On the convergence of nanotechnology and Big Data analysis for computer-aided diagnosis.
Rodrigues, Jose F; Paulovich, Fernando V; de Oliveira, Maria Cf; de Oliveira, Osvaldo N
2016-04-01
An overview is provided of the challenges involved in building computer-aided diagnosis systems capable of precise medical diagnostics based on integration and interpretation of data from different sources and formats. The availability of massive amounts of data and computational methods associated with the Big Data paradigm has brought hope that such systems may soon be available in routine clinical practices, which is not the case today. We focus on visual and machine learning analysis of medical data acquired with varied nanotech-based techniques and on methods for Big Data infrastructure. Because diagnosis is essentially a classification task, we address the machine learning techniques with supervised and unsupervised classification, making a critical assessment of the progress already made in the medical field and the prospects for the near future. We also advocate that successful computer-aided diagnosis requires a merge of methods and concepts from nanotechnology and Big Data analysis.
Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography
Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji
2013-01-01
OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume < −950 HU of each lobe using (i) the slice-by-slice method (reference standard), (ii) number of segments method, and (iii) semi-automatic and (iv) automatic computer-aided diagnosis. We determined Pearson correlation coefficients between the reference standard and the three other methods for lobar volumes and emphysematous lobar volumes. We also compared the relative errors among the three measurement methods. RESULTS Both semi-automatic and automatic computer-aided diagnosis results were more strongly correlated with the reference standard than the number of segments method. The correlation coefficients for automatic computer-aided diagnosis were slightly lower than those for semi-automatic computer-aided diagnosis because there was one outlier among 50 cases (2%) in the right upper lobe and two outliers among 50 cases (4%) in the other lobes. The number of segments method relative error was significantly greater than those for semi-automatic and automatic computer-aided diagnosis (P < 0.001). The computational time for automatic computer-aided diagnosis was 1/2 to 2/3 than that of semi-automatic computer-aided diagnosis. CONCLUSIONS A novel lobar volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer-aided diagnosis failed. PMID:23526418
2006-06-01
Hadjiiski, and N. Petrick, "Computerized nipple identification for multiple image analysis in computer-aided diagnosis," Medical Physics 31, 2871...candidates, 3 identification of suspicious objects, 4 feature extraction and analysis, and 5 FP reduc- tion by classification of normal tissue...detection of microcalcifi- cations on digitized mammograms.41 An illustration of a La- placian decomposition tree is shown on the left-hand side of Fig. 4
Computer-Assisted Digital Image Analysis of Plus Disease in Retinopathy of Prematurity.
Kemp, Pavlina S; VanderVeen, Deborah K
2016-01-01
The objective of this study is to review the current state and role of computer-assisted analysis in diagnosis of plus disease in retinopathy of prematurity. Diagnosis and documentation of retinopathy of prematurity are increasingly being supplemented by digital imaging. The incorporation of computer-aided techniques has the potential to add valuable information and standardization regarding the presence of plus disease, an important criterion in deciding the necessity of treatment of vision-threatening retinopathy of prematurity. A review of literature found that several techniques have been published examining the process and role of computer aided analysis of plus disease in retinopathy of prematurity. These techniques use semiautomated image analysis techniques to evaluate retinal vascular dilation and tortuosity, using calculated parameters to evaluate presence or absence of plus disease. These values are then compared with expert consensus. The study concludes that computer-aided image analysis has the potential to use quantitative and objective criteria to act as a supplemental tool in evaluating for plus disease in the setting of retinopathy of prematurity.
[Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].
Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei
2017-08-01
The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.
Bayesian networks and statistical analysis application to analyze the diagnostic test accuracy
NASA Astrophysics Data System (ADS)
Orzechowski, P.; Makal, Jaroslaw; Onisko, A.
2005-02-01
The computer aided BPH diagnosis system based on Bayesian network is described in the paper. First result are compared to a given statistical method. Different statistical methods are used successfully in medicine for years. However, the undoubted advantages of probabilistic methods make them useful in application in newly created systems which are frequent in medicine, but do not have full and competent knowledge. The article presents advantages of the computer aided BPH diagnosis system in clinical practice for urologists.
NASA Astrophysics Data System (ADS)
Traverso, A.; Lopez Torres, E.; Fantacci, M. E.; Cerello, P.
2017-05-01
Lung cancer is one of the most lethal types of cancer, because its early diagnosis is not good enough. In fact, the detection of pulmonary nodule, potential lung cancers, in Computed Tomography scans is a very challenging and time-consuming task for radiologists. To support radiologists, researchers have developed Computer-Aided Diagnosis (CAD) systems for the automated detection of pulmonary nodules in chest Computed Tomography scans. Despite the high level of technological developments and the proved benefits on the overall detection performance, the usage of Computer-Aided Diagnosis in clinical practice is far from being a common procedure. In this paper we investigate the causes underlying this discrepancy and present a solution to tackle it: the M5L WEB- and Cloud-based on-demand Computer-Aided Diagnosis. In addition, we prove how the combination of traditional imaging processing techniques with state-of-art advanced classification algorithms allows to build a system whose performance could be much larger than any Computer-Aided Diagnosis developed so far. This outcome opens the possibility to use the CAD as clinical decision support for radiologists.
1983-09-01
AD-Ali33 592 ARTIFICIAL INTELLIGENCE: AN ANALYSIS OF POTENTIAL 1/1 APPLICATIONS TO TRAININ..(U) DENVER RESEARCH INST CO JRICHARDSON SEP 83 AFHRL-TP...83-28 b ’ 3 - 4. TITLE (aied Suhkie) 5. TYPE OF REPORT & PERIOD COVERED ARTIFICIAL INTEL11GENCE: AN ANALYSIS OF Interim POTENTIAL APPLICATIONS TO...8217 sde if neceseamy end ides*f by black naumber) artificial intelligence military research * computer-aided diagnosis performance tests computer
A Computer-Aided Diagnosis System for Breast Cancer Combining Digital Mammography and Genomics
2006-05-01
Huang, "Breast cancer diagnosis using self-organizing map for sonography." Ultrasound Med. Biol. 26, 405 (2000). 20 K. Horsch, M.L. Giger, L.A. Venta ...L.A. Venta , "Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography." Acad Radiol 11, 272 (2004). 22 W. Chen...418. 27. Horsch K, Giger ML, Vyborny CJ, Venta LA. Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography
Computer-aided head film analysis: the University of California San Francisco method.
Baumrind, S; Miller, D M
1980-07-01
Computer technology is already assuming an important role in the management of orthodontic practices. The next 10 years are likely to see expansion in computer usage into the areas of diagnosis, treatment planning, and treatment-record keeping. In the areas of diagnosis and treatment planning, one of the first problems to be attacked will be the automation of head film analysis. The problems of constructing computer-aided systems for this purpose are considered herein in the light of the authors' 10 years of experience in developing a similar system for research purposes. The need for building in methods for automatic detection and correction of gross errors is discussed and the authors' method for doing so is presented. The construction of a rudimentary machine-readable data base for research and clinical purposes is described.
Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping.
Wu, Yixiao; Yang, Ran; Jia, Sen; Li, Zhanjun; Zhou, Zhiyang; Lou, Ting
2014-01-01
This work was aimed at studying the method of computer-aided diagnosis of early knee OA (OA: osteoarthritis). Based on the technique of MRI (MRI: Magnetic Resonance Imaging) T2 Mapping, through computer image processing, feature extraction, calculation and analysis via constructing a classifier, an effective computer-aided diagnosis method for knee OA was created to assist doctors in their accurate, timely and convenient detection of potential risk of OA. In order to evaluate this method, a total of 1380 data from the MRI images of 46 samples of knee joints were collected. These data were then modeled through linear regression on an offline general platform by the use of the ImageJ software, and a map of the physical parameter T2 was reconstructed. After the image processing, the T2 values of ten regions in the WORMS (WORMS: Whole-organ Magnetic Resonance Imaging Score) areas of the articular cartilage were extracted to be used as the eigenvalues in data mining. Then,a RBF (RBF: Radical Basis Function) network classifier was built to classify and identify the collected data. The classifier exhibited a final identification accuracy of 75%, indicating a good result of assisting diagnosis. Since the knee OA classifier constituted by a weights-directly-determined RBF neural network didn't require any iteration, our results demonstrated that the optimal weights, appropriate center and variance could be yielded through simple procedures. Furthermore, the accuracy for both the training samples and the testing samples from the normal group could reach 100%. Finally, the classifier was superior both in time efficiency and classification performance to the frequently used classifiers based on iterative learning. Thus it was suitable to be used as an aid to computer-aided diagnosis of early knee OA.
[Computer-aided Diagnosis and New Electronic Stethoscope].
Huang, Mei; Liu, Hongying; Pi, Xitian; Ao, Yilu; Wang, Zi
2017-05-30
Auscultation is an important method in early-diagnosis of cardiovascular disease and respiratory system disease. This paper presents a computer-aided diagnosis of new electronic auscultation system. It has developed an electronic stethoscope based on condenser microphone and the relevant intelligent analysis software. It has implemented many functions that combined with Bluetooth, OLED, SD card storage technologies, such as real-time heart and lung sounds auscultation in three modes, recording and playback, auscultation volume control, wireless transmission. The intelligent analysis software based on PC computer utilizes C# programming language and adopts SQL Server as the background database. It has realized play and waveform display of the auscultation sound. By calculating the heart rate, extracting the characteristic parameters of T1, T2, T12, T11, it can analyze whether the heart sound is normal, and then generate diagnosis report. Finally the auscultation sound and diagnosis report can be sent to mailbox of other doctors, which can carry out remote diagnosis. The whole system has features of fully function, high portability, good user experience, and it is beneficial to promote the use of electronic stethoscope in the hospital, at the same time, the system can also be applied to auscultate teaching and other occasions.
Ferreira Junior, José Raniery; Oliveira, Marcelo Costa; de Azevedo-Marques, Paulo Mazzoncini
2016-12-01
Lung cancer is the leading cause of cancer-related deaths in the world, and its main manifestation is pulmonary nodules. Detection and classification of pulmonary nodules are challenging tasks that must be done by qualified specialists, but image interpretation errors make those tasks difficult. In order to aid radiologists on those hard tasks, it is important to integrate the computer-based tools with the lesion detection, pathology diagnosis, and image interpretation processes. However, computer-aided diagnosis research faces the problem of not having enough shared medical reference data for the development, testing, and evaluation of computational methods for diagnosis. In order to minimize this problem, this paper presents a public nonrelational document-oriented cloud-based database of pulmonary nodules characterized by 3D texture attributes, identified by experienced radiologists and classified in nine different subjective characteristics by the same specialists. Our goal with the development of this database is to improve computer-aided lung cancer diagnosis and pulmonary nodule detection and classification research through the deployment of this database in a cloud Database as a Service framework. Pulmonary nodule data was provided by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), image descriptors were acquired by a volumetric texture analysis, and database schema was developed using a document-oriented Not only Structured Query Language (NoSQL) approach. The proposed database is now with 379 exams, 838 nodules, and 8237 images, 4029 of them are CT scans and 4208 manually segmented nodules, and it is allocated in a MongoDB instance on a cloud infrastructure.
NASA Astrophysics Data System (ADS)
Chung, Woon-Kwan; Park, Hyong-Hu; Im, In-Chul; Lee, Jae-Seung; Goo, Eun-Hoe; Dong, Kyung-Rae
2012-09-01
This paper proposes a computer-aided diagnosis (CAD) system based on texture feature analysis and statistical wavelet transformation technology to diagnose fatty liver disease with computed tomography (CT) imaging. In the target image, a wavelet transformation was performed for each lesion area to set the region of analysis (ROA, window size: 50 × 50 pixels) and define the texture feature of a pixel. Based on the extracted texture feature values, six parameters (average gray level, average contrast, relative smoothness, skewness, uniformity, and entropy) were determined to calculate the recognition rate for a fatty liver. In addition, a multivariate analysis of the variance (MANOVA) method was used to perform a discriminant analysis to verify the significance of the extracted texture feature values and the recognition rate for a fatty liver. According to the results, each texture feature value was significant for a comparison of the recognition rate for a fatty liver ( p < 0.05). Furthermore, the F-value, which was used as a scale for the difference in recognition rates, was highest in the average gray level, relatively high in the skewness and the entropy, and relatively low in the uniformity, the relative smoothness and the average contrast. The recognition rate for a fatty liver had the same scale as that for the F-value, showing 100% (average gray level) at the maximum and 80% (average contrast) at the minimum. Therefore, the recognition rate is believed to be a useful clinical value for the automatic detection and computer-aided diagnosis (CAD) using the texture feature value. Nevertheless, further study on various diseases and singular diseases will be needed in the future.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru
2008-03-01
Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Drew, Mark S.
2016-01-01
Cutaneous melanoma is the most life-threatening form of skin cancer. Although advanced melanoma is often considered as incurable, if detected and excised early, the prognosis is promising. Today, clinicians use computer vision in an increasing number of applications to aid early detection of melanoma through dermatological image analysis (dermoscopy images, in particular). Colour assessment is essential for the clinical diagnosis of skin cancers. Due to this diagnostic importance, many studies have either focused on or employed colour features as a constituent part of their skin lesion analysis systems. These studies range from using low-level colour features, such as simple statistical measures of colours occurring in the lesion, to availing themselves of high-level semantic features such as the presence of blue-white veil, globules, or colour variegation in the lesion. This paper provides a retrospective survey and critical analysis of contributions in this research direction. PMID:28096807
Computer Aided Instruction and Problem Solving in the Teaching of Oral Diagnosis.
ERIC Educational Resources Information Center
Spencer, Judson; Gobetti, John P.
A computer-assisted instructional (CAI) program is being used at the University of Michigan School of Dentistry to aid in the teaching of oral diagnosis to dental students. The program is designed to simulate a real life situation--i.e., the diagnosis of patient illness-which would not be otherwise available to the student and to demonstrate to…
Applicability of mathematical modeling to problems of environmental physiology
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.; Leonard, Joel I.; Srinivasan, R. Srini
1988-01-01
The paper traces the evolution of mathematical modeling and systems analysis from terrestrial research to research related to space biomedicine and back again to terrestrial research. Topics covered include: power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and, computer-aided diagnosis programs used in conjunction with a special on-line biomedical computer library.
S V, Mahesh Kumar; R, Gunasundari
2018-06-02
Eye disease is a major health problem among the elderly people. Cataract and corneal arcus are the major abnormalities that exist in the anterior segment eye region of aged people. Hence, computer-aided diagnosis of anterior segment eye abnormalities will be helpful for mass screening and grading in ophthalmology. In this paper, we propose a multiclass computer-aided diagnosis (CAD) system using visible wavelength (VW) eye images to diagnose anterior segment eye abnormalities. In the proposed method, the input VW eye images are pre-processed for specular reflection removal and the iris circle region is segmented using a circular Hough Transform (CHT)-based approach. The first-order statistical features and wavelet-based features are extracted from the segmented iris circle and used for classification. The Support Vector Machine (SVM) by Sequential Minimal Optimization (SMO) algorithm was used for the classification. In experiments, we used 228 VW eye images that belong to three different classes of anterior segment eye abnormalities. The proposed method achieved a predictive accuracy of 96.96% with 97% sensitivity and 99% specificity. The experimental results show that the proposed method has significant potential for use in clinical applications.
EEG-Based Computer Aided Diagnosis of Autism Spectrum Disorder Using Wavelet, Entropy, and ANN
AlSharabi, Khalil; Ibrahim, Sutrisno; Alsuwailem, Abdullah
2017-01-01
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder with core impairments in the social relationships, communication, imagination, or flexibility of thought and restricted repertoire of activity and interest. In this work, a new computer aided diagnosis (CAD) of autism based on electroencephalography (EEG) signal analysis is investigated. The proposed method is based on discrete wavelet transform (DWT), entropy (En), and artificial neural network (ANN). DWT is used to decompose EEG signals into approximation and details coefficients to obtain EEG subbands. The feature vector is constructed by computing Shannon entropy values from each EEG subband. ANN classifies the corresponding EEG signal into normal or autistic based on the extracted features. The experimental results show the effectiveness of the proposed method for assisting autism diagnosis. A receiver operating characteristic (ROC) curve metric is used to quantify the performance of the proposed method. The proposed method obtained promising results tested using real dataset provided by King Abdulaziz Hospital, Jeddah, Saudi Arabia. PMID:28484720
Terrestrial implications of mathematical modeling developed for space biomedical research
NASA Technical Reports Server (NTRS)
Lujan, Barbara F.; White, Ronald J.; Leonard, Joel I.; Srinivasan, R. Srini
1988-01-01
This paper summarizes several related research projects supported by NASA which seek to apply computer models to space medicine and physiology. These efforts span a wide range of activities, including mathematical models used for computer simulations of physiological control systems; power spectral analysis of physiological signals; pattern recognition models for detection of disease processes; and computer-aided diagnosis programs.
Computer-Aided Diagnosis of Acute Lymphoblastic Leukaemia
2018-01-01
Leukaemia is a form of blood cancer which affects the white blood cells and damages the bone marrow. Usually complete blood count (CBC) and bone marrow aspiration are used to diagnose the acute lymphoblastic leukaemia. It can be a fatal disease if not diagnosed at the earlier stage. In practice, manual microscopic evaluation of stained sample slide is used for diagnosis of leukaemia. But manual diagnostic methods are time-consuming, less accurate, and prone to errors due to various human factors like stress, fatigue, and so forth. Therefore, different automated systems have been proposed to wrestle the glitches in the manual diagnostic methods. In recent past, some computer-aided leukaemia diagnosis methods are presented. These automated systems are fast, reliable, and accurate as compared to manual diagnosis methods. This paper presents review of computer-aided diagnosis systems regarding their methodologies that include enhancement, segmentation, feature extraction, classification, and accuracy. PMID:29681996
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kakinuma, Ryutaru; Moriyama, Noriyuki
2009-02-01
Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. To overcome these problems, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The functions to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and "Success in login" effective. As a result, patients' private information is protected. We can share the screen of Web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with workstation. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.
2008-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616
Computer-Aided Methodology for Syndromic Strabismus Diagnosis.
Sousa de Almeida, João Dallyson; Silva, Aristófanes Corrêa; Teixeira, Jorge Antonio Meireles; Paiva, Anselmo Cardoso; Gattass, Marcelo
2015-08-01
Strabismus is a pathology that affects approximately 4 % of the population, causing aesthetic problems reversible at any age and irreversible sensory alterations that modify the vision mechanism. The Hirschberg test is one type of examination for detecting this pathology. Computer-aided detection/diagnosis is being used with relative success to aid health professionals. Nevertheless, the routine use of high-tech devices for aiding ophthalmological diagnosis and therapy is not a reality within the subspecialty of strabismus. Thus, this work presents a methodology to aid in diagnosis of syndromic strabismus through digital imaging. Two hundred images belonging to 40 patients previously diagnosed by an specialist were tested. The method was demonstrated to be 88 % accurate in esotropias identification (ET), 100 % for exotropias (XT), 80.33 % for hypertropias (HT), and 83.33 % for hypotropias (HoT). The overall average error was 5.6Δ and 3.83Δ for horizontal and vertical deviations, respectively, against the measures presented by the specialist.
Bharti, Puja; Mittal, Deepti; Ananthasivan, Rupa
2016-04-19
Diffuse liver diseases, such as hepatitis, fatty liver, and cirrhosis, are becoming a leading cause of fatality and disability all over the world. Early detection and diagnosis of these diseases is extremely important to save lives and improve effectiveness of treatment. Ultrasound imaging, a noninvasive diagnostic technique, is the most commonly used modality for examining liver abnormalities. However, the accuracy of ultrasound-based diagnosis depends highly on expertise of radiologists. Computer-aided diagnosis systems based on ultrasound imaging assist in fast diagnosis, provide a reliable "second opinion" for experts, and act as an effective tool to measure response of treatment on patients undergoing clinical trials. In this review, we first describe appearance of liver abnormalities in ultrasound images and state the practical issues encountered in characterization of diffuse liver diseases that can be addressed by software algorithms. We then discuss computer-aided diagnosis in general with features and classifiers relevant to diffuse liver diseases. In later sections of this paper, we review the published studies and describe the key findings of those studies. A concise tabular summary comparing image database, features extraction, feature selection, and classification algorithms presented in the published studies is also exhibited. Finally, we conclude with a summary of key findings and directions for further improvements in the areas of accuracy and objectiveness of computer-aided diagnosis. © The Author(s) 2016.
Medical imaging and computers in the diagnosis of breast cancer
NASA Astrophysics Data System (ADS)
Giger, Maryellen L.
2014-09-01
Computer-aided diagnosis (CAD) and quantitative image analysis (QIA) methods (i.e., computerized methods of analyzing digital breast images: mammograms, ultrasound, and magnetic resonance images) can yield novel image-based tumor and parenchyma characteristics (i.e., signatures that may ultimately contribute to the design of patient-specific breast cancer management plans). The role of QIA/CAD has been expanding beyond screening programs towards applications in risk assessment, diagnosis, prognosis, and response to therapy as well as in data mining to discover relationships of image-based lesion characteristics with genomics and other phenotypes; thus, as they apply to disease states. These various computer-based applications are demonstrated through research examples from the Giger Lab.
Computer aided diagnosis based on medical image processing and artificial intelligence methods
NASA Astrophysics Data System (ADS)
Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.
2006-12-01
Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.
Singh, Anushikha; Dutta, Malay Kishore
2017-12-01
The authentication and integrity verification of medical images is a critical and growing issue for patients in e-health services. Accurate identification of medical images and patient verification is an essential requirement to prevent error in medical diagnosis. The proposed work presents an imperceptible watermarking system to address the security issue of medical fundus images for tele-ophthalmology applications and computer aided automated diagnosis of retinal diseases. In the proposed work, patient identity is embedded in fundus image in singular value decomposition domain with adaptive quantization parameter to maintain perceptual transparency for variety of fundus images like healthy fundus or disease affected image. In the proposed method insertion of watermark in fundus image does not affect the automatic image processing diagnosis of retinal objects & pathologies which ensure uncompromised computer-based diagnosis associated with fundus image. Patient ID is correctly recovered from watermarked fundus image for integrity verification of fundus image at the diagnosis centre. The proposed watermarking system is tested in a comprehensive database of fundus images and results are convincing. results indicate that proposed watermarking method is imperceptible and it does not affect computer vision based automated diagnosis of retinal diseases. Correct recovery of patient ID from watermarked fundus image makes the proposed watermarking system applicable for authentication of fundus images for computer aided diagnosis and Tele-ophthalmology applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Computer-Aided Medical Diagnosis. Literature Review
1978-12-15
Croft found a 13% difference in diagnostic accuracy. He considered this difference insignificant in relation to the diagnostic differences caused ...type of diseases diagnosed probably are the major cause of cross-study variability in diagnostic accuracy. The consistency of diagnostic accuracy...REFERENCES ALPEROVITCH, A. and FRAGU, P., A suggestion for an effective use of a computer-aided diagnosis system in screening for hyperthyroidism , Method
Analytical Procedures for Testability.
1983-01-01
Beat Internal Classifications", AD: A018516. "A System of Computer Aided Diagnosis with Blood Serum Chemistry Tests and Bayesian Statistics", AD: 786284...6 LIST OF TALS .. 1. Truth Table ......................................... 49 2. Covering Problem .............................. 93 3. Primary and...quential classification procedure in a coronary care ward is evaluated. In the toxicology field "A System of Computer Aided Diagnosis with Blood Serum
Giger, Maryellen L.; Chan, Heang-Ping; Boone, John
2008-01-01
The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists’ goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists—as opposed to a completely automatic computer interpretation—focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous—from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects—collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more—from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis. PMID:19175137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giger, Maryellen L.; Chan, Heang-Ping; Boone, John
2008-12-15
The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities thatmore » are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists--as opposed to a completely automatic computer interpretation--focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous--from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects--collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more--from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.« less
[A computer-aided image diagnosis and study system].
Li, Zhangyong; Xie, Zhengxiang
2004-08-01
The revolution in information processing, particularly the digitizing of medicine, has changed the medical study, work and management. This paper reports a method to design a system for computer-aided image diagnosis and study. Combined with some good idea of graph-text system and picture archives communicate system (PACS), the system was realized and used for "prescription through computer", "managing images" and "reading images under computer and helping the diagnosis". Also typical examples were constructed in a database and used to teach the beginners. The system was developed by the visual developing tools based on object oriented programming (OOP) and was carried into operation on the Windows 9X platform. The system possesses friendly man-machine interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yaquin; Karnowski, Thomas Paul; Tobin Jr, Kenneth William
2011-01-01
In this article, we present the design and implementation of a regional ocular telehealth network for remote assessment and management of diabetic retinopathy (DR), including the design requirements, network topology, protocol design, system work flow, graphics user interfaces, and performance evaluation. The Telemedical Retinal Image Analysis and Diagnosis Network is a computer-aided, image analysis telehealth paradigm for the diagnosis of DR and other retinal diseases using fundus images acquired from primary care end users delivering care to underserved patient populations in the mid-South and southeastern United States.
Li, Yaqin; Karnowski, Thomas P; Tobin, Kenneth W; Giancardo, Luca; Morris, Scott; Sparrow, Sylvia E; Garg, Seema; Fox, Karen; Chaum, Edward
2011-10-01
In this article, we present the design and implementation of a regional ocular telehealth network for remote assessment and management of diabetic retinopathy (DR), including the design requirements, network topology, protocol design, system work flow, graphics user interfaces, and performance evaluation. The Telemedical Retinal Image Analysis and Diagnosis Network is a computer-aided, image analysis telehealth paradigm for the diagnosis of DR and other retinal diseases using fundus images acquired from primary care end users delivering care to underserved patient populations in the mid-South and southeastern United States.
Intelligent Computer-Aided Instruction for Medical Diagnosis
Clancey, William J.; Shortliffe, Edward H.; Buchanan, Bruce G.
1979-01-01
An intelligent computer-aided instruction (ICAI) program, named GUIDON, has been developed for teaching infectious disease diagnosis.* ICAI programs use artificial intelligence techniques for representing both subject material and teaching strategies. This paper briefly outlines the difference between traditional instructional programs and ICAI. We then illustrate how GUIDON makes contributions in areas important to medical CAI: interacting with the student in a mixed-initiative dialogue (including the problems of feedback and realism), teaching problem-solving strategies, and assembling a computer-based curriculum.
Computer-Aided Recognition of Facial Attributes for Fetal Alcohol Spectrum Disorders.
Valentine, Matthew; Bihm, Dustin C J; Wolf, Lior; Hoyme, H Eugene; May, Philip A; Buckley, David; Kalberg, Wendy; Abdul-Rahman, Omar A
2017-12-01
To compare the detection of facial attributes by computer-based facial recognition software of 2-D images against standard, manual examination in fetal alcohol spectrum disorders (FASD). Participants were gathered from the Fetal Alcohol Syndrome Epidemiology Research database. Standard frontal and oblique photographs of children were obtained during a manual, in-person dysmorphology assessment. Images were submitted for facial analysis conducted by the facial dysmorphology novel analysis technology (an automated system), which assesses ratios of measurements between various facial landmarks to determine the presence of dysmorphic features. Manual blinded dysmorphology assessments were compared with those obtained via the computer-aided system. Areas under the curve values for individual receiver-operating characteristic curves revealed the computer-aided system (0.88 ± 0.02) to be comparable to the manual method (0.86 ± 0.03) in detecting patients with FASD. Interestingly, cases of alcohol-related neurodevelopmental disorder (ARND) were identified more efficiently by the computer-aided system (0.84 ± 0.07) in comparison to the manual method (0.74 ± 0.04). A facial gestalt analysis of patients with ARND also identified more generalized facial findings compared to the cardinal facial features seen in more severe forms of FASD. We found there was an increased diagnostic accuracy for ARND via our computer-aided method. As this category has been historically difficult to diagnose, we believe our experiment demonstrates that facial dysmorphology novel analysis technology can potentially improve ARND diagnosis by introducing a standardized metric for recognizing FASD-associated facial anomalies. Earlier recognition of these patients will lead to earlier intervention with improved patient outcomes. Copyright © 2017 by the American Academy of Pediatrics.
Computer-Aided Diagnosis of Breast Cancer: A Multi-Center Demonstrator
1998-10-01
Artificial Neural Network (ANN) approach to computer aided diagnosis of breast cancer from mammographic findings. An ANN has been developed to provide support for the clinical decision to perform breast biopsy. The system is designed to aid in the decision to biopsy those patients who have suspicious mammographic findings. The decision to biopsy can be viewed as a two stage process: 1)the mammographer views the mammogram and determines the presence or absence of image features such as calcifications and masses, 2) the presence and description of these features
NASA Astrophysics Data System (ADS)
Beiden, Sergey V.; Wagner, Robert F.; Campbell, Gregory; Metz, Charles E.; Chan, Heang-Ping; Nishikawa, Robert M.; Schnall, Mitchell D.; Jiang, Yulei
2001-06-01
In recent years, the multiple-reader, multiple-case (MRMC) study paradigm has become widespread for receiver operating characteristic (ROC) assessment of systems for diagnostic imaging and computer-aided diagnosis. We review how MRMC data can be analyzed in terms of the multiple components of the variance (case, reader, interactions) observed in those studies. Such information is useful for the design of pivotal studies from results of a pilot study and also for studying the effects of reader training. Recently, several of the present authors have demonstrated methods to generalize the analysis of multiple variance components to the case where unaided readers of diagnostic images are compared with readers who receive the benefit of a computer assist (CAD). For this case it is necessary to model the possibility that several of the components of variance might be reduced when readers incorporate the computer assist, compared to the unaided reading condition. We review results of this kind of analysis on three previously published MRMC studies, two of which were applications of CAD to diagnostic mammography and one was an application of CAD to screening mammography. The results for the three cases are seen to differ, depending on the reader population sampled and the task of interest. Thus, it is not possible to generalize a particular analysis of variance components beyond the tasks and populations actually investigated.
Enhancements in medicine by integrating content based image retrieval in computer-aided diagnosis
NASA Astrophysics Data System (ADS)
Aggarwal, Preeti; Sardana, H. K.
2010-02-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. With cad, radiologists use the computer output as a "second opinion" and make the final decisions. Retrieving images is a useful tool to help radiologist to check medical image and diagnosis. The impact of contentbased access to medical images is frequently reported but existing systems are designed for only a particular context of diagnosis. The challenge in medical informatics is to develop tools for analyzing the content of medical images and to represent them in a way that can be efficiently searched and compared by the physicians. CAD is a concept established by taking into account equally the roles of physicians and computers. To build a successful computer aided diagnostic system, all the relevant technologies, especially retrieval need to be integrated in such a manner that should provide effective and efficient pre-diagnosed cases with proven pathology for the current case at the right time. In this paper, it is suggested that integration of content-based image retrieval (CBIR) in cad can bring enormous results in medicine especially in diagnosis. This approach is also compared with other approaches by highlighting its advantages over those approaches.
Li, Yueming; Law, Matthew; McDonald, Ann; Correll, Patty; Kaldor, John M; Grulich, Andrew E
2002-01-15
There is methodological debate as to whether cohorts defined by acquired immunodeficiency syndrome (AIDS) diagnosis can be used to estimate risks of cancer in persons with human immunodeficiency virus (HIV) before AIDS. The authors compared risks of non-AIDS-defining cancers before AIDS in persons with HIV using a cohort based on AIDS diagnosis and a second cohort based on HIV diagnosis. National population-based registries of AIDS and HIV diagnoses to August 1999 were matched separately with the National Cancer Registry in Australia. Four analyses were performed. In analysis 1, follow-up was from 5 years before AIDS registration in 8,118 persons with AIDS. Analysis 2 was similar but adjusted expected numbers of cancers for decreased survival. Analysis 3 was based on 7,061 persons registered with HIV, with follow-up from the reported date of diagnosis. Analysis 4 was based on 2,112 AIDS cases previously reported with HIV, with follow-up from 5 years before AIDS diagnosis. In all analyses, follow-up ended at cancer diagnosis, death, 6 months before AIDS, or the end of available cancer data, whichever occurred first. For 10 types of cancer there were at least three cases in any one of the analyses. For these cancers there was no systematic pattern such that one analysis produced consistently higher or lower estimates than the others. These analyses suggest that cancer risk in persons with HIV before AIDS diagnosis may be estimated reliably based on cancer experience 5 years before AIDS.
Computer-aided diagnosis of cavernous malformations in brain MR images.
Wang, Huiquan; Ahmed, S Nizam; Mandal, Mrinal
2018-06-01
Cavernous malformation or cavernoma is one of the most common epileptogenic lesions. It is a type of brain vessel abnormality that can cause serious symptoms such as seizures, intracerebral hemorrhage, and various neurological disorders. Manual detection of cavernomas by physicians in a large set of brain MRI slices is a time-consuming and labor-intensive task and often delays diagnosis. In this paper, we propose a computer-aided diagnosis (CAD) system for cavernomas based on T2-weighted axial plane MRI image analysis. The proposed technique first extracts the brain area based on atlas registration and active contour model, and then performs template matching to obtain candidate cavernoma regions. Texture, the histogram of oriented gradients and local binary pattern features of each candidate region are calculated, and principal component analysis is applied to reduce the feature dimensionality. Support vector machines (SVMs) are finally used to classify each region into cavernoma or non-cavernoma so that most of the false positives (obtained by template matching) are eliminated. The performance of the proposed CAD system is evaluated and experimental results show that it provides superior performance in cavernoma detection compared to existing techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tan, Shanjuan; Feng, Feifei; Wu, Yongjun; Wu, Yiming
To develop a computer-aided diagnostic scheme by using an artificial neural network (ANN) combined with tumor markers for diagnosis of hepatic carcinoma (HCC) as a clinical assistant method. 140 serum samples (50 malignant, 40 benign and 50 normal) were analyzed for α-fetoprotein (AFP), carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), sialic acid (SA) and calcium (Ca). The five tumor marker values were then used as ANN inputs data. The result of ANN was compared with that of discriminant analysis by receiver operating characteristic (ROC) curve (AUC) analysis. The diagnostic accuracy of ANN and discriminant analysis among all samples of the test group was 95.5% and 79.3%, respectively. Analysis of multiple tumor markers based on ANN may be a better choice than the traditional statistical methods for differentiating HCC from benign or normal.
NASA Technical Reports Server (NTRS)
Rockwell, T. H.; Giffin, W. C.; Romer, D. J.
1984-01-01
Rockwell and Giffin (1982) and Giffin and Rockwell (1983) have discussed the use of computer aided testing (CAT) in the study of pilot response to critical in-flight events. The present investigation represents an extension of these earlier studies. In testing pilot responses to critical in-flight events, use is made of a Plato-touch CRT system operating on a menu based format. In connection with the typical diagnostic problem, the pilot was presented with symptoms within a flight scenario. In one problem, the pilot has four minutes for obtaining the information which is needed to make a diagnosis of the problem. In the reported research, the attempt has been made to combine both diagnosis and diversion scenario into a single computer aided test. Tests with nine subjects were conducted. The obtained results and their significance are discussed.
Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis.
Garnavi, Rahil; Aldeen, Mohammad; Bailey, James
2012-11-01
This paper presents a novel computer-aided diagnosis system for melanoma. The novelty lies in the optimised selection and integration of features derived from textural, borderbased and geometrical properties of the melanoma lesion. The texture features are derived from using wavelet-decomposition, the border features are derived from constructing a boundaryseries model of the lesion border and analysing it in spatial and frequency domains, and the geometry features are derived from shape indexes. The optimised selection of features is achieved by using the Gain-Ratio method, which is shown to be computationally efficient for melanoma diagnosis application. Classification is done through the use of four classifiers; namely, Support Vector Machine, Random Forest, Logistic Model Tree and Hidden Naive Bayes. The proposed diagnostic system is applied on a set of 289 dermoscopy images (114 malignant, 175 benign) partitioned into train, validation and test image sets. The system achieves and accuracy of 91.26% and AUC value of 0.937, when 23 features are used. Other important findings include (i) the clear advantage gained in complementing texture with border and geometry features, compared to using texture information only, and (ii) higher contribution of texture features than border-based features in the optimised feature set.
Computer-aided diagnosis in radiological imaging: current status and future challenges
NASA Astrophysics Data System (ADS)
Doi, Kunio
2009-10-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. Many different types of CAD schemes are being developed for detection and/or characterization of various lesions in medical imaging, including conventional projection radiography, CT, MRI, and ultrasound imaging. Commercial systems for detection of breast lesions on mammograms have been developed and have received FDA approval for clinical use. CAD may be defined as a diagnosis made by a physician who takes into account the computer output as a "second opinion". The purpose of CAD is to improve the quality and productivity of physicians in their interpretation of radiologic images. The quality of their work can be improved in terms of the accuracy and consistency of their radiologic diagnoses. In addition, the productivity of radiologists is expected to be improved by a reduction in the time required for their image readings. The computer output is derived from quantitative analysis of radiologic images by use of various methods and techniques in computer vision, artificial intelligence, and artificial neural networks (ANNs). The computer output may indicate a number of important parameters, for example, the locations of potential lesions such as lung cancer and breast cancer, the likelihood of malignancy of detected lesions, and the likelihood of various diseases based on differential diagnosis in a given image and clinical parameters. In this review article, the basic concept of CAD is first defined, and the current status of CAD research is then described. In addition, the potential of CAD in the future is discussed and predicted.
Li, Yaqin; Karnowski, Thomas P.; Tobin, Kenneth W.; Giancardo, Luca; Morris, Scott; Sparrow, Sylvia E.; Garg, Seema; Fox, Karen
2011-01-01
Abstract In this article, we present the design and implementation of a regional ocular telehealth network for remote assessment and management of diabetic retinopathy (DR), including the design requirements, network topology, protocol design, system work flow, graphics user interfaces, and performance evaluation. The Telemedical Retinal Image Analysis and Diagnosis Network is a computer-aided, image analysis telehealth paradigm for the diagnosis of DR and other retinal diseases using fundus images acquired from primary care end users delivering care to underserved patient populations in the mid-South and southeastern United States. PMID:21819244
Improved biliary detection and diagnosis through intelligent machine analysis.
Logeswaran, Rajasvaran
2012-09-01
This paper reports on work undertaken to improve automated detection of bile ducts in magnetic resonance cholangiopancreatography (MRCP) images, with the objective of conducting preliminary classification of the images for diagnosis. The proposed I-BDeDIMA (Improved Biliary Detection and Diagnosis through Intelligent Machine Analysis) scheme is a multi-stage framework consisting of successive phases of image normalization, denoising, structure identification, object labeling, feature selection and disease classification. A combination of multiresolution wavelet, dynamic intensity thresholding, segment-based region growing, region elimination, statistical analysis and neural networks, is used in this framework to achieve good structure detection and preliminary diagnosis. Tests conducted on over 200 clinical images with known diagnosis have shown promising results of over 90% accuracy. The scheme outperforms related work in the literature, making it a viable framework for computer-aided diagnosis of biliary diseases. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Sinus barotrauma--late diagnosis and treatment with computer-aided endoscopic surgery.
Larsen, Anders Schermacher; Buchwald, Christian; Vesterhauge, Søren
2003-02-01
Sinus barotrauma is usually easy to diagnose, and treatment achieves good results. We present two severe cases where delayed diagnosis caused significant morbidity. The signs and symptoms were atypical and neither the patients themselves, nor the initial examiners recognized that the onset of symptoms coincided with descent in a commercial airliner. CT and MRI scans of the brain were normal, but in both cases showed opafication of the sphenoid sinuses, which lead to the correct diagnosis. Subsequent surgical intervention consisting of endoscopic computer-aided surgery showed blood and petechia in the affected sinuses. This procedure provided immediate relief.
Pereira, Danilo Cesar; Ramos, Rodrigo Pereira; do Nascimento, Marcelo Zanchetta
2014-04-01
In Brazil, the National Cancer Institute (INCA) reports more than 50,000 new cases of the disease, with risk of 51 cases per 100,000 women. Radiographic images obtained from mammography equipments are one of the most frequently used techniques for helping in early diagnosis. Due to factors related to cost and professional experience, in the last two decades computer systems to support detection (Computer-Aided Detection - CADe) and diagnosis (Computer-Aided Diagnosis - CADx) have been developed in order to assist experts in detection of abnormalities in their initial stages. Despite the large number of researches on CADe and CADx systems, there is still a need for improved computerized methods. Nowadays, there is a growing concern with the sensitivity and reliability of abnormalities diagnosis in both views of breast mammographic images, namely cranio-caudal (CC) and medio-lateral oblique (MLO). This paper presents a set of computational tools to aid segmentation and detection of mammograms that contained mass or masses in CC and MLO views. An artifact removal algorithm is first implemented followed by an image denoising and gray-level enhancement method based on wavelet transform and Wiener filter. Finally, a method for detection and segmentation of masses using multiple thresholding, wavelet transform and genetic algorithm is employed in mammograms which were randomly selected from the Digital Database for Screening Mammography (DDSM). The developed computer method was quantitatively evaluated using the area overlap metric (AOM). The mean ± standard deviation value of AOM for the proposed method was 79.2 ± 8%. The experiments demonstrate that the proposed method has a strong potential to be used as the basis for mammogram mass segmentation in CC and MLO views. Another important aspect is that the method overcomes the limitation of analyzing only CC and MLO views. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Yu, Q
2018-04-09
Computer aided design and computer aided manufacture (CAD/CAM) technology is a kind of oral digital system which is applied to clinical diagnosis and treatment. It overturns the traditional pattern, and provides a solution to restore defect tooth quickly and efficiently. In this paper we mainly discuss the clinical skills of chair-side CAD/CAM system, including tooth preparation, digital impression, the three-dimensional design of prosthesis, numerical control machining, clinical bonding and so on, and review the outcomes of several common kinds of materials at the same time.
Centered Kernel Alignment Enhancing Neural Network Pretraining for MRI-Based Dementia Diagnosis
Cárdenas-Peña, David; Collazos-Huertas, Diego; Castellanos-Dominguez, German
2016-01-01
Dementia is a growing problem that affects elderly people worldwide. More accurate evaluation of dementia diagnosis can help during the medical examination. Several methods for computer-aided dementia diagnosis have been proposed using resonance imaging scans to discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and healthy controls (NC). Nonetheless, the computer-aided diagnosis is especially challenging because of the heterogeneous and intermediate nature of MCI. We address the automated dementia diagnosis by introducing a novel supervised pretraining approach that takes advantage of the artificial neural network (ANN) for complex classification tasks. The proposal initializes an ANN based on linear projections to achieve more discriminating spaces. Such projections are estimated by maximizing the centered kernel alignment criterion that assesses the affinity between the resonance imaging data kernel matrix and the label target matrix. As a result, the performed linear embedding allows accounting for features that contribute the most to the MCI class discrimination. We compare the supervised pretraining approach to two unsupervised initialization methods (autoencoders and Principal Component Analysis) and against the best four performing classification methods of the 2014 CADDementia challenge. As a result, our proposal outperforms all the baselines (7% of classification accuracy and area under the receiver-operating-characteristic curve) at the time it reduces the class biasing. PMID:27148392
Zhang, Jiangheng; Chen, Yangxi; Zhou, Xiukun
2002-09-01
The characteristics of lip-mouth region including the soft and hard tissues in smiling position with frontal fixed position photographic computer-aided analysis were studied. The subjects were 80 persons (40 male and 40 females, age range: 17 to approximately 25 years) with acceptable faces and individual normal occlusions. The subjects were asked to take maximum smiling position to accept photographic measurement with computer-aided analysis. The maximum smile line could be divided into 3 categories: low smile line (16.25%), average smile line (68.75%), and high smile line (15%). The method adopting maximum smiling position to study the lip-month region is reproducible and comparable. This study would be helpful to provide a quantitative reference for clinical investigation, diagnosis, treatment and efficacy appraisal.
Incorporating Computer-Aided Language Sample Analysis into Clinical Practice
ERIC Educational Resources Information Center
Price, Lisa Hammett; Hendricks, Sean; Cook, Colleen
2010-01-01
Purpose: During the evaluation of language abilities, the needs of the child are best served when multiple types and sources of data are included in the evaluation process. Current educational policies and practice guidelines further dictate the use of authentic assessment data to inform diagnosis and treatment planning. Language sampling and…
Computer-aided testing of pilot response to critical in-flight events
NASA Technical Reports Server (NTRS)
Giffin, W. C.; Rockwell, T. H.
1984-01-01
This research on pilot response to critical in-flight events employs a unique methodology including an interactive computer-aided scenario-testing system. Navigation displays, instrument-panel displays, and assorted textual material are presented on a touch-sensitive CRT screen. Problem diagnosis scenarios, destination-diversion scenarios and combined destination/diagnostic tests are available. A complete time history of all data inquiries and responses is maintained. Sample results of diagnosis scenarios obtained from testing 38 licensed pilots are presented and discussed.
Computer-aided diagnosis: A survey with bibliometric analysis.
Takahashi, Ryohei; Kajikawa, Yuya
2017-05-01
Computer-aided diagnosis (CAD) has been a promising area of research over the last two decades. However, CAD is a very complicated subject because it involves a number of medicine and engineering-related fields. To develop a research overview of CAD, we conducted a literature survey with bibliometric analysis, which we report here. Our study determined that CAD research has been classified and categorized according to disease type and imaging modality. This classification began with the CAD of mammograms and eventually progressed to that of brain disease. Furthermore, based on our results, we discuss future directions and opportunities for CAD research. First, in contrast to the typical hypothetical approach, the data-driven approach has shown promise. Second, the normalization of the test datasets and an evaluation method is necessary when adopting an algorithm and a system. Third, we discuss opportunities for the co-evolution of CAD research and imaging instruments-for example, the CAD of bones and pancreatic cancer. Fourth, the potential of synergy with CAD and clinical decision support systems is also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-01-01
areas. We quantified morphometric features by geometric and fractal analysis of traced lesion boundaries. Although no single parameter can reliably...These include acoustic descriptors (“echogenicity,” “heterogeneity,” “shadowing”) and morphometric descriptors (“area,” “aspect ratio,” “border...quantitative descriptors; some morphometric features (such as border irregularity) also were particularly effective in lesion classification. Our
Initial development of a computer-aided diagnosis tool for solitary pulmonary nodules
NASA Astrophysics Data System (ADS)
Catarious, David M., Jr.; Baydush, Alan H.; Floyd, Carey E., Jr.
2001-07-01
This paper describes the development of a computer-aided diagnosis (CAD) tool for solitary pulmonary nodules. This CAD tool is built upon physically meaningful features that were selected because of their relevance to shape and texture. These features included a modified version of the Hotelling statistic (HS), a channelized HS, three measures of fractal properties, two measures of spicularity, and three manually measured shape features. These features were measured from a difficult database consisting of 237 regions of interest (ROIs) extracted from digitized chest radiographs. The center of each 256x256 pixel ROI contained a suspicious lesion which was sent to follow-up by a radiologist and whose nature was later clinically determined. Linear discriminant analysis (LDA) was used to search the feature space via sequential forward search using percentage correct as the performance metric. An optimized feature subset, selected for the highest accuracy, was then fed into a three layer artificial neural network (ANN). The ANN's performance was assessed by receiver operating characteristic (ROC) analysis. A leave-one-out testing/training methodology was employed for the ROC analysis. The performance of this system is competitive with that of three radiologists on the same database.
Evaluation of computer-aided detection and diagnosis systems.
Petrick, Nicholas; Sahiner, Berkman; Armato, Samuel G; Bert, Alberto; Correale, Loredana; Delsanto, Silvia; Freedman, Matthew T; Fryd, David; Gur, David; Hadjiiski, Lubomir; Huo, Zhimin; Jiang, Yulei; Morra, Lia; Paquerault, Sophie; Raykar, Vikas; Samuelson, Frank; Summers, Ronald M; Tourassi, Georgia; Yoshida, Hiroyuki; Zheng, Bin; Zhou, Chuan; Chan, Heang-Ping
2013-08-01
Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. Computer-aided detection systems mark regions of an image that may reveal specific abnormalities and are used to alert clinicians to these regions during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease using image-based information alone or in combination with other relevant diagnostic data and are used by clinicians as a decision support in developing their diagnoses. While CAD systems are commercially available, standardized approaches for evaluating and reporting their performance have not yet been fully formalized in the literature or in a standardization effort. This deficiency has led to difficulty in the comparison of CAD devices and in understanding how the reported performance might translate into clinical practice. To address these important issues, the American Association of Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Subcommittee (CADSC), in part, to develop recommendations on approaches for assessing CAD system performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members and to stimulate the development of consensus approaches and "best practices" for evaluating CAD systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD on end-users are discussed. It is hoped that awareness of these important evaluation elements and the CADSC recommendations will lead to further development of structured guidelines for CAD performance assessment. Proper assessment of CAD system performance is expected to increase the understanding of a CAD system's effectiveness and limitations, which is expected to stimulate further research and development efforts on CAD technologies, reduce problems due to improper use, and eventually improve the utility and efficacy of CAD in clinical practice.
