A large-scale solar dynamics observatory image dataset for computer vision applications.
Kucuk, Ahmet; Banda, Juan M; Angryk, Rafal A
2017-01-01
The National Aeronautics Space Agency (NASA) Solar Dynamics Observatory (SDO) mission has given us unprecedented insight into the Sun's activity. By capturing approximately 70,000 images a day, this mission has created one of the richest and biggest repositories of solar image data available to mankind. With such massive amounts of information, researchers have been able to produce great advances in detecting solar events. In this resource, we compile SDO solar data into a single repository in order to provide the computer vision community with a standardized and curated large-scale dataset of several hundred thousand solar events found on high resolution solar images. This publicly available resource, along with the generation source code, will accelerate computer vision research on NASA's solar image data by reducing the amount of time spent performing data acquisition and curation from the multiple sources we have compiled. By improving the quality of the data with thorough curation, we anticipate a wider adoption and interest from the computer vision to the solar physics community.
AstroCV: Astronomy computer vision library
NASA Astrophysics Data System (ADS)
González, Roberto E.; Muñoz, Roberto P.; Hernández, Cristian A.
2018-04-01
AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.
Reconfigurable vision system for real-time applications
NASA Astrophysics Data System (ADS)
Torres-Huitzil, Cesar; Arias-Estrada, Miguel
2002-03-01
Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.
Optimized feature-detection for on-board vision-based surveillance
NASA Astrophysics Data System (ADS)
Gond, Laetitia; Monnin, David; Schneider, Armin
2012-06-01
The detection and matching of robust features in images is an important step in many computer vision applications. In this paper, the importance of the keypoint detection algorithms and their inherent parameters in the particular context of an image-based change detection system for IED detection is studied. Through extensive application-oriented experiments, we draw an evaluation and comparison of the most popular feature detectors proposed by the computer vision community. We analyze how to automatically adjust these algorithms to changing imaging conditions and suggest improvements in order to achieve more exibility and robustness in their practical implementation.
Information Weighted Consensus for Distributed Estimation in Vision Networks
ERIC Educational Resources Information Center
Kamal, Ahmed Tashrif
2013-01-01
Due to their high fault-tolerance, ease of installation and scalability to large networks, distributed algorithms have recently gained immense popularity in the sensor networks community, especially in computer vision. Multi-target tracking in a camera network is one of the fundamental problems in this domain. Distributed estimation algorithms…
ERIC Educational Resources Information Center
Cox, Susan M.
1999-01-01
Explains how one New Orleans (LA) school is making a positive difference in a low-income community by serving as the community's focal point and providing the community access to a public library, computers, and a learning center. Highlights the development of the Greater New Orleans Education Foundation and its assessment process, designed to…
Envisioning the Handheld-Centric Classroom
ERIC Educational Resources Information Center
Norris, Cathleen; Soloway, Elliot
2004-01-01
While appropriate as an initial focus, it is time that the educational community move beyond an emphasis on 1:1 computing (each child having his/her own personal computer) to a vision of a handheld-centric classroom, where each child not only has his/her own personal, handheld computer, but also has access to networked PCs, probeware, digital…
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences
NASA Technical Reports Server (NTRS)
Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri
2014-01-01
This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.
Automated design of image operators that detect interest points.
Trujillo, Leonardo; Olague, Gustavo
2008-01-01
This work describes how evolutionary computation can be used to synthesize low-level image operators that detect interesting points on digital images. Interest point detection is an essential part of many modern computer vision systems that solve tasks such as object recognition, stereo correspondence, and image indexing, to name but a few. The design of the specialized operators is posed as an optimization/search problem that is solved with genetic programming (GP), a strategy still mostly unexplored by the computer vision community. The proposed approach automatically synthesizes operators that are competitive with state-of-the-art designs, taking into account an operator's geometric stability and the global separability of detected points during fitness evaluation. The GP search space is defined using simple primitive operations that are commonly found in point detectors proposed by the vision community. The experiments described in this paper extend previous results (Trujillo and Olague, 2006a,b) by presenting 15 new operators that were synthesized through the GP-based search. Some of the synthesized operators can be regarded as improved manmade designs because they employ well-known image processing techniques and achieve highly competitive performance. On the other hand, since the GP search also generates what can be considered as unconventional operators for point detection, these results provide a new perspective to feature extraction research.
ATR applications of minimax entropy models of texture and shape
NASA Astrophysics Data System (ADS)
Zhu, Song-Chun; Yuille, Alan L.; Lanterman, Aaron D.
2001-10-01
Concepts from information theory have recently found favor in both the mainstream computer vision community and the military automatic target recognition community. In the computer vision literature, the principles of minimax entropy learning theory have been used to generate rich probabilitistic models of texture and shape. In addition, the method of types and large deviation theory has permitted the difficulty of various texture and shape recognition tasks to be characterized by 'order parameters' that determine how fundamentally vexing a task is, independent of the particular algorithm used. These information-theoretic techniques have been demonstrated using traditional visual imagery in applications such as simulating cheetah skin textures and such as finding roads in aerial imagery. We discuss their application to problems in the specific application domain of automatic target recognition using infrared imagery. We also review recent theoretical and algorithmic developments which permit learning minimax entropy texture models for infrared textures in reasonable timeframes.
Visions of CSCL: Eight Provocations for the Future of the Field
ERIC Educational Resources Information Center
Wise, Alyssa Friend; Schwarz, Baruch B.
2017-01-01
The field of Computer Supported Computer Learning (CSCL) is at a critical moment in its development. Internally we face issues of fragmentation and questions about what progress is being made. Externally the rise of social media and a variety of research communities that study the interactions within it raise questions about our unique identity…
Notes from a clinical information system program manager. A solid vision makes all the difference.
Staggers, N
1997-01-01
Today's CIS manager will create a vision that connects computerization in ambulatory, home and community-based care with increased responsibility for patients to assume self-care. Patients will be faced with a glut of information and they will need nursing help in determining the validity of information. The new vision in this environment will focus on integration, interoperability, and a new definition for patient-centered information. Creating a well-articulated vision is the first skill in the repertoire of a CIS manager's tool set. A vision provides the firm structure upon which the entire project can be built, and provides for links to life-cycle planning. This first step in project planning begins to bring order to the chaos of dynamic demands in clinical computing.
Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems
NASA Technical Reports Server (NTRS)
Liu, Xuan; Furrer, David; Kosters, Jared; Holmes, Jack
2018-01-01
Over the last few decades, advances in high-performance computing, new materials characterization methods, and, more recently, an emphasis on integrated computational materials engineering (ICME) and additive manufacturing have been a catalyst for multiscale modeling and simulation-based design of materials and structures in the aerospace industry. While these advances have driven significant progress in the development of aerospace components and systems, that progress has been limited by persistent technology and infrastructure challenges that must be overcome to realize the full potential of integrated materials and systems design and simulation modeling throughout the supply chain. As a result, NASA's Transformational Tools and Technology (TTT) Project sponsored a study (performed by a diverse team led by Pratt & Whitney) to define the potential 25-year future state required for integrated multiscale modeling of materials and systems (e.g., load-bearing structures) to accelerate the pace and reduce the expense of innovation in future aerospace and aeronautical systems. This report describes the findings of this 2040 Vision study (e.g., the 2040 vision state; the required interdependent core technical work areas, Key Element (KE); identified gaps and actions to close those gaps; and major recommendations) which constitutes a community consensus document as it is a result of over 450 professionals input obtain via: 1) four society workshops (AIAA, NAFEMS, and two TMS), 2) community-wide survey, and 3) the establishment of 9 expert panels (one per KE) consisting on average of 10 non-team members from academia, government and industry to review, update content, and prioritize gaps and actions. The study envisions the development of a cyber-physical-social ecosystem comprised of experimentally verified and validated computational models, tools, and techniques, along with the associated digital tapestry, that impacts the entire supply chain to enable cost-effective, rapid, and revolutionary design of fit-for-purpose materials, components, and systems. Although the vision focused on aeronautics and space applications, it is believed that other engineering communities (e.g., automotive, biomedical, etc.) can benefit as well from the proposed framework with only minor modifications. Finally, it is TTT's hope and desire that this vision provides the strategic guidance to both public and private research and development decision makers to make the proposed 2040 vision state a reality and thereby provide a significant advancement in the United States global competitiveness.
NASA Astrophysics Data System (ADS)
Marinos, Alexandros; Briscoe, Gerard
Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.
2016-11-01
The instructor was Prof. Fei-Fei Li, who is well known and is a leader in the computer vision community. All of the course materials were made...Systems Center Pacific (SSC Pacific). The machine learning community began organizing itself in 2012, which inspired a group of people to study an online...labor for the participants to study the material alongside their project work. This report documents the activities of the course along with some
NASA Astrophysics Data System (ADS)
Phipps, Marja; Capel, David; Srinivasan, James
2014-06-01
Motion imagery capabilities within the Department of Defense/Intelligence Community (DoD/IC) have advanced significantly over the last decade, attempting to meet continuously growing data collection, video processing and analytical demands in operationally challenging environments. The motion imagery tradecraft has evolved accordingly, enabling teams of analysts to effectively exploit data and generate intelligence reports across multiple phases in structured Full Motion Video (FMV) Processing Exploitation and Dissemination (PED) cells. Yet now the operational requirements are drastically changing. The exponential growth in motion imagery data continues, but to this the community adds multi-INT data, interoperability with existing and emerging systems, expanded data access, nontraditional users, collaboration, automation, and support for ad hoc configurations beyond the current FMV PED cells. To break from the legacy system lifecycle, we look towards a technology application and commercial adoption model course which will meet these future Intelligence, Surveillance and Reconnaissance (ISR) challenges. In this paper, we explore the application of cutting edge computer vision technology to meet existing FMV PED shortfalls and address future capability gaps. For example, real-time georegistration services developed from computer-vision-based feature tracking, multiple-view geometry, and statistical methods allow the fusion of motion imagery with other georeferenced information sources - providing unparalleled situational awareness. We then describe how these motion imagery capabilities may be readily deployed in a dynamically integrated analytical environment; employing an extensible framework, leveraging scalable enterprise-wide infrastructure and following commercial best practices.
Understanding and preventing computer vision syndrome.
Loh, Ky; Redd, Sc
2008-01-01
The invention of computer and advancement in information technology has revolutionized and benefited the society but at the same time has caused symptoms related to its usage such as ocular sprain, irritation, redness, dryness, blurred vision and double vision. This cluster of symptoms is known as computer vision syndrome which is characterized by the visual symptoms which result from interaction with computer display or its environment. Three major mechanisms that lead to computer vision syndrome are extraocular mechanism, accommodative mechanism and ocular surface mechanism. The visual effects of the computer such as brightness, resolution, glare and quality all are known factors that contribute to computer vision syndrome. Prevention is the most important strategy in managing computer vision syndrome. Modification in the ergonomics of the working environment, patient education and proper eye care are crucial in managing computer vision syndrome.
ERIC Educational Resources Information Center
Peterson, Mark
This extension education publication contains insights and tools to help community members develop a strategic vision and action plan for their community. Presented first are an executive summary and an introduction that includes 10 reasons for a strategic visioning process. The first section, which deals with harnessing the power of vision,…
Community for All Is Possible: Promoting Home and Community Life at Community Vision, Inc.
ERIC Educational Resources Information Center
Walker, Pam
This report on Community Vision, Inc. is part of a series documenting innovative supports for community living for adults with severe disabilities. Community Vision was created as an alternative to facility-based services in Oregon that would intentionally focus on providing inclusive community living for those with the most severe disabilities…
Computational approaches to vision
NASA Technical Reports Server (NTRS)
Barrow, H. G.; Tenenbaum, J. M.
1986-01-01
Vision is examined in terms of a computational process, and the competence, structure, and control of computer vision systems are analyzed. Theoretical and experimental data on the formation of a computer vision system are discussed. Consideration is given to early vision, the recovery of intrinsic surface characteristics, higher levels of interpretation, and system integration and control. A computational visual processing model is proposed and its architecture and operation are described. Examples of state-of-the-art vision systems, which include some of the levels of representation and processing mechanisms, are presented.
Heliophysics Data Environment: What's next? (Invited)
NASA Astrophysics Data System (ADS)
Martens, P.
2010-12-01
In the last two decades the Heliophysics community has witnessed the societal recognition of the importance of space weather and space climate for our technology and ecology, resulting in a renewed priority for and investment in Heliophysics. As a result of that and the explosive development of information technology, Heliophysics has experienced an exponential growth in the amount and variety of data acquired, as well as the easy electronic storage and distribution of these data. The Heliophysics community has responded well to these challenges. The first, most obvious and most needed response, was the development of Virtual Heliophysics Observatories. While the VxOs of Heliophysics still need a lot of work with respect to the expansion of search options and interoperability, I believe the basic structures and functionalities have been established, and that they meet the needs of the community. In the future we'll see a refinement, completion, and integration of VxOs, not a fundamentally different approach -- in my opinion. The challenge posed by the huge increase in amount of data is not met by VxOs alone. No individual scientist or group, even with the assistance of tons of graduate students, can analyze the torrent of data currently coming down from the fleet of heliospheric observatories. Once more information technology provides an opportunity: Automated feature recognition of solar imagery is feasible, has been implemented in a number of instances, and is strongly supported by NASA. For example, the SDO Feature Finding Team is developing a suite of 16 feature recognition modules for SDO imagery that operates in near-real time, produces space-weather warnings, and populates on-line event catalogs. Automated feature recognition -- "computer vision" -- not only save enormous amounts of time in the analysis of events, it also allows for a shift from the analysis of single events to that of sets of features and events -- the latter being by far the most important implication of computer vision. Consider some specific examples of possibilities here: From the on-line SDO metadata a user can produce with a few IDL line commands information that previously would have taken years to compile, e.g.: - Draw a butterfly diagram for Active Regions, - Find all filaments that coincide with sigmoids and correlate the automatically detected sigmoid handedness with filament chirality, - Correlate EUV jets with small scale flux emergence in coronal holes only, - Draw PIL maps with regions of high shear and large magnetic field gradients overlayed, to pinpoint potential flaring regions. Then correlate with actual flare occurrence. I emphasize that the access to those metadata will be provided by VxOs, and that the interplay between computer vision codes and data will be facilitated by VxOs. My vision for the near and medium future for the VxOs is then to provide a simple and seamless interface between data, cataloged metadata, and computer vision software, either existing or newly developed by the user. Heliospheric virtual observatories and computer vision systems will work together to constantly monitor the Sun, provide space weather warnings, populate catalogs of metadata, analyze trends, and produce real-time on-line imagery of current events.
Jaschinski, Wolfgang; König, Mirjam; Mekontso, Tiofil M; Ohlendorf, Arne; Welscher, Monique
2015-05-01
Two types of progressive addition lenses (PALs) were compared in an office field study: 1. General purpose PALs with continuous clear vision between infinity and near reading distances and 2. Computer vision PALs with a wider zone of clear vision at the monitor and in near vision but no clear distance vision. Twenty-three presbyopic participants wore each type of lens for two weeks in a double-masked four-week quasi-experimental procedure that included an adaptation phase (Weeks 1 and 2) and a test phase (Weeks 3 and 4). Questionnaires on visual and musculoskeletal conditions as well as preferences regarding the type of lenses were administered. After eight more weeks of free use of the spectacles, the preferences were assessed again. The ergonomic conditions were analysed from photographs. Head inclination when looking at the monitor was significantly lower by 2.3 degrees with the computer vision PALs than with the general purpose PALs. Vision at the monitor was judged significantly better with computer PALs, while distance vision was judged better with general purpose PALs; however, the reported advantage of computer vision PALs differed in extent between participants. Accordingly, 61 per cent of the participants preferred the computer vision PALs, when asked without information about lens design. After full information about lens characteristics and additional eight weeks of free spectacle use, 44 per cent preferred the computer vision PALs. On average, computer vision PALs were rated significantly better with respect to vision at the monitor during the experimental part of the study. In the final forced-choice ratings, approximately half of the participants preferred either the computer vision PAL or the general purpose PAL. Individual factors seem to play a role in this preference and in the rated advantage of computer vision PALs. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.
Gender DiVisions Across Technology Advertisements and the WWW: Implications for Educational Equity.
ERIC Educational Resources Information Center
Knupfer, Nancy Nelson
1998-01-01
Examines images and patterns of gender stereotypes within mediated and electronic advertisements that reach students online or when viewing computer software and educational television and questions decisions made in the construction of these images. The paper explains the importance of teachers, parents, and the community working together to…
Deep hierarchies in the primate visual cortex: what can we learn for computer vision?
Krüger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodríguez-Sánchez, Antonio J; Wiskott, Laurenz
2013-08-01
Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchical processing in the primate visual system is characterized by a sequence of different levels of processing (on the order of 10) that constitute a deep hierarchy in contrast to the flat vision architectures predominantly used in today's mainstream computer vision. We hope that the functional description of the deep hierarchies realized in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive interaction between biological and computer vision research.
Community identities as visions for landscape change
William P. Stewart; Derek Liebert; Kevin W. Larkin
2004-01-01
Residents' felt senses of their community can play substantial roles in determining visions for landscape change. Community identities are often anchored in tangible environments and events of a community, and have the potential to serve as visions for landscape planning processes. Photo-elicitation is applied in this study to connect community-based meanings to...
A rotorcraft flight database for validation of vision-based ranging algorithms
NASA Technical Reports Server (NTRS)
Smith, Phillip N.
1992-01-01
A helicopter flight test experiment was conducted at the NASA Ames Research Center to obtain a database consisting of video imagery and accurate measurements of camera motion, camera calibration parameters, and true range information. The database was developed to allow verification of monocular passive range estimation algorithms for use in the autonomous navigation of rotorcraft during low altitude flight. The helicopter flight experiment is briefly described. Four data sets representative of the different helicopter maneuvers and the visual scenery encountered during the flight test are presented. These data sets will be made available to researchers in the computer vision community.
ERIC Educational Resources Information Center
Lachapelle, Paul; Austin, Eric; Clark, Daniel
2010-01-01
Community strategic visioning is a citizen-based planning process in which diverse sectors of a community collectively determine a future state and coordinate a plan of action. Twenty-one communities in rural Montana participated in a multi-phase poverty reduction program that culminated in a community strategic vision process. Research on this…
Perceptual organization in computer vision - A review and a proposal for a classificatory structure
NASA Technical Reports Server (NTRS)
Sarkar, Sudeep; Boyer, Kim L.
1993-01-01
The evolution of perceptual organization in biological vision, and its necessity in advanced computer vision systems, arises from the characteristic that perception, the extraction of meaning from sensory input, is an intelligent process. This is particularly so for high order organisms and, analogically, for more sophisticated computational models. The role of perceptual organization in computer vision systems is explored. This is done from four vantage points. First, a brief history of perceptual organization research in both humans and computer vision is offered. Next, a classificatory structure in which to cast perceptual organization research to clarify both the nomenclature and the relationships among the many contributions is proposed. Thirdly, the perceptual organization work in computer vision in the context of this classificatory structure is reviewed. Finally, the array of computational techniques applied to perceptual organization problems in computer vision is surveyed.
The Institutional Vision of Tribal Community Colleges
ERIC Educational Resources Information Center
Abelman, Robert
2011-01-01
This investigation provides a base-line measurement of the inspirational and pragmatic rhetoric in declarations of institutional vision at tribal community colleges. By comparing it to nontribal community colleges, this content analysis reveals the current state of utility of the mission and vision statements of tribal community colleges, their…
ACE [Adult and Community Education] into the 21st Century: A Vision.
ERIC Educational Resources Information Center
Adult, Community, and Further Education Board, Melbourne (Australia).
This document outlines a vision for adult and community education (ACE) in Victoria for the next 3 years and provides a broad map of how to reach that vision. A description of the context is followed by the ACE vision statement: ACE delivers accessible, quality, and timely learning in autonomous, community settings as a valued and essential…
VideoWeb Dataset for Multi-camera Activities and Non-verbal Communication
NASA Astrophysics Data System (ADS)
Denina, Giovanni; Bhanu, Bir; Nguyen, Hoang Thanh; Ding, Chong; Kamal, Ahmed; Ravishankar, Chinya; Roy-Chowdhury, Amit; Ivers, Allen; Varda, Brenda
Human-activity recognition is one of the most challenging problems in computer vision. Researchers from around the world have tried to solve this problem and have come a long way in recognizing simple motions and atomic activities. As the computer vision community heads toward fully recognizing human activities, a challenging and labeled dataset is needed. To respond to that need, we collected a dataset of realistic scenarios in a multi-camera network environment (VideoWeb) involving multiple persons performing dozens of different repetitive and non-repetitive activities. This chapter describes the details of the dataset. We believe that this VideoWeb Activities dataset is unique and it is one of the most challenging datasets available today. The dataset is publicly available online at http://vwdata.ee.ucr.edu/ along with the data annotation.
Mapping Agricultural Fields in Sub-Saharan Africa with a Computer Vision Approach
NASA Astrophysics Data System (ADS)
Debats, S. R.; Luo, D.; Estes, L. D.; Fuchs, T.; Caylor, K. K.
2014-12-01
Sub-Saharan Africa is an important focus for food security research, because it is experiencing unprecedented population growth, agricultural activities are largely dominated by smallholder production, and the region is already home to 25% of the world's undernourished. One of the greatest challenges to monitoring and improving food security in this region is obtaining an accurate accounting of the spatial distribution of agriculture. Households are the primary units of agricultural production in smallholder communities and typically rely on small fields of less than 2 hectares. Field sizes are directly related to household crop productivity, management choices, and adoption of new technologies. As population and agriculture expand, it becomes increasingly important to understand both the distribution of field sizes as well as how agricultural communities are spatially embedded in the landscape. In addition, household surveys, a common tool for tracking agricultural productivity in Sub-Saharan Africa, would greatly benefit from spatially explicit accounting of fields. Current gridded land cover data sets do not provide information on individual agricultural fields or the distribution of field sizes. Therefore, we employ cutting edge approaches from the field of computer vision to map fields across Sub-Saharan Africa, including semantic segmentation, discriminative classifiers, and automatic feature selection. Our approach aims to not only improve the binary classification accuracy of cropland, but also to isolate distinct fields, thereby capturing crucial information on size and geometry. Our research focuses on the development of descriptive features across scales to increase the accuracy and geographic range of our computer vision algorithm. Relevant data sets include high-resolution remote sensing imagery and Landsat (30-m) multi-spectral imagery. Training data for field boundaries is derived from hand-digitized data sets as well as crowdsourcing.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576
PlantCV v2: Image analysis software for high-throughput plant phenotyping.
Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...
2017-12-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
Computer vision syndrome: a review.
Blehm, Clayton; Vishnu, Seema; Khattak, Ashbala; Mitra, Shrabanee; Yee, Richard W
2005-01-01
As computers become part of our everyday life, more and more people are experiencing a variety of ocular symptoms related to computer use. These include eyestrain, tired eyes, irritation, redness, blurred vision, and double vision, collectively referred to as computer vision syndrome. This article describes both the characteristics and treatment modalities that are available at this time. Computer vision syndrome symptoms may be the cause of ocular (ocular-surface abnormalities or accommodative spasms) and/or extraocular (ergonomic) etiologies. However, the major contributor to computer vision syndrome symptoms by far appears to be dry eye. The visual effects of various display characteristics such as lighting, glare, display quality, refresh rates, and radiation are also discussed. Treatment requires a multidirectional approach combining ocular therapy with adjustment of the workstation. Proper lighting, anti-glare filters, ergonomic positioning of computer monitor and regular work breaks may help improve visual comfort. Lubricating eye drops and special computer glasses help relieve ocular surface-related symptoms. More work needs to be done to specifically define the processes that cause computer vision syndrome and to develop and improve effective treatments that successfully address these causes.
ERIC Educational Resources Information Center
Weinberg, Adam S.
1999-01-01
Explores an effort by Colgate University (New York) to enhance economic development in two low-income hamlets in New York through community-visioning programs. Describes the process of community visioning and shows how Colgate has been instrumental in its promotion. Argues that universities are better situated than governments or nonprofits to…
Quaternions in computer vision and robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pervin, E.; Webb, J.A.
1982-01-01
Computer vision and robotics suffer from not having good tools for manipulating three-dimensional objects. Vectors, coordinate geometry, and trigonometry all have deficiencies. Quaternions can be used to solve many of these problems. Many properties of quaternions that are relevant to computer vision and robotics are developed. Examples are given showing how quaternions can be used to simplify derivations in computer vision and robotics.
McMullan, Keri S; Butler, Mary
2018-05-09
Older adults with low vision are a growing population with rehabilitation needs including support with community mobility to enable community participation. Some older adults with low vision choose to use mobility scooters to mobilize within their community, but there is limited research about the use by people with low vision. This paper describes a pilot study and asks the question: what are the experiences of persons with low vision who use mobility scooters? This study gathered the experiences of four participants with low vision, aged 51 and over, who regularly use mobility scooters. Diverse methods were used including a go-along, a semi-structured interview and a new measure of functional vision for mobility called the vision-related outcomes in orientation and mobility (VROOM). Four themes were found to describe experiences: autonomy and well-being, accessibility, community interactions and self-regulation. Discussion and implications: This study was a pilot for a larger study examining self-regulation in scooter users. However, as roles emerge for health professionals and scooters, the findings also provide evidence to inform practice, because it demonstrates the complex meaning and influences on performance involved in low vision mobility scooter use. Implications for rehabilitation Scooter use supports autonomy and well-being and community connections for individuals with both mobility and visual impairments. Low vision scooter users demonstrate self-regulation of their scooter use to manage both their visual and environmental limitations. Issues of accessibility experienced by this sample affect a wider community of footpath users, emphasizing the need for councils to address inadequate infrastructure. Rehabilitators can support their low vision clients' scooter use by acknowledging issues of accessibility and promoting self-regulation strategies to manage risks and barriers.
Benchmarking neuromorphic vision: lessons learnt from computer vision
Tan, Cheston; Lallee, Stephane; Orchard, Garrick
2015-01-01
Neuromorphic Vision sensors have improved greatly since the first silicon retina was presented almost three decades ago. They have recently matured to the point where they are commercially available and can be operated by laymen. However, despite improved availability of sensors, there remains a lack of good datasets, while algorithms for processing spike-based visual data are still in their infancy. On the other hand, frame-based computer vision algorithms are far more mature, thanks in part to widely accepted datasets which allow direct comparison between algorithms and encourage competition. We are presented with a unique opportunity to shape the development of Neuromorphic Vision benchmarks and challenges by leveraging what has been learnt from the use of datasets in frame-based computer vision. Taking advantage of this opportunity, in this paper we review the role that benchmarks and challenges have played in the advancement of frame-based computer vision, and suggest guidelines for the creation of Neuromorphic Vision benchmarks and challenges. We also discuss the unique challenges faced when benchmarking Neuromorphic Vision algorithms, particularly when attempting to provide direct comparison with frame-based computer vision. PMID:26528120
Vision Voice: A Multimedia Exploration of Diabetes and Vision Loss in East Harlem.
Ives, Brett; Nedelman, Michael; Redwood, Charysse; Ramos, Michelle A; Hughson-Andrade, Jessica; Hernandez, Evelyn; Jordan, Dioris; Horowitz, Carol R
2015-01-01
East Harlem, New York, is a community actively struggling with diabetes and its complications, including vision-related conditions that can affect many aspects of daily life. Vision Voice was a qualitative community-based participatory research (CBPR) study that intended to better understand the needs and experiences of people living with diabetes, other comorbid chronic illnesses, and vision loss in East Harlem. Using photovoice methodology, four participants took photographs, convened to review their photographs, and determined overarching themes for the group's collective body of work. Identified themes included effect of decreased vision function on personal independence/mobility and self-management of chronic conditions and the importance of informing community members and health care providers about these issues. The team next created a documentary film that further develops the narratives of the photovoice participants. The Vision Voice photovoice project was an effective tool to assess community needs, educate and raise awareness.
Towards Dynamic Authentication in the Grid — Secure and Mobile Business Workflows Using GSet
NASA Astrophysics Data System (ADS)
Mangler, Jürgen; Schikuta, Erich; Witzany, Christoph; Jorns, Oliver; Ul Haq, Irfan; Wanek, Helmut
Until now, the research community mainly focused on the technical aspects of Grid computing and neglected commercial issues. However, recently the community tends to accept that the success of the Grid is crucially based on commercial exploitation. In our vision Foster's and Kesselman's statement "The Grid is all about sharing." has to be extended by "... and making money out of it!". To allow for the realization of this vision the trust-worthyness of the underlying technology needs to be ensured. This can be achieved by the use of gSET (Gridified Secure Electronic Transaction) as a basic technology for trust management and secure accounting in the presented Grid based workflow. We present a framework, conceptually and technically, from the area of the Mobile-Grid, which justifies the Grid infrastructure as a viable platform to enable commercially successful business workflows.
Al Rashidi, Sultan H; Alhumaidan, H
2017-01-01
Computers and other visual display devices are now an essential part of our daily life. With the increased use, a very large population is experiencing sundry ocular symptoms globally such as dry eyes, eye strain, irritation, and redness of the eyes to name a few. Collectively, all such computer related symptoms are usually referred to as computer vision syndrome (CVS). The current study aims to define the prevalence, knowledge in community, pathophysiology, factors associated, and prevention of CVS. This is a cross-sectional study conducted in Qassim University College of Medicine during a period of 1 year from January 2015 to January 2016 using a questionnaire to collect relevant data including demographics and various variables to be studied. 634 students were inducted from a public sector University of Qassim, Saudi Arabia, regardless of their age and gender. The data were then statistically analyzed on SPSS version 22, and the descriptive data were expressed as percentages, mode, and median using graphs where needed. A total of 634 students with a mean age of 21. 40, Std 1.997 and Range 7 (18-25) were included as study subjects with a male predominance (77.28%). Of the total patients, majority (459, 72%) presented with acute symptoms while remaining had chronic problems. A clear-cut majority was carrying the symptoms for <5 days and >1 month. The statistical analysis revealed serious symptoms in the majority of study subjects especially those who are permanent users of a computer for long hours. Continuous use of computers for long hours is found to have severe problems of vision especially in those who are using computers and similar devices for a long duration.
Al Rashidi, Sultan H.; Alhumaidan, H.
2017-01-01
Objectives: Computers and other visual display devices are now an essential part of our daily life. With the increased use, a very large population is experiencing sundry ocular symptoms globally such as dry eyes, eye strain, irritation, and redness of the eyes to name a few. Collectively, all such computer related symptoms are usually referred to as computer vision syndrome (CVS). The current study aims to define the prevalence, knowledge in community, pathophysiology, factors associated, and prevention of CVS. Methods: This is a cross-sectional study conducted in Qassim University College of Medicine during a period of 1 year from January 2015 to January 2016 using a questionnaire to collect relevant data including demographics and various variables to be studied. 634 students were inducted from a public sector University of Qassim, Saudi Arabia, regardless of their age and gender. The data were then statistically analyzed on SPSS version 22, and the descriptive data were expressed as percentages, mode, and median using graphs where needed. Results: A total of 634 students with a mean age of 21. 40, Std 1.997 and Range 7 (18-25) were included as study subjects with a male predominance (77.28%). Of the total patients, majority (459, 72%) presented with acute symptoms while remaining had chronic problems. A clear-cut majority was carrying the symptoms for <5 days and >1 month. The statistical analysis revealed serious symptoms in the majority of study subjects especially those who are permanent users of a computer for long hours. Conclusion: Continuous use of computers for long hours is found to have severe problems of vision especially in those who are using computers and similar devices for a long duration. PMID:29114189
A Federal Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge
2016-07-29
Science Foundation (NSF), Department of Defense (DOD), National Institute of Standards and Technology (NIST), Intelligence Community (IC) Introduction...multiple Federal agencies: • Intelligent big data sensors that act autonomously and are programmable via the network for increased flexibility, and... intelligence for scientific discovery enabled by rapid extreme-scale data analysis, capable of understanding and making sense of results and thereby
(Computer) Vision without Sight
Manduchi, Roberto; Coughlan, James
2012-01-01
Computer vision holds great promise for helping persons with blindness or visual impairments (VI) to interpret and explore the visual world. To this end, it is worthwhile to assess the situation critically by understanding the actual needs of the VI population and which of these needs might be addressed by computer vision. This article reviews the types of assistive technology application areas that have already been developed for VI, and the possible roles that computer vision can play in facilitating these applications. We discuss how appropriate user interfaces are designed to translate the output of computer vision algorithms into information that the user can quickly and safely act upon, and how system-level characteristics affect the overall usability of an assistive technology. Finally, we conclude by highlighting a few novel and intriguing areas of application of computer vision to assistive technology. PMID:22815563
Microscope self-calibration based on micro laser line imaging and soft computing algorithms
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.
2018-06-01
A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.
Beyond the computer-based patient record: re-engineering with a vision.
Genn, B; Geukers, L
1995-01-01
In order to achieve real benefit from the potential offered by a Computer-Based Patient Record, the capabilities of the technology must be applied along with true re-engineering of healthcare delivery processes. University Hospital recognizes this and is using systems implementation projects, such as the catalyst, for transforming the way we care for our patients. Integration is fundamental to the success of these initiatives and this must be explicitly planned against an organized systems architecture whose standards are market-driven. University Hospital also recognizes that Community Health Information Networks will offer improved quality of patient care at a reduced overall cost to the system. All of these implementation factors are considered up front as the hospital makes its initial decisions on to how to computerize its patient records. This improves our chances for success and will provide a consistent vision to guide the hospital's development of new and better patient care.
Community health nursing vision for 2020: shaping the future.
Schofield, Ruth; Ganann, Rebecca; Brooks, Sandy; McGugan, Jennifer; Dalla Bona, Kim; Betker, Claire; Dilworth, Katie; Parton, Laurie; Reid-Haughian, Cheryl; Slepkov, Marlene; Watson, Cori
2011-12-01
As health care is shifting from hospital to community, community health nurses (CHNs) are directly affected. This descriptive qualitative study sought to understand priority issues currently facing CHNs, explore development of a national vision for community health nursing, and develop recommendations to shape the future of the profession moving toward the year 2020. Focus groups and key informant interviews were conducted across Canada. Five key themes were identified: community health nursing in crisis now, a flawed health care system, responding to the public, vision for the future, and CHNs as solution makers. Key recommendations include developing a common definition and vision of community health nursing, collaborating on an aggressive plan to shift to a primary health care system, developing a comprehensive social marketing strategy, refocusing basic baccalaureate education, enhancing the capacity of community health researchers and knowledge in community health nursing, and establishing a community health nursing center of excellence.
On the performances of computer vision algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.
2012-01-01
Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.
NASA Technical Reports Server (NTRS)
Thompson, David E.
2005-01-01
Procedures and methods for veri.cation of coding algebra and for validations of models and calculations used in the aerospace computational fluid dynamics (CFD) community would be ef.cacious if used by the glacier dynamics modeling community. This paper presents some of those methods, and how they might be applied to uncertainty management supporting code veri.cation and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modeling are discussed. After establishing sources of uncertainty and methods for code veri.cation, the paper looks at a representative sampling of veri.cation and validation efforts that are underway in the glacier modeling community, and establishes a context for these within an overall solution quality assessment. Finally, a vision of a new information architecture and interactive scienti.c interface is introduced and advocated.
IO Sphere: The Professional Journal of Joint Information Operations. Special Edition 2008
2008-01-01
members, disseminate propaganda, videos , brochures, and training materials, as well as to coordinate terrorist acts in an anonymous and...collaboration among larger communities of cyber Porn versus Terror Years ago, authorities noticed that child pornography websites, though often...stepping foot on them. Moreover, video information can be analyzed by computer vision algorithms. Based on technology available today, it’s not
Pyramidal neurovision architecture for vision machines
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Knopf, George K.
1993-08-01
The vision system employed by an intelligent robot must be active; active in the sense that it must be capable of selectively acquiring the minimal amount of relevant information for a given task. An efficient active vision system architecture that is based loosely upon the parallel-hierarchical (pyramidal) structure of the biological visual pathway is presented in this paper. Although the computational architecture of the proposed pyramidal neuro-vision system is far less sophisticated than the architecture of the biological visual pathway, it does retain some essential features such as the converging multilayered structure of its biological counterpart. In terms of visual information processing, the neuro-vision system is constructed from a hierarchy of several interactive computational levels, whereupon each level contains one or more nonlinear parallel processors. Computationally efficient vision machines can be developed by utilizing both the parallel and serial information processing techniques within the pyramidal computing architecture. A computer simulation of a pyramidal vision system for active scene surveillance is presented.
Computer vision in the poultry industry
USDA-ARS?s Scientific Manuscript database
Computer vision is becoming increasingly important in the poultry industry due to increasing use and speed of automation in processing operations. Growing awareness of food safety concerns has helped add food safety inspection to the list of tasks that automated computer vision can assist. Researc...
Westerling, Anna M; Haikala, Veikko; Airaksinen, Marja
2011-12-01
Community pharmacy's strategic vision has been to extend practice responsibilities beyond dispensing and provide patient care services. Few studies have evaluated the strategic and long-term development of information technology (IT) systems to support this vision. The objective of this study was to explore international experts' visions and strategic views on IT development needs in relation to service provision in community pharmacies. Semistructured interviews were conducted with a purposive sample of 14 experts from 8 countries in 2007-2008. These experts had expertise in the development of community pharmacy services and IT. The interviews were content analyzed using a constant comparison approach and a SWOT (strengths, weaknesses, opportunities, threats) analysis was undertaken. Most of the experts shared the vision for community pharmacy adopting a patient care orientation; supported by IT-based documentation, new technological solutions, access to information, and shared patient data. Opportunities to achieve this vision included IT solutions, professional skills, and interprofessional collaboration. Threats included costs, pharmacists' attitude, and the absence of IT solutions. Those responsible for IT development in community pharmacy sector should create long-term IT development strategies that are in line with community pharmacy service development strategies. Copyright © 2011 Elsevier Inc. All rights reserved.
[Comparison study between biological vision and computer vision].
Liu, W; Yuan, X G; Yang, C X; Liu, Z Q; Wang, R
2001-08-01
The development and bearing of biology vision in structure and mechanism were discussed, especially on the aspects including anatomical structure of biological vision, tentative classification of reception field, parallel processing of visual information, feedback and conformity effect of visual cortical, and so on. The new advance in the field was introduced through the study of the morphology of biological vision. Besides, comparison between biological vision and computer vision was made, and their similarities and differences were pointed out.
Reinforcement learning in computer vision
NASA Astrophysics Data System (ADS)
Bernstein, A. V.; Burnaev, E. V.
2018-04-01
Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.
ERIC Educational Resources Information Center
Jenkins, Dorothy I.; Jenkins, Quentin A. L.
Rural community development is undergoing changing visions, activities, and methodologies. Factors impacting this change include decentralization, budget reduction in the public sector, and globalization and downsizing in the private sector. Community "building" (community-generated change and emphasis on capacities rather than…
2015-08-21
using the Open Computer Vision ( OpenCV ) libraries [6] for computer vision and the Qt library [7] for the user interface. The software has the...depth. The software application calibrates the cameras using the plane based calibration model from the OpenCV calib3D module and allows the...6] OpenCV . 2015. OpenCV Open Source Computer Vision. [Online]. Available at: opencv.org [Accessed]: 09/01/2015. [7] Qt. 2015. Qt Project home
NASA Astrophysics Data System (ADS)
Skrzypek, Josef; Mesrobian, Edmond; Gungner, David J.
1989-03-01
The development of autonomous land vehicles (ALV) capable of operating in an unconstrained environment has proven to be a formidable research effort. The unpredictability of events in such an environment calls for the design of a robust perceptual system, an impossible task requiring the programming of a system bases on the expectation of future, unconstrained events. Hence, the need for a "general purpose" machine vision system that is capable of perceiving and understanding images in an unconstrained environment in real-time. The research undertaken at the UCLA Machine Perception Laboratory addresses this need by focusing on two specific issues: 1) the long term goals for machine vision research as a joint effort between the neurosciences and computer science; and 2) a framework for evaluating progress in machine vision. In the past, vision research has been carried out independently within different fields including neurosciences, psychology, computer science, and electrical engineering. Our interdisciplinary approach to vision research is based on the rigorous combination of computational neuroscience, as derived from neurophysiology and neuropsychology, with computer science and electrical engineering. The primary motivation behind our approach is that the human visual system is the only existing example of a "general purpose" vision system and using a neurally based computing substrate, it can complete all necessary visual tasks in real-time.
Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Choudhary, Alok Nidhi
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.
NASA Astrophysics Data System (ADS)
Paar, G.
2009-04-01
At present, mainly the US have realized planetary space missions with essential robotics background. Joining institutions, companies and universities from different established groups in Europe and two relevant players from the US, the EC FP7 Project PRoVisG started in autumn 2008 to demonstrate the European ability of realizing high-level processing of robotic vision image products from the surface of planetary bodies. PRoVisG will build a unified European framework for Robotic Vision Ground Processing. State-of-art computer vision technology will be collected inside and outside Europe to better exploit the image data gathered during past, present and future robotic space missions to the Moon and the Planets. This will lead to a significant enhancement of the scientific, technologic and educational outcome of such missions. We report on the main PRoVisG objectives and the development status: - Past, present and future planetary robotic mission profiles are analysed in terms of existing solutions and requirements for vision processing - The generic processing chain is based on unified vision sensor descriptions and processing interfaces. Processing components available at the PRoVisG Consortium Partners will be completed by and combined with modules collected within the international computer vision community in the form of Announcements of Opportunity (AOs). - A Web GIS is developed to integrate the processing results obtained with data from planetary surfaces into the global planetary context. - Towards the end of the 39 month project period, PRoVisG will address the public by means of a final robotic field test in representative terrain. The European tax payers will be able to monitor the imaging and vision processing in a Mars - similar environment, thus getting an insight into the complexity and methods of processing, the potential and decision making of scientific exploitation of such data and not least the elegancy and beauty of the resulting image products and their visualization. - The educational aspect is addressed by two summer schools towards the end of the project, presenting robotic vision to the students who are future providers of European science and technology, inside and outside the space domain.
Vision 2020 measures University of New Mexico's success by health of its state.
Kaufman, Arthur; Roth, Paul B; Larson, Richard S; Ridenour, Nancy; Welage, Lynda S; Romero-Leggott, Valerie; Nkouaga, Carolina; Armitage, Karen; McKinney, Kara L
2015-01-01
The University of New Mexico Health Sciences Center (UNMHSC) adopted a new Vision to work with community partners to help New Mexico make more progress in health and health equity than any other state by 2020. UNMHSC recognized it would be more successful in meeting communities' health priorities if it better aligned its own educational, research, and clinical missions with their needs. National measures that compare states on the basis of health determinants and outcomes were adopted in 2013 as part of Vision 2020 target measures for gauging progress toward improved health and health care in New Mexico. The Vision focused the institution's resources on strengthening community capacity and responding to community priorities via pipeline education, workforce development programs, community-driven and community-focused research, and community-based clinical service innovations, such as telehealth and "health extension." Initiatives with the greatest impact often cut across institutional silos in colleges, departments, and programs, yielding measurable community health benefits. Community leaders also facilitated collaboration by enlisting University of New Mexico educational and clinical resources to better respond to their local priorities. Early progress in New Mexico's health outcomes measures and state health ranking is a promising sign of movement toward Vision 2020. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Computer vision for foreign body detection and removal in the food industry
USDA-ARS?s Scientific Manuscript database
Computer vision inspection systems are often used for quality control, product grading, defect detection and other product evaluation issues. This chapter focuses on the use of computer vision inspection systems that detect foreign bodies and remove them from the product stream. Specifically, we wi...
