA, December 1986. [43] J. Little, G. Blelloch, and T. Cass. How to program the connection machine for... to program the connection machine for computer vision. In Proc. Workshop on Comp. Architecture for Pattern Analysis and Machine Intell., 1987. [92] J...In Proceedings of SPIE Conf. on Advances in Intelligent Robotics Systems, Bellingham, VA, 1987. SPIE. [91] J. Little, G. Blelloch, and T. Cass. How
From Image Analysis to Computer Vision: Motives, Methods, and Milestones.
1998-07-01
images. Initially, work on digital image analysis dealt with specific classes of images such as text, photomicrographs, nuclear particle tracks, and aerial...photographs; but by the 1960’s, general algorithms and paradigms for image analysis began to be formulated. When the artificial intelligence...scene, but eventually from image sequences obtained by a moving camera; at this stage, image analysis had become scene analysis or computer vision
A real-time camera calibration system based on OpenCV
NASA Astrophysics Data System (ADS)
Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng
2015-07-01
Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.
Effects of job-related stress and burnout on asthenopia among high-tech workers.
Ostrovsky, Anat; Ribak, Joseph; Pereg, Avihu; Gaton, Dan
2012-01-01
Eye- and vision-related symptoms are the most frequent health problems among computer users. The findings of eye strain, tired eyes, eye irritation, burning sensation, redness, blurred vision and double vision, when appearing together, have recently been termed 'computer vision syndrome', or asthenopia. To examine the frequency and intensity of asthenopia among individuals employed in research and development departments of high-tech firms and the effects of job stress and burnout on ocular complaints, this study included 106 subjects, 42 high-tech workers (study group) and 64 bank employees (control group). All participants completed self-report questionnaires covering demographics, asthenopia, satisfaction with work environmental conditions, job-related stress and burnout. There was a significant between-group difference in the intensity of asthenopia, but not in its frequency. Burnout appeared to be a significant contributing factor to the intensity and frequency of asthenopia. This study shows that burnout is a significant factor in asthenopic complaints in high-tech workers. This manuscript analyses the effects of psychological environmental factors, such as job stress and burnout, on ocular complaints at the workplace of computer users. The findings may have an ergonomic impact on how to improve health, safety and comfort of the working environment among computer users, for better perception of the job environment, efficacy and production.
Tsechpenakis, Gabriel; Bianchi, Laura; Metaxas, Dimitris; Driscoll, Monica
2008-05-01
The nematode Caenorhabditis elegans (C. elegans) is a genetic model widely used to dissect conserved basic biological mechanisms of development and nervous system function. C. elegans locomotion is under complex neuronal regulation and is impacted by genetic and environmental factors; thus, its analysis is expected to shed light on how genetic, environmental, and pathophysiological processes control behavior. To date, computer-based approaches have been used for analysis of C. elegans locomotion; however, none of these is both high resolution and high throughput. We used computer vision methods to develop a novel automated approach for analyzing the C. elegans locomotion. Our method provides information on the position, trajectory, and body shape during locomotion and is designed to efficiently track multiple animals (C. elegans) in cluttered images and under lighting variations. We used this method to describe in detail C. elegans movement in liquid for the first time and to analyze six unc-8, one mec-4, and one odr-1 mutants. We report features of nematode swimming not previously noted and show that our method detects differences in the swimming profile of mutants that appear at first glance similar.
A comparative study of deep learning models for medical image classification
NASA Astrophysics Data System (ADS)
Dutta, Suvajit; Manideep, B. C. S.; Rai, Shalva; Vijayarajan, V.
2017-11-01
Deep Learning(DL) techniques are conquering over the prevailing traditional approaches of neural network, when it comes to the huge amount of dataset, applications requiring complex functions demanding increase accuracy with lower time complexities. Neurosciences has already exploited DL techniques, thus portrayed itself as an inspirational source for researchers exploring the domain of Machine learning. DL enthusiasts cover the areas of vision, speech recognition, motion planning and NLP as well, moving back and forth among fields. This concerns with building models that can successfully solve variety of tasks requiring intelligence and distributed representation. The accessibility to faster CPUs, introduction of GPUs-performing complex vector and matrix computations, supported agile connectivity to network. Enhanced software infrastructures for distributed computing worked in strengthening the thought that made researchers suffice DL methodologies. The paper emphases on the following DL procedures to traditional approaches which are performed manually for classifying medical images. The medical images are used for the study Diabetic Retinopathy(DR) and computed tomography (CT) emphysema data. Both DR and CT data diagnosis is difficult task for normal image classification methods. The initial work was carried out with basic image processing along with K-means clustering for identification of image severity levels. After determining image severity levels ANN has been applied on the data to get the basic classification result, then it is compared with the result of DNNs (Deep Neural Networks), which performed efficiently because of its multiple hidden layer features basically which increases accuracy factors, but the problem of vanishing gradient in DNNs made to consider Convolution Neural Networks (CNNs) as well for better results. The CNNs are found to be providing better outcomes when compared to other learning models aimed at classification of images. CNNs are favoured as they provide better visual processing models successfully classifying the noisy data as well. The work centres on the detection on Diabetic Retinopathy-loss in vision and recognition of computed tomography (CT) emphysema data measuring the severity levels for both cases. The paper discovers how various Machine Learning algorithms can be implemented ensuing a supervised approach, so as to get accurate results with less complexity possible.
NASA Astrophysics Data System (ADS)
Chonacky, Norman; Winch, David
2008-04-01
There is substantial evidence of a need to make computation an integral part of the undergraduate physics curriculum. This need is consistent with data from surveys in both the academy and the workplace, and has been reinforced by two years of exploratory efforts by a group of physics faculty for whom computation is a special interest. We have examined past and current efforts at reform and a variety of strategic, organizational, and institutional issues involved in any attempt to broadly transform existing practice. We propose a set of guidelines for development based on this past work and discuss our vision of computationally integrated physics.
Computer Vision Syndrome and Associated Factors Among Medical and Engineering Students in Chennai
Logaraj, M; Madhupriya, V; Hegde, SK
2014-01-01
Background: Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. Aim: The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. Subjects and Methods: A cross-sectional study was conducted among medical and engineering college students of a University situated in the suburban area of Chennai. Students who used computer in the month preceding the date of study were included in the study. The participants were surveyed using pre-tested structured questionnaire. Results: Among engineering students, the prevalence of CVS was found to be 81.9% (176/215) while among medical students; it was found to be 78.6% (158/201). A significantly higher proportion of engineering students 40.9% (88/215) used computers for 4-6 h/day as compared to medical students 10% (20/201) (P < 0.001). The reported symptoms of CVS were higher among engineering students compared with medical students. Students who used computer for 4-6 h were at significantly higher risk of developing redness (OR = 1.2, 95% CI = 1.0-3.1,P = 0.04), burning sensation (OR = 2.1,95% CI = 1.3-3.1, P < 0.01) and dry eyes (OR = 1.8, 95% CI = 1.1-2.9, P = 0.02) compared to those who used computer for less than 4 h. Significant correlation was found between increased hours of computer use and the symptoms redness, burning sensation, blurred vision and dry eyes. Conclusion: The present study revealed that more than three-fourth of the students complained of any one of the symptoms of CVS while working on the computer. PMID:24761234
Computer vision syndrome and associated factors among medical and engineering students in chennai.
Logaraj, M; Madhupriya, V; Hegde, Sk
2014-03-01
Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. A cross-sectional study was conducted among medical and engineering college students of a University situated in the suburban area of Chennai. Students who used computer in the month preceding the date of study were included in the study. The participants were surveyed using pre-tested structured questionnaire. Among engineering students, the prevalence of CVS was found to be 81.9% (176/215) while among medical students; it was found to be 78.6% (158/201). A significantly higher proportion of engineering students 40.9% (88/215) used computers for 4-6 h/day as compared to medical students 10% (20/201) (P < 0.001). The reported symptoms of CVS were higher among engineering students compared with medical students. Students who used computer for 4-6 h were at significantly higher risk of developing redness (OR = 1.2, 95% CI = 1.0-3.1,P = 0.04), burning sensation (OR = 2.1,95% CI = 1.3-3.1, P < 0.01) and dry eyes (OR = 1.8, 95% CI = 1.1-2.9, P = 0.02) compared to those who used computer for less than 4 h. Significant correlation was found between increased hours of computer use and the symptoms redness, burning sensation, blurred vision and dry eyes. The present study revealed that more than three-fourth of the students complained of any one of the symptoms of CVS while working on the computer.
Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications
NASA Astrophysics Data System (ADS)
Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon
1997-04-01
A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.
ERIC Educational Resources Information Center
Pinkwart, Niels
2016-01-01
This paper attempts an analysis of some current trends and future developments in computer science, education, and educational technology. Based on these trends, two possible future predictions of AIED are presented in the form of a utopian vision and a dystopian vision. A comparison of these two visions leads to seven challenges that AIED might…
Merged Vision and GPS Control of a Semi-Autonomous, Small Helicopter
NASA Technical Reports Server (NTRS)
Rock, Stephen M.
1999-01-01
This final report documents the activities performed during the research period from April 1, 1996 to September 30, 1997. It contains three papers: Carrier Phase GPS and Computer Vision for Control of an Autonomous Helicopter; A Contestant in the 1997 International Aerospace Robotics Laboratory Stanford University; and Combined CDGPS and Vision-Based Control of a Small Autonomous Helicopter.