Evaluation of computer-aided detection and diagnosis systemsa)
Petrick, Nicholas; Sahiner, Berkman; Armato, Samuel G.; Bert, Alberto; Correale, Loredana; Delsanto, Silvia; Freedman, Matthew T.; Fryd, David; Gur, David; Hadjiiski, Lubomir; Huo, Zhimin; Jiang, Yulei; Morra, Lia; Paquerault, Sophie; Raykar, Vikas; Samuelson, Frank; Summers, Ronald M.; Tourassi, Georgia; Yoshida, Hiroyuki; Zheng, Bin; Zhou, Chuan; Chan, Heang-Ping
2013-01-01
Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. Computer-aided detection systems mark regions of an image that may reveal specific abnormalities and are used to alert clinicians to these regions during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease using image-based information alone or in combination with other relevant diagnostic data and are used by clinicians as a decision support in developing their diagnoses. While CAD systems are commercially available, standardized approaches for evaluating and reporting their performance have not yet been fully formalized in the literature or in a standardization effort. This deficiency has led to difficulty in the comparison of CAD devices and in understanding how the reported performance might translate into clinical practice. To address these important issues, the American Association of Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Subcommittee (CADSC), in part, to develop recommendations on approaches for assessing CAD system performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members and to stimulate the development of consensus approaches and “best practices” for evaluating CAD systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD on end-users are discussed. It is hoped that awareness of these important evaluation elements and the CADSC recommendations will lead to further development of structured guidelines for CAD performance assessment. Proper assessment of CAD system performance is expected to increase the understanding of a CAD system's effectiveness and limitations, which is expected to stimulate further research and development efforts on CAD technologies, reduce problems due to improper use, and eventually improve the utility and efficacy of CAD in clinical practice. PMID:23927365
Computer-aided diagnosis for osteoporosis using chest 3D CT images
NASA Astrophysics Data System (ADS)
Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.
2016-03-01
The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.
Illán, Ignacio Alvarez; Górriz, Juan Manuel; Ramírez, Javier; Lang, Elmar W; Salas-Gonzalez, Diego; Puntonet, Carlos G
2012-11-01
This paper explores the importance of the latent symmetry of the brain in computer-aided systems for diagnosing Alzheimer's disease (AD). Symmetry and asymmetry are studied from two points of view: (i) the development of an effective classifier within the scope of machine learning techniques, and (ii) the assessment of its relevance to the AD diagnosis in the early stages of the disease. The proposed methodology is based on eigenimage decomposition of single-photon emission-computed tomography images, using an eigenspace extension to accommodate odd and even eigenvectors separately. This feature extraction technique allows for support-vector-machine classification and image analysis. Identification of AD patterns is improved when the latent symmetry of the brain is considered, with an estimated 92.78% accuracy (92.86% sensitivity, 92.68% specificity) using a linear kernel and a leave-one-out cross validation strategy. Also, asymmetries may be used to define a test for AD that is very specific (90.24% specificity) but not especially sensitive. Two main conclusions are derived from the analysis of the eigenimage spectrum. Firstly, the recognition of AD patterns is improved when considering only the symmetric part of the spectrum. Secondly, asymmetries in the hypo-metabolic patterns, when present, are more pronounced in subjects with AD. Copyright © 2012 Elsevier B.V. All rights reserved.
Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adeli, Hojjat
2017-09-27
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Post-traumatic Stress Disorder Symptoms Among People Living with HIV/AIDS in Rural China.
Luo, Sitong; Lin, Chunqing; Ji, Guoping; Li, Li
2017-11-01
Among people living with HIV/AIDS (PLHA), the occurrence of post-traumatic stress disorder (PTSD) symptoms associated with HIV diagnosis is a common problem. This study examined HIV diagnosis-related PTSD symptoms and its associated factors among PLHA in rural China. We used baseline data from a randomized controlled trial conducted in Anhui Province, China. Surveys of 522 PLHA were conducted via computer-assisted personal interview method. PTSD symptoms were measured based on re-experiencing, avoidance and arousal of the day of HIV diagnosis. Association between PTSD symptoms and demographic characteristics, physical and social functioning were assessed by multiple regression analysis and structural equation modeling. Social functioning exhibited a direct association with HIV diagnosis-related PTSD symptoms, and also mediated the association between PTSD symptoms and age, family income, and physical functioning. The study findings underscore the importance of developing interventions that alleviate PTSD symptoms and improve social functioning among PLHA in rural China.
2009-06-01
131 cases with 131 biopsy proven masses, of which 27 were malignant and 104 benign. The true locations of the masses were identified by an experi- enced ...two acquisitions would cause differ- ences in the subtlety of the masses on the FFDMs and SFMs. However, assuming that the differences are ran- dom... Lado , M. Souto, and J. J. Vidal, “Computer-aided diagnosis: Automatic detection of malignant masses in digitized mammograms,” Med. Phys. 25, 957–964
2007-06-01
the masses were identified by an experi- enced Mammography Quality Standards Act (MQSA) radiologist. The no-mass data set contained 98 cases. The time...force, and the difference in time between the two acquisitions would cause differ- ences in the subtlety of the masses on the FFDMs and SFMs. However...images," Medical Physics 18, 955-963 (1991). 20A. J. Mendez, P. G. Tahoces, M. J. Lado , M. Souto, and J. J. Vidal, "Computer-aided diagnosis: Automatic
Zhang, Jiang; Wang, James Z; Yuan, Zhen; Sobel, Eric S; Jiang, Huabei
2011-01-01
This study presents a computer-aided classification method to distinguish osteoarthritis finger joints from healthy ones based on the functional images captured by x-ray guided diffuse optical tomography. Three imaging features, joint space width, optical absorption, and scattering coefficients, are employed to train a Least Squares Support Vector Machine (LS-SVM) classifier for osteoarthritis classification. The 10-fold validation results show that all osteoarthritis joints are clearly identified and all healthy joints are ruled out by the LS-SVM classifier. The best sensitivity, specificity, and overall accuracy of the classification by experienced technicians based on manual calculation of optical properties and visual examination of optical images are only 85%, 93%, and 90%, respectively. Therefore, our LS-SVM based computer-aided classification is a considerably improved method for osteoarthritis diagnosis.
2005-10-01
nearly setting-independent features and artificial neural networks. Radiology 2003; 226:504-514. 14. Horsch K, Giger ML, Venta LA, Vyborny CJ...Giger ML, Vyborny CJ, Venta LA. Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography. Acad. Radiol. 2004; 11:272
ICADx: interpretable computer aided diagnosis of breast masses
NASA Astrophysics Data System (ADS)
Kim, Seong Tae; Lee, Hakmin; Kim, Hak Gu; Ro, Yong Man
2018-02-01
In this study, a novel computer aided diagnosis (CADx) framework is devised to investigate interpretability for classifying breast masses. Recently, a deep learning technology has been successfully applied to medical image analysis including CADx. Existing deep learning based CADx approaches, however, have a limitation in explaining the diagnostic decision. In real clinical practice, clinical decisions could be made with reasonable explanation. So current deep learning approaches in CADx are limited in real world deployment. In this paper, we investigate interpretability in CADx with the proposed interpretable CADx (ICADx) framework. The proposed framework is devised with a generative adversarial network, which consists of interpretable diagnosis network and synthetic lesion generative network to learn the relationship between malignancy and a standardized description (BI-RADS). The lesion generative network and the interpretable diagnosis network compete in an adversarial learning so that the two networks are improved. The effectiveness of the proposed method was validated on public mammogram database. Experimental results showed that the proposed ICADx framework could provide the interpretability of mass as well as mass classification. It was mainly attributed to the fact that the proposed method was effectively trained to find the relationship between malignancy and interpretations via the adversarial learning. These results imply that the proposed ICADx framework could be a promising approach to develop the CADx system.
A deep-learning based automatic pulmonary nodule detection system
NASA Astrophysics Data System (ADS)
Zhao, Yiyuan; Zhao, Liang; Yan, Zhennan; Wolf, Matthias; Zhan, Yiqiang
2018-02-01
Lung cancer is the deadliest cancer worldwide. Early detection of lung cancer is a promising way to lower the risk of dying. Accurate pulmonary nodule detection in computed tomography (CT) images is crucial for early diagnosis of lung cancer. The development of computer-aided detection (CAD) system of pulmonary nodules contributes to making the CT analysis more accurate and with more efficiency. Recent studies from other groups have been focusing on lung cancer diagnosis CAD system by detecting medium to large nodules. However, to fully investigate the relevance between nodule features and cancer diagnosis, a CAD that is capable of detecting nodules with all sizes is needed. In this paper, we present a deep-learning based automatic all size pulmonary nodule detection system by cascading two artificial neural networks. We firstly use a U-net like 3D network to generate nodule candidates from CT images. Then, we use another 3D neural network to refine the locations of the nodule candidates generated from the previous subsystem. With the second sub-system, we bring the nodule candidates closer to the center of the ground truth nodule locations. We evaluate our system on a public CT dataset provided by the Lung Nodule Analysis (LUNA) 2016 grand challenge. The performance on the testing dataset shows that our system achieves 90% sensitivity with an average of 4 false positives per scan. This indicates that our system can be an aid for automatic nodule detection, which is beneficial for lung cancer diagnosis.
Kominami, Yoko; Yoshida, Shigeto; Tanaka, Shinji; Sanomura, Yoji; Hirakawa, Tsubasa; Raytchev, Bisser; Tamaki, Toru; Koide, Tetsusi; Kaneda, Kazufumi; Chayama, Kazuaki
2016-03-01
It is necessary to establish cost-effective examinations and treatments for diminutive colorectal tumors that consider the treatment risk and surveillance interval after treatment. The Preservation and Incorporation of Valuable Endoscopic Innovations (PIVI) committee of the American Society for Gastrointestinal Endoscopy published a statement recommending the establishment of endoscopic techniques that practice the resect and discard strategy. The aims of this study were to evaluate whether our newly developed real-time image recognition system can predict histologic diagnoses of colorectal lesions depicted on narrow-band imaging and to satisfy some problems with the PIVI recommendations. We enrolled 41 patients who had undergone endoscopic resection of 118 colorectal lesions (45 nonneoplastic lesions and 73 neoplastic lesions). We compared the results of real-time image recognition system analysis with that of narrow-band imaging diagnosis and evaluated the correlation between image analysis and the pathological results. Concordance between the endoscopic diagnosis and diagnosis by a real-time image recognition system with a support vector machine output value was 97.5% (115/118). Accuracy between the histologic findings of diminutive colorectal lesions (polyps) and diagnosis by a real-time image recognition system with a support vector machine output value was 93.2% (sensitivity, 93.0%; specificity, 93.3%; positive predictive value (PPV), 93.0%; and negative predictive value, 93.3%). Although further investigation is necessary to establish our computer-aided diagnosis system, this real-time image recognition system may satisfy the PIVI recommendations and be useful for predicting the histology of colorectal tumors. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
PACS-Based Computer-Aided Detection and Diagnosis
NASA Astrophysics Data System (ADS)
Huang, H. K. (Bernie); Liu, Brent J.; Le, Anh HongTu; Documet, Jorge
The ultimate goal of Picture Archiving and Communication System (PACS)-based Computer-Aided Detection and Diagnosis (CAD) is to integrate CAD results into daily clinical practice so that it becomes a second reader to aid the radiologist's diagnosis. Integration of CAD and Hospital Information System (HIS), Radiology Information System (RIS) or PACS requires certain basic ingredients from Health Level 7 (HL7) standard for textual data, Digital Imaging and Communications in Medicine (DICOM) standard for images, and Integrating the Healthcare Enterprise (IHE) workflow profiles in order to comply with the Health Insurance Portability and Accountability Act (HIPAA) requirements to be a healthcare information system. Among the DICOM standards and IHE workflow profiles, DICOM Structured Reporting (DICOM-SR); and IHE Key Image Note (KIN), Simple Image and Numeric Report (SINR) and Post-processing Work Flow (PWF) are utilized in CAD-HIS/RIS/PACS integration. These topics with examples are presented in this chapter.
Computer-aided US diagnosis of breast lesions by using cell-based contour grouping.
Cheng, Jie-Zhi; Chou, Yi-Hong; Huang, Chiun-Sheng; Chang, Yeun-Chung; Tiu, Chui-Mei; Chen, Kuei-Wu; Chen, Chung-Ming
2010-06-01
To develop a computer-aided diagnostic algorithm with automatic boundary delineation for differential diagnosis of benign and malignant breast lesions at ultrasonography (US) and investigate the effect of boundary quality on the performance of a computer-aided diagnostic algorithm. This was an institutional review board-approved retrospective study with waiver of informed consent. A cell-based contour grouping (CBCG) segmentation algorithm was used to delineate the lesion boundaries automatically. Seven morphologic features were extracted. The classifier was a logistic regression function. Five hundred twenty breast US scans were obtained from 520 subjects (age range, 15-89 years), including 275 benign (mean size, 15 mm; range, 5-35 mm) and 245 malignant (mean size, 18 mm; range, 8-29 mm) lesions. The newly developed computer-aided diagnostic algorithm was evaluated on the basis of boundary quality and differentiation performance. The segmentation algorithms and features in two conventional computer-aided diagnostic algorithms were used for comparative study. The CBCG-generated boundaries were shown to be comparable with the manually delineated boundaries. The area under the receiver operating characteristic curve (AUC) and differentiation accuracy were 0.968 +/- 0.010 and 93.1% +/- 0.7, respectively, for all 520 breast lesions. At the 5% significance level, the newly developed algorithm was shown to be superior to the use of the boundaries and features of the two conventional computer-aided diagnostic algorithms in terms of AUC (0.974 +/- 0.007 versus 0.890 +/- 0.008 and 0.788 +/- 0.024, respectively). The newly developed computer-aided diagnostic algorithm that used a CBCG segmentation method to measure boundaries achieved a high differentiation performance. Copyright RSNA, 2010
A handheld computer-aided diagnosis system and simulated analysis
NASA Astrophysics Data System (ADS)
Su, Mingjian; Zhang, Xuejun; Liu, Brent; Su, Kening; Louie, Ryan
2016-03-01
This paper describes a Computer Aided Diagnosis (CAD) system based on cellphone and distributed cluster. One of the bottlenecks in building a CAD system for clinical practice is the storage and process of mass pathology samples freely among different devices, and normal pattern matching algorithm on large scale image set is very time consuming. Distributed computation on cluster has demonstrated the ability to relieve this bottleneck. We develop a system enabling the user to compare the mass image to a dataset with feature table by sending datasets to Generic Data Handler Module in Hadoop, where the pattern recognition is undertaken for the detection of skin diseases. A single and combination retrieval algorithm to data pipeline base on Map Reduce framework is used in our system in order to make optimal choice between recognition accuracy and system cost. The profile of lesion area is drawn by doctors manually on the screen, and then uploads this pattern to the server. In our evaluation experiment, an accuracy of 75% diagnosis hit rate is obtained by testing 100 patients with skin illness. Our system has the potential help in building a novel medical image dataset by collecting large amounts of gold standard during medical diagnosis. Once the project is online, the participants are free to join and eventually an abundant sample dataset will soon be gathered enough for learning. These results demonstrate our technology is very promising and expected to be used in clinical practice.
Correlative Feature Analysis for Multimodality Breast CAD
2009-09-01
Imaging 20, 1275–1284 2001. 22V. Caselles, R . Kimmel, and G. Sapiro, “Geodesic active contours,” Int. J. Comput. Vis. 22, 61–79 1997. 23R. Malladi , J...A. R . Jamieson, C. A. Sennett, and S. A. Jensen, “Evaluation of computer-aided diagnosis on a large clinical full-field digital mammographic dataset...Academic Radiology, 15, 1437-1445 (2008). Conference Proceeding Papers [1] Y. Yuan, M. L. Giger, K. Suzuki, H. Li, and A. R . Jamieson, “A
Computer-aided diagnosis (CAD) for colonoscopy
NASA Astrophysics Data System (ADS)
Gu, Jia; Poirson, Allen
2007-03-01
Colorectal cancer is the second leading cause of cancer deaths, and ranks third for new cancer cases and cancer mortality for both men and women. However, its death rate can be dramatically reduced by appropriate treatment when early detection is available. The purpose of colonoscopy is to identify and assess the severity of lesions, which may be flat or protruding. Due to the subjective nature of the examination, colonoscopic proficiency is highly variable and dependent upon the colonoscopist's knowledge and experience. An automated image processing system providing an objective, rapid, and inexpensive analysis of video from a standard colonoscope could provide a valuable tool for screening and diagnosis. In this paper, we present the design, functionality and preliminary results of its Computer-Aided-Diagnosis (CAD) system for colonoscopy - ColonoCAD TM. ColonoCAD is a complex multi-sensor, multi-data and multi-algorithm image processing system, incorporating data management and visualization, video quality assessment and enhancement, calibration, multiple view based reconstruction, feature extraction and classification. As this is a new field in medical image processing, our hope is that this paper will provide the framework to encourage and facilitate collaboration and discussion between industry, academia, and medical practitioners.
Computer-aided detection of basal cell carcinoma through blood content analysis in dermoscopy images
NASA Astrophysics Data System (ADS)
Kharazmi, Pegah; Kalia, Sunil; Lui, Harvey; Wang, Z. Jane; Lee, Tim K.
2018-02-01
Basal cell carcinoma (BCC) is the most common type of skin cancer, which is highly damaging to the skin at its advanced stages and causes huge costs on the healthcare system. However, most types of BCC are easily curable if detected at early stage. Due to limited access to dermatologists and expert physicians, non-invasive computer-aided diagnosis is a viable option for skin cancer screening. A clinical biomarker of cancerous tumors is increased vascularization and excess blood flow. In this paper, we present a computer-aided technique to differentiate cancerous skin tumors from benign lesions based on vascular characteristics of the lesions. Dermoscopy image of the lesion is first decomposed using independent component analysis of the RGB channels to derive melanin and hemoglobin maps. A novel set of clinically inspired features and ratiometric measurements are then extracted from each map to characterize the vascular properties and blood content of the lesion. The feature set is then fed into a random forest classifier. Over a dataset of 664 skin lesions, the proposed method achieved an area under ROC curve of 0.832 in a 10-fold cross validation for differentiating basal cell carcinomas from benign lesions.
Angelhed, J E; Bjurö, T I; Ejdebäck, J; Selin, K; Schlossman, D; Griffith, L S; Bergstrand, R; Vedin, A; Wilhelmsson, C
1984-01-01
A set of electrocardiographic criteria for the diagnosis of coronary artery disease was evaluated in two different groups of patients examined by computer aided 12 lead exercise electrocardiographic stress testing and coronary arteriography. One group consisted of patients with severe angina pectoris and the other of patients who had suffered a myocardial infarction three years before the study. Angiographically determined categories of patients could be identified with satisfactory precision by the electrocardiographic criteria under test in the patients with angina pectoris but not in those with infarction. A new method of classifying patients on the basis of data from coronary arteriography improved the correlation with ST segment analysis compared with conventional classification. PMID:6743432
Digital model as an alternative to plaster model in assessment of space analysis
Kumar, A. Anand; Phillip, Abraham; Kumar, Sathesh; Rawat, Anuradha; Priya, Sakthi; Kumaran, V.
2015-01-01
Introduction: Digital three-dimensional models are widely used for orthodontic diagnosis. The purpose of this study was to appraise the accuracy of digital models obtained from computer-aided design/computer-aided manufacturing (CAD/CAM) and cone-beam computed tomography (CBCT) for tooth-width measurements and the Bolton analysis. Materials and Methods: Digital models (CAD/CAM, CBCT) and plaster model were made for each of 50 subjects. Tooth-width measurements on the digital models (CAD/CAM, CBCT) were compared with those on the corresponding plaster models. The anterior and overall Bolton ratios were calculated for each participant and for each method. The paired t-test was applied to determine the validity. Results: Tooth-width measurements, anterior, and overall Bolton ratio of digital models of CAD/CAM and CBCT did not differ significantly from those on the plaster models. Conclusion: Hence, both CBCT and CAD/CAM are trustable and promising technique that can replace plaster models due to its overwhelming advantages. PMID:26538899
Automated diagnosis of autism: in search of a mathematical marker.
Bhat, Shreya; Acharya, U Rajendra; Adeli, Hojjat; Bairy, G Muralidhar; Adeli, Amir
2014-01-01
Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (EEG). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-the-art review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEG-based diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder.
Computer aided diagnosis of diabetic foot using infrared thermography: A review.
Adam, Muhammad; Ng, Eddie Y K; Tan, Jen Hong; Heng, Marabelle L; Tong, Jasper W K; Acharya, U Rajendra
2017-12-01
Diabetes mellitus (DM) is a chronic metabolic disorder that requires regular medical care to prevent severe complications. The elevated blood glucose level affects the eyes, blood vessels, nerves, heart, and kidneys after the onset. The affected blood vessels (usually due to atherosclerosis) may lead to insufficient blood circulation particularly in the lower extremities and nerve damage (neuropathy), which can result in serious foot complications. Hence, an early detection and treatment can prevent foot complications such as ulcerations and amputations. Clinicians often assess the diabetic foot for sensory deficits with clinical tools, and the resulting foot severity is often manually evaluated. The infrared thermography is a fast, nonintrusive and non-contact method which allows the visualization of foot plantar temperature distribution. Several studies have proposed infrared thermography-based computer aided diagnosis (CAD) methods for diabetic foot. Among them, the asymmetric temperature analysis method is more superior, as it is easy to implement, and yielded satisfactory results in most of the studies. In this paper, the diabetic foot, its pathophysiology, conventional assessments methods, infrared thermography and the different infrared thermography-based CAD analysis methods are reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Perilli, Viviana; Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Cassano, Germana; Cordiano, Noemi; Pinto, Katia; Minervini, Mauro G.; Oliva, Doretta
2012-01-01
This study assessed whether four patients with a diagnosis of Alzheimer's disease could make independent phone calls via a computer-aided telephone system. The study was carried out according to a non-concurrent multiple baseline design across participants. All participants started with baseline during which the telephone system was not available,…
Evaluating Imaging and Computer-aided Detection and Diagnosis Devices at the FDA
Gallas, Brandon D.; Chan, Heang-Ping; D’Orsi, Carl J.; Dodd, Lori E.; Giger, Maryellen L.; Gur, David; Krupinski, Elizabeth A.; Metz, Charles E.; Myers, Kyle J.; Obuchowski, Nancy A.; Sahiner, Berkman; Toledano, Alicia Y.; Zuley, Margarita L.
2017-01-01
This report summarizes the Joint FDA-MIPS Workshop on Methods for the Evaluation of Imaging and Computer-Assist Devices. The purpose of the workshop was to gather information on the current state of the science and facilitate consensus development on statistical methods and study designs for the evaluation of imaging devices to support US Food and Drug Administration submissions. Additionally, participants expected to identify gaps in knowledge and unmet needs that should be addressed in future research. This summary is intended to document the topics that were discussed at the meeting and disseminate the lessons that have been learned through past studies of imaging and computer-aided detection and diagnosis device performance. PMID:22306064
Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen
2015-01-01
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. PMID:26346558
Hua, Kai-Lung; Hsu, Che-Hao; Hidayati, Shintami Chusnul; Cheng, Wen-Huang; Chen, Yu-Jen
2015-01-01
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.
Computer-aided diagnosis and artificial intelligence in clinical imaging.
Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Doi, Kunio
2011-11-01
Computer-aided diagnosis (CAD) is rapidly entering the radiology mainstream. It has already become a part of the routine clinical work for the detection of breast cancer with mammograms. The computer output is used as a "second opinion" in assisting radiologists' image interpretations. The computer algorithm generally consists of several steps that may include image processing, image feature analysis, and data classification via the use of tools such as artificial neural networks (ANN). In this article, we will explore these and other current processes that have come to be referred to as "artificial intelligence." One element of CAD, temporal subtraction, has been applied for enhancing interval changes and for suppressing unchanged structures (eg, normal structures) between 2 successive radiologic images. To reduce misregistration artifacts on the temporal subtraction images, a nonlinear image warping technique for matching the previous image to the current one has been developed. Development of the temporal subtraction method originated with chest radiographs, with the method subsequently being applied to chest computed tomography (CT) and nuclear medicine bone scans. The usefulness of the temporal subtraction method for bone scans was demonstrated by an observer study in which reading times and diagnostic accuracy improved significantly. An additional prospective clinical study verified that the temporal subtraction image could be used as a "second opinion" by radiologists with negligible detrimental effects. ANN was first used in 1990 for computerized differential diagnosis of interstitial lung diseases in CAD. Since then, ANN has been widely used in CAD schemes for the detection and diagnosis of various diseases in different imaging modalities, including the differential diagnosis of lung nodules and interstitial lung diseases in chest radiography, CT, and position emission tomography/CT. It is likely that CAD will be integrated into picture archiving and communication systems and will become a standard of care for diagnostic examinations in daily clinical work. Copyright © 2011 Elsevier Inc. All rights reserved.
Tartar, A; Akan, A; Kilic, N
2014-01-01
Computer-aided detection systems can help radiologists to detect pulmonary nodules at an early stage. In this paper, a novel Computer-Aided Diagnosis system (CAD) is proposed for the classification of pulmonary nodules as malignant and benign. The proposed CAD system using ensemble learning classifiers, provides an important support to radiologists at the diagnosis process of the disease, achieves high classification performance. The proposed approach with bagging classifier results in 94.7 %, 90.0 % and 77.8 % classification sensitivities for benign, malignant and undetermined classes (89.5 % accuracy), respectively.
Towards a computer-aided diagnosis system for vocal cord diseases.
Verikas, A; Gelzinis, A; Bacauskiene, M; Uloza, V
2006-01-01
The objective of this work is to investigate a possibility of creating a computer-aided decision support system for an automated analysis of vocal cord images aiming to categorize diseases of vocal cords. The problem is treated as a pattern recognition task. To obtain a concise and informative representation of a vocal cord image, colour, texture, and geometrical features are used. The representation is further analyzed by a pattern classifier categorizing the image into healthy, diffuse, and nodular classes. The approach developed was tested on 785 vocal cord images collected at the Department of Otolaryngology, Kaunas University of Medicine, Lithuania. A correct classification rate of over 87% was obtained when categorizing a set of unseen images into the aforementioned three classes. Bearing in mind the high similarity of the decision classes, the results obtained are rather encouraging and the developed tools could be very helpful for assuring objective analysis of the images of laryngeal diseases.
NASA Astrophysics Data System (ADS)
Wang, Bohan; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Tang, Qinggong; Wu, Tongtong; Falola, Reuben; Smith, Tikina; Andrews, Peter M.; Chen, Yu
2017-12-01
Chronic kidney disease (CKD) is characterized by a progressive loss of renal function over time. Histopathological analysis of the condition of glomeruli and the proximal convolutional tubules over time can provide valuable insights into the progression of CKD. Optical coherence tomography (OCT) is a technology that can analyze the microscopic structures of a kidney in a nondestructive manner. Recently, we have shown that OCT can provide real-time imaging of kidney microstructures in vivo without administering exogenous contrast agents. A murine model of CKD induced by intravenous Adriamycin (ADR) injection is evaluated by OCT. OCT images of the rat kidneys have been captured every week up to eight weeks. Tubular diameter and hypertrophic tubule population of the kidneys at multiple time points after ADR injection have been evaluated through a fully automated computer-vision system. Results revealed that mean tubular diameter and hypertrophic tubule population increase with time in post-ADR injection period. The results suggest that OCT images of the kidney contain abundant information about kidney histopathology. Fully automated computer-aided diagnosis based on OCT has the potential for clinical evaluation of CKD conditions.
Okada, Tohru; Iwano, Shingo; Ishigaki, Takeo; Kitasaka, Takayuki; Hirano, Yasushi; Mori, Kensaku; Suenaga, Yasuhito; Naganawa, Shinji
2009-02-01
The ground-glass opacity (GGO) of lung cancer is identified only subjectively on computed tomography (CT) images as no quantitative characteristic has been defined for GGOs. We sought to define GGOs quantitatively and to differentiate between GGOs and solid-type lung cancers semiautomatically with a computer-aided diagnosis (CAD). High-resolution CT images of 100 pulmonary nodules (all peripheral lung cancers) were collected from our clinical records. Two radiologists traced the contours of nodules and distinguished GGOs from solid areas. The CT attenuation value of each area was measured. Differentiation between cancer types was assessed by a receiver-operating characteristic (ROC) analysis. The mean CT attenuation of the GGO areas was -618.4 +/- 212.2 HU, whereas that of solid areas was -68.1 +/- 230.3 HU. CAD differentiated between solidand GGO-type lung cancers with a sensitivity of 86.0% and specificity of 96.5% when the threshold value was -370 HU. Four nodules of mixed GGOs were incorrectly classified as the solid type. CAD detected 96.3% of GGO areas when the threshold between GGO and solid areas was 194 HU. Objective definition of GGO area by CT attenuation is feasible. This method is useful for semiautomatic differentiation between GGOs and solid types of lung cancer.
ERIC Educational Resources Information Center
Perilli, Viviana; Lancioni, Giulio E.; Laporta, Dominga; Paparella, Adele; Caffo, Alessandro O.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Oliva, Doretta
2013-01-01
This study extended the assessment of a computer-aided telephone system to enable five patients with a diagnosis of Alzheimer's disease to make phone calls independently. The patients were divided into two groups and exposed to intervention according to a non-concurrent multiple baseline design across groups. All patients started with baseline in…
Computer-aided diagnosis of alcoholism-related EEG signals.
Acharya, U Rajendra; S, Vidya; Bhat, Shreya; Adeli, Hojjat; Adeli, Amir
2014-12-01
Alcoholism is a severe disorder that affects the functionality of neurons in the central nervous system (CNS) and alters the behavior of the affected person. Electroencephalogram (EEG) signals can be used as a diagnostic tool in the evaluation of subjects with alcoholism. The neurophysiological interpretation of EEG signals in persons with alcoholism (PWA) is based on observation and interpretation of the frequency and power in their EEGs compared to EEG signals from persons without alcoholism. This paper presents a review of the known features of EEGs obtained from PWA and proposes that the impact of alcoholism on the brain can be determined by computer-aided analysis of EEGs through extracting the minute variations in the EEG signals that can differentiate the EEGs of PWA from those of nonaffected persons. The authors advance the idea of automated computer-aided diagnosis (CAD) of alcoholism by employing the EEG signals. This is achieved through judicious combination of signal processing techniques such as wavelet, nonlinear dynamics, and chaos theory and pattern recognition and classification techniques. A CAD system is cost-effective and efficient and can be used as a decision support system by physicians in the diagnosis and treatment of alcoholism especially those who do not specialize in alcoholism or neurophysiology. It can also be of great value to rehabilitation centers to assess PWA over time and to monitor the impact of treatment aimed at minimizing or reversing the effects of the disease on the brain. A CAD system can be used to determine the extent of alcoholism-related changes in EEG signals (low, medium, high) and the effectiveness of therapeutic plans. Copyright © 2014 Elsevier Inc. All rights reserved.
Bayes' theorem application in the measure information diagnostic value assessment
NASA Astrophysics Data System (ADS)
Orzechowski, Piotr D.; Makal, Jaroslaw; Nazarkiewicz, Andrzej
2006-03-01
The paper presents Bayesian method application in the measure information diagnostic value assessment that is used in the computer-aided diagnosis system. The computer system described here has been created basing on the Bayesian Network and is used in Benign Prostatic Hyperplasia (BPH) diagnosis. The graphic diagnostic model enables to juxtapose experts' knowledge with data.
Texture Feature Extraction and Classification for Iris Diagnosis
NASA Astrophysics Data System (ADS)
Ma, Lin; Li, Naimin
Appling computer aided techniques in iris image processing, and combining occidental iridology with the traditional Chinese medicine is a challenging research area in digital image processing and artificial intelligence. This paper proposes an iridology model that consists the iris image pre-processing, texture feature analysis and disease classification. To the pre-processing, a 2-step iris localization approach is proposed; a 2-D Gabor filter based texture analysis and a texture fractal dimension estimation method are proposed for pathological feature extraction; and at last support vector machines are constructed to recognize 2 typical diseases such as the alimentary canal disease and the nerve system disease. Experimental results show that the proposed iridology diagnosis model is quite effective and promising for medical diagnosis and health surveillance for both hospital and public use.
Zheng, Xiujuan; Wei, Wentao; Huang, Qiu; Song, Shaoli; Wan, Jieqing; Huang, Gang
2017-01-01
The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.
Song, Yang; Zhang, Yu-Dong; Yan, Xu; Liu, Hui; Zhou, Minxiong; Hu, Bingwen; Yang, Guang
2018-04-16
Deep learning is the most promising methodology for automatic computer-aided diagnosis of prostate cancer (PCa) with multiparametric MRI (mp-MRI). To develop an automatic approach based on deep convolutional neural network (DCNN) to classify PCa and noncancerous tissues (NC) with mp-MRI. Retrospective. In all, 195 patients with localized PCa were collected from a PROSTATEx database. In total, 159/17/19 patients with 444/48/55 observations (215/23/23 PCas and 229/25/32 NCs) were randomly selected for training/validation/testing, respectively. T 2 -weighted, diffusion-weighted, and apparent diffusion coefficient images. A radiologist manually labeled the regions of interest of PCas and NCs and estimated the Prostate Imaging Reporting and Data System (PI-RADS) scores for each region. Inspired by VGG-Net, we designed a patch-based DCNN model to distinguish between PCa and NCs based on a combination of mp-MRI data. Additionally, an enhanced prediction method was used to improve the prediction accuracy. The performance of DCNN prediction was tested using a receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Moreover, the predicted result was compared with the PI-RADS score to evaluate its clinical value using decision curve analysis. Two-sided Wilcoxon signed-rank test with statistical significance set at 0.05. The DCNN produced excellent diagnostic performance in distinguishing between PCa and NC for testing datasets with an AUC of 0.944 (95% confidence interval: 0.876-0.994), sensitivity of 87.0%, specificity of 90.6%, PPV of 87.0%, and NPV of 90.6%. The decision curve analysis revealed that the joint model of PI-RADS and DCNN provided additional net benefits compared with the DCNN model and the PI-RADS scheme. The proposed DCNN-based model with enhanced prediction yielded high performance in statistical analysis, suggesting that DCNN could be used in computer-aided diagnosis (CAD) for PCa classification. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Evaluation of a New Ensemble Learning Framework for Mass Classification in Mammograms.
Rahmani Seryasat, Omid; Haddadnia, Javad
2018-06-01
Mammography is the most common screening method for diagnosis of breast cancer. In this study, a computer-aided system for diagnosis of benignity and malignity of the masses was implemented in mammogram images. In the computer aided diagnosis system, we first reduce the noise in the mammograms using an effective noise removal technique. After the noise removal, the mass in the region of interest must be segmented and this segmentation is done using a deformable model. After the mass segmentation, a number of features are extracted from it. These features include: features of the mass shape and border, tissue properties, and the fractal dimension. After extracting a large number of features, a proper subset must be chosen from among them. In this study, we make use of a new method on the basis of a genetic algorithm for selection of a proper set of features. After determining the proper features, a classifier is trained. To classify the samples, a new architecture for combination of the classifiers is proposed. In this architecture, easy and difficult samples are identified and trained using different classifiers. Finally, the proposed mass diagnosis system was also tested on mini-Mammographic Image Analysis Society and digital database for screening mammography databases. The obtained results indicate that the proposed system can compete with the state-of-the-art methods in terms of accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Samsi, Siddharth; Krishnamurthy, Ashok K.; Gurcan, Metin N.
2012-01-01
Follicular Lymphoma (FL) is one of the most common non-Hodgkin Lymphoma in the United States. Diagnosis and grading of FL is based on the review of histopathological tissue sections under a microscope and is influenced by human factors such as fatigue and reader bias. Computer-aided image analysis tools can help improve the accuracy of diagnosis and grading and act as another tool at the pathologist’s disposal. Our group has been developing algorithms for identifying follicles in immunohistochemical images. These algorithms have been tested and validated on small images extracted from whole slide images. However, the use of these algorithms for analyzing the entire whole slide image requires significant changes to the processing methodology since the images are relatively large (on the order of 100k × 100k pixels). In this paper we discuss the challenges involved in analyzing whole slide images and propose potential computational methodologies for addressing these challenges. We discuss the use of parallel computing tools on commodity clusters and compare performance of the serial and parallel implementations of our approach. PMID:22962572
Bhateja, Vikrant; Moin, Aisha; Srivastava, Anuja; Bao, Le Nguyen; Lay-Ekuakille, Aimé; Le, Dac-Nhuong
2016-07-01
Computer based diagnosis of Alzheimer's disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer's disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Component Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhateja, Vikrant, E-mail: bhateja.vikrant@gmail.com, E-mail: nhuongld@hus.edu.vn; Moin, Aisha; Srivastava, Anuja
Computer based diagnosis of Alzheimer’s disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer’s disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Componentmore » Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).« less
Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions.
Loh, Brian C S; Then, Patrick H H
2017-01-01
Cardiovascular diseases are one of the top causes of deaths worldwide. In developing nations and rural areas, difficulties with diagnosis and treatment are made worse due to the deficiency of healthcare facilities. A viable solution to this issue is telemedicine, which involves delivering health care and sharing medical knowledge at a distance. Additionally, mHealth, the utilization of mobile devices for medical care, has also proven to be a feasible choice. The integration of telemedicine, mHealth and computer-aided diagnosis systems with the fields of machine and deep learning has enabled the creation of effective services that are adaptable to a multitude of scenarios. The objective of this review is to provide an overview of heart disease diagnosis and management, especially within the context of rural healthcare, as well as discuss the benefits, issues and solutions of implementing deep learning algorithms to improve the efficacy of relevant medical applications.
Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions
Then, Patrick H. H.
2017-01-01
Cardiovascular diseases are one of the top causes of deaths worldwide. In developing nations and rural areas, difficulties with diagnosis and treatment are made worse due to the deficiency of healthcare facilities. A viable solution to this issue is telemedicine, which involves delivering health care and sharing medical knowledge at a distance. Additionally, mHealth, the utilization of mobile devices for medical care, has also proven to be a feasible choice. The integration of telemedicine, mHealth and computer-aided diagnosis systems with the fields of machine and deep learning has enabled the creation of effective services that are adaptable to a multitude of scenarios. The objective of this review is to provide an overview of heart disease diagnosis and management, especially within the context of rural healthcare, as well as discuss the benefits, issues and solutions of implementing deep learning algorithms to improve the efficacy of relevant medical applications. PMID:29184897
Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging.
Garcia-Hernandez, Jose Juan; Gomez-Flores, Wilfrido; Rubio-Loyola, Javier
2016-01-01
Medical images (MI) are relevant sources of information for detecting and diagnosing a large number of illnesses and abnormalities. Due to their importance, this study is focused on breast ultrasound (BUS), which is the main adjunct for mammography to detect common breast lesions among women worldwide. On the other hand, aiming to enhance data security, image fidelity, authenticity, and content verification in e-health environments, MI watermarking has been widely used, whose main goal is to embed patient meta-data into MI so that the resulting image keeps its original quality. In this sense, this paper deals with the comparison of two watermarking approaches, namely spread spectrum based on the discrete cosine transform (SS-DCT) and the high-capacity data-hiding (HCDH) algorithm, so that the watermarked BUS images are guaranteed to be adequate for a computer-aided diagnosis (CADx) system, whose two principal outcomes are lesion segmentation and classification. Experimental results show that HCDH algorithm is highly recommended for watermarking medical images, maintaining the image quality and without introducing distortion into the output of CADx. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multiple neural network approaches to clinical expert systems
NASA Astrophysics Data System (ADS)
Stubbs, Derek F.
1990-08-01
We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results
Computer-aided diagnosis of HIE based on segmentation of MRI
NASA Astrophysics Data System (ADS)
Sun, Ziguang; Li, Chungui; Wang, Qin
2009-10-01
Computer-aided diagnosis has become one of the major research subjects in medical imaging and diagnostic radiology. Hypoxic-ischemic encephalopathy (HIE), remains a serious condition that causes significant mortality and long-term morbidity to neonates. We adopt self-organizing feature maps to segment the tissues, such as white matter and grey matter in the magnetic resonance images. The borderline between white matter and grey matter can be found and the doubtful regions along with the borderline can be localized, then the feature in doubtful regions can be quantified. The method can assist doctors to easily diagnose whether a neonate is ill with mild HIE.
An Approach towards Ultrasound Kidney Cysts Detection using Vector Graphic Image Analysis
NASA Astrophysics Data System (ADS)
Mahmud, Wan Mahani Hafizah Wan; Supriyanto, Eko
2017-08-01
This study develops new approach towards detection of kidney ultrasound image for both with single cyst as well as multiple cysts. 50 single cyst images and 25 multiple cysts images were used to test the developed algorithm. Steps involved in developing this algorithm were vector graphic image formation and analysis, thresholding, binarization, filtering as well as roundness test. Performance evaluation to 50 single cyst images gave accuracy of 92%, while for multiple cysts images, the accuracy was about 86.89% when tested to 25 multiple cysts images. This developed algorithm may be used in developing a computerized system such as computer aided diagnosis system to help medical experts in diagnosis of kidney cysts.
Computer-aided-diagnosis (CAD) for colposcopy
NASA Astrophysics Data System (ADS)
Lange, Holger; Ferris, Daron G.
2005-04-01
Uterine cervical cancer is the second most common cancer among women worldwide. Colposcopy is a diagnostic method, whereby a physician (colposcopist) visually inspects the lower genital tract (cervix, vulva and vagina), with special emphasis on the subjective appearance of metaplastic epithelium comprising the transformation zone on the cervix. Cervical cancer precursor lesions and invasive cancer exhibit certain distinctly abnormal morphologic features. Lesion characteristics such as margin; color or opacity; blood vessel caliber, intercapillary spacing and distribution; and contour are considered by colposcopists to derive a clinical diagnosis. Clinicians and academia have suggested and shown proof of concept that automated image analysis of cervical imagery can be used for cervical cancer screening and diagnosis, having the potential to have a direct impact on improving women"s health care and reducing associated costs. STI Medical Systems is developing a Computer-Aided-Diagnosis (CAD) system for colposcopy -- ColpoCAD. At the heart of ColpoCAD is a complex multi-sensor, multi-data and multi-feature image analysis system. A functional description is presented of the envisioned ColpoCAD system, broken down into: Modality Data Management System, Image Enhancement, Feature Extraction, Reference Database, and Diagnosis and directed Biopsies. The system design and development process of the image analysis system is outlined. The system design provides a modular and open architecture built on feature based processing. The core feature set includes the visual features used by colposcopists. This feature set can be extended to include new features introduced by new instrument technologies, like fluorescence and impedance, and any other plausible feature that can be extracted from the cervical data. Preliminary results of our research on detecting the three most important features: blood vessel structures, acetowhite regions and lesion margins are shown. As this is a new and very complex field in medical image processing, the hope is that this paper can provide a framework and basis to encourage and facilitate collaboration and discussion between industry, academia, and medical practitioners.
Computer-aided dermoscopy for diagnosis of melanoma
Barzegari, Masoomeh; Ghaninezhad, Haiedeh; Mansoori, Parisa; Taheri, Arash; Naraghi, Zahra S; Asgari, Masood
2005-01-01
Background Computer-aided dermoscopy using artificial neural networks has been reported to be an accurate tool for the evaluation of pigmented skin lesions. We set out to determine the sensitivity and specificity of a computer-aided dermoscopy system for diagnosis of melanoma in Iranian patients. Methods We studied 122 pigmented skin lesions which were referred for diagnostic evaluation or cosmetic reasons. Each lesion was examined by two clinicians with naked eyes and all of their clinical diagnostic considerations were recorded. The lesions were analyzed using a microDERM® dermoscopy unit. The output value of the software for each lesion was a score between 0 and 10. All of the lesions were excised and examined histologically. Results Histopathological examination revealed melanoma in six lesions. Considering only the most likely clinical diagnosis, sensitivity and specificity of clinical examination for diagnosis of melanoma were 83% and 96%, respectively. Considering all clinical diagnostic considerations, the sensitivity and specificity were 100% and 89%. Choosing a cut-off point of 7.88 for dermoscopy score, the sensitivity and specificity of the score for diagnosis of melanoma were 83% and 96%, respectively. Setting the cut-off point at 7.34, the sensitivity and specificity were 100% and 90%. Conclusion The diagnostic accuracy of the dermoscopy system was at the level of clinical examination by dermatologists with naked eyes. This system may represent a useful tool for screening of melanoma, particularly at centers not experienced in the field of pigmented skin lesions. PMID:16000171
Call for a Computer-Aided Cancer Detection and Classification Research Initiative in Oman.
Mirzal, Andri; Chaudhry, Shafique Ahmad
2016-01-01
Cancer is a major health problem in Oman. It is reported that cancer incidence in Oman is the second highest after Saudi Arabia among Gulf Cooperation Council countries. Based on GLOBOCAN estimates, Oman is predicted to face an almost two-fold increase in cancer incidence in the period 2008-2020. However, cancer research in Oman is still in its infancy. This is due to the fact that medical institutions and infrastructure that play central roles in data collection and analysis are relatively new developments in Oman. We believe the country requires an organized plan and efforts to promote local cancer research. In this paper, we discuss current research progress in cancer diagnosis using machine learning techniques to optimize computer aided cancer detection and classification (CAD). We specifically discuss CAD using two major medical data, i.e., medical imaging and microarray gene expression profiling, because medical imaging like mammography, MRI, and PET have been widely used in Oman for assisting radiologists in early cancer diagnosis and microarray data have been proven to be a reliable source for differential diagnosis. We also discuss future cancer research directions and benefits to Oman economy for entering the cancer research and treatment business as it is a multi-billion dollar industry worldwide.
Kostopoulos, Spiros; Ravazoula, Panagiota; Asvestas, Pantelis; Kalatzis, Ioannis; Xenogiannopoulos, George; Cavouras, Dionisis; Glotsos, Dimitris
2017-06-01
Histopathology image processing, analysis and computer-aided diagnosis have been shown as effective assisting tools towards reliable and intra-/inter-observer invariant decisions in traditional pathology. Especially for cancer patients, decisions need to be as accurate as possible in order to increase the probability of optimal treatment planning. In this study, we propose a new image collection library (HICL-Histology Image Collection Library) comprising 3831 histological images of three different diseases, for fostering research in histopathology image processing, analysis and computer-aided diagnosis. Raw data comprised 93, 116 and 55 cases of brain, breast and laryngeal cancer respectively collected from the archives of the University Hospital of Patras, Greece. The 3831 images were generated from the most representative regions of the pathology, specified by an experienced histopathologist. The HICL Image Collection is free for access under an academic license at http://medisp.bme.teiath.gr/hicl/ . Potential exploitations of the proposed library may span over a board spectrum, such as in image processing to improve visualization, in segmentation for nuclei detection, in decision support systems for second opinion consultations, in statistical analysis for investigation of potential correlations between clinical annotations and imaging findings and, generally, in fostering research on histopathology image processing and analysis. To the best of our knowledge, the HICL constitutes the first attempt towards creation of a reference image collection library in the field of traditional histopathology, publicly and freely available to the scientific community.
Deep Learning in Gastrointestinal Endoscopy.
Patel, Vivek; Armstrong, David; Ganguli, Malika; Roopra, Sandeep; Kantipudi, Neha; Albashir, Siwar; Kamath, Markad V
2016-01-01
Gastrointestinal (GI) endoscopy is used to inspect the lumen or interior of the GI tract for several purposes, including, (1) making a clinical diagnosis, in real time, based on the visual appearances; (2) taking targeted tissue samples for subsequent histopathological examination; and (3) in some cases, performing therapeutic interventions targeted at specific lesions. GI endoscopy is therefore predicated on the assumption that the operator-the endoscopist-is able to identify and characterize abnormalities or lesions accurately and reproducibly. However, as in other areas of clinical medicine, such as histopathology and radiology, many studies have documented marked interobserver and intraobserver variability in lesion recognition. Thus, there is a clear need and opportunity for techniques or methodologies that will enhance the quality of lesion recognition and diagnosis and improve the outcomes of GI endoscopy. Deep learning models provide a basis to make better clinical decisions in medical image analysis. Biomedical image segmentation, classification, and registration can be improved with deep learning. Recent evidence suggests that the application of deep learning methods to medical image analysis can contribute significantly to computer-aided diagnosis. Deep learning models are usually considered to be more flexible and provide reliable solutions for image analysis problems compared to conventional computer vision models. The use of fast computers offers the possibility of real-time support that is important for endoscopic diagnosis, which has to be made in real time. Advanced graphics processing units and cloud computing have also favored the use of machine learning, and more particularly, deep learning for patient care. This paper reviews the rapidly evolving literature on the feasibility of applying deep learning algorithms to endoscopic imaging.