Chapter 11. Quality evaluation of apple by computer vision
USDA-ARS?s Scientific Manuscript database
Apple is one of the most consumed fruits in the world, and there is a critical need for enhanced computer vision technology for quality assessment of apples. This chapter gives a comprehensive review on recent advances in various computer vision techniques for detecting surface and internal defects ...
Deep Learning for Computer Vision: A Brief Review
Doulamis, Nikolaos; Doulamis, Anastasios; Protopapadakis, Eftychios
2018-01-01
Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein. PMID:29487619
A computer vision for animal ecology.
Weinstein, Ben G
2018-05-01
A central goal of animal ecology is to observe species in the natural world. The cost and challenge of data collection often limit the breadth and scope of ecological study. Ecologists often use image capture to bolster data collection in time and space. However, the ability to process these images remains a bottleneck. Computer vision can greatly increase the efficiency, repeatability and accuracy of image review. Computer vision uses image features, such as colour, shape and texture to infer image content. I provide a brief primer on ecological computer vision to outline its goals, tools and applications to animal ecology. I reviewed 187 existing applications of computer vision and divided articles into ecological description, counting and identity tasks. I discuss recommendations for enhancing the collaboration between ecologists and computer scientists and highlight areas for future growth of automated image analysis. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.
Zhou, Ji; Applegate, Christopher; Alonso, Albor Dobon; Reynolds, Daniel; Orford, Simon; Mackiewicz, Michal; Griffiths, Simon; Penfield, Steven; Pullen, Nick
2017-01-01
Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat ( Triticum aestivum ) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.
ERIC Educational Resources Information Center
Illinois State Board of Higher Education, Springfield.
This proposal calls on the state of Illinois to initiate a statewide computing and telecommunications network that would give its residents access to higher education, advanced training, and electronic information resources. The proposed network, entitled Illinois Century Network, would link all higher education institutions in the state to…
From Academic Vision to Physical Manifestation
ERIC Educational Resources Information Center
Walleri, R. Dan; Becker, William E.
2004-01-01
This community college-based case study describes and analyzes how a new mission and vision adopted by the college trustees was translated into a facility master plan. The vision is designed to serve the needs of the community and facilitate economic development, especially in the areas of health occupations, biotechnology and…
Misimi, E; Mathiassen, J R; Erikson, U
2007-01-01
Computer vision method was used to evaluate the color of Atlantic salmon (Salmo salar) fillets. Computer vision-based sorting of fillets according to their color was studied on 2 separate groups of salmon fillets. The images of fillets were captured using a digital camera of high resolution. Images of salmon fillets were then segmented in the regions of interest and analyzed in red, green, and blue (RGB) and CIE Lightness, redness, and yellowness (Lab) color spaces, and classified according to the Roche color card industrial standard. Comparisons of fillet color between visual evaluations were made by a panel of human inspectors, according to the Roche SalmoFan lineal standard, and the color scores generated from computer vision algorithm showed that there were no significant differences between the methods. Overall, computer vision can be used as a powerful tool to sort fillets by color in a fast and nondestructive manner. The low cost of implementing computer vision solutions creates the potential to replace manual labor in fish processing plants with automation.
Citizen Science, NACEPT 2016 Report, Environment Belongs to the Public, A Vision for EPA, Community Engagement, NACEPT Recommendations, E-Enterprise Advanced Monitoring Report, EPA Community of Practitioners, Community Citizen Science
Machine Learning, deep learning and optimization in computer vision
NASA Astrophysics Data System (ADS)
Canu, Stéphane
2017-03-01
As quoted in the Large Scale Computer Vision Systems NIPS workshop, computer vision is a mature field with a long tradition of research, but recent advances in machine learning, deep learning, representation learning and optimization have provided models with new capabilities to better understand visual content. The presentation will go through these new developments in machine learning covering basic motivations, ideas, models and optimization in deep learning for computer vision, identifying challenges and opportunities. It will focus on issues related with large scale learning that is: high dimensional features, large variety of visual classes, and large number of examples.
Developing a vision and strategic action plan for future community-based residency training.
Skelton, Jann B; Owen, James A
2016-01-01
The Community Pharmacy Residency Program (CPRP) Planning Committee convened to develop a vision and a strategic action plan for the advancement of community pharmacy residency training. Aligned with the profession's efforts to achieve provider status and expand access to care, the Future Vision and Action Plan for Community-based Residency Training will provide guidance, direction, and a strategic action plan for community-based residency training to ensure that the future needs of community-based pharmacist practitioners are met. National thought leaders, selected because of their leadership in pharmacy practice, academia, and residency training, served on the planning committee. The committee conducted a series of conference calls and an in-person strategic planning meeting held on January 13-14, 2015. Outcomes from the discussions were supplemented with related information from the literature. Results of a survey of CPRP directors and preceptors also informed the planning process. The vision and strategic action plan for community-based residency training is intended to advance training to meet the emerging needs of patients in communities that are served by the pharmacy profession. The group anticipated the advanced skills required of pharmacists serving as community-based pharmacist practitioners and the likely education, training and competencies required by future residency graduates in order to deliver these services. The vision reflects a transformation of community residency training, from CPRPs to community-based residency training, and embodies the concept that residency training should be primarily focused on training the individual pharmacist practitioner based on the needs of patients served within the community, and not on the physical location where pharmacy services are provided. The development of a vision statement, core values statements, and strategic action plan will provide support, guidance, and direction to the profession of pharmacy to continue the advancement and expansion of community-based residency training. Published by Elsevier Inc.
3-D Signal Processing in a Computer Vision System
Dongping Zhu; Richard W. Conners; Philip A. Araman
1991-01-01
This paper discusses the problem of 3-dimensional image filtering in a computer vision system that would locate and identify internal structural failure. In particular, a 2-dimensional adaptive filter proposed by Unser has been extended to 3-dimension. In conjunction with segmentation and labeling, the new filter has been used in the computer vision system to...
An overview of computer vision
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1982-01-01
An overview of computer vision is provided. Image understanding and scene analysis are emphasized, and pertinent aspects of pattern recognition are treated. The basic approach to computer vision systems, the techniques utilized, applications, the current existing systems and state-of-the-art issues and research requirements, who is doing it and who is funding it, and future trends and expectations are reviewed.
Experiences Using an Open Source Software Library to Teach Computer Vision Subjects
ERIC Educational Resources Information Center
Cazorla, Miguel; Viejo, Diego
2015-01-01
Machine vision is an important subject in computer science and engineering degrees. For laboratory experimentation, it is desirable to have a complete and easy-to-use tool. In this work we present a Java library, oriented to teaching computer vision. We have designed and built the library from the scratch with emphasis on readability and…
An Environmental Scan Update, 1992-93. 2020: Perfect Vision for the Next Century.
ERIC Educational Resources Information Center
Friedel, J. N., Ed.
1992-01-01
A key component to Eastern Iowa Community College District's (EICCD) strategic planning process, called "2020 Vision: A Perfect Vision for the Future," was the publication of the report "An Environmental Scan" in 1989, which summarized major trends occurring in the external environment which may impact the community college,…
2011-11-01
RX-TY-TR-2011-0096-01) develops a novel computer vision sensor based upon the biological vision system of the common housefly , Musca domestica...01 summarizes the development of a novel computer vision sensor based upon the biological vision system of the common housefly , Musca domestica
2010-03-01
of sub-routines Thermal history • Abaqus FEM engine mature applied within ABAQUS Residual stress & Distortion • Unknown maturity for HTC • Focused...investment. The committee’s ICME vision is comprehensive, expansive , and involves the entire materials community. The scope of this white paper is...Software • Continuum FEM for fluid flow, heat Mold Fill • FEM implementation mature flow and stress analysis Thermal & mushy zone history • Needs
Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades.
Orchard, Garrick; Jayawant, Ajinkya; Cohen, Gregory K; Thakor, Nitish
2015-01-01
Creating datasets for Neuromorphic Vision is a challenging task. A lack of available recordings from Neuromorphic Vision sensors means that data must typically be recorded specifically for dataset creation rather than collecting and labeling existing data. The task is further complicated by a desire to simultaneously provide traditional frame-based recordings to allow for direct comparison with traditional Computer Vision algorithms. Here we propose a method for converting existing Computer Vision static image datasets into Neuromorphic Vision datasets using an actuated pan-tilt camera platform. Moving the sensor rather than the scene or image is a more biologically realistic approach to sensing and eliminates timing artifacts introduced by monitor updates when simulating motion on a computer monitor. We present conversion of two popular image datasets (MNIST and Caltech101) which have played important roles in the development of Computer Vision, and we provide performance metrics on these datasets using spike-based recognition algorithms. This work contributes datasets for future use in the field, as well as results from spike-based algorithms against which future works can compare. Furthermore, by converting datasets already popular in Computer Vision, we enable more direct comparison with frame-based approaches.
Vision-Based UAV Flight Control and Obstacle Avoidance
2006-01-01
denoted it by Vb = (Vb1, Vb2 , Vb3). Fig. 2 shows the block diagram of the proposed vision-based motion analysis and obstacle avoidance system. We denote...structure analysis often involve computation- intensive computer vision tasks, such as feature extraction and geometric modeling. Computation-intensive...First, we extract a set of features from each block. 2) Second, we compute the distance between these two sets of features. In conventional motion
A Vision for the Future of Community Psychology Education and Training.
Jimenez, Tiffeny R; Sánchez, Bernadette; McMahon, Susan D; Viola, Judah
2016-12-01
As we reflect on the founding vision of the field of community psychology in the United States, we assess our progress toward achieving, building upon, and refining this vision. We review early literature regarding the US vision of the field, provide a historical overview of education and training within the field, and provide recommendations to guide and strengthen our approach to education. Our recommendations include the following: 1) serve as a resource to communities, 2) promote a sense of community within our field, 3) diversify students, faculty, and leadership, 4) evaluate our efforts, 5) be current and relevant, 6) enhance the visibility and growth of our field, and 7) create globally minded and innovative CPists. We provide strategies for programs, faculty, linkages between researchers and practitioners, and the Society for Community Research and Action. We conclude that community psychology education and training continues to reflect the early vision; however, we believe we must make more intentional efforts to align with the mission and values of the field, and to engage in a critical analysis of our pedagogy. Enhancing and growing undergraduate and graduate education can facilitate the achievement of our goals to promote social justice, prevent and address social problems, and build community connections to become more effective, impactful, and global social change agents. © Society for Community Research and Action 2016.
Heterogeneous compute in computer vision: OpenCL in OpenCV
NASA Astrophysics Data System (ADS)
Gasparakis, Harris
2014-02-01
We explore the relevance of Heterogeneous System Architecture (HSA) in Computer Vision, both as a long term vision, and as a near term emerging reality via the recently ratified OpenCL 2.0 Khronos standard. After a brief review of OpenCL 1.2 and 2.0, including HSA features such as Shared Virtual Memory (SVM) and platform atomics, we identify what genres of Computer Vision workloads stand to benefit by leveraging those features, and we suggest a new mental framework that replaces GPU compute with hybrid HSA APU compute. As a case in point, we discuss, in some detail, popular object recognition algorithms (part-based models), emphasizing the interplay and concurrent collaboration between the GPU and CPU. We conclude by describing how OpenCL has been incorporated in OpenCV, a popular open source computer vision library, emphasizing recent work on the Transparent API, to appear in OpenCV 3.0, which unifies the native CPU and OpenCL execution paths under a single API, allowing the same code to execute either on CPU or on a OpenCL enabled device, without even recompiling.
Two-Year Community: Implementing Vision and Change in a Community College Classroom
ERIC Educational Resources Information Center
Lysne, Steven; Miller, Brant
2015-01-01
The purpose of this article is to describe a model for teaching introductory biology coursework within the Vision and Change framework (American Association for the Advancement of Science, 2011). The intent of the new model is to transform instruction by adopting an active, student-centered, and inquiry-based pedagogy consistent with Vision and…
Quality grading of Atlantic salmon (Salmo salar) by computer vision.
Misimi, E; Erikson, U; Skavhaug, A
2008-06-01
In this study, we present a promising method of computer vision-based quality grading of whole Atlantic salmon (Salmo salar). Using computer vision, it was possible to differentiate among different quality grades of Atlantic salmon based on the external geometrical information contained in the fish images. Initially, before the image acquisition, the fish were subjectively graded and labeled into grading classes by a qualified human inspector in the processing plant. Prior to classification, the salmon images were segmented into binary images, and then feature extraction was performed on the geometrical parameters of the fish from the grading classes. The classification algorithm was a threshold-based classifier, which was designed using linear discriminant analysis. The performance of the classifier was tested by using the leave-one-out cross-validation method, and the classification results showed a good agreement between the classification done by human inspectors and by the computer vision. The computer vision-based method classified correctly 90% of the salmon from the data set as compared with the classification by human inspector. Overall, it was shown that computer vision can be used as a powerful tool to grade Atlantic salmon into quality grades in a fast and nondestructive manner by a relatively simple classifier algorithm. The low cost of implementation of today's advanced computer vision solutions makes this method feasible for industrial purposes in fish plants as it can replace manual labor, on which grading tasks still rely.
Computational materials science and engineering education: A survey of trends and needs
NASA Astrophysics Data System (ADS)
Thornton, K.; Nola, Samanthule; Edwin Garcia, R.; Asta, Mark; Olson, G. B.
2009-10-01
Results from a recent reassessment of the state of computational materials science and engineering (CMSE) education are reported. Surveys were distributed to the chairs and heads of materials programs, faculty members engaged in computational research, and employers of materials scientists and engineers, mainly in the United States. The data was compiled to assess current course offerings related to CMSE, the general climate for introducing computational methods in MSE curricula, and the requirements from the employers’ viewpoint. Furthermore, the available educational resources and their utilization by the community are examined. The surveys show a general support for integrating computational content into MSE education. However, they also reflect remaining issues with implementation, as well as a gap between the tools being taught in courses and those that are used by employers. Overall, the results suggest the necessity for a comprehensively developed vision and plans to further the integration of computational methods into MSE curricula.
Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J
2005-01-01
We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.
NASA Astrophysics Data System (ADS)
Jain, A. K.; Dorai, C.
Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the "Grand Challenges" and also from its prominent role in the National Information Infrastructure. While the design of a general-purpose vision system continues to be elusive machine vision systems are being used successfully in specific application elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. The authors discuss and demonstrate advantages of (1) multi-sensor fusion, (2) combination of features and classifiers, (3) integration of visual modules, and (IV) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.
Can Humans Fly Action Understanding with Multiple Classes of Actors
2015-06-08
recognition using structure from motion point clouds. In European Conference on Computer Vision, 2008. [5] R. Caruana. Multitask learning. Machine Learning...tonomous driving ? the kitti vision benchmark suite. In IEEE Conference on Computer Vision and Pattern Recognition, 2012. [12] L. Gorelick, M. Blank
A Decade of Neural Networks: Practical Applications and Prospects
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.
1994-01-01
The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization.
Computer vision in cell biology.
Danuser, Gaudenz
2011-11-23
Computer vision refers to the theory and implementation of artificial systems that extract information from images to understand their content. Although computers are widely used by cell biologists for visualization and measurement, interpretation of image content, i.e., the selection of events worth observing and the definition of what they mean in terms of cellular mechanisms, is mostly left to human intuition. This Essay attempts to outline roles computer vision may play and should play in image-based studies of cellular life. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Do, Chi-wai; Chan, Lily Y. L.; Wong, Horace H. Y.; Chu, Geoffrey; Yu, Wing Yan; Pang, Peter C. K.; Cheong, Allen M. Y.; Ting, Patrick Wai-ki; Lam, Thomas Chuen; Kee, Chea-su; Lam, Andrew; Chan, Henry H. L.
2016-01-01
A vision care-based community service subject is offered to general university students for fulfillment of a service-learning compulsory credit requirement. Here, a professional health subject is taught in a way that caters to generalist learners. Students gain basic skills they can apply to provide vision screenings for the needy population. All…
A Research Agenda and Vision for Data Science
NASA Astrophysics Data System (ADS)
Mattmann, C. A.
2014-12-01
Big Data has emerged as a first-class citizen in the research community spanning disciplines in the domain sciences - Astronomy is pushing velocity with new ground-based instruments such as the Square Kilometre Array (SKA) and its unprecedented data rates (700 TB/sec!); Earth-science is pushing the boundaries of volume with increasing experiments in the international Intergovernmental Panel on Climate Change (IPCC) and climate modeling and remote sensing communities increasing the size of the total archives into the Exabytes scale; airborne missions from NASA such as the JPL Airborne Snow Observatory (ASO) is increasing both its velocity and decreasing the overall turnaround time required to receive products and to make them available to water managers and decision makers. Proteomics and the computational biology community are sequencing genomes and providing near real time answers to clinicians, researchers, and ultimately to patients, helping to process and understand and create diagnoses. Data complexity is on the rise, and the norm is no longer 100s of metadata attributes, but thousands to hundreds of thousands, including complex interrelationships between data and metadata and knowledge. I published a vision for data science in Nature 2013 that encapsulates four thrust areas and foci that I believe the computer science, Big Data, and data science communities need to attack over the next decade to make fundamental progress in the data volume, velocity and complexity challenges arising from the domain sciences such as those described above. These areas include: (1) rapid and unobtrusive algorithm integration; (2) intelligent and automatic data movement; (3) automated and rapid extraction text, metadata and language from heterogeneous file formats; and (4) participation and people power via open source communities. In this talk I will revisit these four areas and describe current progress; future work and challenges ahead as we move forward in this exciting age of Data Science.
Randolph, Susan A
2017-07-01
With the increased use of electronic devices with visual displays, computer vision syndrome is becoming a major public health issue. Improving the visual status of workers using computers results in greater productivity in the workplace and improved visual comfort.
Akkas, Oguz; Lee, Cheng Hsien; Hu, Yu Hen; Harris Adamson, Carisa; Rempel, David; Radwin, Robert G
2017-12-01
Two computer vision algorithms were developed to automatically estimate exertion time, duty cycle (DC) and hand activity level (HAL) from videos of workers performing 50 industrial tasks. The average DC difference between manual frame-by-frame analysis and the computer vision DC was -5.8% for the Decision Tree (DT) algorithm, and 1.4% for the Feature Vector Training (FVT) algorithm. The average HAL difference was 0.5 for the DT algorithm and 0.3 for the FVT algorithm. A sensitivity analysis, conducted to examine the influence that deviations in DC have on HAL, found it remained unaffected when DC error was less than 5%. Thus, a DC error less than 10% will impact HAL less than 0.5 HAL, which is negligible. Automatic computer vision HAL estimates were therefore comparable to manual frame-by-frame estimates. Practitioner Summary: Computer vision was used to automatically estimate exertion time, duty cycle and hand activity level from videos of workers performing industrial tasks.
Feasibility Study of a Vision-Based Landing System for Unmanned Fixed-Wing Aircraft
2017-06-01
International Journal of Computer Science and Network Security 7 no. 3: 112–117. Accessed April 7, 2017. http://www.sciencedirect.com/science/ article /pii...the feasibility of applying computer vision techniques and visual feedback in the control loop for an autonomous system. This thesis examines the...integration into an autonomous aircraft control system. 14. SUBJECT TERMS autonomous systems, auto-land, computer vision, image processing
Surpassing Humans and Computers with JellyBean: Crowd-Vision-Hybrid Counting Algorithms.
Sarma, Akash Das; Jain, Ayush; Nandi, Arnab; Parameswaran, Aditya; Widom, Jennifer
2015-11-01
Counting objects is a fundamental image processisng primitive, and has many scientific, health, surveillance, security, and military applications. Existing supervised computer vision techniques typically require large quantities of labeled training data, and even with that, fail to return accurate results in all but the most stylized settings. Using vanilla crowd-sourcing, on the other hand, can lead to significant errors, especially on images with many objects. In this paper, we present our JellyBean suite of algorithms, that combines the best of crowds and computer vision to count objects in images, and uses judicious decomposition of images to greatly improve accuracy at low cost. Our algorithms have several desirable properties: (i) they are theoretically optimal or near-optimal , in that they ask as few questions as possible to humans (under certain intuitively reasonable assumptions that we justify in our paper experimentally); (ii) they operate under stand-alone or hybrid modes, in that they can either work independent of computer vision algorithms, or work in concert with them, depending on whether the computer vision techniques are available or useful for the given setting; (iii) they perform very well in practice, returning accurate counts on images that no individual worker or computer vision algorithm can count correctly, while not incurring a high cost.
Biological Basis For Computer Vision: Some Perspectives
NASA Astrophysics Data System (ADS)
Gupta, Madan M.
1990-03-01
Using biology as a basis for the development of sensors, devices and computer vision systems is a challenge to systems and vision scientists. It is also a field of promising research for engineering applications. Biological sensory systems, such as vision, touch and hearing, sense different physical phenomena from our environment, yet they possess some common mathematical functions. These mathematical functions are cast into the neural layers which are distributed throughout our sensory regions, sensory information transmission channels and in the cortex, the centre of perception. In this paper, we are concerned with the study of the biological vision system and the emulation of some of its mathematical functions, both retinal and visual cortex, for the development of a robust computer vision system. This field of research is not only intriguing, but offers a great challenge to systems scientists in the development of functional algorithms. These functional algorithms can be generalized for further studies in such fields as signal processing, control systems and image processing. Our studies are heavily dependent on the the use of fuzzy - neural layers and generalized receptive fields. Building blocks of such neural layers and receptive fields may lead to the design of better sensors and better computer vision systems. It is hoped that these studies will lead to the development of better artificial vision systems with various applications to vision prosthesis for the blind, robotic vision, medical imaging, medical sensors, industrial automation, remote sensing, space stations and ocean exploration.
2006-07-27
unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to develop analytical and computational tools to make vision a Viable sensor for...vision.ucla. edu July 27, 2006 Abstract The goal of this project was to develop analytical and computational tools to make vision a viable sensor for the ... sensors . We have proposed the framework of stereoscopic segmentation where multiple images of the same obejcts were jointly processed to extract geometry
TOXICITY TESTING IN THE 21ST CENTURY: A VISION AND A STRATEGY
Krewski, Daniel; Acosta, Daniel; Andersen, Melvin; Anderson, Henry; Bailar, John C.; Boekelheide, Kim; Brent, Robert; Charnley, Gail; Cheung, Vivian G.; Green, Sidney; Kelsey, Karl T.; Kerkvliet, Nancy I.; Li, Abby A.; McCray, Lawrence; Meyer, Otto; Patterson, Reid D.; Pennie, William; Scala, Robert A.; Solomon, Gina M.; Stephens, Martin; Yager, James; Zeise, Lauren
2015-01-01
With the release of the landmark report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences, in 2007, precipitated a major change in the way toxicity testing is conducted. It envisions increased efficiency in toxicity testing and decreased animal usage by transitioning from current expensive and lengthy in vivo testing with qualitative endpoints to in vitro toxicity pathway assays on human cells or cell lines using robotic high-throughput screening with mechanistic quantitative parameters. Risk assessment in the exposed human population would focus on avoiding significant perturbations in these toxicity pathways. Computational systems biology models would be implemented to determine the dose-response models of perturbations of pathway function. Extrapolation of in vitro results to in vivo human blood and tissue concentrations would be based on pharmacokinetic models for the given exposure condition. This practice would enhance human relevance of test results, and would cover several test agents, compared to traditional toxicological testing strategies. As all the tools that are necessary to implement the vision are currently available or in an advanced stage of development, the key prerequisites to achieving this paradigm shift are a commitment to change in the scientific community, which could be facilitated by a broad discussion of the vision, and obtaining necessary resources to enhance current knowledge of pathway perturbations and pathway assays in humans and to implement computational systems biology models. Implementation of these strategies would result in a new toxicity testing paradigm firmly based on human biology. PMID:20574894
Computer vision camera with embedded FPGA processing
NASA Astrophysics Data System (ADS)
Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel
2000-03-01
Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.
Research on three-dimensional reconstruction method based on binocular vision
NASA Astrophysics Data System (ADS)
Li, Jinlin; Wang, Zhihui; Wang, Minjun
2018-03-01
As the hot and difficult issue in computer vision, binocular stereo vision is an important form of computer vision,which has a broad application prospects in many computer vision fields,such as aerial mapping,vision navigation,motion analysis and industrial inspection etc.In this paper, a research is done into binocular stereo camera calibration, image feature extraction and stereo matching. In the binocular stereo camera calibration module, the internal parameters of a single camera are obtained by using the checkerboard lattice of zhang zhengyou the field of image feature extraction and stereo matching, adopted the SURF operator in the local feature operator and the SGBM algorithm in the global matching algorithm are used respectively, and the performance are compared. After completed the feature points matching, we can build the corresponding between matching points and the 3D object points using the camera parameters which are calibrated, which means the 3D information.
Machine learning and computer vision approaches for phenotypic profiling.
Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J
2017-01-02
With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.
Machine learning and computer vision approaches for phenotypic profiling
Morris, Quaid
2017-01-01
With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. PMID:27940887
Possible Computer Vision Systems and Automated or Computer-Aided Edging and Trimming
Philip A. Araman
1990-01-01
This paper discusses research which is underway to help our industry reduce costs, increase product volume and value recovery, and market more accurately graded and described products. The research is part of a team effort to help the hardwood sawmill industry automate with computer vision systems, and computer-aided or computer controlled processing. This paper...
Mission critical cloud computing in a week
NASA Astrophysics Data System (ADS)
George, B.; Shams, K.; Knight, D.; Kinney, J.
NASA's vision is to “ reach for new heights and reveal the unknown so that what we do and learn will benefit all humankind.” While our missions provide large volumes of unique and invaluable data to the scientific community, they also serve to inspire and educate the next generation of engineers and scientists. One critical aspect of “ benefiting all humankind” is to make our missions as visible and accessible as possible to facilitate the transfer of scientific knowledge to the public. The recent successful landing of the Curiosity rover on Mars exemplified this vision: we shared the landing event via live video streaming and web experiences with millions of people around the world. The video stream on Curiosity's website was delivered by a highly scalable stack of computing resources in the cloud to cache and distribute the video stream to our viewers. While this work was done in the context of public outreach, it has extensive implications for the development of mission critical, highly available, and elastic applications in the cloud for a diverse set of use cases across NASA.
Miami's Third Sector Alliance for Community Well-being.
Evans, Scotney D; Raymond, Catherine; Levine, Daniella
2014-01-01
Traditional capacity-building approaches tend to be organizationally focused ignoring the fact that community-based organizations learn and take action in a larger network working to promote positive community change. The specific aim of this paper was to outline a vision for a Third Sector Alliance to build organizational, network, and sector capacity for community well-being in Miami. Building a foundation for social impact requires a strategy for organizational, network, and sector capacity building. Organizational, network, and sector capacity building can best be achieved through a cooperative network approach driven by a solid community-university partnership. Although a Third Sector Alliance for Community Well-being does not yet exist in Miami, Catalyst Miami and the University of Miami (UM) have partnered closely to articulate a vision of what could be and have been working to make that vision a reality.
State highways as main streets : a study of community design and visioning.
DOT National Transportation Integrated Search
2009-10-01
The objectives for this project were to explore community transportation design policy to improve collaboration when state highways serve as local main streets, determine successful approaches to meet the federal requirements for visioning set forth ...
Smartphone, tablet computer and e-reader use by people with vision impairment.
Crossland, Michael D; Silva, Rui S; Macedo, Antonio F
2014-09-01
Consumer electronic devices such as smartphones, tablet computers, and e-book readers have become far more widely used in recent years. Many of these devices contain accessibility features such as large print and speech. Anecdotal experience suggests people with vision impairment frequently make use of these systems. Here we survey people with self-identified vision impairment to determine their use of this equipment. An internet-based survey was advertised to people with vision impairment by word of mouth, social media, and online. Respondents were asked demographic information, what devices they owned, what they used these devices for, and what accessibility features they used. One hundred and thirty-two complete responses were received. Twenty-six percent of the sample reported that they had no vision and the remainder reported they had low vision. One hundred and seven people (81%) reported using a smartphone. Those with no vision were as likely to use a smartphone or tablet as those with low vision. Speech was found useful by 59% of smartphone users. Fifty-one percent of smartphone owners used the camera and screen as a magnifier. Forty-eight percent of the sample used a tablet computer, and 17% used an e-book reader. The most frequently cited reason for not using these devices included cost and lack of interest. Smartphones, tablet computers, and e-book readers can be used by people with vision impairment. Speech is used by people with low vision as well as those with no vision. Many of our (self-selected) group used their smartphone camera and screen as a magnifier, and others used the camera flash as a spotlight. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
ERIC Educational Resources Information Center
Illinois Community Coll. Board, Springfield.
The Illinois Community College System has charted a course for the 21st century that responds to both the individual and community education needs. This plan, named Vision 2000, is the culmination of regional town meetings which clarified five educational goals. It offers liberal arts and sciences programs, occupational programs, developmental…
Machine vision for real time orbital operations
NASA Technical Reports Server (NTRS)
Vinz, Frank L.
1988-01-01
Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).
Development of a Wireless Computer Vision Instrument to Detect Biotic Stress in Wheat
Casanova, Joaquin J.; O'Shaughnessy, Susan A.; Evett, Steven R.; Rush, Charles M.
2014-01-01
Knowledge of crop abiotic and biotic stress is important for optimal irrigation management. While spectral reflectance and infrared thermometry provide a means to quantify crop stress remotely, these measurements can be cumbersome. Computer vision offers an inexpensive way to remotely detect crop stress independent of vegetation cover. This paper presents a technique using computer vision to detect disease stress in wheat. Digital images of differentially stressed wheat were segmented into soil and vegetation pixels using expectation maximization (EM). In the first season, the algorithm to segment vegetation from soil and distinguish between healthy and stressed wheat was developed and tested using digital images taken in the field and later processed on a desktop computer. In the second season, a wireless camera with near real-time computer vision capabilities was tested in conjunction with the conventional camera and desktop computer. For wheat irrigated at different levels and inoculated with wheat streak mosaic virus (WSMV), vegetation hue determined by the EM algorithm showed significant effects from irrigation level and infection. Unstressed wheat had a higher hue (118.32) than stressed wheat (111.34). In the second season, the hue and cover measured by the wireless computer vision sensor showed significant effects from infection (p = 0.0014), as did the conventional camera (p < 0.0001). Vegetation hue obtained through a wireless computer vision system in this study is a viable option for determining biotic crop stress in irrigation scheduling. Such a low-cost system could be suitable for use in the field in automated irrigation scheduling applications. PMID:25251410
Mogol, Burçe Ataç; Gökmen, Vural
2014-05-01
Computer vision-based image analysis has been widely used in food industry to monitor food quality. It allows low-cost and non-contact measurements of colour to be performed. In this paper, two computer vision-based image analysis approaches are discussed to extract mean colour or featured colour information from the digital images of foods. These types of information may be of particular importance as colour indicates certain chemical changes or physical properties in foods. As exemplified here, the mean CIE a* value or browning ratio determined by means of computer vision-based image analysis algorithms can be correlated with acrylamide content of potato chips or cookies. Or, porosity index as an important physical property of breadcrumb can be calculated easily. In this respect, computer vision-based image analysis provides a useful tool for automatic inspection of food products in a manufacturing line, and it can be actively involved in the decision-making process where rapid quality/safety evaluation is needed. © 2013 Society of Chemical Industry.
Kriegeskorte, Nikolaus
2015-11-24
Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.
Job-shop scheduling applied to computer vision
NASA Astrophysics Data System (ADS)
Sebastian y Zuniga, Jose M.; Torres-Medina, Fernando; Aracil, Rafael; Reinoso, Oscar; Jimenez, Luis M.; Garcia, David
1997-09-01
This paper presents a method for minimizing the total elapsed time spent by n tasks running on m differents processors working in parallel. The developed algorithm not only minimizes the total elapsed time but also reduces the idle time and waiting time of in-process tasks. This condition is very important in some applications of computer vision in which the time to finish the total process is particularly critical -- quality control in industrial inspection, real- time computer vision, guided robots. The scheduling algorithm is based on the use of two matrices, obtained from the precedence relationships between tasks, and the data obtained from the two matrices. The developed scheduling algorithm has been tested in one application of quality control using computer vision. The results obtained have been satisfactory in the application of different image processing algorithms.
NASA Astrophysics Data System (ADS)
Astafiev, A.; Orlov, A.; Privezencev, D.
2018-01-01
The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.
Enhanced computer vision with Microsoft Kinect sensor: a review.
Han, Jungong; Shao, Ling; Xu, Dong; Shotton, Jamie
2013-10-01
With the invention of the low-cost Microsoft Kinect sensor, high-resolution depth and visual (RGB) sensing has become available for widespread use. The complementary nature of the depth and visual information provided by the Kinect sensor opens up new opportunities to solve fundamental problems in computer vision. This paper presents a comprehensive review of recent Kinect-based computer vision algorithms and applications. The reviewed approaches are classified according to the type of vision problems that can be addressed or enhanced by means of the Kinect sensor. The covered topics include preprocessing, object tracking and recognition, human activity analysis, hand gesture analysis, and indoor 3-D mapping. For each category of methods, we outline their main algorithmic contributions and summarize their advantages/differences compared to their RGB counterparts. Finally, we give an overview of the challenges in this field and future research trends. This paper is expected to serve as a tutorial and source of references for Kinect-based computer vision researchers.
Texture and art with deep neural networks.
Gatys, Leon A; Ecker, Alexander S; Bethge, Matthias
2017-10-01
Although the study of biological vision and computer vision attempt to understand powerful visual information processing from different angles, they have a long history of informing each other. Recent advances in texture synthesis that were motivated by visual neuroscience have led to a substantial advance in image synthesis and manipulation in computer vision using convolutional neural networks (CNNs). Here, we review these recent advances and discuss how they can in turn inspire new research in visual perception and computational neuroscience. Copyright © 2017. Published by Elsevier Ltd.
Aartolahti, Eeva; Häkkinen, Arja; Lönnroos, Eija; Kautiainen, Hannu; Sulkava, Raimo; Hartikainen, Sirpa
2013-10-01
Vision is an important prerequisite for balance control and mobility. The role of objectively measured visual functions has been previously studied but less is known about associations of functional vision, that refers to self-perceived vision-based ability to perform daily activities. The aim of the study was to investigate the relationship between functional vision and balance and mobility performance in a community-based sample of older adults. This study is part of a Geriatric Multidisciplinary Strategy for the Good Care of the Elderly project (GeMS). Participants (576) aged 76-100 years (mean age 81 years, 70 % women) were interviewed using a seven-item functional vision questionnaire (VF-7). Balance and mobility were measured by the Berg balance scale (BBS), timed up and go (TUG), chair stand test, and maximal walking speed. In addition, self-reported fear of falling, depressive symptoms (15-item Geriatric Depression Scale), cognition (Mini-Mental State Examination) and physical activity (Grimby) were assessed. In the analysis, participants were classified into poor, moderate, or good functional vision groups. The poor functional vision group (n = 95) had more comorbidities, depressed mood, cognition decline, fear of falling, and reduced physical activity compared to participants with moderate (n = 222) or good functional vision (n = 259). Participants with poor functional vision performed worse on all balance and mobility tests. After adjusting for gender, age, chronic conditions, and cognition, the linearity remained statistically significant between functional vision and BBS (p = 0.013), TUG (p = 0.010), and maximal walking speed (p = 0.008), but not between functional vision and chair stand (p = 0.069). Poor functional vision is related to weaker balance and mobility performance in community-dwelling older adults. This highlights the importance of widespread assessment of health, including functional vision, to prevent balance impairment and maintain independent mobility among older population.
Kapur, Tina; Pieper, Steve; Fedorov, Andriy; Fillion-Robin, J-C; Halle, Michael; O'Donnell, Lauren; Lasso, Andras; Ungi, Tamas; Pinter, Csaba; Finet, Julien; Pujol, Sonia; Jagadeesan, Jayender; Tokuda, Junichi; Norton, Isaiah; Estepar, Raul San Jose; Gering, David; Aerts, Hugo J W L; Jakab, Marianna; Hata, Nobuhiko; Ibanez, Luiz; Blezek, Daniel; Miller, Jim; Aylward, Stephen; Grimson, W Eric L; Fichtinger, Gabor; Wells, William M; Lorensen, William E; Schroeder, Will; Kikinis, Ron
2016-10-01
The National Alliance for Medical Image Computing (NA-MIC) was launched in 2004 with the goal of investigating and developing an open source software infrastructure for the extraction of information and knowledge from medical images using computational methods. Several leading research and engineering groups participated in this effort that was funded by the US National Institutes of Health through a variety of infrastructure grants. This effort transformed 3D Slicer from an internal, Boston-based, academic research software application into a professionally maintained, robust, open source platform with an international leadership and developer and user communities. Critical improvements to the widely used underlying open source libraries and tools-VTK, ITK, CMake, CDash, DCMTK-were an additional consequence of this effort. This project has contributed to close to a thousand peer-reviewed publications and a growing portfolio of US and international funded efforts expanding the use of these tools in new medical computing applications every year. In this editorial, we discuss what we believe are gaps in the way medical image computing is pursued today; how a well-executed research platform can enable discovery, innovation and reproducible science ("Open Science"); and how our quest to build such a software platform has evolved into a productive and rewarding social engineering exercise in building an open-access community with a shared vision. Copyright © 2016 Elsevier B.V. All rights reserved.
Impact of computer use on children's vision.
Kozeis, N
2009-10-01
Today, millions of children use computers on a daily basis. Extensive viewing of the computer screen can lead to eye discomfort, fatigue, blurred vision and headaches, dry eyes and other symptoms of eyestrain. These symptoms may be caused by poor lighting, glare, an improper work station set-up, vision problems of which the person was not previously aware, or a combination of these factors. Children can experience many of the same symptoms related to computer use as adults. However, some unique aspects of how children use computers may make them more susceptible than adults to the development of these problems. In this study, the most common eye symptoms related to computer use in childhood, the possible causes and ways to avoid them are reviewed.
Operational Assessment of Color Vision
2016-06-20
evaluated in this study. 15. SUBJECT TERMS Color vision, aviation, cone contrast test, Colour Assessment & Diagnosis , color Dx, OBVA 16. SECURITY...symbologies are frequently used to aid or direct critical activities such as aircraft landing approaches or railroad right-of-way designations...computer-generated display systems have facilitated the development of computer-based, automated tests of color vision [14,15]. The United Kingdom’s
Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Douglas; Greitzer, Frank L.
We re-address the vision of human-computer symbiosis expressed by J. C. R. Licklider nearly a half-century ago, when he wrote: “The hope is that in not too many years, human brains and computing machines will be coupled together very tightly, and that the resulting partnership will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today.” (Licklider, 1960). Unfortunately, little progress was made toward this vision over four decades following Licklider’s challenge, despite significant advancements in the fields of human factors and computer science. Licklider’s vision wasmore » largely forgotten. However, recent advances in information science and technology, psychology, and neuroscience have rekindled the potential of making the Licklider’s vision a reality. This paper provides a historical context for and updates the vision, and it argues that such a vision is needed as a unifying framework for advancing IS&T.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-11
... growth; creative cities; healthy cities; sustainable economic development; regional innovation clusters... DEPARTMENT OF COMMERCE Economic Development Administration [Docket No.: 110705370-1370-01] Public Input for the Launch of the Strong Cities, Strong Communities Visioning Challenge AGENCY: Economic...
Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder.
Kheradpisheh, Saeed R; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée
2016-01-01
View-invariant object recognition is a challenging problem that has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g., 3D rotations). Humans are thought to solve the problem through hierarchical processing along the ventral stream, which progressively extracts more and more invariant visual features. This feed-forward architecture has inspired a new generation of bio-inspired computer vision systems called deep convolutional neural networks (DCNN), which are currently the best models for object recognition in natural images. Here, for the first time, we systematically compared human feed-forward vision and DCNNs at view-invariant object recognition task using the same set of images and controlling the kinds of transformation (position, scale, rotation in plane, and rotation in depth) as well as their magnitude, which we call "variation level." We used four object categories: car, ship, motorcycle, and animal. In total, 89 human subjects participated in 10 experiments in which they had to discriminate between two or four categories after rapid presentation with backward masking. We also tested two recent DCNNs (proposed respectively by Hinton's group and Zisserman's group) on the same tasks. We found that humans and DCNNs largely agreed on the relative difficulties of each kind of variation: rotation in depth is by far the hardest transformation to handle, followed by scale, then rotation in plane, and finally position (much easier). This suggests that DCNNs would be reasonable models of human feed-forward vision. In addition, our results show that the variation levels in rotation in depth and scale strongly modulate both humans' and DCNNs' recognition performances. We thus argue that these variations should be controlled in the image datasets used in vision research.
Computer Vision Syndrome: Implications for the Occupational Health Nurse.
Lurati, Ann Regina
2018-02-01
Computers and other digital devices are commonly used both in the workplace and during leisure time. Computer vision syndrome (CVS) is a new health-related condition that negatively affects workers. This article reviews the pathology of and interventions for CVS with implications for the occupational health nurse.
A multidisciplinary approach to solving computer related vision problems.
Long, Jennifer; Helland, Magne
2012-09-01
This paper proposes a multidisciplinary approach to solving computer related vision issues by including optometry as a part of the problem-solving team. Computer workstation design is increasing in complexity. There are at least ten different professions who contribute to workstation design or who provide advice to improve worker comfort, safety and efficiency. Optometrists have a role identifying and solving computer-related vision issues and in prescribing appropriate optical devices. However, it is possible that advice given by optometrists to improve visual comfort may conflict with other requirements and demands within the workplace. A multidisciplinary approach has been advocated for solving computer related vision issues. There are opportunities for optometrists to collaborate with ergonomists, who coordinate information from physical, cognitive and organisational disciplines to enact holistic solutions to problems. This paper proposes a model of collaboration and examples of successful partnerships at a number of professional levels including individual relationships between optometrists and ergonomists when they have mutual clients/patients, in undergraduate and postgraduate education and in research. There is also scope for dialogue between optometry and ergonomics professional associations. A multidisciplinary approach offers the opportunity to solve vision related computer issues in a cohesive, rather than fragmented way. Further exploration is required to understand the barriers to these professional relationships. © 2012 The College of Optometrists.
Teaching (Dis)Abled: Reflections on Teaching, Learning, Power, and Classroom Community
ERIC Educational Resources Information Center
Green, Nicole E.
2010-01-01
Born with a rare form of ocular carcinoma that left her with no vision in her left eye and severely limited vision in her right, this author has lived her life precariously balanced between two worlds--too blind for the sighted community and too sighted for the blind community. From this vantage point--first as a student, then as a teacher, and…
ERIC Educational Resources Information Center
Shoultz, Jan; Kooker, Barbara Molina; Sloat, Ann R.
1998-01-01
In Hawaii, one of four national "vision for nursing education" projects focused on identifying themes for a community-based curriculum. Focus groups selected nursing history, culture, identity, knowledge, and practice as well as cross-disciplinary themes. (SK)
Building a virtual network in a community health research training program.
Lau, F; Hayward, R
2000-01-01
To describe the experiences, lessons, and implications of building a virtual network as part of a two-year community health research training program in a Canadian province. An action research field study in which 25 health professionals from 17 health regions participated in a seven-week training course on health policy, management, economics, research methods, data analysis, and computer technology. The participants then returned to their regions to apply the knowledge in different community health research projects. Ongoing faculty consultations and support were provided as needed. Each participant was given a notebook computer with the necessary software, Internet access, and technical support for two years, to access information resources, engage in group problem solving, share ideas and knowledge, and collaborate on projects. Data collected over two years consisted of program documents, records of interviews with participants and staff, meeting notes, computer usage statistics, automated online surveys, computer conference postings, program Web site, and course feedback. The analysis consisted of detailed review and comparison of the data from different sources. NUD*IST was then used to validate earlier study findings. The ten key lessons are that role clarity, technology vision, implementation staging, protected time, just-in-time training, ongoing facilitation, work integration, participatory design, relationship building, and the demonstration of results are essential ingredients for building a successful network. This study provides a descriptive model of the processes involved in developing, in the community health setting, virtual networks that can be used as the basis for future research and as a practical guide for managers.