Recent advances in the development and transfer of machine vision technologies for space
NASA Technical Reports Server (NTRS)
Defigueiredo, Rui J. P.; Pendleton, Thomas
1991-01-01
Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.
Effect of contact lens use on Computer Vision Syndrome.
Tauste, Ana; Ronda, Elena; Molina, María-José; Seguí, Mar
2016-03-01
To analyse the relationship between Computer Vision Syndrome (CVS) in computer workers and contact lens use, according to lens materials. Cross-sectional study. The study included 426 civil-service office workers, of whom 22% were contact lens wearers. Workers completed the Computer Vision Syndrome Questionnaire (CVS-Q) and provided information on their contact lenses and exposure to video display terminals (VDT) at work. CVS was defined as a CVS-Q score of 6 or more. The covariates were age and sex. Logistic regression was used to calculate the association (crude and adjusted for age and sex) between CVS and individual and work-related factors, and between CVS and contact lens type. Contact lens wearers are more likely to suffer CVS than non-lens wearers, with a prevalence of 65% vs 50%. Workers who wear contact lenses and are exposed to the computer for more than 6 h day(-1) are more likely to suffer CVS than non-lens wearers working at the computer for the same amount of time (aOR = 4.85; 95% CI, 1.25-18.80; p = 0.02). Regular contact lens use increases CVS after 6 h of computer work. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.
Computational gestalts and perception thresholds.
Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel
2003-01-01
In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments.
On continuous user authentication via typing behavior.
Roth, Joseph; Liu, Xiaoming; Metaxas, Dimitris
2014-10-01
We hypothesize that an individual computer user has a unique and consistent habitual pattern of hand movements, independent of the text, while typing on a keyboard. As a result, this paper proposes a novel biometric modality named typing behavior (TB) for continuous user authentication. Given a webcam pointing toward a keyboard, we develop real-time computer vision algorithms to automatically extract hand movement patterns from the video stream. Unlike the typical continuous biometrics, such as keystroke dynamics (KD), TB provides a reliable authentication with a short delay, while avoiding explicit key-logging. We collect a video database where 63 unique subjects type static text and free text for multiple sessions. For one typing video, the hands are segmented in each frame and a unique descriptor is extracted based on the shape and position of hands, as well as their temporal dynamics in the video sequence. We propose a novel approach, named bag of multi-dimensional phrases, to match the cross-feature and cross-temporal pattern between a gallery sequence and probe sequence. The experimental results demonstrate a superior performance of TB when compared with KD, which, together with our ultrareal-time demo system, warrant further investigation of this novel vision application and biometric modality.
Fusion of monocular cues to detect man-made structures in aerial imagery
NASA Technical Reports Server (NTRS)
Shufelt, Jefferey; Mckeown, David M.
1991-01-01
The extraction of buildings from aerial imagery is a complex problem for automated computer vision. It requires locating regions in a scene that possess properties distinguishing them as man-made objects as opposed to naturally occurring terrain features. It is reasonable to assume that no single detection method can correctly delineate or verify buildings in every scene. A cooperative-methods paradigm is useful in approaching the building extraction problem. Using this paradigm, each extraction technique provides information which can be added or assimilated into an overall interpretation of the scene. Thus, the main objective is to explore the development of computer vision system that integrates the results of various scene analysis techniques into an accurate and robust interpretation of the underlying three dimensional scene. The problem of building hypothesis fusion in aerial imagery is discussed. Building extraction techniques are briefly surveyed, including four building extraction, verification, and clustering systems. A method for fusing the symbolic data generated by these systems is described, and applied to monocular image and stereo image data sets. Evaluation methods for the fusion results are described, and the fusion results are analyzed using these methods.
Vision-related problems among the workers engaged in jewellery manufacturing.
Salve, Urmi Ravindra
2015-01-01
American Optometric Association defines Computer Vision Syndrome (CVS) as "complex of eye and vision problems related to near work which are experienced during or related to computer use." This happens when visual demand of the tasks exceeds the visual ability of the users. Even though problems were initially attributed to computer-related activities subsequently similar problems are also reported while carrying any near point task. Jewellery manufacturing activities involves precision designs, setting the tiny metals and stones which requires high visual attention and mental concentration and are often near point task. It is therefore expected that the workers engaged in jewellery manufacturing may also experience symptoms like CVS. Keeping the above in mind, this study was taken up (1) To identify the prevalence of symptoms like CVS among the workers of the jewellery manufacturing and compare the same with the workers working at computer workstation and (2) To ascertain whether such symptoms have any permanent vision-related problems. Case control study. The study was carried out in Zaveri Bazaar region and at an IT-enabled organization in Mumbai. The study involved the identification of symptoms of CVS using a questionnaire of Eye Strain Journal, opthalmological check-ups and measurement of Spontaneous Eye Blink rate. The data obtained from the jewellery manufacturing was compared with the data of the subjects engaged in computer work and with the data available in the literature. A comparative inferential statistics was used. Results showed that visual demands of the task carried out in jewellery manufacturing were much higher than that of carried out in computer-related work.
Wolff, J Gerard
2014-01-01
The SP theory of intelligence aims to simplify and integrate concepts in computing and cognition, with information compression as a unifying theme. This article is about how the SP theory may, with advantage, be applied to the understanding of natural vision and the development of computer vision. Potential benefits include an overall simplification of concepts in a universal framework for knowledge and seamless integration of vision with other sensory modalities and other aspects of intelligence. Low level perceptual features such as edges or corners may be identified by the extraction of redundancy in uniform areas in the manner of the run-length encoding technique for information compression. The concept of multiple alignment in the SP theory may be applied to the recognition of objects, and to scene analysis, with a hierarchy of parts and sub-parts, at multiple levels of abstraction, and with family-resemblance or polythetic categories. The theory has potential for the unsupervised learning of visual objects and classes of objects, and suggests how coherent concepts may be derived from fragments. As in natural vision, both recognition and learning in the SP system are robust in the face of errors of omission, commission and substitution. The theory suggests how, via vision, we may piece together a knowledge of the three-dimensional structure of objects and of our environment, it provides an account of how we may see things that are not objectively present in an image, how we may recognise something despite variations in the size of its retinal image, and how raster graphics and vector graphics may be unified. And it has things to say about the phenomena of lightness constancy and colour constancy, the role of context in recognition, ambiguities in visual perception, and the integration of vision with other senses and other aspects of intelligence.
Development of dog-like retrieving capability in a ground robot
NASA Astrophysics Data System (ADS)
MacKenzie, Douglas C.; Ashok, Rahul; Rehg, James M.; Witus, Gary
2013-01-01
This paper presents the Mobile Intelligence Team's approach to addressing the CANINE outdoor ground robot competition. The competition required developing a robot that provided retrieving capabilities similar to a dog, while operating fully autonomously in unstructured environments. The vision team consisted of Mobile Intelligence, the Georgia Institute of Technology, and Wayne State University. Important computer vision aspects of the project were the ability to quickly learn the distinguishing characteristics of novel objects, searching images for the object as the robot drove a search pattern, identifying people near the robot for safe operations, correctly identify the object among distractors, and localizing the object for retrieval. The classifier used to identify the objects will be discussed, including an analysis of its performance, and an overview of the entire system architecture presented. A discussion of the robot's performance in the competition will demonstrate the system's successes in real-world testing.
Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Fisher, W.; Yoksas, T.
2014-12-01
Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high student expectations. These changes are upending traditional approaches to accessing and using data and software. It is clear that Unidata's products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our initial efforts to deploy a subset of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.
An overview of quantitative approaches in Gestalt perception.
Jäkel, Frank; Singh, Manish; Wichmann, Felix A; Herzog, Michael H
2016-09-01
Gestalt psychology is often criticized as lacking quantitative measurements and precise mathematical models. While this is true of the early Gestalt school, today there are many quantitative approaches in Gestalt perception and the special issue of Vision Research "Quantitative Approaches in Gestalt Perception" showcases the current state-of-the-art. In this article we give an overview of these current approaches. For example, ideal observer models are one of the standard quantitative tools in vision research and there is a clear trend to try and apply this tool to Gestalt perception and thereby integrate Gestalt perception into mainstream vision research. More generally, Bayesian models, long popular in other areas of vision research, are increasingly being employed to model perceptual grouping as well. Thus, although experimental and theoretical approaches to Gestalt perception remain quite diverse, we are hopeful that these quantitative trends will pave the way for a unified theory. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Mas, Ramon; Perales, Francisco J.
2012-02-01
Human motion capture has a wide variety of applications, and in vision-based motion capture systems a major issue is the human body model and its initialization. We present a computer vision algorithm for building a human body model skeleton in an automatic way. The algorithm is based on the analysis of the human shape. We decompose the body into its main parts by computing the curvature of a B-spline parameterization of the human contour. This algorithm has been applied in a context where the user is standing in front of a camera stereo pair. The process is completed after the user assumes a predefined initial posture so as to identify the main joints and construct the human model. Using this model, the initialization problem of a vision-based markerless motion capture system of the human body is solved.
Understanding of and applications for robot vision guidance at KSC
NASA Technical Reports Server (NTRS)
Shawaga, Lawrence M.