High-Throughput Histopathological Image Analysis via Robust Cell Segmentation and Hashing
Zhang, Xiaofan; Xing, Fuyong; Su, Hai; Yang, Lin; Zhang, Shaoting
2015-01-01
Computer-aided diagnosis of histopathological images usually requires to examine all cells for accurate diagnosis. Traditional computational methods may have efficiency issues when performing cell-level analysis. In this paper, we propose a robust and scalable solution to enable such analysis in a real-time fashion. Specifically, a robust segmentation method is developed to delineate cells accurately using Gaussian-based hierarchical voting and repulsive balloon model. A large-scale image retrieval approach is also designed to examine and classify each cell of a testing image by comparing it with a massive database, e.g., half-million cells extracted from the training dataset. We evaluate this proposed framework on a challenging and important clinical use case, i.e., differentiation of two types of lung cancers (the adenocarcinoma and squamous carcinoma), using thousands of lung microscopic tissue images extracted from hundreds of patients. Our method has achieved promising accuracy and running time by searching among half-million cells. PMID:26599156
Modeling, simulation, and analysis at Sandia National Laboratories for health care systems
NASA Astrophysics Data System (ADS)
Polito, Joseph
1994-12-01
Modeling, Simulation, and Analysis are special competencies of the Department of Energy (DOE) National Laboratories which have been developed and refined through years of national defense work. Today, many of these skills are being applied to the problem of understanding the performance of medical devices and treatments. At Sandia National Laboratories we are developing models at all three levels of health care delivery: (1) phenomenology models for Observation and Test, (2) model-based outcomes simulations for Diagnosis and Prescription, and (3) model-based design and control simulations for the Administration of Treatment. A sampling of specific applications include non-invasive sensors for blood glucose, ultrasonic scanning for development of prosthetics, automated breast cancer diagnosis, laser burn debridement, surgical staple deformation, minimally invasive control for administration of a photodynamic drug, and human-friendly decision support aids for computer-aided diagnosis. These and other projects are being performed at Sandia with support from the DOE and in cooperation with medical research centers and private companies. Our objective is to leverage government engineering, modeling, and simulation skills with the biotechnical expertise of the health care community to create a more knowledge-rich environment for decision making and treatment.
Kai, Chiharu; Uchiyama, Yoshikazu; Shiraishi, Junji; Fujita, Hiroshi; Doi, Kunio
2018-05-10
In the post-genome era, a novel research field, 'radiomics' has been developed to offer a new viewpoint for the use of genotypes in radiology and medicine research which have traditionally focused on the analysis of imaging phenotypes. The present study analyzed brain morphological changes related to the individual's genotype. Our data consisted of magnetic resonance (MR) images of patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD), as well as their apolipoprotein E (APOE) genotypes. First, statistical parametric mapping (SPM) 12 was used for three-dimensional anatomical standardization of the brain MR images. A total of 30 normal images were used to create a standard normal brain image. Z-score maps were generated to identify the differences between an abnormal image and the standard normal brain. Our experimental results revealed that cerebral atrophies, depending on genotypes, can occur in different locations and that morphological changes may differ between MCI and AD. Using a classifier to characterize cerebral atrophies related to an individual's genotype, we developed a computer-aided diagnosis (CAD) scheme to identify the disease. For the early detection of cerebral diseases, a screening system using MR images, called Brain Check-up, is widely performed in Japan. Therefore, our proposed CAD scheme would be used in Brain Check-up.
NASA Astrophysics Data System (ADS)
Hachaj, Tomasz; Ogiela, Marek R.
2012-10-01
The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.
Can computer-aided diagnosis (CAD) help radiologists find mammographically missed screening cancers?
NASA Astrophysics Data System (ADS)
Nishikawa, Robert M.; Giger, Maryellen L.; Schmidt, Robert A.; Papaioannou, John
2001-06-01
We present data from a pilot observer study whose goal is design a study to test the hypothesis that computer-aided diagnosis (CAD) can improve radiologists' performance in reading screening mammograms. In a prospective evaluation of our computer detection schemes, we have analyzed over 12,000 clinical exams. Retrospective review of the negative screening mammograms for all cancer cases found an indication of the cancer in 23 of these negative cases. The computer found 54% of these in our prospective testing. We added to these cases normal exams to create a dataset of 75 cases. Four radiologists experienced in mammography read the cases and gave their BI-RADS assessment and their confidence that the patient should be called back for diagnostic mammography. They did so once reading the films only and a second time reading with the computer aid. Three radiologists had no change in area under the ROC curve (mean Az of 0.73) and one improved from 0.73 to 0.78, but this difference failed to reach statistical significance (p equals 0.23). These data are being used to plan a larger more powerful study.
NASA Astrophysics Data System (ADS)
Xu, Ye; Lee, Michael C.; Boroczky, Lilla; Cann, Aaron D.; Borczuk, Alain C.; Kawut, Steven M.; Powell, Charles A.
2009-02-01
Features calculated from different dimensions of images capture quantitative information of the lung nodules through one or multiple image slices. Previously published computer-aided diagnosis (CADx) systems have used either twodimensional (2D) or three-dimensional (3D) features, though there has been little systematic analysis of the relevance of the different dimensions and of the impact of combining different dimensions. The aim of this study is to determine the importance of combining features calculated in different dimensions. We have performed CADx experiments on 125 pulmonary nodules imaged using multi-detector row CT (MDCT). The CADx system computed 192 2D, 2.5D, and 3D image features of the lesions. Leave-one-out experiments were performed using five different combinations of features from different dimensions: 2D, 3D, 2.5D, 2D+3D, and 2D+3D+2.5D. The experiments were performed ten times for each group. Accuracy, sensitivity and specificity were used to evaluate the performance. Wilcoxon signed-rank tests were applied to compare the classification results from these five different combinations of features. Our results showed that 3D image features generate the best result compared with other combinations of features. This suggests one approach to potentially reducing the dimensionality of the CADx data space and the computational complexity of the system while maintaining diagnostic accuracy.
Hirose, Tomohiro; Nitta, Norihisa; Shiraishi, Junji; Nagatani, Yukihiro; Takahashi, Masashi; Murata, Kiyoshi
2008-12-01
The aim of this study was to evaluate the usefulness of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector-row computed tomography (MDCT) in terms of improvement in radiologists' diagnostic accuracy in detecting lung nodules, using jackknife free-response receiver-operating characteristic (JAFROC) analysis. Twenty-one patients (6 without and 15 with lung nodules) were selected randomly from 120 consecutive thoracic computed tomographic examinations. The gold standard for the presence or absence of nodules in the observer study was determined by consensus of two radiologists. Six expert radiologists participated in a free-response receiver operating characteristic study for the detection of lung nodules on MDCT, in which cases were interpreted first without and then with the output of CAD software. Radiologists were asked to indicate the locations of lung nodule candidates on the monitor with their confidence ratings for the presence of lung nodules. The performance of the CAD software indicated that the sensitivity in detecting lung nodules was 71.4%, with 0.95 false-positive results per case. When radiologists used the CAD software, the average sensitivity improved from 39.5% to 81.0%, with an increase in the average number of false-positive results from 0.14 to 0.89 per case. The average figure-of-merit values for the six radiologists were 0.390 without and 0.845 with the output of the CAD software, and there was a statistically significant difference (P < .0001) using the JAFROC analysis. The CAD software for the detection of lung nodules on MDCT has the potential to assist radiologists by increasing their accuracy.
NASA Astrophysics Data System (ADS)
Mostapha, Mahmoud; Khalifa, Fahmi; Alansary, Amir; Soliman, Ahmed; Gimel'farb, Georgy; El-Baz, Ayman
2013-10-01
Early detection of renal transplant rejection is important to implement appropriate medical and immune therapy in patients with transplanted kidneys. In literature, a large number of computer-aided diagnostic (CAD) systems using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging, have been proposed for early detection of kidney diseases. A typical CAD system for kidney diagnosis consists of a set of processing steps including: motion correction, segmentation of the kidney and/or its internal structures (e.g., cortex, medulla), construction of agent kinetic curves, functional parameter estimation, diagnosis, and assessment of the kidney status. In this paper, we survey the current state-of-the-art CAD systems that have been developed for kidney disease diagnosis using dynamic MRI. In addition, the paper addresses several challenges that researchers face in developing efficient, fast and reliable CAD systems for the early detection of kidney diseases.
NASA Astrophysics Data System (ADS)
Alfano, R.; Soetemans, D.; Bauman, G. S.; Gibson, E.; Gaed, M.; Moussa, M.; Gomez, J. A.; Chin, J. L.; Pautler, S.; Ward, A. D.
2018-02-01
Multi-parametric MRI (mp-MRI) is becoming a standard in contemporary prostate cancer screening and diagnosis, and has shown to aid physicians in cancer detection. It offers many advantages over traditional systematic biopsy, which has shown to have very high clinical false-negative rates of up to 23% at all stages of the disease. However beneficial, mp-MRI is relatively complex to interpret and suffers from inter-observer variability in lesion localization and grading. Computer-aided diagnosis (CAD) systems have been developed as a solution as they have the power to perform deterministic quantitative image analysis. We measured the accuracy of such a system validated using accurately co-registered whole-mount digitized histology. We trained a logistic linear classifier (LOGLC), support vector machine (SVC), k-nearest neighbour (KNN) and random forest classifier (RFC) in a four part ROI based experiment against: 1) cancer vs. non-cancer, 2) high-grade (Gleason score ≥4+3) vs. low-grade cancer (Gleason score <4+3), 3) high-grade vs. other tissue components and 4) high-grade vs. benign tissue by selecting the classifier with the highest AUC using 1-10 features from forward feature selection. The CAD model was able to classify malignant vs. benign tissue and detect high-grade cancer with high accuracy. Once fully validated, this work will form the basis for a tool that enhances the radiologist's ability to detect malignancies, potentially improving biopsy guidance, treatment selection, and focal therapy for prostate cancer patients, maximizing the potential for cure and increasing quality of life.
Monitoring and decision making by people in man machine systems
NASA Technical Reports Server (NTRS)
Johannsen, G.
1979-01-01
The analysis of human monitoring and decision making behavior as well as its modeling are described. Classic and optimal control theoretical, monitoring models are surveyed. The relationship between attention allocation and eye movements is discussed. As an example of applications, the evaluation of predictor displays by means of the optimal control model is explained. Fault detection involving continuous signals and decision making behavior of a human operator engaged in fault diagnosis during different operation and maintenance situations are illustrated. Computer aided decision making is considered as a queueing problem. It is shown to what extent computer aids can be based on the state of human activity as measured by psychophysiological quantities. Finally, management information systems for different application areas are mentioned. The possibilities of mathematical modeling of human behavior in complex man machine systems are also critically assessed.
Computer-aided diagnosis of breast microcalcifications based on dual-tree complex wavelet transform.
Jian, Wushuai; Sun, Xueyan; Luo, Shuqian
2012-12-19
Digital mammography is the most reliable imaging modality for breast carcinoma diagnosis and breast micro-calcifications is regarded as one of the most important signs on imaging diagnosis. In this paper, a computer-aided diagnosis (CAD) system is presented for breast micro-calcifications based on dual-tree complex wavelet transform (DT-CWT) to facilitate radiologists like double reading. Firstly, 25 abnormal ROIs were extracted according to the center and diameter of the lesions manually and 25 normal ROIs were selected randomly. Then micro-calcifications were segmented by combining space and frequency domain techniques. We extracted three texture features based on wavelet (Haar, DB4, DT-CWT) transform. Totally 14 descriptors were introduced to define the characteristics of the suspicious micro-calcifications. Principal Component Analysis (PCA) was used to transform these descriptors to a compact and efficient vector expression. Support Vector Machine (SVM) classifier was used to classify potential micro-calcifications. Finally, we used the receiver operating characteristic (ROC) curve and free-response operating characteristic (FROC) curve to evaluate the performance of the CAD system. The results of SVM classifications based on different wavelets shows DT-CWT has a better performance. Compared with other results, DT-CWT method achieved an accuracy of 96% and 100% for the classification of normal and abnormal ROIs, and the classification of benign and malignant micro-calcifications respectively. In FROC analysis, our CAD system for clinical dataset detection achieved a sensitivity of 83.5% at a false positive per image of 1.85. Compared with general wavelets, DT-CWT could describe the features more effectively, and our CAD system had a competitive performance.
Computer-aided diagnosis of breast microcalcifications based on dual-tree complex wavelet transform
2012-01-01
Background Digital mammography is the most reliable imaging modality for breast carcinoma diagnosis and breast micro-calcifications is regarded as one of the most important signs on imaging diagnosis. In this paper, a computer-aided diagnosis (CAD) system is presented for breast micro-calcifications based on dual-tree complex wavelet transform (DT-CWT) to facilitate radiologists like double reading. Methods Firstly, 25 abnormal ROIs were extracted according to the center and diameter of the lesions manually and 25 normal ROIs were selected randomly. Then micro-calcifications were segmented by combining space and frequency domain techniques. We extracted three texture features based on wavelet (Haar, DB4, DT-CWT) transform. Totally 14 descriptors were introduced to define the characteristics of the suspicious micro-calcifications. Principal Component Analysis (PCA) was used to transform these descriptors to a compact and efficient vector expression. Support Vector Machine (SVM) classifier was used to classify potential micro-calcifications. Finally, we used the receiver operating characteristic (ROC) curve and free-response operating characteristic (FROC) curve to evaluate the performance of the CAD system. Results The results of SVM classifications based on different wavelets shows DT-CWT has a better performance. Compared with other results, DT-CWT method achieved an accuracy of 96% and 100% for the classification of normal and abnormal ROIs, and the classification of benign and malignant micro-calcifications respectively. In FROC analysis, our CAD system for clinical dataset detection achieved a sensitivity of 83.5% at a false positive per image of 1.85. Conclusions Compared with general wavelets, DT-CWT could describe the features more effectively, and our CAD system had a competitive performance. PMID:23253202
Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar
2018-01-01
To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.
Computer-Aided Detection of Mammographic Masses in Dense Breast Images
2005-06-01
Kinnard, Ph.D. CONTRACTING ORGANIZATION: Howard University Washington, DC 20059 REPORT DATE: June 2005 TYPE OF REPORT: Annual Summary PREPARED FOR: U.S...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Howard University Washington, DC 20059 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES...34, Preparing for the Postdoctoral Institute, August, 2004, Howard University and The University of Texas at El Paso. 2. "Computer-Aided Diagnosis and Image
Thon, Anika; Teichgräber, Ulf; Tennstedt-Schenk, Cornelia; Hadjidemetriou, Stathis; Winzler, Sven; Malich, Ansgar; Papageorgiou, Ismini
2017-01-01
Prostate cancer (PCa) diagnosis by means of multiparametric magnetic resonance imaging (mpMRI) is a current challenge for the development of computer-aided detection (CAD) tools. An innovative CAD-software (Watson Elementary™) was proposed to achieve high sensitivity and specificity, as well as to allege a correlate to Gleason grade. To assess the performance of Watson Elementary™ in automated PCa diagnosis in our hospital´s database of MRI-guided prostate biopsies. The evaluation was retrospective for 104 lesions (47 PCa, 57 benign) from 79, 64.61±6.64 year old patients using 3T T2-weighted imaging, Apparent Diffusion Coefficient (ADC) maps and dynamic contrast enhancement series. Watson Elementary™ utilizes signal intensity, diffusion properties and kinetic profile to compute a proportional Gleason grade predictor, termed Malignancy Attention Index (MAI). The analysis focused on (i) the CAD sensitivity and specificity to classify suspect lesions and (ii) the MAI correlation with the histopathological ground truth. The software revealed a sensitivity of 46.80% for PCa classification. The specificity for PCa was found to be 75.43% with a positive predictive value of 61.11%, a negative predictive value of 63.23% and a false discovery rate of 38.89%. CAD classified PCa and benign lesions with equal probability (P 0.06, χ2 test). Accordingly, receiver operating characteristic analysis suggests a poor predictive value for MAI with an area under curve of 0.65 (P 0.02), which is not superior to the performance of board certified observers. Moreover, MAI revealed no significant correlation with Gleason grade (P 0.60, Pearson´s correlation). The tested CAD software for mpMRI analysis was a weak PCa biomarker in this dataset. Targeted prostate biopsy and histology remains the gold standard for prostate cancer diagnosis.
Thon, Anika; Teichgräber, Ulf; Tennstedt-Schenk, Cornelia; Hadjidemetriou, Stathis; Winzler, Sven; Malich, Ansgar
2017-01-01
Background Prostate cancer (PCa) diagnosis by means of multiparametric magnetic resonance imaging (mpMRI) is a current challenge for the development of computer-aided detection (CAD) tools. An innovative CAD-software (Watson Elementary™) was proposed to achieve high sensitivity and specificity, as well as to allege a correlate to Gleason grade. Aim/Objective To assess the performance of Watson Elementary™ in automated PCa diagnosis in our hospital´s database of MRI-guided prostate biopsies. Methods The evaluation was retrospective for 104 lesions (47 PCa, 57 benign) from 79, 64.61±6.64 year old patients using 3T T2-weighted imaging, Apparent Diffusion Coefficient (ADC) maps and dynamic contrast enhancement series. Watson Elementary™ utilizes signal intensity, diffusion properties and kinetic profile to compute a proportional Gleason grade predictor, termed Malignancy Attention Index (MAI). The analysis focused on (i) the CAD sensitivity and specificity to classify suspect lesions and (ii) the MAI correlation with the histopathological ground truth. Results The software revealed a sensitivity of 46.80% for PCa classification. The specificity for PCa was found to be 75.43% with a positive predictive value of 61.11%, a negative predictive value of 63.23% and a false discovery rate of 38.89%. CAD classified PCa and benign lesions with equal probability (P 0.06, χ2 test). Accordingly, receiver operating characteristic analysis suggests a poor predictive value for MAI with an area under curve of 0.65 (P 0.02), which is not superior to the performance of board certified observers. Moreover, MAI revealed no significant correlation with Gleason grade (P 0.60, Pearson´s correlation). Conclusion The tested CAD software for mpMRI analysis was a weak PCa biomarker in this dataset. Targeted prostate biopsy and histology remains the gold standard for prostate cancer diagnosis. PMID:29023572
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou
2006-03-01
Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.
Optic cup segmentation from fundus images for glaucoma diagnosis.
Hu, Man; Zhu, Chenghao; Li, Xiaoxing; Xu, Yongli
2017-01-02
Glaucoma is a serious disease that can cause complete, permanent blindness, and its early diagnosis is very difficult. In recent years, computer-aided screening and diagnosis of glaucoma has made considerable progress. The optic cup segmentation from fundus images is an extremely important part for the computer-aided screening and diagnosis of glaucoma. This paper presented an automatic optic cup segmentation method that used both color difference information and vessel bends information from fundus images to determine the optic cup boundary. During the implementation of this algorithm, not only were the locations of the 2 types of information points used, but also the confidences of the information points were evaluated. In this way, the information points with higher confidence levels contributed more to the determination of the final cup boundary. The proposed method was evaluated using a public database for fundus images. The experimental results demonstrated that the cup boundaries obtained by the proposed method were more consistent than existing methods with the results obtained by ophthalmologists.
Optic cup segmentation from fundus images for glaucoma diagnosis
Hu, Man; Zhu, Chenghao; Li, Xiaoxing; Xu, Yongli
2017-01-01
ABSTRACT Glaucoma is a serious disease that can cause complete, permanent blindness, and its early diagnosis is very difficult. In recent years, computer-aided screening and diagnosis of glaucoma has made considerable progress. The optic cup segmentation from fundus images is an extremely important part for the computer-aided screening and diagnosis of glaucoma. This paper presented an automatic optic cup segmentation method that used both color difference information and vessel bends information from fundus images to determine the optic cup boundary. During the implementation of this algorithm, not only were the locations of the 2 types of information points used, but also the confidences of the information points were evaluated. In this way, the information points with higher confidence levels contributed more to the determination of the final cup boundary. The proposed method was evaluated using a public database for fundus images. The experimental results demonstrated that the cup boundaries obtained by the proposed method were more consistent than existing methods with the results obtained by ophthalmologists. PMID:27764542
Faultfinder: A diagnostic expert system with graceful degradation for onboard aircraft applications
NASA Technical Reports Server (NTRS)
Abbott, Kathy H.; Schutte, Paul C.; Palmer, Michael T.; Ricks, Wendell R.
1988-01-01
A research effort was conducted to explore the application of artificial intelligence technology to automation of fault monitoring and diagnosis as an aid to the flight crew. Human diagnostic reasoning was analyzed and actual accident and incident cases were reconstructed. Based on this analysis and reconstruction, diagnostic concepts were conceived and implemented for an aircraft's engine and hydraulic subsystems. These concepts are embedded within a multistage approach to diagnosis that reasons about time-based, causal, and qualitative information, and enables a certain amount of graceful degradation. The diagnostic concepts are implemented in a computer program called Faultfinder that serves as a research prototype.
Computer-Aided Diagnosis Systems for Lung Cancer: Challenges and Methodologies
El-Baz, Ayman; Beache, Garth M.; Gimel'farb, Georgy; Suzuki, Kenji; Okada, Kazunori; Elnakib, Ahmed; Soliman, Ahmed; Abdollahi, Behnoush
2013-01-01
This paper overviews one of the most important, interesting, and challenging problems in oncology, the problem of lung cancer diagnosis. Developing an effective computer-aided diagnosis (CAD) system for lung cancer is of great clinical importance and can increase the patient's chance of survival. For this reason, CAD systems for lung cancer have been investigated in a huge number of research studies. A typical CAD system for lung cancer diagnosis is composed of four main processing steps: segmentation of the lung fields, detection of nodules inside the lung fields, segmentation of the detected nodules, and diagnosis of the nodules as benign or malignant. This paper overviews the current state-of-the-art techniques that have been developed to implement each of these CAD processing steps. For each technique, various aspects of technical issues, implemented methodologies, training and testing databases, and validation methods, as well as achieved performances, are described. In addition, the paper addresses several challenges that researchers face in each implementation step and outlines the strengths and drawbacks of the existing approaches for lung cancer CAD systems. PMID:23431282
An expert support system for breast cancer diagnosis using color wavelet features.
Issac Niwas, S; Palanisamy, P; Chibbar, Rajni; Zhang, W J
2012-10-01
Breast cancer diagnosis can be done through the pathologic assessments of breast tissue samples such as core needle biopsy technique. The result of analysis on this sample by pathologist is crucial for breast cancer patient. In this paper, nucleus of tissue samples are investigated after decomposition by means of the Log-Gabor wavelet on HSV color domain and an algorithm is developed to compute the color wavelet features. These features are used for breast cancer diagnosis using Support Vector Machine (SVM) classifier algorithm. The ability of properly trained SVM is to correctly classify patterns and make them particularly suitable for use in an expert system that aids in the diagnosis of cancer tissue samples. The results are compared with other multivariate classifiers such as Naïves Bayes classifier and Artificial Neural Network. The overall accuracy of the proposed method using SVM classifier will be further useful for automation in cancer diagnosis.
Semantic Pattern Analysis for Verbal Fluency Based Assessment of Neurological Disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R; Ainsworth, Keela C; Brown, Tyler C
In this paper, we present preliminary results of semantic pattern analysis of verbal fluency tests used for assessing cognitive psychological and neuropsychological disorders. We posit that recent advances in semantic reasoning and artificial intelligence can be combined to create a standardized computer-aided diagnosis tool to automatically evaluate and interpret verbal fluency tests. Towards that goal, we derive novel semantic similarity (phonetic, phonemic and conceptual) metrics and present the predictive capability of these metrics on a de-identified dataset of participants with and without neurological disorders.
Han, Guanghui; Liu, Xiabi; Han, Feifei; Santika, I Nyoman Tenaya; Zhao, Yanfeng; Zhao, Xinming; Zhou, Chunwu
2015-02-01
Lung computed tomography (CT) imaging signs play important roles in the diagnosis of lung diseases. In this paper, we review the significance of CT imaging signs in disease diagnosis and determine the inclusion criterion of CT scans and CT imaging signs of our database. We develop the software of abnormal regions annotation and design the storage scheme of CT images and annotation data. Then, we present a publicly available database of lung CT imaging signs, called LISS for short, which contains 271 CT scans and 677 abnormal regions in them. The 677 abnormal regions are divided into nine categories of common CT imaging signs of lung disease (CISLs). The ground truth of these CISLs regions and the corresponding categories are provided. Furthermore, to make the database publicly available, all private data in CT scans are eliminated or replaced with provisioned values. The main characteristic of our LISS database is that it is developed from a new perspective of CT imaging signs of lung diseases instead of commonly considered lung nodules. Thus, it is promising to apply to computer-aided detection and diagnosis research and medical education.
Yassin, Nisreen I R; Omran, Shaimaa; El Houby, Enas M F; Allam, Hemat
2018-03-01
The high incidence of breast cancer in women has increased significantly in the recent years. Physician experience of diagnosing and detecting breast cancer can be assisted by using some computerized features extraction and classification algorithms. This paper presents the conduction and results of a systematic review (SR) that aims to investigate the state of the art regarding the computer aided diagnosis/detection (CAD) systems for breast cancer. The SR was conducted using a comprehensive selection of scientific databases as reference sources, allowing access to diverse publications in the field. The scientific databases used are Springer Link (SL), Science Direct (SD), IEEE Xplore Digital Library, and PubMed. Inclusion and exclusion criteria were defined and applied to each retrieved work to select those of interest. From 320 studies retrieved, 154 studies were included. However, the scope of this research is limited to scientific and academic works and excludes commercial interests. This survey provides a general analysis of the current status of CAD systems according to the used image modalities and the machine learning based classifiers. Potential research studies have been discussed to create a more objective and efficient CAD systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Self-care of elderly people after the diagnosis of acquired immunodeficiency syndrome.
Araujo, Graciela Machado de; Leite, Marinês Tambara; Hildebrandt, Leila Mariza; Oliveski, Cinthia Cristina; Beuter, Margrid
2018-01-01
to characterize the seropositive elderly for the Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) in their socio-demographic aspects; to understand how the elderly take care of themselves from the diagnosis of HIV/AIDS. Qualitative, descriptive, exploratory research conducted at a Voluntary Counseling and Testing Center with 10 elderly people receiving treatment for HIV/AIDS. The data were analyzed according to the content analysis. Data show the elderly people's lack of knowledge about HIV/AIDS transmission, the experience of being elderly and having HIV/AIDS, caring for oneself and life after diagnosis of HIV/AIDS in their daily lives. Final considerations: The diagnosis of HIV/AIDS seropositivity in the elderly generates a blend of feelings and fears that lead to food changes, adherence to treatment and the renunciation of daily and social habits, manifested as ways of self-care.
A review of intelligent systems for heart sound signal analysis.
Nabih-Ali, Mohammed; El-Dahshan, El-Sayed A; Yahia, Ashraf S
2017-10-01
Intelligent computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. CAD systems could provide physicians with a suggestion about the diagnostic of heart diseases. The objective of this paper is to review the recent published preprocessing, feature extraction and classification techniques and their state of the art of phonocardiogram (PCG) signal analysis. Published literature reviewed in this paper shows the potential of machine learning techniques as a design tool in PCG CAD systems and reveals that the CAD systems for PCG signal analysis are still an open problem. Related studies are compared to their datasets, feature extraction techniques and the classifiers they used. Current achievements and limitations in developing CAD systems for PCG signal analysis using machine learning techniques are presented and discussed. In the light of this review, a number of future research directions for PCG signal analysis are provided.
PyEEG: an open source Python module for EEG/MEG feature extraction.
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.
Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.
van Ginneken, Bram
2017-03-01
Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.
PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction. PMID:21512582
Research on computer aided testing of pilot response to critical in-flight events
NASA Technical Reports Server (NTRS)
Giffin, W. C.; Rockwell, T. H.; Smith, P. J.
1984-01-01
Experiments on pilot decision making are described. The development of models of pilot decision making in critical in flight events (CIFE) are emphasized. The following tests are reported on the development of: (1) a frame system representation describing how pilots use their knowledge in a fault diagnosis task; (2) assessment of script norms, distance measures, and Markov models developed from computer aided testing (CAT) data; and (3) performance ranking of subject data. It is demonstrated that interactive computer aided testing either by touch CRT's or personal computers is a useful research and training device for measuring pilot information management in diagnosing system failures in simulated flight situations. Performance is dictated by knowledge of aircraft sybsystems, initial pilot structuring of the failure symptoms and efficient testing of plausible causal hypotheses.
Baltzer, Pascal Andreas Thomas; Freiberg, Christian; Beger, Sebastian; Vag, Tibor; Dietzel, Matthias; Herzog, Aimee B; Gajda, Mieczyslaw; Camara, Oumar; Kaiser, Werner A
2009-09-01
Enhancement characteristics after administration of a contrast agent are regarded as a major criterion for differential diagnosis in magnetic resonance mammography (MRM). However, no consensus exists about the best measurement method to assess contrast enhancement kinetics. This systematic investigation was performed to compare visual estimation with manual region of interest (ROI) and computer-aided diagnosis (CAD) analysis for time curve measurements in MRM. A total of 329 patients undergoing surgery after MRM (1.5 T) were analyzed prospectively. Dynamic data were measured using visual estimation, including ROI as well as CAD methods, and classified depending on initial signal increase and delayed enhancement. Pathology revealed 469 lesions (279 malignant, 190 benign). Kappa agreement between the methods ranged from 0.78 to 0.81. Diagnostic accuracies of 74.4% (visual), 75.7% (ROI), and 76.6% (CAD) were found without statistical significant differences. According to our results, curve type measurements are useful as a diagnostic criterion in breast lesions irrespective of the method used.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaro; Moriyama, Noriyuki
2010-03-01
Diagnostic MDCT imaging requires a considerable number of images to be read. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. Because of such a background, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis. We also have developed the teleradiology network system by using web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. Our teleradiology network system can perform Web medical image conference in the medical institutions of a remote place using the web medical image conference system. We completed the basic proof experiment of the web medical image conference system with information security solution. We can share the screen of web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with the workstation that builds in some diagnostic assistance methods. Biometric face authentication used on site of teleradiology makes "Encryption of file" and "Success in login" effective. Our Privacy and information security technology of information security solution ensures compliance with Japanese regulations. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new teleradiology network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our teleradiology network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Electronic Circuit Analysis Language (ECAL)
NASA Astrophysics Data System (ADS)
Chenghang, C.
1983-03-01
The computer aided design technique is an important development in computer applications and it is an important component of computer science. The special language for electronic circuit analysis is the foundation of computer aided design or computer aided circuit analysis (abbreviated as CACD and CACA) of simulated circuits. Electronic circuit analysis language (ECAL) is a comparatively simple and easy to use circuit analysis special language which uses the FORTRAN language to carry out the explanatory executions. It is capable of conducting dc analysis, ac analysis, and transient analysis of a circuit. Futhermore, the results of the dc analysis can be used directly as the initial conditions for the ac and transient analyses.
From Phonomecanocardiography to Phonocardiography computer aided
NASA Astrophysics Data System (ADS)
Granados, J.; Tavera, F.; López, G.; Velázquez, J. M.; Hernández, R. T.; López, G. A.
2017-01-01
Due to lack of training doctors to identify many of the disorders in the heart by conventional listening, it is necessary to add an objective and methodological analysis to support this technique. In order to obtain information of the performance of the heart to be able to diagnose heart disease through a simple, cost-effective procedure by means of a data acquisition system, we have obtained Phonocardiograms (PCG), which are images of the sounds emitted by the heart. A program of acoustic, visual and artificial vision recognition was elaborated to interpret them. Based on the results of previous research of cardiologists a code of interpretation of PCG and associated diseases was elaborated. Also a site, within the university campus, of experimental sampling of cardiac data was created. Phonocardiography computer-aided is a viable and low cost procedure which provides additional medical information to make a diagnosis of complex heart diseases. We show some previous results.
Xing, Fuyong; Yang, Lin
2016-01-01
Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.
Wang, Shuihua; Yang, Ming; Du, Sidan; Yang, Jiquan; Liu, Bin; Gorriz, Juan M.; Ramírez, Javier; Yuan, Ti-Fei; Zhang, Yudong
2016-01-01
Highlights We develop computer-aided diagnosis system for unilateral hearing loss detection in structural magnetic resonance imaging.Wavelet entropy is introduced to extract image global features from brain images. Directed acyclic graph is employed to endow support vector machine an ability to handle multi-class problems.The developed computer-aided diagnosis system achieves an overall accuracy of 95.1% for this three-class problem of differentiating left-sided and right-sided hearing loss from healthy controls. Aim: Sensorineural hearing loss (SNHL) is correlated to many neurodegenerative disease. Now more and more computer vision based methods are using to detect it in an automatic way. Materials: We have in total 49 subjects, scanned by 3.0T MRI (Siemens Medical Solutions, Erlangen, Germany). The subjects contain 14 patients with right-sided hearing loss (RHL), 15 patients with left-sided hearing loss (LHL), and 20 healthy controls (HC). Method: We treat this as a three-class classification problem: RHL, LHL, and HC. Wavelet entropy (WE) was selected from the magnetic resonance images of each subjects, and then submitted to a directed acyclic graph support vector machine (DAG-SVM). Results: The 10 repetition results of 10-fold cross validation shows 3-level decomposition will yield an overall accuracy of 95.10% for this three-class classification problem, higher than feedforward neural network, decision tree, and naive Bayesian classifier. Conclusions: This computer-aided diagnosis system is promising. We hope this study can attract more computer vision method for detecting hearing loss. PMID:27807415
Wang, Shuihua; Yang, Ming; Du, Sidan; Yang, Jiquan; Liu, Bin; Gorriz, Juan M; Ramírez, Javier; Yuan, Ti-Fei; Zhang, Yudong
2016-01-01
Highlights We develop computer-aided diagnosis system for unilateral hearing loss detection in structural magnetic resonance imaging.Wavelet entropy is introduced to extract image global features from brain images. Directed acyclic graph is employed to endow support vector machine an ability to handle multi-class problems.The developed computer-aided diagnosis system achieves an overall accuracy of 95.1% for this three-class problem of differentiating left-sided and right-sided hearing loss from healthy controls. Aim: Sensorineural hearing loss (SNHL) is correlated to many neurodegenerative disease. Now more and more computer vision based methods are using to detect it in an automatic way. Materials: We have in total 49 subjects, scanned by 3.0T MRI (Siemens Medical Solutions, Erlangen, Germany). The subjects contain 14 patients with right-sided hearing loss (RHL), 15 patients with left-sided hearing loss (LHL), and 20 healthy controls (HC). Method: We treat this as a three-class classification problem: RHL, LHL, and HC. Wavelet entropy (WE) was selected from the magnetic resonance images of each subjects, and then submitted to a directed acyclic graph support vector machine (DAG-SVM). Results: The 10 repetition results of 10-fold cross validation shows 3-level decomposition will yield an overall accuracy of 95.10% for this three-class classification problem, higher than feedforward neural network, decision tree, and naive Bayesian classifier. Conclusions: This computer-aided diagnosis system is promising. We hope this study can attract more computer vision method for detecting hearing loss.
Computer Aided Reading Diagnosis.
ERIC Educational Resources Information Center
McEneaney, John E.
Computer technologies are having an ever-increasing influence on educational research and practice in Russia and the United States. In Russia, a number of recent papers have focused on the application of the computer as a teaching tool and on its influence in instructional organization and planning. In the United States, there is a great deal of…
Evaluation of image compression for computer-aided diagnosis of breast tumors in 3D sonography
NASA Astrophysics Data System (ADS)
Chen, We-Min; Huang, Yu-Len; Tao, Chi-Chuan; Chen, Dar-Ren; Moon, Woo-Kyung
2006-03-01
Medical imaging examinations form the basis for physicians diagnosing diseases, as evidenced by the increasing use of digital medical images for picture archiving and communications systems (PACS). However, with enlarged medical image databases and rapid growth of patients' case reports, PACS requires image compression to accelerate the image transmission rate and conserve disk space for diminishing implementation costs. For this purpose, JPEG and JPEG2000 have been accepted as legal formats for the digital imaging and communications in medicine (DICOM). The high compression ratio is felt to be useful for medical imagery. Therefore, this study evaluates the compression ratios of JPEG and JPEG2000 standards for computer-aided diagnosis (CAD) of breast tumors in 3-D medical ultrasound (US) images. The 3-D US data sets with various compression ratios are compressed using the two efficacious image compression standards. The reconstructed data sets are then diagnosed by a previous proposed CAD system. The diagnostic accuracy is measured based on receiver operating characteristic (ROC) analysis. Namely, the ROC curves are used to compare the diagnostic performance of two or more reconstructed images. Analysis results ensure a comparison of the compression ratios by using JPEG and JPEG2000 for 3-D US images. Results of this study provide the possible bit rates using JPEG and JPEG2000 for 3-D breast US images.
Computer-aided diagnosis with textural features for breast lesions in sonograms.
Chen, Dar-Ren; Huang, Yu-Len; Lin, Sheng-Hsiung
2011-04-01
Computer-aided diagnosis (CAD) systems provided second beneficial support reference and enhance the diagnostic accuracy. This paper was aimed to develop and evaluate a CAD with texture analysis in the classification of breast tumors for ultrasound images. The ultrasound (US) dataset evaluated in this study composed of 1020 sonograms of region of interest (ROI) subimages from 255 patients. Two-view sonogram (longitudinal and transverse views) and four different rectangular regions were utilized to analyze each tumor. Six practical textural features from the US images were performed to classify breast tumors as benign or malignant. However, the textural features always perform as a high dimensional vector; high dimensional vector is unfavorable to differentiate breast tumors in practice. The principal component analysis (PCA) was used to reduce the dimension of textural feature vector and then the image retrieval technique was performed to differentiate between benign and malignant tumors. In the experiments, all the cases were sampled with k-fold cross-validation (k=10) to evaluate the performance with receiver operating characteristic (ROC) curve. The area (A(Z)) under the ROC curve for the proposed CAD system with the specific textural features was 0.925±0.019. The classification ability for breast tumor with textural information is satisfactory. This system differentiates benign from malignant breast tumors with a good result and is therefore clinically useful to provide a second opinion. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Clancey, William J.
GUIDON is an intelligent computer-aided instruction (ICAI) program for teaching diagnosis, which has been tested using the infectious disease diagnosis rules of the MYCIN consultation system developed at the Stanford University School of Medicine. GUIDON engages a student in a dialogue about a patient suspected of having an infection and thus…
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology
Di Ruberto, Cecilia; Kocher, Michel
2018-01-01
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images. PMID:29419781
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.
Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel
2018-02-08
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, T; Ohki, M; Nakamura, T
Purpose: Sjoegren's syndrome (SS) is an autoimmune disease invading mainly salivary and lacrimal glands. Ultrasonography is used for an initial and non-invasive examination of this disease. However, the ultrasonography diagnosis tends to lack in objectivity and depends on the operator's skills. The purpose of this study is to propose a computer-aided diagnosis (CAD) system for SS based on a dual-tree complex wavelet transform (DT-CWT) and machine learning. Methods: The subjects of this study were 174 patients suspected of having SS at Nagasaki University Hospital and examined with ultrasonography of the parotid glands. Out of these patients, 77 patients were diagnosedmore » with SS by sialography. A region of interest (ROI) of 128 × 128 pixels was set within the parotid gland that was indicated by a dental radiologist. The DT-CWT was applied to the images in the ROI and every image was decomposed into 72 sub-images of the real and imaginary components in six different resolution levels and six orientations. The statistical features of the sub-image were calculated and used as data input for the support vector machine (SVM) classifier for the detection of SS. A ten-fold cross-validation was employed to verify the Resultof SVM. The accuracy of diagnosis was compared by a CAD system with a human observer performance. Results: The sensitivity, specificity, and accuracy in the detection of SS were 95%, 86%, and 91% through our CAD system respectively, while those by a human observer were 84%, 81%, and 83% respectively. Conclusion: The proposed computer-aided diagnosis system for Sjoegren's syndrome in ultrasonography based on dual-tree complex wavelet transform had a better performance than a human observer.« less
Deep Learning in Medical Image Analysis.
Shen, Dinggang; Wu, Guorong; Suk, Heung-Il
2017-06-21
This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.
Ramírez, J; Górriz, J M; Segovia, F; Chaves, R; Salas-Gonzalez, D; López, M; Alvarez, I; Padilla, P
2010-03-19
This letter shows a computer aided diagnosis (CAD) technique for the early detection of the Alzheimer's disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The proposed method is based on partial least squares (PLS) regression model and a random forest (RF) predictor. The challenge of the curse of dimensionality is addressed by reducing the large dimensionality of the input data by downscaling the SPECT images and extracting score features using PLS. A RF predictor then forms an ensemble of classification and regression tree (CART)-like classifiers being its output determined by a majority vote of the trees in the forest. A baseline principal component analysis (PCA) system is also developed for reference. The experimental results show that the combined PLS-RF system yields a generalization error that converges to a limit when increasing the number of trees in the forest. Thus, the generalization error is reduced when using PLS and depends on the strength of the individual trees in the forest and the correlation between them. Moreover, PLS feature extraction is found to be more effective for extracting discriminative information from the data than PCA yielding peak sensitivity, specificity and accuracy values of 100%, 92.7%, and 96.9%, respectively. Moreover, the proposed CAD system outperformed several other recently developed AD CAD systems. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Project-Based Teaching-Learning Computer-Aided Engineering Tools
ERIC Educational Resources Information Center
Simoes, J. A.; Relvas, C.; Moreira, R.
2004-01-01
Computer-aided design, computer-aided manufacturing, computer-aided analysis, reverse engineering and rapid prototyping are tools that play an important key role within product design. These are areas of technical knowledge that must be part of engineering and industrial design courses' curricula. This paper describes our teaching experience of…
Baltzer, Pascal Andreas Thomas; Renz, Diane M; Kullnig, Petra E; Gajda, Mieczyslaw; Camara, Oumar; Kaiser, Werner A
2009-04-01
The identification of the most suspect enhancing part of a lesion is regarded as a major diagnostic criterion in dynamic magnetic resonance mammography. Computer-aided diagnosis (CAD) software allows the semi-automatic analysis of the kinetic characteristics of complete enhancing lesions, providing additional information about lesion vasculature. The diagnostic value of this information has not yet been quantified. Consecutive patients from routine diagnostic studies (1.5 T, 0.1 mmol gadopentetate dimeglumine, dynamic gradient-echo sequences at 1-minute intervals) were analyzed prospectively using CAD. Dynamic sequences were processed and reduced to a parametric map. Curve types were classified by initial signal increase (not significant, intermediate, and strong) and the delayed time course of signal intensity (continuous, plateau, and washout). Lesion enhancement was measured using CAD. The most suspect curve, the curve-type distribution percentage, and combined dynamic data were compared. Statistical analysis included logistic regression analysis and receiver-operating characteristic analysis. Fifty-one patients with 46 malignant and 44 benign lesions were enrolled. On receiver-operating characteristic analysis, the most suspect curve showed diagnostic accuracy of 76.7 +/- 5%. In comparison, the curve-type distribution percentage demonstrated accuracy of 80.2 +/- 4.9%. Combined dynamic data had the highest diagnostic accuracy (84.3 +/- 4.2%). These differences did not achieve statistical significance. With appropriate cutoff values, sensitivity and specificity, respectively, were found to be 80.4% and 72.7% for the most suspect curve, 76.1% and 83.6% for the curve-type distribution percentage, and 78.3% and 84.5% for both parameters. The integration of whole-lesion dynamic data tends to improve specificity. However, no statistical significance backs up this finding.
Barbosa, Daniel C; Roupar, Dalila B; Ramos, Jaime C; Tavares, Adriano C; Lima, Carlos S
2012-01-11
Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.
Zhang, Ying; Xue, Liu-Hua; Chen, Yu-Xia; Huang, Shi-Jing; Pan, Ju-Hua; Wang, Jie
2013-08-01
To norm the behavior of AIDS cough in traditional Chinese medicine diagnosis and treatment and improve the clinical level of cough treatment for HIV/AIDS, and build AIDS cough diagnosis and treatment procedures in traditional Chinese medicine. Combined with clinical practice,to formulate questionnaire on AIDS cough in traditional Chinese medicine diagnosis and treatment by both English and Chinese literature research to expertise consultation and verify the results of the questionnaires on the statistics using the Delphi method. Questionnaire contents consist of overview, pathogeny, diagnosis standard, dialectical medication (phlegm heat resistance pulmonary lung and kidney Yin deficiency lung spleen-deficiency), treating spleen-deficiency (lung), moxibustion treatment and aftercare care and diet and mental, average (2.93-3.00), full mark rate (93.10%-100%) ranks average (9.91-10.67) and (287.50-309.50) of which are the most high value, and the variation coefficient is 0.00, the Kendall coefficient (Kendalls W) is 0.049 which is statistical significance, the questionnaire reliability value of alpha was 0.788. Preliminary standarded concept, etiology and pathogenesis, diagnosis and syndrome differentiation treatment of AIDS cough, basically recognised by the experts in this field, and laid the foundation of traditional Chinese medicine diagnosis and treatment on develop the AIDS cough specifications.
Automated quantitative muscle biopsy analysis system
NASA Technical Reports Server (NTRS)
Castleman, Kenneth R. (Inventor)
1980-01-01
An automated system to aid the diagnosis of neuromuscular diseases by producing fiber size histograms utilizing histochemically stained muscle biopsy tissue. Televised images of the microscopic fibers are processed electronically by a multi-microprocessor computer, which isolates, measures, and classifies the fibers and displays the fiber size distribution. The architecture of the multi-microprocessor computer, which is iterated to any required degree of complexity, features a series of individual microprocessors P.sub.n each receiving data from a shared memory M.sub.n-1 and outputing processed data to a separate shared memory M.sub.n+1 under control of a program stored in dedicated memory M.sub.n.
Peng, Shao-Hu; Kim, Deok-Hwan; Lee, Seok-Lyong; Lim, Myung-Kwan
2010-01-01
Texture feature is one of most important feature analysis methods in the computer-aided diagnosis (CAD) systems for disease diagnosis. In this paper, we propose a Uniformity Estimation Method (UEM) for local brightness and structure to detect the pathological change in the chest CT images. Based on the characteristics of the chest CT images, we extract texture features by proposing an extension of rotation invariant LBP (ELBP(riu4)) and the gradient orientation difference so as to represent a uniform pattern of the brightness and structure in the image. The utilization of the ELBP(riu4) and the gradient orientation difference allows us to extract rotation invariant texture features in multiple directions. Beyond this, we propose to employ the integral image technique to speed up the texture feature computation of the spatial gray level dependent method (SGLDM). Copyright © 2010 Elsevier Ltd. All rights reserved.
Unusual Radiographic Presentation of Pneumocystis Pneumonia in a Patient with AIDS.
Block, Brian L; Mehta, Tejas; Ortiz, Gabriel M; Ferris, Sean P; Vu, Thienkhai H; Huang, Laurence; Cattamanchi, Adithya
2017-01-01
Pneumocystis jirovecii pneumonia (PCP) typically presents as an interstitial and alveolar process with ground glass opacities on chest computed tomography (CT). The absence of ground glass opacities on chest CT is thought to have a high negative predictive value for PCP in individuals with AIDS. Here, we report a case of PCP in a man with AIDS who presented to our hospital with subacute shortness of breath and a nonproductive cough. While his chest CT revealed diffuse nodular rather than ground glass opacities, bronchoscopy with bronchoalveolar lavage and transbronchial biopsies confirmed the diagnosis of PCP and did not identify additional pathogens. PCP was not the expected diagnosis based on chest CT, but it otherwise fit well with the patient's clinical and laboratory presentation. In the era of combination antiretroviral therapy, routine prophylaxis for PCP, and increased use of computed tomography, it may be that PCP will increasingly present with nonclassical chest radiographic patterns. Clinicians should be aware of this presentation when selecting diagnostic and management strategies.
Unusual Radiographic Presentation of Pneumocystis Pneumonia in a Patient with AIDS
Mehta, Tejas; Ortiz, Gabriel M.; Ferris, Sean P.; Vu, Thienkhai H.; Huang, Laurence; Cattamanchi, Adithya
2017-01-01
Pneumocystis jirovecii pneumonia (PCP) typically presents as an interstitial and alveolar process with ground glass opacities on chest computed tomography (CT). The absence of ground glass opacities on chest CT is thought to have a high negative predictive value for PCP in individuals with AIDS. Here, we report a case of PCP in a man with AIDS who presented to our hospital with subacute shortness of breath and a nonproductive cough. While his chest CT revealed diffuse nodular rather than ground glass opacities, bronchoscopy with bronchoalveolar lavage and transbronchial biopsies confirmed the diagnosis of PCP and did not identify additional pathogens. PCP was not the expected diagnosis based on chest CT, but it otherwise fit well with the patient's clinical and laboratory presentation. In the era of combination antiretroviral therapy, routine prophylaxis for PCP, and increased use of computed tomography, it may be that PCP will increasingly present with nonclassical chest radiographic patterns. Clinicians should be aware of this presentation when selecting diagnostic and management strategies. PMID:29362681
Analysis of Interval Changes on Mammograms for Computer Aided Diagnosis
2000-05-01
tizer was calibrated so that the gray values were linearly and erage pixel values in the template and ROI, respectively. The inversely proportional to the...earlier for linearly and inversely proportional to the OD within the alignment of the breast regions, except that the regions to be range 0-4 OD...results versely proportional to the radial distance r from the nipple. in a decrease in the value of (to 20 mm. This decrease helps For the data set
Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M
2016-05-01
The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques. © The Author(s) 2015.
Computer-aided diagnosis software for vulvovaginal candidiasis detection from Pap smear images.