NASA Technical Reports Server (NTRS)
Gennery, D.; Cunningham, R.; Saund, E.; High, J.; Ruoff, C.
1981-01-01
The field of computer vision is surveyed and assessed, key research issues are identified, and possibilities for a future vision system are discussed. The problems of descriptions of two and three dimensional worlds are discussed. The representation of such features as texture, edges, curves, and corners are detailed. Recognition methods are described in which cross correlation coefficients are maximized or numerical values for a set of features are measured. Object tracking is discussed in terms of the robust matching algorithms that must be devised. Stereo vision, camera control and calibration, and the hardware and systems architecture are discussed.
Chatterjee, Pranab Kr; Bairagi, Debasis; Roy, Sudipta; Majumder, Nilay Kr; Paul, Ratish Ch; Bagchi, Sunil Ch
2005-07-01
A comparative double-blind placebo-controlled clinical trial of a herbal eye drop (itone) was conducted to find out its efficacy and safety in 120 patients with computer vision syndrome. Patients using computers for more than 3 hours continuously per day having symptoms of watering, redness, asthenia, irritation, foreign body sensation and signs of conjunctival hyperaemia, corneal filaments and mucus were studied. One hundred and twenty patients were randomly given either placebo, tears substitute (tears plus) or itone in identical vials with specific code number and were instructed to put one drop four times daily for 6 weeks. Subjective and objective assessments were done at bi-weekly intervals. In computer vision syndrome both subjective and objective improvements were noticed with itone drops. Itone drop was found significantly better than placebo (p<0.01) and almost identical results were observed with tears plus (difference was not statistically significant). Itone is considered to be a useful drug in computer vision syndrome.
Danville Community College Information Technology General Plan, 1998-99.
ERIC Educational Resources Information Center
Danville Community Coll., VA.
This document describes technology usage, infrastructure and planning for Danville Community College. The Plan is divided into four sections: Introduction, Vision and Mission, Applications, and Infrastructure. The four major goals identified in Vision and Mission are: (1) to ensure the successful use of all technologies through continued training…
Integrating Mobile Robotics and Vision with Undergraduate Computer Science
ERIC Educational Resources Information Center
Cielniak, G.; Bellotto, N.; Duckett, T.
2013-01-01
This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision and is directly linked to the research conducted at the authors' institution. The paper describes the most relevant details of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhr, L.
1987-01-01
This book is written by research scientists involved in the development of massively parallel, but hierarchically structured, algorithms, architectures, and programs for image processing, pattern recognition, and computer vision. The book gives an integrated picture of the programs and algorithms that are being developed, and also of the multi-computer hardware architectures for which these systems are designed.
Rationale, Design and Implementation of a Computer Vision-Based Interactive E-Learning System
ERIC Educational Resources Information Center
Xu, Richard Y. D.; Jin, Jesse S.
2007-01-01
This article presents a schematic application of computer vision technologies to e-learning that is synchronous, peer-to-peer-based, and supports an instructor's interaction with non-computer teaching equipments. The article first discusses the importance of these focused e-learning areas, where the properties include accurate bidirectional…
Computer Vision Assisted Virtual Reality Calibration
NASA Technical Reports Server (NTRS)
Kim, W.
1999-01-01
A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.
Sensor Control of Robot Arc Welding
NASA Technical Reports Server (NTRS)
Sias, F. R., Jr.
1983-01-01
The potential for using computer vision as sensory feedback for robot gas-tungsten arc welding is investigated. The basic parameters that must be controlled while directing the movement of an arc welding torch are defined. The actions of a human welder are examined to aid in determining the sensory information that would permit a robot to make reproducible high strength welds. Special constraints imposed by both robot hardware and software are considered. Several sensory modalities that would potentially improve weld quality are examined. Special emphasis is directed to the use of computer vision for controlling gas-tungsten arc welding. Vendors of available automated seam tracking arc welding systems and of computer vision systems are surveyed. An assessment is made of the state of the art and the problems that must be solved in order to apply computer vision to robot controlled arc welding on the Space Shuttle Main Engine.
Tracking by Identification Using Computer Vision and Radio
Mandeljc, Rok; Kovačič, Stanislav; Kristan, Matej; Perš, Janez
2013-01-01
We present a novel system for detection, localization and tracking of multiple people, which fuses a multi-view computer vision approach with a radio-based localization system. The proposed fusion combines the best of both worlds, excellent computer-vision-based localization, and strong identity information provided by the radio system, and is therefore able to perform tracking by identification, which makes it impervious to propagated identity switches. We present comprehensive methodology for evaluation of systems that perform person localization in world coordinate system and use it to evaluate the proposed system as well as its components. Experimental results on a challenging indoor dataset, which involves multiple people walking around a realistically cluttered room, confirm that proposed fusion of both systems significantly outperforms its individual components. Compared to the radio-based system, it achieves better localization results, while at the same time it successfully prevents propagation of identity switches that occur in pure computer-vision-based tracking. PMID:23262485
Scene analysis for effective visual search in rough three-dimensional-modeling scenes
NASA Astrophysics Data System (ADS)
Wang, Qi; Hu, Xiaopeng
2016-11-01
Visual search is a fundamental technology in the computer vision community. It is difficult to find an object in complex scenes when there exist similar distracters in the background. We propose a target search method in rough three-dimensional-modeling scenes based on a vision salience theory and camera imaging model. We give the definition of salience of objects (or features) and explain the way that salience measurements of objects are calculated. Also, we present one type of search path that guides to the target through salience objects. Along the search path, when the previous objects are localized, the search region of each subsequent object decreases, which is calculated through imaging model and an optimization method. The experimental results indicate that the proposed method is capable of resolving the ambiguities resulting from distracters containing similar visual features with the target, leading to an improvement of search speed by over 50%.
Franco-Trigo, L; Tudball, J; Fam, D; Benrimoj, S I; Sabater-Hernández, D
2018-02-21
Collaboration between relevant stakeholders in health service planning enables service contextualization and facilitates its success and integration into practice. Although community pharmacy services (CPSs) aim to improve patients' health and quality of life, their integration in primary care is far from ideal. Key stakeholders for the development of a CPS intended at preventing cardiovascular disease were identified in a previous stakeholder analysis. Engaging these stakeholders to create a shared vision is the subsequent step to focus planning directions and lay sound foundations for future work. This study aims to develop a stakeholder-shared vision of a cardiovascular care model which integrates community pharmacists and to identify initiatives to achieve this vision. A participatory visioning exercise involving 13 stakeholders across the healthcare system was performed. A facilitated workshop, structured in three parts (i.e., introduction; developing the vision; defining the initiatives towards the vision), was designed. The Chronic Care Model inspired the questions that guided the development of the vision. Workshop transcripts, researchers' notes and materials produced by participants were analyzed using qualitative content analysis. Stakeholders broadened the objective of the vision to focus on the management of chronic diseases. Their vision yielded 7 principles for advanced chronic care: patient-centered care; multidisciplinary team approach; shared goals; long-term care relationships; evidence-based practice; ease of access to healthcare settings and services by patients; and good communication and coordination. Stakeholders also delineated six environmental factors that can influence their implementation. Twenty-four initiatives to achieve the developed vision were defined. The principles and factors identified as part of the stakeholder shared-vision were combined in a preliminary model for chronic care. This model and initiatives can guide policy makers as well as healthcare planners and researchers to develop and integrate chronic disease services, namely CPSs, in real-world settings. Copyright © 2018 Elsevier Inc. All rights reserved.
Toothguide Trainer tests with color vision deficiency simulation monitor.
Borbély, Judit; Varsányi, Balázs; Fejérdy, Pál; Hermann, Péter; Jakstat, Holger A
2010-01-01
The aim of this study was to evaluate whether simulated severe red and green color vision deficiency (CVD) influenced color matching results and to investigate whether training with Toothguide Trainer (TT) computer program enabled better color matching results. A total of 31 color normal dental students participated in the study. Every participant had to pass the Ishihara Test. Participants with a red/green color vision deficiency were excluded. A lecture on tooth color matching was given, and individual training with TT was performed. To measure the individual tooth color matching results in normal and color deficient display modes, the TT final exam was displayed on a calibrated monitor that served as a hardware-based method of simulating protanopy and deuteranopy. Data from the TT final exams were collected in normal and in severe red and green CVD-simulating monitor display modes. Color difference values for each participant in each display mode were computed (∑ΔE(ab)(*)), and the respective means and standard deviations were calculated. The Student's t-test was used in statistical evaluation. Participants made larger ΔE(ab)(*) errors in severe color vision deficient display modes than in the normal monitor mode. TT tests showed significant (p<0.05) difference in the tooth color matching results of severe green color vision deficiency simulation mode compared to normal vision mode. Students' shade matching results were significantly better after training (p=0.009). Computer-simulated severe color vision deficiency mode resulted in significantly worse color matching quality compared to normal color vision mode. Toothguide Trainer computer program improved color matching results. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Meibomian gland disfunction in computer vision syndrome].
Pimenidi, M K; Polunin, G S; Safonova, T N
2010-01-01
This article reviews ethiology and pathogenesis of dry eye syndrome due to meibomian gland disfunction (MDG). It is showed that blink rate influences meibomian gland functioning and computer vision syndrome development. Current diagnosis and treatment options of MDG are presented.
Analog "neuronal" networks in early vision.
Koch, C; Marroquin, J; Yuille, A
1986-01-01
Many problems in early vision can be formulated in terms of minimizing a cost function. Examples are shape from shading, edge detection, motion analysis, structure from motion, and surface interpolation. As shown by Poggio and Koch [Poggio, T. & Koch, C. (1985) Proc. R. Soc. London, Ser. B 226, 303-323], quadratic variational problems, an important subset of early vision tasks, can be "solved" by linear, analog electrical, or chemical networks. However, in the presence of discontinuities, the cost function is nonquadratic, raising the question of designing efficient algorithms for computing the optimal solution. Recently, Hopfield and Tank [Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybern. 52, 141-152] have shown that networks of nonlinear analog "neurons" can be effective in computing the solution of optimization problems. We show how these networks can be generalized to solve the nonconvex energy functionals of early vision. We illustrate this approach by implementing a specific analog network, solving the problem of reconstructing a smooth surface from sparse data while preserving its discontinuities. These results suggest a novel computational strategy for solving early vision problems in both biological and real-time artificial vision systems. PMID:3459172
Friedman, Robert J; Gutkowicz-Krusin, Dina; Farber, Michele J; Warycha, Melanie; Schneider-Kels, Lori; Papastathis, Nicole; Mihm, Martin C; Googe, Paul; King, Roy; Prieto, Victor G; Kopf, Alfred W; Polsky, David; Rabinovitz, Harold; Oliviero, Margaret; Cognetta, Armand; Rigel, Darrell S; Marghoob, Ashfaq; Rivers, Jason; Johr, Robert; Grant-Kels, Jane M; Tsao, Hensin
2008-04-01
To evaluate the performance of dermoscopists in diagnosing small pigmented skin lesions (diameter = 6 mm) compared with an automatic multispectral computer-vision system. Blinded comparison study. Dermatologic hospital-based clinics and private practice offices. Patients From a computerized skin imaging database of 990 small (= 6-mm) pigmented skin lesions, all 49 melanomas from 49 patients were included in this study. Fifty randomly selected nonmelanomas from 46 patients served as a control. Ten dermoscopists independently examined dermoscopic images of 99 pigmented skin lesions and decided whether they identified the lesions as melanoma and whether they would recommend biopsy to rule out melanoma. Diagnostic and biopsy sensitivity and specificity were computed and then compared with the results of the computer-vision system. Dermoscopists were able to correctly identify small melanomas with an average diagnostic sensitivity of 39% and a specificity of 82% and recommended small melanomas for biopsy with a sensitivity of 71% and specificity of 49%, with only fair interobserver agreement (kappa = 0.31 for diagnosis and 0.34 for biopsy). In comparison, in recommending biopsy to rule out melanoma, the computer-vision system achieved 98% sensitivity and 44% specificity. Differentiation of small melanomas from small benign pigmented lesions challenges even expert physicians. Computer-vision systems can facilitate early detection of small melanomas and may limit the number of biopsies to rule out melanoma performed on benign lesions.
2020 Vision: The EICCD Moves into the 21st Century.
ERIC Educational Resources Information Center
Blong, John T.; Friedel, Janice N.
In 1989, the Eastern Iowa Community College District (EICCD) undertook a project to develop a collective image of what the community college should be in the coming century. The reasons for seeking this "shared vision" were to create institutional focus, foster commitment, build communication, and reaffirm the college's mission and…
The Implications of a Democratic Vision of Community College Leadership.
ERIC Educational Resources Information Center
Gibson-Benninger, Barbara; And Others
A fundamental challenge facing community college presidents and senior-level staff is to create an environment in which diverse qualities of students and staff make positive contributions to the organization. This requires replacing conceptions of leadership as one person at the top who has power with a vision of democratic leadership which…
The Mission Project: Building a Nation of Learners by Advancing America's Community Colleges.
ERIC Educational Resources Information Center
American Association of Community Colleges, Washington, DC.
This document describes the American Association of Community Colleges (AACC), its new mission and vision statements, and a recommended set of strategic action areas deemed essential to creating the future described in the mission and vision statements. The proposed AACC mission statement reads: "building a nation of learners by advancing…
Principles of 'servant leadership' and how they can enhance practice.
Waterman, Harold
2011-02-01
This article explores the concept of service in modern health and social care. It examines the principles of servant leadership in the contexts of service, community and vision, in that, if service is what leaders do, community is who they do it for and vision is how the two concepts are brought together.
MassMutual Partners with EP for a Dynamic Double Play
ERIC Educational Resources Information Center
Exceptional Parent, 2008
2008-01-01
In 2002 "Exceptional Parent" (EP) magazine had a vision--a vision of a dynamic, community outreach program that would raise the public's awareness about the special needs community. This program, now known as Disability Awareness Night, or DAN, would enlighten the public by calling attention to the dedication, perseverance, and the extraordinary…
2014-08-12
Nolan Warner, Mubarak Shah. Tracking in Dense Crowds Using Prominenceand Neighborhood Motion Concurrence, IEEE Transactions on Pattern Analysis...of computer vision, computer graphics and evacuation dynamics by providing a common platform, and provides...areas that includes Computer Vision, Computer Graphics , and Pedestrian Evacuation Dynamics. Despite the
Computer vision syndrome: a review of ocular causes and potential treatments.
Rosenfield, Mark
2011-09-01
Computer vision syndrome (CVS) is the combination of eye and vision problems associated with the use of computers. In modern western society the use of computers for both vocational and avocational activities is almost universal. However, CVS may have a significant impact not only on visual comfort but also occupational productivity since between 64% and 90% of computer users experience visual symptoms which may include eyestrain, headaches, ocular discomfort, dry eye, diplopia and blurred vision either at near or when looking into the distance after prolonged computer use. This paper reviews the principal ocular causes for this condition, namely oculomotor anomalies and dry eye. Accommodation and vergence responses to electronic screens appear to be similar to those found when viewing printed materials, whereas the prevalence of dry eye symptoms is greater during computer operation. The latter is probably due to a decrease in blink rate and blink amplitude, as well as increased corneal exposure resulting from the monitor frequently being positioned in primary gaze. However, the efficacy of proposed treatments to reduce symptoms of CVS is unproven. A better understanding of the physiology underlying CVS is critical to allow more accurate diagnosis and treatment. This will enable practitioners to optimize visual comfort and efficiency during computer operation. Ophthalmic & Physiological Optics © 2011 The College of Optometrists.
An Enduring Dialogue between Computational and Empirical Vision.
Martinez-Conde, Susana; Macknik, Stephen L; Heeger, David J
2018-04-01
In the late 1970s, key discoveries in neurophysiology, psychophysics, computer vision, and image processing had reached a tipping point that would shape visual science for decades to come. David Marr and Ellen Hildreth's 'Theory of edge detection', published in 1980, set out to integrate the newly available wealth of data from behavioral, physiological, and computational approaches in a unifying theory. Although their work had wide and enduring ramifications, their most important contribution may have been to consolidate the foundations of the ongoing dialogue between theoretical and empirical vision science. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marmamula, Srinivas; Keeffe, Jill E; Narsaiah, Saggam; Khanna, Rohit C; Rao, Gullapalli N
2014-11-01
Measurements of refractive errors through subjective or automated refraction are not always possible in rapid assessment studies and community vision screening programs; however, measurements of vision with habitual correction and with a pinhole can easily be made. Although improvements in vision with a pinhole are assumed to mean that a refractive error is present, no studies have investigated the magnitude of improvement in vision with pinhole that is predictive of refractive error. The aim was to measure the sensitivity and specificity of 'vision improvement with pinhole' in predicting the presence of refractive error in a community setting. Vision and vision with pinhole were measured using a logMAR chart for 488 of 582 individuals aged 15 to 50 years. Refractive errors were measured using non-cycloplegic autorefraction and subjective refraction. The presence of refractive error was defined using spherical equivalent refraction (SER) at two levels: SER greater than ± 0.50 D sphere (DS) and SER greater than ±1.00 DS. Three definitions for significant improvement in vision with a pinhole were used: 1. Presenting vision less than 6/12 and improving to 6/12 or better, 2. Improvement in vision of more than one logMAR line and 3. Improvement in vision of more than two logMAR lines. For refractive error defined as spherical equivalent refraction greater than ± 0.50 DS, the sensitivities and specificities for the pinhole test predicting the presence of refractive error were 83.9 per cent (95% CI: 74.5 to 90.9) and 98.8 per cent (95% CI: 97.1 to 99.6), respectively for definition 1. Definition 2 had a sensitivity 89.7 per cent (95% CI: 81.3 to 95.2) and specificity 88.0 per cent (95% CI: 4.4 to 91.0). Definition 3 had a sensitivity of 75.9 per cent (95% CI: 65.5 to 84.4) and specificity of 97.8 per cent (95% CI: 95.8 to 99.0). Similar results were found with spherical equivalent refraction greater than ±1.00 DS, when tested against the three pinhole-based definitions. Refractive error definitions based on improvement in vision with the pinhole shows good sensitivity and specificity at predicting the presence of significant refractive errors. These definitions can be used in rapid assessment surveys and community-based vision screenings. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.
Low computation vision-based navigation for a Martian rover
NASA Technical Reports Server (NTRS)
Gavin, Andrew S.; Brooks, Rodney A.
1994-01-01
Construction and design details of the Mobot Vision System, a small, self-contained, mobile vision system, are presented. This system uses the view from the top of a small, roving, robotic vehicle to supply data that is processed in real-time to safely navigate the surface of Mars. A simple, low-computation algorithm for constructing a 3-D navigational map of the Martian environment to be used by the rover is discussed.
Computational models of human vision with applications
NASA Technical Reports Server (NTRS)
Wandell, B. A.
1985-01-01
Perceptual problems in aeronautics were studied. The mechanism by which color constancy is achieved in human vision was examined. A computable algorithm was developed to model the arrangement of retinal cones in spatial vision. The spatial frequency spectra are similar to the spectra of actual cone mosaics. The Hartley transform as a tool of image processing was evaluated and it is suggested that it could be used in signal processing applications, GR image processing.
A comparison of algorithms for inference and learning in probabilistic graphical models.
Frey, Brendan J; Jojic, Nebojsa
2005-09-01
Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence, largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements have been made in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and prediction of gene function, it is even more exciting that researchers are on the verge of introducing systems that can perform large-scale combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific applications and finding efficient algorithms for inference and learning in these models. In this paper, we advocate the use of graph-based probability models and their associated inference and learning algorithms. We review exact techniques and various approximate, computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm ("loopy" belief propagation). We describe how each technique can be applied in a vision model of multiple, occluding objects and contrast the behaviors and performances of the techniques using a unifying cost function, free energy.
Computer vision syndrome-A common cause of unexplained visual symptoms in the modern era.
Munshi, Sunil; Varghese, Ashley; Dhar-Munshi, Sushma
2017-07-01
The aim of this study was to assess the evidence and available literature on the clinical, pathogenetic, prognostic and therapeutic aspects of Computer vision syndrome. Information was collected from Medline, Embase & National Library of Medicine over the last 30 years up to March 2016. The bibliographies of relevant articles were searched for additional references. Patients with Computer vision syndrome present to a variety of different specialists, including General Practitioners, Neurologists, Stroke physicians and Ophthalmologists. While the condition is common, there is a poor awareness in the public and among health professionals. Recognising this condition in the clinic or in emergency situations like the TIA clinic is crucial. The implications are potentially huge in view of the extensive and widespread use of computers and visual display units. Greater public awareness of Computer vision syndrome and education of health professionals is vital. Preventive strategies should form part of work place ergonomics routinely. Prompt and correct recognition is important to allow management and avoid unnecessary treatments. © 2017 John Wiley & Sons Ltd.
Biswas, N R; Nainiwal, S K; Das, G K; Langan, U; Dadeya, S C; Mongre, P K; Ravi, A K; Baidya, P
2003-03-01
A comparative randomised double masked multicentric clinical trial has been conducted to find out the efficacy and safety of a herbal eye drop preparation, itone eye drops with artificial tear and placebo in 120 patients with computer vision syndrome. Patients using computer for at least 2 hours continuosly per day having symptoms of irritation, foreign body sensation, watering, redness, headache, eyeache and signs of conjunctival congestion, mucous/debris, corneal filaments, corneal staining or lacrimal lake were included in this study. Every patient was instructed to put two drops of either herbal drugs or placebo or artificial tear in the eyes regularly four times for 6 weeks. Objective and subjective findings were recorded at bi-weekly intervals up to six weeks. Side-effects, if any, were also noted. In computer vision syndrome the herbal eye drop preparation was found significantly better than artificial tear (p < 0.01). No side-effects were noted by any of the drugs. Both subjective and objective improvements were observed in itone treated cases. So, itone can be considered as a useful drug in computer vision syndrome.
Visions of Change: Information Technology, Education and Postmodernism.
ERIC Educational Resources Information Center
Conlon, Tom
2000-01-01
Encourages visionary questions relating to information technology and education. Describes the context of postmodernist change and discusses two contrasting visions of how education could change, paternalism and libertarianism. Concludes that teachers, learners, and communities need to articulate their own visions of education to ensure a…
Computer vision syndrome in presbyopia and beginning presbyopia: effects of spectacle lens type.
Jaschinski, Wolfgang; König, Mirjam; Mekontso, Tiofil M; Ohlendorf, Arne; Welscher, Monique
2015-05-01
This office field study investigated the effects of different types of spectacle lenses habitually worn by computer users with presbyopia and in the beginning stages of presbyopia. Computer vision syndrome was assessed through reported complaints and ergonomic conditions. A questionnaire regarding the type of habitually worn near-vision lenses at the workplace, visual conditions and the levels of different types of complaints was administered to 175 participants aged 35 years and older (mean ± SD: 52.0 ± 6.7 years). Statistical factor analysis identified five specific aspects of the complaints. Workplace conditions were analysed based on photographs taken in typical working conditions. In the subgroup of 25 users between the ages of 36 and 57 years (mean 44 ± 5 years), who wore distance-vision lenses and performed more demanding occupational tasks, the reported extents of 'ocular strain', 'musculoskeletal strain' and 'headache' increased with the daily duration of computer work and explained up to 44 per cent of the variance (rs = 0.66). In the other subgroups, this effect was smaller, while in the complete sample (n = 175), this correlation was approximately rs = 0.2. The subgroup of 85 general-purpose progressive lens users (mean age 54 years) adopted head inclinations that were approximately seven degrees more elevated than those of the subgroups with single vision lenses. The present questionnaire was able to assess the complaints of computer users depending on the type of spectacle lenses worn. A missing near-vision addition among participants in the early stages of presbyopia was identified as a risk factor for complaints among those with longer daily durations of demanding computer work. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.
Integrated environmental modeling: a vision and roadmap for the future
Laniak, Gerard F.; Olchin, Gabriel; Goodall, Jonathan; Voinov, Alexey; Hill, Mary; Glynn, Pierre; Whelan, Gene; Geller, Gary; Quinn, Nigel; Blind, Michiel; Peckham, Scott; Reaney, Sim; Gaber, Noha; Kennedy, Philip R.; Hughes, Andrew
2013-01-01
Integrated environmental modeling (IEM) is inspired by modern environmental problems, decisions, and policies and enabled by transdisciplinary science and computer capabilities that allow the environment to be considered in a holistic way. The problems are characterized by the extent of the environmental system involved, dynamic and interdependent nature of stressors and their impacts, diversity of stakeholders, and integration of social, economic, and environmental considerations. IEM provides a science-based structure to develop and organize relevant knowledge and information and apply it to explain, explore, and predict the behavior of environmental systems in response to human and natural sources of stress. During the past several years a number of workshops were held that brought IEM practitioners together to share experiences and discuss future needs and directions. In this paper we organize and present the results of these discussions. IEM is presented as a landscape containing four interdependent elements: applications, science, technology, and community. The elements are described from the perspective of their role in the landscape, current practices, and challenges that must be addressed. Workshop participants envision a global scale IEM community that leverages modern technologies to streamline the movement of science-based knowledge from its sources in research, through its organization into databases and models, to its integration and application for problem solving purposes. Achieving this vision will require that the global community of IEM stakeholders transcend social, and organizational boundaries and pursue greater levels of collaboration. Among the highest priorities for community action are the development of standards for publishing IEM data and models in forms suitable for automated discovery, access, and integration; education of the next generation of environmental stakeholders, with a focus on transdisciplinary research, development, and decision making; and providing a web-based platform for community interactions (e.g., continuous virtual workshops).
NASA Astrophysics Data System (ADS)
Kuvychko, Igor
2001-10-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.
Computer vision syndrome (CVS) - Thermographic Analysis
NASA Astrophysics Data System (ADS)
Llamosa-Rincón, L. E.; Jaime-Díaz, J. M.; Ruiz-Cardona, D. F.
2017-01-01
The use of computers has reported an exponential growth in the last decades, the possibility of carrying out several tasks for both professional and leisure purposes has contributed to the great acceptance by the users. The consequences and impact of uninterrupted tasks with computers screens or displays on the visual health, have grabbed researcher’s attention. When spending long periods of time in front of a computer screen, human eyes are subjected to great efforts, which in turn triggers a set of symptoms known as Computer Vision Syndrome (CVS). Most common of them are: blurred vision, visual fatigue and Dry Eye Syndrome (DES) due to unappropriate lubrication of ocular surface when blinking decreases. An experimental protocol was de-signed and implemented to perform thermographic studies on healthy human eyes during exposure to dis-plays of computers, with the main purpose of comparing the existing differences in temperature variations of healthy ocular surfaces.
Assistive technology for children and young people with low vision.
Thomas, Rachel; Barker, Lucy; Rubin, Gary; Dahlmann-Noor, Annegret
2015-06-18
Recent technological developments, such as the near universal spread of mobile phones and portable computers and improvements in the accessibility features of these devices, give children and young people with low vision greater independent access to information. Some electronic technologies, such as closed circuit TV, are well established low vision aids and newer versions, such as electronic readers or off-the shelf tablet computers, may offer similar functionalities with easier portability and at lower cost. To assess the effect of electronic assistive technologies on reading, educational outcomes and quality of life in children and young people with low vision. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 9), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to October 2014), EMBASE (January 1980 to October 2014), the Health Technology Assessment Programme (HTA) (www.hta.ac.uk/), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 30 October 2014. We intended to include randomised controlled trials (RCTs) and quasi-RCTs in this review. We planned to include trials involving children between the ages of 5 and 16 years with low vision as defined by, or equivalent to, the WHO 1992 definition of low vision. We planned to include studies that explore the use of assistive technologies (ATs). These could include all types of closed circuit television/electronic vision enhancement systems (CCTV/EVES), computer technology including tablet computers and adaptive technologies such as screen readers, screen magnification and optical character recognition (OCR). We intended to compare the use of ATs with standard optical aids, which include distance refractive correction (with appropriate near addition for aphakic (no lens)/pseudophakic (with lens implant) patients) and monocular/binoculars for distance and brightfield magnifiers for near. We also planned to include studies that compare different types of ATs with each other, without or in addition to conventional optical aids, and those that compare ATs given with or without instructions for use. Independently, two review authors reviewed titles and abstracts for eligibility. They divided studies into categories to 'definitely include', 'definitely exclude' and 'possibly include', and the same two authors made final judgements about inclusion/exclusion by obtaining full-text copies of the studies in the 'possibly include' category. We did not identify any randomised controlled trials in this subject area. High-quality evidence about the usefulness of electronic AT for children and young people with visual impairment is needed to inform the choice healthcare and education providers and family have to make when selecting a technology. Randomised controlled trials are needed to assess the impact of AT. Research protocols should carefully select outcomes relevant not only to the scientific community, but more importantly to families and teachers. Functional outcomes such as reading accuracy, comprehension and speed should be recorded, as well as the impact of AT on independent learning and quality of life.
Milestones on the road to independence for the blind
NASA Astrophysics Data System (ADS)
Reed, Kenneth
1997-02-01
Ken will talk about his experiences as an end user of technology. Even moderate technological progress in the field of pattern recognition and artificial intelligence can be, often surprisingly, of great help to the blind. An example is the providing of portable bar code scanners so that a blind person knows what he is buying and what color it is. In this age of microprocessors controlling everything, how can a blind person find out what his VCR is doing? Is there some technique that will allow a blind musician to convert print music into midi files to drive a synthesizer? Can computer vision help the blind cross a road including predictions of where oncoming traffic will be located? Can computer vision technology provide spoken description of scenes so a blind person can figure out where doors and entrances are located, and what the signage on the building says? He asks 'can computer vision help me flip a pancake?' His challenge to those in the computer vision field is 'where can we go from here?'
[Computer eyeglasses--aspects of a confusing topic].
Huber-Spitzy, V; Janeba, E
1997-01-01
With the coming into force of the new Austrian Employee Protection Act the issue of the so called "computer glasses" will also gain added importance in our country. Such glasses have been defined as vision aids to be exclusively used for the work on computer monitors and include single-vision glasses solely intended for reading computer screen, glasses with bifocal lenses for reading computer screen and hard-copy documents as well as those with varifocal lenses featuring a thickened central section. There is still a considerable controversy among those concerned as to who will bear the costs for such glasses--most likely it will be the employer. Prescription of such vision aids will be exclusively restricted to ophthalmologists, based on a thorough ophthalmological examination under adequate consideration of the specific working environment and the workplace requirements of the individual employee concerned.
Divilov, Konstantin; Wiesner-Hanks, Tyr; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I
2017-12-01
Quantitative phenotyping of downy mildew sporulation is frequently used in plant breeding and genetic studies, as well as in studies focused on pathogen biology such as chemical efficacy trials. In these scenarios, phenotyping a large number of genotypes or treatments can be advantageous but is often limited by time and cost. We present a novel computational pipeline dedicated to estimating the percent area of downy mildew sporulation from images of inoculated grapevine leaf discs in a manner that is time and cost efficient. The pipeline was tested on images from leaf disc assay experiments involving two F 1 grapevine families, one that had glabrous leaves (Vitis rupestris B38 × 'Horizon' [RH]) and another that had leaf trichomes (Horizon × V. cinerea B9 [HC]). Correlations between computer vision and manual visual ratings reached 0.89 in the RH family and 0.43 in the HC family. Additionally, we were able to use the computer vision system prior to sporulation to measure the percent leaf trichome area. We estimate that an experienced rater scoring sporulation would spend at least 90% less time using the computer vision system compared with the manual visual method. This will allow more treatments to be phenotyped in order to better understand the genetic architecture of downy mildew resistance and of leaf trichome density. We anticipate that this computer vision system will find applications in other pathosystems or traits where responses can be imaged with sufficient contrast from the background.
Detection and Tracking of Moving Objects with Real-Time Onboard Vision System
NASA Astrophysics Data System (ADS)
Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.
2017-05-01
Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.
Chapter 1. The Vision, Valley, and Victory of Community Engagement
Jones, Loretta; Wells, Kenneth; Norris, Keith; Meade, Barbara; Koegel, Paul
2016-01-01
This chapter provides an overview of Community-Partnered Participatory Research (CPPR) and introduces the articles in this special issue. CPPR is a model to engage community and academic partners equally in an initiative to benefit the community while contributing to science. This article reviews the history of the partnership of community and academic institutions that developed under the leadership of Healthy African American Families. Central to the CPPR model is a framework of community engagement that includes and mobilizes the full range of community and academic stakeholders to work collaboratively. The three stages of CPPR (Vision, Valley and Victory) are reviewed, along with the organization and purpose of the guidebook presented as articles in this issue. PMID:20088076
NASA Astrophysics Data System (ADS)
Van Damme, T.
2015-04-01
Computer Vision Photogrammetry allows archaeologists to accurately record underwater sites in three dimensions using simple twodimensional picture or video sequences, automatically processed in dedicated software. In this article, I share my experience in working with one such software package, namely PhotoScan, to record a Dutch shipwreck site. In order to demonstrate the method's reliability and flexibility, the site in question is reconstructed from simple GoPro footage, captured in low-visibility conditions. Based on the results of this case study, Computer Vision Photogrammetry compares very favourably to manual recording methods both in recording efficiency, and in the quality of the final results. In a final section, the significance of Computer Vision Photogrammetry is then assessed from a historical perspective, by placing the current research in the wider context of about half a century of successful use of Analytical and later Digital photogrammetry in the field of underwater archaeology. I conclude that while photogrammetry has been used in our discipline for several decades now, for various reasons the method was only ever used by a relatively small percentage of projects. This is likely to change in the near future since, compared to the `traditional' photogrammetry approaches employed in the past, today Computer Vision Photogrammetry is easier to use, more reliable and more affordable than ever before, while at the same time producing more accurate and more detailed three-dimensional results.
Literacy Leadership: Six Strategies for Peoplework
ERIC Educational Resources Information Center
McAndrew, Donald A.
2005-01-01
Become a successful literacy leader and improve the vision of literacy in the classroom, school, and community. This book's six proven strategies will help the reader do the "peoplework" at the heart of successful leadership: Creating and communicating a vision; Modeling that vision; Experimenting with new ideas and taking risks; Nurturing…
NASA Astrophysics Data System (ADS)
Brinkman, Elliot; Seekamp, Erin; Davenport, Mae A.; Brehm, Joan M.
2012-10-01
Community capacity for watershed management has emerged as an important topic for the conservation of water resources. While much of the literature on community capacity has focused primarily on theory construction, there have been few efforts to quantitatively assess community capacity variables and constructs, particularly for watershed management and conservation. This study seeks to identify predictors of community capacity for watershed conservation in southwestern Illinois. A subwatershed-scale survey of residents from four communities located within the Lower Kaskaskia River watershed of southwestern Illinois was administered to measure three specific capacity variables: community empowerment, shared vision and collective action. Principal component analysis revealed key dimensions of each variable. Specifically, collective action was characterized by items relating to collaborative governance and social networks, community empowerment was characterized by items relating to community competency and a sense of responsibility and shared vision was characterized by items relating to perceptions of environmental threats, issues with development, environmental sense of place and quality of life. From the emerging factors, composite measures were calculated to determine the extent to which each variable contributed to community capacity. A stepwise regression revealed that community empowerment explained most of the variability in the composite measure of community capacity for watershed conservation. This study contributes to the theoretical understanding of community capacity by quantifying the role of collective action, community empowerment and shared vision in community capacity, highlighting the need for multilevel interaction to address watershed issues.
1994-02-15
0. Faugeras. Three dimensional vision, a geometric viewpoint. MIT Press, 1993. [19] 0 . D. Faugeras and S. Maybank . Motion from point mathces...multiplicity of solutions. Int. J. of Computer Vision, 1990. 1201 0.D. Faugeras, Q.T. Luong, and S.J. Maybank . Camera self-calibration: theory and...Kalrnan filter-based algorithms for estimating depth from image sequences. Int. J. of computer vision, 1989. [41] S. Maybank . Theory of
Computational Vision: A Critical Review
1989-10-01
Optic News, 15:9-25, 1989. [8] H. B . Barlow and R. W. Levick . The mechanism of directional selectivity in the rabbit’s retina. J. Physiol., 173:477...comparison, other formulations, e.g., [64], used 16 @V A \\E(t=t2) (a) \\ E(t-tl) ( b ) Figure 7: An illustration of the aperture problem. Left: a bar E is...Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1982. [7] D. H. Ballard, R. C. Nelson, and B . Yamauchi. Animate vision
Marking parts to aid robot vision
NASA Technical Reports Server (NTRS)
Bales, J. W.; Barker, L. K.
1981-01-01
The premarking of parts for subsequent identification by a robot vision system appears to be beneficial as an aid in the automation of certain tasks such as construction in space. A simple, color coded marking system is presented which allows a computer vision system to locate an object, calculate its orientation, and determine its identity. Such a system has the potential to operate accurately, and because the computer shape analysis problem has been simplified, it has the ability to operate in real time.
ERIC Educational Resources Information Center
Gonzalez, Beatriz
2016-01-01
The author discusses an Introduction to Biology course they created. The course was designed by following the recommendations from the Vision and Change in Undergraduate Biology Education: A Call to Action report, which stresses the need for engaging students through hands-on and student-centered activities. In the course, students perform…
Jain, Anubhav; Persson, Kristin A.; Ceder, Gerbrand
2016-03-24
Materials innovations enable new technological capabilities and drive major societal advancements but have historically required long and costly development cycles. The Materials Genome Initiative (MGI) aims to greatly reduce this time and cost. Here, we focus on data reuse in the MGI and, in particular, discuss the impact of three different computational databases based on density functional theory methods to the research community. Finally, we discuss and provide recommendations on technical aspects of data reuse, outline remaining fundamental challenges, and present an outlook on the future of MGI's vision of data sharing.
Trends and developments in industrial machine vision: 2013
NASA Astrophysics Data System (ADS)
Niel, Kurt; Heinzl, Christoph
2014-03-01
When following current advancements and implementations in the field of machine vision there seems to be no borders for future developments: Calculating power constantly increases, and new ideas are spreading and previously challenging approaches are introduced in to mass market. Within the past decades these advances have had dramatic impacts on our lives. Consumer electronics, e.g. computers or telephones, which once occupied large volumes, now fit in the palm of a hand. To note just a few examples e.g. face recognition was adopted by the consumer market, 3D capturing became cheap, due to the huge community SW-coding got easier using sophisticated development platforms. However, still there is a remaining gap between consumer and industrial applications. While the first ones have to be entertaining, the second have to be reliable. Recent studies (e.g. VDMA [1], Germany) show a moderately increasing market for machine vision in industry. Asking industry regarding their needs the main challenges for industrial machine vision are simple usage and reliability for the process, quick support, full automation, self/easy adjustment at changing process parameters, "forget it in the line". Furthermore a big challenge is to support quality control: Nowadays the operator has to accurately define the tested features for checking the probes. There is an upcoming development also to let automated machine vision applications find out essential parameters in a more abstract level (top down). In this work we focus on three current and future topics for industrial machine vision: Metrology supporting automation, quality control (inline/atline/offline) as well as visualization and analysis of datasets with steadily growing sizes. Finally the general trend of the pixel orientated towards object orientated evaluation is addressed. We do not directly address the field of robotics taking advances from machine vision. This is actually a fast changing area which is worth an own contribution.
Reducing the Time and Cost of Testing Engines
NASA Technical Reports Server (NTRS)
2004-01-01
Producing a new aircraft engine currently costs approximately $1 billion, with 3 years of development time for a commercial engine and 10 years for a military engine. The high development time and cost make it extremely difficult to transition advanced technologies for cleaner, quieter, and more efficient new engines. To reduce this time and cost, NASA created a vision for the future where designers would use high-fidelity computer simulations early in the design process in order to resolve critical design issues before building the expensive engine hardware. To accomplish this vision, NASA's Glenn Research Center initiated a collaborative effort with the aerospace industry and academia to develop its Numerical Propulsion System Simulation (NPSS), an advanced engineering environment for the analysis and design of aerospace propulsion systems and components. Partners estimate that using NPSS has the potential to dramatically reduce the time, effort, and expense necessary to design and test jet engines by generating sophisticated computer simulations of an aerospace object or system. These simulations will permit an engineer to test various design options without having to conduct costly and time-consuming real-life tests. By accelerating and streamlining the engine system design analysis and test phases, NPSS facilitates bringing the final product to market faster. NASA's NPSS Version (V)1.X effort was a task within the Agency s Computational Aerospace Sciences project of the High Performance Computing and Communication program, which had a mission to accelerate the availability of high-performance computing hardware and software to the U.S. aerospace community for its use in design processes. The technology brings value back to NASA by improving methods of analyzing and testing space transportation components.
Topographic Mapping of Residual Vision by Computer
ERIC Educational Resources Information Center
MacKeben, Manfred
2008-01-01
Many persons with low vision have diseases that damage the retina only in selected areas, which can lead to scotomas (blind spots) in perception. The most frequent of these diseases is age-related macular degeneration (AMD), in which foveal vision is often impaired by a central scotoma that impairs vision of fine detail and causes problems with…
Artificial intelligence, expert systems, computer vision, and natural language processing
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1984-01-01
An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.
ERIC Educational Resources Information Center
Rosner, Yotam; Perlman, Amotz
2018-01-01
Introduction: The Israel Ministry of Social Affairs and Social Services subsidizes computer-based assistive devices for individuals with visual impairments (that is, those who are blind or have low vision) to assist these individuals in their interactions with computers and thus to enhance their independence and quality of life. The aim of this…
Software for Real-Time Analysis of Subsonic Test Shot Accuracy
2014-03-01
used the C++ programming language, the Open Source Computer Vision ( OpenCV ®) software library, and Microsoft Windows® Application Programming...video for comparison through OpenCV image analysis tools. Based on the comparison, the software then computed the coordinates of each shot relative to...DWB researchers wanted to use the Open Source Computer Vision ( OpenCV ) software library for capturing and analyzing frames of video. OpenCV contains
[Ophthalmologist and "computer vision syndrome"].
Barar, A; Apatachioaie, Ioana Daniela; Apatachioaie, C; Marceanu-Brasov, L
2007-01-01
The authors had tried to collect the data available on the Internet about a subject that we consider as being totally ignored in the Romanian scientific literature and unexpectedly insufficiently treated in the specialized ophthalmologic literature. Known in the specialty literature under the generic name of "Computer vision syndrome", it is defined by the American Optometric Association as a complex of eye and vision problems related to the activities which stress the near vision and which are experienced in relation, or during, the use of the computer. During the consultations we hear frequent complaints of eye-strain - asthenopia, headaches, blurred distance and/or near vision, dry and irritated eyes, slow refocusing, neck and backache, photophobia, sensation of diplopia, light sensitivity, and double vision, but because of the lack of information, we overlooked them too easily, without going thoroughly into the real motives. In most of the developed countries, there are recommendations issued by renowned medical associations with regard to the definition, the diagnosis, and the methods for the prevention, treatment and periodical control of the symptoms found in computer users, in conjunction with an extremely detailed ergonomic legislation. We found out that these problems incite a much too low interest in our country. We would like to rouse the interest of our ophthalmologist colleagues in the understanding and the recognition of these symptoms and in their treatment, or at least their improvement, through specialized measures or through the cooperation with our specialist occupational medicine colleagues.