1988-01-01
The primary thrust of robotics at KSC is for the servicing of Space Shuttle remote umbilical docking functions. In order for this to occur, robots performing servicing operations must be capable of tracking a swaying Orbiter in Six Degrees of Freedom (6-DOF). Currently, in NASA KSC's Robotic Applications Development Laboratory (RADL), an ASEA IRB-90 industrial robot is being equipped with a real-time computer vision (hardware and software) system to allow it to track a simulated Orbiter interface (target) in 6-DOF. The real-time computer vision system effectively becomes the eyes for the lab robot, guiding it through a closed loop visual feedback system to move with the simulated Orbiter interface. This paper will address an understanding of this vision guidance system and how it will be applied to remote umbilical servicing at KSC. In addition, other current and future applications will be addressed.
Future Directions in Computer Graphics and Visualization: From CG&A's Editorial Board
DOE Office of Scientific and Technical Information (OSTI.GOV)
Encarnacao, L. M.; Chuang, Yung-Yu; Stork, Andre
2015-01-01
With many new members joining the CG&A editorial board over the past year, and with a renewed commitment to not only document the state of the art in computer graphics research and applications but to anticipate and where possible foster future areas of scientific discourse and industrial practice, we asked editorial and advisory council members about where they see their fields of expertise going. The answers compiled here aren’t meant to be all encompassing or deterministic when it comes to the opportunities computer graphics and interactive visualization hold for the future. Instead, we aim to accomplish two things: give amore » more in-depth introduction of members of the editorial board to the CG&A readership and encourage cross-disciplinary discourse toward approaching, complementing, or disputing the visions laid out in this compilation.« less
Survey of computer vision-based natural disaster warning systems
NASA Astrophysics Data System (ADS)
Ko, ByoungChul; Kwak, Sooyeong
2012-07-01
With the rapid development of information technology, natural disaster prevention is growing as a new research field dealing with surveillance systems. To forecast and prevent the damage caused by natural disasters, the development of systems to analyze natural disasters using remote sensing geographic information systems (GIS), and vision sensors has been receiving widespread interest over the last decade. This paper provides an up-to-date review of five different types of natural disasters and their corresponding warning systems using computer vision and pattern recognition techniques such as wildfire smoke and flame detection, water level detection for flood prevention, coastal zone monitoring, and landslide detection. Finally, we conclude with some thoughts about future research directions.
Visual ergonomics in the workplace.
Anshel, Jeffrey R
2007-10-01
This article provides information about visual function and its role in workplace productivity. By understanding the connection among comfort, health, and productivity and knowing the many options for effective ergonomic workplace lighting, the occupational health nurse can be sensitive to potential visual stress that can affect all areas of performance. Computer vision syndrome-the eye and vision problems associated with near work experienced during or related to computer use-is defined and solutions to it are discussed.
A Feasibility Study of View-independent Gait Identification
2012-03-01
ice skates . For walking, the footprint records for single pixels form clusters that are well separated in space and time. (Any overlap of contact...Pattern Recognition 2007, 1-8. Cheng M-H, Ho M-F & Huang C-L (2008), "Gait Analysis for Human Identification Through Manifold Learning and HMM... Learning and Cybernetics 2005, 4516-4521 Moeslund T B & Granum E (2001), "A Survey of Computer Vision-Based Human Motion Capture", Computer Vision
Observability/Identifiability of Rigid Motion under Perspective Projection
1994-03-08
Faugeras and S. Maybank . Motion from point mathces: multiplicity of solutions. Int. J, of Computer Vision, 1990. [16] D.B. Gennery. Tracking known...sequences. Int. 9. of computer vision, 1989. [37] S. Maybank . Theory of reconstruction from image motion. Springer Verlag, 1992. [38] Andrea 6...defined in section 5; in this appendix we show a simple characterization which is due to Faugeras and Maybank [15, 371. Theorem B.l . Let Q = UCVT
Computer vision in roadway transportation systems: a survey
NASA Astrophysics Data System (ADS)
Loce, Robert P.; Bernal, Edgar A.; Wu, Wencheng; Bala, Raja
2013-10-01
There is a worldwide effort to apply 21st century intelligence to evolving our transportation networks. The goals of smart transportation networks are quite noble and manifold, including safety, efficiency, law enforcement, energy conservation, and emission reduction. Computer vision is playing a key role in this transportation evolution. Video imaging scientists are providing intelligent sensing and processing technologies for a wide variety of applications and services. There are many interesting technical challenges including imaging under a variety of environmental and illumination conditions, data overload, recognition and tracking of objects at high speed, distributed network sensing and processing, energy sources, as well as legal concerns. This paper presents a survey of computer vision techniques related to three key problems in the transportation domain: safety, efficiency, and security and law enforcement. A broad review of the literature is complemented by detailed treatment of a few selected algorithms and systems that the authors believe represent the state-of-the-art.
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-01-01
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-03-20
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.
Comparing visual representations across human fMRI and computational vision
Leeds, Daniel D.; Seibert, Darren A.; Pyles, John A.; Tarr, Michael J.
2013-01-01
Feedforward visual object perception recruits a cortical network that is assumed to be hierarchical, progressing from basic visual features to complete object representations. However, the nature of the intermediate features related to this transformation remains poorly understood. Here, we explore how well different computer vision recognition models account for neural object encoding across the human cortical visual pathway as measured using fMRI. These neural data, collected during the viewing of 60 images of real-world objects, were analyzed with a searchlight procedure as in Kriegeskorte, Goebel, and Bandettini (2006): Within each searchlight sphere, the obtained patterns of neural activity for all 60 objects were compared to model responses for each computer recognition algorithm using representational dissimilarity analysis (Kriegeskorte et al., 2008). Although each of the computer vision methods significantly accounted for some of the neural data, among the different models, the scale invariant feature transform (Lowe, 2004), encoding local visual properties gathered from “interest points,” was best able to accurately and consistently account for stimulus representations within the ventral pathway. More generally, when present, significance was observed in regions of the ventral-temporal cortex associated with intermediate-level object perception. Differences in model effectiveness and the neural location of significant matches may be attributable to the fact that each model implements a different featural basis for representing objects (e.g., more holistic or more parts-based). Overall, we conclude that well-known computer vision recognition systems may serve as viable proxies for theories of intermediate visual object representation. PMID:24273227
Security Applications Of Computer Motion Detection
NASA Astrophysics Data System (ADS)
Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry
1987-05-01
An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.
Normative values for a tablet computer-based application to assess chromatic contrast sensitivity.
Bodduluri, Lakshmi; Boon, Mei Ying; Ryan, Malcolm; Dain, Stephen J
2018-04-01
Tablet computer displays are amenable for the development of vision tests in a portable form. Assessing color vision using an easily accessible and portable test may help in the self-monitoring of vision-related changes in ocular/systemic conditions and assist in the early detection of disease processes. Tablet computer-based games were developed with different levels of gamification as a more portable option to assess chromatic contrast sensitivity. Game 1 was designed as a clinical version with no gaming elements. Game 2 was a gamified version of game 1 (added fun elements: feedback, scores, and sounds) and game 3 was a complete game with vision task nested within. The current study aimed to determine the normative values and evaluate repeatability of the tablet computer-based games in comparison with an established test, the Cambridge Colour Test (CCT) Trivector test. Normally sighted individuals [N = 100, median (range) age 19.0 years (18-56 years)] had their chromatic contrast sensitivity evaluated binocularly using the three games and the CCT. Games 1 and 2 and the CCT showed similar absolute thresholds and tolerance intervals, and game 3 had significantly lower values than games 1, 2, and the CCT, due to visual task differences. With the exception of game 3 for blue-yellow, the CCT and tablet computer-based games showed similar repeatability with comparable 95% limits of agreement. The custom-designed games are portable, rapid, and may find application in routine clinical practice, especially for testing younger populations.
Infrared imaging based hyperventilation monitoring through respiration rate estimation
NASA Astrophysics Data System (ADS)
Basu, Anushree; Routray, Aurobinda; Mukherjee, Rashmi; Shit, Suprosanna
2016-07-01
A change in the skin temperature is used as an indicator of physical illness which can be detected through infrared thermography. Thermograms or thermal images can be used as an effective diagnostic tool for monitoring and diagnosis of various diseases. This paper describes an infrared thermography based approach for detecting hyperventilation caused due to stress and anxiety in human beings by computing their respiration rates. The work employs computer vision techniques for tracking the region of interest from thermal video to compute the breath rate. Experiments have been performed on 30 subjects. Corner feature extraction using Minimum Eigenvalue (Shi-Tomasi) algorithm and registration using Kanade Lucas-Tomasi algorithm has been used here. Thermal signature around the extracted region is detected and subsequently filtered through a band pass filter to compute the respiration profile of an individual. If the respiration profile shows unusual pattern and exceeds the threshold we conclude that the person is stressed and tending to hyperventilate. Results obtained are compared with standard contact based methods which have shown significant correlations. It is envisaged that the thermal image based approach not only will help in detecting hyperventilation but can assist in regular stress monitoring as it is non-invasive method.