Momenzadeh, Mohammadreza; Vard, Alireza; Talebi, Ardeshir; Mehri Dehnavi, Alireza; Rabbani, Hossein
2018-01-01
Vulvovaginal candidiasis (VVC) is a common gynecologic infection and it occurs when there is overgrowth of the yeast called Candida. VVC diagnosis is usually done by observing a Pap smear sample under a microscope and searching for the conidium and mycelium components of Candida. This manual method is time consuming, subjective and tedious. Any diagnosis tools that detect VVC, semi- or full-automatically, can be very helpful to pathologists. This article presents a computer aided diagnosis (CAD) software to improve human diagnosis of VVC from Pap smear samples. The proposed software is designed based on phenotypic and morphology features of the Candida in Pap smear sample images. This software provide a user-friendly interface which consists of a set of image processing tools and analytical results that helps to detect Candida and determine severity of illness. The software was evaluated on 200 Pap smear sample images and obtained specificity of 91.04% and sensitivity of 92.48% to detect VVC. As a result, the use of the proposed software reduces diagnostic time and can be employed as a second objective opinion for pathologists. © 2017 Wiley Periodicals, Inc.
Analysis of adventitious lung sounds originating from pulmonary tuberculosis.
Becker, K W; Scheffer, C; Blanckenberg, M M; Diacon, A H
2013-01-01
Tuberculosis is a common and potentially deadly infectious disease, usually affecting the respiratory system and causing the sound properties of symptomatic infected lungs to differ from non-infected lungs. Auscultation is often ruled out as a reliable diagnostic technique for TB due to the random distribution of the infection and the varying severity of damage to the lungs. However, advancements in signal processing techniques for respiratory sounds can improve the potential of auscultation far beyond the capabilities of the conventional mechanical stethoscope. Though computer-based signal analysis of respiratory sounds has produced a significant body of research, there have not been any recent investigations into the computer-aided analysis of lung sounds associated with pulmonary Tuberculosis (TB), despite the severity of the disease in many countries. In this paper, respiratory sounds were recorded from 14 locations around the posterior and anterior chest walls of healthy volunteers and patients infected with pulmonary TB. The most significant signal features in both the time and frequency domains associated with the presence of TB, were identified by using the statistical overlap factor (SOF). These features were then employed to train a neural network to automatically classify the auscultation recordings into their respective healthy or TB-origin categories. The neural network yielded a diagnostic accuracy of 73%, but it is believed that automated filtering of the noise in the clinics, more training samples and perhaps other signal processing methods can improve the results of future studies. This work demonstrates the potential of computer-aided auscultation as an aid for the diagnosis and treatment of TB.
Computer aided lung cancer diagnosis with deep learning algorithms
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Zheng, Bin; Qian, Wei
2016-03-01
Deep learning is considered as a popular and powerful method in pattern recognition and classification. However, there are not many deep structured applications used in medical imaging diagnosis area, because large dataset is not always available for medical images. In this study we tested the feasibility of using deep learning algorithms for lung cancer diagnosis with the cases from Lung Image Database Consortium (LIDC) database. The nodules on each computed tomography (CT) slice were segmented according to marks provided by the radiologists. After down sampling and rotating we acquired 174412 samples with 52 by 52 pixel each and the corresponding truth files. Three deep learning algorithms were designed and implemented, including Convolutional Neural Network (CNN), Deep Belief Networks (DBNs), Stacked Denoising Autoencoder (SDAE). To compare the performance of deep learning algorithms with traditional computer aided diagnosis (CADx) system, we designed a scheme with 28 image features and support vector machine. The accuracies of CNN, DBNs, and SDAE are 0.7976, 0.8119, and 0.7929, respectively; the accuracy of our designed traditional CADx is 0.7940, which is slightly lower than CNN and DBNs. We also noticed that the mislabeled nodules using DBNs are 4% larger than using traditional CADx, this might be resulting from down sampling process lost some size information of the nodules.
Lung sound analysis for wheeze episode detection.
Jain, Abhishek; Vepa, Jithendra
2008-01-01
Listening and interpreting lung sounds by a stethoscope had been an important component of screening and diagnosing lung diseases. However this practice has always been vulnerable to poor audibility, inter-observer variations (between different physicians) and poor reproducibility. Thus computerized analysis of lung sounds for objective diagnosis of lung diseases is seen as a probable aid. In this paper we aim at automatic analysis of lung sounds for wheeze episode detection and quantification. The proposed algorithm integrates and analyses the set of parameters based on ATS (American Thoracic Society) definition of wheezes. It is very robust, computationally simple and yielded sensitivity of 84% and specificity of 86%.
Three-dimensional surgical simulation.
Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2010-09-01
In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Leng, Shuang; Tan, Ru San; Chai, Kevin Tshun Chuan; Wang, Chao; Ghista, Dhanjoo; Zhong, Liang
2015-07-10
Most heart diseases are associated with and reflected by the sounds that the heart produces. Heart auscultation, defined as listening to the heart sound, has been a very important method for the early diagnosis of cardiac dysfunction. Traditional auscultation requires substantial clinical experience and good listening skills. The emergence of the electronic stethoscope has paved the way for a new field of computer-aided auscultation. This article provides an in-depth study of (1) the electronic stethoscope technology, and (2) the methodology for diagnosis of cardiac disorders based on computer-aided auscultation. The paper is based on a comprehensive review of (1) literature articles, (2) market (state-of-the-art) products, and (3) smartphone stethoscope apps. It covers in depth every key component of the computer-aided system with electronic stethoscope, from sensor design, front-end circuitry, denoising algorithm, heart sound segmentation, to the final machine learning techniques. Our intent is to provide an informative and illustrative presentation of the electronic stethoscope, which is valuable and beneficial to academics, researchers and engineers in the technical field, as well as to medical professionals to facilitate its use clinically. The paper provides the technological and medical basis for the development and commercialization of a real-time integrated heart sound detection, acquisition and quantification system.
Quantitative diagnosis of tongue cancer from histological images in an animal model
NASA Astrophysics Data System (ADS)
Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Chen, Zhuo G.; Fei, Baowei
2016-03-01
We developed a chemically-induced oral cancer animal model and a computer aided method for tongue cancer diagnosis. The animal model allows us to monitor the progress of the lesions over time. Tongue tissue dissected from mice was sent for histological processing. Representative areas of hematoxylin and eosin stained tissue from tongue sections were captured for classifying tumor and non-tumor tissue. The image set used in this paper consisted of 214 color images (114 tumor and 100 normal tissue samples). A total of 738 color, texture, morphometry and topology features were extracted from the histological images. The combination of image features from epithelium tissue and its constituent nuclei and cytoplasm has been demonstrated to improve the classification results. With ten iteration nested cross validation, the method achieved an average sensitivity of 96.5% and a specificity of 99% for tongue cancer detection. The next step of this research is to apply this approach to human tissue for computer aided diagnosis of tongue cancer.
Mussini, Cristina; Johnson, Margaret; d'Arminio Monforte, Antonella; Antinori, Andrea; Gill, M. John; Sighinolfi, Laura; Uberti-Foppa, Caterina; Borghi, Vanni; Sabin, Caroline
2011-01-01
Objectives We analyzed clinical progression among persons diagnosed with HIV at the time of an AIDS-defining event, and assessed the impact on outcome of timing of combined antiretroviral treatment (cART). Methods Retrospective, European and Canadian multicohort study.. Patients were diagnosed with HIV from 1997–2004 and had clinical AIDS from 30 days before to 14 days after diagnosis. Clinical progression (new AIDS event, death) was described using Kaplan-Meier analysis stratifying by type of AIDS event. Factors associated with progression were identified with multivariable Cox regression. Progression rates were compared between those starting early (<30 days after AIDS event) or deferred (30–270 days after AIDS event) cART. Results The median (interquartile range) CD4 count and viral load (VL) at diagnosis of the 584 patients were 42 (16, 119) cells/µL and 5.2 (4.5, 5.7) log10 copies/mL. Clinical progression was observed in 165 (28.3%) patients. Older age, a higher VL at diagnosis, and a diagnosis of non-Hodgkin lymphoma (NHL) (vs. other AIDS events) were independently associated with disease progression. Of 366 patients with an opportunistic infection, 178 (48.6%) received early cART. There was no significant difference in clinical progression between those initiating cART early and those deferring treatment (adjusted hazard ratio 1.32 [95% confidence interval 0.87, 2.00], p = 0.20). Conclusions Older patients and patients with high VL or NHL at diagnosis had a worse outcome. Our data suggest that earlier initiation of cART may be beneficial among HIV-infected patients diagnosed with clinical AIDS in our setting. PMID:22043301
Ghane, Narjes; Vard, Alireza; Talebi, Ardeshir; Nematollahy, Pardis
2017-01-01
Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis system that assists pathologists in the diagnostic process can be so effective. Segmentation of WBCs is usually a first step in developing a computer-aided diagnosis system. The main purpose of this paper is to segment WBCs from microscopic images. For this purpose, we present a novel combination of thresholding, k-means clustering, and modified watershed algorithms in three stages including (1) segmentation of WBCs from a microscopic image, (2) extraction of nuclei from cell's image, and (3) separation of overlapping cells and nuclei. The evaluation results of the proposed method show that similarity measures, precision, and sensitivity respectively were 92.07, 96.07, and 94.30% for nucleus segmentation and 92.93, 97.41, and 93.78% for cell segmentation. In addition, statistical analysis presents high similarity between manual segmentation and the results obtained by the proposed method.
Impact of accelerated progression to AIDS on public health monitoring of late HIV diagnosis.
Sabharwal, Charulata J; Sepkowitz, Kent; Mehta, Reshma; Shepard, Colin; Bodach, Sara; Torian, Lucia; Begier, Elizabeth M
2011-03-01
Some patients develop AIDS within a year of HIV infection ("accelerated progression"). Classifying such cases as late HIV diagnosis may lead to inaccurate evaluation of HIV testing efforts. We sought to determine this group's contribution to overall late diagnosis rates. To identify cases of accelerated progression (development of AIDS within 12 months of a negative HIV test), we reviewed published HIV seroconverter cohort studies and used New York City's (NYC) HIV/AIDS surveillance registry. From the literature review, three seroconverter cohort studies revealed that 1.0-3.6% of participants had accelerated progression to AIDS. Applying this frequency estimate to the number of new infections in NYC (4762) for 2006 calculated by the Centers for Diseases Control and Prevention's incidence formula, we estimated that 3.6-13.0% of 1317 NYC HIV cases who are diagnosed with AIDS within 12 months of HIV diagnosis are accelerated progressors, not persons HIV infected for many years who did not test and present with AIDS (i.e., delayed diagnosis). In addition, our analysis of the 2006 NYC surveillance registry confirmed the occurrence of accelerated progression in a population-based setting; 67 accelerated progressors were reported and 9 (13%) could be confirmed through follow-up medical record review. With increased HIV testing initiatives, the irreducible proportion of AIDS cases with accelerated progression must be considered when interpreting late diagnosis data.
NASA Astrophysics Data System (ADS)
Tsuchiya, Yuichiro; Kodera, Yoshie
2005-04-01
The purpose of this study was to develop of kinetic analysis method for PACS management and computer-aided diagnosis. We obtained dynamic chest radiographs (512x512, 8bit, 4fps, and 1344x1344, 12bit, 3fps) of five healthy volunteers during respiration using an I.I. system twice, and one healthy volunteer using dynamic FPD system. Optical flows of images were obtained using customized block matching technique, and were divided into a direction, and transformed into the RGB color. Density was determined by the sum pixel length of movement during respiration phase. The made new static image was defined as the "kinetic map". The evaluation of patient's collation was performed with a template matching to the three colors. The same person's each correlation value and similar-coefficient which is defined in this study were statistically significant high (P<0.01). We used the artificial neural network (ANN) for the judgment of the same person. Five volunteers were divided into two groups, three volunteers and two volunteers became a training signal and unknown signal. Correlation value and similar-coefficient was used for the input signal, and ANN was designed so that the same person's probability might be outputted. The average of the specificity of the unknown signal obtained 98.2%. The kinetic map including the imitation tumor was used for the simulation. The tumor was detected by temporal subtraction of kinetic map, and then the superior sensitivity was obtained. Our analysis method was useful in risk management and computer-aided diagnosis.
Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C
2016-03-01
Classify chronic liver disease (CLD) from ultrasound shear-wave elastography (SWE) imaging by means of a computer aided diagnosis (CAD) system. The proposed algorithm employs an inverse mapping technique (red-green-blue to stiffness) to quantify 85 SWE images (54 healthy and 31 with CLD). Texture analysis is then applied involving the automatic calculation of 330 first and second order textural features from every transformed stiffness value map to determine functional features that characterize liver elasticity and describe liver condition for all available stages. Consequently, a stepwise regression analysis feature selection procedure is utilized toward a reduced feature subset that is fed into the support vector machines (SVMs) classification algorithm in the design of the CAD system. With regard to the mapping procedure accuracy, the stiffness map values had an average difference of 0.01 ± 0.001 kPa compared to the quantification results derived from the color-box provided by the built-in software of the ultrasound system. Highest classification accuracy from the SVM model was 87.0% with sensitivity and specificity values of 83.3% and 89.1%, respectively. Receiver operating characteristic curves analysis gave an area under the curve value of 0.85 with [0.77-0.89] confidence interval. The proposed CAD system employing color to stiffness mapping and classification algorithms offered superior results, comparing the already published clinical studies. It could prove to be of value to physicians improving the diagnostic accuracy of CLD and can be employed as a second opinion tool for avoiding unnecessary invasive procedures.
Automated detection of pulmonary nodules in CT images with support vector machines
NASA Astrophysics Data System (ADS)
Liu, Lu; Liu, Wanyu; Sun, Xiaoming
2008-10-01
Many methods have been proposed to avoid radiologists fail to diagnose small pulmonary nodules. Recently, support vector machines (SVMs) had received an increasing attention for pattern recognition. In this paper, we present a computerized system aimed at pulmonary nodules detection; it identifies the lung field, extracts a set of candidate regions with a high sensitivity ratio and then classifies candidates by the use of SVMs. The Computer Aided Diagnosis (CAD) system presented in this paper supports the diagnosis of pulmonary nodules from Computed Tomography (CT) images as inflammation, tuberculoma, granuloma..sclerosing hemangioma, and malignant tumor. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of SVMs classifiers. The achieved classification performance was 100%, 92.75% and 90.23% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.
Computer aided diagnosis and treatment planning for developmental dysplasia of the hip
NASA Astrophysics Data System (ADS)
Li, Bin; Lu, Hongbing; Cai, Wenli; Li, Xiang; Meng, Jie; Liang, Zhengrong
2005-04-01
The developmental dysplasia of the hip (DDH) is a congenital malformation affecting the proximal femurs and acetabulum that are subluxatable, dislocatable, and dislocated. Early diagnosis and treatment is important because failure to diagnose and improper treatment can result in significant morbidity. In this paper, we designed and implemented a computer aided system for the diagnosis and treatment planning of this disease. With the design, the patient received CT (computed tomography) or MRI (magnetic resonance imaging) scan first. A mixture-based PV partial-volume algorithm was applied to perform bone segmentation on CT image, followed by three-dimensional (3D) reconstruction and display of the segmented image, demonstrating the special relationship between the acetabulum and femurs for visual judgment. Several standard procedures, such as Salter procedure, Pemberton procedure and Femoral Shortening osteotomy, were simulated on the screen to rehearse a virtual treatment plan. Quantitative measurement of Acetabular Index (AI) and Femoral Neck Anteversion (FNA) were performed on the 3D image for evaluation of DDH and treatment plans. PC graphics-card GPU architecture was exploited to accelerate the 3D rendering and geometric manipulation. The prototype system was implemented on PC/Windows environment and is currently under clinical trial on patient datasets.
Human problem solving performance in a fault diagnosis task
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1978-01-01
It is proposed that humans in automated systems will be asked to assume the role of troubleshooter or problem solver and that the problems which they will be asked to solve in such systems will not be amenable to rote solution. The design of visual displays for problem solving in such situations is considered, and the results of two experimental investigations of human problem solving performance in the diagnosis of faults in graphically displayed network problems are discussed. The effects of problem size, forced-pacing, computer aiding, and training are considered. Results indicate that human performance deviates from optimality as problem size increases. Forced-pacing appears to cause the human to adopt fairly brute force strategies, as compared to those adopted in self-paced situations. Computer aiding substantially lessens the number of mistaken diagnoses by performing the bookkeeping portions of the task.
Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms
Masood, Ammara; Al-Jumaily, Adel Ali
2013-01-01
Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique's performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided. PMID:24575126
Computer-assisted education and interdisciplinary breast cancer diagnosis
NASA Astrophysics Data System (ADS)
Whatmough, Pamela; Gale, Alastair G.; Wilson, A. R. M.
1996-04-01
The diagnosis of breast disease for screening or symptomatic women is largely arrived at by a multi-disciplinary team. We report work on the development and assessment of an inter- disciplinary computer based learning system to support the diagnosis of this disease. The diagnostic process is first modelled from different viewpoints and then appropriate knowledge structures pertinent to the domains of radiologist, pathologist and surgeon are depicted. Initially the underlying inter-relationships of the mammographic diagnostic approach were detailed which is largely considered here. Ultimately a system is envisaged which will link these specialties and act as a diagnostic aid as well as a multi-media educational system.
Letter to the Editor: Use of Publicly Available Image Resources
Armato, Samuel G.; Drukker, Karen; Li, Feng; ...
2017-05-11
Here we write with regard to the Academic Radiology article entitled, “Computer-aided Diagnosis for Lung Cancer: Usefulness of Nodule Heterogeneity” by Drs. Nishio and Nagashima (1). The authors also report on a computerized method to classify as benign or malignant lung nodules present in computed tomography (CT) scans.
Computer Instructional Aids for Undergraduate Control Education.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…
Misawa, Masashi; Kudo, Shin-Ei; Mori, Yuichi; Takeda, Kenichi; Maeda, Yasuharu; Kataoka, Shinichi; Nakamura, Hiroki; Kudo, Toyoki; Wakamura, Kunihiko; Hayashi, Takemasa; Katagiri, Atsushi; Baba, Toshiyuki; Ishida, Fumio; Inoue, Haruhiro; Nimura, Yukitaka; Oda, Msahiro; Mori, Kensaku
2017-05-01
Real-time characterization of colorectal lesions during colonoscopy is important for reducing medical costs, given that the need for a pathological diagnosis can be omitted if the accuracy of the diagnostic modality is sufficiently high. However, it is sometimes difficult for community-based gastroenterologists to achieve the required level of diagnostic accuracy. In this regard, we developed a computer-aided diagnosis (CAD) system based on endocytoscopy (EC) to evaluate cellular, glandular, and vessel structure atypia in vivo. The purpose of this study was to compare the diagnostic ability and efficacy of this CAD system with the performances of human expert and trainee endoscopists. We developed a CAD system based on EC with narrow-band imaging that allowed microvascular evaluation without dye (ECV-CAD). The CAD algorithm was programmed based on texture analysis and provided a two-class diagnosis of neoplastic or non-neoplastic, with probabilities. We validated the diagnostic ability of the ECV-CAD system using 173 randomly selected EC images (49 non-neoplasms, 124 neoplasms). The images were evaluated by the CAD and by four expert endoscopists and three trainees. The diagnostic accuracies for distinguishing between neoplasms and non-neoplasms were calculated. ECV-CAD had higher overall diagnostic accuracy than trainees (87.8 vs 63.4%; [Formula: see text]), but similar to experts (87.8 vs 84.2%; [Formula: see text]). With regard to high-confidence cases, the overall accuracy of ECV-CAD was also higher than trainees (93.5 vs 71.7%; [Formula: see text]) and comparable to experts (93.5 vs 90.8%; [Formula: see text]). ECV-CAD showed better diagnostic accuracy than trainee endoscopists and was comparable to that of experts. ECV-CAD could thus be a powerful decision-making tool for less-experienced endoscopists.
Xing, Fuyong; Yang, Lin
2016-01-01
Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to inter-observer variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literatures. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast (DIC), fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation. PMID:26742143
Computer-aided diagnosis of liver tumors on computed tomography images.
Chang, Chin-Chen; Chen, Hong-Hao; Chang, Yeun-Chung; Yang, Ming-Yang; Lo, Chung-Ming; Ko, Wei-Chun; Lee, Yee-Fan; Liu, Kao-Lang; Chang, Ruey-Feng
2017-07-01
Liver cancer is the tenth most common cancer in the USA, and its incidence has been increasing for several decades. Early detection, diagnosis, and treatment of the disease are very important. Computed tomography (CT) is one of the most common and robust imaging techniques for the detection of liver cancer. CT scanners can provide multiple-phase sequential scans of the whole liver. In this study, we proposed a computer-aided diagnosis (CAD) system to diagnose liver cancer using the features of tumors obtained from multiphase CT images. A total of 71 histologically-proven liver tumors including 49 benign and 22 malignant lesions were evaluated with the proposed CAD system to evaluate its performance. Tumors were identified by the user and then segmented using a region growing algorithm. After tumor segmentation, three kinds of features were obtained for each tumor, including texture, shape, and kinetic curve. The texture was quantified using 3 dimensional (3-D) texture data of the tumor based on the grey level co-occurrence matrix (GLCM). Compactness, margin, and an elliptic model were used to describe the 3-D shape of the tumor. The kinetic curve was established from each phase of tumor and represented as variations in density between each phase. Backward elimination was used to select the best combination of features, and binary logistic regression analysis was used to classify the tumors with leave-one-out cross validation. The accuracy and sensitivity for the texture were 71.82% and 68.18%, respectively, which were better than for the shape and kinetic curve under closed specificity. Combining all of the features achieved the highest accuracy (58/71, 81.69%), sensitivity (18/22, 81.82%), and specificity (40/49, 81.63%). The Az value of combining all features was 0.8713. Combining texture, shape, and kinetic curve features may be able to differentiate benign from malignant tumors in the liver using our proposed CAD system. Copyright © 2017 Elsevier B.V. All rights reserved.
Human identification based on cranial computed tomography scan — a case report
Silva, RF; Botelho, TL; Prado, FB; Kawagushi, JT; Daruge Júnior, E; Bérzin, F
2011-01-01
Today, there is increasing use of CT scanning on a clinical basis, aiding in the diagnosis of diseases or injuries. This exam also provides important information that allows identification of individuals. This paper reports the use of a CT scan on the skull, taken when the victim was alive, for the positive identification of a victim of a traffic accident in which the fingerprint analysis was impossible. The authors emphasize that the CT scan is a tool primarily used in clinical diagnosis and may contribute significantly to forensic purpose, allowing the exploration of virtual corpses before the classic autopsy. The use of CT scans might increase the quantity and quality of information involved in the death of the person examined. PMID:21493883
Computer-aided diagnosis of leukoencephalopathy in children treated for acute lymphoblastic leukemia
NASA Astrophysics Data System (ADS)
Glass, John O.; Li, Chin-Shang; Helton, Kathleen J.; Reddick, Wilburn E.
2005-04-01
The purpose of this study was to use objective quantitative MR imaging methods to develop a computer-aided diagnosis tool to differentiate white matter (WM) hyperintensities as either leukoencephalopathy (LE) or normal maturational processes in children treated for acute lymphoblastic leukemia with intravenous high dose methotrexate. A combined imaging set consisting of T1, T2, PD, and FLAIR MR images and WM, gray matter, and cerebrospinal fluid a priori maps from a spatially normalized atlas were analyzed with a neural network segmentation based on a Kohonen Self-Organizing Map. Segmented regions were manually classified to identify the most hyperintense WM region and the normal appearing genu region. Signal intensity differences normalized to the genu within each examination were generated for two time points in 203 children. An unsupervised hierarchical clustering algorithm with the agglomeration method of McQuitty was used to divide data from the first examination into normal appearing or LE groups. A C-support vector machine (C-SVM) was then trained on the first examination data and used to classify the data from the second examination. The overall accuracy of the computer-aided detection tool was 83.5% (299/358) with sensitivity to normal WM of 86.9% (199/229) and specificity to LE of 77.5% (100/129) when compared to the readings of two expert observers. These results suggest that subtle therapy-induced leukoencephalopathy can be objectively and reproducibly detected in children treated for cancer using this computer-aided detection approach based on relative differences in quantitative signal intensity measures normalized within each examination.
Sun, Peng; Zhou, Haoyin; Ha, Seongmin; Hartaigh, Bríain ó; Truong, Quynh A.; Min, James K.
2016-01-01
In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. CT imaging and computer simulations provide valuable and complementary data for this purpose. However, it remains challenging to gain useful information from the large amount of high-dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and physiologic data from a complete yet focused perspective. We introduce a new computer-aided diagnosis framework, which allows for comprehensive modeling and visualization of cardiac anatomy and physiology from CT imaging data and computer simulations, with a primary focus on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from CT imaging: quantification and visualization of myocardial perfusion and contextual integration with coronary artery anatomy; (4) Physiology from computer simulation: computation and visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart disease. PMID:26863663
Suzuki, Y; Israelski, D M; Dannemann, B R; Stepick-Biek, P; Thulliez, P; Remington, J S
1988-01-01
The present study was performed to develop a serological method for diagnosing toxoplasmic encephalitis in patients with acquired immunodeficiency syndrome (AIDS). The trophozoite form of Toxoplasma gondii, fixed with either Formalin or acetone, was used in a modification of an agglutination method previously shown to differentiate between the acute and the chronic (latent) stages of infection with toxoplasma in immunologically normal persons. By using these antigens in separate tests and evaluating the data for statistical significance, 70% of patients with AIDS with biopsy-proven toxoplasmic encephalitis were distinguished from control, ambulatory patients with AIDS with toxoplasma antibodies but without signs or symptoms of central nervous system involvement. In a separate study, the agglutination tests identified from controls 84% of patients with AIDS with two or more brain lesions detected by computed-tomographic or magnetic-resonance-imaging scans and suspected of having toxoplasmic encephalitis. Thus, these agglutination tests should prove valuable for the noninvasive diagnosis of toxoplasmic encephalitis in patients with AIDS. PMID:3230132
Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.
Pycinski, Bartlomiej; Czajkowska, Joanna; Badura, Pawel; Juszczyk, Jan; Pietka, Ewa
2016-01-01
A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers.
Survival rate of AIDS disease and mortality in HIV-infected patients: a meta-analysis.
Poorolajal, J; Hooshmand, E; Mahjub, H; Esmailnasab, N; Jenabi, E
2016-10-01
The life expectancy of patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) reported by several epidemiological studies is inconsistent. This meta-analysis was conducted to estimate the survival rate from HIV diagnosis to AIDS onset and from AIDS onset to death. The electronic databases PubMed, Web of Science and Scopus were searched to February 2016. In addition, the reference lists of included studies were checked to identify further references, and the database of the International AIDS Society was also searched. Cohort studies addressing the survival rate in patients diagnosed with HIV/AIDS were included in this meta-analysis. The outcomes of interest were the survival rate of patients diagnosed with HIV progressing to AIDS, and the survival rate of patients with AIDS dying from AIDS-related causes with or without highly active antiretroviral therapy (HAART). The survival rate (P) was estimated with 95% confidence intervals based on random-effects models. In total, 27,862 references were identified, and 57 studies involving 294,662 participants were included in this meta-analysis. Two, 4-, 6-, 8-, 10- and 12-year survival probabilities of progression from HIV diagnosis to AIDS onset were estimated to be 82%, 72%, 64%, 57%, 26% and 19%, respectively. Two, 4-, 6-, 8- and 10-year survival probabilities of progression from AIDS onset to AIDS-related death in patients who received HAART were estimated to be 87%, 86%, 78%, 78%, and 61%, respectively, and 2-, 4- and 6-year survival probabilities of progression from AIDS onset to AIDS-related death in patients who did not receive HAART were estimated to be 48%, 26% and 18%, respectively. Evidence of considerable heterogeneity was found. The majority of the studies had a moderate to high risk of bias. The majority of HIV-positive patients progress to AIDS within the first decade of diagnosis. Most patients who receive HAART will survive for >10 years after the onset of AIDS, whereas the majority of the patients who do not receive HAART die within 2 years of the onset of AIDS. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Topal, Taner; Polat, Hüseyin; Güler, Inan
2008-10-01
In this paper, a time-frequency spectral analysis software (Heart Sound Analyzer) for the computer-aided analysis of cardiac sounds has been developed with LabVIEW. Software modules reveal important information for cardiovascular disorders, it can also assist to general physicians to come up with more accurate and reliable diagnosis at early stages. Heart sound analyzer (HSA) software can overcome the deficiency of expert doctors and help them in rural as well as urban clinics and hospitals. HSA has two main blocks: data acquisition and preprocessing, time-frequency spectral analyses. The heart sounds are first acquired using a modified stethoscope which has an electret microphone in it. Then, the signals are analysed using the time-frequency/scale spectral analysis techniques such as STFT, Wigner-Ville distribution and wavelet transforms. HSA modules have been tested with real heart sounds from 35 volunteers and proved to be quite efficient and robust while dealing with a large variety of pathological conditions.
Machine Learning Applications to Resting-State Functional MR Imaging Analysis.
Billings, John M; Eder, Maxwell; Flood, William C; Dhami, Devendra Singh; Natarajan, Sriraam; Whitlow, Christopher T
2017-11-01
Machine learning is one of the most exciting and rapidly expanding fields within computer science. Academic and commercial research entities are investing in machine learning methods, especially in personalized medicine via patient-level classification. There is great promise that machine learning methods combined with resting state functional MR imaging will aid in diagnosis of disease and guide potential treatment for conditions thought to be impossible to identify based on imaging alone, such as psychiatric disorders. We discuss machine learning methods and explore recent advances. Copyright © 2017 Elsevier Inc. All rights reserved.
A human visual based binarization technique for histological images
NASA Astrophysics Data System (ADS)
Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos
2017-05-01
In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.
Welter, Petra; Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno, Thomas M
2011-01-01
It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process.
Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno (né Lehmann), Thomas M
2011-01-01
It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process. PMID:21672913
1986-07-01
COMPUTER-AIDED OPERATION MANAGEMENT SYSTEM ................. 29 Functions of an Off-Line Computer-Aided Operation Management System Applications of...System Comparisons 85 DISTRIBUTION 5V J. • 0. FIGURES Number Page 1 Hardware Components 21 2 Basic Functions of a Computer-Aided Operation Management System...Plant Visits 26 4 Computer-Aided Operation Management Systems Reviewed for Analysis of Basic Functions 29 5 Progress of Software System Installation and
NASA Astrophysics Data System (ADS)
Pai, Akshay; Samala, Ravi K.; Zhang, Jianying; Qian, Wei
2010-03-01
Mammography reading by radiologists and breast tissue image interpretation by pathologists often leads to high False Positive (FP) Rates. Similarly, current Computer Aided Diagnosis (CADx) methods tend to concentrate more on sensitivity, thus increasing the FP rates. A novel method is introduced here which employs similarity based method to decrease the FP rate in the diagnosis of microcalcifications. This method employs the Principal Component Analysis (PCA) and the similarity metrics in order to achieve the proposed goal. The training and testing set is divided into generalized (Normal and Abnormal) and more specific (Abnormal, Normal, Benign) classes. The performance of this method as a standalone classification system is evaluated in both the cases (general and specific). In another approach the probability of each case belonging to a particular class is calculated. If the probabilities are too close to classify, the augmented CADx system can be instructed to have a detailed analysis of such cases. In case of normal cases with high probability, no further processing is necessary, thus reducing the computation time. Hence, this novel method can be employed in cascade with CADx to reduce the FP rate and also avoid unnecessary computational time. Using this methodology, a false positive rate of 8% and 11% is achieved for mammography and cellular images respectively.
[Late diagnosis and vulnerabilities of the elderly living with HIV/AIDS].
Alencar, Rúbia Aguiar; Ciosak, Suely Itsuko
2015-04-01
To identify vulnerabilities of elderly people with HIV/AIDS and the trajectory that they follow until reaching the diagnosis of the disease. Qualitative research conducted in specialized clinics in the state of São Paulo, from January to June 2011. Semi-structured interviews were conducted with 11 elderly people who were found to be infected with the virus at the age of 60 years or older. The interviews were analyzed using content analysis. In this process four categories emerged, then analyzed with reference to the theoretical framework of vulnerability. Late diagnosis of HIV infection or AIDS among the elderly happens in the secondary or tertiary service. Issues related to sexual life of the elderly are only questioned by health professionals after the diagnosis, also the time that condom use becomes absolute. It is believed that the investigation of the vulnerability of the elderly to HIV/AIDS allows for carrying out appropriate interventions for this population.
ERIC Educational Resources Information Center
Kashima, Simone; de Castro, Fabiola Attie; de Castro Amarante, Maria Fernanda; Barbieri, Marisa Ramos; Covas, Dimas Tadeu
2008-01-01
Considering the fact that information on HIV/AIDS is a strategy for disease control, this project was planned to provide comprehensive information about HIV infection and AIDS to schoolteachers and their students. Previous analysis of adolescent students' knowledge of HIV/AIDS showed that they still have doubts about transmission, diagnosis, and…
Khelassi, Abdeldjalil
2014-01-01
Active research is being conducted to determine the prognosis for breast cancer. However, the uncertainty is a major obstacle in this domain of medical research. In that context, explanation-aware computing has the potential for providing meaningful interactions between complex medical applications and users, which would ensure a significant reduction of uncertainty and risks. This paper presents an explanation-aware agent, supported by Intensive Knowledge-Distributed Case-Based Reasoning Classifier (IK-DCBRC), to reduce the uncertainty and risks associated with the diagnosis of breast cancer. A meaningful explanation is generated by inferring from a rule-based system according to the level of abstraction and the reasoning traces. The computer-aided detection is conducted by IK-DCBRC, which is a multi-agent system that applies the case-based reasoning paradigm and a fuzzy similarity function for the automatic prognosis by the class of breast tumors, i.e. malignant or benign, from a pattern of cytological images. A meaningful interaction between the physician and the computer-aided diagnosis system, IK-DCBRC, is achieved via an intelligent agent. The physician can observe the trace of reasoning, terms, justifications, and the strategy to be used to decrease the risks and doubts associated with the automatic diagnosis. The capability of the system we have developed was proven by an example in which conflicts were clarified and transparency was ensured. The explanation agent ensures the transparency of the automatic diagnosis of breast cancer supported by IK-DCBRC, which decreases uncertainty and risks and detects some conflicts.
Influence of Computer-Aided Detection on Performance of Screening Mammography
Fenton, Joshua J.; Taplin, Stephen H.; Carney, Patricia A.; Abraham, Linn; Sickles, Edward A.; D'Orsi, Carl; Berns, Eric A.; Cutter, Gary; Hendrick, R. Edward; Barlow, William E.; Elmore, Joann G.
2011-01-01
Background Computer-aided detection identifies suspicious findings on mammograms to assist radiologists. Since the Food and Drug Administration approved the technology in 1998, it has been disseminated into practice, but its effect on the accuracy of interpretation is unclear. Methods We determined the association between the use of computer-aided detection at mammography facilities and the performance of screening mammography from 1998 through 2002 at 43 facilities in three states. We had complete data for 222,135 women (a total of 429,345 mammograms), including 2351 women who received a diagnosis of breast cancer within 1 year after screening. We calculated the specificity, sensitivity, and positive predictive value of screening mammography with and without computer-aided detection, as well as the rates of biopsy and breast-cancer detection and the overall accuracy, measured as the area under the receiver-operating-characteristic (ROC) curve. Results Seven facilities (16%) implemented computer-aided detection during the study period. Diagnostic specificity decreased from 90.2% before implementation to 87.2% after implementation (P<0.001), the positive predictive value decreased from 4.1% to 3.2% (P = 0.01), and the rate of biopsy increased by 19.7% (P<0.001). The increase in sensitivity from 80.4% before implementation of computer-aided detection to 84.0% after implementation was not significant (P = 0.32). The change in the cancer-detection rate (including invasive breast cancers and ductal carcinomas in situ) was not significant (4.15 cases per 1000 screening mammograms before implementation and 4.20 cases after implementation, P = 0.90). Analyses of data from all 43 facilities showed that the use of computer-aided detection was associated with significantly lower overall accuracy than was nonuse (area under the ROC curve, 0.871 vs. 0.919; P = 0.005). Conclusions The use of computer-aided detection is associated with reduced accuracy of interpretation of screening mammograms. The increased rate of biopsy with the use of computer-aided detection is not clearly associated with improved detection of invasive breast cancer. PMID:17409321
Computer-Aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential
Doi, Kunio
2007-01-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. In this article, the motivation and philosophy for early development of CAD schemes are presented together with the current status and future potential of CAD in a PACS environment. With CAD, radiologists use the computer output as a “second opinion” and make the final decisions. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral chest images has the potential to improve the overall performance in the detection of lung nodules when combined with another CAD scheme for PA chest images. Because vertebral fractures can be detected reliably by computer on lateral chest radiographs, radiologists’ accuracy in the detection of vertebral fractures would be improved by the use of CAD, and thus early diagnosis of osteoporosis would become possible. In MRA, a CAD system has been developed for assisting radiologists in the detection of intracranial aneurysms. On successive bone scan images, a CAD scheme for detection of interval changes has been developed by use of temporal subtraction images. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for chest CAD may include the computerized detection of lung nodules, interstitial opacities, cardiomegaly, vertebral fractures, and interval changes in chest radiographs as well as the computerized classification of benign and malignant nodules and the differential diagnosis of interstitial lung diseases. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with known pathology, which would be very similar to a new unknown case, from PACS when a reliable and useful method has been developed for quantifying the similarity of a pair of images for visual comparison by radiologists. PMID:17349778
Ultrasound introscopic image quantitative characteristics for medical diagnosis
NASA Astrophysics Data System (ADS)
Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.
1993-09-01
The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.
Dr. Lindberg's Legacy : Charting A New Course | NIH MedlinePlus the Magazine
... technology, artificial intelligence, computer-aided medical diagnosis, and electronic health records. As the first President of the ... about it—when Don began, NLM had no electronic journals in its collection, few people owned personal ...
NASA Astrophysics Data System (ADS)
Torrents-Barrena, Jordina; Puig, Domenec; Melendez, Jaime; Valls, Aida
2016-03-01
Breast cancer is one of the most dangerous diseases that attack women in their 40s worldwide. Due to this fact, it is estimated that one in eight women will develop a malignant carcinoma during their life. In addition, the carelessness of performing regular screenings is an important reason for the increase of mortality. However, computer-aided diagnosis systems attempt to enhance the quality of mammograms as well as the detection of early signs related to the disease. In this paper we propose a bank of Gabor filters to calculate the mean, standard deviation, skewness and kurtosis features by four-sized evaluation windows. Therefore, an active strategy is used to select the most relevant pixels. Finally, a supervised classification stage using two-class support vector machines is utilised through an accurate estimation of kernel parameters. In order to show the development of our methodology based on mammographic image analysis, two main experiments are fulfilled: abnormal/normal breast tissue classification and the ability to detect the different breast cancer types. Moreover, the public screen-film mini-MIAS database is compared with a digitised breast cancer database to evaluate the method robustness. The area under the receiver operating characteristic curve is used to measure the performance of the method. Furthermore, both confusion matrix and accuracy are calculated to assess the results of the proposed algorithm.
Digital ocular fundus imaging: a review.
Bernardes, Rui; Serranho, Pedro; Lobo, Conceição
2011-01-01
Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs. Copyright © 2011 S. Karger AG, Basel.
AIDS: The Role of Imaging Modalities and Infection Control Policies
Moore-Stovall, Joyce
1988-01-01
The availability of imaging modalities, such as the chest radiograph, gallium scan, double-contrast barium enema, computed tomography, and nuclear magnetic resonance, are very helpful in the diagnosis, treatment, and follow-up evaluation of patients with acquired immunodeficiency syndrome (AIDS). Because this syndrome causes irreversible destruction of the immune system, patients are susceptible to a multitude of opportunistic infections and malignancies. Health care professionals and the general public would be less fearful and apprehensive of AIDS victims if properly informed about the communicability of this syndrome. PMID:3047412
The Research of Computer Aided Farm Machinery Designing Method Based on Ergonomics
NASA Astrophysics Data System (ADS)
Gao, Xiyin; Li, Xinling; Song, Qiang; Zheng, Ying
Along with agricultural economy development, the farm machinery product type Increases gradually, the ergonomics question is also getting more and more prominent. The widespread application of computer aided machinery design makes it possible that farm machinery design is intuitive, flexible and convenient. At present, because the developed computer aided ergonomics software has not suitable human body database, which is needed in view of farm machinery design in China, the farm machinery design have deviation in ergonomics analysis. This article puts forward that using the open database interface procedure in CATIA to establish human body database which aims at the farm machinery design, and reading the human body data to ergonomics module of CATIA can product practical application virtual body, using human posture analysis and human activity analysis module to analysis the ergonomics in farm machinery, thus computer aided farm machinery designing method based on engineering can be realized.
Deep-reasoning fault diagnosis - An aid and a model
NASA Technical Reports Server (NTRS)
Yoon, Wan Chul; Hammer, John M.
1988-01-01
The design and evaluation are presented for the knowledge-based assistance of a human operator who must diagnose a novel fault in a dynamic, physical system. A computer aid based on a qualitative model of the system was built to help the operators overcome some of their cognitive limitations. This aid differs from most expert systems in that it operates at several levels of interaction that are believed to be more suitable for deep reasoning. Four aiding approaches, each of which provided unique information to the operator, were evaluated. The aiding features were designed to help the human's casual reasoning about the system in predicting normal system behavior (N aiding), integrating observations into actual system behavior (O aiding), finding discrepancies between the two (O-N aiding), or finding discrepancies between observed behavior and hypothetical behavior (O-HN aiding). Human diagnostic performance was found to improve by almost a factor of two with O aiding and O-N aiding.
Rapid development of medical imaging tools with open-source libraries.
Caban, Jesus J; Joshi, Alark; Nagy, Paul
2007-11-01
Rapid prototyping is an important element in researching new imaging analysis techniques and developing custom medical applications. In the last ten years, the open source community and the number of open source libraries and freely available frameworks for biomedical research have grown significantly. What they offer are now considered standards in medical image analysis, computer-aided diagnosis, and medical visualization. A cursory review of the peer-reviewed literature in imaging informatics (indeed, in almost any information technology-dependent scientific discipline) indicates the current reliance on open source libraries to accelerate development and validation of processes and techniques. In this survey paper, we review and compare a few of the most successful open source libraries and frameworks for medical application development. Our dual intentions are to provide evidence that these approaches already constitute a vital and essential part of medical image analysis, diagnosis, and visualization and to motivate the reader to use open source libraries and software for rapid prototyping of medical applications and tools.
Textural pattern classification for oral squamous cell carcinoma.
Rahman, T Y; Mahanta, L B; Chakraborty, C; DAS, A K; Sarma, J D
2018-01-01
Despite being an area of cancer with highest worldwide incidence, oral cancer yet remains to be widely researched. Studies on computer-aided analysis of pathological slides of oral cancer contribute a lot to the diagnosis and treatment of the disease. Some researches in this direction have been carried out on oral submucous fibrosis. In this work an approach for analysing abnormality based on textural features present in squamous cell carcinoma histological slides have been considered. Histogram and grey-level co-occurrence matrix approaches for extraction of textural features from biopsy images with normal and malignant cells are used here. Further, we have used linear support vector machine classifier for automated diagnosis of the oral cancer, which gives 100% accuracy. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Operational Assessment of Color Vision
2016-06-20
evaluated in this study. 15. SUBJECT TERMS Color vision, aviation, cone contrast test, Colour Assessment & Diagnosis , color Dx, OBVA 16. SECURITY...symbologies are frequently used to aid or direct critical activities such as aircraft landing approaches or railroad right-of-way designations...computer-generated display systems have facilitated the development of computer-based, automated tests of color vision [14,15]. The United Kingdom’s
Computer-Aided Communication Satellite System Analysis and Optimization.
ERIC Educational Resources Information Center
Stagl, Thomas W.; And Others
Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…
ERIC Educational Resources Information Center
Penn-Edwards, Sorrel
2010-01-01
The qualitative research methodology of phenomenography has traditionally required a manual sorting and analysis of interview data. In this paper I explore a potential means of streamlining this procedure by considering a computer aided process not previously reported upon. Two methods of lexicological analysis, manual and automatic, were examined…
Shan, Juan; Alam, S Kaisar; Garra, Brian; Zhang, Yingtao; Ahmed, Tahira
2016-04-01
This work identifies effective computable features from the Breast Imaging Reporting and Data System (BI-RADS), to develop a computer-aided diagnosis (CAD) system for breast ultrasound. Computerized features corresponding to ultrasound BI-RADs categories were designed and tested using a database of 283 pathology-proven benign and malignant lesions. Features were selected based on classification performance using a "bottom-up" approach for different machine learning methods, including decision tree, artificial neural network, random forest and support vector machine. Using 10-fold cross-validation on the database of 283 cases, the highest area under the receiver operating characteristic (ROC) curve (AUC) was 0.84 from a support vector machine with 77.7% overall accuracy; the highest overall accuracy, 78.5%, was from a random forest with the AUC 0.83. Lesion margin and orientation were optimum features common to all of the different machine learning methods. These features can be used in CAD systems to help distinguish benign from worrisome lesions. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
[An integrated segmentation method for 3D ultrasound carotid artery].
Yang, Xin; Wu, Huihui; Liu, Yang; Xu, Hongwei; Liang, Huageng; Cai, Wenjuan; Fang, Mengjie; Wang, Yujie
2013-07-01
An integrated segmentation method for 3D ultrasound carotid artery was proposed. 3D ultrasound image was sliced into transverse, coronal and sagittal 2D images on the carotid bifurcation point. Then, the three images were processed respectively, and the carotid artery contours and thickness were obtained finally. This paper tries to overcome the disadvantages of current computer aided diagnosis method, such as high computational complexity, easily introduced subjective errors et al. The proposed method could get the carotid artery overall information rapidly, accurately and completely. It could be transplanted into clinical usage for atherosclerosis diagnosis and prevention.
Computer-aided diagnostic detection system of venous beading in retinal images
NASA Astrophysics Data System (ADS)
Yang, Ching-Wen; Ma, DyeJyun; Chao, ShuennChing; Wang, ChuinMu; Wen, Chia-Hsien; Lo, ChienShun; Chung, Pau-Choo; Chang, Chein-I.
2000-05-01
The detection of venous beading in retinal images provides an early sign of diabetic retinopathy and plays an important role as a preprocessing step in diagnosing ocular diseases. We present a computer-aided diagnostic system to automatically detect venous beading of blood vessels. It comprises of two modules, referred to as the blood vessel extraction module and the venus beading detection module. The former uses a bell-shaped Gaussian kernel with 12 azimuths to extract blood vessels while the latter applies a neural network-based shape cognitron to detect venous beading among the extracted blood vessels for diagnosis. Both modules are fully computer-automated. To evaluate the proposed system, 61 retinal images (32 beaded and 29 normal images) are used for performance evaluation.
An Interactive Computer Aided Design and Analysis Package.
1986-03-01
Al-A167 114 AN INTERACTIVE COMPUTER AIDED DESIGN MUD ANAILYSIS 1/ PACKAGE(U) NAVAL POSTGRADUATE SCHOOL NONTEREY CA T L EUALD "AR 86 UNCLSSIFIED F... SCHOOL Monterey, California DTIC .LECTE MAYOS THESIS AN INTERACTIVE COMPUTER AIDED DESIGN AND ANALYSIS PACKAGE by Terrence L. Ewald March 1986 jThesis...ORGANIZATION Naval Postgraduate School (if dAp90h81111) Naval Postgraduate School . 62A 6C. ADDRESS (0ty. State, and ZIP Code) 7b. ADDRESS (City State. and
Machine Learning and Radiology
Wang, Shijun; Summers, Ronald M.
2012-01-01
In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077
Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Lee, F. C.; Rahman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.
1980-01-01
Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems.
Application of infrared thermography in computer aided diagnosis
NASA Astrophysics Data System (ADS)
Faust, Oliver; Rajendra Acharya, U.; Ng, E. Y. K.; Hong, Tan Jen; Yu, Wenwei
2014-09-01
The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care.
Interactive tele-radiological segmentation systems for treatment and diagnosis.
Zimeras, S; Gortzis, L G
2012-01-01
Telehealth is the exchange of health information and the provision of health care services through electronic information and communications technology, where participants are separated by geographic, time, social and cultural barriers. The shift of telemedicine from desktop platforms to wireless and mobile technologies is likely to have a significant impact on healthcare in the future. It is therefore crucial to develop a general information exchange e-medical system to enables its users to perform online and offline medical consultations through diagnosis. During the medical diagnosis, image analysis techniques combined with doctor's opinions could be useful for final medical decisions. Quantitative analysis of digital images requires detection and segmentation of the borders of the object of interest. In medical images, segmentation has traditionally been done by human experts. Even with the aid of image processing software (computer-assisted segmentation tools), manual segmentation of 2D and 3D CT images is tedious, time-consuming, and thus impractical, especially in cases where a large number of objects must be specified. Substantial computational and storage requirements become especially acute when object orientation and scale have to be considered. Therefore automated or semi-automated segmentation techniques are essential if these software applications are ever to gain widespread clinical use. The main purpose of this work is to analyze segmentation techniques for the definition of anatomical structures under telemedical systems.