Metal surface corrosion grade estimation from single image
NASA Astrophysics Data System (ADS)
Chen, Yijun; Qi, Lin; Sun, Huyuan; Fan, Hao; Dong, Junyu
2018-04-01
Metal corrosion can cause many problems, how to quickly and effectively assess the grade of metal corrosion and timely remediation is a very important issue. Typically, this is done by trained surveyors at great cost. Assisting them in the inspection process by computer vision and artificial intelligence would decrease the inspection cost. In this paper, we propose a dataset of metal surface correction used for computer vision detection and present a comparison between standard computer vision techniques by using OpenCV and deep learning method for automatic metal surface corrosion grade estimation from single image on this dataset. The test has been performed by classifying images and calculating the accuracy for the two different approaches.
NASA Astrophysics Data System (ADS)
Duclos, D.; Lonnoy, J.; Guillerm, Q.; Jurie, F.; Herbin, S.; D'Angelo, E.
2008-04-01
The last five years have seen a renewal of Automatic Target Recognition applications, mainly because of the latest advances in machine learning techniques. In this context, large collections of image datasets are essential for training algorithms as well as for their evaluation. Indeed, the recent proliferation of recognition algorithms, generally applied to slightly different problems, make their comparisons through clean evaluation campaigns necessary. The ROBIN project tries to fulfil these two needs by putting unclassified datasets, ground truths, competitions and metrics for the evaluation of ATR algorithms at the disposition of the scientific community. The scope of this project includes single and multi-class generic target detection and generic target recognition, in military and security contexts. From our knowledge, it is the first time that a database of this importance (several hundred thousands of visible and infrared hand annotated images) has been publicly released. Funded by the French Ministry of Defence (DGA) and by the French Ministry of Research, ROBIN is one of the ten Techno-vision projects. Techno-vision is a large and ambitious government initiative for building evaluation means for computer vision technologies, for various application contexts. ROBIN's consortium includes major companies and research centres involved in Computer Vision R&D in the field of defence: Bertin Technologies, CNES, ECA, DGA, EADS, INRIA, ONERA, MBDA, SAGEM, THALES. This paper, which first gives an overview of the whole project, is focused on one of ROBIN's key competitions, the SAGEM Defence Security database. This dataset contains more than eight hundred ground and aerial infrared images of six different vehicles in cluttered scenes including distracters. Two different sets of data are available for each target. The first set includes different views of each vehicle at close range in a "simple" background, and can be used to train algorithms. The second set contains many views of the same vehicle in different contexts and situations simulating operational scenarios.
A comparison of symptoms after viewing text on a computer screen and hardcopy.
Chu, Christina; Rosenfield, Mark; Portello, Joan K; Benzoni, Jaclyn A; Collier, Juanita D
2011-01-01
Computer vision syndrome (CVS) is a complex of eye and vision problems experienced during or related to computer use. Ocular symptoms may include asthenopia, accommodative and vergence difficulties and dry eye. CVS occurs in up to 90% of computer workers, and given the almost universal use of these devices, it is important to identify whether these symptoms are specific to computer operation, or are simply a manifestation of performing a sustained near-vision task. This study compared ocular symptoms immediately following a sustained near task. 30 young, visually-normal subjects read text aloud either from a desktop computer screen or a printed hardcopy page at a viewing distance of 50 cm for a continuous 20 min period. Identical text was used in the two sessions, which was matched for size and contrast. Target viewing angle and luminance were similar for the two conditions. Immediately following completion of the reading task, subjects completed a written questionnaire asking about their level of ocular discomfort during the task. When comparing the computer and hardcopy conditions, significant differences in median symptom scores were reported with regard to blurred vision during the task (t = 147.0; p = 0.03) and the mean symptom score (t = 102.5; p = 0.04). In both cases, symptoms were higher during computer use. Symptoms following sustained computer use were significantly worse than those reported after hard copy fixation under similar viewing conditions. A better understanding of the physiology underlying CVS is critical to allow more accurate diagnosis and treatment. This will allow practitioners to optimize visual comfort and efficiency during computer operation.
Lumber Grading With A Computer Vision System
Richard W. Conners; Tai-Hoon Cho; Philip A. Araman
1989-01-01
Over the past few years significant progress has been made in developing a computer vision system for locating and identifying defects on surfaced hardwood lumber. Unfortunately, until September of 1988 little research had gone into developing methods for analyzing rough lumber. This task is arguably more complex than the analysis of surfaced lumber. The prime...
Range Image Flow using High-Order Polynomial Expansion
2013-09-01
included as a default algorithm in the OpenCV library [2]. The research of estimating the motion between range images, or range flow, is much more...Journal of Computer Vision, vol. 92, no. 1, pp. 1‒31. 2. G. Bradski and A. Kaehler. 2008. Learning OpenCV : Computer Vision with the OpenCV Library
Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control.
1983-08-15
obtainable from real data, rather than relying on a stock database. Often, computer vision and image processing algorithms become subconsciously tuned to...two coils on the same mount structure. Since it was not possible to reprogram the binary system, we turned to the POPEYE system for both its grey
Quality Parameters of Six Cultivars of Blueberry Using Computer Vision
Celis Cofré, Daniela; Silva, Patricia; Enrione, Javier; Osorio, Fernando
2013-01-01
Background. Blueberries are considered an important source of health benefits. This work studied six blueberry cultivars: “Duke,” “Brigitta”, “Elliott”, “Centurion”, “Star,” and “Jewel”, measuring quality parameters such as °Brix, pH, moisture content using standard techniques and shape, color, and fungal presence obtained by computer vision. The storage conditions were time (0–21 days), temperature (4 and 15°C), and relative humidity (75 and 90%). Results. Significant differences (P < 0.05) were detected between fresh cultivars in pH, °Brix, shape, and color. However, the main parameters which changed depending on storage conditions, increasing at higher temperature, were color (from blue to red) and fungal presence (from 0 to 15%), both detected using computer vision, which is important to determine a shelf life of 14 days for all cultivars. Similar behavior during storage was obtained for all cultivars. Conclusion. Computer vision proved to be a reliable and simple method to objectively determine blueberry decay during storage that can be used as an alternative approach to currently used subjective measurements. PMID:26904598
NASA Astrophysics Data System (ADS)
Mishra, Deependra K.; Umbaugh, Scott E.; Lama, Norsang; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph
2016-09-01
CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants - a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.
Ma, Ji; Sun, Da-Wen; Qu, Jia-Huan; Liu, Dan; Pu, Hongbin; Gao, Wen-Hong; Zeng, Xin-An
2016-01-01
With consumer concerns increasing over food quality and safety, the food industry has begun to pay much more attention to the development of rapid and reliable food-evaluation systems over the years. As a result, there is a great need for manufacturers and retailers to operate effective real-time assessments for food quality and safety during food production and processing. Computer vision, comprising a nondestructive assessment approach, has the aptitude to estimate the characteristics of food products with its advantages of fast speed, ease of use, and minimal sample preparation. Specifically, computer vision systems are feasible for classifying food products into specific grades, detecting defects, and estimating properties such as color, shape, size, surface defects, and contamination. Therefore, in order to track the latest research developments of this technology in the agri-food industry, this review aims to present the fundamentals and instrumentation of computer vision systems with details of applications in quality assessment of agri-food products from 2007 to 2013 and also discuss its future trends in combination with spectroscopy.
Development of embedded real-time and high-speed vision platform
NASA Astrophysics Data System (ADS)
Ouyang, Zhenxing; Dong, Yimin; Yang, Hua
2015-12-01
Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.
Bali, Jatinder; Navin, Neeraj; Thakur, Bali Renu
2007-01-01
To study the knowledge, attitude and practices (KAP) towards computer vision syndrome prevalent in Indian ophthalmologists and to assess whether 'computer use by practitioners' had any bearing on the knowledge and practices in computer vision syndrome (CVS). A random KAP survey was carried out on 300 Indian ophthalmologists using a 34-point spot-questionnaire in January 2005. All the doctors who responded were aware of CVS. The chief presenting symptoms were eyestrain (97.8%), headache (82.1%), tiredness and burning sensation (79.1%), watering (66.4%) and redness (61.2%). Ophthalmologists using computers reported that focusing from distance to near and vice versa (P =0.006, chi2 test), blurred vision at a distance (P =0.016, chi2 test) and blepharospasm (P =0.026, chi2 test) formed part of the syndrome. The main mode of treatment used was tear substitutes. Half of ophthalmologists (50.7%) were not prescribing any spectacles. They did not have any preference for any special type of glasses (68.7%) or spectral filters. Computer-users were more likely to prescribe sedatives/anxiolytics (P = 0.04, chi2 test), spectacles (P = 0.02, chi2 test) and conscious frequent blinking (P = 0.003, chi2 test) than the non-computer-users. All respondents were aware of CVS. Confusion regarding treatment guidelines was observed in both groups. Computer-using ophthalmologists were more informed of symptoms and diagnostic signs but were misinformed about treatment modalities.
Evaluation of Deep Learning Based Stereo Matching Methods: from Ground to Aerial Images
NASA Astrophysics Data System (ADS)
Liu, J.; Ji, S.; Zhang, C.; Qin, Z.
2018-05-01
Dense stereo matching has been extensively studied in photogrammetry and computer vision. In this paper we evaluate the application of deep learning based stereo methods, which were raised from 2016 and rapidly spread, on aerial stereos other than ground images that are commonly used in computer vision community. Two popular methods are evaluated. One learns matching cost with a convolutional neural network (known as MC-CNN); the other produces a disparity map in an end-to-end manner by utilizing both geometry and context (known as GC-net). First, we evaluate the performance of the deep learning based methods for aerial stereo images by a direct model reuse. The models pre-trained on KITTI 2012, KITTI 2015 and Driving datasets separately, are directly applied to three aerial datasets. We also give the results of direct training on target aerial datasets. Second, the deep learning based methods are compared to the classic stereo matching method, Semi-Global Matching(SGM), and a photogrammetric software, SURE, on the same aerial datasets. Third, transfer learning strategy is introduced to aerial image matching based on the assumption of a few target samples available for model fine tuning. It experimentally proved that the conventional methods and the deep learning based methods performed similarly, and the latter had greater potential to be explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.
The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational andmore » theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.« less
Media advocacy: lessons from community experiences.
Jernigan, D H; Wright, P A
1996-01-01
Media advocacy is the strategic use of mass media and community organizing as a resource for advancing a social or public policy initiative. Across the United States, communities are using media advocacy to promote healthier public policies and environments. The U.S. Center for Substance Abuse Prevention commissioned numerous case studies of media advocacy on alcohol and tobacco issues in a diverse array of communities, including efforts in African-American and Latino communities or using computer-based electronic communication systems. The paper describes these efforts briefly, and summarizes lessons learned, including: media advocacy can lead to larger victories when used as a complement to community organizing in the context of a larger strategic vision for policy change; like policy advocacy, media advocacy is best done in the context of clear long-term goals; conscious framing, guiding the choice of spokespeople, visuals, and messages, can alter media coverage and public debate of health policies; advocates need to respect the media but also remember that they have power in relation to the media; and media advocacy is often controversial and not suited to every situation. The case studies show that media advocacy is a potent tool for public health workers, making an important contribution to campaigns to promote healthier public policies.
Fusion of Multiple Sensing Modalities for Machine Vision
1994-05-31
Modeling of Non-Homogeneous 3-D Objects for Thermal and Visual Image Synthesis," Pattern Recognition, in press. U [11] Nair, Dinesh , and J. K. Aggarwal...20th AIPR Workshop: Computer Vision--Meeting the Challenges, McLean, Virginia, October 1991. Nair, Dinesh , and J. K. Aggarwal, "An Object Recognition...Computer Engineering August 1992 Sunil Gupta Ph.D. Student Mohan Kumar M.S. Student Sandeep Kumar M.S. Student Xavier Lebegue Ph.D., Computer
The Implications of Pervasive Computing on Network Design
NASA Astrophysics Data System (ADS)
Briscoe, R.
Mark Weiser's late-1980s vision of an age of calm technology with pervasive computing disappearing into the fabric of the world [1] has been tempered by an industry-driven vision with more of a feel of conspicuous consumption. In the modified version, everyone carries around consumer electronics to provide natural, seamless interactions both with other people and with the information world, particularly for eCommerce, but still through a pervasive computing fabric.
Use of 3D vision for fine robot motion
NASA Technical Reports Server (NTRS)
Lokshin, Anatole; Litwin, Todd
1989-01-01
An integration of 3-D vision systems with robot manipulators will allow robots to operate in a poorly structured environment by visually locating targets and obstacles. However, by using computer vision for objects acquisition makes the problem of overall system calibration even more difficult. Indeed, in a CAD based manipulation a control architecture has to find an accurate mapping between the 3-D Euclidean work space and a robot configuration space (joint angles). If a stereo vision is involved, then one needs to map a pair of 2-D video images directly into the robot configuration space. Neural Network approach aside, a common solution to this problem is to calibrate vision and manipulator independently, and then tie them via common mapping into the task space. In other words, both vision and robot refer to some common Absolute Euclidean Coordinate Frame via their individual mappings. This approach has two major difficulties. First a vision system has to be calibrated over the total work space. And second, the absolute frame, which is usually quite arbitrary, has to be the same with a high degree of precision for both robot and vision subsystem calibrations. The use of computer vision to allow robust fine motion manipulation in a poorly structured world which is currently in progress is described along with the preliminary results and encountered problems.
Riemann tensor of motion vision revisited.
Brill, M
2001-07-02
This note shows that the Riemann-space interpretation of motion vision developed by Barth and Watson is neither necessary for their results, nor sufficient to handle an intrinsic coordinate problem. Recasting the Barth-Watson framework as a classical velocity-solver (as in computer vision) solves these problems.
Evaluation of the Waggoner Computerized Color Vision Test.
Ng, Jason S; Self, Eriko; Vanston, John E; Nguyen, Andrew L; Crognale, Michael A
2015-04-01
Clinical color vision evaluation has been based primarily on the same set of tests for the past several decades. Recently, computer-based color vision tests have been devised, and these have several advantages but are still not widely used. In this study, we evaluated the Waggoner Computerized Color Vision Test (CCVT), which was developed for widespread use with common computer systems. A sample of subjects with (n = 59) and without (n = 361) color vision deficiency (CVD) were tested on the CCVT, the anomaloscope, the Richmond HRR (Hardy-Rand-Rittler) (4th edition), and the Ishihara test. The CCVT was administered in two ways: (1) on a computer monitor using its default settings and (2) on one standardized to a correlated color temperature (CCT) of 6500 K. Twenty-four subjects with CVD performed the CCVT both ways. Sensitivity, specificity, and correct classification rates were determined. The screening performance of the CCVT was good (95% sensitivity, 100% specificity). The CCVT classified subjects as deutan or protan in agreement with anomaloscopy 89% of the time. It generally classified subjects as having a more severe defect compared with other tests. Results from 18 of the 24 subjects with CVD tested under both default and calibrated CCT conditions were the same, whereas the results from 6 subjects had better agreement with other test results when the CCT was set. The Waggoner CCVT is an adequate color vision screening test with several advantages and appears to provide a fairly accurate diagnosis of deficiency type. Used in conjunction with other color vision tests, it may be a useful addition to a color vision test battery.
Cohesive ARMD Full UAS Integration Strategy
NASA Technical Reports Server (NTRS)
Hackenberg, Davis
2017-01-01
Introduction / Background; Current Landscape and Future Vision; UAS (Unmanned Aircraft System) Demand and Key Challenges; UAS Airspace Access Pillars and Enablers; Overarching UAS Community Strategy; Long Term Vision Considerations; Recommendations and Next Steps.
Slotnick, Jeffrey P.; Khodadoust, Abdollah; Alonso, Juan J.; Darmofal, David L.; Gropp, William D.; Lurie, Elizabeth A.; Mavriplis, Dimitri J.; Venkatakrishnan, Venkat
2014-01-01
As global air travel expands rapidly to meet demand generated by economic growth, it is essential to continue to improve the efficiency of air transportation to reduce its carbon emissions and address concerns about climate change. Future transports must be ‘cleaner’ and designed to include technologies that will continue to lower engine emissions and reduce community noise. The use of computational fluid dynamics (CFD) will be critical to enable the design of these new concepts. In general, the ability to simulate aerodynamic and reactive flows using CFD has progressed rapidly during the past several decades and has fundamentally changed the aerospace design process. Advanced simulation capabilities not only enable reductions in ground-based and flight-testing requirements, but also provide added physical insight, and enable superior designs at reduced cost and risk. In spite of considerable success, reliable use of CFD has remained confined to a small region of the operating envelope due, in part, to the inability of current methods to reliably predict turbulent, separated flows. Fortunately, the advent of much more powerful computing platforms provides an opportunity to overcome a number of these challenges. This paper summarizes the findings and recommendations from a recent NASA-funded study that provides a vision for CFD in the year 2030, including an assessment of critical technology gaps and needed development, and identifies the key CFD technology advancements that will enable the design and development of much cleaner aircraft in the future. PMID:25024413
NASA Technical Reports Server (NTRS)
Lewandowski, Leon; Struckman, Keith
1994-01-01
Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.
Evolution of attention mechanisms for early visual processing
NASA Astrophysics Data System (ADS)
Müller, Thomas; Knoll, Alois
2011-03-01
Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism: mutation and cloning of the best performers and extinction of the worst performers considering computation of regions of attention. A fitness function can be derived by evaluating, whether relevant objects are found in the regions created. It can be seen from various experiments, that the approach significantly speeds up visual processing, especially regarding robust ealtime object recognition, compared to an approach not using saliency based preprocessing. Furthermore, the evolutionary algorithm improves the overall performance of the preprocessing system in terms of quality, as the system automatically and autonomously tunes the saliency parameters. The computational overhead produced by periodical clone/delete/mutation operations can be handled well within the realtime constraints of the experimental computer vision system. Nevertheless, limitations apply whenever the visual field does not contain any significant saliency information for some time, but the population still tries to tune the parameters - overfitting avoids generalization in this case and the evolutionary process may be reset by manual intervention.
A dental vision system for accurate 3D tooth modeling.
Zhang, Li; Alemzadeh, K
2006-01-01
This paper describes an active vision system based reverse engineering approach to extract the three-dimensional (3D) geometric information from dental teeth and transfer this information into Computer-Aided Design/Computer-Aided Manufacture (CAD/CAM) systems to improve the accuracy of 3D teeth models and at the same time improve the quality of the construction units to help patient care. The vision system involves the development of a dental vision rig, edge detection, boundary tracing and fast & accurate 3D modeling from a sequence of sliced silhouettes of physical models. The rig is designed using engineering design methods such as a concept selection matrix and weighted objectives evaluation chart. Reconstruction results and accuracy evaluation are presented on digitizing different teeth models.
Research on an autonomous vision-guided helicopter
NASA Technical Reports Server (NTRS)
Amidi, Omead; Mesaki, Yuji; Kanade, Takeo
1994-01-01
Integration of computer vision with on-board sensors to autonomously fly helicopters was researched. The key components developed were custom designed vision processing hardware and an indoor testbed. The custom designed hardware provided flexible integration of on-board sensors with real-time image processing resulting in a significant improvement in vision-based state estimation. The indoor testbed provided convenient calibrated experimentation in constructing real autonomous systems.
Aguilar, Mario; Peot, Mark A; Zhou, Jiangying; Simons, Stephen; Liao, Yuwei; Metwalli, Nader; Anderson, Mark B
2012-03-01
The mammalian visual system is still the gold standard for recognition accuracy, flexibility, efficiency, and speed. Ongoing advances in our understanding of function and mechanisms in the visual system can now be leveraged to pursue the design of computer vision architectures that will revolutionize the state of the art in computer vision.
Automated Grading of Rough Hardwood Lumber
Richard W. Conners; Tai-Hoon Cho; Philip A. Araman
1989-01-01
Any automatic hardwood grading system must have two components. The first of these is a computer vision system for locating and identifying defects on rough lumber. The second is a system for automatically grading boards based on the output of the computer vision system. This paper presents research results aimed at developing the first of these components. The...
Computer Vision Systems for Hardwood Logs and Lumber
Philip A. Araman; Tai-Hoon Cho; D. Zhu; R. Conners
1991-01-01
Computer vision systems being developed at Virginia Tech University with the support and cooperation from the U.S. Forest Service are presented. Researchers at Michigan State University, West Virginia University, and Mississippi State University are also members of the research team working on various parts of this research. Our goals are to help U.S. hardwood...
An Analysis of Helicopter Pilot Scan Techniques While Flying at Low Altitudes and High Speed
2012-09-01
Manager SV Synthetic Vision TFH Total Flight Hours TOFT Tactical Operational Flight Trainer VFR Visual Flight Rules VMC Visual Meteorological...Crognale, 2008). Recently, the use of synthetic vision (SV) and a heads-up- display (HUD) have been a topic of discussion in the aviation community... Synthetic vision uses external cameras to provide the pilot with an enhanced view of the outside world, usually with the assistance of night vision
Survey of blindness and low vision in Egbedore, South-Western Nigeria.
Kolawole, O U; Ashaye, A O; Adeoti, C O; Mahmoud, A O
2010-01-01
Developing efficient and cost-effective eye care programmes for communities in Nigeria has been hampered by inadequate and inaccurate data on blindness and low vision. To determine the prevalence and causes of blindness and low vision among adults 50 years and older in South-Western Nigeria in order to develop viable eye care programme for the community. Twenty clusters of 60 subjects of age 50 years and older were selected by systematic random cluster sampling. Information was collected and ocular examinations were conducted on each consenting subject. Data were recorded in specially designed questionnaire and analysed using descriptive statistical methods. Out of the 1200 subjects enrolled for the study, 1183(98.6%) were interviewed and examined. Seventy five (6.3%)) of the 1183 subjects were bilaterally blind and 223(18.9%) had bilateral low vision according to WHO definition of blindness and low vision. Blindness was about 1.6 times commoner in men than women. Cataract, glaucoma and posterior segment disorders were major causes of bilateral blindness. Bilateral low vision was mainly due to cataract, refractive errors and posterior segment disorders. The prevalence of blindness and low vision in this study population was high. The main causes are avoidable. Elimination of avoidable blindness and low vision calls for attention and commitment from government and eye care workers in South Western Nigeria.
Quantification of color vision using a tablet display.
Chacon, Alicia; Rabin, Jeff; Yu, Dennis; Johnston, Shawn; Bradshaw, Timothy
2015-01-01
Accurate color vision is essential for optimal performance in aviation and space environments using nonredundant color coding to convey critical information. Most color tests detect color vision deficiency (CVD) but fail to diagnose type or severity of CVD, which are important to link performance to occupational demands. The computer-based Cone Contrast Test (CCT) diagnoses type and severity of CVD. It is displayed on a netbook computer for clinical application, but a more portable version may prove useful for deployments, space and aviation cockpits, as well as accident and sports medicine settings. Our purpose was to determine if the CCT can be conducted on a tablet display (Windows 8, Microsoft, Seattle, WA) using touch-screen response input. The CCT presents colored letters visible only to red (R), green (G), and blue (B) sensitive retinal cones to determine the lowest R, G, and B cone contrast visible to the observer. The CCT was measured in 16 color vision normals (CVN) and 16 CVDs using the standard netbook computer and a Windows 8 tablet display calibrated to produce equal color contrasts. Both displays showed 100% specificity for confirming CVN and 100% sensitivity for detecting CVD. In CVNs there was no difference between scores on netbook vs. tablet displays. G cone CVDs showed slightly lower G cone CCT scores on the tablet. CVD can be diagnosed with a tablet display. Ease-of-use, portability, and complete computer capabilities make tablets ideal for multiple settings, including aviation, space, military deployments, accidents and rescue missions, and sports vision. Chacon A, Rabin J, Yu D, Johnston S, Bradshaw T. Quantification of color vision using a tablet display.
Eder, Milton Mickey; Holzer, Jessica; Calhoun, Karen; Strong, Larkin L
2017-01-01
The organizers founded Progress in Community Health Partnerships with a commitment to improving our understanding of community-based participatory research (CBPR) and its use in community-academic/institutional health partnerships. Following Rogers's Diffusion of Innovations, they reasoned that expanded adoption would occur through academic and community partner recognition of CBPR's relative advantage over previous approaches; its compatibility with the values, past experience and needs of potential adopters; its ease of understanding and use; its capacity for experimentation and refinement; and its production of observable results. We now assess the journal's progress toward realizing the vision, as well as issues and problems the organizers identified. We map the journal's content over its first decade onto the initial vision by examining the record of submissions and publications across the eight types of articles and the journal's record of rejections and publications. In remembering that Rogers's study of innovations requires both technical and social change, we discuss the difference between understanding how to do something and actually putting an innovation into action that becomes standard practice at both individual and systemic levels. We observe that the large number of Original Research and Works-in-Progress/Lessons Learned manuscripts, submitted and published, reflect traditional expectations for faculty research productivity. We suggest that sustainability, which rated of lower importance within the initial vision, has gained in importance among community and academic partners; however, it will gain added attention only with changed university expectations of researchers. We further suggest that the study of partnerships involved in researching and improving public health should be expanded beyond the current focus on CBPR.
Heinrich, Andreas; Güttler, Felix; Wendt, Sebastian; Schenkl, Sebastian; Hubig, Michael; Wagner, Rebecca; Mall, Gita; Teichgräber, Ulf
2018-06-18
In forensic odontology the comparison between antemortem and postmortem panoramic radiographs (PRs) is a reliable method for person identification. The purpose of this study was to improve and automate identification of unknown people by comparison between antemortem and postmortem PR using computer vision. The study includes 43 467 PRs from 24 545 patients (46 % females/54 % males). All PRs were filtered and evaluated with Matlab R2014b including the toolboxes image processing and computer vision system. The matching process used the SURF feature to find the corresponding points between two PRs (unknown person and database entry) out of the whole database. From 40 randomly selected persons, 34 persons (85 %) could be reliably identified by corresponding PR matching points between an already existing scan in the database and the most recent PR. The systematic matching yielded a maximum of 259 points for a successful identification between two different PRs of the same person and a maximum of 12 corresponding matching points for other non-identical persons in the database. Hence 12 matching points are the threshold for reliable assignment. Operating with an automatic PR system and computer vision could be a successful and reliable tool for identification purposes. The applied method distinguishes itself by virtue of its fast and reliable identification of persons by PR. This Identification method is suitable even if dental characteristics were removed or added in the past. The system seems to be robust for large amounts of data. · Computer vision allows an automated antemortem and postmortem comparison of panoramic radiographs (PRs) for person identification.. · The present method is able to find identical matching partners among huge datasets (big data) in a short computing time.. · The identification method is suitable even if dental characteristics were removed or added.. · Heinrich A, Güttler F, Wendt S et al. Forensic Odontology: Automatic Identification of Persons Comparing Antemortem and Postmortem Panoramic Radiographs Using Computer Vision. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0632-4744. © Georg Thieme Verlag KG Stuttgart · New York.
A Cloud-Based Global Flood Disaster Community Cyber-Infrastructure: Development and Demonstration
NASA Technical Reports Server (NTRS)
Wan, Zhanming; Hong, Yang; Khan, Sadiq; Gourley, Jonathan; Flamig, Zachary; Kirschbaum, Dalia; Tang, Guoqiang
2014-01-01
Flood disasters have significant impacts on the development of communities globally. This study describes a public cloud-based flood cyber-infrastructure (CyberFlood) that collects, organizes, visualizes, and manages several global flood databases for authorities and the public in real-time, providing location-based eventful visualization as well as statistical analysis and graphing capabilities. In order to expand and update the existing flood inventory, a crowdsourcing data collection methodology is employed for the public with smartphones or Internet to report new flood events, which is also intended to engage citizen-scientists so that they may become motivated and educated about the latest developments in satellite remote sensing and hydrologic modeling technologies. Our shared vision is to better serve the global water community with comprehensive flood information, aided by the state-of-the- art cloud computing and crowdsourcing technology. The CyberFlood presents an opportunity to eventually modernize the existing paradigm used to collect, manage, analyze, and visualize water-related disasters.
Red, purple and pink: the colors of diffusion on pinterest.
Bakhshi, Saeideh; Gilbert, Eric
2015-01-01
Many lab studies have shown that colors can evoke powerful emotions and impact human behavior. Might these phenomena drive how we act online? A key research challenge for image-sharing communities is uncovering the mechanisms by which content spreads through the community. In this paper, we investigate whether there is link between color and diffusion. Drawing on a corpus of one million images crawled from Pinterest, we find that color significantly impacts the diffusion of images and adoption of content on image sharing communities such as Pinterest, even after partially controlling for network structure and activity. Specifically, Red, Purple and pink seem to promote diffusion, while Green, Blue, Black and Yellow suppress it. To our knowledge, our study is the first to investigate how colors relate to online user behavior. In addition to contributing to the research conversation surrounding diffusion, these findings suggest future work using sophisticated computer vision techniques. We conclude with a discussion on the theoretical, practical and design implications suggested by this work-e.g. design of engaging image filters.
Review On Applications Of Neural Network To Computer Vision
NASA Astrophysics Data System (ADS)
Li, Wei; Nasrabadi, Nasser M.
1989-03-01
Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.
Computer vision-based classification of hand grip variations in neurorehabilitation.
Zariffa, José; Steeves, John D
2011-01-01
The complexity of hand function is such that most existing upper limb rehabilitation robotic devices use only simplified hand interfaces. This is in contrast to the importance of the hand in regaining function after neurological injury. Computer vision technology has been used to identify hand posture in the field of Human Computer Interaction, but this approach has not been translated to the rehabilitation context. We describe a computer vision-based classifier that can be used to discriminate rehabilitation-relevant hand postures, and could be integrated into a virtual reality-based upper limb rehabilitation system. The proposed system was tested on a set of video recordings from able-bodied individuals performing cylindrical grasps, lateral key grips, and tip-to-tip pinches. The overall classification success rate was 91.2%, and was above 98% for 6 out of the 10 subjects. © 2011 IEEE
Community Business in Scotland: An Alternative Vision of 'Enterprise Culture', 1979-97.
Murray, Gillian
2018-06-09
The force and coherency with which Margaret Thatcher and her inner circle outlined their vision for 'enterprise culture', like so many aspects of Thatcherism, have masked the complexity of its origins and the histories of alternative responses. This article provides a history of an alternative vision for enterprise culture by examining the community business movement in Scotland, the largest experiment of its kind in the UK in the 1980s and a forerunner of social enterprise. Working across Scotland, but with a hub of activity in the Strathclyde region, practitioners worked with local people to find ways to develop their neighbourhood economy while improving their environment, creating jobs, and developing services needed in their area. This article outlines the origins of the movement, the shared values of its founding members, and how their training in community development informed the community business model. It analyses how practitioners put their ideas into practice and the reasons behind the fragmentation of the movement in the 1990s. It argues that although at face value the concept of community business may appear to chime with the dominant political rhetoric of Thatcher's 'enterprise culture', the history of the movement provides a signpost to an alternative, if unrealised, vision for Scotland's recovery from social and economic depression. Where previous historical research has focused on the political consequences of Thatcher's policies in Scotland, this research connects this discussion to the transformation of Scotland's civic society in the wake of deindustrialization.
Visioning the Centre for Place and Sustainability Studies through an Embodied Aesthetic Wholeness
ERIC Educational Resources Information Center
Sameshima, Pauline; Greenwood, David A.
2015-01-01
In the context of research universities, what kind of places and spaces can we create for ourselves that foster a holistic vision of learning and community, a vision that is responsive to the shifting social and ecological landscapes of the Anthropocene? How can these spaces simultaneously address the need to nurture both personal and cultural…
Perceived vision-related quality of life and risk of falling among community living elderly people.
Källstrand-Eriksson, Jeanette; Baigi, Amir; Buer, Nina; Hildingh, Cathrine
2013-06-01
Falls and fall injuries among the elderly population are common, since ageing is a risk factor of falling. Today, this is a major problem because the ageing population is increasing. There are predictive factors of falling and visual impairment is one of them. Usually, only visual acuity is considered when measuring visual impairment, and nothing regarding a person's functional visual ability is taken into account. Therefore, the aim of this study was to assess the perceived vision-related quality of life among the community living elderly using the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) and to investigate whether there was any association among vision-related quality of life and falls. There were 212 randomly selected elderly people participating in the study. Our study indicated that the participants had an impaired perceived vision-related health status. General health was the only NEI VFQ-25 variable significantly associated with falls in both men and women. However, among men, near and distance activities, vision-specific social functioning, role difficulties and dependency, color and peripheral vision were related to falls. © 2012 Nordic College of Caring Science.
Computing Optic Flow with ArduEye Vision Sensor
2013-01-01
processing algorithm that can be applied to the flight control of other robotic platforms. 15. SUBJECT TERMS Optical flow, ArduEye, vision based ...2 Figure 2. ArduEye vision chip on Stonyman breakout board connected to Arduino Mega (8) (left) and the Stonyman vision chips (7...robotic platforms. There is a significant need for small, light , less power-hungry sensors and sensory data processing algorithms in order to control the
Insect vision as model for machine vision
NASA Astrophysics Data System (ADS)
Osorio, D.; Sobey, Peter J.
1992-11-01
The neural architecture, neurophysiology and behavioral abilities of insect vision are described, and compared with that of mammals. Insects have a hardwired neural architecture of highly differentiated neurons, quite different from the cerebral cortex, yet their behavioral abilities are in important respects similar to those of mammals. These observations challenge the view that the key to the power of biological neural computation is distributed processing by a plastic, highly interconnected, network of individually undifferentiated and unreliable neurons that has been a dominant picture of biological computation since Pitts and McCulloch's seminal work in the 1940's.
Differences in children and adolescents' ability of reporting two CVS-related visual problems.
Hu, Liang; Yan, Zheng; Ye, Tiantian; Lu, Fan; Xu, Peng; Chen, Hao
2013-01-01
The present study examined whether children and adolescents can correctly report dry eyes and blurred distance vision, two visual problems associated with computer vision syndrome. Participants are 913 children and adolescents aged 6-17. They were asked to report their visual problems, including dry eyes and blurred distance vision, and received an eye examination, including tear film break-up time (TFBUT) and visual acuity (VA). Inconsistency was found between participants' reports of dry eyes and TFBUT results among all 913 participants as well as for all of four subgroups. In contrast, consistency was found between participants' reports of blurred distance vision and VA results among 873 participants who had never worn glasses as well as for the four subgroups. It was concluded that children and adolescents are unable to report dry eyes correctly; however, they are able to report blurred distance vision correctly. Three practical implications of the findings were discussed. Little is known about children's ability to report their visual problems, an issue critical to diagnosis and treatment of children's computer vision syndrome. This study compared children's self-reports and clinic examination results and found children can correctly report blurred distance vision but not dry eyes.
Analysis of Global Properties of Shapes
2010-06-01
Conference on Computer Vision (ICCV) ( Bejing , China , 2005), IEEE. [113] Thrun, S., and Wegbreit, B. Shape from symmetry. In Proceedings of the...International Conference on Computer Vision (ICCV) ( Bejing , China , 2005), IEEE. [114] Toshev, A., Shi, J., and Daniilidis, K. Image matching via saliency...applications ranging from sampling points to finding correspondences to shape simplification. Discrete variants of the Laplace-Beltrami opera - tor [108] and
The Development of a Robot-Based Learning Companion: A User-Centered Design Approach
ERIC Educational Resources Information Center
Hsieh, Yi-Zeng; Su, Mu-Chun; Chen, Sherry Y.; Chen, Gow-Dong
2015-01-01
A computer-vision-based method is widely employed to support the development of a variety of applications. In this vein, this study uses a computer-vision-based method to develop a playful learning system, which is a robot-based learning companion named RobotTell. Unlike existing playful learning systems, a user-centered design (UCD) approach is…
The role of robotics in computer controlled polishing of large and small optics
NASA Astrophysics Data System (ADS)
Walker, David; Dunn, Christina; Yu, Guoyu; Bibby, Matt; Zheng, Xiao; Wu, Hsing Yu; Li, Hongyu; Lu, Chunlian
2015-08-01
Following formal acceptance by ESO of three 1.4m hexagonal off-axis prototype mirror segments, one circular segment, and certification of our optical test facility, we turn our attention to the challenge of segment mass-production. In this paper, we focus on the role of industrial robots, highlighting complementarity with Zeeko CNC polishing machines, and presenting results using robots to provide intermediate processing between CNC grinding and polishing. We also describe the marriage of robots and Zeeko machines to automate currently manual operations; steps towards our ultimate vision of fully autonomous manufacturing cells, with impact throughout the optical manufacturing community and beyond.
Monitoring system of multiple fire fighting based on computer vision
NASA Astrophysics Data System (ADS)
Li, Jinlong; Wang, Li; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke
2010-10-01
With the high demand of fire control in spacious buildings, computer vision is playing a more and more important role. This paper presents a new monitoring system of multiple fire fighting based on computer vision and color detection. This system can adjust to the fire position and then extinguish the fire by itself. In this paper, the system structure, working principle, fire orientation, hydrant's angle adjusting and system calibration are described in detail; also the design of relevant hardware and software is introduced. At the same time, the principle and process of color detection and image processing are given as well. The system runs well in the test, and it has high reliability, low cost, and easy nodeexpanding, which has a bright prospect of application and popularization.
1985-01-01
The NASA imaging processing technology, an advanced computer technique to enhance images sent to Earth in digital form by distant spacecraft, helped develop a new vision screening process. The Ocular Vision Screening system, an important step in preventing vision impairment, is a portable device designed especially to detect eye problems in children through the analysis of retinal reflexes.
This report from the Partnership for Sustainable Communities reports on the three years of progress since the Partnership started in 2009. It includes case studies of Partnership projects in communities around the country.
Cloud computing approaches to accelerate drug discovery value chain.
Garg, Vibhav; Arora, Suchir; Gupta, Chitra
2011-12-01
Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.
... in Your Area Stories of Hope Videos Resources Low Vision Specialists Retinal Physicians My Retina Tracker Registry Genetic ... a treatment is discovered, help is available through low-vision aids, including optical, electronic, and computer-based devices. ...
Rural Development Policy: Promises Made and Promises Denied.
ERIC Educational Resources Information Center
Hyman, Drew
1991-01-01
Presents historical trends toward rural development policy. Describes the agrarian perspective and the industrial and urbanization perspective as current visions which guide policy. Recommends a new vision focusing on "livability for people" and "viability of community systems." (KS)
Awareness of Vision Zero among United States' road safety professionals.
Evenson, Kelly R; LaJeunesse, Seth; Heiny, Stephen
2018-05-08
Vision Zero is a strategy to eliminate all fatalities and serious injuries from road traffic crashes, while increasing safe and equitable mobility for all. In 2015, the United States' Department of Transportation announced the official target of the federal government transportation safety policy was zero deaths. In 2017, we assessed the dissemination of Vision Zero in the United States. We conducted a web-based survey in 2017 among road safety professionals. Email invitations were sent using relevant membership directories and conference lists. We surveyed 192 road safety professionals, including planning/engineering (57.8%), public health (16.7%), and law enforcement/emergency medical services (EMS) (8.9%). Awareness of Vision Zero was higher among planning/engineering fields (97.3%) compared to law enforcement/EMS (76.5%) and public health (75.0%). Awareness was similar by number of years working in the field. Awareness was higher in the South (95.9%) and Northeast (95.0%) regions, followed by the West (90.8%) and Midwest (85.2%) Census regions. Among those that heard of Vision Zero (n = 174), 41.8% worked at a municipality with a Vision Zero campaign, while 41.2% did not. Among those working at a municipality with a Vision Zero campaign (n = 71), about half participated in the campaign (54.9%) while the other half did not (45.1%). With widespread dissemination of the Vision Zero strategy to road safety professionals, next steps include evaluating how Vision Zero is being adopted, implemented, and maintained in communities, as well as the awareness and acceptability by community members, and to identify the most promising policies and practices.
A self-learning camera for the validation of highly variable and pseudorandom patterns
NASA Astrophysics Data System (ADS)
Kelley, Michael
2004-05-01
Reliable and productive manufacturing operations have depended on people to quickly detect and solve problems whenever they appear. Over the last 20 years, more and more manufacturing operations have embraced machine vision systems to increase productivity, reliability and cost-effectiveness, including reducing the number of human operators required. Although machine vision technology has long been capable of solving simple problems, it has still not been broadly implemented. The reason is that until now, no machine vision system has been designed to meet the unique demands of complicated pattern recognition. The ZiCAM family was specifically developed to be the first practical hardware to meet these needs. To be able to address non-traditional applications, the machine vision industry must include smart camera technology that meets its users" demands for lower costs, better performance and the ability to address applications of irregular lighting, patterns and color. The next-generation smart cameras will need to evolve as a fundamentally different kind of sensor, with new technology that behaves like a human but performs like a computer. Neural network based systems, coupled with self-taught, n-space, non-linear modeling, promises to be the enabler of the next generation of machine vision equipment. Image processing technology is now available that enables a system to match an operator"s subjectivity. A Zero-Instruction-Set-Computer (ZISC) powered smart camera allows high-speed fuzzy-logic processing, without the need for computer programming. This can address applications of validating highly variable and pseudo-random patterns. A hardware-based implementation of a neural network, Zero-Instruction-Set-Computer, enables a vision system to "think" and "inspect" like a human, with the speed and reliability of a machine.
Eyesight quality and Computer Vision Syndrome.
Bogdănici, Camelia Margareta; Săndulache, Diana Elena; Nechita, Corina Andreea
2017-01-01
The aim of the study was to analyze the effects that gadgets have on eyesight quality. A prospective observational study was conducted from January to July 2016, on 60 people who were divided into two groups: Group 1 - 30 middle school pupils with a mean age of 11.9 ± 1.86 and Group 2 - 30 patients evaluated in the Ophthalmology Clinic, "Sf. Spiridon" Hospital, Iași, with a mean age of 21.36 ± 7.16 years. The clinical parameters observed were the following: visual acuity (VA), objective refraction, binocular vision (BV), fusional amplitude (FA), Schirmer's test. A questionnaire was also distributed, which contained 8 questions that highlighted the gadget's impact on the eyesight. The use of different gadgets, such as computer, laptops, mobile phones or other displays become part of our everyday life and people experience a variety of ocular symptoms or vision problems related to these. Computer Vision Syndrome (CVS) represents a group of visual and extraocular symptoms associated with sustained use of visual display terminals. Headache, blurred vision, and ocular congestion are the most frequent manifestations determined by the long time use of gadgets. Mobile phones and laptops are the most frequently used gadgets. People who use gadgets for a long time have a sustained effort for accommodation. A small amount of refractive errors (especially myopic shift) was objectively recorded by various studies on near work. Dry eye syndrome could also be identified, and an improvement of visual comfort could be observed after the instillation of artificial tears drops. Computer Vision Syndrome is still under-diagnosed, and people should be made aware of the bad effects the prolonged use of gadgets has on eyesight.
Eyesight quality and Computer Vision Syndrome
Bogdănici, Camelia Margareta; Săndulache, Diana Elena; Nechita, Corina Andreea
2017-01-01
The aim of the study was to analyze the effects that gadgets have on eyesight quality. A prospective observational study was conducted from January to July 2016, on 60 people who were divided into two groups: Group 1 – 30 middle school pupils with a mean age of 11.9 ± 1.86 and Group 2 – 30 patients evaluated in the Ophthalmology Clinic, “Sf. Spiridon” Hospital, Iași, with a mean age of 21.36 ± 7.16 years. The clinical parameters observed were the following: visual acuity (VA), objective refraction, binocular vision (BV), fusional amplitude (FA), Schirmer’s test. A questionnaire was also distributed, which contained 8 questions that highlighted the gadget’s impact on the eyesight. The use of different gadgets, such as computer, laptops, mobile phones or other displays become part of our everyday life and people experience a variety of ocular symptoms or vision problems related to these. Computer Vision Syndrome (CVS) represents a group of visual and extraocular symptoms associated with sustained use of visual display terminals. Headache, blurred vision, and ocular congestion are the most frequent manifestations determined by the long time use of gadgets. Mobile phones and laptops are the most frequently used gadgets. People who use gadgets for a long time have a sustained effort for accommodation. A small amount of refractive errors (especially myopic shift) was objectively recorded by various studies on near work. Dry eye syndrome could also be identified, and an improvement of visual comfort could be observed after the instillation of artificial tears drops. Computer Vision Syndrome is still under-diagnosed, and people should be made aware of the bad effects the prolonged use of gadgets has on eyesight. PMID:29450383
Colleges and Communities: Increasing Local Capacity.