Optimal Filter Estimation for Lucas-Kanade Optical Flow
Sharmin, Nusrat; Brad, Remus
2012-01-01
Optical flow algorithms offer a way to estimate motion from a sequence of images. The computation of optical flow plays a key-role in several computer vision applications, including motion detection and segmentation, frame interpolation, three-dimensional scene reconstruction, robot navigation and video compression. In the case of gradient based optical flow implementation, the pre-filtering step plays a vital role, not only for accurate computation of optical flow, but also for the improvement of performance. Generally, in optical flow computation, filtering is used at the initial level on original input images and afterwards, the images are resized. In this paper, we propose an image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical flow algorithm. Based on a study of different types of filtering methods and applied on the Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance estimation was introduced. Tested on the Middlebury image sequences, a correlation between the image intensity value and the standard deviation value of the Gaussian function was established. Finally, we have found that our selection method offers a better performance for the Lucas-Kanade optical flow algorithm.
Theory of compressive modeling and simulation
NASA Astrophysics Data System (ADS)
Szu, Harold; Cha, Jae; Espinola, Richard L.; Krapels, Keith
2013-05-01
Modeling and Simulation (M&S) has been evolving along two general directions: (i) data-rich approach suffering the curse of dimensionality and (ii) equation-rich approach suffering computing power and turnaround time. We suggest a third approach. We call it (iii) compressive M&S (CM&S); because the basic Minimum Free-Helmholtz Energy (MFE) facilitating CM&S can reproduce and generalize Candes, Romberg, Tao & Donoho (CRT&D) Compressive Sensing (CS) paradigm as a linear Lagrange Constraint Neural network (LCNN) algorithm. CM&S based MFE can generalize LCNN to 2nd order as Nonlinear augmented LCNN. For example, during the sunset, we can avoid a reddish bias of sunlight illumination due to a long-range Rayleigh scattering over the horizon. With CM&S we can take instead of day camera, a night vision camera. We decomposed long wave infrared (LWIR) band with filter into 2 vector components (8~10μm and 10~12μm) and used LCNN to find pixel by pixel the map of Emissive-Equivalent Planck Radiation Sources (EPRS). Then, we up-shifted consistently, according to de-mixed sources map, to the sub-micron RGB color image. Moreover, the night vision imaging can also be down-shifted at Passive Millimeter Wave (PMMW) imaging, suffering less blur owing to dusty smokes scattering and enjoying apparent smoothness of surface reflectivity of man-made objects under the Rayleigh resolution. One loses three orders of magnitudes in the spatial Rayleigh resolution; but gains two orders of magnitude in the reflectivity, and gains another two orders in the propagation without obscuring smog . Since CM&S can generate missing data and hard to get dynamic transients, CM&S can reduce unnecessary measurements and their associated cost and computing in the sense of super-saving CS: measuring one & getting one's neighborhood free .
Aircraft cockpit vision: Math model
NASA Technical Reports Server (NTRS)
Bashir, J.; Singh, R. P.
1975-01-01
A mathematical model was developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model was implemented and is described.
Final Report for Geometric Observers and Particle Filtering for Controlled Active Vision
2016-12-15
code) 15-12-2016 Final Report 01Sep06 - 09May11 Final Report for Geometric Observers & Particle Filtering for Controlled Active Vision 49414-NS.1Allen...Observers and Particle Filtering for Controlled Active Vision by Allen R. Tannenbaum School of Electrical and Computer Engineering Georgia Institute of...7 2.2.4 Conformal Area Minimizing Flows . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Particle Filters
NASA Technical Reports Server (NTRS)
Prinzel, L.J.; Kramer, L.J.
2009-01-01
A synthetic vision system is an aircraft cockpit display technology that presents the visual environment external to the aircraft using computer-generated imagery in a manner analogous to how it would appear to the pilot if forward visibility were not restricted. The purpose of this chapter is to review the state of synthetic vision systems, and discuss selected human factors issues that should be considered when designing such displays.
Chinellato, Eris; Del Pobil, Angel P
2009-06-01
The topic of vision-based grasping is being widely studied in humans and in other primates using various techniques and with different goals. The fundamental related findings are reviewed in this paper, with the aim of providing researchers from different fields, including intelligent robotics and neural computation, a comprehensive but accessible view on the subject. A detailed description of the principal sensorimotor processes and the brain areas involved is provided following a functional perspective, in order to make this survey especially useful for computational modeling and bio-inspired robotic applications.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Bailey, Randall E.; Prinzel, Lawrence J., III
2007-01-01
NASA is investigating revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A fixed-based piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck on the crew's decision-making process during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, unto itself, provide an improvement in runway incursion detection without being specifically tailored for this application. Existing enhanced vision system procedures were effectively used in the crew decision-making process during approach and missed approach operations but having to forcibly transition from an excellent FLIR image to natural vision by 100 ft above field level was awkward for the pilot-flying.
Military Vision Research Program
2011-07-01
accomplishments emanating from this research . • 3 novel computer-based tasks have been developed that measure visual distortions • These tests are based...10-1-0392 TITLE: Military Vision Research Program PRINCIPAL INVESTIGATOR: Dr. Darlene Dartt...CONTRACTING ORGANIZATION: The Schepens Eye Research
Smart vision chips: An overview
NASA Technical Reports Server (NTRS)
Koch, Christof
1994-01-01
This viewgraph presentation presents four working analog VLSI vision chips: (1) time-derivative retina, (2) zero-crossing chip, (3) resistive fuse, and (4) figure-ground chip; work in progress on computing motion and neuromorphic systems; and conceptual and practical lessons learned.
Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan
2016-01-01
In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.
Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan
2016-01-01
In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method. PMID:27847827
Trends and developments in industrial machine vision: 2013
NASA Astrophysics Data System (ADS)
Niel, Kurt; Heinzl, Christoph
2014-03-01
When following current advancements and implementations in the field of machine vision there seems to be no borders for future developments: Calculating power constantly increases, and new ideas are spreading and previously challenging approaches are introduced in to mass market. Within the past decades these advances have had dramatic impacts on our lives. Consumer electronics, e.g. computers or telephones, which once occupied large volumes, now fit in the palm of a hand. To note just a few examples e.g. face recognition was adopted by the consumer market, 3D capturing became cheap, due to the huge community SW-coding got easier using sophisticated development platforms. However, still there is a remaining gap between consumer and industrial applications. While the first ones have to be entertaining, the second have to be reliable. Recent studies (e.g. VDMA [1], Germany) show a moderately increasing market for machine vision in industry. Asking industry regarding their needs the main challenges for industrial machine vision are simple usage and reliability for the process, quick support, full automation, self/easy adjustment at changing process parameters, "forget it in the line". Furthermore a big challenge is to support quality control: Nowadays the operator has to accurately define the tested features for checking the probes. There is an upcoming development also to let automated machine vision applications find out essential parameters in a more abstract level (top down). In this work we focus on three current and future topics for industrial machine vision: Metrology supporting automation, quality control (inline/atline/offline) as well as visualization and analysis of datasets with steadily growing sizes. Finally the general trend of the pixel orientated towards object orientated evaluation is addressed. We do not directly address the field of robotics taking advances from machine vision. This is actually a fast changing area which is worth an own contribution.
Knowledge-based machine vision systems for space station automation
NASA Technical Reports Server (NTRS)
Ranganath, Heggere S.; Chipman, Laure J.
1989-01-01
Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed.
Portable Common Execution Environment (PCEE) project review: Peer review
NASA Technical Reports Server (NTRS)
Locke, C. Douglass
1991-01-01
The purpose of the review was to conduct an independent, in-depth analysis of the PCEE project and to provide the results of said review. The review team was tasked with evaluating the potential contribution of the PCEE project to the improvement of the life cycle support of mission and safety critical (MASC) computing components for large, complex, non-stop, distributed systems similar to those planned for such NASA programs as the space station, lunar outpost, and manned missions to Mars. Some conclusions of the review team are as follow: The PCEE project was given high marks for its breath of vision on the overall problem with MASC software; Correlated with the sweeping vision, the Review Team is very skeptical that any research project can successfully attack such a broad range of problems; and several recommendations are made such as to identify the components of the broad solution envisioned, prioritizing them with respect to their impact and the likely ability of the PCEE or others to attack them successfully, and to rewrite its Concept Document differentiating the problem description, objectives, approach, and results so that the project vision becomes assessible to others.
Automatic decoding of facial movements reveals deceptive pain expressions
Bartlett, Marian Stewart; Littlewort, Gwen C.; Frank, Mark G.; Lee, Kang
2014-01-01
Summary In highly social species such as humans, faces have evolved to convey rich information for social interaction, including expressions of emotions and pain [1–3]. Two motor pathways control facial movement [4–7]. A subcortical extrapyramidal motor system drives spontaneous facial expressions of felt emotions. A cortical pyramidal motor system controls voluntary facial expressions. The pyramidal system enables humans to simulate facial expressions of emotions not actually experienced. Their simulation is so successful that they can deceive most observers [8–11]. Machine vision may, however, be able to distinguish deceptive from genuine facial signals by identifying the subtle differences between pyramidally and extrapyramidally driven movements. Here we show that human observers could not discriminate real from faked expressions of pain better than chance, and after training, improved accuracy to a modest 55%. However a computer vision system that automatically measures facial movements and performs pattern recognition on those movements attained 85% accuracy. The machine system’s superiority is attributable to its ability to differentiate the dynamics of genuine from faked expressions. Thus by revealing the dynamics of facial action through machine vision systems, our approach has the potential to elucidate behavioral fingerprints of neural control systems involved in emotional signaling. PMID:24656830
Four Frames Suffice. A Provisionary Model of Vision and Space,
1982-09-01
0 * / Justifi ati AvailabilitY Codes 1. Introduction This paper is an attempt to specify’ a computationally and scientifically plausible model of how...abstract neural compuiting unit and a variety of construtions built of these units and their properties. All of this is part of the connectionist...chosen are inlerided to elucidate the nia’or scientific problems in intermediate level vision and would not be the best choice or a practical computer
Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.