Enormous knowledge base of disease diagnosis criteria.
Xiao, Z H; Xiao, Y H; Pei, J H
1995-01-01
One of the problems in the development of the medical knowledge systems is the limitations of the system's knowledge. It is a common expectation to increase the number of diseases contained in a system. Using a high density knowledge representation method designed by us, we have developed the Enormous Knowledge Base of Disease Diagnosis Criteria (EKBDDC). It contains diagnostic criteria of 1,001 diagnostic entities and describes nearly 4,000 items of diagnostic indicators. It is the core of a huge medical project--the Electronic-Brain Medical Erudite (EBME). This enormous knowledge base was implemented initially on a low-cost popular microcomputer, which can aid in the prompting of typical disease and in teaching of diagnosis. The knowledge base is easy to expand. One of the main goals of EKBDDC is to increase the number of diseases included in it as far as possible using a low-cost computer with a comparatively small storage capacity. For this, we have designed a high density knowledge representation method. Criteria of various diagnostic entities are respectively stored in different records of the knowledge base. Each diagnostic entity corresponds to a diagnostic criterion data set; each data set consists of some diagnostic criterion data values (Table 1); each data is composed of two parts: integer and decimal; the integral part is the coding number of the given diagnostic information, and the decimal part is the diagnostic value of this information to the disease indicated by corresponding record number. For example, 75.02: the integer 75 is the coding number of "hemorrhagic skin rash"; the decimal 0.02 is the diagnostic value of this manifestation for diagnosing allergic purpura. TABULAR DATA, SEE PUBLISHED ABSTRACT. The algebraic sum method, a special form of the weighted summation, is adopted as mathematical model. In EKBDDC, the diagnostic values, which represent the significance of the disease manifestations for diagnosing corresponding diseases, were determined empirically. It is of a great economical, practical, and technical significance to realize enormous knowledge bases of disease diagnosis criteria on a low-cost popular microcomputer. This is beneficial for the developing countries to popularize medical informatics. To create the enormous international computer-aided diagnosis system, one may jointly develop the unified modules of disease diagnosis criteria used to "inlay" relevant computer-aided diagnosis systems. It is just like assembling a house using prefabricated panels.
A review of critical in-flight events research methodology
NASA Technical Reports Server (NTRS)
Giffin, W. C.; Rockwell, T. H.; Smith, P. E.
1985-01-01
Pilot's cognitive responses to critical in-flight events (CIFE's) were investigated, using pilots, who had on the average about 2540 flight hours each, in four experiments: (1) full-mission simulation in a general aviation trainer, (2) paper and pencil CIFE tests, (3) interactive computer-aided scenario testing, and (4) verbal protocols in fault diagnosis tasks. The results of both computer and paper and pencil tests showed only 50 percent efficiency in correct diagnosis of critical events. The efficiency in arriving at a diagnosis was also low: over 20 inquiries were made for 21 percent of the scenarios diagnosed. The information-seeking pattern was random, with frequent retracing over old inquiries. The measures for developing improved cognitive skills for CIFE's are discussed.
Enhancing Engineering Computer-Aided Design Education Using Lectures Recorded on the PC
ERIC Educational Resources Information Center
McGrann, Roy T. R.
2006-01-01
Computer-Aided Engineering (CAE) is a course that is required during the third year in the mechanical engineering curriculum at Binghamton University. The primary objective of the course is to educate students in the procedures of computer-aided engineering design. The solid modeling and analysis program Pro/Engineer[TM] (PTC[R]) is used as the…
Segmentation of touching mycobacterium tuberculosis from Ziehl-Neelsen stained sputum smear images
NASA Astrophysics Data System (ADS)
Xu, Chao; Zhou, Dongxiang; Liu, Yunhui
2015-12-01
Touching Mycobacterium tuberculosis objects in the Ziehl-Neelsen stained sputum smear images present different shapes and invisible boundaries in the adhesion areas, which increases the difficulty in objects recognition and counting. In this paper, we present a segmentation method of combining the hierarchy tree analysis with gradient vector flow snake to address this problem. The skeletons of the objects are used for structure analysis based on the hierarchy tree. The gradient vector flow snake is used to estimate the object edge. Experimental results show that the single objects composing the touching objects are successfully segmented by the proposed method. This work will improve the accuracy and practicability of the computer-aided diagnosis of tuberculosis.
Deep Learning in Medical Image Analysis
Shen, Dinggang; Wu, Guorong; Suk, Heung-Il
2016-01-01
The computer-assisted analysis for better interpreting images have been longstanding issues in the medical imaging field. On the image-understanding front, recent advances in machine learning, especially, in the way of deep learning, have made a big leap to help identify, classify, and quantify patterns in medical images. Specifically, exploiting hierarchical feature representations learned solely from data, instead of handcrafted features mostly designed based on domain-specific knowledge, lies at the core of the advances. In that way, deep learning is rapidly proving to be the state-of-the-art foundation, achieving enhanced performances in various medical applications. In this article, we introduce the fundamentals of deep learning methods; review their successes to image registration, anatomical/cell structures detection, tissue segmentation, computer-aided disease diagnosis or prognosis, and so on. We conclude by raising research issues and suggesting future directions for further improvements. PMID:28301734
Rajaraman, Sivaramakrishnan; Antani, Sameer K; Poostchi, Mahdieh; Silamut, Kamolrat; Hossain, Md A; Maude, Richard J; Jaeger, Stefan; Thoma, George R
2018-01-01
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
Balmforth, Damian; Chacko, Jacob; Uppal, Rakesh
2016-10-01
A best evidence topic was constructed according to a structured protocol. The question addressed was whether (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) aids the diagnosis of prosthetic valve endocarditis (PVE)? A total of 107 publications were found using the reported search, of which 6 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. The reported outcome of all studies was a final diagnosis of confirmed endocarditis on follow-up. All the six studies were non-randomized, single-centre, observational studies and thus represented level 3 evidence. The diagnostic capability of PET/CT for PVE was compared with that of the modified Duke Criteria and echocardiography, and reported in terms of sensitivity, specificity and positive and negative predictive values. All studies demonstrated an increased sensitivity for the diagnosis of PVE when PET/CT was combined with the modified Duke Criteria on admission. A higher SUVmax on PET was found to be significantly associated with a confirmed diagnosis of endocarditis and an additional diagnostic benefit of PET/CT angiography over conventional PET/non-enhanced CT is reported due to improved anatomical resolution. However, PET/CT was found to be unreliable in the early postoperative period due to its inability to distinguish between infection and residual postoperative inflammatory changes. PET/CT was also found to be poor at diagnosing cases of native valve endocarditis. We conclude that PET/CT aids in the diagnosis of PVE when combined with the modified Duke Criteria on admission by increasing the diagnostic sensitivity. The diagnostic ability of PET/CT can be potentiated by the use of PET/CTA; however, its use may be unreliable in the early postoperative period or in native valve endocarditis. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Computational System For Rapid CFD Analysis In Engineering
NASA Technical Reports Server (NTRS)
Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.
1995-01-01
Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.
"Tennis elbow". A challenging call for computation and medicine
NASA Astrophysics Data System (ADS)
Sfetsioris, D.; Bontioti, E. N.
2014-10-01
An attempt to give an insight on the features composing this musculotendinous disorder. We address the issues of definition, pathophysiology and the mechanism underlying the onset and the occurrence of the disease, diagnosis and diagnostic tools as well as the methods of treatment. We focus mostly on conservative treatment protocols and we recognize the need for a more thorough investigation with the aid of computation.
[Medical expert systems and clinical needs].
Buscher, H P
1991-10-18
The rapid expansion of computer-based systems for problem solving or decision making in medicine, the so-called medical expert systems, emphasize the need for reappraisal of their indication and value. Where specialist knowledge is required, in particular where medical decisions are susceptible to error these systems will probably serve as a valuable support. In the near future computer-based systems should be able to aid the interpretation of findings of technical investigations and the control of treatment, especially where rapid reactions are necessary despite the need of complex analysis of investigated parameters. In the distant future complete support of diagnostic procedures from the history to final diagnosis is possible. It promises to be particularly attractive for the diagnosis of seldom diseases, for difficult differential diagnoses, and in the decision making in the case of expensive, risky or new diagnostic or therapeutic methods. The physician needs to be aware of certain dangers, ranging from misleading information up to abuse. Patient information depends often on subjective reports and error-prone observations. Although basing on problematic knowledge computer-born decisions may have an imperative effect on medical decision making. Also it must be born in mind that medical decisions should always combine the rational with a consideration of human motives.
An evaluation of consensus techniques for diagnostic interpretation
NASA Astrophysics Data System (ADS)
Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.
2018-02-01
Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.
Evaluating a Computerized Aid for Conducting a Cognitive Task Analysis
2000-01-01
in conducting a cognitive task analysis . The conduct of a cognitive task analysis is costly and labor intensive. As a result, a few computerized aids...evaluation of a computerized aid, specifically CAT-HCI (Cognitive Analysis Tool - Human Computer Interface), for the conduct of a detailed cognitive task analysis . A
Histology image analysis for carcinoma detection and grading
He, Lei; Long, L. Rodney; Antani, Sameer; Thoma, George R.
2012-01-01
This paper presents an overview of the image analysis techniques in the domain of histopathology, specifically, for the objective of automated carcinoma detection and classification. As in other biomedical imaging areas such as radiology, many computer assisted diagnosis (CAD) systems have been implemented to aid histopathologists and clinicians in cancer diagnosis and research, which have been attempted to significantly reduce the labor and subjectivity of traditional manual intervention with histology images. The task of automated histology image analysis is usually not simple due to the unique characteristics of histology imaging, including the variability in image preparation techniques, clinical interpretation protocols, and the complex structures and very large size of the images themselves. In this paper we discuss those characteristics, provide relevant background information about slide preparation and interpretation, and review the application of digital image processing techniques to the field of histology image analysis. In particular, emphasis is given to state-of-the-art image segmentation methods for feature extraction and disease classification. Four major carcinomas of cervix, prostate, breast, and lung are selected to illustrate the functions and capabilities of existing CAD systems. PMID:22436890
Gong, Jing; Liu, Ji-Yu; Sun, Xi-Wen; Zheng, Bin; Nie, Sheng-Dong
2018-02-05
This study aims to develop a computer-aided diagnosis (CADx) scheme for classification between malignant and benign lung nodules, and also assess whether CADx performance changes in detecting nodules associated with early and advanced stage lung cancer. The study involves 243 biopsy-confirmed pulmonary nodules. Among them, 76 are benign, 81 are stage I and 86 are stage III malignant nodules. The cases are separated into three data sets involving: (1) all nodules, (2) benign and stage I malignant nodules, and (3) benign and stage III malignant nodules. A CADx scheme is applied to segment lung nodules depicted on computed tomography images and we initially computed 66 3D image features. Then, three machine learning models namely, a support vector machine, naïve Bayes classifier and linear discriminant analysis, are separately trained and tested by using three data sets and a leave-one-case-out cross-validation method embedded with a Relief-F feature selection algorithm. When separately using three data sets to train and test three classifiers, the average areas under receiver operating characteristic curves (AUC) are 0.94, 0.90 and 0.99, respectively. When using the classifiers trained using data sets with all nodules, average AUC values are 0.88 and 0.99 for detecting early and advanced stage nodules, respectively. AUC values computed from three classifiers trained using the same data set are consistent without statistically significant difference (p > 0.05). This study demonstrates (1) the feasibility of applying a CADx scheme to accurately distinguish between benign and malignant lung nodules, and (2) a positive trend between CADx performance and cancer progression stage. Thus, in order to increase CADx performance in detecting subtle and early cancer, training data sets should include more diverse early stage cancer cases.
NASA Astrophysics Data System (ADS)
Gong, Jing; Liu, Ji-Yu; Sun, Xi-Wen; Zheng, Bin; Nie, Sheng-Dong
2018-02-01
This study aims to develop a computer-aided diagnosis (CADx) scheme for classification between malignant and benign lung nodules, and also assess whether CADx performance changes in detecting nodules associated with early and advanced stage lung cancer. The study involves 243 biopsy-confirmed pulmonary nodules. Among them, 76 are benign, 81 are stage I and 86 are stage III malignant nodules. The cases are separated into three data sets involving: (1) all nodules, (2) benign and stage I malignant nodules, and (3) benign and stage III malignant nodules. A CADx scheme is applied to segment lung nodules depicted on computed tomography images and we initially computed 66 3D image features. Then, three machine learning models namely, a support vector machine, naïve Bayes classifier and linear discriminant analysis, are separately trained and tested by using three data sets and a leave-one-case-out cross-validation method embedded with a Relief-F feature selection algorithm. When separately using three data sets to train and test three classifiers, the average areas under receiver operating characteristic curves (AUC) are 0.94, 0.90 and 0.99, respectively. When using the classifiers trained using data sets with all nodules, average AUC values are 0.88 and 0.99 for detecting early and advanced stage nodules, respectively. AUC values computed from three classifiers trained using the same data set are consistent without statistically significant difference (p > 0.05). This study demonstrates (1) the feasibility of applying a CADx scheme to accurately distinguish between benign and malignant lung nodules, and (2) a positive trend between CADx performance and cancer progression stage. Thus, in order to increase CADx performance in detecting subtle and early cancer, training data sets should include more diverse early stage cancer cases.
Broadening the Scope of Dental Education.
ERIC Educational Resources Information Center
Loe, Harald
1992-01-01
Scientific and technological advances affecting dental education in the near future are examined, including the growing role of saliva in diagnosis, direct imaging methods, biomaterials research, computer-aided design and manufacturing, molecular biology, and new restorative dentistry. It is argued that dentistry should be a fully recognized…
Li, Feng
2015-07-01
This review paper is based on our research experience in the past 30 years. The importance of radiologists' role is discussed in the development or evaluation of new medical images and of computer-aided detection (CAD) schemes in chest radiology. The four main topics include (1) introducing what diseases can be included in a research database for different imaging techniques or CAD systems and what imaging database can be built by radiologists, (2) understanding how radiologists' subjective judgment can be combined with technical objective features to improve CAD performance, (3) sharing our experience in the design of successful observer performance studies, and (4) finally, discussing whether the new images and CAD systems can improve radiologists' diagnostic ability in chest radiology. In conclusion, advanced imaging techniques and detection/classification of CAD systems have a potential clinical impact on improvement of radiologists' diagnostic ability, for both the detection and the differential diagnosis of various lung diseases, in chest radiology.
Bi-model processing for early detection of breast tumor in CAD system
NASA Astrophysics Data System (ADS)
Mughal, Bushra; Sharif, Muhammad; Muhammad, Nazeer
2017-06-01
Early screening of skeptical masses in mammograms may reduce mortality rate among women. This rate can be further reduced upon developing the computer-aided diagnosis system with decrease in false assumptions in medical informatics. This method highlights the early tumor detection in digitized mammograms. For improving the performance of this system, a novel bi-model processing algorithm is introduced. It divides the region of interest into two parts, the first one is called pre-segmented region (breast parenchyma) and other is the post-segmented region (suspicious region). This system follows the scheme of the preprocessing technique of contrast enhancement that can be utilized to segment and extract the desired feature of the given mammogram. In the next phase, a hybrid feature block is presented to show the effective performance of computer-aided diagnosis. In order to assess the effectiveness of the proposed method, a database provided by the society of mammographic images is tested. Our experimental outcomes on this database exhibit the usefulness and robustness of the proposed method.
NASA Astrophysics Data System (ADS)
Hu, Yifan; Han, Hao; Zhu, Wei; Li, Lihong; Pickhardt, Perry J.; Liang, Zhengrong
2016-03-01
Feature classification plays an important role in differentiation or computer-aided diagnosis (CADx) of suspicious lesions. As a widely used ensemble learning algorithm for classification, random forest (RF) has a distinguished performance for CADx. Our recent study has shown that the location index (LI), which is derived from the well-known kNN (k nearest neighbor) and wkNN (weighted k nearest neighbor) classifier [1], has also a distinguished role in the classification for CADx. Therefore, in this paper, based on the property that the LI will achieve a very high accuracy, we design an algorithm to integrate the LI into RF for improved or higher value of AUC (area under the curve of receiver operating characteristics -- ROC). Experiments were performed by the use of a database of 153 lesions (polyps), including 116 neoplastic lesions and 37 hyperplastic lesions, with comparison to the existing classifiers of RF and wkNN, respectively. A noticeable gain by the proposed integrated classifier was quantified by the AUC measure.
Computer-aided system for diabetes care in Berlin, G.D.R.
Thoelke, H; Meusel, K; Ratzmann, K P
1990-01-01
In the Centre of Diabetes and Metabolic Disorders of Berlin, G.D.R., a computer-aided care system has been used since 1974, aiming at relieving physicians and medical staff from routine tasks and rendering possible epidemiological research on an unselected diabetes population of a defined area. The basis of the system is the data bank on diabetics (DB), where at present data from approximately 55,000 patients are stored. DB is used as a diabetes register of Berlin. On the basis of standardised criteria of diagnosis and therapy of diabetes mellitus in our dispensary care system, DB facilitates representative epidemiological analyses of the diabetic population, e.g. prevalence, incidence, duration of diabetes, and modes of treatment. The availability of general data on the population or the selection of specified groups of patients serves the management of the care system. Also, it supports the computer-aided recall of type II diabetics, treated either with diet alone or with diet and oral drugs. In this way, the standardised evaluation of treatment strategies in large populations of diabetics is possible on the basis of uniform metabolic criteria (blood glucose plus urinary glucose). The system consists of a main computer in the data processing unit and of personal computers in the diabetes centre which can be used either individually or as terminals to the main computer. During 14 years of experience, the computer-aided out-patient care of type II diabetics has proved efficient in a big-city area with a large population.
SMART USE OF COMPUTER-AIDED SPERM ANALYSIS (CASA) TO CHARACTERIZE SPERM MOTION
Computer-aided sperm analysis (CASA) has evolved over the past fifteen years to provide an objective, practical means of measuring and characterizing the velocity and parttern of sperm motion. CASA instruments use video frame-grabber boards to capture multiple images of spermato...
Kuric, Katelyn M; Harris, Bryan T; Morton, Dean; Azevedo, Bruno; Lin, Wei-Shao
2017-09-29
This clinical report describes a digital workflow using extraoral digital photographs and volumetric datasets from cone beam computed tomography (CBCT) imaging to create a 3-dimensional (3D), virtual patient with photorealistic appearance. In a patient with microstomia, hinge axis approximation, diagnostic casts simulating postextraction alveolar ridge profile, and facial simulation of prosthetic treatment outcome were completed in a 3D, virtual environment. The approach facilitated the diagnosis, communication, and patient acceptance of the treatment of maxillary and mandibular computer-aided design and computer-aided manufacturing (CAD-CAM) of immediate dentures at increased occlusal vertical dimension. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Neonatal heart rate prediction.
Abdel-Rahman, Yumna; Jeremic, Aleksander; Tan, Kenneth
2009-01-01
Technological advances have caused a decrease in the number of infant deaths. Pre-term infants now have a substantially increased chance of survival. One of the mechanisms that is vital to saving the lives of these infants is continuous monitoring and early diagnosis. With continuous monitoring huge amounts of data are collected with so much information embedded in them. By using statistical analysis this information can be extracted and used to aid diagnosis and to understand development. In this study we have a large dataset containing over 180 pre-term infants whose heart rates were recorded over the length of their stay in the Neonatal Intensive Care Unit (NICU). We test two types of models, empirical bayesian and autoregressive moving average. We then attempt to predict future values. The autoregressive moving average model showed better results but required more computation.
Analysis of outcomes in radiation oncology: An integrated computational platform
Liu, Dezhi; Ajlouni, Munther; Jin, Jian-Yue; Ryu, Samuel; Siddiqui, Farzan; Patel, Anushka; Movsas, Benjamin; Chetty, Indrin J.
2009-01-01
Radiotherapy research and outcome analyses are essential for evaluating new methods of radiation delivery and for assessing the benefits of a given technology on locoregional control and overall survival. In this article, a computational platform is presented to facilitate radiotherapy research and outcome studies in radiation oncology. This computational platform consists of (1) an infrastructural database that stores patient diagnosis, IMRT treatment details, and follow-up information, (2) an interface tool that is used to import and export IMRT plans in DICOM RT and AAPM/RTOG formats from a wide range of planning systems to facilitate reproducible research, (3) a graphical data analysis and programming tool that visualizes all aspects of an IMRT plan including dose, contour, and image data to aid the analysis of treatment plans, and (4) a software package that calculates radiobiological models to evaluate IMRT treatment plans. Given the limited number of general-purpose computational environments for radiotherapy research and outcome studies, this computational platform represents a powerful and convenient tool that is well suited for analyzing dose distributions biologically and correlating them with the delivered radiation dose distributions and other patient-related clinical factors. In addition the database is web-based and accessible by multiple users, facilitating its convenient application and use. PMID:19544785
A tutorial on the use of ROC analysis for computer-aided diagnostic systems.
Scheipers, Ulrich; Perrey, Christian; Siebers, Stefan; Hansen, Christian; Ermert, Helmut
2005-07-01
The application of the receiver operating characteristic (ROC) curve for computer-aided diagnostic systems is reviewed. A statistical framework is presented and different methods of evaluating the classification performance of computer-aided diagnostic systems, and, in particular, systems for ultrasonic tissue characterization, are derived. Most classifiers that are used today are dependent on a separation threshold, which can be chosen freely in many cases. The separation threshold separates the range of output values of the classification system into different target groups, thus conducting the actual classification process. In the first part of this paper, threshold specific performance measures, e.g., sensitivity and specificity, are presented. In the second part, a threshold-independent performance measure, the area under the ROC curve, is reviewed. Only the use of separation threshold-independent performance measures provides classification results that are overall representative for computer-aided diagnostic systems. The following text was motivated by the lack of a complete and definite discussion of the underlying subject in available textbooks, references and publications. Most manuscripts published so far address the theme of performance evaluation using ROC analysis in a manner too general to be practical for everyday use in the development of computer-aided diagnostic systems. Nowadays, the user of computer-aided diagnostic systems typically handles huge amounts of numerical data, not always distributed normally. Many assumptions made in more or less theoretical works on ROC analysis are no longer valid for real-life data. The paper aims at closing the gap between theoretical works and real-life data. The review provides the interested scientist with information needed to conduct ROC analysis and to integrate algorithms performing ROC analysis into classification systems while understanding the basic principles of classification.
NASA Astrophysics Data System (ADS)
Wormanns, Dag; Fiebich, Martin; Saidi, Mustafa; Diederich, Stefan; Heindel, Walter
2001-05-01
The purpose of the study was to evaluate a computer aided diagnosis (CAD) workstation with automatic detection of pulmonary nodules at low-dose spiral CT in a clinical setting for early detection of lung cancer. Two radiologists in consensus reported 88 consecutive spiral CT examinations. All examinations were reviewed using a UNIX-based CAD workstation with a self-developed algorithm for automatic detection of pulmonary nodules. The algorithm was designed to detect nodules with at least 5 mm diameter. The results of automatic nodule detection were compared to the consensus reporting of two radiologists as gold standard. Additional CAD findings were regarded as nodules initially missed by the radiologists or as false positive results. A total of 153 nodules were detected with all modalities (diameter: 85 nodules <5mm, 63 nodules 5-9 mm, 5 nodules >= 10 mm). Reasons for failure of automatic nodule detection were assessed. Sensitivity of radiologists for nodules >=5 mm was 85%, sensitivity of CAD was 38%. For nodules >=5 mm without pleural contact sensitivity was 84% for radiologists at 45% for CAD. CAD detected 15 (10%) nodules not mentioned in the radiologist's report but representing real nodules, among them 10 (15%) nodules with a diameter $GREW5 mm. Reasons for nodules missed by CAD include: exclusion because of morphological features during region analysis (33%), nodule density below the detection threshold (26%), pleural contact (33%), segmentation errors (5%) and other reasons (2%). CAD improves detection of pulmonary nodules at spiral CT significantly and is a valuable second opinion in a clinical setting for lung cancer screening. Optimization of region analysis and an appropriate density threshold have a potential for further improvement of automatic nodule detection.
Quantitative analysis of breast cancer diagnosis using a probabilistic modelling approach.
Liu, Shuo; Zeng, Jinshu; Gong, Huizhou; Yang, Hongqin; Zhai, Jia; Cao, Yi; Liu, Junxiu; Luo, Yuling; Li, Yuhua; Maguire, Liam; Ding, Xuemei
2018-01-01
Breast cancer is the most prevalent cancer in women in most countries of the world. Many computer-aided diagnostic methods have been proposed, but there are few studies on quantitative discovery of probabilistic dependencies among breast cancer data features and identification of the contribution of each feature to breast cancer diagnosis. This study aims to fill this void by utilizing a Bayesian network (BN) modelling approach. A K2 learning algorithm and statistical computation methods are used to construct BN structure and assess the obtained BN model. The data used in this study were collected from a clinical ultrasound dataset derived from a Chinese local hospital and a fine-needle aspiration cytology (FNAC) dataset from UCI machine learning repository. Our study suggested that, in terms of ultrasound data, cell shape is the most significant feature for breast cancer diagnosis, and the resistance index presents a strong probabilistic dependency on blood signals. With respect to FNAC data, bare nuclei are the most important discriminating feature of malignant and benign breast tumours, and uniformity of both cell size and cell shape are tightly interdependent. The BN modelling approach can support clinicians in making diagnostic decisions based on the significant features identified by the model, especially when some other features are missing for specific patients. The approach is also applicable to other healthcare data analytics and data modelling for disease diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automatic breast tissue density estimation scheme in digital mammography images
NASA Astrophysics Data System (ADS)
Menechelli, Renan C.; Pacheco, Ana Luisa V.; Schiabel, Homero
2017-03-01
Cases of breast cancer have increased substantially each year. However, radiologists are subject to subjectivity and failures of interpretation which may affect the final diagnosis in this examination. The high density features in breast tissue are important factors related to these failures. Thus, among many functions some CADx (Computer-Aided Diagnosis) schemes are classifying breasts according to the predominant density. In order to aid in such a procedure, this work attempts to describe automated software for classification and statistical information on the percentage change in breast tissue density, through analysis of sub regions (ROIs) from the whole mammography image. Once the breast is segmented, the image is divided into regions from which texture features are extracted. Then an artificial neural network MLP was used to categorize ROIs. Experienced radiologists have previously determined the ROIs density classification, which was the reference to the software evaluation. From tests results its average accuracy was 88.7% in ROIs classification, and 83.25% in the classification of the whole breast density in the 4 BI-RADS density classes - taking into account a set of 400 images. Furthermore, when considering only a simplified two classes division (high and low densities) the classifier accuracy reached 93.5%, with AUC = 0.95.
Can computed tomography aid in diagnosis of intramural hematomas of the intestinal wall?
Ulusan, Serife; Pekoz, Burcak; Sariturk, Cagla
2015-12-01
We sought to use computed tomography (CT) data to support the correct differential diagnosis of patients with spontaneous intramural hematomas of the gastrointestinal tract, to aid in the clinical management of those using oral anticoagulants. Patient data were retrospectively analyzed and patients were divided into two groups. The first group contained 10 patients (5 females, 5 males, median age 65 years [range 35-79 years]) who had been diagnosed with spontaneous intramural hematomas of the gastrointestinal tract. The second group contained nine patients (5 females, 4 males, median age 41 years [range 24-56 years]) who exhibited intestinal wall thickening on CT, and who had been diagnosed with ulcerative colitis, Crohn's disease, ameboma, and lymphoma. The enhancement patterns in the CT images of the two groups were compared by an experienced and inexperienced radiologist. The differences in values were subjected to ROC analysis. Inter-observer variability was excellent (0.84) when post-contrast CT images were evaluated, as were the subtraction values (0.89). The subtracted values differed significantly between the two groups (p=0.0001). A cutoff of +31.5 HU was optimal in determining whether a hematoma was or was not present. Contrast enhancement of an intestinal wall hematoma is less than that of other intestinal wall pathologies associated with increased wall thickness. If the post-contrast enhancement of a thickened intestinal wall is less than +31.5 HU, a wall hematoma is possible. © Acta Gastro-Enterologica Belgica.
Image Processing and Computer Aided Diagnosis in Computed Tomography of the Breast
2007-03-01
TERMS breast imaging, breast CT, scatter compensation, denoising, CAD , Cone-beam CT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...clinical projection images. The CAD tool based on signal known exactly (SKE) scenario is under development. Task 6: Test and compare the...performances of the CAD developed in Task 5 applied to processed projection data from Task 1 with the CAD performance on the projection data without Bayesian
Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration
Badura, Pawel; Juszczyk, Jan; Pietka, Ewa
2016-01-01
Purpose A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. Methods We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. Results The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. Conclusion The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers. PMID:27434396
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Goto, Hidemi; Mori, Kensaku
2011-03-01
The purpose of this paper is to present a new method to detect ulcers, which is one of the symptoms of Crohn's disease, from CT images. Crohn's disease is an inflammatory disease of the digestive tract. Crohn's disease commonly affects the small intestine. An optical or a capsule endoscope is used for small intestine examinations. However, these endoscopes cannot pass through intestinal stenosis parts in some cases. A CT image based diagnosis allows a physician to observe whole intestine even if intestinal stenosis exists. However, because of the complicated shape of the small and large intestines, understanding of shapes of the intestines and lesion positions are difficult in the CT image based diagnosis. Computer-aided diagnosis system for Crohn's disease having automated lesion detection is required for efficient diagnosis. We propose an automated method to detect ulcers from CT images. Longitudinal ulcers make rough surface of the small and large intestinal wall. The rough surface consists of combination of convex and concave parts on the intestinal wall. We detect convex and concave parts on the intestinal wall by a blob and an inverse-blob structure enhancement filters. A lot of convex and concave parts concentrate on roughed parts. We introduce a roughness value to differentiate convex and concave parts concentrated on the roughed parts from the other on the intestinal wall. The roughness value effectively reduces false positives of ulcer detection. Experimental results showed that the proposed method can detect convex and concave parts on the ulcers.
A computer-aided diagnostic system for kidney disease
Jahantigh, Farzad Firouzi; Malmir, Behnam; Avilaq, Behzad Aslani
2017-01-01
Background Disease diagnosis is complicated since patients may demonstrate similar symptoms but physician may diagnose different diseases. There are a few number of investigations aimed to create a fuzzy expert system, as a computer aided system for disease diagnosis. Methods In this research, a cross-sectional descriptive study conducted in a kidney clinic in Tehran, Iran in 2012. Medical diagnosis fuzzy rules applied, and a set of symptoms related to the set of considered diseases defined. The input case to be diagnosed defined by assigning a fuzzy value to each symptom and then three physicians asked about each suspected diseases. Then comments of those three physicians summarized for each disease. The fuzzy inference applied to obtain a decision fuzzy set for each disease, and crisp decision values attained to determine the certainty of existence for each disease. Results Results indicated that, in the diagnosis of seven cases of kidney disease by examining 21 indicators using fuzzy expert system, kidney stone disease with 63% certainty was the most probable, renal tubular was at the lowest level with 15%, and other kidney diseases were at the other levels. The most remarkable finding of this study was that results of kidney disease diagnosis (e.g., kidney stone) via fuzzy expert system were fully compatible with those of kidney physicians. Conclusion The proposed fuzzy expert system is a valid, reliable, and flexible instrument to diagnose several typical input cases. The developed system decreases the effort of initial physical checking and manual feeding of input symptoms. PMID:28392995
A computer-aided diagnostic system for kidney disease.
Jahantigh, Farzad Firouzi; Malmir, Behnam; Avilaq, Behzad Aslani
2017-03-01
Disease diagnosis is complicated since patients may demonstrate similar symptoms but physician may diagnose different diseases. There are a few number of investigations aimed to create a fuzzy expert system, as a computer aided system for disease diagnosis. In this research, a cross-sectional descriptive study conducted in a kidney clinic in Tehran, Iran in 2012. Medical diagnosis fuzzy rules applied, and a set of symptoms related to the set of considered diseases defined. The input case to be diagnosed defined by assigning a fuzzy value to each symptom and then three physicians asked about each suspected diseases. Then comments of those three physicians summarized for each disease. The fuzzy inference applied to obtain a decision fuzzy set for each disease, and crisp decision values attained to determine the certainty of existence for each disease. Results indicated that, in the diagnosis of seven cases of kidney disease by examining 21 indicators using fuzzy expert system, kidney stone disease with 63% certainty was the most probable, renal tubular was at the lowest level with 15%, and other kidney diseases were at the other levels. The most remarkable finding of this study was that results of kidney disease diagnosis (e.g., kidney stone) via fuzzy expert system were fully compatible with those of kidney physicians. The proposed fuzzy expert system is a valid, reliable, and flexible instrument to diagnose several typical input cases. The developed system decreases the effort of initial physical checking and manual feeding of input symptoms.
Gerasimova, Evgeniya; Audit, Benjamin; Roux, Stephane G.; Khalil, André; Gileva, Olga; Argoul, Françoise; Naimark, Oleg; Arneodo, Alain
2014-01-01
Breast cancer is the most common type of cancer among women and despite recent advances in the medical field, there are still some inherent limitations in the currently used screening techniques. The radiological interpretation of screening X-ray mammograms often leads to over-diagnosis and, as a consequence, to unnecessary traumatic and painful biopsies. Here we propose a computer-aided multifractal analysis of dynamic infrared (IR) imaging as an efficient method for identifying women with risk of breast cancer. Using a wavelet-based multi-scale method to analyze the temporal fluctuations of breast skin temperature collected from a panel of patients with diagnosed breast cancer and some female volunteers with healthy breasts, we show that the multifractal complexity of temperature fluctuations observed in healthy breasts is lost in mammary glands with malignant tumor. Besides potential clinical impact, these results open new perspectives in the investigation of physiological changes that may precede anatomical alterations in breast cancer development. PMID:24860510
Graph representation of hepatic vessel based on centerline extraction and junction detection
NASA Astrophysics Data System (ADS)
Zhang, Xing; Tian, Jie; Deng, Kexin; Li, Xiuli; Yang, Fei
2012-02-01
In the area of computer-aided diagnosis (CAD), segmentation and analysis of hepatic vessel is a prerequisite for hepatic diseases diagnosis and surgery planning. For liver surgery planning, it is crucial to provide the surgeon with a patient-individual three-dimensional representation of the liver along with its vasculature and lesions. The representation allows an exploration of the vascular anatomy and the measurement of vessel diameters, following by intra-patient registration, as well as the analysis of the shape and volume of vascular territories. In this paper, we present an approach for generation of hepatic vessel graph based on centerline extraction and junction detection. The proposed approach involves the following concepts and methods: 1) Flux driven automatic centerline extraction; 2) Junction detection on the centerline using hollow sphere filtering; 3) Graph representation of hepatic vessel based on the centerline and junction. The approach is evaluated on contrast-enhanced liver CT datasets to demonstrate its availability and effectiveness.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
Image-Based Predictive Modeling of Heart Mechanics.
Wang, V Y; Nielsen, P M F; Nash, M P
2015-01-01
Personalized biophysical modeling of the heart is a useful approach for noninvasively analyzing and predicting in vivo cardiac mechanics. Three main developments support this style of analysis: state-of-the-art cardiac imaging technologies, modern computational infrastructure, and advanced mathematical modeling techniques. In vivo measurements of cardiac structure and function can be integrated using sophisticated computational methods to investigate mechanisms of myocardial function and dysfunction, and can aid in clinical diagnosis and developing personalized treatment. In this article, we review the state-of-the-art in cardiac imaging modalities, model-based interpretation of 3D images of cardiac structure and function, and recent advances in modeling that allow personalized predictions of heart mechanics. We discuss how using such image-based modeling frameworks can increase the understanding of the fundamental biophysics behind cardiac mechanics, and assist with diagnosis, surgical guidance, and treatment planning. Addressing the challenges in this field will require a coordinated effort from both the clinical-imaging and modeling communities. We also discuss future directions that can be taken to bridge the gap between basic science and clinical translation.
Syntactic methods of shape feature description and its application in analysis of medical images
NASA Astrophysics Data System (ADS)
Ogiela, Marek R.; Tadeusiewicz, Ryszard
2000-02-01
The paper presents specialist algorithms of morphologic analysis of shapes of selected organs of abdominal cavity proposed in order to diagnose disease symptoms occurring in the main pancreatic ducts and upper segments of ureters. Analysis of the correct morphology of these structures has been conducted with the use of syntactic methods of pattern recognition. Its main objective is computer-aided support to early diagnosis of neoplastic lesions and pancreatitis based on images taken in the course of examination with the endoscopic retrograde cholangiopancreatography (ERCP) method and a diagnosis of morphological lesions in ureter based on kidney radiogram analysis. In the analysis of ERCP images, the main objective is to recognize morphological lesions in pancreas ducts characteristic for carcinoma and chronic pancreatitis. In the case of kidney radiogram analysis the aim is to diagnose local irregularity of ureter lumen. Diagnosing the above mentioned lesion has been conducted with the use of syntactic methods of pattern recognition, in particular the languages of shape features description and context-free attributed grammars. These methods allow to recognize and describe in a very efficient way the aforementioned lesions on images obtained as a result of initial image processing into diagrams of widths of the examined structures.
Geldermann, Ina; Grouls, Christoph; Kuhl, Christiane; Deserno, Thomas M; Spreckelsen, Cord
2013-08-01
Usability aspects of different integration concepts for picture archiving and communication systems (PACS) and computer-aided diagnosis (CAD) were inquired on the example of BoneXpert, a program determining the skeletal age from a left hand's radiograph. CAD-PACS integration was assessed according to its levels: data, function, presentation, and context integration focusing on usability aspects. A user-based study design was selected. Statements of seven experienced radiologists using two alternative types of integration provided by BoneXpert were acquired and analyzed using a mixed-methods approach based on think-aloud records and a questionnaire. In both variants, the CAD module (BoneXpert) was easily integrated in the workflow, found comprehensible and fitting in the conceptual framework of the radiologists. Weak points of the software integration referred to data and context integration. Surprisingly, visualization of intermediate image processing states (presentation integration) was found less important as compared to efficient handling and fast computation. Seamlessly integrating CAD into the PACS without additional work steps or unnecessary interrupts and without visualizing intermediate images may considerably improve software performance and user acceptance with efforts in time.
Graña, M; Termenon, M; Savio, A; Gonzalez-Pinto, A; Echeveste, J; Pérez, J M; Besga, A
2011-09-20
The aim of this paper is to obtain discriminant features from two scalar measures of Diffusion Tensor Imaging (DTI) data, Fractional Anisotropy (FA) and Mean Diffusivity (MD), and to train and test classifiers able to discriminate Alzheimer's Disease (AD) patients from controls on the basis of features extracted from the FA or MD volumes. In this study, support vector machine (SVM) classifier was trained and tested on FA and MD data. Feature selection is done computing the Pearson's correlation between FA or MD values at voxel site across subjects and the indicative variable specifying the subject class. Voxel sites with high absolute correlation are selected for feature extraction. Results are obtained over an on-going study in Hospital de Santiago Apostol collecting anatomical T1-weighted MRI volumes and DTI data from healthy control subjects and AD patients. FA features and a linear SVM classifier achieve perfect accuracy, sensitivity and specificity in several cross-validation studies, supporting the usefulness of DTI-derived features as an image-marker for AD and to the feasibility of building Computer Aided Diagnosis systems for AD based on them. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Shaded-Color Picture Generation of Computer-Defined Arbitrary Shapes
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.; Hermstad, D. L.; Mccoy, D. S.; Clark, J.
1986-01-01
SHADE computer program generates realistic color-shaded pictures from computer-defined arbitrary shapes. Objects defined for computer representation displayed as smooth, color-shaded surfaces, including varying degrees of transparency. Results also used for presentation of computational results. By performing color mapping, SHADE colors model surface to display analysis results as pressures, stresses, and temperatures. NASA has used SHADE extensively in sign and analysis of high-performance aircraft. Industry should find applications for SHADE in computer-aided design and computer-aided manufacturing. SHADE written in VAX FORTRAN and MACRO Assembler for either interactive or batch execution.
Three-Dimensional Computational Fluid Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
van Benthem, B H; Veugelers, P J; Cornelisse, P G; Strathdee, S A; Kaldor, J M; Shafer, K A; Coutinho, R A; van Griensven, G J
1998-06-18
To investigate the significance of the time from seroconversion to AIDS (incubation time) and other covariates for survival from AIDS to death. In survival analysis, survival from AIDS to death was compared for different categories of length of incubation time adjusted and unadjusted for other covariates, and significant predictors for survival from AIDS to death were investigated. Survival after AIDS was not affected by the incubation time in univariate as well as in multivariate analyses. Predictive factors for progression from AIDS to death were age at seroconversion, type of AIDS diagnosis, and CD4 cell count at AIDS. The relative hazard for age at seroconversion increased 1.38-fold over 10 years. Men with a CD4 cell count at AIDS of <130 x 10(6)/l had a twofold higher risk in progression to death than men with higher CD4 cell counts. Persons diagnosed with lymphoma had a sixfold higher risk of progression to death than persons with Kaposi's sarcoma or opportunistic infections. The incubation time as well as other factors before AIDS did not affect survival after AIDS. Survival from AIDS to death can be predicted by data obtained at the time of AIDS diagnosis, such as type of diagnosis, age and CD4 cell count. AIDS seems to be a significant point in progression to death, and not just a floating point between infection and death affected by prior factors for persons who did not receive effective therapy and did not have long incubation times.
An interactive method based on the live wire for segmentation of the breast in mammography images.
Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu
2014-01-01
In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.
Integrated Computer-Aided Drafting Instruction (ICADI).
ERIC Educational Resources Information Center
Chen, C. Y.; McCampbell, David H.
Until recently, computer-aided drafting and design (CAD) systems were almost exclusively operated on mainframes or minicomputers and their cost prohibited many schools from offering CAD instruction. Today, many powerful personal computers are capable of performing the high-speed calculation and analysis required by the CAD application; however,…
NASA Astrophysics Data System (ADS)
Song, Bowen; Zhang, Guopeng; Wang, Huafeng; Zhu, Wei; Liang, Zhengrong
2013-02-01
Various types of features, e.g., geometric features, texture features, projection features etc., have been introduced for polyp detection and differentiation tasks via computer aided detection and diagnosis (CAD) for computed tomography colonography (CTC). Although these features together cover more information of the data, some of them are statistically highly-related to others, which made the feature set redundant and burdened the computation task of CAD. In this paper, we proposed a new dimension reduction method which combines hierarchical clustering and principal component analysis (PCA) for false positives (FPs) reduction task. First, we group all the features based on their similarity using hierarchical clustering, and then PCA is employed within each group. Different numbers of principal components are selected from each group to form the final feature set. Support vector machine is used to perform the classification. The results show that when three principal components were chosen from each group we can achieve an area under the curve of receiver operating characteristics of 0.905, which is as high as the original dataset. Meanwhile, the computation time is reduced by 70% and the feature set size is reduce by 77%. It can be concluded that the proposed method captures the most important information of the feature set and the classification accuracy is not affected after the dimension reduction. The result is promising and further investigation, such as automatically threshold setting, are worthwhile and are under progress.
1998-01-01
the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafetv in Microbiological and...Misinterpretation and misuse of the kappa statistic. American Journal of Epidemiology, 1987. 126: p. 161-169. 23. Soeken. K.L. and P.A. Prescott
ERIC Educational Resources Information Center
Lourey, Eugene D., Comp.
The Minnesota Computer Aided Library System (MCALS) provides a basis of unification for library service program development in Minnesota for eventual linkage to the national information network. A prototype plan for communications functions is illustrated. A cost/benefits analysis was made to show the cost/effectiveness potential for MCALS. System…
MOVANAID: An Interactive Aid for Analysis of Movement Capabilities.
ERIC Educational Resources Information Center
Cooper, George E.; And Others
A computer-drive interactive aid for movement analysis, called MOVANAID, has been developed to be of assistance in the performance of certain Army intelligence processing tasks in a tactical environment. It can compute fastest travel times and paths through road networks for military units of various types, as well as fastest times in which…
Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin; Janssen, Jan; Hocke, Michael; Larsen, Michael; Iglesias-Garcia, Julio; Arcidiacono, Paolo; Will, Uwe; Giovannini, Marc; Dietrich, Cristoph F; Havre, Roald; Gheorghe, Cristian; McKay, Colin; Gheonea, Dan Ionuţ; Ciurea, Tudorel
2012-01-01
By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural network analysis. We performed a prospective, blinded, multicentric study at of 258 patients (774 recordings from EUS elastography) who were diagnosed with chronic pancreatitis (n = 47) or pancreatic adenocarcinoma (n = 211) from 13 tertiary academic medical centers in Europe (the European EUS Elastography Multicentric Study Group). We used postprocessing software analysis to compute individual frames of elastography movies recorded by retrieving hue histogram data from a dynamic sequence of EUS elastography into a numeric matrix. The data then were analyzed in an extended neural network analysis, to automatically differentiate benign from malignant patterns. The neural computing approach had 91.14% training accuracy (95% confidence interval [CI], 89.87%-92.42%) and 84.27% testing accuracy (95% CI, 83.09%-85.44%). These results were obtained using the 10-fold cross-validation technique. The statistical analysis of the classification process showed a sensitivity of 87.59%, a specificity of 82.94%, a positive predictive value of 96.25%, and a negative predictive value of 57.22%. Moreover, the corresponding area under the receiver operating characteristic curve was 0.94 (95% CI, 0.91%-0.97%), which was significantly higher than the values obtained by simple mean hue histogram analysis, for which the area under the receiver operating characteristic was 0.85. Use of the artificial intelligence methodology via artificial neural networks supports the medical decision process, providing fast and accurate diagnoses. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Momeni-Boroujeni, Amir; Yousefi, Elham; Somma, Jonathan
2017-12-01
Fine-needle aspiration (FNA) biopsy is an accurate method for the diagnosis of solid pancreatic masses. However, a significant number of cases still pose a diagnostic challenge. The authors have attempted to design a computer model to aid in the diagnosis of these biopsies. Images were captured of cell clusters on ThinPrep slides from 75 pancreatic FNA cases (20 malignant, 24 benign, and 31 atypical). A K-means clustering algorithm was used to segment the cell clusters into separable regions of interest before extracting features similar to those used for cytomorphologic assessment. A multilayer perceptron neural network (MNN) was trained and then tested for its ability to distinguish benign from malignant cases. A total of 277 images of cell clusters were obtained. K-means clustering identified 68,301 possible regions of interest overall. Features such as contour, perimeter, and area were found to be significantly different between malignant and benign images (P <.05). The MNN was 100% accurate for benign and malignant categories. The model's predictions from the atypical data set were 77% accurate. The results of the current study demonstrate that computer models can be used successfully to distinguish benign from malignant pancreatic cytology. The fact that the model can categorize atypical cases into benign or malignant with 77% accuracy highlights the great potential of this technology. Although further study is warranted to validate its clinical applications in pancreatic and perhaps other areas of cytology as well, the potential for improved patient outcomes using MNN for image analysis in pathology is significant. Cancer Cytopathol 2017;125:926-33. © 2017 American Cancer Society. © 2017 American Cancer Society.
NASA Astrophysics Data System (ADS)
Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke
2013-12-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
Machine learning and radiology.
Wang, Shijun; Summers, Ronald M
2012-07-01
In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.
Chassidim, Yoash; Parmet, Yisrael; Tomkins, Oren; Knyazer, Boris; Friedman, Alon; Levy, Jaime
2013-01-01
Purpose To present a novel method for quantitative assessment of retinal vessel permeability using a fluorescein angiography-based computer algorithm. Methods Twenty-one subjects (13 with diabetic retinopathy, 8 healthy volunteers) underwent fluorescein angiography (FA). Image pre-processing included removal of non-retinal and noisy images and registration to achieve spatial and temporal pixel-based analysis. Permeability was assessed for each pixel by computing intensity kinetics normalized to arterial values. A linear curve was fitted and the slope value was assigned, color-coded and displayed. The initial FA studies and the computed permeability maps were interpreted in a masked and randomized manner by three experienced ophthalmologists for statistical validation of diagnosis accuracy and efficacy. Results Permeability maps were successfully generated for all subjects. For healthy volunteers permeability values showed a normal distribution with a comparable range between subjects. Based on the mean cumulative histogram for the healthy population a threshold (99.5%) for pathological permeability was determined. Clear differences were found between patients and healthy subjects in the number and spatial distribution of pixels with pathological vascular leakage. The computed maps improved the discrimination between patients and healthy subjects, achieved sensitivity and specificity of 0.974 and 0.833 respectively, and significantly improved the consensus among raters for the localization of pathological regions. Conclusion The new algorithm allows quantification of retinal vessel permeability and provides objective, more sensitive and accurate evaluation than the present subjective clinical diagnosis. Future studies with a larger patients’ cohort and different retinal pathologies are awaited to further validate this new approach and its role in diagnosis and treatment follow-up. Successful evaluation of vasculature permeability may be used for the early diagnosis of brain microvascular pathology and potentially predict associated neurological sequelae. Finally, the algorithm could be implemented for intraoperative evaluation of micovascular integrity in other organs or during animal experiments. PMID:23626701
Texture classification of lung computed tomography images
NASA Astrophysics Data System (ADS)
Pheng, Hang See; Shamsuddin, Siti M.