ERIC Educational Resources Information Center
Baldwin, Fred D.
2001-01-01
Community colleges in Appalachia are helping boost local economies and expand educational opportunities through the national Rural Community College Initiative (RCCI). At the heart of RCCI is a nine-step strategic planning process in which a community group moves from vision to action. Kentucky's Southeast Community College has promoted…
Audible vision for the blind and visually impaired in indoor open spaces.
Yu, Xunyi; Ganz, Aura
2012-01-01
In this paper we introduce Audible Vision, a system that can help blind and visually impaired users navigate in large indoor open spaces. The system uses computer vision to estimate the location and orientation of the user, and enables the user to perceive his/her relative position to a landmark through 3D audio. Testing shows that Audible Vision can work reliably in real-life ever-changing environment crowded with people.
Smith, Neale; Littlejohns, Lori Baugh; Hawe, Penelope; Sutherland, Lisa
2008-06-01
This paper reports on expectations for and community members' experience in the development of community indicators in a healthy communities initiative (HCI) in Alberta, Canada. The HCI process involved community visioning, the creation of action plans to further the vision by addressing key health priorities and/or community capacity building activities and the development of indicators to monitor and report on progress towards goals. Nineteen semi-structured interviews were conducted with community participants to discuss definitions of success in the HCI and participant experience in developing indicators. Three themes emerged: the formal indicators lacked relevance to community members; the community did not own the HCI indicators and participants instead drew upon measures of success which were largely experiential in nature. The study provides a critically reflective, candid account of on-the-ground work with communities. The findings reveal limitations in the process of developing community indicators in this HCI, which we attribute in part to skills and discontinuities on the staffing side of the health authority and in part to failure to recognize and fully appreciate 'different ways of knowing' between communities and agencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McParland, Charles
The Smart Grid envisions a transformed US power distribution grid that enables communicating devices, under human supervision, to moderate loads and increase overall system stability and security. This vision explicitly promotes increased participation from a community that, in the past, has had little involvement in power grid operations -the consumer. The potential size of this new community and its member's extensive experience with the public Internet prompts an analysis of the evolution and current state of the Internet as a predictor for best practices in the architectural design of certain portions of the Smart Grid network. Although still evolving, themore » vision of the Smart Grid is that of a community of communicating and cooperating energy related devices that can be directed to route power and modulate loads in pursuit of an integrated, efficient and secure electrical power grid. The remaking of the present power grid into the Smart Grid is considered as fundamentally transformative as previous developments such as modern computing technology and high bandwidth data communications. However, unlike these earlier developments, which relied on the discovery of critical new technologies (e.g. the transistor or optical fiber transmission lines), the technologies required for the Smart Grid currently exist and, in many cases, are already widely deployed. In contrast to other examples of technical transformations, the path (and success) of the Smart Grid will be determined not by its technology, but by its system architecture. Fortunately, we have a recent example of a transformative force of similar scope that shares a fundamental dependence on our existing communications infrastructure - namely, the Internet. We will explore several ways in which the scale of the Internet and expectations of its users have shaped the present Internet environment. As the presence of consumers within the Smart Grid increases, some experiences from the early growth of the Internet are expected to be informative and pertinent.« less
Engaging Underrepresented Minorities in Research: Our Vision for a "Research-Friendly Community".
Olson, Mary; Cottoms, Naomi; Sullivan, Greer
2015-01-01
This article introduces our "Research-Friendly Community" vision, placing research in the arena of social justice by giving citizens a voice and opportunity to actively determine research agendas in their community. The mission of Tri-County Rural Health Network, a minority-owned, community-based nonprofit serving 16 counties in Arkansas' Mississippi River Delta region, is to increase access to health-related services and opportunities to both participate in and shape research. Tri-County has built trust with the community through the use of Deliberative Democracy Forums, a model devised by the Kettering Foundation and through a community health worker program called Community Connectors. Over time, a partnership was formed with investigators at the University of Arkansas for Medical Sciences (UAMS). Tri-County serves as a boundary spanner to link community members, other community organizations, local politicians, policy maker, and researchers. We describe our experience for other nonprofits or universities who might want to develop a similar program.
... magnifying reading glasses or loupes for seeing the computer screen , sheet music, or for sewing telescopic glasses ... for the Blind services. The Low Vision Pilot Project The American Foundation for the Blind (AFB) has ...
Development of a Vision-Based Situational Awareness Capability for Unmanned Surface Vessels
2017-09-01
used to provide an SA capability for USVs. This thesis addresses the following research questions: (1) Can a computer vision– based technique be...BLANK 51 VI. CONCLUSION AND RECOMMENDATIONS A. CONCLUSION This research demonstrated the feasibility of using a computer vision– based ...VISION- BASED SITUATIONAL AWARENESS CAPABILITY FOR UNMANNED SURFACE VESSELS by Ying Jie Benjemin Toh September 2017 Thesis Advisor: Oleg
Remote sensing of vegetation structure using computer vision
NASA Astrophysics Data System (ADS)
Dandois, Jonathan P.
High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal conditions under which forest structure measurements should be obtained with UAS-SFM remote sensing. Ultimately remote sensing of vegetation by computer vision offers the potential to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, but also seeing the trees in the forest and the leaves on the trees.
Shome, Debraj; Jain, Vandana; Natarajan, Sundaram; Agrawal, Shyam; Shah, Kiran
2008-01-01
We report a 55-year-old female patient who developed a severe right-sided orbital cellulitis. Past history was significant for a boil on the right upper eyelid 2 days prior. Visual acuity at presentation was perception of light with inaccurate projection. Orbital computed tomography (CT) scan and routine blood investigations, including blood culture, urine examination, and urine culture, were performed. CT scan showed a superonasal orbital mass suggestive of an abscess. Abscess drainage followed by pus culture, sensitivity, and pulsed-field gel electrophoresis revealed community-acquired methicillin-resistant Staphylococcus aureus (CAMRSA) resistant to all antibiotics except vancomycin, cotrimoxazole, and amikacin. The condition completely resolved post antibiotic and steroid therapy. At 3 months follow-up, the vision in the right eye was 6/9. We report this case to highlight CAMRSA as a rare but virulent cause of orbital cellulitis; empiric antibiotic therapy should include coverage for CAMRSA until susceptibilities come back.
Five Cities, One Vision. CORAL: Linking Communities, Children and Learning.
ERIC Educational Resources Information Center
James G. Irvine Foundation, San Francisco, CA.
This booklet describes the CORAL (Communities Organizing Resources To Advance Learning) program within five California communities: Pasadena, Long Beach, San Jose, Fresno, and Sacramento. This initiative, begun in 1999, is committed to a community-based and community-building approach to supporting learning and focuses on improving academic…
Design And Implementation Of Integrated Vision-Based Robotic Workcells
NASA Astrophysics Data System (ADS)
Chen, Michael J.
1985-01-01
Reports have been sparse on large-scale, intelligent integration of complete robotic systems for automating the microelectronics industry. This paper describes the application of state-of-the-art computer-vision technology for manufacturing of miniaturized electronic components. The concepts of FMS - Flexible Manufacturing Systems, work cells, and work stations and their control hierarchy are illustrated in this paper. Several computer-controlled work cells used in the production of thin-film magnetic heads are described. These cells use vision for in-process control of head-fixture alignment and real-time inspection of production parameters. The vision sensor and other optoelectronic sensors, coupled with transport mechanisms such as steppers, x-y-z tables, and robots, have created complete sensorimotor systems. These systems greatly increase the manufacturing throughput as well as the quality of the final product. This paper uses these automated work cells as examples to exemplify the underlying design philosophy and principles in the fabrication of vision-based robotic systems.
Illumination-based synchronization of high-speed vision sensors.
Hou, Lei; Kagami, Shingo; Hashimoto, Koichi
2010-01-01
To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.
Image Understanding Architecture
1991-09-01
architecture to support real-time, knowledge -based image understanding , and develop the software support environment that will be needed to utilize...NUMBER OF PAGES Image Understanding Architecture, Knowledge -Based Vision, AI Real-Time Computer Vision, Software Simulator, Parallel Processor IL PRICE... information . In addition to sensory and knowledge -based processing it is useful to introduce a level of symbolic processing. Thus, vision researchers
NASA Technical Reports Server (NTRS)
Murray, N. D.
1985-01-01
Current technology projections indicate a lack of availability of special purpose computing for Space Station applications. Potential functions for video image special purpose processing are being investigated, such as smoothing, enhancement, restoration and filtering, data compression, feature extraction, object detection and identification, pixel interpolation/extrapolation, spectral estimation and factorization, and vision synthesis. Also, architectural approaches are being identified and a conceptual design generated. Computationally simple algorithms will be research and their image/vision effectiveness determined. Suitable algorithms will be implimented into an overall architectural approach that will provide image/vision processing at video rates that are flexible, selectable, and programmable. Information is given in the form of charts, diagrams and outlines.
Slotnick, Jeffrey P; Khodadoust, Abdollah; Alonso, Juan J; Darmofal, David L; Gropp, William D; Lurie, Elizabeth A; Mavriplis, Dimitri J; Venkatakrishnan, Venkat
2014-08-13
As global air travel expands rapidly to meet demand generated by economic growth, it is essential to continue to improve the efficiency of air transportation to reduce its carbon emissions and address concerns about climate change. Future transports must be 'cleaner' and designed to include technologies that will continue to lower engine emissions and reduce community noise. The use of computational fluid dynamics (CFD) will be critical to enable the design of these new concepts. In general, the ability to simulate aerodynamic and reactive flows using CFD has progressed rapidly during the past several decades and has fundamentally changed the aerospace design process. Advanced simulation capabilities not only enable reductions in ground-based and flight-testing requirements, but also provide added physical insight, and enable superior designs at reduced cost and risk. In spite of considerable success, reliable use of CFD has remained confined to a small region of the operating envelope due, in part, to the inability of current methods to reliably predict turbulent, separated flows. Fortunately, the advent of much more powerful computing platforms provides an opportunity to overcome a number of these challenges. This paper summarizes the findings and recommendations from a recent NASA-funded study that provides a vision for CFD in the year 2030, including an assessment of critical technology gaps and needed development, and identifies the key CFD technology advancements that will enable the design and development of much cleaner aircraft in the future. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Low Vision Aids and Low Vision Rehabilitation
... SeeingAI), magnify, or illuminate. Another app, EyeNote, is free for Apple products. It scans and identifies the denomination of U.S. paper money. Computers that can read aloud or magnify what ...
Supporting Real-Time Computer Vision Workloads using OpenVX on Multicore+GPU Platforms
2015-05-01
a registered trademark of the NVIDIA Corporation . Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection...from NVIDIA , we adapted an alpha- version of an NVIDIA OpenVX implementation called VisionWorks® [3] to run atop PGMRT (a graph-based mid- dleware...time support to an OpenVX implementation by NVIDIA called VisionWorks. Our modifications were applied to an alpha-version of VisionWorks. This alpha
Vision Based Autonomous Robotic Control for Advanced Inspection and Repair
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2014-01-01
The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.
Near real-time stereo vision system
NASA Technical Reports Server (NTRS)
Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)
1993-01-01
The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.
NASA Astrophysics Data System (ADS)
Moore, Linda A.; Ferreira, Jannie T.
2003-03-01
Sports vision encompasses the visual assessment and provision of sports-specific visual performance enhancement and ocular protection for athletes of all ages, genders and levels of participation. In recent years, sports vision has been identified as one of the key performance indicators in sport. It is built on four main cornerstones: corrective eyewear, protective eyewear, visual skills enhancement and performance enhancement. Although clinically well established in the US, it is still a relatively new area of optometric specialisation elsewhere in the world and is gaining increasing popularity with eyecare practitioners and researchers. This research is often multi-disciplinary and involves input from a variety of subject disciplines, mainly those of optometry, medicine, physiology, psychology, physics, chemistry, computer science and engineering. Collaborative research projects are currently underway between staff of the Schools of Physics and Computing (DIT) and the Academy of Sports Vision (RAU).
Database Integrity Monitoring for Synthetic Vision Systems Using Machine Vision and SHADE
NASA Technical Reports Server (NTRS)
Cooper, Eric G.; Young, Steven D.
2005-01-01
In an effort to increase situational awareness, the aviation industry is investigating technologies that allow pilots to visualize what is outside of the aircraft during periods of low-visibility. One of these technologies, referred to as Synthetic Vision Systems (SVS), provides the pilot with real-time computer-generated images of obstacles, terrain features, runways, and other aircraft regardless of weather conditions. To help ensure the integrity of such systems, methods of verifying the accuracy of synthetically-derived display elements using onboard remote sensing technologies are under investigation. One such method is based on a shadow detection and extraction (SHADE) algorithm that transforms computer-generated digital elevation data into a reference domain that enables direct comparison with radar measurements. This paper describes machine vision techniques for making this comparison and discusses preliminary results from application to actual flight data.
NASA Astrophysics Data System (ADS)
Terzopoulos, Demetri; Qureshi, Faisal Z.
Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.
NASA Astrophysics Data System (ADS)
Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien
2012-09-01
This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.
Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks
NASA Astrophysics Data System (ADS)
DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.
2017-03-01
By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.
Building Community-Based Consensus: The Oconto Experience.
ERIC Educational Resources Information Center
Behr, Chris; Shaffer, Ron; Lamb, Greg; Miller, Al; Sadowske, Sue
1998-01-01
Coastal communities face difficult choices regarding the use if their waterfront resources. The complexity of issues, contradictory scientific evidence, different visions of the future, and uncertainty regarding community interests add to the difficulty of reaching consensus. The community of Oconto, Wisconsin, attempted to integrate technical and…
Remote media vision-based computer input device
NASA Astrophysics Data System (ADS)
Arabnia, Hamid R.; Chen, Ching-Yi
1991-11-01
In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.
Delivering The Benefits of Chemical-Biological Integration in ...
Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intention of this research program is to quickly evaluate thousands of chemicals for potential risk but with much reduced cost relative to historical approaches. This work involves computational and data driven approaches including high-throughput screening, modeling, text-mining and the integration of chemistry, exposure and biological data. We have developed a number of databases and applications that are delivering on the vision of developing a deeper understanding of chemicals and their effects on exposure and biological processes that are supporting a large community of scientists in their research efforts. This presentation will provide an overview of our work to bring together diverse large scale data from the chemical and biological domains, our approaches to integrate and disseminate these data, and the delivery of models supporting computational toxicology. This abstract does not reflect U.S. EPA policy. Presentation at ACS TOXI session on Computational Chemistry and Toxicology in Chemical Discovery and Assessement (QSARs).
Weidling, Patrick; Jaschinski, Wolfgang
2015-01-01
When presbyopic employees are wearing general-purpose progressive lenses, they have clear vision only with a lower gaze inclination to the computer monitor, given the head assumes a comfortable inclination. Therefore, in the present intervention field study the monitor position was lowered, also with the aim to reduce musculoskeletal symptoms. A comparison group comprised users of lenses that do not restrict the field of clear vision. The lower monitor positions led the participants to lower their head inclination, which was linearly associated with a significant reduction in musculoskeletal symptoms. However, for progressive lenses a lower head inclination means a lower zone of clear vision, so that clear vision of the complete monitor was not achieved, rather the monitor should have been placed even lower. The procedures of this study may be useful for optimising the individual monitor position depending on the comfortable head and gaze inclination and the vertical zone of clear vision of progressive lenses. For users of general-purpose progressive lenses, it is suggested that low monitor positions allow for clear vision at the monitor and for a physiologically favourable head inclination. Employees may improve their workplace using a flyer providing ergonomic-optometric information.
Computer vision syndrome: A review.
Gowrisankaran, Sowjanya; Sheedy, James E
2015-01-01
Computer vision syndrome (CVS) is a collection of symptoms related to prolonged work at a computer display. This article reviews the current knowledge about the symptoms, related factors and treatment modalities for CVS. Relevant literature on CVS published during the past 65 years was analyzed. Symptoms reported by computer users are classified into internal ocular symptoms (strain and ache), external ocular symptoms (dryness, irritation, burning), visual symptoms (blur, double vision) and musculoskeletal symptoms (neck and shoulder pain). The major factors associated with CVS are either environmental (improper lighting, display position and viewing distance) and/or dependent on the user's visual abilities (uncorrected refractive error, oculomotor disorders and tear film abnormalities). Although the factors associated with CVS have been identified the physiological mechanisms that underlie CVS are not completely understood. Additionally, advances in technology have led to the increased use of hand-held devices, which might impose somewhat different visual challenges compared to desktop displays. Further research is required to better understand the physiological mechanisms underlying CVS and symptoms associated with the use of hand-held and stereoscopic displays.
Parallel Algorithms for Computer Vision
1990-04-01
NA86-1, Thinking Machines Corporation, Cambridge, MA, December 1986. [43] J. Little, G. Blelloch, and T. Cass. How to program the connection machine for... to program the connection machine for computer vision. In Proc. Workshop on Comp. Architecture for Pattern Analysis and Machine Intell., 1987. [92] J...In Proceedings of SPIE Conf. on Advances in Intelligent Robotics Systems, Bellingham, VA, 1987. SPIE. [91] J. Little, G. Blelloch, and T. Cass. How
From Image Analysis to Computer Vision: Motives, Methods, and Milestones.
1998-07-01
images. Initially, work on digital image analysis dealt with specific classes of images such as text, photomicrographs, nuclear particle tracks, and aerial...photographs; but by the 1960’s, general algorithms and paradigms for image analysis began to be formulated. When the artificial intelligence...scene, but eventually from image sequences obtained by a moving camera; at this stage, image analysis had become scene analysis or computer vision
A real-time camera calibration system based on OpenCV
NASA Astrophysics Data System (ADS)
Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng
2015-07-01
Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.
Effects of job-related stress and burnout on asthenopia among high-tech workers.
Ostrovsky, Anat; Ribak, Joseph; Pereg, Avihu; Gaton, Dan
2012-01-01
Eye- and vision-related symptoms are the most frequent health problems among computer users. The findings of eye strain, tired eyes, eye irritation, burning sensation, redness, blurred vision and double vision, when appearing together, have recently been termed 'computer vision syndrome', or asthenopia. To examine the frequency and intensity of asthenopia among individuals employed in research and development departments of high-tech firms and the effects of job stress and burnout on ocular complaints, this study included 106 subjects, 42 high-tech workers (study group) and 64 bank employees (control group). All participants completed self-report questionnaires covering demographics, asthenopia, satisfaction with work environmental conditions, job-related stress and burnout. There was a significant between-group difference in the intensity of asthenopia, but not in its frequency. Burnout appeared to be a significant contributing factor to the intensity and frequency of asthenopia. This study shows that burnout is a significant factor in asthenopic complaints in high-tech workers. This manuscript analyses the effects of psychological environmental factors, such as job stress and burnout, on ocular complaints at the workplace of computer users. The findings may have an ergonomic impact on how to improve health, safety and comfort of the working environment among computer users, for better perception of the job environment, efficacy and production.
NASA Astrophysics Data System (ADS)
Chonacky, Norman; Winch, David
2008-04-01
There is substantial evidence of a need to make computation an integral part of the undergraduate physics curriculum. This need is consistent with data from surveys in both the academy and the workplace, and has been reinforced by two years of exploratory efforts by a group of physics faculty for whom computation is a special interest. We have examined past and current efforts at reform and a variety of strategic, organizational, and institutional issues involved in any attempt to broadly transform existing practice. We propose a set of guidelines for development based on this past work and discuss our vision of computationally integrated physics.
Liljas, Ann E M; Carvalho, Livia A; Papachristou, Efstathios; De Oliveira, Cesar; Wannamethee, S Goya; Ramsay, Sheena E; Walters, Kate R
2017-11-01
Little is known about vision impairment and frailty in older age. We investigated the relationship of poor vision and incident prefrailty and frailty. Cross-sectional and longitudinal analyses with 4-year follow-up of 2836 English community-dwellers aged ≥60 years. Vision impairment was defined as poor self-reported vision. A score of 0 out of the 5 Fried phenotype components was defined as non-frail, 1-2 prefrail and ≥3 as frail. Participants non-frail at baseline were followed-up for incident prefrailty and frailty. Participants prefrail at baseline were followed-up for incident frailty. 49% of participants (n=1396) were non-frail, 42% (n=1178) prefrail and 9% (n=262) frail. At follow-up, there were 367 new cases of prefrailty and frailty among those non-frail at baseline, and 133 new cases of frailty among those prefrail at baseline. In cross-sectional analysis, vision impairment was associated with frailty (age-adjustedandsex-adjusted OR 2.53, 95% CI 1.95 to 3.30). The association remained after further adjustment for wealth, education, cardiovascular disease, diabetes, falls, cognition and depression. In longitudinal analysis, compared with non-frail participants with no vision impairment, non-frail participants with vision impairment had twofold increased risks of prefrailty or frailty at follow-up (OR 2.07, 95% CI 1.32 to 3.24). The association remained after further adjustment. Prefrail participants with vision impairment did not have greater risks of becoming frail at follow-up. Non-frail older adults who experience poor vision have increased risks of becoming prefrail and frail over 4 years. This is of public health importance as both vision impairment and frailty affect a large number of older adults. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Computer Vision Syndrome and Associated Factors Among Medical and Engineering Students in Chennai
Logaraj, M; Madhupriya, V; Hegde, SK
2014-01-01
Background: Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. Aim: The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. Subjects and Methods: A cross-sectional study was conducted among medical and engineering college students of a University situated in the suburban area of Chennai. Students who used computer in the month preceding the date of study were included in the study. The participants were surveyed using pre-tested structured questionnaire. Results: Among engineering students, the prevalence of CVS was found to be 81.9% (176/215) while among medical students; it was found to be 78.6% (158/201). A significantly higher proportion of engineering students 40.9% (88/215) used computers for 4-6 h/day as compared to medical students 10% (20/201) (P < 0.001). The reported symptoms of CVS were higher among engineering students compared with medical students. Students who used computer for 4-6 h were at significantly higher risk of developing redness (OR = 1.2, 95% CI = 1.0-3.1,P = 0.04), burning sensation (OR = 2.1,95% CI = 1.3-3.1, P < 0.01) and dry eyes (OR = 1.8, 95% CI = 1.1-2.9, P = 0.02) compared to those who used computer for less than 4 h. Significant correlation was found between increased hours of computer use and the symptoms redness, burning sensation, blurred vision and dry eyes. Conclusion: The present study revealed that more than three-fourth of the students complained of any one of the symptoms of CVS while working on the computer. PMID:24761234
Computer vision syndrome and associated factors among medical and engineering students in chennai.
Logaraj, M; Madhupriya, V; Hegde, Sk
2014-03-01
Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. A cross-sectional study was conducted among medical and engineering college students of a University situated in the suburban area of Chennai. Students who used computer in the month preceding the date of study were included in the study. The participants were surveyed using pre-tested structured questionnaire. Among engineering students, the prevalence of CVS was found to be 81.9% (176/215) while among medical students; it was found to be 78.6% (158/201). A significantly higher proportion of engineering students 40.9% (88/215) used computers for 4-6 h/day as compared to medical students 10% (20/201) (P < 0.001). The reported symptoms of CVS were higher among engineering students compared with medical students. Students who used computer for 4-6 h were at significantly higher risk of developing redness (OR = 1.2, 95% CI = 1.0-3.1,P = 0.04), burning sensation (OR = 2.1,95% CI = 1.3-3.1, P < 0.01) and dry eyes (OR = 1.8, 95% CI = 1.1-2.9, P = 0.02) compared to those who used computer for less than 4 h. Significant correlation was found between increased hours of computer use and the symptoms redness, burning sensation, blurred vision and dry eyes. The present study revealed that more than three-fourth of the students complained of any one of the symptoms of CVS while working on the computer.
Marsden, Janet
2016-09-21
Rationale and key points An objective assessment of the patient's vision is important to assess variation from 'normal' vision in acute and community settings, to establish a baseline before examination and treatment in the emergency department, and to assess any changes during ophthalmic outpatient appointments. » Vision is one of the essential senses that permits people to make sense of the world. » Visual assessment does not only involve measuring central visual acuity, it also involves assessing the consequences of reduced vision. » Assessment of vision in children is crucial to identify issues that might affect vision and visual development, and to optimise lifelong vision. » Untreatable loss of vision is not an inevitable consequence of ageing. » Timely and repeated assessment of vision over life can reduce the incidence of falls, prevent injury and optimise independence. Reflective activity 'How to' articles can help update you practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How this article might change your practice when assessing people holistically. 2. How you could use this article to educate your colleagues in the assessment of vision.
This document emphasizes the local stakeholder's role in addressing community-wide environmental issues, especially with respect to the preferred "green" community development. The document is intended to help communities made decisions about alternative land uses and landscape ...
Cultural Diversity in Rural Communities.
ERIC Educational Resources Information Center
Castania, Kathy
1992-01-01
As rural communities become more culturally diverse, the institutions and organizations that serve them must assist this cultural transition by providing a framework for change. Such a framework includes a vision of healthy diverse communities that are conscious of changing demographics and willing to reevaluate community self-image. Three…
Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications
NASA Astrophysics Data System (ADS)
Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon
1997-04-01
A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.
DARPA super resolution vision system (SRVS) robust turbulence data collection and analysis
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Leonard, Kevin R.; Thompson, Roger; Tofsted, David; D'Arcy, Sean
2014-05-01
Atmospheric turbulence degrades the range performance of military imaging systems, specifically those intended for long range, ground-to-ground target identification. The recent Defense Advanced Research Projects Agency (DARPA) Super Resolution Vision System (SRVS) program developed novel post-processing system components to mitigate turbulence effects on visible and infrared sensor systems. As part of the program, the US Army RDECOM CERDEC NVESD and the US Army Research Laboratory Computational & Information Sciences Directorate (CISD) collaborated on a field collection and atmospheric characterization of a two-handed weapon identification dataset through a diurnal cycle for a variety of ranges and sensor systems. The robust dataset is useful in developing new models and simulations of turbulence, as well for providing as a standard baseline for comparison of sensor systems in the presence of turbulence degradation and mitigation. In this paper, we describe the field collection and atmospheric characterization and present the robust dataset to the defense, sensing, and security community. In addition, we present an expanded model validation of turbulence degradation using the field collected video sequences.
Assistive technology and home modification for people with neurovisual deficits.
Copolillo, Al; Ivanoff, Synneve Dahlin
2011-01-01
People with neurovisual deficits from acquired brain injuries and other neurological disabilities can benefit from the array of assistive technologies and home modifications available to the larger vision impairment population, especially when symptoms are mild and associated neurological conditions are few. Optics, proper lighting, and magnification to increase the perceived size of both objects and reading material and to improve contrast sensitivity have been shown to be beneficial. Innovative technologies, universally designed for safe independent living and community participation are gradually developing and show promise for addressing the needs of this population. This article highlights technologies that may be useful for people with neurovisual deficits and describes the evidence to support their training and use. The use of various types of eyewear to reduce falls; prisms and telescopic lenses to improve visual attention and minimize the impact of visual field deficits; and technologies to improve computer use, wayfinding, and home safety are discussed. While there remains substantial need for further research and development focusing on the needs of people with vision impairments from neurological conditions, practitioners can use technology with caution to improve functional outcomes.
The Community-Building College: Leading the Way to Community Revitalization.
ERIC Educational Resources Information Center
Harlacher, Ervin L.; Gollattscheck, James F.
Arguing that the nation's educational system must be renewed to empower citizens and communities, this two-part monograph describes the importance of building learning communities and offers a blueprint to guide community colleges in this undertaking. The first part of the monograph provides three chapters focusing on creating a vision for the…
ERIC Educational Resources Information Center
Pinkwart, Niels
2016-01-01
This paper attempts an analysis of some current trends and future developments in computer science, education, and educational technology. Based on these trends, two possible future predictions of AIED are presented in the form of a utopian vision and a dystopian vision. A comparison of these two visions leads to seven challenges that AIED might…
Merged Vision and GPS Control of a Semi-Autonomous, Small Helicopter
NASA Technical Reports Server (NTRS)
Rock, Stephen M.
1999-01-01
This final report documents the activities performed during the research period from April 1, 1996 to September 30, 1997. It contains three papers: Carrier Phase GPS and Computer Vision for Control of an Autonomous Helicopter; A Contestant in the 1997 International Aerospace Robotics Laboratory Stanford University; and Combined CDGPS and Vision-Based Control of a Small Autonomous Helicopter.
Recent advances in the development and transfer of machine vision technologies for space
NASA Technical Reports Server (NTRS)
Defigueiredo, Rui J. P.; Pendleton, Thomas
1991-01-01
Recent work concerned with real-time machine vision is briefly reviewed. This work includes methodologies and techniques for optimal illumination, shape-from-shading of general (non-Lambertian) 3D surfaces, laser vision devices and technology, high level vision, sensor fusion, real-time computing, artificial neural network design and use, and motion estimation. Two new methods that are currently being developed for object recognition in clutter and for 3D attitude tracking based on line correspondence are discussed.
Effect of contact lens use on Computer Vision Syndrome.
Tauste, Ana; Ronda, Elena; Molina, María-José; Seguí, Mar
2016-03-01
To analyse the relationship between Computer Vision Syndrome (CVS) in computer workers and contact lens use, according to lens materials. Cross-sectional study. The study included 426 civil-service office workers, of whom 22% were contact lens wearers. Workers completed the Computer Vision Syndrome Questionnaire (CVS-Q) and provided information on their contact lenses and exposure to video display terminals (VDT) at work. CVS was defined as a CVS-Q score of 6 or more. The covariates were age and sex. Logistic regression was used to calculate the association (crude and adjusted for age and sex) between CVS and individual and work-related factors, and between CVS and contact lens type. Contact lens wearers are more likely to suffer CVS than non-lens wearers, with a prevalence of 65% vs 50%. Workers who wear contact lenses and are exposed to the computer for more than 6 h day(-1) are more likely to suffer CVS than non-lens wearers working at the computer for the same amount of time (aOR = 4.85; 95% CI, 1.25-18.80; p = 0.02). Regular contact lens use increases CVS after 6 h of computer work. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.
Computational gestalts and perception thresholds.
Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel
2003-01-01
In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments.
Vision-related problems among the workers engaged in jewellery manufacturing.
Salve, Urmi Ravindra
2015-01-01
American Optometric Association defines Computer Vision Syndrome (CVS) as "complex of eye and vision problems related to near work which are experienced during or related to computer use." This happens when visual demand of the tasks exceeds the visual ability of the users. Even though problems were initially attributed to computer-related activities subsequently similar problems are also reported while carrying any near point task. Jewellery manufacturing activities involves precision designs, setting the tiny metals and stones which requires high visual attention and mental concentration and are often near point task. It is therefore expected that the workers engaged in jewellery manufacturing may also experience symptoms like CVS. Keeping the above in mind, this study was taken up (1) To identify the prevalence of symptoms like CVS among the workers of the jewellery manufacturing and compare the same with the workers working at computer workstation and (2) To ascertain whether such symptoms have any permanent vision-related problems. Case control study. The study was carried out in Zaveri Bazaar region and at an IT-enabled organization in Mumbai. The study involved the identification of symptoms of CVS using a questionnaire of Eye Strain Journal, opthalmological check-ups and measurement of Spontaneous Eye Blink rate. The data obtained from the jewellery manufacturing was compared with the data of the subjects engaged in computer work and with the data available in the literature. A comparative inferential statistics was used. Results showed that visual demands of the task carried out in jewellery manufacturing were much higher than that of carried out in computer-related work.
Wolff, J Gerard
2014-01-01
The SP theory of intelligence aims to simplify and integrate concepts in computing and cognition, with information compression as a unifying theme. This article is about how the SP theory may, with advantage, be applied to the understanding of natural vision and the development of computer vision. Potential benefits include an overall simplification of concepts in a universal framework for knowledge and seamless integration of vision with other sensory modalities and other aspects of intelligence. Low level perceptual features such as edges or corners may be identified by the extraction of redundancy in uniform areas in the manner of the run-length encoding technique for information compression. The concept of multiple alignment in the SP theory may be applied to the recognition of objects, and to scene analysis, with a hierarchy of parts and sub-parts, at multiple levels of abstraction, and with family-resemblance or polythetic categories. The theory has potential for the unsupervised learning of visual objects and classes of objects, and suggests how coherent concepts may be derived from fragments. As in natural vision, both recognition and learning in the SP system are robust in the face of errors of omission, commission and substitution. The theory suggests how, via vision, we may piece together a knowledge of the three-dimensional structure of objects and of our environment, it provides an account of how we may see things that are not objectively present in an image, how we may recognise something despite variations in the size of its retinal image, and how raster graphics and vector graphics may be unified. And it has things to say about the phenomena of lightness constancy and colour constancy, the role of context in recognition, ambiguities in visual perception, and the integration of vision with other senses and other aspects of intelligence.
Integrity Determination for Image Rendering Vision Navigation
2016-03-01
identifying an object within a scene, tracking a SIFT feature between frames or matching images and/or features for stereo vision applications. This... object level, either in 2-D or 3-D, versus individual features. There is a breadth of information, largely from the machine vision community...matching or image rendering image correspondence approach is based upon using either 2-D or 3-D object models or templates to perform object detection or
NASA Astrophysics Data System (ADS)
Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Mas, Ramon; Perales, Francisco J.
2012-02-01
Human motion capture has a wide variety of applications, and in vision-based motion capture systems a major issue is the human body model and its initialization. We present a computer vision algorithm for building a human body model skeleton in an automatic way. The algorithm is based on the analysis of the human shape. We decompose the body into its main parts by computing the curvature of a B-spline parameterization of the human contour. This algorithm has been applied in a context where the user is standing in front of a camera stereo pair. The process is completed after the user assumes a predefined initial posture so as to identify the main joints and construct the human model. Using this model, the initialization problem of a vision-based markerless motion capture system of the human body is solved.
Camera calibration method of binocular stereo vision based on OpenCV
NASA Astrophysics Data System (ADS)
Zhong, Wanzhen; Dong, Xiaona
2015-10-01
Camera calibration, an important part of the binocular stereo vision research, is the essential foundation of 3D reconstruction of the spatial object. In this paper, the camera calibration method based on OpenCV (open source computer vision library) is submitted to make the process better as a result of obtaining higher precision and efficiency. First, the camera model in OpenCV and an algorithm of camera calibration are presented, especially considering the influence of camera lens radial distortion and decentering distortion. Then, camera calibration procedure is designed to compute those parameters of camera and calculate calibration errors. High-accurate profile extraction algorithm and a checkboard with 48 corners have also been used in this part. Finally, results of calibration program are presented, demonstrating the high efficiency and accuracy of the proposed approach. The results can reach the requirement of robot binocular stereo vision.
Understanding of and applications for robot vision guidance at KSC
NASA Technical Reports Server (NTRS)
Shawaga, Lawrence M.
1988-01-01
The primary thrust of robotics at KSC is for the servicing of Space Shuttle remote umbilical docking functions. In order for this to occur, robots performing servicing operations must be capable of tracking a swaying Orbiter in Six Degrees of Freedom (6-DOF). Currently, in NASA KSC's Robotic Applications Development Laboratory (RADL), an ASEA IRB-90 industrial robot is being equipped with a real-time computer vision (hardware and software) system to allow it to track a simulated Orbiter interface (target) in 6-DOF. The real-time computer vision system effectively becomes the eyes for the lab robot, guiding it through a closed loop visual feedback system to move with the simulated Orbiter interface. This paper will address an understanding of this vision guidance system and how it will be applied to remote umbilical servicing at KSC. In addition, other current and future applications will be addressed.
Beyond Moore's Law: Harnessing spatial-digital disruptive technologies for Digital Earth
NASA Astrophysics Data System (ADS)
Foresman, Timothy W.
2016-11-01
Moore's law will reach its plateau by 2020. Big data, however, will continue to increase as the Internet of Things and social media converge into the new era of ‘huge data’. Disruptive technologies, including big data and cloud computing are forces impacting business and government communities. The truth of our collective future is suggested to align with the Digital Earth (DE) vision. Benefits of technological advances will be manifested from business performance improvements based on capitalizing the locational attributes of corporate and government assets - the foundation of big data. Better governance and better business represents a key foundation for sustainability and therefore should be explicit DE guiding principles.
Survey of computer vision-based natural disaster warning systems
NASA Astrophysics Data System (ADS)
Ko, ByoungChul; Kwak, Sooyeong
2012-07-01
With the rapid development of information technology, natural disaster prevention is growing as a new research field dealing with surveillance systems. To forecast and prevent the damage caused by natural disasters, the development of systems to analyze natural disasters using remote sensing geographic information systems (GIS), and vision sensors has been receiving widespread interest over the last decade. This paper provides an up-to-date review of five different types of natural disasters and their corresponding warning systems using computer vision and pattern recognition techniques such as wildfire smoke and flame detection, water level detection for flood prevention, coastal zone monitoring, and landslide detection. Finally, we conclude with some thoughts about future research directions.
Visual ergonomics in the workplace.
Anshel, Jeffrey R
2007-10-01
This article provides information about visual function and its role in workplace productivity. By understanding the connection among comfort, health, and productivity and knowing the many options for effective ergonomic workplace lighting, the occupational health nurse can be sensitive to potential visual stress that can affect all areas of performance. Computer vision syndrome-the eye and vision problems associated with near work experienced during or related to computer use-is defined and solutions to it are discussed.
A Feasibility Study of View-independent Gait Identification
2012-03-01
ice skates . For walking, the footprint records for single pixels form clusters that are well separated in space and time. (Any overlap of contact...Pattern Recognition 2007, 1-8. Cheng M-H, Ho M-F & Huang C-L (2008), "Gait Analysis for Human Identification Through Manifold Learning and HMM... Learning and Cybernetics 2005, 4516-4521 Moeslund T B & Granum E (2001), "A Survey of Computer Vision-Based Human Motion Capture", Computer Vision
Observability/Identifiability of Rigid Motion under Perspective Projection
1994-03-08
Faugeras and S. Maybank . Motion from point mathces: multiplicity of solutions. Int. J, of Computer Vision, 1990. [16] D.B. Gennery. Tracking known...sequences. Int. 9. of computer vision, 1989. [37] S. Maybank . Theory of reconstruction from image motion. Springer Verlag, 1992. [38] Andrea 6...defined in section 5; in this appendix we show a simple characterization which is due to Faugeras and Maybank [15, 371. Theorem B.l . Let Q = UCVT
Computer vision in roadway transportation systems: a survey
NASA Astrophysics Data System (ADS)
Loce, Robert P.; Bernal, Edgar A.; Wu, Wencheng; Bala, Raja
2013-10-01
There is a worldwide effort to apply 21st century intelligence to evolving our transportation networks. The goals of smart transportation networks are quite noble and manifold, including safety, efficiency, law enforcement, energy conservation, and emission reduction. Computer vision is playing a key role in this transportation evolution. Video imaging scientists are providing intelligent sensing and processing technologies for a wide variety of applications and services. There are many interesting technical challenges including imaging under a variety of environmental and illumination conditions, data overload, recognition and tracking of objects at high speed, distributed network sensing and processing, energy sources, as well as legal concerns. This paper presents a survey of computer vision techniques related to three key problems in the transportation domain: safety, efficiency, and security and law enforcement. A broad review of the literature is complemented by detailed treatment of a few selected algorithms and systems that the authors believe represent the state-of-the-art.
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-01-01
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-03-20
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.
Computer vision for general purpose visual inspection: a fuzzy logic approach
NASA Astrophysics Data System (ADS)
Chen, Y. H.
In automatic visual industrial inspection, computer vision systems have been widely used. Such systems are often application specific, and therefore require domain knowledge in order to have a successful implementation. Since visual inspection can be viewed as a decision making process, it is argued that the integration of fuzzy logic analysis and computer vision systems provides a practical approach to general purpose visual inspection applications. This paper describes the development of an integrated fuzzy-rule-based automatic visual inspection system. Domain knowledge about a particular application is represented as a set of fuzzy rules. From the status of predefined fuzzy variables, the set of fuzzy rules are defuzzified to give the inspection results. A practical application where IC marks (often in the forms of English characters and a company logo) inspection is demonstrated, which shows a more consistent result as compared to a conventional thresholding method.
Comparing visual representations across human fMRI and computational vision
Leeds, Daniel D.; Seibert, Darren A.; Pyles, John A.; Tarr, Michael J.
2013-01-01
Feedforward visual object perception recruits a cortical network that is assumed to be hierarchical, progressing from basic visual features to complete object representations. However, the nature of the intermediate features related to this transformation remains poorly understood. Here, we explore how well different computer vision recognition models account for neural object encoding across the human cortical visual pathway as measured using fMRI. These neural data, collected during the viewing of 60 images of real-world objects, were analyzed with a searchlight procedure as in Kriegeskorte, Goebel, and Bandettini (2006): Within each searchlight sphere, the obtained patterns of neural activity for all 60 objects were compared to model responses for each computer recognition algorithm using representational dissimilarity analysis (Kriegeskorte et al., 2008). Although each of the computer vision methods significantly accounted for some of the neural data, among the different models, the scale invariant feature transform (Lowe, 2004), encoding local visual properties gathered from “interest points,” was best able to accurately and consistently account for stimulus representations within the ventral pathway. More generally, when present, significance was observed in regions of the ventral-temporal cortex associated with intermediate-level object perception. Differences in model effectiveness and the neural location of significant matches may be attributable to the fact that each model implements a different featural basis for representing objects (e.g., more holistic or more parts-based). Overall, we conclude that well-known computer vision recognition systems may serve as viable proxies for theories of intermediate visual object representation. PMID:24273227
Security Applications Of Computer Motion Detection
NASA Astrophysics Data System (ADS)
Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry
1987-05-01
An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.
Normative values for a tablet computer-based application to assess chromatic contrast sensitivity.
Bodduluri, Lakshmi; Boon, Mei Ying; Ryan, Malcolm; Dain, Stephen J
2018-04-01
Tablet computer displays are amenable for the development of vision tests in a portable form. Assessing color vision using an easily accessible and portable test may help in the self-monitoring of vision-related changes in ocular/systemic conditions and assist in the early detection of disease processes. Tablet computer-based games were developed with different levels of gamification as a more portable option to assess chromatic contrast sensitivity. Game 1 was designed as a clinical version with no gaming elements. Game 2 was a gamified version of game 1 (added fun elements: feedback, scores, and sounds) and game 3 was a complete game with vision task nested within. The current study aimed to determine the normative values and evaluate repeatability of the tablet computer-based games in comparison with an established test, the Cambridge Colour Test (CCT) Trivector test. Normally sighted individuals [N = 100, median (range) age 19.0 years (18-56 years)] had their chromatic contrast sensitivity evaluated binocularly using the three games and the CCT. Games 1 and 2 and the CCT showed similar absolute thresholds and tolerance intervals, and game 3 had significantly lower values than games 1, 2, and the CCT, due to visual task differences. With the exception of game 3 for blue-yellow, the CCT and tablet computer-based games showed similar repeatability with comparable 95% limits of agreement. The custom-designed games are portable, rapid, and may find application in routine clinical practice, especially for testing younger populations.
Machine Vision For Industrial Control:The Unsung Opportunity
NASA Astrophysics Data System (ADS)
Falkman, Gerald A.; Murray, Lawrence A.; Cooper, James E.