2015-01-01
The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211
Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D
2015-07-10
The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.
LLSURE: local linear SURE-based edge-preserving image filtering.
Qiu, Tianshuang; Wang, Aiqi; Yu, Nannan; Song, Aimin
2013-01-01
In this paper, we propose a novel approach for performing high-quality edge-preserving image filtering. Based on a local linear model and using the principle of Stein's unbiased risk estimate as an estimator for the mean squared error from the noisy image only, we derive a simple explicit image filter which can filter out noise while preserving edges and fine-scale details. Moreover, this filter has a fast and exact linear-time algorithm whose computational complexity is independent of the filtering kernel size; thus, it can be applied to real time image processing tasks. The experimental results demonstrate the effectiveness of the new filter for various computer vision applications, including noise reduction, detail smoothing and enhancement, high dynamic range compression, and flash/no-flash denoising.
A Multi-Disciplinary Approach to Remote Sensing through Low-Cost UAVs.
Calvario, Gabriela; Sierra, Basilio; Alarcón, Teresa E; Hernandez, Carmen; Dalmau, Oscar
2017-06-16
The use of Unmanned Aerial Vehicles (UAVs) based on remote sensing has generated low cost monitoring, since the data can be acquired quickly and easily. This paper reports the experience related to agave crop analysis with a low cost UAV. The data were processed by traditional photogrammetric flow and data extraction techniques were applied to extract new layers and separate the agave plants from weeds and other elements of the environment. Our proposal combines elements of photogrammetry, computer vision, data mining, geomatics and computer science. This fusion leads to very interesting results in agave control. This paper aims to demonstrate the potential of UAV monitoring in agave crops and the importance of information processing with reliable data flow.
A Multi-Disciplinary Approach to Remote Sensing through Low-Cost UAVs
Calvario, Gabriela; Sierra, Basilio; Alarcón, Teresa E.; Hernandez, Carmen; Dalmau, Oscar
2017-01-01
The use of Unmanned Aerial Vehicles (UAVs) based on remote sensing has generated low cost monitoring, since the data can be acquired quickly and easily. This paper reports the experience related to agave crop analysis with a low cost UAV. The data were processed by traditional photogrammetric flow and data extraction techniques were applied to extract new layers and separate the agave plants from weeds and other elements of the environment. Our proposal combines elements of photogrammetry, computer vision, data mining, geomatics and computer science. This fusion leads to very interesting results in agave control. This paper aims to demonstrate the potential of UAV monitoring in agave crops and the importance of information processing with reliable data flow. PMID:28621740
Robotic space simulation integration of vision algorithms into an orbital operations simulation
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.
1987-01-01
In order to successfully plan and analyze future space activities, computer-based simulations of activities in low earth orbit will be required to model and integrate vision and robotic operations with vehicle dynamics and proximity operations procedures. The orbital operations simulation (OOS) is configured and enhanced as a testbed for robotic space operations. Vision integration algorithms are being developed in three areas: preprocessing, recognition, and attitude/attitude rates. The vision program (Rice University) was modified for use in the OOS. Systems integration testing is now in progress.
The Efficacy of Optometric Vision Therapy.
ERIC Educational Resources Information Center
Journal of the American Optometric Association, 1988
1988-01-01
This review aims to document the efficacy and validity of vision therapy for modifying and improving vision functioning. The paper describes the essential components of the visual system and disorders which can be physiologically and clinically identified. Vision therapy is defined as a clinical approach for correcting and ameliorating the effects…
van Oosterom, Matthias N; van der Poel, Henk G; Navab, Nassir; van de Velde, Cornelis J H; van Leeuwen, Fijs W B
2018-03-01
To provide an overview of the developments made for virtual- and augmented-reality navigation procedures in urological interventions/surgery. Navigation efforts have demonstrated potential in the field of urology by supporting guidance for various disorders. The navigation approaches differ between the individual indications, but seem interchangeable to a certain extent. An increasing number of pre- and intra-operative imaging modalities has been used to create detailed surgical roadmaps, namely: (cone-beam) computed tomography, MRI, ultrasound, and single-photon emission computed tomography. Registration of these surgical roadmaps with the real-life surgical view has occurred in different forms (e.g. electromagnetic, mechanical, vision, or near-infrared optical-based), whereby the combination of approaches was suggested to provide superior outcome. Soft-tissue deformations demand the use of confirmatory interventional (imaging) modalities. This has resulted in the introduction of new intraoperative modalities such as drop-in US, transurethral US, (drop-in) gamma probes and fluorescence cameras. These noninvasive modalities provide an alternative to invasive technologies that expose the patients to X-ray doses. Whereas some reports have indicated navigation setups provide equal or better results than conventional approaches, most trials have been performed in relatively small patient groups and clear follow-up data are missing. The reported computer-assisted surgery research concepts provide a glimpse in to the future application of navigation technologies in the field of urology.
Comparison of tests of accommodation for computer users.
Kolker, David; Hutchinson, Robert; Nilsen, Erik
2002-04-01
With the increased use of computers in the workplace and at home, optometrists are finding more patients presenting with symptoms of Computer Vision Syndrome. Among these symptomatic individuals, research supports that accommodative disorders are the most common vision finding. A prepresbyopic group (N= 30) and a presbyopic group (N = 30) were selected from a private practice. Assignment to a group was determined by age, accommodative amplitude, and near visual acuity with their distance prescription. Each subject was given a thorough vision and ocular health examination, then administered several nearpoint tests of accommodation at a computer working distance. All the tests produced similar results in the presbyopic group. For the prepresbyopic group, the tests yielded very different results. To effectively treat symptomatic VDT users, optometrists must assess the accommodative system along with the binocular and refractive status. For presbyopic patients, all nearpoint tests studied will yield virtually the same result. However, the method of testing accommodation, as well as the test stimulus presented, will yield significantly different responses for prepresbyopic patients. Previous research indicates that a majority of patients prefer the higher plus prescription yielded by the Gaussian image test.
Low Vision Training in Sweden.
ERIC Educational Resources Information Center
Inde, Krister
1978-01-01
The article describes the team work approach used in Sweden to provide services to the four main categories of visual impairment: central scotoma, nystagmus, loss of peripheral vision while retaining central vision, and amblyopia. (Author/PHR)
Vision 20/20: Automation and advanced computing in clinical radiation oncology.
Moore, Kevin L; Kagadis, George C; McNutt, Todd R; Moiseenko, Vitali; Mutic, Sasa
2014-01-01
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.
Moment-based approaches in imaging part 2: invariance
Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis
2005-01-01
The several moment families have been reviewed in a first paper [1]. A classification was proposed in order to get a better understanding of their relations. More attention was given to orthogonal moments (in particular Legendre, Zernike, Tchebichef, Krawtchouk, Racah, dual Hahn). Important properties for computer vision applications were just sketched, among which invariance and robustness to noise. These properties may drive the choice of moments when addressing a specific problem. A short, thus non-exhaustive, review of the literature on these issues is proposed in this second paper. PMID:18270055
Four-dimensional (4D) tracking of high-temperature microparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhehui, E-mail: zwang@lanl.gov; Liu, Q.; Waganaar, W.
High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.
Four-dimensional (4D) tracking of high-temperature microparticles
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.
2016-11-01
High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.
Four-dimensional (4D) tracking of high-temperature microparticles
Wang, Zhehui; Liu, Qiuguang; Waganaar, Bill; ...
2016-07-08
High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. As a result, velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.
Four-dimensional (4D) tracking of high-temperature microparticles.
Wang, Zhehui; Liu, Q; Waganaar, W; Fontanese, J; James, D; Munsat, T
2016-11-01
High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.
An architecture for real-time vision processing
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong
1994-01-01
To study the feasibility of developing an architecture for real time vision processing, a task queue server and parallel algorithms for two vision operations were designed and implemented on an i860-based Mercury Computing System 860VS array processor. The proposed architecture treats each vision function as a task or set of tasks which may be recursively divided into subtasks and processed by multiple processors coordinated by a task queue server accessible by all processors. Each idle processor subsequently fetches a task and associated data from the task queue server for processing and posts the result to shared memory for later use. Load balancing can be carried out within the processing system without the requirement for a centralized controller. The author concludes that real time vision processing cannot be achieved without both sequential and parallel vision algorithms and a good parallel vision architecture.
Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip
2015-07-01
Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological datamore » can be incorporated by means of data fusion of the two sensors' output data. (authors)« less
System of error detection in the manufacture of garments using artificial vision
NASA Astrophysics Data System (ADS)
Moreno, J. J.; Aguila, A.; Partida, E.; Martinez, C. L.; Morales, O.; Tejeida, R.