2013-03-01
Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.
Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis
NASA Astrophysics Data System (ADS)
Nan, Song
2018-03-01
Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.
A Survey of CAD/CAM Technology Applications in the U.S. Shipbuilding Industry
1984-01-01
operation for drafting. Computer Aided Engineering (CAE) analysis is used primarily to determine the validity of design characteristics and produc- tion...include time standard generation, sea trial analysis , and group Systems integration While no systems surveyed Aided Design (CAD) is the technology... analysis . is the largest problem involving software packages. are truly integrated, many are interfaced. Computer most interfaced category with links
Multidisciplinary analysis of actively controlled large flexible spacecraft
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Young, John W.; Sutter, Thomas R.
1986-01-01
The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.
Diagnosis and management of solitary pulmonary nodules.
Jeong, Yeon Joo; Lee, Kyung Soo; Kwon, O Jung
2008-12-01
The advent of computed tomography (CT) screening with or without the help of computer-aided detection systems has increased the detection rate of solitary pulmonary nodules (SPNs), including that of early peripheral lung cancer. Helical dynamic (HD)CT, providing the information on morphologic and hemodynamic characteristics with high specificity and reasonably high accuracy, can be used for the initial assessment of SPNs. (18)F-fluorodeoxyglucose PET/CT is more sensitive at detecting malignancy than HDCT. Therefore, PET/CT may be selectively performed to characterize SPNs when HDCT gives an inconclusive diagnosis. Serial volume measurements are currently the most reliable methods for the tissue characterization of subcentimeter nodules. When malignant nodule is highly suspected for subcentimeter nodules, video-assisted thoracoscopic surgery nodule removal after nodule localization using the pulmonary nodule-marker system may be performed for diagnosis and treatment.
Implementation of a low-cost mobile devices to support medical diagnosis.
García Sánchez, Carlos; Botella Juan, Guillermo; Ayuso Márquez, Fermín; González Rodríguez, Diego; Prieto-Matías, Manuel; Tirado Fernández, Francisco
2013-01-01
Medical imaging has become an absolutely essential diagnostic tool for clinical practices; at present, pathologies can be detected with an earliness never before known. Its use has not only been relegated to the field of radiology but also, increasingly, to computer-based imaging processes prior to surgery. Motion analysis, in particular, plays an important role in analyzing activities or behaviors of live objects in medicine. This short paper presents several low-cost hardware implementation approaches for the new generation of tablets and/or smartphones for estimating motion compensation and segmentation in medical images. These systems have been optimized for breast cancer diagnosis using magnetic resonance imaging technology with several advantages over traditional X-ray mammography, for example, obtaining patient information during a short period. This paper also addresses the challenge of offering a medical tool that runs on widespread portable devices, both on tablets and/or smartphones to aid in patient diagnostics.
NASA Astrophysics Data System (ADS)
Costaridou, Lena
Although a wide variety of Computer-Aided Diagnosis (CADx) schemes have been proposed across breast imaging modalities, and especially in mammography, research is still ongoing to meet the high performance CADx requirements. In this chapter, methodological contributions to CADx in mammography and adjunct breast imaging modalities are reviewed, as they play a major role in early detection, diagnosis and clinical management of breast cancer. At first, basic terms and definitions are provided. Then, emphasis is given to lesion content derivation, both anatomical and functional, considering only quantitative image features of micro-calcification clusters and masses across modalities. Additionally, two CADx application examples are provided. The first example investigates the effect of segmentation accuracy on micro-calcification cluster morphology derivation in X-ray mammography. The second one demonstrates the efficiency of texture analysis in quantification of enhancement kinetics, related to vascular heterogeneity, for mass classification in dynamic contrast-enhanced magnetic resonance imaging.
Implementation of a Low-Cost Mobile Devices to Support Medical Diagnosis
García Sánchez, Carlos; Botella Juan, Guillermo; Ayuso Márquez, Fermín; González Rodríguez, Diego; Prieto-Matías, Manuel; Tirado Fernández, Francisco
2013-01-01
Medical imaging has become an absolutely essential diagnostic tool for clinical practices; at present, pathologies can be detected with an earliness never before known. Its use has not only been relegated to the field of radiology but also, increasingly, to computer-based imaging processes prior to surgery. Motion analysis, in particular, plays an important role in analyzing activities or behaviors of live objects in medicine. This short paper presents several low-cost hardware implementation approaches for the new generation of tablets and/or smartphones for estimating motion compensation and segmentation in medical images. These systems have been optimized for breast cancer diagnosis using magnetic resonance imaging technology with several advantages over traditional X-ray mammography, for example, obtaining patient information during a short period. This paper also addresses the challenge of offering a medical tool that runs on widespread portable devices, both on tablets and/or smartphones to aid in patient diagnostics. PMID:24489600
Wang, Xiao-Jing; Krystal, John H.
2014-01-01
Psychiatric disorders such as autism and schizophrenia arise from abnormalities in brain systems that underlie cognitive, emotional and social functions. The brain is enormously complex and its abundant feedback loops on multiple scales preclude intuitive explication of circuit functions. In close interplay with experiments, theory and computational modeling are essential for understanding how, precisely, neural circuits generate flexible behaviors and their impairments give rise to psychiatric symptoms. This Perspective highlights recent progress in applying computational neuroscience to the study of mental disorders. We outline basic approaches, including identification of core deficits that cut across disease categories, biologically-realistic modeling bridging cellular and synaptic mechanisms with behavior, model-aided diagnosis. The need for new research strategies in psychiatry is urgent. Computational psychiatry potentially provides powerful tools for elucidating pathophysiology that may inform both diagnosis and treatment. To achieve this promise will require investment in cross-disciplinary training and research in this nascent field. PMID:25442941
Medical Signal-Conditioning and Data-Interface System
NASA Technical Reports Server (NTRS)
Braun, Jeffrey; Jacobus, charles; Booth, Scott; Suarez, Michael; Smith, Derek; Hartnagle, Jeffrey; LePrell, Glenn
2006-01-01
A general-purpose portable, wearable electronic signal-conditioning and data-interface system is being developed for medical applications. The system can acquire multiple physiological signals (e.g., electrocardiographic, electroencephalographic, and electromyographic signals) from sensors on the wearer s body, digitize those signals that are received in analog form, preprocess the resulting data, and transmit the data to one or more remote location(s) via a radiocommunication link and/or the Internet. The system includes a computer running data-object-oriented software that can be programmed to configure the system to accept almost any analog or digital input signals from medical devices. The computing hardware and software implement a general-purpose data-routing-and-encapsulation architecture that supports tagging of input data and routing the data in a standardized way through the Internet and other modern packet-switching networks to one or more computer(s) for review by physicians. The architecture supports multiple-site buffering of data for redundancy and reliability, and supports both real-time and slower-than-real-time collection, routing, and viewing of signal data. Routing and viewing stations support insertion of automated analysis routines to aid in encoding, analysis, viewing, and diagnosis.
Retinal status analysis method based on feature extraction and quantitative grading in OCT images.
Fu, Dongmei; Tong, Hejun; Zheng, Shuang; Luo, Ling; Gao, Fulin; Minar, Jiri
2016-07-22
Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.
Sobesky, M; Dabis, F; Le Beux, P
2000-06-01
The incidence of AIDS in French Guiana remains one of the highest in Latin America and the Caribbean. The annual AIDS incidence rate increased continually from the start of the epidemic until 1995, when it reached 59.3/100,000 population declining thereafter to 26.6 in 1997. The prevalence of HIV in pregnant women was 0.9% in 1993, increasing to 1.3% in 1995, and that in individuals attending sexually transmitted disease (STD) clinics was 2.1% in 1996. We included 224 patients in a study of survival after AIDS diagnosis. The principal AIDS-defining diagnosis was tuberculosis in 20.5% of reported cases. The median duration of survival was 10.2 months. Multivariate analysis showed that, patients > or = 45 years at entry progressed more rapidly to AIDS than younger patients. HIV prevention and access to health care should be developed in the various ethnic communities and adapted to cultural status. The progressive implementation of multiple antiretroviral therapies since 1996 may further reduce progression of the disease but early HIV diagnosis is required to improve the overall prognosis of HIV-infected patients.
Applications of computer-aided text analysis in natural resources.
David N. Bengston
2000-01-01
Ten contributed papers describe the use of a variety of approaches to computer-aided text analysis and their application to a wide range of research questions related to natural resources and the environment. Taken together, these papers paint a picture of a growing and vital area of research on the human dimensions of natural resource management.
NASA Astrophysics Data System (ADS)
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-04-01
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-04-15
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.
A computer-aided detection (CAD) system with a 3D algorithm for small acute intracranial hemorrhage
NASA Astrophysics Data System (ADS)
Wang, Ximing; Fernandez, James; Deshpande, Ruchi; Lee, Joon K.; Chan, Tao; Liu, Brent
2012-02-01
Acute Intracranial hemorrhage (AIH) requires urgent diagnosis in the emergency setting to mitigate eventual sequelae. However, experienced radiologists may not always be available to make a timely diagnosis. This is especially true for small AIH, defined as lesion smaller than 10 mm in size. A computer-aided detection (CAD) system for the detection of small AIH would facilitate timely diagnosis. A previously developed 2D algorithm shows high false positive rates in the evaluation based on LAC/USC cases, due to the limitation of setting up correct coordinate system for the knowledge-based classification system. To achieve a higher sensitivity and specificity, a new 3D algorithm is developed. The algorithm utilizes a top-hat transformation and dynamic threshold map to detect small AIH lesions. Several key structures of brain are detected and are used to set up a 3D anatomical coordinate system. A rule-based classification of the lesion detected is applied based on the anatomical coordinate system. For convenient evaluation in clinical environment, the CAD module is integrated with a stand-alone system. The CAD is evaluated by small AIH cases and matched normal collected in LAC/USC. The result of 3D CAD and the previous 2D CAD has been compared.
Deep Learning Role in Early Diagnosis of Prostate Cancer
Reda, Islam; Khalil, Ashraf; Elmogy, Mohammed; Abou El-Fetouh, Ahmed; Shalaby, Ahmed; Abou El-Ghar, Mohamed; Elmaghraby, Adel; Ghazal, Mohammed; El-Baz, Ayman
2018-01-01
The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen–based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient–cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system. PMID:29804518
Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming
2016-01-01
This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features. PMID:27079888
Levman, Jacob E D; Gallego-Ortiz, Cristina; Warner, Ellen; Causer, Petrina; Martel, Anne L
2016-02-01
Magnetic resonance imaging (MRI)-enabled cancer screening has been shown to be a highly sensitive method for the early detection of breast cancer. Computer-aided detection systems have the potential to improve the screening process by standardizing radiologists to a high level of diagnostic accuracy. This retrospective study was approved by the institutional review board of Sunnybrook Health Sciences Centre. This study compares the performance of a proposed method for computer-aided detection (based on the second-order spatial derivative of the relative signal intensity) with the signal enhancement ratio (SER) on MRI-based breast screening examinations. Comparison is performed using receiver operating characteristic (ROC) curve analysis as well as free-response receiver operating characteristic (FROC) curve analysis. A modified computer-aided detection system combining the proposed approach with the SER method is also presented. The proposed method provides improvements in the rates of false positive markings over the SER method in the detection of breast cancer (as assessed by FROC analysis). The modified computer-aided detection system that incorporates both the proposed method and the SER method yields ROC results equal to that produced by SER while simultaneously providing improvements over the SER method in terms of false positives per noncancerous exam. The proposed method for identifying malignancies outperforms the SER method in terms of false positives on a challenging dataset containing many small lesions and may play a useful role in breast cancer screening by MRI as part of a computer-aided detection system.
Computer-aided classification of breast masses using contrast-enhanced digital mammograms
NASA Astrophysics Data System (ADS)
Danala, Gopichandh; Aghaei, Faranak; Heidari, Morteza; Wu, Teresa; Patel, Bhavika; Zheng, Bin
2018-02-01
By taking advantages of both mammography and breast MRI, contrast-enhanced digital mammography (CEDM) has emerged as a new promising imaging modality to improve efficacy of breast cancer screening and diagnosis. The primary objective of study is to develop and evaluate a new computer-aided detection and diagnosis (CAD) scheme of CEDM images to classify between malignant and benign breast masses. A CEDM dataset consisting of 111 patients (33 benign and 78 malignant) was retrospectively assembled. Each case includes two types of images namely, low-energy (LE) and dual-energy subtracted (DES) images. First, CAD scheme applied a hybrid segmentation method to automatically segment masses depicting on LE and DES images separately. Optimal segmentation results from DES images were also mapped to LE images and vice versa. Next, a set of 109 quantitative image features related to mass shape and density heterogeneity was initially computed. Last, four multilayer perceptron-based machine learning classifiers integrated with correlationbased feature subset evaluator and leave-one-case-out cross-validation method was built to classify mass regions depicting on LE and DES images, respectively. Initially, when CAD scheme was applied to original segmentation of DES and LE images, the areas under ROC curves were 0.7585+/-0.0526 and 0.7534+/-0.0470, respectively. After optimal segmentation mapping from DES to LE images, AUC value of CAD scheme significantly increased to 0.8477+/-0.0376 (p<0.01). Since DES images eliminate overlapping effect of dense breast tissue on lesions, segmentation accuracy was significantly improved as compared to regular mammograms, the study demonstrated that computer-aided classification of breast masses using CEDM images yielded higher performance.
Asher, Ilan; Elbirt, Daniel; Mahlev-Guri, Keren; Rozenberg-Bezalet, Shira; Werner, Ben; Sthoeger, Zev
2013-04-01
Major changes happened in the last decade in the HIV/AIDS pandemic. The disease is no longer limited to young age. Due to the effectiveness of HAART (Highly Active Anti-Retroviral Therapy) as well as new diagnosis in older age groups, many patients in AIDS centers are above 50 years of age. To determine the prevalence, demographics and clinical characteristics of newly diagnosed HIV/AIDS patients older than 50 years compared to younger newly diagnosed patients. Retrospective single center analysis of the demographics and clinical characterizations of 62 newly diagnosed HIV/AIDS patients over 50 years of age. The average age at diagnosis of the whole cohort was 39+/-16 years. There was a gradual increase in the age at diagnosis over the years, as well as the percent of patients above the age of 50 diagnosed with the disease. In comparison to younger patients, in the older group there were more males compared to females and less patients who acquired the HIV/AIDS in unprotected homosexual sex. Furthermore, CD4 cells counts were lower and viral load leveLs were higher at diagnosis in the older group. Despite good adherence, patients above the age of 50 don't achieve adequate immunological response and many are left with significant immunodeficiency (CD4<200). The prevaLence of patients above the age of 50 Living with HIV/AIDS in Israel is rising. Programs aimed at prevention, education and screening for this unique group are mandatory. An AIDS center should adopt new programs and routines to cope with the increasing number of patients over the age of 50 Living with HIV/AIDS.
Lin, Chun-Li; Chang, Yen-Hsiang; Hsieh, Shih-Kai; Chang, Wen-Jen
2013-03-01
This study evaluated the risk of failure for an endodontically treated premolar with different crack depths, which was shearing toward the pulp chamber and was restored by using 3 different computer-aided design/computer-aided manufacturing ceramic restoration configurations. Three 3-dimensional finite element models designed with computer-aided design/computer-aided manufacturing ceramic onlay, endocrown, and conventional crown restorations were constructed to perform simulations. The Weibull function was incorporated with finite element analysis to calculate the long-term failure probability relative to different load conditions. The results indicated that the stress values on the enamel, dentin, and luting cement for endocrown restorations exhibited the lowest values relative to the other 2 restoration methods. Weibull analysis revealed that the overall failure probabilities in a shallow cracked premolar were 27%, 2%, and 1% for the onlay, endocrown, and conventional crown restorations, respectively, in the normal occlusal condition. The corresponding values were 70%, 10%, and 2% for the depth cracked premolar. This numeric investigation suggests that the endocrown provides sufficient fracture resistance only in a shallow cracked premolar with endodontic treatment. The conventional crown treatment can immobilize the premolar for different cracked depths with lower failure risk. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Choi, Young Jun; Baek, Jung Hwan; Park, Hye Sun; Shim, Woo Hyun; Kim, Tae Yong; Shong, Young Kee; Lee, Jeong Hyun
2017-04-01
An initial clinical assessment is described of a new, commercially available, computer-aided diagnosis (CAD) system using artificial intelligence (AI) for thyroid ultrasound, and its performance is evaluated in the diagnosis of malignant thyroid nodules and categorization of nodule characteristics. Patients with thyroid nodules with decisive diagnosis, whether benign or malignant, were consecutively enrolled from November 2015 to February 2016. An experienced radiologist reviewed the ultrasound image characteristics of the thyroid nodules, while another radiologist assessed the same thyroid nodules using the CAD system, providing ultrasound characteristics and a diagnosis of whether nodules were benign or malignant. The diagnostic performance and agreement of US characteristics between the experienced radiologist and the CAD system were compared. In total, 102 thyroid nodules from 89 patients were included; 59 (57.8%) were benign and 43 (42.2%) were malignant. The CAD system showed a similar sensitivity as the experienced radiologist (90.7% vs. 88.4%, p > 0.99), but a lower specificity and a lower area under the receiver operating characteristic (AUROC) curve (specificity: 74.6% vs. 94.9%, p = 0.002; AUROC: 0.83 vs. 0.92, p = 0.021). Classifications of the ultrasound characteristics (composition, orientation, echogenicity, and spongiform) between radiologist and CAD system were in substantial agreement (κ = 0.659, 0.740, 0.733, and 0.658, respectively), while the margin showed a fair agreement (κ = 0.239). The sensitivity of the CAD system using AI for malignant thyroid nodules was as good as that of the experienced radiologist, while specificity and accuracy were lower than those of the experienced radiologist. The CAD system showed an acceptable agreement with the experienced radiologist for characterization of thyroid nodules.
Tamai, Naoto; Saito, Yutaka; Sakamoto, Taku; Nakajima, Takeshi; Matsuda, Takahisa; Sumiyama, Kazuki; Tajiri, Hisao; Koyama, Ryosuke; Kido, Shoji
2017-08-01
Magnifying narrow-band imaging (M-NBI) enables detailed observation of microvascular architecture and can be used in endoscopic diagnosis of colorectal lesion. However, in clinical practice, differential diagnosis and estimation of invasion depth of colorectal lesions based on M-NBI findings require experience. Therefore, developing computer-aided diagnosis (CAD) for M-NBI would be beneficial for clinical practice. The aim of this study was to evaluate the effectiveness of software for CAD of colorectal lesions. In collaboration with Yamaguchi University, we developed novel software that enables CAD of colorectal lesions using M-NBI images. This software for CAD further specifically divides original Sano's colorectal M-NBI classification into 3 groups (group A, capillary pattern [CP] type I; group B, CP type II + CP type IIIA; group C, CP type IIIB), which describe hyperplastic polyps (HPs), adenoma/adenocarcinoma (intramucosal [IM] to submucosal [SM]-superficial) lesions, and SM-deep lesions, respectively. We retrospectively reviewed 121 lesions evaluated using M-NBI. The 121 reviewed lesions included 21 HP, 80 adenoma/adenocarcinoma (IM to SM-superficial), and 20 SM-deep lesions. The concordance rate between the CAD and the diagnosis of the experienced endoscopists was 90.9 %. The sensitivity, specificity, positive and negative predictive values, and accuracy of the CAD for neoplastic lesions were 83.9 %, 82.6 %, 53.1 %, 95.6 %, and 82.8 %, respectively. The values for SM-deep lesions were 83.9 %, 82.6 %, 53.1 %, 95.6 %, and 82.8 %, respectively. Relatively high diagnostic values were obtained using CAD. This software for CAD could possibly lead to a wider use of M-NBI in the endoscopic diagnosis of colorectal lesions.
Computer-Aided Detection of Prostate Cancer with MRI: Technology and Applications
Liu, Lizhi; Tian, Zhiqiang; Zhang, Zhenfeng; Fei, Baowei
2016-01-01
One in six men will develop prostate cancer in his life time. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multi-parametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and MR spectroscopy imaging. Due to the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In order to improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:27133005
ERIC Educational Resources Information Center
Wu, YuLung
2010-01-01
In Taiwan, when students learn in experiment-related courses, they are often grouped into several teams. The familiar method of grouping learning is "Cooperative Learning". A well-organized grouping strategy improves cooperative learning and increases the number of activities. This study proposes a novel pedagogical method by adopting…
Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey
Zhang, Fan; Li, Xuelong
2018-01-01
The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system. PMID:29687000
Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey.
Huang, Qinghua; Zhang, Fan; Li, Xuelong
2018-01-01
The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.
A survey on computer aided diagnosis for ocular diseases
2014-01-01
Background Computer Aided Diagnosis (CAD), which can automate the detection process for ocular diseases, has attracted extensive attention from clinicians and researchers alike. It not only alleviates the burden on the clinicians by providing objective opinion with valuable insights, but also offers early detection and easy access for patients. Method We review ocular CAD methodologies for various data types. For each data type, we investigate the databases and the algorithms to detect different ocular diseases. Their advantages and shortcomings are analyzed and discussed. Result We have studied three types of data (i.e., clinical, genetic and imaging) that have been commonly used in existing methods for CAD. The recent developments in methods used in CAD of ocular diseases (such as Diabetic Retinopathy, Glaucoma, Age-related Macular Degeneration and Pathological Myopia) are investigated and summarized comprehensively. Conclusion While CAD for ocular diseases has shown considerable progress over the past years, the clinical importance of fully automatic CAD systems which are able to embed clinical knowledge and integrate heterogeneous data sources still show great potential for future breakthrough. PMID:25175552
NASA Technical Reports Server (NTRS)
Abbott, Kathy
1990-01-01
The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to examine pilot mental models of the aircraft subsystems and their use in diagnosis tasks. Future research plans include piloted simulation evaluation of the diagnosis decision aiding concepts and crew interface issues. Information is given in viewgraph form.
NASA Technical Reports Server (NTRS)
Hoffer, R. M.
1974-01-01
Forestry, geology, and water resource applications were the focus of this study, which involved the use of computer-implemented pattern-recognition techniques to analyze ERTS-1 data. The results have proven the value of computer-aided analysis techniques, even in areas of mountainous terrain. Several analysis capabilities have been developed during these ERTS-1 investigations. A procedure to rotate, deskew, and geometrically scale the MSS data results in 1:24,000 scale printouts that can be directly overlayed on 7 1/2 minutes U.S.G.S. topographic maps. Several scales of computer-enhanced "false color-infrared" composites of MSS data can be obtained from a digital display unit, and emphasize the tremendous detail present in the ERTS-1 data. A grid can also be superimposed on the displayed data to aid in specifying areas of interest.
Modeling And Simulation Of Bar Code Scanners Using Computer Aided Design Software
NASA Astrophysics Data System (ADS)
Hellekson, Ron; Campbell, Scott
1988-06-01
Many optical systems have demanding requirements to package the system in a small 3 dimensional space. The use of computer graphic tools can be a tremendous aid to the designer in analyzing the optical problems created by smaller and less costly systems. The Spectra Physics grocery store bar code scanner employs an especially complex 3 dimensional scan pattern to read bar code labels. By using a specially written program which interfaces with a computer aided design system, we have simulated many of the functions of this complex optical system. In this paper we will illustrate how a recent version of the scanner has been designed. We will discuss the use of computer graphics in the design process including interactive tweaking of the scan pattern, analysis of collected light, analysis of the scan pattern density, and analysis of the manufacturing tolerances used to build the scanner.
Dodd, Lori E; Wagner, Robert F; Armato, Samuel G; McNitt-Gray, Michael F; Beiden, Sergey; Chan, Heang-Ping; Gur, David; McLennan, Geoffrey; Metz, Charles E; Petrick, Nicholas; Sahiner, Berkman; Sayre, Jim
2004-04-01
Cancer of the lung and bronchus is the leading fatal malignancy in the United States. Five-year survival is low, but treatment of early stage disease considerably improves chances of survival. Advances in multidetector-row computed tomography technology provide detection of smaller lung nodules and offer a potentially effective screening tool. The large number of images per exam, however, requires considerable radiologist time for interpretation and is an impediment to clinical throughput. Thus, computer-aided diagnosis (CAD) methods are needed to assist radiologists with their decision making. To promote the development of CAD methods, the National Cancer Institute formed the Lung Image Database Consortium (LIDC). The LIDC is charged with developing the consensus and standards necessary to create an image database of multidetector-row computed tomography lung images as a resource for CAD researchers. To develop such a prospective database, its potential uses must be anticipated. The ultimate applications will influence the information that must be included along with the images, the relevant measures of algorithm performance, and the number of required images. In this article we outline assessment methodologies and statistical issues as they relate to several potential uses of the LIDC database. We review methods for performance assessment and discuss issues of defining "truth" as well as the complications that arise when truth information is not available. We also discuss issues about sizing and populating a database.
Ultrasound based computer-aided-diagnosis of kidneys for pediatric hydronephrosis
NASA Astrophysics Data System (ADS)
Cerrolaza, Juan J.; Peters, Craig A.; Martin, Aaron D.; Myers, Emmarie; Safdar, Nabile; Linguraru, Marius G.
2014-03-01
Ultrasound is the mainstay of imaging for pediatric hydronephrosis, though its potential as diagnostic tool is limited by its subjective assessment, and lack of correlation with renal function. Therefore, all cases showing signs of hydronephrosis undergo further invasive studies, like diuretic renogram, in order to assess the actual renal function. Under the hypothesis that renal morphology is correlated with renal function, a new ultrasound based computer-aided diagnosis (CAD) tool for pediatric hydronephrosis is presented. From 2D ultrasound, a novel set of morphological features of the renal collecting systems and the parenchyma, is automatically extracted using image analysis techniques. From the original set of features, including size, geometric and curvature descriptors, a subset of ten features are selected as predictive variables, combining a feature selection technique and area under the curve filtering. Using the washout half time (T1/2) as indicative of renal obstruction, two groups are defined. Those cases whose T1/2 is above 30 minutes are considered to be severe, while the rest would be in the safety zone, where diuretic renography could be avoided. Two different classification techniques are evaluated (logistic regression, and support vector machines). Adjusting the probability decision thresholds to operate at the point of maximum sensitivity, i.e., preventing any severe case be misclassified, specificities of 53%, and 75% are achieved, for the logistic regression and the support vector machine classifier, respectively. The proposed CAD system allows to establish a link between non-invasive non-ionizing imaging techniques and renal function, limiting the need for invasive and ionizing diuretic renography.
Jiang, Jiewei; Liu, Xiyang; Zhang, Kai; Long, Erping; Wang, Liming; Li, Wangting; Liu, Lin; Wang, Shuai; Zhu, Mingmin; Cui, Jiangtao; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni; Wang, Jinghui; Lin, Haotian
2017-11-21
Ocular images play an essential role in ophthalmological diagnoses. Having an imbalanced dataset is an inevitable issue in automated ocular diseases diagnosis; the scarcity of positive samples always tends to result in the misdiagnosis of severe patients during the classification task. Exploring an effective computer-aided diagnostic method to deal with imbalanced ophthalmological dataset is crucial. In this paper, we develop an effective cost-sensitive deep residual convolutional neural network (CS-ResCNN) classifier to diagnose ophthalmic diseases using retro-illumination images. First, the regions of interest (crystalline lens) are automatically identified via twice-applied Canny detection and Hough transformation. Then, the localized zones are fed into the CS-ResCNN to extract high-level features for subsequent use in automatic diagnosis. Second, the impacts of cost factors on the CS-ResCNN are further analyzed using a grid-search procedure to verify that our proposed system is robust and efficient. Qualitative analyses and quantitative experimental results demonstrate that our proposed method outperforms other conventional approaches and offers exceptional mean accuracy (92.24%), specificity (93.19%), sensitivity (89.66%) and AUC (97.11%) results. Moreover, the sensitivity of the CS-ResCNN is enhanced by over 13.6% compared to the native CNN method. Our study provides a practical strategy for addressing imbalanced ophthalmological datasets and has the potential to be applied to other medical images. The developed and deployed CS-ResCNN could serve as computer-aided diagnosis software for ophthalmologists in clinical application.
Sertel, O.; Kong, J.; Shimada, H.; Catalyurek, U.V.; Saltz, J.H.; Gurcan, M.N.
2009-01-01
We are developing a computer-aided prognosis system for neuroblastoma (NB), a cancer of the nervous system and one of the most malignant tumors affecting children. Histopathological examination is an important stage for further treatment planning in routine clinical diagnosis of NB. According to the International Neuroblastoma Pathology Classification (the Shimada system), NB patients are classified into favorable and unfavorable histology based on the tissue morphology. In this study, we propose an image analysis system that operates on digitized H&E stained whole-slide NB tissue samples and classifies each slide as either stroma-rich or stroma-poor based on the degree of Schwannian stromal development. Our statistical framework performs the classification based on texture features extracted using co-occurrence statistics and local binary patterns. Due to the high resolution of digitized whole-slide images, we propose a multi-resolution approach that mimics the evaluation of a pathologist such that the image analysis starts from the lowest resolution and switches to higher resolutions when necessary. We employ an offine feature selection step, which determines the most discriminative features at each resolution level during the training step. A modified k-nearest neighbor classifier is used to determine the confidence level of the classification to make the decision at a particular resolution level. The proposed approach was independently tested on 43 whole-slide samples and provided an overall classification accuracy of 88.4%. PMID:20161324
An Up-to-date Approach to a Patient with a Suspected Autoinflammatory Disease
Lidar, Merav; Giat, Eitan
2017-01-01
Autoinflammatory diseases (AID) are characterized by seemingly unprovoked self-limited attacks of fever and systemic inflammation potentially leading to amyloidosis. Familial Mediterranean fever (FMF) is the most common AID and therefore the most studied. Besides FMF, the other main hereditary AID are tumor necrosis factor-associated periodic fever syndrome (TRAPS), mevalonate kinase deficiency (MKD), and cryopyrin-associated periodic fever syndrome (CAPS). These hereditary diseases result from a mutant gene that is involved in the regulation of inflammation, resulting in a characteristic clinical phenotype. The differential diagnosis of AID can be challenging due to a wide overlap in clinical manifestations. Moreover, a considerable proportion of patients present with autoinflammatory symptoms but without a pathogenetic variant on genetic analysis. Furthermore, non-hereditary AID, such as the periodic fever, aphthous stomatitis, pharyngitis, adenitis (PFAPA) syndrome, which is the most common AID in children worldwide, must be excluded in certain circumstances. Herein we shall review the main AID and describe a practical approach to diagnosis in a patient with a clinical suspicion of AID. PMID:28178435
Breast cancer histopathology image analysis: a review.
Veta, Mitko; Pluim, Josien P W; van Diest, Paul J; Viergever, Max A
2014-05-01
This paper presents an overview of methods that have been proposed for the analysis of breast cancer histopathology images. This research area has become particularly relevant with the advent of whole slide imaging (WSI) scanners, which can perform cost-effective and high-throughput histopathology slide digitization, and which aim at replacing the optical microscope as the primary tool used by pathologist. Breast cancer is the most prevalent form of cancers among women, and image analysis methods that target this disease have a huge potential to reduce the workload in a typical pathology lab and to improve the quality of the interpretation. This paper is meant as an introduction for nonexperts. It starts with an overview of the tissue preparation, staining and slide digitization processes followed by a discussion of the different image processing techniques and applications, ranging from analysis of tissue staining to computer-aided diagnosis, and prognosis of breast cancer patients.
Computer aided detection system for Osteoporosis using low dose thoracic 3D CT images
NASA Astrophysics Data System (ADS)
Tsuji, Daisuke; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Harada, Masafumi; Kusumoto, Masahiko; Tsuchida, Takaaki; Eguchi, Kenji; Kaneko, Masahiro
2018-02-01
The patient of osteoporosis is about 13 million people in Japan and it is one of healthy life problems in the aging society. It is necessary to do early stage detection and treatment in order to prevent the osteoporosis. Multi-slice CT technology has been improving the three dimensional (3D) image analysis with higher resolution and shorter scan time. The 3D image analysis of thoracic vertebra can be used for supporting to diagnosis of osteoporosis. This analysis can be used for lung cancer detection at the same time. We develop method of shape analysis and CT values of spongy bone for the detection osteoporosis. Osteoporosis and lung cancer screening show high extraction rate by the thoracic vertebral evaluation CT images. In addition, we created standard pattern of CT value per thoracic vertebra for male age group using 298 low dose data.
3D Texture Features Mining for MRI Brain Tumor Identification
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Saba, Tanzila; Nayer, Fatima; Syed, Afraz Zahra
2014-03-01
Medical image segmentation is a process to extract region of interest and to divide an image into its individual meaningful, homogeneous components. Actually, these components will have a strong relationship with the objects of interest in an image. For computer-aided diagnosis and therapy process, medical image segmentation is an initial mandatory step. Medical image segmentation is a sophisticated and challenging task because of the sophisticated nature of the medical images. Indeed, successful medical image analysis heavily dependent on the segmentation accuracy. Texture is one of the major features to identify region of interests in an image or to classify an object. 2D textures features yields poor classification results. Hence, this paper represents 3D features extraction using texture analysis and SVM as segmentation technique in the testing methodologies.
NASA Technical Reports Server (NTRS)
Hoffer, R. M.
1975-01-01
Skylab data were obtained over a mountainous test site containing a complex association of cover types and rugged topography. The application of computer-aided analysis techniques to the multispectral scanner data produced a number of significant results. Techniques were developed to digitally overlay topographic data (elevation, slope, and aspect) onto the S-192 MSS data to provide a method for increasing the effectiveness and accuracy of computer-aided analysis techniques for cover type mapping. The S-192 MSS data were analyzed using computer techniques developed at Laboratory for Applications of Remote Sensing (LARS), Purdue University. Land use maps, forest cover type maps, snow cover maps, and area tabulations were obtained and evaluated. These results compared very well with information obtained by conventional techniques. Analysis of the spectral characteristics of Skylab data has conclusively proven the value of the middle infrared portion of the spectrum (about 1.3-3.0 micrometers), a wavelength region not previously available in multispectral satellite data.
Digital Image Processing Technique for Breast Cancer Detection
NASA Astrophysics Data System (ADS)
Guzmán-Cabrera, R.; Guzmán-Sepúlveda, J. R.; Torres-Cisneros, M.; May-Arrioja, D. A.; Ruiz-Pinales, J.; Ibarra-Manzano, O. G.; Aviña-Cervantes, G.; Parada, A. González
2013-09-01
Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. As masses and benign glandular tissue typically appear with low contrast and often very blurred, several computer-aided diagnosis schemes have been developed to support radiologists and internists in their diagnosis. In this article, an approach is proposed to effectively analyze digital mammograms based on texture segmentation for the detection of early stage tumors. The proposed algorithm was tested over several images taken from the digital database for screening mammography for cancer research and diagnosis, and it was found to be absolutely suitable to distinguish masses and microcalcifications from the background tissue using morphological operators and then extract them through machine learning techniques and a clustering algorithm for intensity-based segmentation.
NASA Astrophysics Data System (ADS)
Wu, T. Y.; Lin, S. F.
2013-10-01
Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.
Training Aids for Online Instruction: An Analysis.
ERIC Educational Resources Information Center
Guy, Robin Frederick
This paper describes a number of different types of training aids currently employed in online training: non-interactive audiovisual presentations; interactive computer-based aids; partially interactive aids based on recorded searches; print-based materials; and kits. The advantages and disadvantages of each type of aid are noted, and a table…
Semivariogram Analysis of Bone Images Implemented on FPGA Architectures.
Shirvaikar, Mukul; Lagadapati, Yamuna; Dong, Xuanliang
2017-03-01
Osteoporotic fractures are a major concern for the healthcare of elderly and female populations. Early diagnosis of patients with a high risk of osteoporotic fractures can be enhanced by introducing second-order statistical analysis of bone image data using techniques such as variogram analysis. Such analysis is computationally intensive thereby creating an impediment for introduction into imaging machines found in common clinical settings. This paper investigates the fast implementation of the semivariogram algorithm, which has been proven to be effective in modeling bone strength, and should be of interest to readers in the areas of computer-aided diagnosis and quantitative image analysis. The semivariogram is a statistical measure of the spatial distribution of data, and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. A semi-variance, γ ( h ), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h . Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O ( n 2 ) Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from DXA scans are utilized for the experiments. Implementation results show that a significant advantage in computational speed is attained by the architectures with respect to implementation on a personal computer with an Intel i7 multi-core processor.
Semivariogram Analysis of Bone Images Implemented on FPGA Architectures
Shirvaikar, Mukul; Lagadapati, Yamuna; Dong, Xuanliang
2016-01-01
Osteoporotic fractures are a major concern for the healthcare of elderly and female populations. Early diagnosis of patients with a high risk of osteoporotic fractures can be enhanced by introducing second-order statistical analysis of bone image data using techniques such as variogram analysis. Such analysis is computationally intensive thereby creating an impediment for introduction into imaging machines found in common clinical settings. This paper investigates the fast implementation of the semivariogram algorithm, which has been proven to be effective in modeling bone strength, and should be of interest to readers in the areas of computer-aided diagnosis and quantitative image analysis. The semivariogram is a statistical measure of the spatial distribution of data, and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O (n2) Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from DXA scans are utilized for the experiments. Implementation results show that a significant advantage in computational speed is attained by the architectures with respect to implementation on a personal computer with an Intel i7 multi-core processor. PMID:28428829
Computer aided detection system for lung cancer using computer tomography scans
NASA Astrophysics Data System (ADS)
Mahesh, Shanthi; Rakesh, Spoorthi; Patil, Vidya C.
2018-04-01
Lung Cancer is a disease can be defined as uncontrolled cell growth in tissues of the lung. If we detect the Lung Cancer in its early stage, then that could be the key of its cure. In this work the non-invasive methods are studied for assisting in nodule detection. It supplies a Computer Aided Diagnosis System (CAD) for early detection of lung cancer nodules from the Computer Tomography (CT) images. CAD system is the one which helps to improve the diagnostic performance of radiologists in their image interpretations. The main aim of this technique is to develop a CAD system for finding the lung cancer using the lung CT images and classify the nodule as Benign or Malignant. For classifying cancer cells, SVM classifier is used. Here, image processing techniques have been used to de-noise, to enhance, for segmentation and edge detection of an image is used to extract the area, perimeter and shape of nodule. The core factors of this research are Image quality and accuracy.
Jiang, Hongbo; Xie, Nianhua; Cao, Beibei; Tan, Li; Fan, Yunzhou; Zhang, Fan; Yao, Zhongzhao; Liu, Li; Nie, Shaofa
2013-01-01
Objective To identify determinants associated with disease progression and death following human immunodeficiency virus (HIV) diagnosis. Methods Disease progression data from the diagnosis of HIV infection or acquiring immunodeficiency syndrome (AIDS) to February 29, 2012 were retrospectively collected from the national surveillance system databases and the national treatment database in Wuhan, China. Kaplan-Meier method, Logistic regression and Cox proportional hazards model were applied to identify the related factors of progression to AIDS or death following HIV diagnosis. Results By the end of February 2012, 181 of 691 HIV infectors developed to AIDS, and 129 of 470 AIDS patients died among whom 289 cases received concurrent HIV/AIDS diagnosis. Compared with men infected through homosexual behavior, injection drug users possessed sharply decreased hazard ratio (HR) for progression to AIDS following HIV diagnosis [HR = 0.31, 95% confidence interval (CI), 0.18–0.54, P = 4.01×10−5]. HIV infectors at least 60 years presented 1.15-fold (HR = 2.15, 95% CI, 1.15–4.03, P = 0.017) increased risk to develop AIDS when compared with those aged 17–29 years. Similarly, AIDS patients with diagnosis ages between 50 and 59 years were at a 1.60-fold higher risk of death (HR = 2.60, 95% CI, 1.18–5.72, P = 0.017) compared to those aged 19–29 years. AIDS patients with more CD4+ T-cells within 6 months at diagnosis (cell/µL) presented lower risk of death (HR = 0.29 for 50- vs <50, 95% CI, 0.15–0.59, P = 0.001). The highly active antiretroviral therapy (HAART) delayed progression to AIDS from HIV diagnosis (HR = 0.15, 95% CI, 0.07–0.34, P = 6.46×10−6) and reduced the risk of death after AIDS diagnosis (HR = 0.02, 95% CI, 0.01–0.04, P = 7.25×10−25). Conclusions Progression to AIDS and death following HIV diagnosis differed in age at diagnosis, transmission categories, CD4+ T-cell counts and HAART. Effective interventions should target those at higher risk for morbidity or mortality, ensuring early diagnosis and timely treatment to slow down the disease progression. PMID:24376638
Jiang, Hongbo; Xie, Nianhua; Cao, Beibei; Tan, Li; Fan, Yunzhou; Zhang, Fan; Yao, Zhongzhao; Liu, Li; Nie, Shaofa
2013-01-01
To identify determinants associated with disease progression and death following human immunodeficiency virus (HIV) diagnosis. Disease progression data from the diagnosis of HIV infection or acquiring immunodeficiency syndrome (AIDS) to February 29, 2012 were retrospectively collected from the national surveillance system databases and the national treatment database in Wuhan, China. Kaplan-Meier method, Logistic regression and Cox proportional hazards model were applied to identify the related factors of progression to AIDS or death following HIV diagnosis. By the end of February 2012, 181 of 691 HIV infectors developed to AIDS, and 129 of 470 AIDS patients died among whom 289 cases received concurrent HIV/AIDS diagnosis. Compared with men infected through homosexual behavior, injection drug users possessed sharply decreased hazard ratio (HR) for progression to AIDS following HIV diagnosis [HR = 0.31, 95% confidence interval (CI), 0.18-0.54, P = 4.01×10(-5)]. HIV infectors at least 60 years presented 1.15-fold (HR = 2.15, 95% CI, 1.15-4.03, P = 0.017) increased risk to develop AIDS when compared with those aged 17-29 years. Similarly, AIDS patients with diagnosis ages between 50 and 59 years were at a 1.60-fold higher risk of death (HR = 2.60, 95% CI, 1.18-5.72, P = 0.017) compared to those aged 19-29 years. AIDS patients with more CD4(+) T-cells within 6 months at diagnosis (cell/µL) presented lower risk of death (HR = 0.29 for 50- vs <50, 95% CI, 0.15-0.59, P = 0.001). The highly active antiretroviral therapy (HAART) delayed progression to AIDS from HIV diagnosis (HR = 0.15, 95% CI, 0.07-0.34, P = 6.46×10(-6)) and reduced the risk of death after AIDS diagnosis (HR = 0.02, 95% CI, 0.01-0.04, P = 7.25×10(-25)). Progression to AIDS and death following HIV diagnosis differed in age at diagnosis, transmission categories, CD4(+) T-cell counts and HAART. Effective interventions should target those at higher risk for morbidity or mortality, ensuring early diagnosis and timely treatment to slow down the disease progression.
Computer-aided-engineering system for modeling and analysis of ECLSS integration testing
NASA Technical Reports Server (NTRS)
Sepahban, Sonbol
1987-01-01
The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.
Computer-aided design of antenna structures and components
NASA Technical Reports Server (NTRS)
Levy, R.
1976-01-01
This paper discusses computer-aided design procedures for antenna reflector structures and related components. The primary design aid is a computer program that establishes cross sectional sizes of the structural members by an optimality criterion. Alternative types of deflection-dependent objectives can be selected for designs subject to constraints on structure weight. The computer program has a special-purpose formulation to design structures of the type frequently used for antenna construction. These structures, in common with many in other areas of application, are represented by analytical models that employ only the three translational degrees of freedom at each node. The special-purpose construction of the program, however, permits coding and data management simplifications that provide advantages in problem size and execution speed. Size and speed are essentially governed by the requirements of structural analysis and are relatively unaffected by the added requirements of design. Computation times to execute several design/analysis cycles are comparable to the times required by general-purpose programs for a single analysis cycle. Examples in the paper illustrate effective design improvement for structures with several thousand degrees of freedom and within reasonable computing times.
Mahmoud, Mohamad S; Merhi, Zaher O
2010-04-01
To report three cases of migrated levonorgestrel intrauterine device (LNG-IUS) into the pelvic/abdominal cavity removed laparoscopically with the aid of preoperative computed tomography (CT) scan imaging. Three patients presenting with a missing LNG-IUS on examination and pelvic ultrasound are presented. A preoperative CT scan was performed, what helped in a successful removal of the LNG-IUS. The patients were discharged home the same day of the procedure. Our cases reinforce, besides the diagnosis of a migrated LNG-IUS by ultrasound, the fact that preoperative CT scan imaging assists in the diagnosis of the precise location of a migrated LNG-IUS into the pelvic/abdominal cavity and helps the physician in the prediction of the difficulty of the laparoscopic removal.
ERIC Educational Resources Information Center
Fenske, Robert H.; Porter, John D.
The role of institutional research in policy analysis regarding the operation of a computer model for delivery of financial aid to disadvantaged students is considered. A student financial aid model at Arizona State University is designed to develop a profile of late appliers for aid funds and also those who file inaccurate or incomplete…
PET/CT imaging of clear cell renal cell carcinoma with 124I labeled chimeric antibody
Bahnson, Eamonn E.; Murrey, Douglas A.; Mojzisik, Cathy M.; Hall, Nathan C.; Martinez-Suarez, Humberto J.; Knopp, Michael V.; Martin, Edward W.; Povoski, Stephen P.; Bahnson, Robert R.
2009-01-01
Clear cell renal cell carcinoma (ccRCC) presents problems for urologists in diagnosis, treatment selection, intraoperative surgical margin analysis, and long term monitoring. In this paper we describe the development of a radiolabeled antibody specific to ccRCC (124I-cG250) and its potential to help urologists manage each of these problems. We believe 124I-cG250, in conjunction with perioperative Positron emission tomography/computed tomography imaging and intraoperative handheld gamma probe use, has the potential to diagnose ccRCC, aid in determining a proper course of treatment (operative or otherwise), confirm complete resection of malignant tissue in real time, and monitor patients post-operatively. PMID:21789055
Image Processing and Computer Aided Diagnosis in Computed Tomography of the Breast
2007-10-01
Brian Harrawood, Ronald Pedroni, Alexander Crowell, Robert Macri, Mathew Kiser, Richard Walter ,Werner 111 Tornow , Neutron Stimulated Emission...1( kkkk k nn kkk n k n k w PBbywbb σσσ += +−⋅+=+ , (2) MLE estimate is known to increase high frequency image noise. To overcome this, some...contrast to noise ratio results for the three images shown in Figure 5. With grid w /o grid w /o grid; scatter reduction RSF 11% 45% 10% CNR 7.04 6.99
Automated Quantification of Pneumothorax in CT
Do, Synho; Salvaggio, Kristen; Gupta, Supriya; Kalra, Mannudeep; Ali, Nabeel U.; Pien, Homer
2012-01-01
An automated, computer-aided diagnosis (CAD) algorithm for the quantification of pneumothoraces from Multidetector Computed Tomography (MDCT) images has been developed. Algorithm performance was evaluated through comparison to manual segmentation by expert radiologists. A combination of two-dimensional and three-dimensional processing techniques was incorporated to reduce required processing time by two-thirds (as compared to similar techniques). Volumetric measurements on relative pneumothorax size were obtained and the overall performance of the automated method shows an average error of just below 1%. PMID:23082091
Depeursinge, Adrien; Vargas, Alejandro; Gaillard, Frédéric; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning
2012-01-01
Clinical workflows and user interfaces of image-based computer-aided diagnosis (CAD) for interstitial lung diseases in high-resolution computed tomography are introduced and discussed. Three use cases are implemented to assist students, radiologists, and physicians in the diagnosis workup of interstitial lung diseases. In a first step, the proposed system shows a three-dimensional map of categorized lung tissue patterns with quantification of the diseases based on texture analysis of the lung parenchyma. Then, based on the proportions of abnormal and normal lung tissue as well as clinical data of the patients, retrieval of similar cases is enabled using a multimodal distance aggregating content-based image retrieval (CBIR) and text-based information search. The global system leads to a hybrid detection-CBIR-based CAD, where detection-based and CBIR-based CAD show to be complementary both on the user's side and on the algorithmic side. The proposed approach is in accordance with the classical workflow of clinicians searching for similar cases in textbooks and personal collections. The developed system enables objective and customizable inter-case similarity assessment, and the performance measures obtained with a leave-one-patient-out cross-validation (LOPO CV) are representative of a clinical usage of the system.
[Knowledge about AIDS prevention among professionals and students in health care].
de Oliveira, A D; Viegas, C R; Sabka, E; Guerra, M; Baltazar, R
1996-07-01
This work is a exploratory research based on the analysis of the answers to the questionnaires of 52 students and health care professionals knowledge about AIDS sexual prevention, biosecurity, diagnosis tests, patients and workers rights and the modifications of nursing and medical care to this kind of disease.