1984-05-01
Vision modules have primarily been developed to relieve those pressures newly brought into existence by Inspection (QUALITY) and Robotic (PRODUCTIVITY) mandates. Industrial Control pressure stems on the other hand from the older first industrial revolution mandate of throughput. Satisfying such pressure calls for speed in both imaging and decision making. Vision companies have, however, put speed on a backburner or ignore it entirely because most modules are computer/software based which limits their speed potential. Increasingly, the keynote being struck at machine vision seminars is that "Visual and Computational Speed Must Be Increased and Dramatically!" There are modular hardwired-logic systems that are fast but, all too often, they are not very bright. Such units: Measure the fill factor of bottles as they spin by, Read labels on cans, Count stacked plastic cups or Monitor the width of parts streaming past the camera. Many are only a bit more complex than a photodetector. Once in place, most of these units are incapable of simple upgrading to a new task and are Vision's analog to the robot industry's pick and place (RIA TYPE E) robot. Vision thus finds itself amidst the same quandries that once beset the Robot Industry of America when it tried to define a robot, excluded dumb ones, and was left with only slow machines whose unit volume potential is shatteringly low. This paper develops an approach to meeting the need of a vision system that cuts a swath into the terra incognita of intelligent, high-speed vision processing. Main attention is directed to vision for industrial control. Some presently untapped vision application areas that will be serviced include: Electronics, Food, Sports, Pharmaceuticals, Machine Tools and Arc Welding.
Challenging Speculation about "Dewey's Racialized Visions"
ERIC Educational Resources Information Center
Eldridge, Michael
2010-01-01
In this essay Michael Eldridge maintains that Frank Margonis has in a recent article ill-advisedly speculated about John Dewey's pedagogy, suggesting that his "racialized visions" of students and classroom communities involve a "false universalism" that is problematic for our multicultural society. Based on this understanding, Margonis concludes…
Eder, Milton “Mickey”; Holzer, Jessica; Calhoun, Karen; Strong, Larkin L.
2017-01-01
The organizers founded Progress in Community Health Partnerships with a commitment to improving our understanding of community-based participatory research (CBPR) and its use in community–academic/institutional health partnerships. Following Rogers’s Diffusion of Innovations, they reasoned that expanded adoption would occur through academic and community partner recognition of CBPR’s relative advantage over previous approaches; its compatibility with the values, past experience and needs of potential adopters; its ease of understanding and use; its capacity for experimentation and refinement; and its production of observable results. We now assess the journal’s progress toward realizing the vision, as well as issues and problems the organizers identified. We map the journal’s content over its first decade onto the initial vision by examining the record of submissions and publications across the eight types of articles and the journal’s record of rejections and publications. In remembering that Rogers’s study of innovations requires both technical and social change, we discuss the difference between understanding how to do something and actually putting an innovation into action that becomes standard practice at both individual and systemic levels. We observe that the large number of Original Research and Works-in-Progress/Lessons Learned manuscripts, submitted and published, reflect traditional expectations for faculty research productivity. We suggest that sustainability, which rated of lower importance within the initial vision, has gained in importance among community and academic partners; however, it will gain added attention only with changed university expectations of researchers. We further suggest that the study of partnerships involved in researching and improving public health should be expanded beyond the current focus on CBPR. PMID:28603145
Red, Purple and Pink: The Colors of Diffusion on Pinterest
Bakhshi, Saeideh; Gilbert, Eric
2015-01-01
Many lab studies have shown that colors can evoke powerful emotions and impact human behavior. Might these phenomena drive how we act online? A key research challenge for image-sharing communities is uncovering the mechanisms by which content spreads through the community. In this paper, we investigate whether there is link between color and diffusion. Drawing on a corpus of one million images crawled from Pinterest, we find that color significantly impacts the diffusion of images and adoption of content on image sharing communities such as Pinterest, even after partially controlling for network structure and activity. Specifically, Red, Purple and pink seem to promote diffusion, while Green, Blue, Black and Yellow suppress it. To our knowledge, our study is the first to investigate how colors relate to online user behavior. In addition to contributing to the research conversation surrounding diffusion, these findings suggest future work using sophisticated computer vision techniques. We conclude with a discussion on the theoretical, practical and design implications suggested by this work—e.g. design of engaging image filters. PMID:25658423
Aircraft cockpit vision: Math model
NASA Technical Reports Server (NTRS)
Bashir, J.; Singh, R. P.
1975-01-01
A mathematical model was developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model was implemented and is described.
Final Report for Geometric Observers and Particle Filtering for Controlled Active Vision
2016-12-15
code) 15-12-2016 Final Report 01Sep06 - 09May11 Final Report for Geometric Observers & Particle Filtering for Controlled Active Vision 49414-NS.1Allen...Observers and Particle Filtering for Controlled Active Vision by Allen R. Tannenbaum School of Electrical and Computer Engineering Georgia Institute of...7 2.2.4 Conformal Area Minimizing Flows . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Particle Filters
CT Image Sequence Analysis for Object Recognition - A Rule-Based 3-D Computer Vision System
Dongping Zhu; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman
1991-01-01
Research is now underway to create a vision system for hardwood log inspection using a knowledge-based approach. In this paper, we present a rule-based, 3-D vision system for locating and identifying wood defects using topological, geometric, and statistical attributes. A number of different features can be derived from the 3-D input scenes. These features and evidence...
NASA Technical Reports Server (NTRS)
Prinzel, L.J.; Kramer, L.J.
2009-01-01
A synthetic vision system is an aircraft cockpit display technology that presents the visual environment external to the aircraft using computer-generated imagery in a manner analogous to how it would appear to the pilot if forward visibility were not restricted. The purpose of this chapter is to review the state of synthetic vision systems, and discuss selected human factors issues that should be considered when designing such displays.
Chinellato, Eris; Del Pobil, Angel P
2009-06-01
The topic of vision-based grasping is being widely studied in humans and in other primates using various techniques and with different goals. The fundamental related findings are reviewed in this paper, with the aim of providing researchers from different fields, including intelligent robotics and neural computation, a comprehensive but accessible view on the subject. A detailed description of the principal sensorimotor processes and the brain areas involved is provided following a functional perspective, in order to make this survey especially useful for computational modeling and bio-inspired robotic applications.
Military Vision Research Program
2011-07-01
accomplishments emanating from this research . • 3 novel computer-based tasks have been developed that measure visual distortions • These tests are based...10-1-0392 TITLE: Military Vision Research Program PRINCIPAL INVESTIGATOR: Dr. Darlene Dartt...CONTRACTING ORGANIZATION: The Schepens Eye Research
Smart vision chips: An overview
NASA Technical Reports Server (NTRS)
Koch, Christof
1994-01-01
This viewgraph presentation presents four working analog VLSI vision chips: (1) time-derivative retina, (2) zero-crossing chip, (3) resistive fuse, and (4) figure-ground chip; work in progress on computing motion and neuromorphic systems; and conceptual and practical lessons learned.
Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan
2016-01-01
In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.
Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan
2016-01-01
In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method. PMID:27847827
ISEES: an institute for sustainable software to accelerate environmental science
NASA Astrophysics Data System (ADS)
Jones, M. B.; Schildhauer, M.; Fox, P. A.
2013-12-01
Software is essential to the full science lifecycle, spanning data acquisition, processing, quality assessment, data integration, analysis, modeling, and visualization. Software runs our meteorological sensor systems, our data loggers, and our ocean gliders. Every aspect of science is impacted by, and improved by, software. Scientific advances ranging from modeling climate change to the sequencing of the human genome have been rendered possible in the last few decades due to the massive improvements in the capabilities of computers to process data through software. This pivotal role of software in science is broadly acknowledged, while simultaneously being systematically undervalued through minimal investments in maintenance and innovation. As a community, we need to embrace the creation, use, and maintenance of software within science, and address problems such as code complexity, openness,reproducibility, and accessibility. We also need to fully develop new skills and practices in software engineering as a core competency in our earth science disciplines, starting with undergraduate and graduate education and extending into university and agency professional positions. The Institute for Sustainable Earth and Environmental Software (ISEES) is being envisioned as a community-driven activity that can facilitate and galvanize activites around scientific software in an analogous way to synthesis centers such as NCEAS and NESCent that have stimulated massive advances in ecology and evolution. We will describe the results of six workshops (Science Drivers, Software Lifecycles, Software Components, Workforce Development and Training, Sustainability and Governance, and Community Engagement) that have been held in 2013 to envision such an institute. We will present community recommendations from these workshops and our strategic vision for how ISEES will address the technical issues in the software lifecycle, sustainability of the whole software ecosystem, and the critical issue of computational training for the scientific community. Process for envisioning ISEES.
What Your Board Wants: School Board Expectations for Business Officials.
ERIC Educational Resources Information Center
Shannon, Thomas A.
1993-01-01
The essential elements of school board governance involve four dimensions: (1) setting the vision for what the community wants the public school program to be; (2) ensuring that districts have a solid staff infrastructure to achieve the vision; (3) setting standards; and (4) advocating for schools. (MLF)
The Psychosocial Experiences of a Student with Low Vision
ERIC Educational Resources Information Center
George, Anne L.; Duquette, Cheryll
2006-01-01
This article presents an in-depth case study of the psychosocial experiences of Eric, a student with low vision, who is enjoying social success in his neighborhood school. It explores the factors that contribute to Eric's social successes at school and in the community and presents a model for inclusion.
Visions of Curriculum, Community, and Science
ERIC Educational Resources Information Center
Brickhouse, Nancy W.; Kittleson, Julie M.
2006-01-01
Although the natural sciences are dedicated to understanding the natural world, they are also dynamic and shaped by cultural values. The sciences and attendant technologies could be very responsive to a population that participates in and uses them responsibly. In this essay, Nancy Brickhouse and Julie Kittleson argue for re-visioning the sciences…
Applied Developmental Science, Social Justice, and Socio-Political Well-Being
ERIC Educational Resources Information Center
Fisher, Celia B.; Busch-Rossnagel, Nancy A.; Jopp, Daniela S.; Brown, Joshua L.
2012-01-01
In this article we present a vision of applied developmental science (ADS) as a means of promoting social justice and socio-political well-being. This vision draws upon the field's significant accomplishments in identifying and strengthening developmental assets in marginalized youth communities, understanding the effects of poverty and racial…
Knowledge-based machine vision systems for space station automation
NASA Technical Reports Server (NTRS)
Ranganath, Heggere S.; Chipman, Laure J.
1989-01-01
Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed.
Four Frames Suffice. A Provisionary Model of Vision and Space,
1982-09-01
0 * / Justifi ati AvailabilitY Codes 1. Introduction This paper is an attempt to specify’ a computationally and scientifically plausible model of how...abstract neural compuiting unit and a variety of construtions built of these units and their properties. All of this is part of the connectionist...chosen are inlerided to elucidate the nia’or scientific problems in intermediate level vision and would not be the best choice or a practical computer
Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.
2015-01-01
The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211
Identifying local structural states in atomic imaging by computer vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laanait, Nouamane; Ziatdinov, Maxim; He, Qian
The availability of atomically resolved imaging modalities enables an unprecedented view into the local structural states of materials, which manifest themselves by deviations from the fundamental assumptions of periodicity and symmetry. Consequently, approaches that aim to extract these local structural states from atomic imaging data with minimal assumptions regarding the average crystallographic configuration of a material are indispensable to advances in structural and chemical investigations of materials. Here, we present an approach to identify and classify local structural states that is rooted in computer vision. This approach introduces a definition of a structural state that is composed of both localmore » and non-local information extracted from atomically resolved images, and is wholly untethered from the familiar concepts of symmetry and periodicity. Instead, this approach relies on computer vision techniques such as feature detection, and concepts such as scale-invariance. We present the fundamental aspects of local structural state extraction and classification by application to simulated scanning transmission electron microscopy images, and analyze the robustness of this approach in the presence of common instrumental factors such as noise, limited spatial resolution, and weak contrast. Finally, we apply this computer vision-based approach for the unsupervised detection and classification of local structural states in an experimental electron micrograph of a complex oxides interface, and a scanning tunneling micrograph of a defect engineered multilayer graphene surface.« less
Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D
2015-07-10
The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.
Identifying local structural states in atomic imaging by computer vision
Laanait, Nouamane; Ziatdinov, Maxim; He, Qian; ...
2016-11-02
The availability of atomically resolved imaging modalities enables an unprecedented view into the local structural states of materials, which manifest themselves by deviations from the fundamental assumptions of periodicity and symmetry. Consequently, approaches that aim to extract these local structural states from atomic imaging data with minimal assumptions regarding the average crystallographic configuration of a material are indispensable to advances in structural and chemical investigations of materials. Here, we present an approach to identify and classify local structural states that is rooted in computer vision. This approach introduces a definition of a structural state that is composed of both localmore » and non-local information extracted from atomically resolved images, and is wholly untethered from the familiar concepts of symmetry and periodicity. Instead, this approach relies on computer vision techniques such as feature detection, and concepts such as scale-invariance. We present the fundamental aspects of local structural state extraction and classification by application to simulated scanning transmission electron microscopy images, and analyze the robustness of this approach in the presence of common instrumental factors such as noise, limited spatial resolution, and weak contrast. Finally, we apply this computer vision-based approach for the unsupervised detection and classification of local structural states in an experimental electron micrograph of a complex oxides interface, and a scanning tunneling micrograph of a defect engineered multilayer graphene surface.« less
Urban and Community Forestry Achievements in 1998
Daniel Liptzin; Robert Neville
1999-01-01
The vision for urban and community forestry in the Northeastern Area has remained essentially constant since 1990, "...to achieve community sustainability and an enhanced quality of life through stewardship of urban and community forests and related natural resources." Implied in this statement is full participation by all those who affect or are affected by...
A Healthy Communities Initiative in Rural Alberta: Building Rural Capacity for Health.
ERIC Educational Resources Information Center
GermAnn, Kathy; Smith, Neale; Littlejohns, Lori Baugh
Efforts of health professionals are shifting away from programs that "deliver health" toward those that build the capacity of communities to work together to create healthy places. The Healthy Communities Initiative (HCI) is a community development model in central Alberta (Canada) that involves the creation of a widely shared vision of…
Robotic space simulation integration of vision algorithms into an orbital operations simulation
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.
1987-01-01
In order to successfully plan and analyze future space activities, computer-based simulations of activities in low earth orbit will be required to model and integrate vision and robotic operations with vehicle dynamics and proximity operations procedures. The orbital operations simulation (OOS) is configured and enhanced as a testbed for robotic space operations. Vision integration algorithms are being developed in three areas: preprocessing, recognition, and attitude/attitude rates. The vision program (Rice University) was modified for use in the OOS. Systems integration testing is now in progress.
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.
2006-05-01
We live in an era of an unprecedented data volumes, multidisciplinary analysis and synthesis, and active, learner-centered education emphasis. For instance, a new generation of satellite instruments is being designed for GOES-R and NPOESS programs to deliver terabytes of data each day. Similarly, high-resolution, coupled models run over a wide range of temporal scales are generating data at unprecedented rates. Complex environmental problems such as El Nino/Southern Oscillation, climate change, and water cycle transcend not only disciplinary but also geographic boundaries, with their impacts and implications touching every region and community of the world. The understanding and solution to these inherently global scientific and social problems requires integrated observations that cover all areas of the globe, international sharing and flow of data, and earth system science approaches. Contemporary education strategies recommend adopting an Earth system science approach for teaching the geosciences, employing new pedagogical techniques such as enquiry-based learning and hands-on activities. Needless to add, today's education and research enterprise depends heavily on easy to use, robust, flexible and scalable cyberinfrastructure, especially on the ready availability of quality data and appropriate tools to manipulate and integrate those data. Fortunately, rapid advances in computing, communication and information technologies have provided solutions that can are being applied to advance teaching, research, and service. The exponential growth in the use of the Internet in education and research, largely due to the advent of the World Wide Web, is well documented. On the other hand, how other technological and community trends have shaped the development and application of cyberinfrastructure, especially in the data services area, is less well understood. For example, the computing industry is converging on an approach called Web services that enables a standard and yet revolutionary way of building applications and methods to connect and exchange information over the Web. This new approach, based on XML - a widely accepted format for exchanging data and corresponding semantics over the Internet - enables applications, computer systems, and information processes to work together in fundamentally different ways. Likewise, the advent of digital libraries, grid computing platforms, interoperable frameworks, standards and protocols, open-source software, and community atmospheric models have been important drivers in shaping the use of a new generation of end-to-end cyberinfrastructure for solving some of the most challenging scientific and educational problems. In this talk, I will present an overview of the scientific, technological, and educational landscape, discuss recent developments in cyberinfrastructure, and Unidata's role in and vision for providing easy-to use, robust, end-to-end data services for solving geoscientific problems and advancing student learning.
ERIC Educational Resources Information Center
Sheekey, Arthur D.
1997-01-01
Discusses the networking of educational services for schools, homes, and communities. Highlights include equal access; the development of digital technologies; visions for electronic information services; the public sector; the private sector; creating learning communities; and future possibilities, including funding strategies. (LRW)
Leadership, Diversity and the Campus Community.
ERIC Educational Resources Information Center
Chahin, Jaime
To develop and implement diversity initiatives in the university community requires the effective implementation of initiatives in many areas. Diversity leaders should be cognizant of institutional values and attitudes and the vision espoused by the university's president. The diversity leader should inform the university community about…
Comparison of tests of accommodation for computer users.
Kolker, David; Hutchinson, Robert; Nilsen, Erik
2002-04-01
With the increased use of computers in the workplace and at home, optometrists are finding more patients presenting with symptoms of Computer Vision Syndrome. Among these symptomatic individuals, research supports that accommodative disorders are the most common vision finding. A prepresbyopic group (N= 30) and a presbyopic group (N = 30) were selected from a private practice. Assignment to a group was determined by age, accommodative amplitude, and near visual acuity with their distance prescription. Each subject was given a thorough vision and ocular health examination, then administered several nearpoint tests of accommodation at a computer working distance. All the tests produced similar results in the presbyopic group. For the prepresbyopic group, the tests yielded very different results. To effectively treat symptomatic VDT users, optometrists must assess the accommodative system along with the binocular and refractive status. For presbyopic patients, all nearpoint tests studied will yield virtually the same result. However, the method of testing accommodation, as well as the test stimulus presented, will yield significantly different responses for prepresbyopic patients. Previous research indicates that a majority of patients prefer the higher plus prescription yielded by the Gaussian image test.
Vision 20/20: Automation and advanced computing in clinical radiation oncology.
Moore, Kevin L; Kagadis, George C; McNutt, Todd R; Moiseenko, Vitali; Mutic, Sasa
2014-01-01
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.
An architecture for real-time vision processing
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong
1994-01-01
To study the feasibility of developing an architecture for real time vision processing, a task queue server and parallel algorithms for two vision operations were designed and implemented on an i860-based Mercury Computing System 860VS array processor. The proposed architecture treats each vision function as a task or set of tasks which may be recursively divided into subtasks and processed by multiple processors coordinated by a task queue server accessible by all processors. Each idle processor subsequently fetches a task and associated data from the task queue server for processing and posts the result to shared memory for later use. Load balancing can be carried out within the processing system without the requirement for a centralized controller. The author concludes that real time vision processing cannot be achieved without both sequential and parallel vision algorithms and a good parallel vision architecture.
Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip
2015-07-01
Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological datamore » can be incorporated by means of data fusion of the two sensors' output data. (authors)« less
System of error detection in the manufacture of garments using artificial vision
NASA Astrophysics Data System (ADS)
Moreno, J. J.; Aguila, A.; Partida, E.; Martinez, C. L.; Morales, O.; Tejeida, R.
2017-12-01
A computer vision system is implemented to detect errors in the cutting stage within the manufacturing process of garments in the textile industry. It provides solution to errors within the process that cannot be easily detected by any employee, in addition to significantly increase the speed of quality review. In the textile industry as in many others, quality control is required in manufactured products and this has been carried out manually by means of visual inspection by employees over the years. For this reason, the objective of this project is to design a quality control system using computer vision to identify errors in the cutting stage within the garment manufacturing process to increase the productivity of textile processes by reducing costs.
Farrell, Marie; Wallis, Nancy C; Evans, Marci Tyler
2007-01-01
American universities and nursing faculties, caught between the imperatives of community demand and university financial constraints, need to analyze their communities of interests' shared priorities for nursing education. This replication study's objective was to compare the priorities and attitudes of two nursing programs' communities of interest using appreciative inquiry (AI). The researchers used AI to conduct a qualitative, comparative analysis of data from two nursing programs. They used one-on-one and focus group interviews to examine stakeholders' views of the best of the nursing program's past, their vision and approaches to realizing the vision, and their roles in contributing to the vision they created. The researchers analyzed the qualitative data using a standardized codebook and content analysis. Respondents' priorities for both academic programs were similar, with the western respondents emphasizing nursing's contribution to quality care and the southern respondents emphasizing its leadership and commitment to diversity. Both identified the role of legislators and the community in partnering with nursing to secure funds for expansion. Both programs' respondents viewed nursing as a major part of the university and considered their role as supporters of the university's academic and financial goals. The two nursing programs appeared to harness external and internal support in their respective communities. While some priorities differed between the two nursing programs, respondents were aware of the ripple effect of decreased funding for nursing education on the delivery of nursing services to the community. Differences among the undergraduate and graduate students, which reflect a nursing program's student mix, underscore the priorities that nursing programs must emphasize.
Kirkwood Community College: A Leader in Turbulent Times
ERIC Educational Resources Information Center
Root, Cynthia
2005-01-01
With its global vision, community partners and cutting edge curriculum, Kirkwood Community College has become a leader in emergency preparedness and response training. The college is integrally involved with a variety of training consortia and entities including HMTRI (Hazardous Materials Training Research Institute), PETE (Partnership for…
Tinder Elementary: A Case Study of the Quest Network.
ERIC Educational Resources Information Center
Howley-Rowe, Caitlin
In 1996, Quest staff began working with teams from school communities in three West Virginia county school districts to invigorate efforts for continuous school improvement. This first learning community consisted of students, teachers, administrators, parents, and community members, who ultimately wrote individual school visions and improvement…
Tui'one, Vanessa; Tulua-Tata, Alisi; Hui, Brian; Tisnado, Diana M
Tongan-Americans face severe disparities in health including diabetes, cardiovascular disease, and cancer. Educational disparities also affect health opportunities and well-being, influencing health status and community capacity to address disparities. Few resources have been identified within the Tongan-American community to address these concerns. The Tongan American Health Professionals Association (TAHPA) was conceived to identify and develop health and health career resources for the Tongan community. Through TAHPA, the Tongan-American community is utilizing a community-empowerment approach to address disparities and well-being. TAHPA was formed in 2008 through the leadership of individuals with a vision of a healthier Tongan-American community. TAHPA's purpose was to inspire and empower the Tongan-American community by developing an organization of Tongan-American health care professionals and pre-professionals, celebrating their accomplishments, and providing resources and support for educational and career development. Founders gathered in small work groups in community settings to discuss health concerns, well-being and solutions. Key community members facilitated the process to establish goals and objectives. To date, 40 Tongan health professionals and pre-professionals have become members. TAHPA's vision and outreach processes have been developed. TAHPA's uniqueness and strength is that it is rooted in the community, created by the community to serve the community.
A Logical Basis In The Layered Computer Vision Systems Model
NASA Astrophysics Data System (ADS)
Tejwani, Y. J.
1986-03-01
In this paper a four layer computer vision system model is described. The model uses a finite memory scratch pad. In this model planar objects are defined as predicates. Predicates are relations on a k-tuple. The k-tuple consists of primitive points and relationship between primitive points. The relationship between points can be of the direct type or the indirect type. Entities are goals which are satisfied by a set of clauses. The grammar used to construct these clauses is examined.
Bio-Inspired Sensing and Imaging of Polarization Information in Nature
2008-05-04
polarization imaging,” Appl. Opt. 36, 150–155 (1997). 5. L. B. Wolff, “Polarization camera for computer vision with a beam splitter ,” J. Opt. Soc. Am. A...vision with a beam splitter ,” J. Opt. Soc. Am. A 11, 2935–2945 (1994). 2. L. B. Wolff and A. G. Andreou, “Polarization camera sensors,” Image Vis. Comput...group we have been developing various man-made, non -invasive imaging methodologies, sensing schemes, camera systems, and visualization and display
2007-06-01
management issues he encountered ruled out the Expanion as a viable option for thin-client computing in the Navy. An improvement in thin-client...44 Requirements to capabilities (2004). Retrieved April 29, 2007, from Vision Presence Power: A Program Guide to the U.S. Navy – 2004...Retrieved April 29, 2007, from Vision Presence Power: A Program Guide to the U.S. Navy – 2004 Edition, p. 128. Web site: http://www.chinfo.navy.mil
ERIC Educational Resources Information Center
Jenkins-Scott, Jackie
2008-01-01
When the author became president of Wheelock College in Boston in 2004, she asked the trustees and the entire campus community to engage in an innovative strategic planning and visioning process. The goal was to achieve consensus on a strategic vision for the future of Wheelock College by the end of her first year. This article discusses how…
Liberator or Occupier: Indigenous Allies Make the Difference
2004-05-26
role of indigenous resistance forces in this vision. This clear vision must be articulated to the international community , local populace and...Liberator or Occupier: Indigenous Allies make the difference. A Monograph By Major Duke C. Shienle United States Army School of...Liberator or Occupier: Indigenous Allies make the difference. Approved by: ______________________________________________ Monograph Director LTC (P
Playing to Your Strengths: Appreciative Inquiry in the Visioning Process
ERIC Educational Resources Information Center
Fifolt, Matthew; Stowe, Angela M.
2011-01-01
"Appreciative Inquiry" (AI) is a structured approach to visioning focused on reflection, introspection, and collaboration. Rooted in organizational behavior theory, AI was introduced in the early 1980s as a life-centric approach to human systems (Watkins and Mohr 2001). Since then, AI has been used widely within the business community;…
Fulfilling a European Vision through Flexible Learning and Choice
ERIC Educational Resources Information Center
Harris, Margaret S. G.
2012-01-01
This article considers the value of flexibility and free choice in learning, and examines the increasing recognition of the evolving and wide range of appropriate environments for learning, such as the workplace, the home, the community, and the virtual world. This "Lifeplace Learning" is compared to the requirements and visions of the…
Mar Ivanios: A Pedagogue of the Disenfranchised
ERIC Educational Resources Information Center
Samuel, Francis A.
2010-01-01
Archbishop Mar Ivanios (1882-1953) was a visionary and his educational vision has relevance for today. He emancipated the socially marginalized and disenfranchised people of his time through his educational vision and practice. This article is the story of a small community of Christians and their leader who made a difference in their society.…
How Small Schools Grew Up and Got Serious (but Didn't Lose Their Spunk)
ERIC Educational Resources Information Center
Oxley, Diana; Luers, Katie Whitney
2011-01-01
After providing technical assistance to the federal Smaller Learning Community Program grantees, the authors developed five lessons for successful programs: 1) A strong vision of improved instruction needs to drive high school reorganization; 2) A strong vision of improved instruction focuses on strengthening the instructional core; 3)…
Two-Eyed Seeing into Environmental Education: Revealing Its "Natural" Readiness to Indigenize
ERIC Educational Resources Information Center
McKeon, Margaret
2012-01-01
Recent visions for environmental education now include a foundational acknowledgement that the well-being of humans and the environment are inseparable. This vision of environmental education, with a focus on interconnectedness as well as concepts of transformation, holism, caring, and responsibility, rooted in experiences of nature, community,…
CareerTech VISION 2012--Transforming CTE Together
ERIC Educational Resources Information Center
Bray, Janet B.
2012-01-01
As the leader in career and technical education (CTE), the Association for Career and Technical Education (ACTE) understands the ongoing challenges faced by the CTE community. That is why ACTE has created CareerTech VISION 2012, a bold and visionary event that addresses the evolving needs of the global society and meets all individual and…
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1992-01-01
The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Robot computer problem solving system
NASA Technical Reports Server (NTRS)
Merriam, E. W.; Becker, J. D.
1973-01-01
A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.
Community screening for visual impairment in older people.
Clarke, Emily L; Evans, Jennifer R; Smeeth, Liam
2018-02-20
Visual problems in older people are common and frequently under-reported. The effects of poor vision in older people are wide reaching and include falls, confusion and reduced quality of life. Much of the visual impairment in older ages can be treated (e.g. cataract surgery, correction of refractive error). Vision screening may therefore reduce the number of older people living with sight loss. The objective of this review was to assess the effects on vision of community vision screening of older people for visual impairment. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2017, Issue 10); Ovid MEDLINE; Ovid Embase; the ISRCTN registry; ClinicalTrials.gov and the ICTRP. The date of the search was 23 November 2017. We included randomised controlled trials (RCTs) that compared vision screening alone or as part of a multi-component screening package as compared to no vision screening or standard care, on the vision of people aged 65 years or over in a community setting. We included trials that used self-reported visual problems or visual acuity testing as the screening tool. We used standard methods expected by Cochrane. We graded the certainty of the evidence using GRADE. Visual outcome data were available for 10,608 people in 10 trials. Four trials took place in the UK, two in Australia, two in the United States and two in the Netherlands. Length of follow-up ranged from one to five years. Three of these studies were cluster-randomised trials whereby general practitioners or family physicians were randomly allocated to undertake vision screening or no vision screening. All studies were funded by government agencies. Overall we judged the studies to be at low risk of bias and only downgraded the certainty of the evidence (GRADE) for imprecision.Seven trials compared vision screening as part of a multi-component screening versus no screening. Six of these studies used self-reported vision as both screening tool and outcome measure, but did not directly measure vision. One study used a combination of self-reported vision and visual acuity measurement: participants reporting vision problems at screening were treated by the attending doctor, referred to an eye care specialist or given information about resources that were available to assist with poor vision. There was a similar risk of "not seeing well" at follow-up in people screened compared with people not screened in meta-analysis of six studies (risk ratio (RR) 1.05, 95% confidence interval (CI) 0.97 to 1.14, 4522 participants high-certainty evidence). One trial reported "improvement in vision" and this occurred slightly less frequently in the screened group (RR 0.85, 95% CI 0.52 to 1.40, 230 participants, moderate-certainty evidence).Two trials compared vision screening (visual acuity testing) alone with no vision screening. In one study, distance visual acuity was similar in the two groups at follow-up (mean difference (MD) 0.02 logMAR, 95% CI -0.02 to 0.05, 532 participants, high-certainty evidence). There was also little difference in near acuity (MD 0.02 logMAR, 95% CI -0.03 to 0.07, 532 participants, high-certainty evidence). There was no evidence of any important difference in quality of life (MD -0.06 National Eye Institute 25-item visual function questionnaire (VFQ-25) score adjusted for baseline VFQ-25 score, 95% CI -2.3 to 1.1, 532 participants, high-certainty evidence). The other study could not be included in the data analysis as the number of participants in each of the arms at follow-up could not be determined. However the authors stated that there was no significant difference in mean visual acuity in participants who had visual acuity assessed at baseline (39 letters) as compared to those who did not have their visual acuity assessed (35 letters, P = 0.25, 121 participants).One trial compared a detailed health assessment including measurement of visual acuity (intervention) with a brief health assessment including one question about vision (standard care). People given the detailed health assessment had a similar risk of visual impairment (visual acuity worse than 6/18 in either eye) at follow-up compared with people given the brief assessment (RR 1.07, 95% CI 0.84 to 1.36, 1807 participants, moderate-certainty evidence). The mean composite score of the VFQ-25 was 86.0 in the group that underwent visual acuity screening compared with 85.6 in the standard care group, a difference of 0.40 (95% CI -1.70 to 2.50, 1807 participants, high-certainty evidence). The evidence from RCTs undertaken to date does not support vision screening for older people living independently in a community setting, whether in isolation or as part of a multi-component screening package. This is true for screening programmes involving questions about visual problems, or direct measurements of visual acuity.The most likely reason for this negative review is that the populations within the trials often did not take up the offered intervention as a result of the vision screening and large proportions of those who did not have vision screening appeared to seek their own intervention. Also, trials that use questions about vision have a lower sensitivity and specificity than formal visual acuity testing. Given the importance of visual impairment among older people, further research into strategies to improve vision of older people is needed. The effectiveness of an optimised primary care-based screening intervention that overcomes possible factors contributing to the observed lack of benefit in trials to date warrants assessment; trials should consider including more dependent participants, rather than those living independently in the community.
Method of mobile robot indoor navigation by artificial landmarks with use of computer vision
NASA Astrophysics Data System (ADS)
Glibin, E. S.; Shevtsov, A. A.; Enik, O. A.
2018-05-01
The article describes an algorithm of the mobile robot indoor navigation based on the use of visual odometry. The results of the experiment identifying calculation errors in the distance traveled on a slip are presented. It is shown that the use of computer vision allows one to correct erroneous coordinates of the robot with the help of artificial landmarks. The control system utilizing the proposed method has been realized on the basis of Arduino Mego 2560 controller and a single-board computer Raspberry Pi 3. The results of the experiment on the mobile robot navigation with the use of this control system are presented.
ERIC Educational Resources Information Center
Hernandez, John; Hernández, Ignacio
2014-01-01
The unique nature and mission of community colleges directly shapes the role and function of a senior student affairs officer (SSAO). Broadly, the community college mission is shaped by a vision of fulfilling several commitments to local communities. This includes admitting all applicants through an open access admissions policy and providing…
Community and Technical Colleges at a Glance. Washington's Community and Technical Colleges
ERIC Educational Resources Information Center
Washington State Board for Community and Technical Colleges, 2015
2015-01-01
The vision of Washington State Board for Community and Technical Colleges is to build strong communities, individuals and families, and achieve a greater global competitiveness and prosperity for the state and its economy by raising the knowledge and skills of the state's residents. The most urgent mission of the Washington State Board for…
The Interdependence of Computers, Robots, and People.
ERIC Educational Resources Information Center
Ludden, Laverne; And Others
Computers and robots are becoming increasingly more advanced, with smaller and cheaper computers now doing jobs once reserved for huge multimillion dollar computers and with robots performing feats such as painting cars and using television cameras to simulate vision as they perform factory tasks. Technicians expect computers to become even more…
Constructing an Educational Mars Simulation
NASA Technical Reports Server (NTRS)
Henke, Stephen A.
2004-01-01
January 14th 2004, President George Bush announces his plans to catalyst the space program into a new era of space exploration and discovery. His vision encompasses a robotics program to explore our solar system, a return to the moon, the human exploration of Mars, and to promote international prosperity towards our endeavors. We at NASA now have the task of constructing this vision in a very real timeframe. I have been chosen to begin phase 1 of making this vision a reality. I will be working on creating an Educational Mars Simulation of human exploration of Mars to stimulate interest and involvement with the project from investors and the community. GRC s Computer Services Division (CSD) in collaboration with the Office of Education Programs will be designing models, constructing terrain, and programming this simulation to create a realistic portrayal of human exploration on mars. With recent and past technological breakthroughs in computing, my primary goal can be accomplished with only the aid of 3-4 software packages. Lightwave 3D is the modeling package we have selected to use for the creation of our digital objects. This includes a Mars pressurized rover, rover cockpit, landscape/terrain, and habitat. Once we have the models completed they need textured so Photoshop and Macromedia Fireworks are handy for bringing these objects to life. Before directly importing all of this data into a simulation environment, it is necessary to first render a stunning animation of the desired final product. This animation with represent what we hope to capture out of the simulation and it will include all of the accessories like ray-tracing, fog effects, shadows, anti-aliasing, particle effects, volumetric lighting, and lens flares. Adobe Premier will more than likely be used for video editing and adding ambient noises and music. Lastly, V-Tree is the real-time 3D graphics engine which will facilitate our realistic simulation. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
1972-01-01
A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.
Reading Digital with Low Vision
Legge, Gordon E.
2017-01-01
Reading difficulty is a major consequence of vision loss for more than four million Americans with low vision. Difficulty in accessing print imposes obstacles to education, employment, social interaction and recreation. In recent years, research in vision science has made major strides in understanding the impact of low vision on reading, and the dependence of reading performance on text properties. The ongoing transition to the production and distribution of digital documents brings about new opportunities for people with visual impairment. Digital documents on computers and mobile devices permit customization of print size, spacing, font style, contrast polarity and page layout to optimize reading displays for people with low vision. As a result, we now have unprecedented opportunities to adapt text format to meet the needs of visually impaired readers. PMID:29242668
Medical informatics and telemedicine: A vision
NASA Technical Reports Server (NTRS)
Clemmer, Terry P.
1991-01-01
The goal of medical informatics is to improve care. This requires the commitment and harmonious collaboration between the computer scientists and clinicians and an integrated database. The vision described is how medical information systems are going to impact the way medical care is delivered in the future.
NASA Astrophysics Data System (ADS)
Di, Si; Lin, Hui; Du, Ruxu
2011-05-01
Displacement measurement of moving objects is one of the most important issues in the field of computer vision. This paper introduces a new binocular vision system (BVS) based on micro-electro-mechanical system (MEMS) technology. The eyes of the system are two microlenses fabricated on a substrate by MEMS technology. The imaging results of two microlenses are collected by one complementary metal-oxide-semiconductor (CMOS) array. An algorithm is developed for computing the displacement. Experimental results show that as long as the object is moving in two-dimensional (2D) space, the system can effectively estimate the 2D displacement without camera calibration. It is also shown that the average error of the displacement measurement is about 3.5% at different object distances ranging from 10 cm to 35 cm. Because of its low cost, small size and simple setting, this new method is particularly suitable for 2D displacement measurement applications such as vision-based electronics assembly and biomedical cell culture.
Non-Boolean computing with nanomagnets for computer vision applications
NASA Astrophysics Data System (ADS)
Bhanja, Sanjukta; Karunaratne, D. K.; Panchumarthy, Ravi; Rajaram, Srinath; Sarkar, Sudeep
2016-02-01
The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.
Leadership, Engagement, and the Small Liberal Arts College: Albion College and the Smart Community.
ERIC Educational Resources Information Center
Mitchell, Peter T.; Levine, Myron A.
2001-01-01
Describes the development of a new transformational vision for Albion College in Michigan, which led to a community envisioning process off campus. The result was a new city-college partnership designed to promote the development of the city of Albion as "The Smart Community." (EV)
Beyond Academics: Challenging Issues Facing Community College Non-Academic Support Services
ERIC Educational Resources Information Center
Mitchell, Judith Lynn
2012-01-01
This research focused on identifying and exploring the significant current and emerging community college non-academic support service issues. These auxiliary services, not unlike academic or student affairs, support the community college mission and vision as well as students' academic success. Since December 2007, Americans have been…
Hearld, Larry R; Alexander, Jeffrey A
2014-03-01
Multi-sectoral community health care alliances are organizations that bring together individuals and organizations from different industry sectors to work collaboratively on improving the health and health care in local communities. Long-term success and sustainability of alliances are dependent on their ability to galvanize participants to take action within their 'home' organizations and institutionalize the vision, goals, and programs within participating organizations and the broader community. The purpose of this study was to investigate two mechanisms by which alliance leadership and management processes may promote such changes within organizations participating in alliances. The findings of the study suggest that, despite modest levels of change undertaken by participating organizations, more positive perceptions of alliance leadership, decision making, and conflict management were associated with a greater likelihood of participating organizations making changes as a result of their participation in the alliance, in part by promoting greater vision, mission, and strategy agreement and higher levels of perceived value. Leadership processes had a stronger relationship with change within participating organizations than decision-making style and conflict management processes. Open-ended responses by participants indicated that participating organizations most often incorporated new measures or goals into their existing portfolio of strategic plans and activities in response to alliance participation.
Public health policy for preventing violence.
Mercy, J A; Rosenberg, M L; Powell, K E; Broome, C V; Roper, W L
1993-01-01
The current epidemic of violence in America threatens not only our physical health but also the integrity of basic social institutions such as the family, the communities in which we live, and our health care system. Public health brings a new vision of how Americans can work together to prevent violence. This new vision places emphasis on preventing violence before it occurs, making science integral to identifying effective policies and programs, and integrating the efforts of diverse scientific disciplines, organizations, and communities. A sustained effort at all levels of society will be required to successfully address this complex and deeply rooted problem.
Photogrammetry on glaciers: Old and new knowledge
NASA Astrophysics Data System (ADS)
Pfeffer, W. T.; Welty, E.; O'Neel, S.
2014-12-01
In the past few decades terrestrial photogrammetry has become a widely used tool for glaciological research, brought about in part by the proliferation of high-quality, low-cost digital cameras, dramatic increases in image-processing power of computers, and very innovative progress in image processing, much of which has come from computer vision research and from the computer gaming industry. At present, glaciologists have developed their capacity to gather images much further than their ability to process them. Many researchers have accumulated vast inventories of imagery, but have no efficient means to extract the data they desire from them. In many cases these are single-image time series where the processing limitation lies in the paucity of methods to obtain 3-dimension object space information from measurements in the 2-dimensional image space; in other cases camera pairs have been operated but no automated means is in hand for conventional stereometric analysis of many thousands of image pairs. Often the processing task is further complicated by weak camera geometry or ground control distribution, either of which will compromise the quality of 3-dimensional object space solutions. Solutions exist for many of these problems, found sometimes among the latest computer vision results, and sometimes buried in decades-old pre-digital terrestrial photogrammetric literature. Other problems, particularly those arising from poorly constrained or underdetermined camera and ground control geometry, may be unsolvable. Small-scale, ground-based photography and photogrammetry of glaciers has grown over the past few decades in an organic and disorganized fashion, with much duplication of effort and little coordination or sharing of knowledge among researchers. Given the utility of terrestrial photogrammetry, its low cost (if properly developed and implemented), and the substantial value of the information to be had from it, some further effort to share knowledge and methods would be a great benefit for the community. We consider some of the main problems to be solved, and aspects of how optimal knowledge sharing might be accomplished.
Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Fisher, W.; Yoksas, T.
2014-12-01
Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high student expectations. These changes are upending traditional approaches to accessing and using data and software. It is clear that Unidata's products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our initial efforts to deploy a subset of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.
Gangamma, M P; Poonam; Rajagopala, Manjusha
2010-04-01
American Optometric Association (AOA) defines computer vision syndrome (CVS) as "Complex of eye and vision problems related to near work, which are experienced during or related to computer use". Most studies indicate that Video Display Terminal (VDT) operators report more eye related problems than non-VDT office workers. The causes for the inefficiencies and the visual symptoms are a combination of individual visual problems and poor office ergonomics. In this clinical study on "CVS", 151 patients were registered, out of whom 141 completed the treatment. In Group A, 45 patients had been prescribed Triphala eye drops; in Group B, 53 patients had been prescribed the Triphala eye drops and SaptamritaLauha tablets internally, and in Group C, 43 patients had been prescribed the placebo eye drops and placebo tablets. In total, marked improvement was observed in 48.89, 54.71 and 06.98% patients in groups A, B and C, respectively.
NASA Astrophysics Data System (ADS)
Fuchs, Thomas J.; Thompson, David R.; Bue, Brian D.; Castillo-Rogez, Julie; Chien, Steve A.; Gharibian, Dero; Wagstaff, Kiri L.
2015-10-01
Spacecraft autonomy is crucial to increase the science return of optical remote sensing observations at distant primitive bodies. To date, most small bodies exploration has involved short timescale flybys that execute prescripted data collection sequences. Light time delay means that the spacecraft must operate completely autonomously without direct control from the ground, but in most cases the physical properties and morphologies of prospective targets are unknown before the flyby. Surface features of interest are highly localized, and successful observations must account for geometry and illumination constraints. Under these circumstances onboard computer vision can improve science yield by responding immediately to collected imagery. It can reacquire bad data or identify features of opportunity for additional targeted measurements. We present a comprehensive framework for onboard computer vision for flyby missions at small bodies. We introduce novel algorithms for target tracking, target segmentation, surface feature detection, and anomaly detection. The performance and generalization power are evaluated in detail using expert annotations on data sets from previous encounters with primitive bodies.