2017-12-01
A computer vision system is implemented to detect errors in the cutting stage within the manufacturing process of garments in the textile industry. It provides solution to errors within the process that cannot be easily detected by any employee, in addition to significantly increase the speed of quality review. In the textile industry as in many others, quality control is required in manufactured products and this has been carried out manually by means of visual inspection by employees over the years. For this reason, the objective of this project is to design a quality control system using computer vision to identify errors in the cutting stage within the garment manufacturing process to increase the productivity of textile processes by reducing costs.
NASA Astrophysics Data System (ADS)
Dong, Gangqi; Zhu, Z. H.
2016-04-01
This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.
Trajectory-based visual localization in underwater surveying missions.
Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel
2015-01-14
We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates.
Clifford support vector machines for classification, regression, and recurrence.
Bayro-Corrochano, Eduardo Jose; Arana-Daniel, Nancy
2010-11-01
This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real and complex-valued support vector machines using the Clifford geometric algebra. In this framework, we handle the design of kernels involving the Clifford or geometric product. In this approach, one redefines the optimization variables as multivectors. This allows us to have a multivector as output. Therefore, we can represent multiple classes according to the dimension of the geometric algebra in which we work. We show that one can apply CSVM for classification and regression and also to build a recurrent CSVM. The CSVM is an attractive approach for the multiple input multiple output processing of high-dimensional geometric entities. We carried out comparisons between CSVM and the current approaches to solve multiclass classification and regression. We also study the performance of the recurrent CSVM with experiments involving time series. The authors believe that this paper can be of great use for researchers and practitioners interested in multiclass hypercomplex computing, particularly for applications in complex and quaternion signal and image processing, satellite control, neurocomputation, pattern recognition, computer vision, augmented virtual reality, robotics, and humanoids.
Vehicle-based vision sensors for intelligent highway systems
NASA Astrophysics Data System (ADS)
Masaki, Ichiro
1989-09-01
This paper describes a vision system, based on ASIC (Application Specific Integrated Circuit) approach, for vehicle guidance on highways. After reviewing related work in the fields of intelligent vehicles, stereo vision, and ASIC-based approaches, the paper focuses on a stereo vision system for intelligent cruise control. The system measures the distance to the vehicle in front using trinocular triangulation. An application specific processor architecture was developed to offer low mass-production cost, real-time operation, low power consumption, and small physical size. The system was installed in the trunk of a car and evaluated successfully on highways.
A Logical Basis In The Layered Computer Vision Systems Model
NASA Astrophysics Data System (ADS)
Tejwani, Y. J.
1986-03-01
In this paper a four layer computer vision system model is described. The model uses a finite memory scratch pad. In this model planar objects are defined as predicates. Predicates are relations on a k-tuple. The k-tuple consists of primitive points and relationship between primitive points. The relationship between points can be of the direct type or the indirect type. Entities are goals which are satisfied by a set of clauses. The grammar used to construct these clauses is examined.
Bio-Inspired Sensing and Imaging of Polarization Information in Nature
2008-05-04
polarization imaging,” Appl. Opt. 36, 150–155 (1997). 5. L. B. Wolff, “Polarization camera for computer vision with a beam splitter ,” J. Opt. Soc. Am. A...vision with a beam splitter ,” J. Opt. Soc. Am. A 11, 2935–2945 (1994). 2. L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vis. Comput...group we have been developing various man-made, non -invasive imaging methodologies, sensing schemes, camera systems, and visualization and display
2007-06-01
management issues he encountered ruled out the Expanion as a viable option for thin-client computing in the Navy. An improvement in thin-client...44 Requirements to capabilities (2004). Retrieved April 29, 2007, from Vision Presence Power: A Program Guide to the U.S. Navy – 2004...Retrieved April 29, 2007, from Vision Presence Power: A Program Guide to the U.S. Navy – 2004 Edition, p. 128. Web site: http://www.chinfo.navy.mil
Measurement Frontiers in Molecular Biology
NASA Astrophysics Data System (ADS)
Laderman, Stephen
2009-03-01
Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.
Synthetic Vision Enhances Situation Awareness and RNP Capabilities for Terrain-Challenged Approaches
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III
2003-01-01
The Synthetic Vision Systems (SVS) Project of Aviation Safety Program is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-Up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation / Terrain Awareness and Warning System displays. These independent variables were evaluated for situation awareness, path error, and workload while making approaches to Runway 25 and 07 and during simulated engine-out Cottonwood 2 and KREMM departures. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the pathway and pursuit guidance used within the SVS concepts achieved required navigation performance (RNP) criteria.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Ellis, Kyle K. E.; Bailey, Randall E.; Williams, Steven P.; Severance, Kurt; Le Vie, Lisa R.; Comstock, James R.
2014-01-01
Flight deck-based vision systems, such as Synthetic and Enhanced Vision System (SEVS) technologies, have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. To achieve this potential, research is required for effective technology development and implementation based upon human factors design and regulatory guidance. This research supports the introduction and use of Synthetic Vision Systems and Enhanced Flight Vision Systems (SVS/EFVS) as advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in NextGen low visibility approach and landing operations. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and two color head-down primary flight display (PFD) concepts (conventional PFD, SVS PFD) were evaluated in a simulated NextGen Chicago O'Hare terminal environment. Additionally, the instrument approach type (no offset, 3 degree offset, 15 degree offset) was experimentally varied to test the efficacy of the HUD concepts for offset approach operations. The data showed that touchdown landing performance were excellent regardless of SEVS concept or type of offset instrument approach being flown. Subjective assessments of mental workload and situation awareness indicated that making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD may be feasible.
Image detection and compression for memory efficient system analysis
NASA Astrophysics Data System (ADS)
Bayraktar, Mustafa
2015-02-01
The advances in digital signal processing have been progressing towards efficient use of memory and processing. Both of these factors can be utilized efficiently by using feasible techniques of image storage by computing the minimum information of image which will enhance computation in later processes. Scale Invariant Feature Transform (SIFT) can be utilized to estimate and retrieve of an image. In computer vision, SIFT can be implemented to recognize the image by comparing its key features from SIFT saved key point descriptors. The main advantage of SIFT is that it doesn't only remove the redundant information from an image but also reduces the key points by matching their orientation and adding them together in different windows of image [1]. Another key property of this approach is that it works on highly contrasted images more efficiently because it`s design is based on collecting key points from the contrast shades of image.
NASA Astrophysics Data System (ADS)
Züleyha, Artuç; Ziya, Merdan; Selçuk, Yeşiltaş; Kemal, Öztürk M.; Mesut, Tez
2017-11-01
Computational models for tumors have difficulties due to complexity of tumor nature and capacities of computational tools, however, these models provide visions to understand interactions between tumor and its micro environment. Moreover computational models have potential to develop strategies for individualized treatments for cancer. To observe a solid brain tumor, glioblastoma multiforme (GBM), we present a two dimensional Ising Model applied on Creutz cellular automaton (CCA). The aim of this study is to analyze avascular spherical solid tumor growth, considering transitions between non tumor cells and cancer cells are like phase transitions in physical system. Ising model on CCA algorithm provides a deterministic approach with discrete time steps and local interactions in position space to view tumor growth as a function of time. Our simulation results are given for fixed tumor radius and they are compatible with theoretical and clinic data.
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1992-01-01
The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Merriam, E. W.; Becker, J. D.
1973-01-01
A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.
Method of mobile robot indoor navigation by artificial landmarks with use of computer vision
NASA Astrophysics Data System (ADS)
Glibin, E. S.; Shevtsov, A. A.; Enik, O. A.
2018-05-01
The article describes an algorithm of the mobile robot indoor navigation based on the use of visual odometry. The results of the experiment identifying calculation errors in the distance traveled on a slip are presented. It is shown that the use of computer vision allows one to correct erroneous coordinates of the robot with the help of artificial landmarks. The control system utilizing the proposed method has been realized on the basis of Arduino Mego 2560 controller and a single-board computer Raspberry Pi 3. The results of the experiment on the mobile robot navigation with the use of this control system are presented.
The Interdependence of Computers, Robots, and People.
ERIC Educational Resources Information Center
Ludden, Laverne; And Others
Computers and robots are becoming increasingly more advanced, with smaller and cheaper computers now doing jobs once reserved for huge multimillion dollar computers and with robots performing feats such as painting cars and using television cameras to simulate vision as they perform factory tasks. Technicians expect computers to become even more…
Reading Digital with Low Vision
Legge, Gordon E.
2017-01-01
Reading difficulty is a major consequence of vision loss for more than four million Americans with low vision. Difficulty in accessing print imposes obstacles to education, employment, social interaction and recreation. In recent years, research in vision science has made major strides in understanding the impact of low vision on reading, and the dependence of reading performance on text properties. The ongoing transition to the production and distribution of digital documents brings about new opportunities for people with visual impairment. Digital documents on computers and mobile devices permit customization of print size, spacing, font style, contrast polarity and page layout to optimize reading displays for people with low vision. As a result, we now have unprecedented opportunities to adapt text format to meet the needs of visually impaired readers. PMID:29242668
Medical informatics and telemedicine: A vision
NASA Technical Reports Server (NTRS)
Clemmer, Terry P.
1991-01-01
The goal of medical informatics is to improve care. This requires the commitment and harmonious collaboration between the computer scientists and clinicians and an integrated database. The vision described is how medical information systems are going to impact the way medical care is delivered in the future.