Pitcher, Brandon; Alaqla, Ali; Noujeim, Marcel; Wealleans, James A; Kotsakis, Georgios; Chrepa, Vanessa
2017-03-01
Cone-beam computed tomographic (CBCT) analysis allows for 3-dimensional assessment of periradicular lesions and may facilitate preoperative periapical cyst screening. The purpose of this study was to develop and assess the predictive validity of a cyst screening method based on CBCT volumetric analysis alone or combined with designated radiologic criteria. Three independent examiners evaluated 118 presurgical CBCT scans from cases that underwent apicoectomies and had an accompanying gold standard histopathological diagnosis of either a cyst or granuloma. Lesion volume, density, and specific radiologic characteristics were assessed using specialized software. Logistic regression models with histopathological diagnosis as the dependent variable were constructed for cyst prediction, and receiver operating characteristic curves were used to assess the predictive validity of the models. A conditional inference binary decision tree based on a recursive partitioning algorithm was constructed to facilitate preoperative screening. Interobserver agreement was excellent for volume and density, but it varied from poor to good for the radiologic criteria. Volume and root displacement were strong predictors for cyst screening in all analyses. The binary decision tree classifier determined that if the volume of the lesion was >247 mm 3 , there was 80% probability of a cyst. If volume was <247 mm 3 and root displacement was present, cyst probability was 60% (78% accuracy). The good accuracy and high specificity of the decision tree classifier renders it a useful preoperative cyst screening tool that can aid in clinical decision making but not a substitute for definitive histopathological diagnosis after biopsy. Confirmatory studies are required to validate the present findings. Published by Elsevier Inc.
Brain tumor classification of microscopy images using deep residual learning
NASA Astrophysics Data System (ADS)
Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi
2016-12-01
The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.
Interfacing Computer Aided Parallelization and Performance Analysis
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)
2003-01-01
When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.
Su, Hai; Xing, Fuyong; Yang, Lin
2016-01-01
Successful diagnostic and prognostic stratification, treatment outcome prediction, and therapy planning depend on reproducible and accurate pathology analysis. Computer aided diagnosis (CAD) is a useful tool to help doctors make better decisions in cancer diagnosis and treatment. Accurate cell detection is often an essential prerequisite for subsequent cellular analysis. The major challenge of robust brain tumor nuclei/cell detection is to handle significant variations in cell appearance and to split touching cells. In this paper, we present an automatic cell detection framework using sparse reconstruction and adaptive dictionary learning. The main contributions of our method are: 1) A sparse reconstruction based approach to split touching cells; 2) An adaptive dictionary learning method used to handle cell appearance variations. The proposed method has been extensively tested on a data set with more than 2000 cells extracted from 32 whole slide scanned images. The automatic cell detection results are compared with the manually annotated ground truth and other state-of-the-art cell detection algorithms. The proposed method achieves the best cell detection accuracy with a F1 score = 0.96. PMID:26812706
Analysis of framelets for breast cancer diagnosis.
Thivya, K S; Sakthivel, P; Venkata Sai, P M
2016-01-01
Breast cancer is the second threatening tumor among the women. The effective way of reducing breast cancer is its early detection which helps to improve the diagnosing process. Digital mammography plays a significant role in mammogram screening at earlier stage of breast carcinoma. Even though, it is very difficult to find accurate abnormality in prevalent screening by radiologists. But the possibility of precise breast cancer screening is encouraged by predicting the accurate type of abnormality through Computer Aided Diagnosis (CAD) systems. The two most important indicators of breast malignancy are microcalcifications and masses. In this study, framelet transform, a multiresolutional analysis is investigated for the classification of the above mentioned two indicators. The statistical and co-occurrence features are extracted from the framelet decomposed mammograms with different resolution levels and support vector machine is employed for classification with k-fold cross validation. This system achieves 94.82% and 100% accuracy in normal/abnormal classification (stage I) and benign/malignant classification (stage II) of mass classification system and 98.57% and 100% for microcalcification system when using the MIAS database.
David, Ortiz P; Sierra-Sosa, Daniel; Zapirain, Begoña García
2017-01-06
Pressure ulcers have become subject of study in recent years due to the treatment high costs and decreased life quality from patients. These chronic wounds are related to the global life expectancy increment, being the geriatric and physical disable patients the principal affected by this condition. Injuries diagnosis and treatment usually takes weeks or even months by medical personel. Using non-invasive techniques, such as image processing techniques, it is possible to conduct an analysis from ulcers and aid in its diagnosis. This paper proposes a novel technique for image segmentation based on contrast changes by using synthetic frequencies obtained from the grayscale value available in each pixel of the image. These synthetic frequencies are calculated using the model of energy density over an electric field to describe a relation between a constant density and the image amplitude in a pixel. A toroidal geometry is used to decompose the image into different contrast levels by variating the synthetic frequencies. Then, the decomposed image is binarized applying Otsu's threshold allowing for obtaining the contours that describe the contrast variations. Morphological operations are used to obtain the desired segment of the image. The proposed technique is evaluated by synthesizing a Data Base with 51 images of pressure ulcers, provided by the Centre IGURCO. With the segmentation of these pressure ulcer images it is possible to aid in its diagnosis and treatment. To provide evidences of technique performance, digital image correlation was used as a measure, where the segments obtained using the methodology are compared with the real segments. The proposed technique is compared with two benchmarked algorithms. The results over the technique present an average correlation of 0.89 with a variation of ±0.1 and a computational time of 9.04 seconds. The methodology presents better segmentation results than the benchmarked algorithms using less computational time and without the need of an initial condition.
Kuru, Kaya; Niranjan, Mahesan; Tunca, Yusuf; Osvank, Erhan; Azim, Tayyaba
2014-10-01
In general, medical geneticists aim to pre-diagnose underlying syndromes based on facial features before performing cytological or molecular analyses where a genotype-phenotype interrelation is possible. However, determining correct genotype-phenotype interrelationships among many syndromes is tedious and labor-intensive, especially for extremely rare syndromes. Thus, a computer-aided system for pre-diagnosis can facilitate effective and efficient decision support, particularly when few similar cases are available, or in remote rural districts where diagnostic knowledge of syndromes is not readily available. The proposed methodology, visual diagnostic decision support system (visual diagnostic DSS), employs machine learning (ML) algorithms and digital image processing techniques in a hybrid approach for automated diagnosis in medical genetics. This approach uses facial features in reference images of disorders to identify visual genotype-phenotype interrelationships. Our statistical method describes facial image data as principal component features and diagnoses syndromes using these features. The proposed system was trained using a real dataset of previously published face images of subjects with syndromes, which provided accurate diagnostic information. The method was tested using a leave-one-out cross-validation scheme with 15 different syndromes, each of comprised 5-9 cases, i.e., 92 cases in total. An accuracy rate of 83% was achieved using this automated diagnosis technique, which was statistically significant (p<0.01). Furthermore, the sensitivity and specificity values were 0.857 and 0.870, respectively. Our results show that the accurate classification of syndromes is feasible using ML techniques. Thus, a large number of syndromes with characteristic facial anomaly patterns could be diagnosed with similar diagnostic DSSs to that described in the present study, i.e., visual diagnostic DSS, thereby demonstrating the benefits of using hybrid image processing and ML-based computer-aided diagnostics for identifying facial phenotypes. Copyright © 2014. Published by Elsevier B.V.
Racial-ethnic differences in all-cause and HIV mortality, Florida, 2000–2011
Trepka, Mary Jo; Fennie, Kristopher P.; Sheehan, Diana M.; Niyonsenga, Theophile; Lieb, Spencer; Maddox, Lorene M.
2016-01-01
Purpose We compared all-cause and human immunodeficiency virus (HIV) mortality in a population-based, HIV-infected cohort. Methods Using records of people diagnosed with HIV during 2000–2009 from the Florida Enhanced HIV/Acquired Immunodeficiency Syndrome (AIDS) Reporting System, we conducted a proportional hazards analysis for all-cause mortality and a competing risk analysis for HIV mortality through 2011 controlling for individual level factors, neighborhood poverty, and rural/urban status and stratifying by concurrent AIDS status (AIDS within 3 months of HIV diagnosis). Results Of 59,880 HIV-infected people, 32.2% had concurrent AIDS, and 19.3% died. Adjusting for period of diagnosis, age group, sex, country of birth, HIV transmission mode, area level poverty and rural/urban status, non-Hispanic Black (NHB) and Hispanic people had an elevated adjusted hazards ratio (aHR) for HIV mortality relative to non-Hispanic whites (NHB concurrent AIDS: aHR 1.34, 95% CI 1.23–1.47; NHB without concurrent AIDS: aHR 1.41, 95% CI 1.26–1.57; Hispanic concurrent AIDS: aHR 1.18, 95% CI 1.05–1.32; Hispanic without concurrent AIDS: aHR 1.18, 95% CI 1.03–1.36). Conclusions Considering competing causes of death, NHB and Hispanic people had a higher risk of HIV mortality even among those without concurrent AIDS, indicating a need to identify and address barriers to HIV care in these populations. PMID:26948103
Deep learning in mammography and breast histology, an overview and future trends.
Hamidinekoo, Azam; Denton, Erika; Rampun, Andrik; Honnor, Kate; Zwiggelaar, Reyer
2018-07-01
Recent improvements in biomedical image analysis using deep learning based neural networks could be exploited to enhance the performance of Computer Aided Diagnosis (CAD) systems. Considering the importance of breast cancer worldwide and the promising results reported by deep learning based methods in breast imaging, an overview of the recent state-of-the-art deep learning based CAD systems developed for mammography and breast histopathology images is presented. In this study, the relationship between mammography and histopathology phenotypes is described, which takes biological aspects into account. We propose a computer based breast cancer modelling approach: the Mammography-Histology-Phenotype-Linking-Model, which develops a mapping of features/phenotypes between mammographic abnormalities and their histopathological representation. Challenges are discussed along with the potential contribution of such a system to clinical decision making and treatment management. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Roles of universal three-dimensional image analysis devices that assist surgical operations.
Sakamoto, Tsuyoshi
2014-04-01
The circumstances surrounding medical image analysis have undergone rapid evolution. In such a situation, it can be said that "imaging" obtained through medical imaging modality and the "analysis" that we employ have become amalgamated. Recently, we feel the distance between "imaging" and "analysis" has become closer regarding the imaging analysis of any organ system, as if both terms mentioned above have become integrated. The history of medical image analysis started with the appearance of the computer. The invention of multi-planar reconstruction (MPR) used in the helical scan had a significant impact and became the basis for recent image analysis. Subsequently, curbed MPR (CPR) and other methods were developed, and the 3D diagnostic imaging and image analysis of the human body have started on a full scale. Volume rendering: the development of a new rendering algorithm and the significant improvement of memory and CPUs contributed to the development of "volume rendering," which allows 3D views with retained internal information. A new value was created by this development; computed tomography (CT) images that used to be for "diagnosis" before that time have become "applicable to treatment." In the past, before the development of volume rendering, a clinician had to mentally reconstruct an image reconfigured for diagnosis into a 3D image, but these developments have allowed the depiction of a 3D image on a monitor. Current technology: Currently, in Japan, the estimation of the liver volume and the perfusion area of the portal vein and hepatic vein are vigorously being adopted during preoperative planning for hepatectomy. Such a circumstance seems to be brought by the substantial improvement of said basic techniques and by upgrading the user interface, allowing doctors easy manipulation by themselves. The following describes the specific techniques. Future of post-processing technology: It is expected, in terms of the role of image analysis, for better or worse, that computer-aided diagnosis (CAD) will develop to a highly advanced level in every diagnostic field. Further, it is also expected in the treatment field that a technique coordinating various devices will be strongly required as a surgery navigator. Actually, surgery using an image navigator is being widely studied, and coordination with hardware, including robots, will also be developed. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Program Helps Generate And Manage Graphics
NASA Technical Reports Server (NTRS)
Truong, L. V.
1994-01-01
Living Color Frame Maker (LCFM) computer program generates computer-graphics frames. Graphical frames saved as text files, in readable and disclosed format, easily retrieved and manipulated by user programs for wide range of real-time visual information applications. LCFM implemented in frame-based expert system for visual aids in management of systems. Monitoring, diagnosis, and/or control, diagrams of circuits or systems brought to "life" by use of designated video colors and intensities to symbolize status of hardware components (via real-time feedback from sensors). Status of systems can be displayed. Written in C++ using Borland C++ 2.0 compiler for IBM PC-series computers and compatible computers running MS-DOS.
A SINDA thermal model using CAD/CAE technologies
NASA Technical Reports Server (NTRS)
Rodriguez, Jose A.; Spencer, Steve
1992-01-01
The approach to thermal analysis described by this paper is a technique that incorporates Computer Aided Design (CAD) and Computer Aided Engineering (CAE) to develop a thermal model that has the advantages of Finite Element Methods (FEM) without abandoning the unique advantages of Finite Difference Methods (FDM) in the analysis of thermal systems. The incorporation of existing CAD geometry, the powerful use of a pre and post processor and the ability to do interdisciplinary analysis, will be described.
Maeda, Ichiro; Kubota, Manabu; Ohta, Jiro; Shinno, Kimika; Tajima, Shinya; Ariizumi, Yasushi; Doi, Masatomo; Oana, Yoshiyasu; Kanemaki, Yoshihide; Tsugawa, Koichiro; Ueno, Takahiko; Takagi, Masayuki
2017-12-01
The aim of this study was to develop a computer-aided diagnosis (CADx) system for identifying breast pathology. Two sets of 100 consecutive core needle biopsy (CNB) specimens were collected for test and validation studies. All 200 CNB specimens were stained with antibodies targeting oestrogen receptor (ER), synaptophysin and CK14/p63. All stained slides were scanned in a whole-slide imaging system and photographed. The photographs were analysed using software to identify the proportions of tumour cells that were positive and negative for each marker. In the test study, the cut-off values for synaptophysin (negative and positive) and CK14/p63 (negative and positive) were decided using receiver operating characteristic (ROC) analysis. For ER analysis, samples were divided into groups with <10% positive or >10% positive cells and decided using receiver operating characteristic (ROC) analysis. Finally, these two groups categorised as ER-low, ER-intermediate (non-low and non-high) and ER-high groups. In the validation study, the second set of immunohistochemical slides were analysed using these cut-off values. The cut-off values for synaptophysin, <10% ER positive, >10% ER positive and CK14/p63 were 0.14%, 2.17%, 77.93% and 18.66%, respectively. The positive predictive value for malignancy (PPV) was 100% for synaptophysin-positive/ER-high/(CK14/p63)-any or synaptophysin-positive/ER-low/(CK14/p63)-any. The PPV was 25% for synaptophysin-positive/ER-intermediate/(CK14/p63)-positive. For synaptophysin-negative/(CK14/p63)-negative, the PPVs for ER-low, ER-intermediate and ER-high were 100%, 80.0% and 95.8%, respectively. The PPV was 4.5% for synaptophysin-negative/ER-intermediate/(CK14/p63)-positive. The CADx system was able to analyse sufficient data for all types of epithelial proliferative lesions of the breast including invasive breast cancer. This system may be useful for pathological diagnosis of breast CNB in routine investigations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
[The new concept of osteoporosis. Early diagnosis, prevention and therapy are possible today].
Hesch, R D; Harms, H; Rittinghaus, E F; Brabant, G
1990-04-15
A paradigma of osteoporosis pathology is discussed, at the center of which is the hormone-related disturbance of the osteoblast/osteoclast functional unit. A liberal replacement of estrogen-gestagen in post-menopausal women is advocated. Early diagnosis with the aid of quantitative computed tomography makes it possible to establish the indication for timely hormonal treatment in the future, which can result in a measureable increase in bone mass. Late therapy, that is, treatment initiated after the occurrence of fractures, has proven largely ineffective.
2017-08-08
Usability Studies In Virtual And Traditional Computer Aided Design Environments For Fault Identification Dr. Syed Adeel Ahmed, Xavier University...virtual environment with wand interfaces compared directly with a workstation non-stereoscopic traditional CAD interface with keyboard and mouse. In...the differences in interaction when compared with traditional human computer interfaces. This paper provides analysis via usability study methods
NASA Astrophysics Data System (ADS)
Wormanns, Dag; Fiebich, Martin; Wietholt, Christian; Diederich, Stefan; Heindel, Walter
2000-06-01
We evaluated the practical application of a Computer-Aided Diagnosis (CAD) system for viewing spiral computed tomography (CT) of the chest low-dose screening examinations which includes an automatic detection of pulmonary nodules. A UNIX- based CAD system was developed including a detection algorithm for pulmonary nodules and a user interface providing an original axial image, the same image with nodules highlighted, a thin-slab MIP, and a cine mode. As yet, 26 CT examinations with 1625 images were reviewed in a clinical setting and reported by an experienced radiologist using both the CAD system and hardcopies. The CT studies exhibited 19 nodules found on the hardcopies in consensus reporting of 2 experienced radiologists. Viewing with the CAD system was more time consuming than using hardcopies (4.16 vs. 2.92 min) due to analyzing MIP and cine mode. The algorithm detected 49% (18/37) pulmonary nodules larger than 5 mm and 30% (21/70) of all nodules. It produced an average of 6.3 false positive findings per CT study. Most of the missed nodules were adjacent to the pleura. However, the program detected 6 nodules missed by the radiologists. Automatic nodule detection increases the radiologists's awareness of pulmonary lesions. Simultaneous display of axial image and thin-slab MIP makes the radiologist more confident in diagnosis of smaller pulmonary nodules. The CAD system improves the detection of pulmonary nodules at spiral CT. Lack of sensitivity and specificity is still an issue to be addressed but does not prevent practical use.
Computer-Based Technologies in Dentistry: Types and Applications
Albuha Al-Mussawi, Raja’a M.; Farid, Farzaneh
2016-01-01
During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice. PMID:28392819
Computer-Based Technologies in Dentistry: Types and Applications.
Albuha Al-Mussawi, Raja'a M; Farid, Farzaneh
2016-06-01
During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR) simulators, augmented reality (AR) and computer aided design/computer aided manufacturing (CAD/CAM) systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D) virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established. This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice.
Du, Guo-Qing; Xue, Jing-Yi; Guo, Yanhui; Chen, Shuang; Du, Pei; Wu, Yan; Wang, Yu-Hang; Zong, Li-Qiu; Tian, Jia-Wei
2015-09-01
Proper evaluation of myocardial microvascular perfusion and assessment of infarct size is critical for clinicians. We have developed a novel computer-aided diagnosis (CAD) approach for myocardial contrast echocardiography (MCE) to measure myocardial perfusion and infarct size. Rabbits underwent 15 min of coronary occlusion followed by reperfusion (group I, n = 15) or 60 min of coronary occlusion followed by reperfusion (group II, n = 15). Myocardial contrast echocardiography was performed before and 7 d after ischemia/reperfusion, and images were analyzed with the CAD system on the basis of eliminating particle swarm optimization clustering analysis. The myocardium was quickly and accurately detected using contrast-enhanced images, myocardial perfusion was quantitatively calibrated and a color-coded map calibrated by contrast intensity and automatically produced by the CAD system was used to outline the infarction region. Calibrated contrast intensity was significantly lower in infarct regions than in non-infarct regions, allowing differentiation of abnormal and normal myocardial perfusion. Receiver operating characteristic curve analysis documented that -54-pixel contrast intensity was an optimal cutoff point for the identification of infarcted myocardium with a sensitivity of 95.45% and specificity of 87.50%. Infarct sizes obtained using myocardial perfusion defect analysis of original contrast images and the contrast intensity-based color-coded map in computerized images were compared with infarct sizes measured using triphenyltetrazolium chloride staining. Use of the proposed CAD approach provided observers with more information. The infarct sizes obtained with myocardial perfusion defect analysis, the contrast intensity-based color-coded map and triphenyltetrazolium chloride staining were 23.72 ± 8.41%, 21.77 ± 7.8% and 18.21 ± 4.40% (% left ventricle) respectively (p > 0.05), indicating that computerized myocardial contrast echocardiography can accurately measure infarct size. On the basis of the results, we believe the CAD method can quickly and automatically measure myocardial perfusion and infarct size and will, it is hoped, be very helpful in clinical therapeutics. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
A marker-based watershed method for X-ray image segmentation.
Zhang, Xiaodong; Jia, Fucang; Luo, Suhuai; Liu, Guiying; Hu, Qingmao
2014-03-01
Digital X-ray images are the most frequent modality for both screening and diagnosis in hospitals. To facilitate subsequent analysis such as quantification and computer aided diagnosis (CAD), it is desirable to exclude image background. A marker-based watershed segmentation method was proposed to segment background of X-ray images. The method consisted of six modules: image preprocessing, gradient computation, marker extraction, watershed segmentation from markers, region merging and background extraction. One hundred clinical direct radiograph X-ray images were used to validate the method. Manual thresholding and multiscale gradient based watershed method were implemented for comparison. The proposed method yielded a dice coefficient of 0.964±0.069, which was better than that of the manual thresholding (0.937±0.119) and that of multiscale gradient based watershed method (0.942±0.098). Special means were adopted to decrease the computational cost, including getting rid of few pixels with highest grayscale via percentile, calculation of gradient magnitude through simple operations, decreasing the number of markers by appropriate thresholding, and merging regions based on simple grayscale statistics. As a result, the processing time was at most 6s even for a 3072×3072 image on a Pentium 4 PC with 2.4GHz CPU (4 cores) and 2G RAM, which was more than one time faster than that of the multiscale gradient based watershed method. The proposed method could be a potential tool for diagnosis and quantification of X-ray images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Crowdsourcing lung nodules detection and annotation
NASA Astrophysics Data System (ADS)
Boorboor, Saeed; Nadeem, Saad; Park, Ji Hwan; Baker, Kevin; Kaufman, Arie
2018-03-01
We present crowdsourcing as an additional modality to aid radiologists in the diagnosis of lung cancer from clinical chest computed tomography (CT) scans. More specifically, a complete work flow is introduced which can help maximize the sensitivity of lung nodule detection by utilizing the collective intelligence of the crowd. We combine the concept of overlapping thin-slab maximum intensity projections (TS-MIPs) and cine viewing to render short videos that can be outsourced as an annotation task to the crowd. These videos are generated by linearly interpolating overlapping TS-MIPs of CT slices through the depth of each quadrant of a patient's lung. The resultant videos are outsourced to an online community of non-expert users who, after a brief tutorial, annotate suspected nodules in these video segments. Using our crowdsourcing work flow, we achieved a lung nodule detection sensitivity of over 90% for 20 patient CT datasets (containing 178 lung nodules with sizes between 1-30mm), and only 47 false positives from a total of 1021 annotations on nodules of all sizes (96% sensitivity for nodules>4mm). These results show that crowdsourcing can be a robust and scalable modality to aid radiologists in screening for lung cancer, directly or in combination with computer-aided detection (CAD) algorithms. For CAD algorithms, the presented work flow can provide highly accurate training data to overcome the high false-positive rate (per scan) problem. We also provide, for the first time, analysis on nodule size and position which can help improve CAD algorithms.
Shrivastava, Vimal K; Londhe, Narendra D; Sonawane, Rajendra S; Suri, Jasjit S
2015-10-01
A large percentage of dermatologist׳s decision in psoriasis disease assessment is based on color. The current computer-aided diagnosis systems for psoriasis risk stratification and classification lack the vigor of color paradigm. The paper presents an automated psoriasis computer-aided diagnosis (pCAD) system for classification of psoriasis skin images into psoriatic lesion and healthy skin, which solves the two major challenges: (i) fulfills the color feature requirements and (ii) selects the powerful dominant color features while retaining high classification accuracy. Fourteen color spaces are discovered for psoriasis disease analysis leading to 86 color features. The pCAD system is implemented in a support vector-based machine learning framework where the offline image data set is used for computing machine learning offline color machine learning parameters. These are then used for transformation of the online color features to predict the class labels for healthy vs. diseased cases. The above paradigm uses principal component analysis for color feature selection of dominant features, keeping the original color feature unaltered. Using the cross-validation protocol, the above machine learning protocol is compared against the standalone grayscale features with 60 features and against the combined grayscale and color feature set of 146. Using a fixed data size of 540 images with equal number of healthy and diseased, 10 fold cross-validation protocol, and SVM of polynomial kernel of type two, pCAD system shows an accuracy of 99.94% with sensitivity and specificity of 99.93% and 99.96%. Using a varying data size protocol, the mean classification accuracies for color, grayscale, and combined scenarios are: 92.85%, 93.83% and 93.99%, respectively. The reliability of the system in these three scenarios are: 94.42%, 97.39% and 96.00%, respectively. We conclude that pCAD system using color space alone is compatible to grayscale space or combined color and grayscale spaces. We validated our pCAD system against facial color databases and the results are consistent in accuracy and reliability. Copyright © 2015 Elsevier Ltd. All rights reserved.
A novel method to acquire 3D data from serial 2D images of a dental cast
NASA Astrophysics Data System (ADS)
Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin
2007-05-01
This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.
Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis.
Christodoulidis, Stergios; Anthimopoulos, Marios; Ebner, Lukas; Christe, Andreas; Mougiakakou, Stavroula
2017-01-01
Early diagnosis of interstitial lung diseases is crucial for their treatment, but even experienced physicians find it difficult, as their clinical manifestations are similar. In order to assist with the diagnosis, computer-aided diagnosis systems have been developed. These commonly rely on a fixed scale classifier that scans CT images, recognizes textural lung patterns, and generates a map of pathologies. In a previous study, we proposed a method for classifying lung tissue patterns using a deep convolutional neural network (CNN), with an architecture designed for the specific problem. In this study, we present an improved method for training the proposed network by transferring knowledge from the similar domain of general texture classification. Six publicly available texture databases are used to pretrain networks with the proposed architecture, which are then fine-tuned on the lung tissue data. The resulting CNNs are combined in an ensemble and their fused knowledge is compressed back to a network with the original architecture. The proposed approach resulted in an absolute increase of about 2% in the performance of the proposed CNN. The results demonstrate the potential of transfer learning in the field of medical image analysis, indicate the textural nature of the problem and show that the method used for training a network can be as important as designing its architecture.
NASA Astrophysics Data System (ADS)
Georgiou, Harris
2009-10-01
Medical Informatics and the application of modern signal processing in the assistance of the diagnostic process in medical imaging is one of the more recent and active research areas today. This thesis addresses a variety of issues related to the general problem of medical image analysis, specifically in mammography, and presents a series of algorithms and design approaches for all the intermediate levels of a modern system for computer-aided diagnosis (CAD). The diagnostic problem is analyzed with a systematic approach, first defining the imaging characteristics and features that are relevant to probable pathology in mammo-grams. Next, these features are quantified and fused into new, integrated radio-logical systems that exhibit embedded digital signal processing, in order to improve the final result and minimize the radiological dose for the patient. In a higher level, special algorithms are designed for detecting and encoding these clinically interest-ing imaging features, in order to be used as input to advanced pattern classifiers and machine learning models. Finally, these approaches are extended in multi-classifier models under the scope of Game Theory and optimum collective deci-sion, in order to produce efficient solutions for combining classifiers with minimum computational costs for advanced diagnostic systems. The material covered in this thesis is related to a total of 18 published papers, 6 in scientific journals and 12 in international conferences.
Kouri, Vivian; Khouri, Ricardo; Alemán, Yoan; Abrahantes, Yeissel; Vercauteren, Jurgen; Pineda-Peña, Andrea-Clemencia; Theys, Kristof; Megens, Sarah; Moutschen, Michel; Pfeifer, Nico; Van Weyenbergh, Johan; Pérez, Ana B.; Pérez, Jorge; Pérez, Lissette; Van Laethem, Kristel; Vandamme, Anne-Mieke
2015-01-01
Background Clinicians reported an increasing trend of rapid progression (RP) (AIDS within 3 years of infection) in Cuba. Methods Recently infected patients were prospectively sampled, 52 RP at AIDS diagnosis (AIDS-RP) and 21 without AIDS in the same time frame (non-AIDS). 22 patients were sampled at AIDS diagnosis (chronic-AIDS) retrospectively assessed as > 3 years infected. Clinical, demographic, virological, epidemiological and immunological data were collected. Pol and env sequences were used for subtyping, transmission cluster analysis, and prediction of resistance, co-receptor use and evolutionary fitness. Host, immunological and viral predictors of RP were explored through data mining. Findings Subtyping revealed 26 subtype B strains, 6 C, 6 CRF18_cpx, 9 CRF19_cpx, 29 BG-recombinants and other subtypes/URFs. All patients infected with CRF19 belonged to the AIDS-RP group. Data mining identified CRF19, oral candidiasis and RANTES levels as the strongest predictors of AIDS-RP. CRF19 was more frequently predicted to use the CXCR4 co-receptor, had higher fitness scores in the protease region, and patients had higher viral load at diagnosis. Interpretation CRF19 is a recombinant of subtype D (C-part of Gag, PR, RT and nef), subtype A (N-part of Gag, Integrase, Env) and subtype G (Vif, Vpr, Vpu and C-part of Env). Since subtypes D and A have been associated with respectively faster and slower disease progression, our findings might indicate a fit PR driving high viral load, which in combination with co-infections may boost RANTES levels and thus CXCR4 use, potentially explaining the fast progression. We propose that CRF19 is evolutionary very fit and causing rapid progression to AIDS in many newly infected patients in Cuba. PMID:26137563
Kouri, Vivian; Khouri, Ricardo; Alemán, Yoan; Abrahantes, Yeissel; Vercauteren, Jurgen; Pineda-Peña, Andrea-Clemencia; Theys, Kristof; Megens, Sarah; Moutschen, Michel; Pfeifer, Nico; Van Weyenbergh, Johan; Pérez, Ana B; Pérez, Jorge; Pérez, Lissette; Van Laethem, Kristel; Vandamme, Anne-Mieke
2015-03-01
Clinicians reported an increasing trend of rapid progression (RP) (AIDS within 3 years of infection) in Cuba. Recently infected patients were prospectively sampled, 52 RP at AIDS diagnosis (AIDS-RP) and 21 without AIDS in the same time frame (non-AIDS). 22 patients were sampled at AIDS diagnosis (chronic-AIDS) retrospectively assessed as > 3 years infected. Clinical, demographic, virological, epidemiological and immunological data were collected. Pol and env sequences were used for subtyping, transmission cluster analysis, and prediction of resistance, co-receptor use and evolutionary fitness. Host, immunological and viral predictors of RP were explored through data mining. Subtyping revealed 26 subtype B strains, 6 C, 6 CRF18_cpx, 9 CRF19_cpx, 29 BG-recombinants and other subtypes/URFs. All patients infected with CRF19 belonged to the AIDS-RP group. Data mining identified CRF19, oral candidiasis and RANTES levels as the strongest predictors of AIDS-RP. CRF19 was more frequently predicted to use the CXCR4 co-receptor, had higher fitness scores in the protease region, and patients had higher viral load at diagnosis. CRF19 is a recombinant of subtype D (C-part of Gag, PR, RT and nef), subtype A (N-part of Gag, Integrase, Env) and subtype G (Vif, Vpr, Vpu and C-part of Env). Since subtypes D and A have been associated with respectively faster and slower disease progression, our findings might indicate a fit PR driving high viral load, which in combination with co-infections may boost RANTES levels and thus CXCR4 use, potentially explaining the fast progression. We propose that CRF19 is evolutionary very fit and causing rapid progression to AIDS in many newly infected patients in Cuba.
29 CFR 541.401 - Computer manufacture and repair.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...
29 CFR 541.401 - Computer manufacture and repair.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...
29 CFR 541.401 - Computer manufacture and repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...
29 CFR 541.401 - Computer manufacture and repair.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...
Regression analysis for bivariate gap time with missing first gap time data.
Huang, Chia-Hui; Chen, Yi-Hau
2017-01-01
We consider ordered bivariate gap time while data on the first gap time are unobservable. This study is motivated by the HIV infection and AIDS study, where the initial HIV contracting time is unavailable, but the diagnosis times for HIV and AIDS are available. We are interested in studying the risk factors for the gap time between initial HIV contraction and HIV diagnosis, and gap time between HIV and AIDS diagnoses. Besides, the association between the two gap times is also of interest. Accordingly, in the data analysis we are faced with two-fold complexity, namely data on the first gap time is completely missing, and the second gap time is subject to induced informative censoring due to dependence between the two gap times. We propose a modeling framework for regression analysis of bivariate gap time under the complexity of the data. The estimating equations for the covariate effects on, as well as the association between, the two gap times are derived through maximum likelihood and suitable counting processes. Large sample properties of the resulting estimators are developed by martingale theory. Simulations are performed to examine the performance of the proposed analysis procedure. An application of data from the HIV and AIDS study mentioned above is reported for illustration.
The Use of Computers to Aid Instruction in Beginning Chemistry
ERIC Educational Resources Information Center
Grandey, Robert C.
1971-01-01
Describes computer-aided lessons for determining chemical formulas from composition by weight, quantities from chemical equations, and balancing equations for oxidation-reduction reactions. Lessons were developed and used on the PLATO system at the University of Illinois. A brief analysis of student attitudes and of effectiveness of the programs…
Trends in radiology and experimental research.
Sardanelli, Francesco
2017-01-01
European Radiology Experimental , the new journal launched by the European Society of Radiology, is placed in the context of three general and seven radiology-specific trends. After describing the impact of population aging, personalized/precision medicine, and information technology development, the article considers the following trends: the tension between subspecialties and the unity of the discipline; attention to patient safety; the challenge of reproducibility for quantitative imaging; standardized and structured reporting; search for higher levels of evidence in radiology (from diagnostic performance to patient outcome); the increasing relevance of interventional radiology; and continuous technological evolution. The new journal will publish not only studies on phantoms, cells, or animal models but also those describing development steps of imaging biomarkers or those exploring secondary end-points of large clinical trials. Moreover, consideration will be given to studies regarding: computer modelling and computer aided detection and diagnosis; contrast materials, tracers, and theranostics; advanced image analysis; optical, molecular, hybrid and fusion imaging; radiomics and radiogenomics; three-dimensional printing, information technology, image reconstruction and post-processing, big data analysis, teleradiology, clinical decision support systems; radiobiology; radioprotection; and physics in radiology. The journal aims to establish a forum for basic science, computer and information technology, radiology, and other medical subspecialties.
Program Aids Design Of Fluid-Circulating Systems
NASA Technical Reports Server (NTRS)
Bacskay, Allen; Dalee, Robert
1992-01-01
Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.
NASA Astrophysics Data System (ADS)
Erdt, Marius; Sakas, Georgios
2010-03-01
This work presents a novel approach for model based segmentation of the kidney in images acquired by Computed Tomography (CT). The developed computer aided segmentation system is expected to support computer aided diagnosis and operation planning. We have developed a deformable model based approach based on local shape constraints that prevents the model from deforming into neighboring structures while allowing the global shape to adapt freely to the data. Those local constraints are derived from the anatomical structure of the kidney and the presence and appearance of neighboring organs. The adaptation process is guided by a rule-based deformation logic in order to improve the robustness of the segmentation in areas of diffuse organ boundaries. Our work flow consists of two steps: 1.) a user guided positioning and 2.) an automatic model adaptation using affine and free form deformation in order to robustly extract the kidney. In cases which show pronounced pathologies, the system also offers real time mesh editing tools for a quick refinement of the segmentation result. Evaluation results based on 30 clinical cases using CT data sets show an average dice correlation coefficient of 93% compared to the ground truth. The results are therefore in most cases comparable to manual delineation. Computation times of the automatic adaptation step are lower than 6 seconds which makes the proposed system suitable for an application in clinical practice.
NASA Technical Reports Server (NTRS)
Voigt, S.
1975-01-01
The use of software engineering aids in the design of a structural finite-element analysis computer program for the STAR-100 computer is described. Nested functional diagrams to aid in communication among design team members were used, and a standardized specification format to describe modules designed by various members was adopted. This is a report of current work in which use of the functional diagrams provided continuity and helped resolve some of the problems arising in this long-running part-time project.
Jo, Chanwoo; Bae, Doohwan; Choi, Byungho; Kim, Jihun
2017-05-01
Supernumerary teeth need to be removed because they can cause various complications. Caution is needed because their removal can cause damage to permanent teeth or tooth germs in the local vicinity. Surgical guides have recently been used in maxillofacial surgery. Because surgical guides are designed through preoperative analysis by computer-aided design software and fabricated using a 3-dimensional printer applying computer-aided manufacturing technology, they increase the accuracy and predictability of surgery. This report describes 2 cases of removal of a mesiodens-1 from a child and 1 from an adolescent-using a surgical guide; these would have been difficult to remove with conventional surgical methods. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Kazunori, E-mail: kazokada@sfsu.edu; Rysavy, Steven; Flores, Arturo
Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. Methods: The proposed semiautomatic solutionmore » combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon’s state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Conclusions: Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.« less
Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans.
Okada, Kazunori; Rysavy, Steven; Flores, Arturo; Linguraru, Marius George
2015-04-01
This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon's state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon's conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.
Liu, Jianfei; Wang, Shijun; Turkbey, Evrim B; Linguraru, Marius George; Yao, Jianhua; Summers, Ronald M
2015-01-01
Renal calculi are common extracolonic incidental findings on computed tomographic colonography (CTC). This work aims to develop a fully automated computer-aided diagnosis system to accurately detect renal calculi on CTC images. The authors developed a total variation (TV) flow method to reduce image noise within the kidneys while maintaining the characteristic appearance of renal calculi. Maximally stable extremal region (MSER) features were then calculated to robustly identify calculi candidates. Finally, the authors computed texture and shape features that were imported to support vector machines for calculus classification. The method was validated on a dataset of 192 patients and compared to a baseline approach that detects calculi by thresholding. The authors also compared their method with the detection approaches using anisotropic diffusion and nonsmoothing. At a false positive rate of 8 per patient, the sensitivities of the new method and the baseline thresholding approach were 69% and 35% (p < 1e - 3) on all calculi from 1 to 433 mm(3) in the testing dataset. The sensitivities of the detection methods using anisotropic diffusion and nonsmoothing were 36% and 0%, respectively. The sensitivity of the new method increased to 90% if only larger and more clinically relevant calculi were considered. Experimental results demonstrated that TV-flow and MSER features are efficient means to robustly and accurately detect renal calculi on low-dose, high noise CTC images. Thus, the proposed method can potentially improve diagnosis.
Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features
Liu, Jianfei; Wang, Shijun; Turkbey, Evrim B.; Linguraru, Marius George; Yao, Jianhua; Summers, Ronald M.
2015-01-01
Purpose: Renal calculi are common extracolonic incidental findings on computed tomographic colonography (CTC). This work aims to develop a fully automated computer-aided diagnosis system to accurately detect renal calculi on CTC images. Methods: The authors developed a total variation (TV) flow method to reduce image noise within the kidneys while maintaining the characteristic appearance of renal calculi. Maximally stable extremal region (MSER) features were then calculated to robustly identify calculi candidates. Finally, the authors computed texture and shape features that were imported to support vector machines for calculus classification. The method was validated on a dataset of 192 patients and compared to a baseline approach that detects calculi by thresholding. The authors also compared their method with the detection approaches using anisotropic diffusion and nonsmoothing. Results: At a false positive rate of 8 per patient, the sensitivities of the new method and the baseline thresholding approach were 69% and 35% (p < 1e − 3) on all calculi from 1 to 433 mm3 in the testing dataset. The sensitivities of the detection methods using anisotropic diffusion and nonsmoothing were 36% and 0%, respectively. The sensitivity of the new method increased to 90% if only larger and more clinically relevant calculi were considered. Conclusions: Experimental results demonstrated that TV-flow and MSER features are efficient means to robustly and accurately detect renal calculi on low-dose, high noise CTC images. Thus, the proposed method can potentially improve diagnosis. PMID:25563255
NASA Astrophysics Data System (ADS)
Chen, Kewei; Ge, Xiaolin; Yao, Li; Bandy, Dan; Alexander, Gene E.; Prouty, Anita; Burns, Christine; Zhao, Xiaojie; Wen, Xiaotong; Korn, Ronald; Lawson, Michael; Reiman, Eric M.
2006-03-01
Having approved fluorodeoxyglucose positron emission tomography (FDG PET) for the diagnosis of Alzheimer's disease (AD) in some patients, the Centers for Medicare and Medicaid Services suggested the need to develop and test analysis techniques to optimize diagnostic accuracy. We developed an automated computer package comparing an individual's FDG PET image to those of a group of normal volunteers. The normal control group includes FDG-PET images from 82 cognitively normal subjects, 61.89+/-5.67 years of age, who were characterized demographically, clinically, neuropsychologically, and by their apolipoprotein E genotype (known to be associated with a differential risk for AD). In addition, AD-affected brain regions functionally defined as based on a previous study (Alexander, et al, Am J Psychiatr, 2002) were also incorporated. Our computer package permits the user to optionally select control subjects, matching the individual patient for gender, age, and educational level. It is fully streamlined to require minimal user intervention. With one mouse click, the program runs automatically, normalizing the individual patient image, setting up a design matrix for comparing the single subject to a group of normal controls, performing the statistics, calculating the glucose reduction overlap index of the patient with the AD-affected brain regions, and displaying the findings in reference to the AD regions. In conclusion, the package automatically contrasts a single patient to a normal subject database using sound statistical procedures. With further validation, this computer package could be a valuable tool to assist physicians in decision making and communicating findings with patients and patient families.
Radiomics-based features for pattern recognition of lung cancer histopathology and metastases.
Ferreira Junior, José Raniery; Koenigkam-Santos, Marcel; Cipriano, Federico Enrique Garcia; Fabro, Alexandre Todorovic; Azevedo-Marques, Paulo Mazzoncini de
2018-06-01
lung cancer is the leading cause of cancer-related deaths in the world, and its poor prognosis varies markedly according to tumor staging. Computed tomography (CT) is the imaging modality of choice for lung cancer evaluation, being used for diagnosis and clinical staging. Besides tumor stage, other features, like histopathological subtype, can also add prognostic information. In this work, radiomics-based CT features were used to predict lung cancer histopathology and metastases using machine learning models. local image datasets of confirmed primary malignant pulmonary tumors were retrospectively evaluated for testing and validation. CT images acquired with same protocol were semiautomatically segmented. Tumors were characterized by clinical features and computer attributes of intensity, histogram, texture, shape, and volume. Three machine learning classifiers used up to 100 selected features to perform the analysis. radiomics-based features yielded areas under the receiver operating characteristic curve of 0.89, 0.97, and 0.92 at testing and 0.75, 0.71, and 0.81 at validation for lymph nodal metastasis, distant metastasis, and histopathology pattern recognition, respectively. the radiomics characterization approach presented great potential to be used in a computational model to aid lung cancer histopathological subtype diagnosis as a "virtual biopsy" and metastatic prediction for therapy decision support without the necessity of a whole-body imaging scanning. Copyright © 2018 Elsevier B.V. All rights reserved.
Toward the detection of abnormal chest radiographs the way radiologists do it
NASA Astrophysics Data System (ADS)
Alzubaidi, Mohammad; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.
2011-03-01
Computer Aided Detection (CADe) and Computer Aided Diagnosis (CADx) are relatively recent areas of research that attempt to employ feature extraction, pattern recognition, and machine learning algorithms to aid radiologists in detecting and diagnosing abnormalities in medical images. However, these computational methods are based on the assumption that there are distinct classes of abnormalities, and that each class has some distinguishing features that set it apart from other classes. However, abnormalities in chest radiographs tend to be very heterogeneous. The literature suggests that thoracic (chest) radiologists develop their ability to detect abnormalities by developing a sense of what is normal, so that anything that is abnormal attracts their attention. This paper discusses an approach to CADe that is based on a technique called anomaly detection (which aims to detect outliers in data sets) for the purpose of detecting atypical regions in chest radiographs. However, in order to apply anomaly detection to chest radiographs, it is necessary to develop a basis for extracting features from corresponding anatomical locations in different chest radiographs. This paper proposes a method for doing this, and describes how it can be used to support CADe.
Computer-aided Detection of Prostate Cancer with MRI: Technology and Applications.
Liu, Lizhi; Tian, Zhiqiang; Zhang, Zhenfeng; Fei, Baowei
2016-08-01
One in six men will develop prostate cancer in his lifetime. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multiparametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and magnetic resonance spectroscopy imaging. Because of the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. To improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Hepatitis Diagnosis Using Facial Color Image
NASA Astrophysics Data System (ADS)
Liu, Mingjia; Guo, Zhenhua
Facial color diagnosis is an important diagnostic method in traditional Chinese medicine (TCM). However, due to its qualitative, subjective and experi-ence-based nature, traditional facial color diagnosis has a very limited application in clinical medicine. To circumvent the subjective and qualitative problems of facial color diagnosis of Traditional Chinese Medicine, in this paper, we present a novel computer aided facial color diagnosis method (CAFCDM). The method has three parts: face Image Database, Image Preprocessing Module and Diagnosis Engine. Face Image Database is carried out on a group of 116 patients affected by 2 kinds of liver diseases and 29 healthy volunteers. The quantitative color feature is extracted from facial images by using popular digital image processing techni-ques. Then, KNN classifier is employed to model the relationship between the quantitative color feature and diseases. The results show that the method can properly identify three groups: healthy, severe hepatitis with jaundice and severe hepatitis without jaundice with accuracy higher than 73%.
Post-traumatic stress disorder among recently diagnosed patients with HIV/AIDS in South Africa.
Olley, B O; Zeier, M D; Seedat, S; Stein, D J
2005-07-01
This study examined the prevalence of and factors associated with post-traumatic stress disorder in recently diagnosed HIV/AIDS patients in South Africa. One hundred and forty-nine (44 male, 105 female) recently diagnosed HIV/AIDS patients (mean duration since diagnosis = 5.8 months, SD = 4.1) were evaluated. Subjects were assessed using the MINI International Neuropsychiatric Interview (MINI), the Carver Brief COPE coping scale and the Sheehan Disability Scale. In addition, previous exposures to trauma and past risk behaviours were assessed. Twenty-two patients (14.8%) met criteria for PTSD. Current psychiatric conditions more likely to be associated with PTSD included major depressive disorder (29% in PTSD patients versus 7% in non-PTSD patients, p = 0.004), suicidality (54% versus 11%, p = 0.001) and social anxiety disorder (40% versus 13%, p = 0.04). Further patients with PTSD reported significantly more work impairment and demonstrated a trend towards higher usage of alcohol as a means of coping. Discriminant function analysis indicated that female gender and a history of sexual violation in the past year were significantly associated with a diagnosis of PTSD. Patients whose PTSD was a direct result of an HIV/AIDS diagnosis (8/22) did not differ from other patients with PTSD on demographic or clinical features. In the South African context, PTSD is not an uncommon disorder in patients with HIV/AIDS. In some cases, PTSD is secondary to the diagnosis of HIV/AIDS but in most cases it is seen after other traumas, with sexual violation and intimate partner violence in women being particularly important.
The use of infrared thermal imaging in the diagnosis of deep vein thrombosis
NASA Astrophysics Data System (ADS)
Kacmaz, Seydi; Ercelebi, Ergun; Zengin, Suat; Cindoruk, Sener
2017-11-01
The diagnosis of Deep Vein Thrombosis is of vital importance, especially in emergency situations where there is a lack of time and the patient's condition is critical. Late diagnosis causes cost increase, long waiting time, and improper treatment. Today, with the rapidly developing technology, the cost of thermal cameras is gradually decreasing day by day. Studies have shown that many diseases are associated with heat. As a result, infrared images are thought to be a tool for diagnosing various diseases. In this study, it has been shown that infrared thermal imaging can be used as a pre-screening test in the diagnosis of Deep Vein Thrombosis with the developed computer aided software. In addition, a sample combination is shown for applications that utilize emergency services to perform diagnosis and treatment of Deep Vein Thrombosis as soon as possible.
Walker, Zuzana; Cummings, Jeffrey L
2012-01-01
Early, accurate diagnosis of dementia with Lewy bodies (DLB), in particular its differentiation from Alzheimer's disease, is important for optimal management, providing patients/carers with information about the likely symptomatology and illness course, allowing initiation of effective pharmacotherapy, and avoiding the consequences of neuroleptic sensitivity. Clinical diagnosis of DLB has high specificity but low sensitivity. Clinical trials of [(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography ([(123)I]FP-CIT SPECT) indicate high positive and negative percent agreement with reference to clinical diagnosis, and high sensitivity and specificity in patients with neuropathologically confirmed diagnoses of DLB. An abnormal [(123)I]FP-CIT SPECT image in patients fulfilling criteria for possible DLB advances the certainty of a diagnosis to probable DLB. [(123)I]FP-CIT SPECT, by identifying the striatal dopaminergic deficit, can be a valuable diagnostic aid and can provide support to a clinical diagnosis of DLB in patients with dementia. The technique is likely to be of particular utility in patients with dementia with an uncertain diagnosis. Copyright © 2012 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Visualization of suspicious lesions in breast MRI based on intelligent neural systems
NASA Astrophysics Data System (ADS)
Twellmann, Thorsten; Lange, Oliver; Nattkemper, Tim Wilhelm; Meyer-Bäse, Anke
2006-05-01
Intelligent medical systems based on supervised and unsupervised artificial neural networks are applied to the automatic visualization and classification of suspicious lesions in breast MRI. These systems represent an important component of future sophisticated computer-aided diagnosis systems and enable the extraction of spatial and temporal features of dynamic MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogenity of the cancerous tissue, these techniques reveal the malignant, benign and normal kinetic signals and and provide a regional subclassification of pathological breast tissue. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging.