Three-camera stereo vision for intelligent transportation systems
NASA Astrophysics Data System (ADS)
Bergendahl, Jason; Masaki, Ichiro; Horn, Berthold K. P.
1997-02-01
A major obstacle in the application of stereo vision to intelligent transportation system is high computational cost. In this paper, a PC based three-camera stereo vision system constructed with off-the-shelf components is described. The system serves as a tool for developing and testing robust algorithms which approach real-time performance. We present an edge based, subpixel stereo algorithm which is adapted to permit accurate distance measurements to objects in the field of view using a compact camera assembly. Once computed, the 3D scene information may be directly applied to a number of in-vehicle applications, such as adaptive cruise control, obstacle detection, and lane tracking. Moreover, since the largest computational costs is incurred in generating the 3D scene information, multiple applications that leverage this information can be implemented in a single system with minimal cost. On-road applications, such as vehicle counting and incident detection, are also possible. Preliminary in-vehicle road trial results are presented.
Predicting pork loin intramuscular fat using computer vision system.
Liu, J-H; Sun, X; Young, J M; Bachmeier, L A; Newman, D J
2018-09-01
The objective of this study was to investigate the ability of computer vision system to predict pork intramuscular fat percentage (IMF%). Center-cut loin samples (n = 85) were trimmed of subcutaneous fat and connective tissue. Images were acquired and pixels were segregated to estimate image IMF% and 18 image color features for each image. Subjective IMF% was determined by a trained grader. Ether extract IMF% was calculated using ether extract method. Image color features and image IMF% were used as predictors for stepwise regression and support vector machine models. Results showed that subjective IMF% had a correlation of 0.81 with ether extract IMF% while the image IMF% had a 0.66 correlation with ether extract IMF%. Accuracy rates for regression models were 0.63 for stepwise and 0.75 for support vector machine. Although subjective IMF% has shown to have better prediction, results from computer vision system demonstrates the potential of being used as a tool in predicting pork IMF% in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
Selective cultivation and rapid detection of Staphylococcus aureus by computer vision.
Wang, Yong; Yin, Yongguang; Zhang, Chaonan
2014-03-01
In this paper, we developed a selective growth medium and a more rapid detection method based on computer vision for selective isolation and identification of Staphylococcus aureus from foods. The selective medium consisted of tryptic soy broth basal medium, 3 inhibitors (NaCl, K2 TeO3 , and phenethyl alcohol), and 2 accelerators (sodium pyruvate and glycine). After 4 h of selective cultivation, bacterial detection was accomplished using computer vision. The total analysis time was 5 h. Compared to the Baird-Parker plate count method, which requires 4 to 5 d, this new detection method offers great time savings. Moreover, our novel method had a correlation coefficient of greater than 0.998 when compared with the Baird-Parker plate count method. The detection range for S. aureus was 10 to 10(7) CFU/mL. Our new, rapid detection method for microorganisms in foods has great potential for routine food safety control and microbiological detection applications. © 2014 Institute of Food Technologists®
InPRO: Automated Indoor Construction Progress Monitoring Using Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Hamledari, Hesam
In this research, an envisioned automated intelligent robotic solution for automated indoor data collection and inspection that employs a series of unmanned aerial vehicles (UAV), entitled "InPRO", is presented. InPRO consists of four stages, namely: 1) automated path planning; 2) autonomous UAV-based indoor inspection; 3) automated computer vision-based assessment of progress; and, 4) automated updating of 4D building information models (BIM). The works presented in this thesis address the third stage of InPRO. A series of computer vision-based methods that automate the assessment of construction progress using images captured at indoor sites are introduced. The proposed methods employ computer vision and machine learning techniques to detect the components of under-construction indoor partitions. In particular, framing (studs), insulation, electrical outlets, and different states of drywall sheets (installing, plastering, and painting) are automatically detected using digital images. High accuracy rates, real-time performance, and operation without a priori information are indicators of the methods' promising performance.
Computer vision uncovers predictors of physical urban change.
Naik, Nikhil; Kominers, Scott Duke; Raskar, Ramesh; Glaeser, Edward L; Hidalgo, César A
2017-07-18
Which neighborhoods experience physical improvements? In this paper, we introduce a computer vision method to measure changes in the physical appearances of neighborhoods from time-series street-level imagery. We connect changes in the physical appearance of five US cities with economic and demographic data and find three factors that predict neighborhood improvement. First, neighborhoods that are densely populated by college-educated adults are more likely to experience physical improvements-an observation that is compatible with the economic literature linking human capital and local success. Second, neighborhoods with better initial appearances experience, on average, larger positive improvements-an observation that is consistent with "tipping" theories of urban change. Third, neighborhood improvement correlates positively with physical proximity to the central business district and to other physically attractive neighborhoods-an observation that is consistent with the "invasion" theories of urban sociology. Together, our results provide support for three classical theories of urban change and illustrate the value of using computer vision methods and street-level imagery to understand the physical dynamics of cities.
Computer vision uncovers predictors of physical urban change
Naik, Nikhil; Kominers, Scott Duke; Raskar, Ramesh; Glaeser, Edward L.; Hidalgo, César A.
2017-01-01
Which neighborhoods experience physical improvements? In this paper, we introduce a computer vision method to measure changes in the physical appearances of neighborhoods from time-series street-level imagery. We connect changes in the physical appearance of five US cities with economic and demographic data and find three factors that predict neighborhood improvement. First, neighborhoods that are densely populated by college-educated adults are more likely to experience physical improvements—an observation that is compatible with the economic literature linking human capital and local success. Second, neighborhoods with better initial appearances experience, on average, larger positive improvements—an observation that is consistent with “tipping” theories of urban change. Third, neighborhood improvement correlates positively with physical proximity to the central business district and to other physically attractive neighborhoods—an observation that is consistent with the “invasion” theories of urban sociology. Together, our results provide support for three classical theories of urban change and illustrate the value of using computer vision methods and street-level imagery to understand the physical dynamics of cities. PMID:28684401
Facial Performance Transfer via Deformable Models and Parametric Correspondence.
Asthana, Akshay; de la Hunty, Miles; Dhall, Abhinav; Goecke, Roland
2012-09-01
The issue of transferring facial performance from one person's face to another's has been an area of interest for the movie industry and the computer graphics community for quite some time. In recent years, deformable face models, such as the Active Appearance Model (AAM), have made it possible to track and synthesize faces in real time. Not surprisingly, deformable face model-based approaches for facial performance transfer have gained tremendous interest in the computer vision and graphics community. In this paper, we focus on the problem of real-time facial performance transfer using the AAM framework. We propose a novel approach of learning the mapping between the parameters of two completely independent AAMs, using them to facilitate the facial performance transfer in a more realistic manner than previous approaches. The main advantage of modeling this parametric correspondence is that it allows a "meaningful" transfer of both the nonrigid shape and texture across faces irrespective of the speakers' gender, shape, and size of the faces, and illumination conditions. We explore linear and nonlinear methods for modeling the parametric correspondence between the AAMs and show that the sparse linear regression method performs the best. Moreover, we show the utility of the proposed framework for a cross-language facial performance transfer that is an area of interest for the movie dubbing industry.
A convolutional neural network neutrino event classifier
Aurisano, A.; Radovic, A.; Rocco, D.; ...
2016-09-01
Here, convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology withoutmore » the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.« less
A convolutional neural network neutrino event classifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aurisano, A.; Radovic, A.; Rocco, D.
Here, convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology withoutmore » the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.« less
2013 Progress Report -- DOE Joint Genome Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-11-01
In October 2012, we introduced a 10-Year Strategic Vision [http://bit.ly/JGI-Vision] for the Institute. A central focus of this Strategic Vision is to bridge the gap between sequenced genomes and an understanding of biological functions at the organism and ecosystem level. This involves the continued massive-scale generation of sequence data, complemented by orthogonal new capabilities to functionally annotate these large sequence data sets. Our Strategic Vision lays out a path to guide our decisions and ensure that the evolving set of experimental and computational capabilities available to DOE JGI users will continue to enable groundbreaking science.
Dynamic programming and graph algorithms in computer vision.
Felzenszwalb, Pedro F; Zabih, Ramin
2011-04-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting since, by carefully exploiting problem structure, they often provide nontrivial guarantees concerning solution quality. In this paper, we review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo, the mid-level problem of interactive object segmentation, and the high-level problem of model-based recognition.
Vision 20/20: Automation and advanced computing in clinical radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali; Kagadis, George C.
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authorsmore » contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.« less
Vision 20/20: Automation and advanced computing in clinical radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali; Kagadis, George C.
2014-01-15
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authorsmore » contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.« less
"And They Lived Happily Ever after": Community Music and Higher Education?
ERIC Educational Resources Information Center
Coffman, Don D.
2011-01-01
This article argues that community music and higher education have sufficient shared visions to overcome past philosophical differences. Each party brings valuable contributions in what some speculate is only a "marriage of convenience".
An Asset-Based Approach to Tribal Community Energy Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Rachael A.; Martino, Anthony; Begay, Sandra K.
Community energy planning is a vital component of successful energy resource development and project implementation. Planning can help tribes develop a shared vision and strategies to accomplish their energy goals. This paper explores the benefits of an asset-based approach to tribal community energy planning. While a framework for community energy planning and federal funding already exists, some areas of difficulty in the planning cycle have been identified. This paper focuses on developing a planning framework that offsets those challenges. The asset-based framework described here takes inventory of a tribe’s capital assets, such as: land capital, human capital, financial capital, andmore » political capital. Such an analysis evaluates how being rich in a specific type of capital can offer a tribe unique advantages in implementing their energy vision. Finally, a tribal case study demonstrates the practical application of an asset-based framework.« less
Gillis, V
1993-04-01
A renewal of vision is necessary today as healthcare shifts from an acute care to a community health focus. In regions where there are multiple sponsors, they can foster this renewed vision by forming sponsorship networks. A sponsorship network begins when sponsors in a region come together to discuss collaboration and explore ways to motivate the leaders of their institutions to better meet their community's healthcare needs. A sponsorship network would focus on community health through more effective resource use and integration of resources among providers. Such a network encourages providers to assess community needs and collaborate to meet them, provides criteria for maintaining quality and mission, and explores sponsorship responsibilities within institutions and beyond. The collaborative process involves five stages: preplanning, foundation building, problem setting, implementing, and assessing. A group of sponsors in St. Louis provides an example of how sponsors can initiate such a process.
Roberts, Kasey; Park, Thomas; Elder, Nancy C; Regan, Saundra; Theodore, Sarah N; Mitchell, Monica J; Johnson, Yolanda N
2015-11-01
Urban Health Project (UHP) is a mission and vision-driven summer internship at the University of Cincinnati College of Medicine that places first-year medical students at local community agencies that work with underserved populations. At the completion of their internship, students write Final Intern Reflections (FIRs). Final Intern Reflections written from 1987 to 2012 were read and coded to both predetermined categories derived from the UHP mission and vision statements and new categories created from the data themselves. Comments relating to UHP's mission and vision were found in 47% and 36% of FIRs, respectively. Positive experiences outweighed negative by a factor of eight. Interns reported the following benefits: educational (53%), valuable (25%), rewarding (25%), new (10%), unique (6%), and life-changing (5%). Urban Health Project is successful in providing medical students with enriching experiences with underserved populations that have the potential to change their understanding of vulnerable populations.
Vector disparity sensor with vergence control for active vision systems.
Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo
2012-01-01
This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.
Computer vision based nacre thickness measurement of Tahitian pearls
NASA Astrophysics Data System (ADS)
Loesdau, Martin; Chabrier, Sébastien; Gabillon, Alban
2017-03-01
The Tahitian Pearl is the most valuable export product of French Polynesia contributing with over 61 million Euros to more than 50% of the total export income. To maintain its excellent reputation on the international market, an obligatory quality control for every pearl deemed for exportation has been established by the local government. One of the controlled quality parameters is the pearls nacre thickness. The evaluation is currently done manually by experts that are visually analyzing X-ray images of the pearls. In this article, a computer vision based approach to automate this procedure is presented. Even though computer vision based approaches for pearl nacre thickness measurement exist in the literature, the very specific features of the Tahitian pearl, namely the large shape variety and the occurrence of cavities, have so far not been considered. The presented work closes the. Our method consists of segmenting the pearl from X-ray images with a model-based approach, segmenting the pearls nucleus with an own developed heuristic circle detection and segmenting possible cavities with region growing. Out of the obtained boundaries, the 2-dimensional nacre thickness profile can be calculated. A certainty measurement to consider imaging and segmentation imprecisions is included in the procedure. The proposed algorithms are tested on 298 manually evaluated Tahitian pearls, showing that it is generally possible to automatically evaluate the nacre thickness of Tahitian pearls with computer vision. Furthermore the results show that the automatic measurement is more precise and faster than the manual one.
Computer vision cracks the leaf code
Wilf, Peter; Zhang, Shengping; Chikkerur, Sharat; Little, Stefan A.; Wing, Scott L.; Serre, Thomas
2016-01-01
Understanding the extremely variable, complex shape and venation characters of angiosperm leaves is one of the most challenging problems in botany. Machine learning offers opportunities to analyze large numbers of specimens, to discover novel leaf features of angiosperm clades that may have phylogenetic significance, and to use those characters to classify unknowns. Previous computer vision approaches have primarily focused on leaf identification at the species level. It remains an open question whether learning and classification are possible among major evolutionary groups such as families and orders, which usually contain hundreds to thousands of species each and exhibit many times the foliar variation of individual species. Here, we tested whether a computer vision algorithm could use a database of 7,597 leaf images from 2,001 genera to learn features of botanical families and orders, then classify novel images. The images are of cleared leaves, specimens that are chemically bleached, then stained to reveal venation. Machine learning was used to learn a codebook of visual elements representing leaf shape and venation patterns. The resulting automated system learned to classify images into families and orders with a success rate many times greater than chance. Of direct botanical interest, the responses of diagnostic features can be visualized on leaf images as heat maps, which are likely to prompt recognition and evolutionary interpretation of a wealth of novel morphological characters. With assistance from computer vision, leaves are poised to make numerous new contributions to systematic and paleobotanical studies. PMID:26951664
Vector Disparity Sensor with Vergence Control for Active Vision Systems
Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P.; Ros, Eduardo
2012-01-01
This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. PMID:22438737
Investigation of safety analysis methods using computer vision techniques
NASA Astrophysics Data System (ADS)
Shirazi, Mohammad Shokrolah; Morris, Brendan Tran
2017-09-01
This work investigates safety analysis methods using computer vision techniques. The vision-based tracking system is developed to provide the trajectory of road users including vehicles and pedestrians. Safety analysis methods are developed to estimate time to collision (TTC) and postencroachment time (PET) that are two important safety measurements. Corresponding algorithms are presented and their advantages and drawbacks are shown through their success in capturing the conflict events in real time. The performance of the tracking system is evaluated first, and probability density estimation of TTC and PET are shown for 1-h monitoring of a Las Vegas intersection. Finally, an idea of an intersection safety map is introduced, and TTC values of two different intersections are estimated for 1 day from 8:00 a.m. to 6:00 p.m.
Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Douglas; Greitzer, Frank L.
In his 1960 paper Man-Machine Symbiosis, Licklider predicted that human brains and computing machines will be coupled in a tight partnership that will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today. Today we are on the threshold of resurrecting the vision of symbiosis. While Licklider’s original vision suggested a co-equal relationship, here we discuss an updated vision, neo-symbiosis, in which the human holds a superordinate position in an intelligent human-computer collaborative environment. This paper was originally published as a journal article and is being publishedmore » as a chapter in an upcoming book series, Advances in Novel Approaches in Cognitive Informatics and Natural Intelligence.« less
Head pose estimation in computer vision: a survey.
Murphy-Chutorian, Erik; Trivedi, Mohan Manubhai
2009-04-01
The capacity to estimate the head pose of another person is a common human ability that presents a unique challenge for computer vision systems. Compared to face detection and recognition, which have been the primary foci of face-related vision research, identity-invariant head pose estimation has fewer rigorously evaluated systems or generic solutions. In this paper, we discuss the inherent difficulties in head pose estimation and present an organized survey describing the evolution of the field. Our discussion focuses on the advantages and disadvantages of each approach and spans 90 of the most innovative and characteristic papers that have been published on this topic. We compare these systems by focusing on their ability to estimate coarse and fine head pose, highlighting approaches that are well suited for unconstrained environments.
A Vision-Based Motion Sensor for Undergraduate Laboratories.
ERIC Educational Resources Information Center
Salumbides, Edcel John; Maristela, Joyce; Uy, Alfredson; Karremans, Kees
2002-01-01
Introduces an alternative method to determine the mechanics of a moving object that uses computer vision algorithms with a charge-coupled device (CCD) camera as a recording device. Presents two experiments, pendulum motion and terminal velocity, to compare results of the alternative and conventional methods. (YDS)
Smartphones as image processing systems for prosthetic vision.
Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Suaning, Gregg J
2013-01-01
The feasibility of implants for prosthetic vision has been demonstrated by research and commercial organizations. In most devices, an essential forerunner to the internal stimulation circuit is an external electronics solution for capturing, processing and relaying image information as well as extracting useful features from the scene surrounding the patient. The capabilities and multitude of image processing algorithms that can be performed by the device in real-time plays a major part in the final quality of the prosthetic vision. It is therefore optimal to use powerful hardware yet to avoid bulky, straining solutions. Recent publications have reported of portable single-board computers fast enough for computationally intensive image processing. Following the rapid evolution of commercial, ultra-portable ARM (Advanced RISC machine) mobile devices, the authors investigated the feasibility of modern smartphones running complex face detection as external processing devices for vision implants. The role of dedicated graphics processors in speeding up computation was evaluated while performing a demanding noise reduction algorithm (image denoising). The time required for face detection was found to decrease by 95% from 2.5 year old to recent devices. In denoising, graphics acceleration played a major role, speeding up denoising by a factor of 18. These results demonstrate that the technology has matured sufficiently to be considered as a valid external electronics platform for visual prosthetic research.
Fast ray-tracing of human eye optics on Graphics Processing Units.
Wei, Qi; Patkar, Saket; Pai, Dinesh K
2014-05-01
We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.
NASA Astrophysics Data System (ADS)
Battiti, Roberto
1990-01-01
This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from multiple-purpose modules. In the last part of the thesis a well known optimization method (the Broyden-Fletcher-Goldfarb-Shanno memoryless quasi -Newton method) is applied to simple classification problems and shown to be superior to the "error back-propagation" algorithm for numerical stability, automatic selection of parameters, and convergence properties.
NASA Astrophysics Data System (ADS)
Meitzler, Thomas J.
The field of computer vision interacts with fields such as psychology, vision research, machine vision, psychophysics, mathematics, physics, and computer science. The focus of this thesis is new algorithms and methods for the computation of the probability of detection (Pd) of a target in a cluttered scene. The scene can be either a natural visual scene such as one sees with the naked eye (visual), or, a scene displayed on a monitor with the help of infrared sensors. The relative clutter and the temperature difference between the target and background (DeltaT) are defined and then used to calculate a relative signal -to-clutter ratio (SCR) from which the Pd is calculated for a target in a cluttered scene. It is shown how this definition can include many previous definitions of clutter and (DeltaT). Next, fuzzy and neural -fuzzy techniques are used to calculate the Pd and it is shown how these methods can give results that have a good correlation with experiment. The experimental design for actually measuring the Pd of a target by observers is described. Finally, wavelets are applied to the calculation of clutter and it is shown how this new definition of clutter based on wavelets can be used to compute the Pd of a target.
NASA Technical Reports Server (NTRS)
Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.
1989-01-01
Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.
NASA Astrophysics Data System (ADS)
Santagati, C.; Inzerillo, L.; Di Paola, F.
2013-07-01
3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS), the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases) to large scale buildings for practitioner purpose.
NASA Astrophysics Data System (ADS)
Guo, Jie; Zhu, Chang`an
2016-01-01
The development of optics and computer technologies enables the application of the vision-based technique that uses digital cameras to the displacement measurement of large-scale structures. Compared with traditional contact measurements, vision-based technique allows for remote measurement, has a non-intrusive characteristic, and does not necessitate mass introduction. In this study, a high-speed camera system is developed to complete the displacement measurement in real time. The system consists of a high-speed camera and a notebook computer. The high-speed camera can capture images at a speed of hundreds of frames per second. To process the captured images in computer, the Lucas-Kanade template tracking algorithm in the field of computer vision is introduced. Additionally, a modified inverse compositional algorithm is proposed to reduce the computing time of the original algorithm and improve the efficiency further. The modified algorithm can rapidly accomplish one displacement extraction within 1 ms without having to install any pre-designed target panel onto the structures in advance. The accuracy and the efficiency of the system in the remote measurement of dynamic displacement are demonstrated in the experiments on motion platform and sound barrier on suspension viaduct. Experimental results show that the proposed algorithm can extract accurate displacement signal and accomplish the vibration measurement of large-scale structures.
Evaluation of tablet computers for visual function assessment.
Bodduluri, Lakshmi; Boon, Mei Ying; Dain, Stephen J
2017-04-01
Recent advances in technology and the increased use of tablet computers for mobile health applications such as vision testing necessitate an understanding of the behavior of the displays of such devices, to facilitate the reproduction of existing or the development of new vision assessment tests. The purpose of this study was to investigate the physical characteristics of one model of tablet computer (iPad mini Retina display) with regard to display consistency across a set of devices (15) and their potential application as clinical vision assessment tools. Once the tablet computer was switched on, it required about 13 min to reach luminance stability, while chromaticity remained constant. The luminance output of the device remained stable until a battery level of 5%. Luminance varied from center to peripheral locations of the display and with viewing angle, whereas the chromaticity did not vary. A minimal (1%) variation in luminance was observed due to temperature, and once again chromaticity remained constant. Also, these devices showed good temporal stability of luminance and chromaticity. All 15 tablet computers showed gamma functions approximating the standard gamma (2.20) and showed similar color gamut sizes, except for the blue primary, which displayed minimal variations. The physical characteristics across the 15 devices were similar and are known, thereby facilitating the use of this model of tablet computer as visual stimulus displays.
Apprenticeship 2000: Ontario Community Colleges' Vision for the 21st Century.
ERIC Educational Resources Information Center
Association of Colleges of Applied Arts and Technology of Ontario, North York.
In response to the Ministry of Education and Training Discussion Paper on Apprenticeship Reform, the Council of Presidents of the Colleges of Applied Arts and Technology of Ontario presented a new vision for apprenticeship in Ontario. The 21st century apprenticeship system aims to remove barriers and enable workers to successfully adjust and cope…
ERIC Educational Resources Information Center
Chief Justice Earl Warren Institute on Law and Social Policy, 2015
2015-01-01
"Degrees of Freedom" challenges California to include currently and formerly incarcerated students in the vision set by the state's 1964 Master Plan for Higher Education--a vision of college access for all, for the benefit of the entire state. A college education strengthens economies, changes lives and renews communities, and yet, for…
Mathvision: A Mobile Video Application for Math Teacher Noticing of Learning Progressions
ERIC Educational Resources Information Center
Lewis, Stephen T.; Chao, Theodore; Battista, Michael
2017-01-01
We report on the development and evaluation of MathVision, a mobile-application designed to develop Virtual Professional Learning Communities through asynchronous discussion about 2nd, 3rd, 4th, and 5th grade students' mathematical thinking. MathVision allows teachers to upload videos of problems solving sessions using Cognition Based Assessment…
Needs and Challenges of Seniors with Combined Hearing and Vision Loss
ERIC Educational Resources Information Center
McDonnall, Michele C.; Crudden, Adele; LeJeune, B. J.; Steverson, Anne; O'Donnell, Nancy
2016-01-01
Introduction: The purpose of this study was to identify the needs and challenges of seniors with dual sensory loss (combined hearing and vision loss) and to determine priorities for training family members, community service providers, and professionals who work with them. Methods: Individuals (N = 131) with dual sensory loss between the ages of…
Information from imagery: ISPRS scientific vision and research agenda
NASA Astrophysics Data System (ADS)
Chen, Jun; Dowman, Ian; Li, Songnian; Li, Zhilin; Madden, Marguerite; Mills, Jon; Paparoditis, Nicolas; Rottensteiner, Franz; Sester, Monika; Toth, Charles; Trinder, John; Heipke, Christian
2016-05-01
With the increased availability of very high-resolution satellite imagery, terrain based imaging and participatory sensing, inexpensive platforms, and advanced information and communication technologies, the application of imagery is now ubiquitous, playing an important role in many aspects of life and work today. As a leading organisation in this field, the International Society for Photogrammetry and Remote Sensing (ISPRS) has been devoted to effectively and efficiently obtaining and utilising information from imagery since its foundation in the year 1910. This paper examines the significant challenges currently facing ISPRS and its communities, such as providing high-quality information, enabling advanced geospatial computing, and supporting collaborative problem solving. The state-of-the-art in ISPRS related research and development is reviewed and the trends and topics for future work are identified. By providing an overarching scientific vision and research agenda, we hope to call on and mobilise all ISPRS scientists, practitioners and other stakeholders to continue improving our understanding and capacity on information from imagery and to deliver advanced geospatial knowledge that enables humankind to better deal with the challenges ahead, posed for example by global change, ubiquitous sensing, and a demand for real-time information generation.
Graph Matching: Relax at Your Own Risk.
Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo
2016-01-01
Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.
NASA Astrophysics Data System (ADS)
Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten
2014-03-01
Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.
A vision-based end-point control for a two-link flexible manipulator. M.S. Thesis
NASA Technical Reports Server (NTRS)
Obergfell, Klaus
1991-01-01
The measurement and control of the end-effector position of a large two-link flexible manipulator are investigated. The system implementation is described and an initial algorithm for static end-point positioning is discussed. Most existing robots are controlled through independent joint controllers, while the end-effector position is estimated from the joint positions using a kinematic relation. End-point position feedback can be used to compensate for uncertainty and structural deflections. Such feedback is especially important for flexible robots. Computer vision is utilized to obtain end-point position measurements. A look-and-move control structure alleviates the disadvantages of the slow and variable computer vision sampling frequency. This control structure consists of an inner joint-based loop and an outer vision-based loop. A static positioning algorithm was implemented and experimentally verified. This algorithm utilizes the manipulator Jacobian to transform a tip position error to a joint error. The joint error is then used to give a new reference input to the joint controller. The convergence of the algorithm is demonstrated experimentally under payload variation. A Landmark Tracking System (Dickerson, et al 1990) is used for vision-based end-point measurements. This system was modified and tested. A real-time control system was implemented on a PC and interfaced with the vision system and the robot.
Reaction time for processing visual stimulus in a computer-assisted rehabilitation environment.
Sanchez, Yerly; Pinzon, David; Zheng, Bin
2017-10-01
To examine the reaction time when human subjects process information presented in the visual channel under both a direct vision and a virtual rehabilitation environment when walking was performed. Visual stimulus included eight math problems displayed on the peripheral vision to seven healthy human subjects in a virtual rehabilitation training (computer-assisted rehabilitation environment (CAREN)) and a direct vision environment. Subjects were required to verbally report the results of these math calculations in a short period of time. Reaction time measured by Tobii Eye tracker and calculation accuracy were recorded and compared between the direct vision and virtual rehabilitation environment. Performance outcomes measured for both groups included reaction time, reading time, answering time and the verbal answer score. A significant difference between the groups was only found for the reaction time (p = .004). Participants had more difficulty recognizing the first equation of the virtual environment. Participants reaction time was faster in the direct vision environment. This reaction time delay should be kept in mind when designing skill training scenarios in virtual environments. This was a pilot project to a series of studies assessing cognition ability of stroke patients who are undertaking a rehabilitation program with a virtual training environment. Implications for rehabilitation Eye tracking is a reliable tool that can be employed in rehabilitation virtual environments. Reaction time changes between direct vision and virtual environment.
Kaur, Gurvinder; Koshy, Jacob; Thomas, Satish; Kapoor, Harpreet; Zachariah, Jiju George; Bedi, Sahiba
2016-04-01
Early detection and treatment of vision problems in children is imperative to meet the challenges of childhood blindness. Considering the problems of inequitable distribution of trained manpower and limited access of quality eye care services to majority of our population, innovative community based strategies like 'Teachers training in vision screening' need to be developed for effective utilization of the available human resources. To evaluate the effectiveness of introducing teachers as the first level vision screeners. Teacher training programs were conducted for school teachers to educate them about childhood ocular disorders and the importance of their early detection. Teachers from government and semi-government schools located in Ludhiana were given training in vision screening. These teachers then conducted vision screening of children in their schools. Subsequently an ophthalmology team visited these schools for re-evaluation of children identified with low vision. Refraction was performed for all children identified with refractive errors and spectacles were prescribed. Children requiring further evaluation were referred to the base hospital. The project was done in two phases. True positives, false positives, true negatives and false negatives were calculated for evaluation. In phase 1, teachers from 166 schools underwent training in vision screening. The teachers screened 30,205 children and reported eye problems in 4523 (14.97%) children. Subsequently, the ophthalmology team examined 4150 children and confirmed eye problems in 2137 children. Thus, the teachers were able to correctly identify eye problems (true positives) in 47.25% children. Also, only 13.69% children had to be examined by the ophthalmology team, thus reducing their work load. Similarly, in phase 2, 46.22% children were correctly identified to have eye problems (true positives) by the teachers. By random sampling, 95.65% children were correctly identified as normal (true negatives) by the teachers. Considering the high true negative rates and reasonably good true positive rates and the wider coverage provided by the program, vision screening in schools by teachers is an effective method of identifying children with low vision. This strategy is also valuable in reducing the workload of the eye care staff.
Implementing an International Consultation on Earth System Research Priorities Using Web 2.0 Tools
NASA Astrophysics Data System (ADS)
Goldfarb, L.; Yang, A.
2009-12-01
Leah Goldfarb, Paul Cutler, Andrew Yang*, Mustapha Mokrane, Jacinta Legg and Deliang Chen The scientific community has been engaged in developing an international strategy on Earth system research. The initial consultation in this “visioning” process focused on gathering suggestions for Earth system research priorities that are interdisciplinary and address the most pressing societal issues. It was implemented this through a website that utilized Web 2.0 capabilities. The website (http://www.icsu-visioning.org/) collected input from 15 July to 1 September 2009. This consultation was the first in which the international scientific community was asked to help shape the future of a research theme. The site attracted over 7000 visitors from 133 countries, more than 1000 of whom registered and took advantage of the site’s functionality to contribute research questions (~300 questions), comment on posts, and/or vote on questions. To facilitate analysis of results, the site captured a small set of voluntary information about each contributor and their contribution. A group of ~50 international experts were invited to analyze the inputs at a “Visioning Earth System Research” meeting held in September 2009. The outcome of this meeting—a prioritized list of research questions to be investigated over the next decade—was then posted on the visioning website for additional comment from the community through an online survey tool. In general, many lessons were learned in the development and implementation of this website, both in terms of the opportunities offered by Web 2.0 capabilities and the application of these capabilities. It is hoped that this process may serve as a model for other scientific communities. The International Council for Science (ICSU) in cooperation with the International Social Science Council (ISSC) is responsible for organizing this Earth system visioning process.
The loss and recovery of vertebrate vision examined in microplates.
Thorn, Robert J; Clift, Danielle E; Ojo, Oladele; Colwill, Ruth M; Creton, Robbert
2017-01-01
Regenerative medicine offers potentially ground-breaking treatments of blindness and low vision. However, as new methodologies are developed, a critical question will need to be addressed: how do we monitor in vivo for functional success? In the present study, we developed novel behavioral assays to examine vision in a vertebrate model system. In the assays, zebrafish larvae are imaged in multiwell or multilane plates while various red, green, blue, yellow or cyan objects are presented to the larvae on a computer screen. The assays were used to examine a loss of vision at 4 or 5 days post-fertilization and a gradual recovery of vision in subsequent days. The developed assays are the first to measure the loss and recovery of vertebrate vision in microplates and provide an efficient platform to evaluate novel treatments of visual impairment.
Technology for NASA's Planetary Science Vision 2050.
NASA Technical Reports Server (NTRS)
Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.
2017-01-01
NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.
Computer Vision Techniques for Transcatheter Intervention
Zhao, Feng; Roach, Matthew
2015-01-01
Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and the treatment of cardiovascular diseases. For example, transcatheter aortic valve implantation is an alternative to aortic valve replacement for the treatment of severe aortic stenosis, and transcatheter atrial fibrillation ablation is widely used for the treatment and the cure of atrial fibrillation. In addition, catheter-based intravascular ultrasound and optical coherence tomography imaging of coronary arteries provides important information about the coronary lumen, wall, and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial to the evaluation and the treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation and motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods. We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence, it is important to understand the application domain, clinical background, and imaging modality, so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on the background information of the transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area. PMID:27170893
Image segmentation for enhancing symbol recognition in prosthetic vision.
Horne, Lachlan; Barnes, Nick; McCarthy, Chris; He, Xuming
2012-01-01
Current and near-term implantable prosthetic vision systems offer the potential to restore some visual function, but suffer from poor resolution and dynamic range of induced phosphenes. This can make it difficult for users of prosthetic vision systems to identify symbolic information (such as signs) except in controlled conditions. Using image segmentation techniques from computer vision, we show it is possible to improve the clarity of such symbolic information for users of prosthetic vision implants in uncontrolled conditions. We use image segmentation to automatically divide a natural image into regions, and using a fixation point controlled by the user, select a region to phosphenize. This technique improves the apparent contrast and clarity of symbolic information over traditional phosphenization approaches.
Hyperbolic Harmonic Mapping for Surface Registration
Shi, Rui; Zeng, Wei; Su, Zhengyu; Jiang, Jian; Damasio, Hanna; Lu, Zhonglin; Wang, Yalin; Yau, Shing-Tung; Gu, Xianfeng
2016-01-01
Automatic computation of surface correspondence via harmonic map is an active research field in computer vision, computer graphics and computational geometry. It may help document and understand physical and biological phenomena and also has broad applications in biometrics, medical imaging and motion capture inducstries. Although numerous studies have been devoted to harmonic map research, limited progress has been made to compute a diffeomorphic harmonic map on general topology surfaces with landmark constraints. This work conquers this problem by changing the Riemannian metric on the target surface to a hyperbolic metric so that the harmonic mapping is guaranteed to be a diffeomorphism under landmark constraints. The computational algorithms are based on Ricci flow and nonlinear heat diffusion methods. The approach is general and robust. We employ our algorithm to study the constrained surface registration problem which applies to both computer vision and medical imaging applications. Experimental results demonstrate that, by changing the Riemannian metric, the registrations are always diffeomorphic and achieve relatively high performance when evaluated with some popular surface registration evaluation standards. PMID:27187948
Factors leading to the computer vision syndrome: an issue at the contemporary workplace.
Izquierdo, Juan C; García, Maribel; Buxó, Carmen; Izquierdo, Natalio J
2007-01-01
Vision and eye related problems are common among computer users, and have been collectively called the Computer Vision Syndrome (CVS). An observational study in order to identify the risk factors leading to the CVS was done. Twenty-eight participants answered a validated questionnaire, and had their workstations examined. The questionnaire evaluated personal, environmental, ergonomic factors, and physiologic response of computer users. The distance from the eye to the computers' monitor (A), the computers' monitor height (B), and visual axis height (C) were measured. The difference between B and C was calculated and labeled as D. Angles of gaze to the computer monitor were calculated using the formula: angle=tan-1(D/A). Angles were divided into two groups: participants with angles of gaze ranging from 0 degree to 13.9 degrees were included in Group 1; and participants gazing at angles larger than 14 degrees were included in Group 2. Statistical analysis of the evaluated variables was made. Computer users in both groups used more tear supplements (as part of the syndrome) than expected. This association was statistically significant (p < 0.10). Participants in Group 1 reported more pain than participants in Group 2. Associations between the CVS and other personal or ergonomic variables were not statistically significant. Our findings show that the most important factor leading to the syndrome is the angle of gaze at the computer monitor. Pain in computer users is diminished when gazing downwards at angles of 14 degrees or more. The CVS remains an under estimated and poorly understood issue at the workplace. The general public, health professionals, the government, and private industries need to be educated about the CVS.
Factors leading to the Computer Vision Syndrome: an issue at the contemporary workplace.
Izquierdo, Juan C; García, Maribel; Buxó, Carmen; Izquierdo, Natalio J
2004-01-01
Vision and eye related problems are common among computer users, and have been collectively called the Computer Vision Syndrome (CVS). An observational study in order to identify the risk factors leading to the CVS was done. Twenty-eight participants answered a validated questionnaire, and had their workstations examined. The questionnaire evaluated personal, environmental, ergonomic factors, and physiologic response of computer users. The distance from the eye to the computers' monitor (A), the computers' monitor height (B), and visual axis height (C) were measured. The difference between B and C was calculated and labeled as D. Angles of gaze to the computer monitor were calculated using the formula: angle=tan(-1)(D/ A). Angles were divided into two groups: participants with angles of gaze ranging from 0 degrees to 13.9 degrees were included in Group 1; and participants gazing at angles larger than 14 degrees were included in Group 2. Statistical analysis of the evaluated variables was made. Computer users in both groups used more tear supplements (as part of the syndrome) than expected. This association was statistically significant (p<0.10). Participants in Group 1 reported more pain than participants in Group 2. Associations between the CVS and other personal or ergonomic variables were not statistically significant. Our findings show that most important factor leading to the syndrome is the angle of gaze at the computer monitor. Pain in computer users is diminished when gazing downwards at angles of 14 degrees or more. The CVS remains an under estimated and poorly understood issue at the workplace. The general public, health professionals, the government, and private industries need to be educated about the CVS.
Building Collaborative Health Promotion Partnerships: The Jackson Heart Study
Addison, Clifton C.; Campbell Jenkins, Brenda W.; Odom, Darcel; Fortenberry, Marty; Wilson, Gregory; Young, Lavon; Antoine-LaVigne, Donna
2015-01-01
Building Collaborative Health Promotion Partnerships: The Jackson Heart Study. Background: Building a collaborative health promotion partnership that effectively employs principles of community-based participatory research (CBPR) involves many dimensions. To ensure that changes would be long-lasting, it is imperative that partnerships be configured to include groups of diverse community representatives who can develop a vision for long-term change. This project sought to enumerate processes used by the Jackson Heart Study (JHS) Community Outreach Center (CORC) to create strong, viable partnerships that produce lasting change. Methods: JHS CORC joined with community representatives to initiate programs that evolved into comprehensive strategies for addressing health disparities and the high prevalence of cardiovascular disease (CVD). This collaboration was made possible by first promoting an understanding of the need for combined effort, the desire to interact with other community partners, and the vision to establish an effective governance structure. Results: The partnership between JHS CORC and the community has empowered and inspired community members to provide leadership to other health promotion projects. Conclusion: Academic institutions must reach out to local community groups and together address local health issues that affect the community. When a community understands the need for change to respond to negative health conditions, formalizing this type of collaboration is a step in the right direction. PMID:26703681
Building Collaborative Health Promotion Partnerships: The Jackson Heart Study.
Addison, Clifton C; Campbell Jenkins, Brenda W; Odom, Darcel; Fortenberry, Marty; Wilson, Gregory; Young, Lavon; Antoine-LaVigne, Donna
2015-12-22
Building Collaborative Health Promotion Partnerships: The Jackson Heart Study. Building a collaborative health promotion partnership that effectively employs principles of community-based participatory research (CBPR) involves many dimensions. To ensure that changes would be long-lasting, it is imperative that partnerships be configured to include groups of diverse community representatives who can develop a vision for long-term change. This project sought to enumerate processes used by the Jackson Heart Study (JHS) Community Outreach Center (CORC) to create strong, viable partnerships that produce lasting change. JHS CORC joined with community representatives to initiate programs that evolved into comprehensive strategies for addressing health disparities and the high prevalence of cardiovascular disease (CVD). This collaboration was made possible by first promoting an understanding of the need for combined effort, the desire to interact with other community partners, and the vision to establish an effective governance structure. The partnership between JHS CORC and the community has empowered and inspired community members to provide leadership to other health promotion projects. Academic institutions must reach out to local community groups and together address local health issues that affect the community. When a community understands the need for change to respond to negative health conditions, formalizing this type of collaboration is a step in the right direction.
A Learning Community Focus for Christian Education
ERIC Educational Resources Information Center
Littleton, John
2008-01-01
The vision statement of St. Saviour's Anglican Church in the Parish of Glen Osmon reads, "We aim to be a worshipping, caring, learning and serving Christian Community." These four aspects of Christian Community are essential and inter-related. The intention in the first part of this article is to explore the "learning" aspects…
ERIC Educational Resources Information Center
Butin, Dan W.
2012-01-01
This article articulates a model for the "engaged campus" through academic programs focused on community engagement, broadly construed. Such academic programs--usually coalesced in certificate programs, minors, and majors--provide a complementary vision for the deep institutionalization of civic and community engagement in the academy that can…
USDA-ARS?s Scientific Manuscript database
OBJECTIVE: Identify unique cultural needs, priorities, program delivery preferences and barriers to achieving a healthy diet and lifestyle in one Native American community. DESIGN: A novel modified nominal group technique (NGT) conducted in four districts and three age groups (Elders, adults and...
Accelerated Schools as Professional Learning Communities.
ERIC Educational Resources Information Center
Biddle, Julie K.
The goal of the Accelerated Schools Project (ASP) is to develop schools in which all children achieve at high levels and all members of the school community engage in developing and fulfilling the school's vision. But to fully implement the ASP model, a school must become a learning community that stresses relationships, shared values, and a…
The Cohen Contribution to Community College Leadership
ERIC Educational Resources Information Center
Eaton, Judith S.