NASA Astrophysics Data System (ADS)
Di, Si; Lin, Hui; Du, Ruxu
2011-05-01
Displacement measurement of moving objects is one of the most important issues in the field of computer vision. This paper introduces a new binocular vision system (BVS) based on micro-electro-mechanical system (MEMS) technology. The eyes of the system are two microlenses fabricated on a substrate by MEMS technology. The imaging results of two microlenses are collected by one complementary metal-oxide-semiconductor (CMOS) array. An algorithm is developed for computing the displacement. Experimental results show that as long as the object is moving in two-dimensional (2D) space, the system can effectively estimate the 2D displacement without camera calibration. It is also shown that the average error of the displacement measurement is about 3.5% at different object distances ranging from 10 cm to 35 cm. Because of its low cost, small size and simple setting, this new method is particularly suitable for 2D displacement measurement applications such as vision-based electronics assembly and biomedical cell culture.
Non-Boolean computing with nanomagnets for computer vision applications
NASA Astrophysics Data System (ADS)
Bhanja, Sanjukta; Karunaratne, D. K.; Panchumarthy, Ravi; Rajaram, Srinath; Sarkar, Sudeep
2016-02-01
The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.
Gangamma, M P; Poonam; Rajagopala, Manjusha
2010-04-01
American Optometric Association (AOA) defines computer vision syndrome (CVS) as "Complex of eye and vision problems related to near work, which are experienced during or related to computer use". Most studies indicate that Video Display Terminal (VDT) operators report more eye related problems than non-VDT office workers. The causes for the inefficiencies and the visual symptoms are a combination of individual visual problems and poor office ergonomics. In this clinical study on "CVS", 151 patients were registered, out of whom 141 completed the treatment. In Group A, 45 patients had been prescribed Triphala eye drops; in Group B, 53 patients had been prescribed the Triphala eye drops and SaptamritaLauha tablets internally, and in Group C, 43 patients had been prescribed the placebo eye drops and placebo tablets. In total, marked improvement was observed in 48.89, 54.71 and 06.98% patients in groups A, B and C, respectively.
NASA Astrophysics Data System (ADS)
Fuchs, Thomas J.; Thompson, David R.; Bue, Brian D.; Castillo-Rogez, Julie; Chien, Steve A.; Gharibian, Dero; Wagstaff, Kiri L.
2015-10-01
Spacecraft autonomy is crucial to increase the science return of optical remote sensing observations at distant primitive bodies. To date, most small bodies exploration has involved short timescale flybys that execute prescripted data collection sequences. Light time delay means that the spacecraft must operate completely autonomously without direct control from the ground, but in most cases the physical properties and morphologies of prospective targets are unknown before the flyby. Surface features of interest are highly localized, and successful observations must account for geometry and illumination constraints. Under these circumstances onboard computer vision can improve science yield by responding immediately to collected imagery. It can reacquire bad data or identify features of opportunity for additional targeted measurements. We present a comprehensive framework for onboard computer vision for flyby missions at small bodies. We introduce novel algorithms for target tracking, target segmentation, surface feature detection, and anomaly detection. The performance and generalization power are evaluated in detail using expert annotations on data sets from previous encounters with primitive bodies.
Predicting pork loin intramuscular fat using computer vision system.
Liu, J-H; Sun, X; Young, J M; Bachmeier, L A; Newman, D J
2018-09-01
The objective of this study was to investigate the ability of computer vision system to predict pork intramuscular fat percentage (IMF%). Center-cut loin samples (n = 85) were trimmed of subcutaneous fat and connective tissue. Images were acquired and pixels were segregated to estimate image IMF% and 18 image color features for each image. Subjective IMF% was determined by a trained grader. Ether extract IMF% was calculated using ether extract method. Image color features and image IMF% were used as predictors for stepwise regression and support vector machine models. Results showed that subjective IMF% had a correlation of 0.81 with ether extract IMF% while the image IMF% had a 0.66 correlation with ether extract IMF%. Accuracy rates for regression models were 0.63 for stepwise and 0.75 for support vector machine. Although subjective IMF% has shown to have better prediction, results from computer vision system demonstrates the potential of being used as a tool in predicting pork IMF% in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
Selective cultivation and rapid detection of Staphylococcus aureus by computer vision.
Wang, Yong; Yin, Yongguang; Zhang, Chaonan
2014-03-01
In this paper, we developed a selective growth medium and a more rapid detection method based on computer vision for selective isolation and identification of Staphylococcus aureus from foods. The selective medium consisted of tryptic soy broth basal medium, 3 inhibitors (NaCl, K2 TeO3 , and phenethyl alcohol), and 2 accelerators (sodium pyruvate and glycine). After 4 h of selective cultivation, bacterial detection was accomplished using computer vision. The total analysis time was 5 h. Compared to the Baird-Parker plate count method, which requires 4 to 5 d, this new detection method offers great time savings. Moreover, our novel method had a correlation coefficient of greater than 0.998 when compared with the Baird-Parker plate count method. The detection range for S. aureus was 10 to 10(7) CFU/mL. Our new, rapid detection method for microorganisms in foods has great potential for routine food safety control and microbiological detection applications. © 2014 Institute of Food Technologists®
InPRO: Automated Indoor Construction Progress Monitoring Using Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Hamledari, Hesam
In this research, an envisioned automated intelligent robotic solution for automated indoor data collection and inspection that employs a series of unmanned aerial vehicles (UAV), entitled "InPRO", is presented. InPRO consists of four stages, namely: 1) automated path planning; 2) autonomous UAV-based indoor inspection; 3) automated computer vision-based assessment of progress; and, 4) automated updating of 4D building information models (BIM). The works presented in this thesis address the third stage of InPRO. A series of computer vision-based methods that automate the assessment of construction progress using images captured at indoor sites are introduced. The proposed methods employ computer vision and machine learning techniques to detect the components of under-construction indoor partitions. In particular, framing (studs), insulation, electrical outlets, and different states of drywall sheets (installing, plastering, and painting) are automatically detected using digital images. High accuracy rates, real-time performance, and operation without a priori information are indicators of the methods' promising performance.
Computer vision uncovers predictors of physical urban change.
Naik, Nikhil; Kominers, Scott Duke; Raskar, Ramesh; Glaeser, Edward L; Hidalgo, César A
2017-07-18
Which neighborhoods experience physical improvements? In this paper, we introduce a computer vision method to measure changes in the physical appearances of neighborhoods from time-series street-level imagery. We connect changes in the physical appearance of five US cities with economic and demographic data and find three factors that predict neighborhood improvement. First, neighborhoods that are densely populated by college-educated adults are more likely to experience physical improvements-an observation that is compatible with the economic literature linking human capital and local success. Second, neighborhoods with better initial appearances experience, on average, larger positive improvements-an observation that is consistent with "tipping" theories of urban change. Third, neighborhood improvement correlates positively with physical proximity to the central business district and to other physically attractive neighborhoods-an observation that is consistent with the "invasion" theories of urban sociology. Together, our results provide support for three classical theories of urban change and illustrate the value of using computer vision methods and street-level imagery to understand the physical dynamics of cities.
Computer vision uncovers predictors of physical urban change
Naik, Nikhil; Kominers, Scott Duke; Raskar, Ramesh; Glaeser, Edward L.; Hidalgo, César A.
2017-01-01
Which neighborhoods experience physical improvements? In this paper, we introduce a computer vision method to measure changes in the physical appearances of neighborhoods from time-series street-level imagery. We connect changes in the physical appearance of five US cities with economic and demographic data and find three factors that predict neighborhood improvement. First, neighborhoods that are densely populated by college-educated adults are more likely to experience physical improvements—an observation that is compatible with the economic literature linking human capital and local success. Second, neighborhoods with better initial appearances experience, on average, larger positive improvements—an observation that is consistent with “tipping” theories of urban change. Third, neighborhood improvement correlates positively with physical proximity to the central business district and to other physically attractive neighborhoods—an observation that is consistent with the “invasion” theories of urban sociology. Together, our results provide support for three classical theories of urban change and illustrate the value of using computer vision methods and street-level imagery to understand the physical dynamics of cities. PMID:28684401
2013 Progress Report -- DOE Joint Genome Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-11-01
In October 2012, we introduced a 10-Year Strategic Vision [http://bit.ly/JGI-Vision] for the Institute. A central focus of this Strategic Vision is to bridge the gap between sequenced genomes and an understanding of biological functions at the organism and ecosystem level. This involves the continued massive-scale generation of sequence data, complemented by orthogonal new capabilities to functionally annotate these large sequence data sets. Our Strategic Vision lays out a path to guide our decisions and ensure that the evolving set of experimental and computational capabilities available to DOE JGI users will continue to enable groundbreaking science.
Dynamic programming and graph algorithms in computer vision.
Felzenszwalb, Pedro F; Zabih, Ramin
2011-04-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.
Vision 20/20: Automation and advanced computing in clinical radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali; Kagadis, George C.
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authorsmore » contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.« less
Vision 20/20: Automation and advanced computing in clinical radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali; Kagadis, George C.
2014-01-15
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authorsmore » contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.« less
A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms
Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein
2017-01-01
Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2–100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms. PMID:28487831
A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms.
Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein
2017-01-01
Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts' Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2-100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms.