2007-01-01
Arthur M. Cohen has spoken to community college leaders on a diverse array of issues for many years. This article focuses on his contributions to this leadership in three major areas: (a) providing a vision of community colleges as collegiate institutions, (b) offering valuable and thought-provoking insight into the current context for community…
ERIC Educational Resources Information Center
Dunn Carpenter, Christina Marie
2011-01-01
The vision statement of one large Midwestern community college is "dedicated to helping students achieve lifelong fulfillment by providing a quality, innovative and responsive learning environment. Each day, [the college] champions the aspirations of individuals, communities and the state..." Helping each individual realize a lifelong…
Kainuma, Mosaburo; Kikukawa, Makoto; Nagata, Masaharu; Yoshida, Motofumi
2018-04-17
To clarify competencies for inclusion in our curriculum that focuses on developing leaders in community medicine. Qualitative interview study. All six regions of Japan, including urban and rural areas. Nineteen doctors (male: 18, female: 1) who play an important leadership role in their communities participated in semistructured interviews (mean age 48.3 years, range 34-59; mean years of clinical experience 23.1 years, range 9-31). Semistructured interviews were held and transcripts were independently analysed and coded by the first two authors. The third and fourth authors discussed and agreed or disagreed with the results to give a consensus agreement. Doctors were recruited by maximum variation sampling until thematic saturation was achieved. Six themes emerged: (1)'Medical ability': includes psychological issues and difficult cases in addition to basic medical problems. High medical ability gives confidence to other medical professionals. (2)'Long term perspective': the ability to develop a long-term, comprehensive vision and to continuously work to achieve the vision. Cultivation of future generations of doctors is included. (3) 'Team building':the ability to drive forward programmes that include residents and local government workers, to elucidate a vision, to communicate and to accept other medical professionals. (4)'Ability to negotiate': the ability to negotiate with others to ensure that programmes and visions progress smoothly (5) 'Management ability': the ability to run a clinic, medical unit or medical association. (6) 'Enjoying oneself': doctors need to feel an attraction to community medicine, that it be fun and challenging for them. We found six competencies that are needed by leaders in the field of community medicine. The results of this study will contribute to designing a curriculum that develops such leaders. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
A Grand Vision for European Astronomy
NASA Astrophysics Data System (ADS)
2007-09-01
Today, and for the first time, astronomers share their global Science Vision for European Astronomy in the next two decades. This two-year long effort by the ASTRONET network of funding agencies, sponsored by the European Commission and coordinated by INSU-CNRS, underscores Europe's ascension to world leadership in astronomy and its will to maintain that position. It will be followed in just over a year by a prioritised roadmap for the observational facilities needed to implement the Vision. Implementation of these plans will ensure that Europe fully contributes to Mankind's ever deeper understanding of the wonders of our Universe. astronet logo "This is a great opportunity to help create a vibrant long-term future for astronomy and science" says Tim de Zeeuw (Leiden Observatory, The Netherlands) who led this community-wide effort. The ASTRONET Science Vision provides a comprehensive overview of the most important scientific questions that European astronomy should address in the next twenty years. The four key questions are the extremes of the Universe, from the nature of the dark matter and dark energy that comprise over 95% of the Universe to the physics of extreme objects such as black holes, neutron stars, and gamma-ray bursts; the formation of galaxies from the first seeds to our Milky Way; the formation of stars and planets and the origin of life; and the crucial question of how do we (and our Solar System) fit in the global picture. These themes reach well beyond the realm of traditional astronomy into the frontiers of physics and biology. The Vision identifies the major new facilities that will be needed to achieve these goals, but also stresses the need for parallel developments in theory and numerical simulations, high-performance computing resources, efficient astronomical data archiving and the European Virtual Observatory, as well as in laboratory astrophysics. "This report is a key input for the even more challenging task of developing a prioritised, community-based Infrastructure Roadmap, crucial to keep Europe at the forefront of astronomical research," says de Zeeuw. ESO PR Photo 44a/07 European astronomy today is fully competitive on the global scene and is at the forefront in many domains with such breakthroughs as the first detection of a planet around a sun-like star, the successful landing on Titan, the proof that a massive black hole exists in the centre of our own Galaxy, the discovery of gravitational arcs around galaxy clusters, and the proof that most Gamma Ray Bursts are caused by huge exploding stars. The rise of European astronomy to this top position by the end of last century has been achieved through extensive cooperation and coordination of efforts, in particular through ESO for optical astronomy and ESA for space astronomy. To strengthen this position and to extend it to all branches of astronomy and all nations of the new Europe, a group of European funding agencies set up the ASTRONET programme with the goal to establish a comprehensive long-term development plan of European astronomy. ASTRONET therefore covers all astrophysical domains from cosmology to the Solar system, and every observing window, from space and from the ground, and from electromagnetic radiation to particles and gravitational waves. It addresses the whole astronomical 'food chain' from infrastructure and technology development to observation, data access, modelling and theory, and the human resources needed to make it all work. This effort is quite similar in scope to the 'decadal surveys' conducted in the USA over the last half-century, but unlike its American counterpart, ASTRONET was set up directly by the national funding agencies, with strong support from the European Commission. "A shared long-term Science Vision for European astronomy is the fundamental first step in the process, soon to be followed by a detailed infrastructure and technology development roadmap," says Johannes Andersen (NOTSA, Denmark), the ASTRONET Board Chair. "Both will be updated regularly as scientific and/or technological breakthroughs materialize." The first stepping stone is the Science Vision document released today. This is the result of intense work by thematic panels drawn from the community, with detailed mid-term feedback from the community at large through a web forum and an open Symposium that took place earlier this year in Poitiers, France, and in which 228 scientists from 31 countries participated. Preparation of the detailed Infrastructure Roadmap has already begun. Getting the community to agree on a common set of priorities, hard choices, and delicate balances will be a tough task, but, adds de Zeeuw, "If we don't hang together, we will surely hang separately!" Some background information on the ASTRONET Science Vision is also available. The ASTRONET Science Vision is available in PDF format in either low (17 MB) or normal (47 MB) resolution.
Computer vision for microscopy diagnosis of malaria.
Tek, F Boray; Dempster, Andrew G; Kale, Izzet
2009-07-13
This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.
A Vision on the Status and Evolution of HEP Physics Software Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canal, P.; Elvira, D.; Hatcher, R.
2013-07-28
This paper represents the vision of the members of the Fermilab Scientific Computing Division's Computational Physics Department (SCD-CPD) on the status and the evolution of various HEP software tools such as the Geant4 detector simulation toolkit, the Pythia and GENIE physics generators, and the ROOT data analysis framework. The goal of this paper is to contribute ideas to the Snowmass 2013 process toward the composition of a unified document on the current status and potential evolution of the physics software tools which are essential to HEP.
Computing motion using resistive networks
NASA Technical Reports Server (NTRS)
Koch, Christof; Luo, Jin; Mead, Carver; Hutchinson, James
1988-01-01
Recent developments in the theory of early vision are described which lead from the formulation of the motion problem as an ill-posed one to its solution by minimizing certain 'cost' functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. It is shown how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems.
Contextualising and Analysing Planetary Rover Image Products through the Web-Based PRoGIS
NASA Astrophysics Data System (ADS)
Morley, Jeremy; Sprinks, James; Muller, Jan-Peter; Tao, Yu; Paar, Gerhard; Huber, Ben; Bauer, Arnold; Willner, Konrad; Traxler, Christoph; Garov, Andrey; Karachevtseva, Irina
2014-05-01
The international planetary science community has launched, landed and operated dozens of human and robotic missions to the planets and the Moon. They have collected various surface imagery that has only been partially utilized for further scientific purposes. The FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) is assembling a major portion of the imaging data gathered so far from planetary surface missions into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products. Processing is complemented by a multi-resolution visualization engine that combines various levels of detail for a seamless and immersive real-time access to dynamically rendered 3D scenes. PRoViDE aims to (1) complete relevant 3D vision processing of planetary surface missions, such as Surveyor, Viking, Pathfinder, MER, MSL, Phoenix, Huygens, and Lunar ground-level imagery from Apollo, Russian Lunokhod and selected Luna missions, (2) provide highest resolution & accuracy remote sensing (orbital) vision data processing results for these sites to embed the robotic imagery and its products into spatial planetary context, (3) collect 3D Vision processing and remote sensing products within a single coherent spatial data base, (4) realise seamless fusion between orbital and ground vision data, (5) demonstrate the potential of planetary surface vision data by maximising image quality visualisation in 3D publishing platform, (6) collect and formulate use cases for novel scientific application scenarios exploiting the newly introduced spatial relationships and presentation, (7) demonstrate the concepts for MSL, (9) realize on-line dissemination of key data & its presentation by a web-based GIS and rendering tool named PRoGIS (Planetary Robotics GIS). PRoGIS is designed to give access to rover image archives in geographical context, using projected image view cones, obtained from existing meta-data and updated according to processing results, as a means to interact with and explore the archive. However PRoGIS is more than a source data explorer. It is linked to the PRoVIP (Planetary Robotics Vision Image Processing) system which includes photogrammetric processing tools to extract terrain models, compose panoramas, and explore and exploit multi-view stereo (where features on the surface have been imaged from different rover stops). We have started with the Opportunity MER rover as our test mission but the system is being designed to be multi-mission, taking advantage in particular of UCL MSSL's PDS mirror, and we intend to at least deal with both MER rovers and MSL. For the period of ProViDE until end of 2015 the further intent is to handle lunar and other Martian rover & descent camera data. The presentation discusses the challenges of integrating rover and orbital derived data into a single geographical framework, especially reconstructing view cones; our human-computer interaction intentions in creating an interface to the rover data that is accessible to planetary scientists; how we handle multi-mission data in the database; and a demonstration of the resulting system & its processing capabilities. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 PRoViDE.
Image/video understanding systems based on network-symbolic models
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-03-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.
Unidata's Vision for Providing Comprehensive and End-to-end Data Services
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.
2009-05-01
This paper presents Unidata's vision for providing comprehensive, well-integrated, and end-to-end data services for the geosciences. These include an array of functions for collecting, finding, and accessing data; data management tools for generating, cataloging, and exchanging metadata; and submitting or publishing, sharing, analyzing, visualizing, and integrating data. When this vision is realized, users no matter where they are or how they are connected to the Internetwill be able to find and access a plethora of geosciences data and use Unidata-provided tools and services both productively and creatively in their research and education. What that vision means for the Unidata community is elucidated by drawing a simple analogy. Most of users are familiar with Amazon and eBay e-commerce sites and content sharing sites like YouTube and Flickr. On the eBay marketplace, people can sell practically anything at any time and buyers can share their experience of purchasing a product or the reputation of a seller. Likewise, at Amazon, thousands of merchants sell their goods and millions of customers not only buy those goods, but provide a review or opinion of the products they buy and share their experiences as purchasers. Similarly, YouTube and Flickr are sites tailored to video- and photo-sharing, respectively, where users can upload their own content and share it with millions of other users, including family and friends. What all these sites, together with social-networking applications like MySpace and Facebook, have enabled is a sense of a virtual community in which users can search and browse products or content, comment and rate those products from anywhere, at any time, and via any Internet- enabled device like an iPhone, laptop, or a desktop computer. In essence, these enterprises have fundamentally altered people's buying modes and behavior toward purchases. Unidata believes that similar approaches, appropriately tailored to meet the needs of the scientific community, can be adopted to provide and share geosciences data and actively collaborate in the future. For example, future case-study data access systems, in addition to providing datasets and tools, will provide services that allow users to provide commentaries on a weather event, say a hurricane, as well as provide feedback on the quality, usefulness, and interpretation of the datasets through integrated blogs, forums, and Wikis, along with uploading and sharing products they derive, ancillary materials that users might have gathered (such as photos and videos from the storm), and publications and curricular materials they develop, all through a single data portal. In essence, such case study collections will be "living" or dynamic, allowing users to be also contributors as they add value to and grow existing case study collections.
High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations
NASA Technical Reports Server (NTRS)
Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.
2003-01-01
Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.
A programmable computational image sensor for high-speed vision
NASA Astrophysics Data System (ADS)
Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian
2013-08-01
In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.
Computer Vision System For Locating And Identifying Defects In Hardwood Lumber
NASA Astrophysics Data System (ADS)
Conners, Richard W.; Ng, Chong T.; Cho, Tai-Hoon; McMillin, Charles W.
1989-03-01
This paper describes research aimed at developing an automatic cutup system for use in the rough mills of the hardwood furniture and fixture industry. In particular, this paper describes attempts to create the vision system that will power this automatic cutup system. There are a number of factors that make the development of such a vision system a challenge. First there is the innate variability of the wood material itself. No two species look exactly the same, in fact, they can have a significant visual difference in appearance among species. Yet a truly robust vision system must be able to handle a variety of such species, preferably with no operator intervention required when changing from one species to another. Secondly, there is a good deal of variability in the definition of what constitutes a removable defect. The hardwood furniture and fixture industry is diverse in the nature of the products that it makes. The products range from hardwood flooring to fancy hardwood furniture, from simple mill work to kitchen cabinets. Thus depending on the manufacturer, the product, and the quality of the product the nature of what constitutes a removable defect can and does vary. The vision system must be such that it can be tailored to meet each of these unique needs, preferably without any additional program modifications. This paper will describe the vision system that has been developed. It will assess the current system capabilities, and it will discuss the directions for future research. It will be argued that artificial intelligence methods provide a natural mechanism for attacking this computer vision application.
Vision-based algorithms for near-host object detection and multilane sensing
NASA Astrophysics Data System (ADS)
Kenue, Surender K.
1995-01-01
Vision-based sensing can be used for lane sensing, adaptive cruise control, collision warning, and driver performance monitoring functions of intelligent vehicles. Current computer vision algorithms are not robust for handling multiple vehicles in highway scenarios. Several new algorithms are proposed for multi-lane sensing, near-host object detection, vehicle cut-in situations, and specifying regions of interest for object tracking. These algorithms were tested successfully on more than 6000 images taken from real-highway scenes under different daytime lighting conditions.
Colour vision abnormality as the only manifestation of normal pressure hydrocephalus.
Asensio-Sánchez, V M; Martín-Prieto, A
2018-01-01
The case is presented of a 73-year-old male patient who referred to having black and white vision. Computed tomography showed normal pressure hydrocephalus (NPH). Magnetic resonance imaging was not performed because the patient refused to undergo further examinations. Achromatopsia may be the first or only NPH symptom. It may be prudent to ask patients with NPH regarding colour vision. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.
Underrepresentation and the Question of Diversity.
ERIC Educational Resources Information Center
Gillett-Karam, Rosemary; And Others
1991-01-01
Considers the underrepresentation of women and minorities in community colleges, discussing barriers that have these groups out of administrative positions. Underscores the importance of leadership and vision in removing these barriers. Identifies inclusionary practices of community colleges, graduate programs, and professional organizations that…
Vision-based navigation in a dynamic environment for virtual human
NASA Astrophysics Data System (ADS)
Liu, Yan; Sun, Ji-Zhou; Zhang, Jia-Wan; Li, Ming-Chu
2004-06-01
Intelligent virtual human is widely required in computer games, ergonomics software, virtual environment and so on. We present a vision-based behavior modeling method to realize smart navigation in a dynamic environment. This behavior model can be divided into three modules: vision, global planning and local planning. Vision is the only channel for smart virtual actor to get information from the outside world. Then, the global and local planning module use A* and D* algorithm to find a way for virtual human in a dynamic environment. Finally, the experiments on our test platform (Smart Human System) verify the feasibility of this behavior model.
Dynamic Programming and Graph Algorithms in Computer Vision*
Felzenszwalb, Pedro F.; Zabih, Ramin
2013-01-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950
ERIC Educational Resources Information Center
Pierce, Dennis
2015-01-01
Community college presidents often get advice about how to land a job or, once hired, how to be more effective leaders, but they do not hear as much about their role in preparing their institutions for life after their service. Three successful community college presidents share how they left a legacy at their respective community colleges by…
Collective Computation of Neural Network
1990-03-15
Sciences, Beijing ABSTRACT Computational neuroscience is a new branch of neuroscience originating from current research on the theory of computer...scientists working in artificial intelligence engineering and neuroscience . The paper introduces the collective computational properties of model neural...vision research. On this basis, the authors analyzed the significance of the Hopfield model. Key phrases: Computational Neuroscience , Neural Network, Model
ERIC Educational Resources Information Center
Muller, Udo; Ahamer, Gilbert; Peters, Holger; Weinke, Elisabeth; Sapper, Norbert; Salcher, Elvira
2013-01-01
Purpose: The purpose of this publication is to present a didactic concept with the targeted impact of a positive future vision. This paper reflects the effect of local educational action on the development of regionally optimised visions in rural regions of a European industrial state, compared with a rural region in the developing country of…
A need for standardization in visual acuity measurement.
Patel, Hina; Congdon, Nathan; Strauss, Glenn; Lansingh, Charles
2017-01-01
Standardization of terminologies and methods is increasingly important in all fields including ophthalmology, especially currently when research and new technology are rapidly driving improvements in medicine. This review highlights the range of notations used by vision care professionals around the world for vision measurement, and the challenges resulting from this practice. The global community is urged to move toward a uniform standard.
ERIC Educational Resources Information Center
Foley, Eileen M.; Allender, Sara; Cooc, North; Edwards, Sara; Riley, Derek R.; Reisner, Elizabeth R.
2009-01-01
Late in 2007 New Visions for Public Schools, a New York City reform organization, received a grant from the C.S. Mott Foundation to organize select high schools and community partners into delivery systems that could improve student achievement. New Visions asked Policy Studies Associates, Inc. to provide research support for this effort in the…
Multitask neurovision processor with extensive feedback and feedforward connections
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Knopf, George K.
1991-11-01
A multi-task neuro-vision parameter which performs a variety of information processing operations associated with the early stages of biological vision is presented. The network architecture of this neuro-vision processor, called the positive-negative (PN) neural processor, is loosely based on the neural activity fields exhibited by thalamic and cortical nervous tissue layers. The computational operation performed by the processor arises from the strength of the recurrent feedback among the numerous positive and negative neural computing units. By adjusting the feedback connections it is possible to generate diverse dynamic behavior that may be used for short-term visual memory (STVM), spatio-temporal filtering (STF), and pulse frequency modulation (PFM). The information attributes that are to be processes may be regulated by modifying the feedforward connections from the signal space to the neural processor.
Principles for the wise use of computers by children.
Straker, L; Pollock, C; Maslen, B
2009-11-01
Computer use by children at home and school is now common in many countries. Child computer exposure varies with the type of computer technology available and the child's age, gender and social group. This paper reviews the current exposure data and the evidence for positive and negative effects of computer use by children. Potential positive effects of computer use by children include enhanced cognitive development and school achievement, reduced barriers to social interaction, enhanced fine motor skills and visual processing and effective rehabilitation. Potential negative effects include threats to child safety, inappropriate content, exposure to violence, bullying, Internet 'addiction', displacement of moderate/vigorous physical activity, exposure to junk food advertising, sleep displacement, vision problems and musculoskeletal problems. The case for child specific evidence-based guidelines for wise use of computers is presented based on children using computers differently to adults, being physically, cognitively and socially different to adults, being in a state of change and development and the potential to impact on later adult risk. Progress towards child-specific guidelines is reported. Finally, a set of guideline principles is presented as the basis for more detailed guidelines on the physical, cognitive and social impact of computer use by children. The principles cover computer literacy, technology safety, child safety and privacy and appropriate social, cognitive and physical development. The majority of children in affluent communities now have substantial exposure to computers. This is likely to have significant effects on child physical, cognitive and social development. Ergonomics can provide and promote guidelines for wise use of computers by children and by doing so promote the positive effects and reduce the negative effects of computer-child, and subsequent computer-adult, interaction.
NASA Astrophysics Data System (ADS)
Leifer, Andrew Michael
2011-07-01
This work presents optogenetics and real-time computer vision techniques to non-invasively manipulate and monitor neural activity with high spatiotemporal resolution in awake behaving Caenorhabditis elegans. These methods were employed to dissect the nematode's mechanosensory and motor circuits and to elucidate the neural control of wave propagation during forward locomotion. Additionally, similar computer vision methods were used to automatically detect and decode fluorescing DNA origami nanobarcodes, a new class of fluorescent reporter constructs. An optogenetic instrument capable of real-time light delivery with high spatiotemporal resolution to specified targets in freely moving C. elegans, the first such instrument of its kind, was developed. The instrument was used to probe the nematode's mechanosensory circuit, demonstrating that stimulation of a single mechanosensory neuron suffices to induce reversals. The instrument was also used to probe the motor circuit, demonstrating that inhibition of regions of cholinergic motor neurons blocks undulatory wave propagation and that muscle contractions can persist even without inputs from the motor neurons. The motor circuit was further probed using optogenetics and microfluidic techniques. Undulatory wave propagation during forward locomotion was observed to depend on stretch-sensitive signaling mediated by cholinergic motor neurons. Specifically, posterior body segments are compelled, through stretch-sensitive feedback, to bend in the same direction as anterior segments. This is the first explicit demonstration of such feedback and serves as a foundation for understanding motor circuits in other organisms. A real-time tracking system was developed to record intracellular calcium transients in single neurons while simultaneously monitoring macroscopic behavior of freely moving C. elegans. This was used to study the worm's stereotyped reversal behavior, the omega turn. Calcium transients corresponding to temporal features of the omega turn were observed in interneurons AVA and AVB. Optics and computer vision techniques similar to those developed for the C. elegans experiments were also used to detect DNA origami nanorod barcodes. An optimal Bayesian multiple hypothesis test was deployed to unambiguously classify each barcode as a member of one of 216 distinct barcode species. Overall, this set of experiments demonstrates the powerful role that optogenetics and computer vision can play in behavioral neuroscience and quantitative biophysics.
New approach for teaching health promotion in the community: integration of three nursing courses.
Moshe-Eilon, Yael; Shemy, Galia
2003-07-01
The complexity of the health care system and its interdisciplinary nature require that each component of the system redefine its professional framework, relative advantage, and unique contribution as an independent discipline. In choosing the most efficient and cost-effective work-force, each profession in the health care system must clarify its importance and contribution, otherwise functions will overlap and financial resources will be wasted. As rapid and wide-ranging changes occur in the health care system, the nursing profession must display a new and comprehensive vision that projects its values, beliefs, and relationships with and commitment to both patients and coworkers. The plans to fulfill this vision must be described clearly. This article presents part of a new professional paradigm developed by the nursing department of the University of Haifa, Israel. Three main topics are addressed: The building blocks of the new vision (i.e., community and health promotion, managerial skills, academic research). Integration of the building blocks into the 4-year baccalaureate degree program (i.e., how to practice health promotion with students in the community setting; managerial nursing skills at the baccalaureate level, including which to choose and to what depth and how to teach them; and academic nursing research, including the best way to teach basic research skills and implement them via a community project). Two senior student projects, demonstrating practical linking of the building blocks.
NASA Technical Reports Server (NTRS)
Alexander, Amy L.; Prinzel, Lawrence J., III; Wickens, Christopher D.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.
2007-01-01
Synthetic vision systems provide an in-cockpit view of terrain and other hazards via a computer-generated display representation. Two experiments examined several display concepts for synthetic vision and evaluated how such displays modulate pilot performance. Experiment 1 (24 general aviation pilots) compared three navigational display (ND) concepts: 2D coplanar, 3D, and split-screen. Experiment 2 (12 commercial airline pilots) evaluated baseline 'blue sky/brown ground' or synthetic vision-enabled primary flight displays (PFDs) and three ND concepts: 2D coplanar with and without synthetic vision and a dynamic multi-mode rotatable exocentric format. In general, the results pointed to an overall advantage for a split-screen format, whether it be stand-alone (Experiment 1) or available via rotatable viewpoints (Experiment 2). Furthermore, Experiment 2 revealed benefits associated with utilizing synthetic vision in both the PFD and ND representations and the value of combined ego- and exocentric presentations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep
2010-06-05
Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in anmore » automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.« less
People with Hemianopia Report Difficulty with TV, Computer, Cinema Use, and Photography.
Costela, Francisco M; Sheldon, Sarah S; Walker, Bethany; Woods, Russell L
2018-05-01
Our survey found that participants with hemianopia report more difficulties watching video in various formats, including television (TV), on computers, and in a movie theater, compared with participants with normal vision (NV). These reported difficulties were not as marked as those reported by people with central vision loss. The aim of this study was to survey the viewing experience (e.g., frequency, difficulty) of viewing video on TV, computers and portable visual display devices, and at the cinema of people with hemianopia and NV. This information may guide vision rehabilitation. We administered a cross-sectional survey to investigate the viewing habits of people with hemianopia (n = 91) or NV (n = 192). The survey, consisting of 22 items, was administered either in person or in a telephone interview. Descriptive statistics are reported. There were five major differences between the hemianopia and NV groups. Many participants with hemianopia reported (1) at least "some" difficulty watching TV (39/82); (2) at least "some" difficulty watching video on a computer (16/62); (3) never attending the cinema (30/87); (4) at least some difficulty watching movies in the cinema (20/56), among those who did attend the cinema; and (5) never taking photographs (24/80). Some people with hemianopia reported methods that they used to help them watch video, including video playback and head turn. Although people with hemianopia report more difficulty with viewing video on TV and at the cinema, we are not aware of any rehabilitation methods specifically designed to assist people with hemianopia to watch video. The results of this survey may guide future vision rehabilitation.
Employment after Vision Loss: Results of a Collective Case Study.
ERIC Educational Resources Information Center
Crudden, Adele
2002-01-01
A collective case study approach was used to examine factors that influence the job retention of persons with vision loss. Computer technology was found to be a major positive influence and print access and technology were a source of stress for most participants (n=10). (Contains 7 references.) (Author/CR)
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.; Wu, Chris K.; Lin, Y. H.
1991-01-01
A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.
Learning to Be a Community: Schools Need Adaptable Models to Create Successful Programs
ERIC Educational Resources Information Center
Ermeling, Bradley A.; Gallimore, Ronald
2013-01-01
Making schools learning places for teachers as well as students is a timeless and appealing vision. The growing number of professional learning communities is a hopeful sign that profound change is on the way. This is the challenge learning communities face: Schools and districts need implementation models flexible enough to adapt to local…
Integrating Industry Resources and Community Development: A Vision for the Future.
ERIC Educational Resources Information Center
Frost, Sally Joy
The Adult Basic Education Program at Umgeni Water, a water authority in South Africa, is a workplace literacy program that seeks to impart skills within the workplace that can be used in community development, benefiting both the business and community involved. From a pilot project in 1989, the adult education program at Umgeni Water has grown…
The 21st Century Community College: Technology and the New Learning Paradigm.
ERIC Educational Resources Information Center
Johnson, Larry, Ed.; Lobello, Sharon T., Ed.
Resulting from a forum for community college leaders exploring the effects of technological change on education, this three-part monograph discusses the role of technology in community colleges and reviews strategies for responding to changes. The first part addresses the vision and leadership needed to bring the colleges into the next century and…
ERIC Educational Resources Information Center
Lay, Scott M.
2010-01-01
This report specifically addresses the need to increase associate degree and certificate completions in California's community colleges. The Commission recognizes and affirms the role of community colleges in many other areas of service to California's residents and economy--including citizenship, health and safety, English as a second language…
"Empowering" the "Local" through Education? Exploring Community-Managed Schooling in Nepal
ERIC Educational Resources Information Center
Carney, Stephen; Bista, Min; Agergaard, Jytte
2007-01-01
This article attempts to unpack the policy vision and discourse driving community management of schooling in Nepal and to consider the ways in which these policies are being experienced by bureaucrats, teachers, parents and children. The focus is on the World Bank funded Community School Support Project (CSSP) launched by the Government of Nepal…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Jarrod; Barr, Jonathan L.; Burtner, Edwin R.
A key challenge for research roadmapping in the crisis response and management domain is articulation of a shared vision that describes what the future can and should include. Visioning allows for far-reaching stakeholder engagement that can properly align research with stakeholders needs. Engagement includes feedback from researchers, policy makers, general public, and end-users on technical and non-technical factors. This work articulates a process and framework for the construction and maintenance of a stakeholder-centric research vision and roadmap in the emergency management domain. This novel roadmapping process integrates three pieces: analysis of the research and technology landscape, visioning, and stakeholder engagement.more » Our structured engagement process elicits research foci for the roadmap based on relevance to stakeholder mission, identifies collaborators, and builds consensus around the roadmap priorities. We find that the vision process and vision storyboard helps SMEs conceptualize and discuss a technology's strengths, weaknesses, and alignment with needs« less
Big data computing: Building a vision for ARS information management
USDA-ARS?s Scientific Manuscript database
Improvements are needed within the ARS to increase scientific capacity and keep pace with new developments in computer technologies that support data acquisition and analysis. Enhancements in computing power and IT infrastructure are needed to provide scientists better access to high performance com...
Larigauderie, Anne; Prieur-Richard, Anne-Hélène; Mace, Georgina M; Lonsdale, Mark; Mooney, Harold A; Brussaard, Lijbert; Cooper, David; Cramer, Wolfgang; Daszak, Peter; Díaz, Sandra; Duraiappah, Anantha; Elmqvist, Thomas; Faith, Daniel P; Jackson, Louise E; Krug, Cornelia; Leadley, Paul W; Le Prestre, Philippe; Matsuda, Hiroyuki; Palmer, Margaret; Perrings, Charles; Pulleman, Mirjam; Reyers, Belinda; Rosa, Eugene A; Scholes, Robert J; Spehn, Eva; Turner, Bl; Yahara, Tetsukazu
2012-02-01
DIVERSITAS, the international programme on biodiversity science, is releasing a strategic vision presenting scientific challenges for the next decade of research on biodiversity and ecosystem services: "Biodiversity and Ecosystem Services Science for a Sustainable Planet". This new vision is a response of the biodiversity and ecosystem services scientific community to the accelerating loss of the components of biodiversity, as well as to changes in the biodiversity science-policy landscape (establishment of a Biodiversity Observing Network - GEO BON, of an Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services - IPBES, of the new Future Earth initiative; and release of the Strategic Plan for Biodiversity 2011-2020). This article presents the vision and its core scientific challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittwehr, Clemens; Aladjov, Hristo; Ankley, Gerald
Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework has emerged as a systematic approach for organizing knowledge that supports such inference. We argue that this systematic organization of knowledge can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment.more » Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment.« less
Method and apparatus for predicting the direction of movement in machine vision
NASA Technical Reports Server (NTRS)
Lawton, Teri B. (Inventor)
1992-01-01
A computer-simulated cortical network is presented. The network is capable of computing the visibility of shifts in the direction of movement. Additionally, the network can compute the following: (1) the magnitude of the position difference between the test and background patterns; (2) localized contrast differences at different spatial scales analyzed by computing temporal gradients of the difference and sum of the outputs of paired even- and odd-symmetric bandpass filters convolved with the input pattern; and (3) the direction of a test pattern moved relative to a textured background. The direction of movement of an object in the field of view of a robotic vision system is detected in accordance with nonlinear Gabor function algorithms. The movement of objects relative to their background is used to infer the 3-dimensional structure and motion of object surfaces.
A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems
Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo
2017-01-01
Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems. PMID:28079187
A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.
Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo
2017-01-12
Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.
Knowledge-based vision and simple visual machines.
Cliff, D; Noble, J
1997-01-01
The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong. PMID:9304684
A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems
NASA Astrophysics Data System (ADS)
Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo
2017-01-01
Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.
Color vision testing with a computer graphics system: preliminary results.
Arden, G; Gündüz, K; Perry, S
1988-06-01
We report a method for computer enhancement of color vision tests. In our graphics system 256 colors are selected from a much larger range and displayed on a screen divided into 768 x 288 pixels. Eight-bit digital-to-analogue converters drive a high quality monitor with separate inputs to the red, green, and blue amplifiers and calibrated gun chromaticities. The graphics are controlled by a PASCAL program written for a personal computer, which calculates the values of the red, green, and blue signals and specifies them in Commité Internationale d'Eclairage X, Y, and Z fundamentals, so changes in chrominance occur without changes in luminance. The system for measuring color contrast thresholds with gratings is more than adequate in normal observers. In patients with mild retinal damage in whom other tests of visual function are normal, this method of testing color vision shows specific increases in contrast thresholds along tritan color-confusion lines. By the time the Hardy-Rand-Rittler and Farnsworth-Munsell 100-hue tests disclose abnormalities, gross defects in color contrast threshold can be seen with our system.
NASA Technical Reports Server (NTRS)
Smith, Phillip N.
1990-01-01
The automation of low-altitude rotorcraft flight depends on the ability to detect, locate, and navigate around obstacles lying in the rotorcraft's intended flightpath. Computer vision techniques provide a passive method of obstacle detection and range estimation, for obstacle avoidance. Several algorithms based on computer vision methods have been developed for this purpose using laboratory data; however, further development and validation of candidate algorithms require data collected from rotorcraft flight. A data base containing low-altitude imagery augmented with the rotorcraft and sensor parameters required for passive range estimation is not readily available. Here, the emphasis is on the methodology used to develop such a data base from flight-test data consisting of imagery, rotorcraft and sensor parameters, and ground-truth range measurements. As part of the data preparation, a technique for obtaining the sensor calibration parameters is described. The data base will enable the further development of algorithms for computer vision-based obstacle detection and passive range estimation, as well as provide a benchmark for verification of range estimates against ground-truth measurements.
Container-code recognition system based on computer vision and deep neural networks
NASA Astrophysics Data System (ADS)
Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao
2018-04-01
Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.
Lee, Junhwa; Lee, Kyoung-Chan; Cho, Soojin
2017-01-01
The displacement responses of a civil engineering structure can provide important information regarding structural behaviors that help in assessing safety and serviceability. A displacement measurement using conventional devices, such as the linear variable differential transformer (LVDT), is challenging owing to issues related to inconvenient sensor installation that often requires additional temporary structures. A promising alternative is offered by computer vision, which typically provides a low-cost and non-contact displacement measurement that converts the movement of an object, mostly an attached marker, in the captured images into structural displacement. However, there is limited research on addressing light-induced measurement error caused by the inevitable sunlight in field-testing conditions. This study presents a computer vision-based displacement measurement approach tailored to a field-testing environment with enhanced robustness to strong sunlight. An image-processing algorithm with an adaptive region-of-interest (ROI) is proposed to reliably determine a marker’s location even when the marker is indistinct due to unfavorable light. The performance of the proposed system is experimentally validated in both laboratory-scale and field experiments. PMID:29019950
Application of machine vision to pup loaf bread evaluation
NASA Astrophysics Data System (ADS)
Zayas, Inna Y.; Chung, O. K.
1996-12-01
Intrinsic end-use quality of hard winter wheat breeding lines is routinely evaluated at the USDA, ARS, USGMRL, Hard Winter Wheat Quality Laboratory. Experimental baking test of pup loaves is the ultimate test for evaluating hard wheat quality. Computer vision was applied to developing an objective methodology for bread quality evaluation for the 1994 and 1995 crop wheat breeding line samples. Computer extracted features for bread crumb grain were studied, using subimages (32 by 32 pixel) and features computed for the slices with different threshold settings. A subsampling grid was located with respect to the axis of symmetry of a slice to provide identical topological subimage information. Different ranking techniques were applied to the databases. Statistical analysis was run on the database with digital image and breadmaking features. Several ranking algorithms and data visualization techniques were employed to create a sensitive scale for porosity patterns of bread crumb. There were significant linear correlations between machine vision extracted features and breadmaking parameters. Crumb grain scores by human experts were correlated more highly with some image features than with breadmaking parameters.
Fast and robust generation of feature maps for region-based visual attention.
Aziz, Muhammad Zaheer; Mertsching, Bärbel
2008-05-01
Visual attention is one of the important phenomena in biological vision which can be followed to achieve more efficiency, intelligence, and robustness in artificial vision systems. This paper investigates a region-based approach that performs pixel clustering prior to the processes of attention in contrast to late clustering as done by contemporary methods. The foundation steps of feature map construction for the region-based attention model are proposed here. The color contrast map is generated based upon the extended findings from the color theory, the symmetry map is constructed using a novel scanning-based method, and a new algorithm is proposed to compute a size contrast map as a formal feature channel. Eccentricity and orientation are computed using the moments of obtained regions and then saliency is evaluated using the rarity criteria. The efficient design of the proposed algorithms allows incorporating five feature channels while maintaining a processing rate of multiple frames per second. Another salient advantage over the existing techniques is the reusability of the salient regions in the high-level machine vision procedures due to preservation of their shapes and precise locations. The results indicate that the proposed model has the potential to efficiently integrate the phenomenon of attention into the main stream of machine vision and systems with restricted computing resources such as mobile robots can benefit from its advantages.
NETRA: A parallel architecture for integrated vision systems. 1: Architecture and organization
NASA Technical Reports Server (NTRS)
Choudhary, Alok N.; Patel, Janak H.; Ahuja, Narendra
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is considered to be a system that uses vision algorithms from all levels of processing for a high level application (such as object recognition). A model of computation is presented for parallel processing for an IVS. Using the model, desired features and capabilities of a parallel architecture suitable for IVSs are derived. Then a multiprocessor architecture (called NETRA) is presented. This architecture is highly flexible without the use of complex interconnection schemes. The topology of NETRA is recursively defined and hence is easily scalable from small to large systems. Homogeneity of NETRA permits fault tolerance and graceful degradation under faults. It is a recursively defined tree-type hierarchical architecture where each of the leaf nodes consists of a cluster of processors connected with a programmable crossbar with selective broadcast capability to provide for desired flexibility. A qualitative evaluation of NETRA is presented. Then general schemes are described to map parallel algorithms onto NETRA. Algorithms are classified according to their communication requirements for parallel processing. An extensive analysis of inter-cluster communication strategies in NETRA is presented, and parameters affecting performance of parallel algorithms when mapped on NETRA are discussed. Finally, a methodology to evaluate performance of algorithms on NETRA is described.
Visual Turing test for computer vision systems
Geman, Donald; Geman, Stuart; Hallonquist, Neil; Younes, Laurent
2015-01-01
Today, computer vision systems are tested by their accuracy in detecting and localizing instances of objects. As an alternative, and motivated by the ability of humans to provide far richer descriptions and even tell a story about an image, we construct a “visual Turing test”: an operator-assisted device that produces a stochastic sequence of binary questions from a given test image. The query engine proposes a question; the operator either provides the correct answer or rejects the question as ambiguous; the engine proposes the next question (“just-in-time truthing”). The test is then administered to the computer-vision system, one question at a time. After the system’s answer is recorded, the system is provided the correct answer and the next question. Parsing is trivial and deterministic; the system being tested requires no natural language processing. The query engine employs statistical constraints, learned from a training set, to produce questions with essentially unpredictable answers—the answer to a question, given the history of questions and their correct answers, is nearly equally likely to be positive or negative. In this sense, the test is only about vision. The system is designed to produce streams of questions that follow natural story lines, from the instantiation of a unique object, through an exploration of its properties, and on to its relationships with other uniquely instantiated objects. PMID:25755262
The networked health enterprise: a vision for 2008.
Stead, W W
1998-01-01
Informatics and information technology hold the promise of a consumer-centered health enterprise--one that provides quality care at a cost society is willing to pay; one where need-based, adaptive, competency-based learning results in cost-effectiveness of health education; one where team-based health and learning on demand, coupled with monitoring of process outcomes and network access to expertise, guarantee quality. The barriers to this promise are the professional guilds, the cross-subsidies that support the health enterprise of 1998, and the lack of respect for privacy. Collectively, the informatics community needs to develop a compelling vision that will galvanize the health community to action. If the health community does not step up to this challenge, consumers will take advantage of disintermediation. Empowered by the network, they will go outside the system into hands that meet their needs.
Clinical efficacy of Ayurvedic management in computer vision syndrome: A pilot study.
Dhiman, Kartar Singh; Ahuja, Deepak Kumar; Sharma, Sanjeev Kumar
2012-07-01
Improper use of sense organs, violating the moral code of conduct, and the effect of the time are the three basic causative factors behind all the health problems. Computer, the knowledge bank of modern life, has emerged as a profession causing vision-related discomfort, ocular fatigue, and systemic effects. Computer Vision Syndrome (CVS) is the new nomenclature to the visual, ocular, and systemic symptoms arising due to the long time and improper working on the computer and is emerging as a pandemic in the 21(st) century. On critical analysis of the symptoms of CVS on Tridoshika theory of Ayurveda, as per the road map given by Acharya Charaka, it seems to be a Vata-Pittaja ocular cum systemic disease which needs systemic as well as topical treatment approach. Shatavaryaadi Churna (orally), Go-Ghrita Netra Tarpana (topically), and counseling regarding proper working conditions on computer were tried in 30 patients of CVS. In group I, where oral and local treatment was given, significant improvement in all the symptoms of CVS was observed, whereas in groups II and III, local treatment and counseling regarding proper working conditions, respectively, were given and showed insignificant results. The study verified the hypothesis that CVS in Ayurvedic perspective is a Vata-Pittaja disease affecting mainly eyes and body as a whole and needs a systemic intervention rather than topical ocular medication only.
Clinical efficacy of Ayurvedic management in computer vision syndrome: A pilot study
Dhiman, Kartar Singh; Ahuja, Deepak Kumar; Sharma, Sanjeev Kumar
2012-01-01
Improper use of sense organs, violating the moral code of conduct, and the effect of the time are the three basic causative factors behind all the health problems. Computer, the knowledge bank of modern life, has emerged as a profession causing vision-related discomfort, ocular fatigue, and systemic effects. Computer Vision Syndrome (CVS) is the new nomenclature to the visual, ocular, and systemic symptoms arising due to the long time and improper working on the computer and is emerging as a pandemic in the 21st century. On critical analysis of the symptoms of CVS on Tridoshika theory of Ayurveda, as per the road map given by Acharya Charaka, it seems to be a Vata–Pittaja ocular cum systemic disease which needs systemic as well as topical treatment approach. Shatavaryaadi Churna (orally), Go-Ghrita Netra Tarpana (topically), and counseling regarding proper working conditions on computer were tried in 30 patients of CVS. In group I, where oral and local treatment was given, significant improvement in all the symptoms of CVS was observed, whereas in groups II and III, local treatment and counseling regarding proper working conditions, respectively, were given and showed insignificant results. The study verified the hypothesis that CVS in Ayurvedic perspective is a Vata–Pittaja disease affecting mainly eyes and body as a whole and needs a systemic intervention rather than topical ocular medication only. PMID:23723647
Computer vision syndrome and ergonomic practices among undergraduate university students.
Mowatt, Lizette; Gordon, Carron; Santosh, Arvind Babu Rajendra; Jones, Thaon
2018-01-01
To determine the prevalence of computer vision syndrome (CVS) and ergonomic practices among students in the Faculty of Medical Sciences at The University of the West Indies (UWI), Jamaica. A cross-sectional study was done with a self-administered questionnaire. Four hundred and nine students participated; 78% were females. The mean age was 21.6 years. Neck pain (75.1%), eye strain (67%), shoulder pain (65.5%) and eye burn (61.9%) were the most common CVS symptoms. Dry eyes (26.2%), double vision (28.9%) and blurred vision (51.6%) were the least commonly experienced symptoms. Eye burning (P = .001), eye strain (P = .041) and neck pain (P = .023) were significantly related to level of viewing. Moderate eye burning (55.1%) and double vision (56%) occurred in those who used handheld devices (P = .001 and .007, respectively). Moderate blurred vision was reported in 52% who looked down at the device compared with 14.8% who held it at an angle. Severe eye strain occurred in 63% of those who looked down at a device compared with 21% who kept the device at eye level. Shoulder pain was not related to pattern of use. Ocular symptoms and neck pain were less likely if the device was held just below eye level. There is a high prevalence of Symptoms of CVS amongst university students which could be reduced, in particular neck pain and eye strain and burning, with improved ergonomic practices. © 2017 John Wiley & Sons Ltd.
Factors Affecting Readiness for Low Vision Interventions in Older Adults.
Mohler, Amanda Jean; Neufeld, Peggy; Perlmutter, Monica S
2015-01-01
We sought to identify factors that facilitate and inhibit readiness for low vision interventions in people with vision loss, conceptualized as readiness for change in the way they perform daily activities. We conducted 10 semistructured interviews with older adults with low vision and analyzed the results using grounded theory concepts. Themes involving factors that facilitated change included desire to maintain or regain independence, positive attitude, and presence of formal social support. Themes related to barriers to change included limited knowledge of options and activity not a priority. Themes that acted as both barriers and facilitators were informal social support and community resources. This study provides insight into readiness to make changes in behavior and environment in older adults with vision loss. Study findings can help occupational therapy practitioners practice client-centered care more effectively and promote safe and satisfying daily living activity performance in this population. Copyright © 2015 by the American Occupational Therapy Association, Inc.
Geoinformatics 2007: data to knowledge
Brady, Shailaja R.; Sinha, A. Krishna; Gundersen, Linda C.
2007-01-01
Geoinformatics is the term used to describe a variety of efforts to promote collaboration between the computer sciences and the geosciences to solve complex scientific questions. It refers to the distributed, integrated digital information system and working environment that provides innovative means for the study of the Earth systems, as well as other planets, through use of advanced information technologies. Geoinformatics activities range from major research and development efforts creating new technologies to provide high-quality, sustained production-level services for data discovery, integration and analysis, to small, discipline-specific efforts that develop earth science data collections and data analysis tools serving the needs of individual communities. The ultimate vision of Geoinformatics is a highly interconnected data system populated with high quality, freely available data, as well as, a robust set of software for analysis, visualization, and modeling.
An informatics research agenda to support precision medicine: seven key areas
Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R
2016-01-01
The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM’s vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. PMID:27107452