Investigation of safety analysis methods using computer vision techniques
NASA Astrophysics Data System (ADS)
Shirazi, Mohammad Shokrolah; Morris, Brendan Tran
2017-09-01
This work investigates safety analysis methods using computer vision techniques. The vision-based tracking system is developed to provide the trajectory of road users including vehicles and pedestrians. Safety analysis methods are developed to estimate time to collision (TTC) and postencroachment time (PET) that are two important safety measurements. Corresponding algorithms are presented and their advantages and drawbacks are shown through their success in capturing the conflict events in real time. The performance of the tracking system is evaluated first, and probability density estimation of TTC and PET are shown for 1-h monitoring of a Las Vegas intersection. Finally, an idea of an intersection safety map is introduced, and TTC values of two different intersections are estimated for 1 day from 8:00 a.m. to 6:00 p.m.
A Vision-Based Motion Sensor for Undergraduate Laboratories.
ERIC Educational Resources Information Center
Salumbides, Edcel John; Maristela, Joyce; Uy, Alfredson; Karremans, Kees
2002-01-01
Introduces an alternative method to determine the mechanics of a moving object that uses computer vision algorithms with a charge-coupled device (CCD) camera as a recording device. Presents two experiments, pendulum motion and terminal velocity, to compare results of the alternative and conventional methods. (YDS)
Smartphones as image processing systems for prosthetic vision.
Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Suaning, Gregg J
2013-01-01
The feasibility of implants for prosthetic vision has been demonstrated by research and commercial organizations. In most devices, an essential forerunner to the internal stimulation circuit is an external electronics solution for capturing, processing and relaying image information as well as extracting useful features from the scene surrounding the patient. The capabilities and multitude of image processing algorithms that can be performed by the device in real-time plays a major part in the final quality of the prosthetic vision. It is therefore optimal to use powerful hardware yet to avoid bulky, straining solutions. Recent publications have reported of portable single-board computers fast enough for computationally intensive image processing. Following the rapid evolution of commercial, ultra-portable ARM (Advanced RISC machine) mobile devices, the authors investigated the feasibility of modern smartphones running complex face detection as external processing devices for vision implants. The role of dedicated graphics processors in speeding up computation was evaluated while performing a demanding noise reduction algorithm (image denoising). The time required for face detection was found to decrease by 95% from 2.5 year old to recent devices. In denoising, graphics acceleration played a major role, speeding up denoising by a factor of 18. These results demonstrate that the technology has matured sufficiently to be considered as a valid external electronics platform for visual prosthetic research.
Fast ray-tracing of human eye optics on Graphics Processing Units.
Wei, Qi; Patkar, Saket; Pai, Dinesh K
2014-05-01
We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Accounting for standard errors of vision-specific latent trait in regression models.
Wong, Wan Ling; Li, Xiang; Li, Jialiang; Wong, Tien Yin; Cheng, Ching-Yu; Lamoureux, Ecosse L
2014-07-11
To demonstrate the effectiveness of Hierarchical Bayesian (HB) approach in a modeling framework for association effects that accounts for SEs of vision-specific latent traits assessed using Rasch analysis. A systematic literature review was conducted in four major ophthalmic journals to evaluate Rasch analysis performed on vision-specific instruments. The HB approach was used to synthesize the Rasch model and multiple linear regression model for the assessment of the association effects related to vision-specific latent traits. The effectiveness of this novel HB one-stage "joint-analysis" approach allows all model parameters to be estimated simultaneously and was compared with the frequently used two-stage "separate-analysis" approach in our simulation study (Rasch analysis followed by traditional statistical analyses without adjustment for SE of latent trait). Sixty-six reviewed articles performed evaluation and validation of vision-specific instruments using Rasch analysis, and 86.4% (n = 57) performed further statistical analyses on the Rasch-scaled data using traditional statistical methods; none took into consideration SEs of the estimated Rasch-scaled scores. The two models on real data differed for effect size estimations and the identification of "independent risk factors." Simulation results showed that our proposed HB one-stage "joint-analysis" approach produces greater accuracy (average of 5-fold decrease in bias) with comparable power and precision in estimation of associations when compared with the frequently used two-stage "separate-analysis" procedure despite accounting for greater uncertainty due to the latent trait. Patient-reported data, using Rasch analysis techniques, do not take into account the SE of latent trait in association analyses. The HB one-stage "joint-analysis" is a better approach, producing accurate effect size estimations and information about the independent association of exposure variables with vision-specific latent traits. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Submillimeter bolt location in car bodywork for production line quality inspection
NASA Astrophysics Data System (ADS)
Altamirano-Robles, Leopoldo; Arias-Estrada, Miguel; Alviso-Quibrera, Samuel; Lopez-Lopez, Aurelio
2000-03-01
In the automotive industry, a vehicle begins with the construction of the vehicle floor. Later on, several robots weld a series of bolts to this floor which are used to fix other parts. Due to several problems, like welding tools wearing, robot miscalibration or momentary low power supply, among others, some bolts are incorrectly positioned or are not present at all, bringing problems and delays in the next work cells. Therefore, it is of importance to verify the quality of welded parts before the following assembly steps. A computer vision system is proposed in order to locate autonomously the presence and quality of the bolts. The system should carry on the inspection in real time at the car assembly line under the following conditions: without touching the bodywork, with a precision in the submillimeter range and in few seconds. In this paper we present a basic computer vision system for bolt location in the submillimeter range. We analyze three arrangements of the system components (camera and illumination sources) that produce different results in the localization. Results are presented and compared for the three approaches obtained under laboratory conditions. The algorithms were tested in the assembling line. Variations up to one millimeter in the welded position of the bolts were observed.
Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.
2017-01-01
Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95–98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management. PMID:28338047
Real-time high-level video understanding using data warehouse
NASA Astrophysics Data System (ADS)
Lienard, Bruno; Desurmont, Xavier; Barrie, Bertrand; Delaigle, Jean-Francois
2006-02-01
High-level Video content analysis such as video-surveillance is often limited by computational aspects of automatic image understanding, i.e. it requires huge computing resources for reasoning processes like categorization and huge amount of data to represent knowledge of objects, scenarios and other models. This article explains how to design and develop a "near real-time adaptive image datamart", used, as a decisional support system for vision algorithms, and then as a mass storage system. Using RDF specification as storing format of vision algorithms meta-data, we can optimise the data warehouse concepts for video analysis, add some processes able to adapt the current model and pre-process data to speed-up queries. In this way, when new data is sent from a sensor to the data warehouse for long term storage, using remote procedure call embedded in object-oriented interfaces to simplified queries, they are processed and in memory data-model is updated. After some processing, possible interpretations of this data can be returned back to the sensor. To demonstrate this new approach, we will present typical scenarios applied to this architecture such as people tracking and events detection in a multi-camera network. Finally we will show how this system becomes a high-semantic data container for external data-mining.
NASA Astrophysics Data System (ADS)
Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.
2017-03-01
Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95-98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management.
NASA Technical Reports Server (NTRS)
Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.
1989-01-01
Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.
NASA Astrophysics Data System (ADS)
Guo, Jie; Zhu, Chang`an
2016-01-01
The development of optics and computer technologies enables the application of the vision-based technique that uses digital cameras to the displacement measurement of large-scale structures. Compared with traditional contact measurements, vision-based technique allows for remote measurement, has a non-intrusive characteristic, and does not necessitate mass introduction. In this study, a high-speed camera system is developed to complete the displacement measurement in real time. The system consists of a high-speed camera and a notebook computer. The high-speed camera can capture images at a speed of hundreds of frames per second. To process the captured images in computer, the Lucas-Kanade template tracking algorithm in the field of computer vision is introduced. Additionally, a modified inverse compositional algorithm is proposed to reduce the computing time of the original algorithm and improve the efficiency further. The modified algorithm can rapidly accomplish one displacement extraction within 1 ms without having to install any pre-designed target panel onto the structures in advance. The accuracy and the efficiency of the system in the remote measurement of dynamic displacement are demonstrated in the experiments on motion platform and sound barrier on suspension viaduct. Experimental results show that the proposed algorithm can extract accurate displacement signal and accomplish the vibration measurement of large-scale structures.
Evaluation of tablet computers for visual function assessment.
Bodduluri, Lakshmi; Boon, Mei Ying; Dain, Stephen J
2017-04-01
Recent advances in technology and the increased use of tablet computers for mobile health applications such as vision testing necessitate an understanding of the behavior of the displays of such devices, to facilitate the reproduction of existing or the development of new vision assessment tests. The purpose of this study was to investigate the physical characteristics of one model of tablet computer (iPad mini Retina display) with regard to display consistency across a set of devices (15) and their potential application as clinical vision assessment tools. Once the tablet computer was switched on, it required about 13 min to reach luminance stability, while chromaticity remained constant. The luminance output of the device remained stable until a battery level of 5%. Luminance varied from center to peripheral locations of the display and with viewing angle, whereas the chromaticity did not vary. A minimal (1%) variation in luminance was observed due to temperature, and once again chromaticity remained constant. Also, these devices showed good temporal stability of luminance and chromaticity. All 15 tablet computers showed gamma functions approximating the standard gamma (2.20) and showed similar color gamut sizes, except for the blue primary, which displayed minimal variations. The physical characteristics across the 15 devices were similar and are known, thereby facilitating the use of this model of tablet computer as visual stimulus displays.