Study on computer-aided diagnosis of hepatic MR imaging and mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xuejun
2005-04-01
It is well known that the liver is an organ easily attacked by diseases. The purpose of this study is to develop a computer-aided diagnosis (CAD) scheme for helping radiologists to differentiate hepatic diseases more efficiently. Our software named LIVERANN integrated the magnetic resonance (MR) imaging findings with different pulse sequences to classify the five categories of hepatic diseases by using the artificial neural network (ANN) method. The intensity and homogeneity within the region of interest (ROI) delineated by a radiologist were automatically calculated to obtain numerical data by the program for input signals to the ANN. Outputs were themore » five pathological categories of hepatic diseases (hepatic cyst, hepatocellular carcinoma, dysplasia in cirrhosis, cavernous hemangioma, and metastasis). The experiment demonstrated a testing accuracy of 93% from 80 patients. In order to differentiate the cirrhosis from normal liver, the volume ratio of left to whole (LTW) was proposed to quantify the degree of cirrhosis by three-dimensional (3D) volume analysis. The liver region was firstly extracted from computed tomography (CT) or MR slices based on edge detection algorithms, and then separated into left lobe and right lobe by the hepatic umbilical fissure. The volume ratio of these two parts showed that the LTW ratio in the liver was significantly improved in the differentiation performance, with (25.6%{+-}4.3%) in cirrhosis versus the normal liver (16.4%{+-}5.4%). In addition, the application of the ANN method for detecting clustered microcalcifications in masses on mammograms was described here as well. A new structural ANN, so-called a shift-invariant artificial neural network (SIANN), was integrated with our triple-ring filter (TRF) method in our CAD system. As the result, the sensitivity of detecting clusters was improved from 90% by our previous TRF method to 95% by using both SIANN and TRF.« less
Liu, Ding-Yun; Gan, Tao; Rao, Ni-Ni; Xing, Yao-Wen; Zheng, Jie; Li, Sang; Luo, Cheng-Si; Zhou, Zhong-Jun; Wan, Yong-Li
2016-08-01
The gastrointestinal endoscopy in this study refers to conventional gastroscopy and wireless capsule endoscopy (WCE). Both of these techniques produce a large number of images in each diagnosis. The lesion detection done by hand from the images above is time consuming and inaccurate. This study designed a new computer-aided method to detect lesion images. We initially designed an algorithm named joint diagonalisation principal component analysis (JDPCA), in which there are no approximation, iteration or inverting procedures. Thus, JDPCA has a low computational complexity and is suitable for dimension reduction of the gastrointestinal endoscopic images. Then, a novel image feature extraction method was established through combining the algorithm of machine learning based on JDPCA and conventional feature extraction algorithm without learning. Finally, a new computer-aided method is proposed to identify the gastrointestinal endoscopic images containing lesions. The clinical data of gastroscopic images and WCE images containing the lesions of early upper digestive tract cancer and small intestinal bleeding, which consist of 1330 images from 291 patients totally, were used to confirm the validation of the proposed method. The experimental results shows that, for the detection of early oesophageal cancer images, early gastric cancer images and small intestinal bleeding images, the mean values of accuracy of the proposed method were 90.75%, 90.75% and 94.34%, with the standard deviations (SDs) of 0.0426, 0.0334 and 0.0235, respectively. The areas under the curves (AUCs) were 0.9471, 0.9532 and 0.9776, with the SDs of 0.0296, 0.0285 and 0.0172, respectively. Compared with the traditional related methods, our method showed a better performance. It may therefore provide worthwhile guidance for improving the efficiency and accuracy of gastrointestinal disease diagnosis and is a good prospect for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.
Advances in computer-aided well-test interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, R.N.
1994-07-01
Despite the feeling expressed several times over the past 40 years that well-test analysis had reached it peak development, an examination of recent advances shows continuous expansion in capability, with future improvement likely. The expansion in interpretation capability over the past decade arose mainly from the development of computer-aided techniques, which, although introduced 20 years ago, have come into use only recently. The broad application of computer-aided interpretation originated with the improvement of the methodologies and continued with the expansion in computer access and capability that accompanied the explosive development of the microcomputer industry. This paper focuses on the differentmore » pieces of the methodology that combine to constitute a computer-aided interpretation and attempts to compare some of the approaches currently used. Future directions of the approach are also discussed. The separate areas discussed are deconvolution, pressure derivatives, model recognition, nonlinear regression, and confidence intervals.« less
ERIC Educational Resources Information Center
Raupach, T.; Munscher, C.; Pukrop, T.; Anders, S.; Harendza, S.
2010-01-01
In recent years, increasing attention has been paid to web-based learning although the advantages of computer-aided instruction over traditional teaching formats still need to be confirmed. This study examined whether participation in an online module on the differential diagnosis of dyspnoea impacts on student performance in a multiple choice…
Nétor Velásquez, Jorge; Marta, Edgardo; Alicia di Risio, Cecilia; Etchart, Cristina; Gancedo, Elisa; Victor Chertcoff, Agustín; Bruno Malandrini, Jorge; Germán Astudillo, Osvaldo; Carnevale, Silvana
2012-12-01
Several species of microsporidia and coccidia are protozoa parasites responsible for cholan-giopathy disease in patients infected with human immunodeficiency virus (HIV). The goals of this work were to identift opportunistic protozoa by molecular methods and describe the clinical manifestations at the gastrointestinal tract and the biliary system in patients with AIDS-associated cholangiopathy from Buenos Aires, Argentina. This study included 11 adult HIV-infected individuals with diagnosis ofAIDS- associated cholangiopathy. An upper gastrointestinal endoscopy with biopsy specimen collection and a stool analysis for parasites were performed on each patient. The ultrasound analysis revealed bile ducts compromise. An endoscopic retrograde cholangiopancreatography and a magnetic resonance cholangiography were carried out. The identification to the species level was performed on biopsy specimens by molecular methods. Microorganisms were identified in 10 cases. The diagnosis in patients with sclerosing cholangitis was cryptosporidiosis in 3 cases, cystoisosporosis in 1 and microsporidiosis in 1. In patients with sclerosing cholangitis and papillary stenosis the diagnosis was microsporidiosis in 2 cases, cryptosporidiosis in 2 and cryptosporidiosis associated with microsporidiosis in 1. In 3 cases with cryptosporidiosis the species was Cryptosporidium hominis, 1 of them was associated with Enterocytozoon bieneusi, and the other 2 were coinfected with Cryptosporidium parvum. In the 4 cases with microsporidiosis the species was Enterocytozoon bieneusi. These results suggest that molecular methods may be useful tools to identify emerging protozoa in patients with AIDS-associated cholangiopathy.
Chang, Ruey-Feng; Lee, Chung-Chien; Lo, Chung-Ming
2016-09-01
The lifetime prevalence of shoulder pain approaches 70%, which is mostly attributable to rotator cuff lesions such as inflammation, calcific tendinitis and tears. On clinical examination, shoulder ultrasound is recommended for the detection of lesions. However, there exists inter-operator variability in diagnostic accuracy because of differences in the experience and expertise of operators. In this study, a computer-aided diagnosis (CAD) system was developed to assist ultrasound operators in diagnosing rotator cuff lesions and to improve the practicality of ultrasound examination. The collected cases included 43 cases of inflammation, 30 cases of calcific tendinitis and 26 tears. For each case, the lesion area and texture features were extracted from the entire lesions and combined in a multinomial logistic regression classifier for lesion classification. The proposed CAD achieved an accuracy of 87.9%. The individual accuracy of this CAD system was 88.4% for inflammation, 83.3% for calcific tendinitis and 92.3% for tears. Cohen's k was 0.798. On the basis of its diagnostic performance, clinical use of this CAD technique has promise. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Twelve years' experience of computer-aided diagnosis in a district general hospital.
McAdam, W. A.; Brock, B. M.; Armitage, T.; Davenport, P.; Chan, M.; de Dombal, F. T.
1990-01-01
This paper describes experience in a modern district general hospital with a small desktop system for computer-aided diagnosis of acute abdominal pain, over a 12-year period involving 5512 cases. When compared with a baseline year (1973) in which unaided performance was monitored, during an initial study period (1974-76) the diagnostic accuracy of junior staff rose by between 10 and 15%. This higher performance level was then maintained for a decade (1976-86) despite changes in staff. The perforation rate among appendicitis cases fell from 27% to 12.5%, accompanied by a smaller fall in negative laparotomy rates. The saving in surgical bednights devoted to acute abdominal pain was approximately 15%, and the notional cost of resources saved during the first 6 years of operation was 120,000 pounds. Other hospitals have shown--in the short term--benefits similar to those obtained at Airedale District General Hospital. The long-term benefits of the system at Airedale reinforce the conclusions of the earlier short-term trials that a comparable system should probably be offered to all DGHs in the UK, not as an exercise in 'artificial intelligence' but as an effective continuing stimulus to good clinical practice. PMID:2185682
A ROC-based feature selection method for computer-aided detection and diagnosis
NASA Astrophysics Data System (ADS)
Wang, Songyuan; Zhang, Guopeng; Liao, Qimei; Zhang, Junying; Jiao, Chun; Lu, Hongbing
2014-03-01
Image-based computer-aided detection and diagnosis (CAD) has been a very active research topic aiming to assist physicians to detect lesions and distinguish them from benign to malignant. However, the datasets fed into a classifier usually suffer from small number of samples, as well as significantly less samples available in one class (have a disease) than the other, resulting in the classifier's suboptimal performance. How to identifying the most characterizing features of the observed data for lesion detection is critical to improve the sensitivity and minimize false positives of a CAD system. In this study, we propose a novel feature selection method mR-FAST that combines the minimal-redundancymaximal relevance (mRMR) framework with a selection metric FAST (feature assessment by sliding thresholds) based on the area under a ROC curve (AUC) generated on optimal simple linear discriminants. With three feature datasets extracted from CAD systems for colon polyps and bladder cancer, we show that the space of candidate features selected by mR-FAST is more characterizing for lesion detection with higher AUC, enabling to find a compact subset of superior features at low cost.
Computer-aided diagnosis of mammographic masses using geometric verification-based image retrieval
NASA Astrophysics Data System (ADS)
Li, Qingliang; Shi, Weili; Yang, Huamin; Zhang, Huimao; Li, Guoxin; Chen, Tao; Mori, Kensaku; Jiang, Zhengang
2017-03-01
Computer-Aided Diagnosis of masses in mammograms is an important indicator of breast cancer. The use of retrieval systems in breast examination is increasing gradually. In this respect, the method of exploiting the vocabulary tree framework and the inverted file in the mammographic masse retrieval have been proved high accuracy and excellent scalability. However it just considered the features in each image as a visual word and had ignored the spatial configurations of features. It greatly affect the retrieval performance. To overcome this drawback, we introduce the geometric verification method to retrieval in mammographic masses. First of all, we obtain corresponding match features based on the vocabulary tree framework and the inverted file. After that, we grasps the main point of local similarity characteristic of deformations in the local regions by constructing the circle regions of corresponding pairs. Meanwhile we segment the circle to express the geometric relationship of local matches in the area and generate the spatial encoding strictly. Finally we judge whether the matched features are correct or not, based on verifying the all spatial encoding are whether satisfied the geometric consistency. Experiments show the promising results of our approach.
Superpixel-based segmentation of glottal area from videolaryngoscopy images
NASA Astrophysics Data System (ADS)
Turkmen, H. Irem; Albayrak, Abdulkadir; Karsligil, M. Elif; Kocak, Ismail
2017-11-01
Segmentation of the glottal area with high accuracy is one of the major challenges for the development of systems for computer-aided diagnosis of vocal-fold disorders. We propose a hybrid model combining conventional methods with a superpixel-based segmentation approach. We first employed a superpixel algorithm to reveal the glottal area by eliminating the local variances of pixels caused by bleedings, blood vessels, and light reflections from mucosa. Then, the glottal area was detected by exploiting a seeded region-growing algorithm in a fully automatic manner. The experiments were conducted on videolaryngoscopy images obtained from both patients having pathologic vocal folds as well as healthy subjects. Finally, the proposed hybrid approach was compared with conventional region-growing and active-contour model-based glottal area segmentation algorithms. The performance of the proposed method was evaluated in terms of segmentation accuracy and elapsed time. The F-measure, true negative rate, and dice coefficients of the hybrid method were calculated as 82%, 93%, and 82%, respectively, which are superior to the state-of-art glottal-area segmentation methods. The proposed hybrid model achieved high success rates and robustness, making it suitable for developing a computer-aided diagnosis system that can be used in clinical routines.
Noise studies of communication systems using the SYSTID computer aided analysis program
NASA Technical Reports Server (NTRS)
Tranter, W. H.; Dawson, C. T.
1973-01-01
SYSTID computer aided design is a simple program for simulating data systems and communication links. A trial of the efficiency of the method was carried out by simulating a linear analog communication system to determine its noise performance and by comparing the SYSTID result with the result arrived at by theoretical calculation. It is shown that the SYSTID program is readily applicable to the analysis of these types of systems.
NASA Astrophysics Data System (ADS)
Huang, Jia-Yann; Kao, Pan-Fu; Chen, Yung-Sheng
2007-06-01
Adjustment of brightness and contrast in nuclear medicine whole body bone scan images may confuse nuclear medicine physicians when identifying small bone lesions as well as making the identification of subtle bone lesion changes in sequential studies difficult. In this study, we developed a computer-aided diagnosis system, based on the fuzzy sets histogram thresholding method and anatomical knowledge-based image segmentation method that was able to analyze and quantify raw image data and identify the possible location of a lesion. To locate anatomical reference points, the fuzzy sets histogram thresholding method was adopted as a first processing stage to suppress the soft tissue in the bone images. Anatomical knowledge-based image segmentation method was then applied to segment the skeletal frame into different regions of homogeneous bones. For the different segmented bone regions, the lesion thresholds were set at different cut-offs. To obtain lesion thresholds in different segmented regions, the ranges and standard deviations of the image's gray-level distribution were obtained from 100 normal patients' whole body bone images and then, another 62 patients' images were used for testing. The two groups of images were independent. The sensitivity and the mean number of false lesions detected were used as performance indices to evaluate the proposed system. The overall sensitivity of the system is 92.1% (222 of 241) and 7.58 false detections per patient scan image. With a high sensitivity and an acceptable false lesions detection rate, this computer-aided automatic lesion detection system is demonstrated as useful and will probably in the future be able to help nuclear medicine physicians to identify possible bone lesions.
An interactive system for computer-aided diagnosis of breast masses.
Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin
2012-10-01
Although mammography is the only clinically accepted imaging modality for screening the general population to detect breast cancer, interpreting mammograms is difficult with lower sensitivity and specificity. To provide radiologists "a visual aid" in interpreting mammograms, we developed and tested an interactive system for computer-aided detection and diagnosis (CAD) of mass-like cancers. Using this system, an observer can view CAD-cued mass regions depicted on one image and then query any suspicious regions (either cued or not cued by CAD). CAD scheme automatically segments the suspicious region or accepts manually defined region and computes a set of image features. Using content-based image retrieval (CBIR) algorithm, CAD searches for a set of reference images depicting "abnormalities" similar to the queried region. Based on image retrieval results and a decision algorithm, a classification score is assigned to the queried region. In this study, a reference database with 1,800 malignant mass regions and 1,800 benign and CAD-generated false-positive regions was used. A modified CBIR algorithm with a new function of stretching the attributes in the multi-dimensional space and decision scheme was optimized using a genetic algorithm. Using a leave-one-out testing method to classify suspicious mass regions, we compared the classification performance using two CBIR algorithms with either equally weighted or optimally stretched attributes. Using the modified CBIR algorithm, the area under receiver operating characteristic curve was significantly increased from 0.865 ± 0.006 to 0.897 ± 0.005 (p < 0.001). This study demonstrated the feasibility of developing an interactive CAD system with a large reference database and achieving improved performance.
Kim, Jong-Min; Han, Sungyoung; Shin, Jun-Seop; Min, Byoung-Hoon; Jeong, Won Young; Lee, Ga Eul; Kim, Min Sun; Kim, Ju Eun; Chung, Hyunwoo; Park, Chung-Gyu
2017-10-01
Pulmonary bullae and pneumothorax have various etiologies in veterinary medicine. We diagnosed multiple pulmonary bullae combined with or without pneumothorax by computed tomography (CT) or necropsy in seven rhesus macaques (Macaca mulatta) imported from China. Two of seven rhesus macaques accompanied by pneumothorax were cured by fixation of ruptured lung through left or right 3rd intercostal thoracotomy. Pneumonyssus simicola, one of the etiologies of pulmonary bullae, was not detected from tracheobronchiolar lavage. To the best of our knowledge, this is the first case report on the CT-aided diagnosis of pulmonary bullae and the successful treatment of combined pneumothorax by thoracotomy in non-human primates (NHPs). © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mammogram segmentation using maximal cell strength updation in cellular automata.
Anitha, J; Peter, J Dinesh
2015-08-01
Breast cancer is the most frequently diagnosed type of cancer among women. Mammogram is one of the most effective tools for early detection of the breast cancer. Various computer-aided systems have been introduced to detect the breast cancer from mammogram images. In a computer-aided diagnosis system, detection and segmentation of breast masses from the background tissues is an important issue. In this paper, an automatic segmentation method is proposed to identify and segment the suspicious mass regions of mammogram using a modified transition rule named maximal cell strength updation in cellular automata (CA). In coarse-level segmentation, the proposed method performs an adaptive global thresholding based on the histogram peak analysis to obtain the rough region of interest. An automatic seed point selection is proposed using gray-level co-occurrence matrix-based sum average feature in the coarse segmented image. Finally, the method utilizes CA with the identified initial seed point and the modified transition rule to segment the mass region. The proposed approach is evaluated over the dataset of 70 mammograms with mass from mini-MIAS database. Experimental results show that the proposed approach yields promising results to segment the mass region in the mammograms with the sensitivity of 92.25% and accuracy of 93.48%.
Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.
Nishio, Mizuho; Nishizawa, Mitsuo; Sugiyama, Osamu; Kojima, Ryosuke; Yakami, Masahiro; Kuroda, Tomohiro; Togashi, Kaori
2018-01-01
We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.
Chang, Wen-Yu; Huang, Adam; Chen, Yin-Chun; Lin, Chi-Wei; Tsai, John; Yang, Chung-Kai; Huang, Yin-Tseng; Wu, Yi-Fan; Chen, Gwo-Shing
2015-05-03
To investigate the feasibility of manual segmentation by users of different backgrounds in a previously developed multifeature computer-aided diagnosis (CADx) system to classify melanocytic and non-melanocytic skin lesions based on conventional digital photographic images. In total, 347 conventional photographs of melanocytic and non-melanocytic skin lesions were retrospectively reviewed, and manually segmented by two groups of physicians, dermatologists and general practitioners, as well as by an automated segmentation software program, JSEG. The performance of CADx based on inputs from these two groups of physicians and that of the JSEG program was compared using feature agreement analysis. The estimated area under the receiver operating characteristic curve for classification of benign or malignant skin lesions based were comparable on individual segmentation by the gold standard (0.893, 95% CI 0.856 to 0.930), dermatologists (0.886, 95% CI 0.863 to 0.908), general practitioners (0.883, 95% CI 0.864 to 0.903) and JSEG (0.856, 95% CI 0.812 to 0.899). The agreement in the malignancy probability scores among the physicians was excellent (intraclass correlation coefficient: 0.91). By selecting an optimal cut-off value of malignancy probability score, the sensitivity and specificity were 80.07% and 81.47% for dermatologists and 79.90% and 80.20% for general practitioners. This study suggests that manual segmentation by general practitioners is feasible in the described CADx system for classifying benign and malignant skin lesions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Living Day by Day: The Meaning of Living With HIV/AIDS Among Women in Lebanon.
Kaplan, Rachel L; Khoury, Cynthia El; Field, Emily R S; Mokhbat, Jacques
2016-01-01
We examined the meaning of living with HIV/AIDS among women in Lebanon. Ten women living with HIV/AIDS (WLWHA) described their experiences via semistructured in-depth interviews. They navigated a process of HIV diagnosis acceptance that incorporated six overlapping elements: receiving the news, accessing care, starting treatment, navigating disclosure decisions, negotiating stigma, and maintaining stability. Through these elements, we provide a framework for understanding three major themes that were constructed during data analysis: Stand by my side: Decisions of disclosure; Being "sick" and feeling "normal": Interacting with self, others, and society; and Living day by day: focusing on the present. We contribute to the existing literature by providing a theoretical framework for understanding the process of diagnosis and sero-status acceptance among WLWHA. This was the first study of its kind to examine the meaning of living with HIV/AIDS among women in a Middle Eastern country.
Liu, Jiamin; Kabadi, Suraj; Van Uitert, Robert; Petrick, Nicholas; Deriche, Rachid; Summers, Ronald M.
2011-01-01
Purpose: Surface curvatures are important geometric features for the computer-aided analysis and detection of polyps in CT colonography (CTC). However, the general kernel approach for curvature computation can yield erroneous results for small polyps and for polyps that lie on haustral folds. Those erroneous curvatures will reduce the performance of polyp detection. This paper presents an analysis of interpolation’s effect on curvature estimation for thin structures and its application on computer-aided detection of small polyps in CTC. Methods: The authors demonstrated that a simple technique, image interpolation, can improve the accuracy of curvature estimation for thin structures and thus significantly improve the sensitivity of small polyp detection in CTC. Results: Our experiments showed that the merits of interpolating included more accurate curvature values for simulated data, and isolation of polyps near folds for clinical data. After testing on a large clinical data set, it was observed that sensitivities with linear, quadratic B-spline and cubic B-spline interpolations significantly improved the sensitivity for small polyp detection. Conclusions: The image interpolation can improve the accuracy of curvature estimation for thin structures and thus improve the computer-aided detection of small polyps in CTC. PMID:21859029
We used computer-aided tomography (CT) for 3D visualization and 2D analysis of
marine sediment cores from 3 stations (at 10, 75 and 118 m depths) with different environmental
impact. Biogenic structures such as tubes and burrows were quantified and compared among st...
Pliasunova, S A; Balugian, R Sh; Khmel'nitskiĭ, K E; Medovyĭ, V S; Parpara, A A; Piatnitskiĭ, A M; Sokolinskiĭ, B Z; Dem'ianov, V L; Nikolaenko, D S
2006-10-01
The paper presents the results of medical tests of a group of computer-aided procedures for microscopic analysis by means of a MECOS-Ts2 complex (ZAO "MECOS", Russia), which have been conducted at the Republican Children's Clinical Hospital, the Research Institute of Emergency Pediatric Surgery and Traumatology, and Moscow City Clinical Hospital No. 23. Computer-aided procedures for calculating the differential count and for analyzing the morphology of red blood cells were tested on blood smears from a total of 443 patients and donors, computer-aided calculation of the count of reticulocytes was tested on 318 smears. The tests were carried out under the US standard NCCLS-H20A. Manual microscopy (443 smears) and flow blood analysis on a Coulter GEN*S (125 smears) were used as reference methods. The quality of collection of samples and laboriousness were additionally assessed. The certified MECOS-Ts2 subsystems were additionally used as reference tools. The tests indicated the advantage of computer-aided MECOS-Tsl2 complex microscopy over manual microscopy.
Linguraru, Marius George; Pura, John A; Chowdhury, Ananda S; Summers, Ronald M
2010-01-01
The interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis (CAD) applications. Diagnosis also relies on the comprehensive analysis of multiple organs and quantitative measures of soft tissue. An automated method optimized for medical image data is presented for the simultaneous segmentation of four abdominal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans were obtained at two phases: non-contrast and portal venous. Intra-patient data were spatially normalized by non-linear registration. Then 4D erosion using population historic information of contrast-enhanced liver, spleen, and kidneys was applied to multi-phase data to initialize the 4D graph and adapt to patient specific data. CT enhancement information and constraints on shape, from Parzen windows, and location, from a probabilistic atlas, were input into a new formulation of a 4D graph. Comparative results demonstrate the effects of appearance and enhancement, and shape and location on organ segmentation.
NASA Astrophysics Data System (ADS)
Aghaei, Faranak; Tan, Maxine; Hollingsworth, Alan B.; Zheng, Bin; Cheng, Samuel
2016-03-01
Dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) has been used increasingly in breast cancer diagnosis and assessment of cancer treatment efficacy. In this study, we applied a computer-aided detection (CAD) scheme to automatically segment breast regions depicting on MR images and used the kinetic image features computed from the global breast MR images acquired before neoadjuvant chemotherapy to build a new quantitative model to predict response of the breast cancer patients to the chemotherapy. To assess performance and robustness of this new prediction model, an image dataset involving breast MR images acquired from 151 cancer patients before undergoing neoadjuvant chemotherapy was retrospectively assembled and used. Among them, 63 patients had "complete response" (CR) to chemotherapy in which the enhanced contrast levels inside the tumor volume (pre-treatment) was reduced to the level as the normal enhanced background parenchymal tissues (post-treatment), while 88 patients had "partially response" (PR) in which the high contrast enhancement remain in the tumor regions after treatment. We performed the studies to analyze the correlation among the 22 global kinetic image features and then select a set of 4 optimal features. Applying an artificial neural network trained with the fusion of these 4 kinetic image features, the prediction model yielded an area under ROC curve (AUC) of 0.83+/-0.04. This study demonstrated that by avoiding tumor segmentation, which is often difficult and unreliable, fusion of kinetic image features computed from global breast MR images without tumor segmentation can also generate a useful clinical marker in predicting efficacy of chemotherapy.
Medical diagnosis and treatment using high-resolution manometry with computer-aided system
NASA Astrophysics Data System (ADS)
Pedowski, Tomasz; Wasiewicz, Piotr; Maciejewski, Ryszard; Wallner, Grzegorz
2010-09-01
Nowadays computers analyze medical data almost in every diagnosis and treatment steps. We develop new technology which gives us better and more precise diagnosis. We chose esophageal high resolution manometry with impedance (HRMI) which has been considered as a "gold standard" test for esophageal motility. HRMI is the next generation of manometry explanation which is more sensitive and accurate to EFT. Examination allows physicians to ger information about esophageal peristalsis, amplitude and duration of the esophageal contraction and liquid/viscous bolus transit time from mouth through stomach. In 2008 we examined 80 patients using "old" EFT manometry and 80 patients in 2009 using high resolution manometry (HRMI). Everybody got manometry, endoscopy and x-ray examination. We asked about symptoms which we correlate and connect with data from EFT and HRMI. We tried to find a good algorithm for this purpose in order to do a simple and helpful tool for physician to make righta diagnosis and treatment decision. Connection between data and symptoms seems to be right and clear, but finding a good algorithm for given data is the main problem.
Metabolic Profiling in Patients with Pneumonia on Intensive Care.
Antcliffe, David; Jiménez, Beatriz; Veselkov, Kirill; Holmes, Elaine; Gordon, Anthony C
2017-04-01
Clinical features and investigations lack predictive value when diagnosing pneumonia, especially when patients are ventilated and when patients develop ventilator associated pneumonia (VAP). New tools to aid diagnosis are important to improve outcomes. This pilot study examines the potential for metabolic profiling to aid the diagnosis in critical care. In this prospective observational study ventilated patients with brain injuries or pneumonia were recruited in the intensive care unit and serum samples were collected soon after the start of ventilation. Metabolic profiles were produced using 1D 1 H NMR spectra. Metabolic data were compared using multivariate statistical techniques including Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). We recruited 15 patients with pneumonia and 26 with brain injuries, seven of whom went on to develop VAP. Comparison of metabolic profiles using OPLS-DA differentiated those with pneumonia from those with brain injuries (R 2 Y=0.91, Q 2 Y=0.28, p=0.02) and those with VAP from those without (R 2 Y=0.94, Q 2 Y=0.27, p=0.05). Metabolites that differentiated patients with pneumonia included lipid species, amino acids and glycoproteins. Metabolic profiling shows promise to aid in the diagnosis of pneumonia in ventilated patients and may allow a more timely diagnosis and better use of antibiotics. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Microscopic medical image classification framework via deep learning and shearlet transform.
Rezaeilouyeh, Hadi; Mollahosseini, Ali; Mahoor, Mohammad H
2016-10-01
Cancer is the second leading cause of death in US after cardiovascular disease. Image-based computer-aided diagnosis can assist physicians to efficiently diagnose cancers in early stages. Existing computer-aided algorithms use hand-crafted features such as wavelet coefficients, co-occurrence matrix features, and recently, histogram of shearlet coefficients for classification of cancerous tissues and cells in images. These hand-crafted features often lack generalizability since every cancerous tissue and cell has a specific texture, structure, and shape. An alternative approach is to use convolutional neural networks (CNNs) to learn the most appropriate feature abstractions directly from the data and handle the limitations of hand-crafted features. A framework for breast cancer detection and prostate Gleason grading using CNN trained on images along with the magnitude and phase of shearlet coefficients is presented. Particularly, we apply shearlet transform on images and extract the magnitude and phase of shearlet coefficients. Then we feed shearlet features along with the original images to our CNN consisting of multiple layers of convolution, max pooling, and fully connected layers. Our experiments show that using the magnitude and phase of shearlet coefficients as extra information to the network can improve the accuracy of detection and generalize better compared to the state-of-the-art methods that rely on hand-crafted features. This study expands the application of deep neural networks into the field of medical image analysis, which is a difficult domain considering the limited medical data available for such analysis.
Artefacts found in computed radiography.
Cesar, L J; Schueler, B A; Zink, F E; Daly, T R; Taubel, J P; Jorgenson, L L
2001-02-01
Artefacts on radiographic images are distracting and may compromise accurate diagnosis. Although most artefacts that occur in conventional radiography have become familiar, computed radiography (CR) systems produce artefacts that differ from those found in conventional radiography. We have encountered a variety of artefacts in CR images that were produced from four different models plate reader. These artefacts have been identified and traced to the imaging plate, plate reader, image processing software or laser printer or to operator error. Understanding the potential sources of CR artefacts will aid in identifying and resolving problems quickly and help prevent future occurrences.
NASA Technical Reports Server (NTRS)
Thorp, Scott A.
1992-01-01
This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.
Medical image analysis with artificial neural networks.
Jiang, J; Trundle, P; Ren, J
2010-12-01
Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Computer-supported patient history: a workplace analysis].
Schubiger, G; Weber, D; Winiker, H; Desgrandchamps, D; Imahorn, P
1995-04-29
Since 1991, an extensive computer network has been developed and implemented at the Cantonal Hospital of Lucerne. The medical applications include computer aided management of patient charts, medical correspondence, and compilation of diagnosis statistics according to the ICD-9 code. In 1992, the system was introduced as a pilot project in the departments of pediatrics and pediatric surgery of the Lucerne Children's Hospital. This new system has been prospectively evaluated using a workplace analysis. The time taken to complete patient charts and surgical reports was recorded for 14 days before and after the introduction of the computerized system. This analysis was performed for both physicians and secretarial staff. The time delay between the discharge of the patient and the mailing of the discharge letter to the family doctor was also recorded. By conventional means, the average time for the physician to generate a patient chart (26 minutes, n = 119) was slightly lower than the time needed with the computer system (28 minutes, n = 177). However, for a discharge letter, the time needed by the physician was reduced by one third with the computer system and by more than one half for the secretarial staff (32 and 66 minutes conventionally; 22 and 24 minutes respectively with the computer system; p < 0.0001). The time required for the generation of surgical reports was reduced from 17 to 13 minutes per patient and the processing time by secretaries from 37 to 14 minutes. The time delay between the discharge of the patient and the mailing of the discharge letter was reduced by 50% from 7.6 to 3.9 days.(ABSTRACT TRUNCATED AT 250 WORDS)
Orthodontics: computer-aided diagnosis and treatment planning
NASA Astrophysics Data System (ADS)
Yi, Yaxing; Li, Zhongke; Wei, Suyuan; Deng, Fanglin; Yao, Sen
2000-10-01
The purpose of this article is to introduce the outline of our newly developed computer-aided 3D dental cast analyzing system with laser scanning, and its preliminary clinical applications. The system is composed of a scanning device and a personal computer as a scanning controller and post processor. The scanning device is composed of a laser beam emitter, two sets of linear CCD cameras and a table which is rotatable by two-degree-of-freedom. The rotating is controlled precisely by a personal computer. The dental cast is projected and scanned with a laser beam. Triangulation is applied to determine the location of each point. Generation of 3D graphics of the dental cast takes approximately 40 minutes. About 170,000 sets of X,Y,Z coordinates are store for one dental cast. Besides the conventional linear and angular measurements of the dental cast, we are also able to demonstrate the size of the top surface area of each molar. The advantage of this system is that it facilitates the otherwise complicated and time- consuming mock surgery necessary for treatment planning in orthognathic surgery.
Yelshyna, Darya; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics. PMID:28074090
Costa, Luís; Gago, Miguel F; Yelshyna, Darya; Ferreira, Jaime; David Silva, Hélder; Rocha, Luís; Sousa, Nuno; Bicho, Estela
2016-01-01
The use of wearable devices to study gait and postural control is a growing field on neurodegenerative disorders such as Alzheimer's disease (AD). In this paper, we investigate if machine-learning classifiers offer the discriminative power for the diagnosis of AD based on postural control kinematics. We compared Support Vector Machines (SVMs), Multiple Layer Perceptrons (MLPs), Radial Basis Function Neural Networks (RBNs), and Deep Belief Networks (DBNs) on 72 participants (36 AD patients and 36 healthy subjects) exposed to seven increasingly difficult postural tasks. The decisional space was composed of 18 kinematic variables (adjusted for age, education, height, and weight), with or without neuropsychological evaluation (Montreal cognitive assessment (MoCA) score), top ranked in an error incremental analysis. Classification results were based on threefold cross validation of 50 independent and randomized runs sets: training (50%), test (40%), and validation (10%). Having a decisional space relying solely on postural kinematics, accuracy of AD diagnosis ranged from 71.7 to 86.1%. Adding the MoCA variable, the accuracy ranged between 91 and 96.6%. MLP classifier achieved top performance in both decisional spaces. Having comprehended the interdynamic interaction between postural stability and cognitive performance, our results endorse machine-learning models as a useful tool for computer-aided diagnosis of AD based on postural control kinematics.
Kerolus, Ghaly; Ikladios, Ossama
2016-01-01
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of disability and death worldwide. COPD exacerbation is usually treated with antibiotics, systemic corticosteroids, and inhaled bronchodilators. We present a case of recurrent COPD exacerbation that was treated repeatedly with standard therapy. Dynamic expiratory computed tomography of the chest was done, which revealed concomitant tracheomalacia. COPD and tracheomalacia may coexist during recurrent exacerbations of COPD, and delayed diagnosis can be associated with severe comorbidities. Ordering the appropriate imaging may aid in the correct diagnosis and facilitate appropriate management. PMID:27987292
Imaging of vascular lesions of the head and neck.
Griauzde, Julius; Srinivasan, Ashok
2015-01-01
The diagnosis of vascular lesions of the head and neck should be directed by classifying the lesions as tumors or malformations and by determining their flow characteristics. Location of the lesion is key when differentiating between vascular neoplasms. Ultrasonography is an appropriate screening tool; MRI is often used to confirm the diagnosis. Computed tomography can be used for further characterization of the lesion, particularly when there is bony involvement. In many cases, vascular lesions grow to be extensive. In these cases, percutaneous sclerotherapy or embolization therapy can be employed to aid in surgical resection. Copyright © 2015 Elsevier Inc. All rights reserved.
Sudarshan, Vidya K; Acharya, U Rajendra; Oh, Shu Lih; Adam, Muhammad; Tan, Jen Hong; Chua, Chua Kuang; Chua, Kok Poo; Tan, Ru San
2017-04-01
Identification of alarming features in the electrocardiogram (ECG) signal is extremely significant for the prediction of congestive heart failure (CHF). ECG signal analysis carried out using computer-aided techniques can speed up the diagnosis process and aid in the proper management of CHF patients. Therefore, in this work, dual tree complex wavelets transform (DTCWT)-based methodology is proposed for an automated identification of ECG signals exhibiting CHF from normal. In the experiment, we have performed a DTCWT on ECG segments of 2s duration up to six levels to obtain the coefficients. From these DTCWT coefficients, statistical features are extracted and ranked using Bhattacharyya, entropy, minimum redundancy maximum relevance (mRMR), receiver-operating characteristics (ROC), Wilcoxon, t-test and reliefF methods. Ranked features are subjected to k-nearest neighbor (KNN) and decision tree (DT) classifiers for automated differentiation of CHF and normal ECG signals. We have achieved 99.86% accuracy, 99.78% sensitivity and 99.94% specificity in the identification of CHF affected ECG signals using 45 features. The proposed method is able to detect CHF patients accurately using only 2s of ECG signal length and hence providing sufficient time for the clinicians to further investigate on the severity of CHF and treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vertebra identification using template matching modelmp and K-means clustering.
Larhmam, Mohamed Amine; Benjelloun, Mohammed; Mahmoudi, Saïd
2014-03-01
Accurate vertebra detection and segmentation are essential steps for automating the diagnosis of spinal disorders. This study is dedicated to vertebra alignment measurement, the first step in a computer-aided diagnosis tool for cervical spine trauma. Automated vertebral segment alignment determination is a challenging task due to low contrast imaging and noise. A software tool for segmenting vertebrae and detecting subluxations has clinical significance. A robust method was developed and tested for cervical vertebra identification and segmentation that extracts parameters used for vertebra alignment measurement. Our contribution involves a novel combination of a template matching method and an unsupervised clustering algorithm. In this method, we build a geometric vertebra mean model. To achieve vertebra detection, manual selection of the region of interest is performed initially on the input image. Subsequent preprocessing is done to enhance image contrast and detect edges. Candidate vertebra localization is then carried out by using a modified generalized Hough transform (GHT). Next, an adapted cost function is used to compute local voted centers and filter boundary data. Thereafter, a K-means clustering algorithm is applied to obtain clusters distribution corresponding to the targeted vertebrae. These clusters are combined with the vote parameters to detect vertebra centers. Rigid segmentation is then carried out by using GHT parameters. Finally, cervical spine curves are extracted to measure vertebra alignment. The proposed approach was successfully applied to a set of 66 high-resolution X-ray images. Robust detection was achieved in 97.5 % of the 330 tested cervical vertebrae. An automated vertebral identification method was developed and demonstrated to be robust to noise and occlusion. This work presents a first step toward an automated computer-aided diagnosis system for cervical spine trauma detection.
IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft
NASA Technical Reports Server (NTRS)
Ferebee, M. J., Jr.
1984-01-01
During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.
Integrated computer-aided design using minicomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.
1980-01-01
Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.
ERIC Educational Resources Information Center
Nee, John G.; Kare, Audhut P.
1987-01-01
Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)
ERIC Educational Resources Information Center
Von Der Linn, Robert Christopher
A needs assessment of the Grumman E-Beam Systems Group identified the requirement for additional skill mastery for the engineers who assemble, integrate, and maintain devices used to manufacture integrated circuits. Further analysis of the tasks involved led to the decision to develop interactive videodisc, computer-based job aids to enable…
Bayır, Şafak
2016-01-01
With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272
29 CFR 541.401 - Computer manufacture and repair.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND OUTSIDE..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...
Oesterlein, Tobias Georg; Schmid, Jochen; Bauer, Silvio; Jadidi, Amir; Schmitt, Claus; Dössel, Olaf; Luik, Armin
2016-04-01
Progress in biomedical engineering has improved the hardware available for diagnosis and treatment of cardiac arrhythmias. But although huge amounts of intracardiac electrograms (EGMs) can be acquired during electrophysiological examinations, there is still a lack of software aiding diagnosis. The development of novel algorithms for the automated analysis of EGMs has proven difficult, due to the highly interdisciplinary nature of this task and hampered data access in clinical systems. Thus we developed a software platform, which allows rapid implementation of new algorithms, verification of their functionality and suitable visualization for discussion in the clinical environment. A software for visualization was developed in Qt5 and C++ utilizing the class library of VTK. The algorithms for signal analysis were implemented in MATLAB. Clinical data for analysis was exported from electroanatomical mapping systems. The visualization software KaPAVIE (Karlsruhe Platform for Analysis and Visualization of Intracardiac Electrograms) was implemented and tested on several clinical datasets. Both common and novel algorithms were implemented which address important clinical questions in diagnosis of different arrhythmias. It proved useful in discussions with clinicians due to its interactive and user-friendly design. Time after export from the clinical mapping system to visualization is below 5min. KaPAVIE(2) is a powerful platform for the development of novel algorithms in the clinical environment. Simultaneous and interactive visualization of measured EGM data and the results of analysis will aid diagnosis and help understanding the underlying mechanisms of complex arrhythmias like atrial fibrillation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Goltz, G.; Kaiser, L. M.; Weiner, H.
1977-01-01
A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U.S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document establishes the software requirements for the DSPA computer program, discusses the processing that occurs within the program, and defines the necessary interfaces for operation.
Teaching Differential Diagnosis by Computer: A Pathophysiological Approach
ERIC Educational Resources Information Center
Goroll, Allan H.; And Others
1977-01-01
An interactive, computer-based teaching exercise in diagnosis that emphasizes pathophysiology in the analysis of clinical data is described. Called the Jaundice Program, its objective is to simplify the pattern recognition problem by relating clinical findings to diagnosis via reference to disease mechanisms. (LBH)
Multiphasic Health Testing in the Clinic Setting
LaDou, Joseph
1971-01-01
The economy of automated multiphasic health testing (amht) activities patterned after the high-volume Kaiser program can be realized in low-volume settings. amht units have been operated at daily volumes of 20 patients in three separate clinical environments. These programs have displayed economics entirely compatible with cost figures published by the established high-volume centers. This experience, plus the expanding capability of small, general purpose, digital computers (minicomputers) indicates that a group of six or more physicians generating 20 laboratory appraisals per day can economically justify a completely automated multiphasic health testing facility. This system would reside in the clinic or hospital where it is used and can be configured to do analyses such as electrocardiography and generate laboratory reports, and communicate with large computer systems in university medical centers. Experience indicates that the most effective means of implementing these benefits of automation is to make them directly available to the medical community with the physician playing the central role. Economic justification of a dedicated computer through low-volume health testing then allows, as a side benefit, automation of administrative as well as other diagnostic activities—for example, patient billing, computer-aided diagnosis, and computer-aided therapeutics. PMID:4935771
Coles, Janice L.; Williams, Gwyneth; Rutman, Andrew; Goggin, Patricia M.; Adam, Elizabeth C.; Page, Anthony; Evans, Hazel J.; Lackie, Peter M.; O’Callaghan, Christopher; Lucas, Jane S.
2014-01-01
Background The diagnosis of primary ciliary dyskinesia (PCD) requires the analysis of ciliary function and ultrastructure. Diagnosis can be complicated by secondary effects on cilia such as damage during sampling, local inflammation or recent infection. To differentiate primary from secondary abnormalities, re-analysis of cilia following culture and re-differentiation of epithelial cells at an air-liquid interface (ALI) aids the diagnosis of PCD. However changes in ciliary beat pattern of cilia following epithelial cell culture has previously been described, which has brought the robustness of this method into question. This is the first systematic study to evaluate ALI culture as an aid to diagnosis of PCD in the light of these concerns. Methods We retrospectively studied changes associated with ALI-culture in 158 subjects referred for diagnostic testing at two PCD centres. Ciliated nasal epithelium (PCD n = 54; non-PCD n = 111) was analysed by high-speed digital video microscopy and transmission electron microscopy before and after culture. Results Ciliary function was abnormal before and after culture in all subjects with PCD; 21 PCD subjects had a combination of static and uncoordinated twitching cilia, which became completely static following culture, a further 9 demonstrated a decreased ciliary beat frequency after culture. In subjects without PCD, secondary ciliary dyskinesia was reduced. Conclusions The change to ciliary phenotype in PCD samples following cell culture does not affect the diagnosis, and in certain cases can assist the ability to identify PCD cilia. PMID:24586956
Using Performance Tools to Support Experiments in HPC Resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton, III, Thomas J; Boehm, Swen; Engelmann, Christian
2014-01-01
The high performance computing (HPC) community is working to address fault tolerance and resilience concerns for current and future large scale computing platforms. This is driving enhancements in the programming environ- ments, specifically research on enhancing message passing libraries to support fault tolerant computing capabilities. The community has also recognized that tools for resilience experimentation are greatly lacking. However, we argue that there are several parallels between performance tools and resilience tools . As such, we believe the rich set of HPC performance-focused tools can be extended (repurposed) to benefit the resilience community. In this paper, we describe the initialmore » motivation to leverage standard HPC per- formance analysis techniques to aid in developing diagnostic tools to assist fault tolerance experiments for HPC applications. These diagnosis procedures help to provide context for the system when the errors (failures) occurred. We describe our initial work in leveraging an MPI performance trace tool to assist in provid- ing global context during fault injection experiments. Such tools will assist the HPC resilience community as they extend existing and new application codes to support fault tolerances.« less
A computer-aided movement analysis system.
Fioretti, S; Leo, T; Pisani, E; Corradini, M L
1990-08-01
Interaction with biomechanical data concerning human movement analysis implies the adoption of various experimental equipments and the choice of suitable models, data processing, and graphical data restitution techniques. The integration of measurement setups with the associated experimental protocols and the relative software procedures constitutes a computer-aided movement analysis (CAMA) system. In the present paper such integration is mapped onto the causes that limit the clinical acceptance of movement analysis methods. The structure of the system is presented. A specific CAMA system devoted to posture analysis is described in order to show the attainable features. Scientific results obtained with the support of the described system are also reported.
Segmentation of breast ultrasound images based on active contours using neutrosophic theory.
Lotfollahi, Mahsa; Gity, Masoumeh; Ye, Jing Yong; Mahlooji Far, A
2018-04-01
Ultrasound imaging is an effective approach for diagnosing breast cancer, but it is highly operator-dependent. Recent advances in computer-aided diagnosis have suggested that it can assist physicians in diagnosis. Definition of the region of interest before computer analysis is still needed. Since manual outlining of the tumor contour is tedious and time-consuming for a physician, developing an automatic segmentation method is important for clinical application. The present paper represents a novel method to segment breast ultrasound images. It utilizes a combination of region-based active contour and neutrosophic theory to overcome the natural properties of ultrasound images including speckle noise and tissue-related textures. First, due to inherent speckle noise and low contrast of these images, we have utilized a non-local means filter and fuzzy logic method for denoising and image enhancement, respectively. This paper presents an improved weighted region-scalable active contour to segment breast ultrasound images using a new feature derived from neutrosophic theory. This method has been applied to 36 breast ultrasound images. It generates true-positive and false-positive results, and similarity of 95%, 6%, and 90%, respectively. The purposed method indicates clear advantages over other conventional methods of active contour segmentation, i.e., region-scalable fitting energy and weighted region-scalable fitting energy.
Student Financial Aid Delivery System.
ERIC Educational Resources Information Center
O'Neal, John R.; Carpenter, Catharine A.
1983-01-01
Ohio University's use of computer programing for the need analysis and internal accounting functions in financial aid is described. A substantial improvement of services resulted, with 6,000-10,000 students and the offices of financial aid, bursar, registration, student records, housing, admissions, and controller assisted in the process. Costs…
Cavalli, Fabio; Lusnig, Luca; Trentin, Edmondo
2017-05-01
Sex determination on skeletal remains is one of the most important diagnosis in forensic cases and in demographic studies on ancient populations. Our purpose is to realize an automatic operator-independent method to determine the sex from the bone shape and to test an intelligent, automatic pattern recognition system in an anthropological domain. Our multiple-classifier system is based exclusively on the morphological variants of a curve that represents the sagittal profile of the calvarium, modeled via artificial neural networks, and yields an accuracy higher than 80 %. The application of this system to other bone profiles is expected to further improve the sensibility of the methodology.
A computer aided engineering tool for ECLS systems
NASA Technical Reports Server (NTRS)
Bangham, Michal E.; Reuter, James L.
1987-01-01
The Computer-Aided Systems Engineering and Analysis tool used by NASA for environmental control and life support system design studies is capable of simulating atmospheric revitalization systems, water recovery and management systems, and single-phase active thermal control systems. The designer/analysis interface used is graphics-based, and allows the designer to build a model by constructing a schematic of the system under consideration. Data management functions are performed, and the program is translated into a format that is compatible with the solution routines.
Data mining of audiology patient records: factors influencing the choice of hearing aid type
2012-01-01
Background This paper describes the analysis of a database of over 180,000 patient records, collected from over 23,000 patients, by the hearing aid clinic at James Cook University Hospital in Middlesbrough, UK. These records consist of audiograms (graphs of the faintest sounds audible to the patient at six different pitches), categorical data (such as age, gender, diagnosis and hearing aid type) and brief free text notes made by the technicians. This data is mined to determine which factors contribute to the decision to fit a BTE (worn behind the ear) hearing aid as opposed to an ITE (worn in the ear) hearing aid. Methods From PCA (principal component analysis) four main audiogram types are determined, and are related to the type of hearing aid chosen. The effects of age, gender, diagnosis, masker, mould and individual audiogram frequencies are combined into a single model by means of logistic regression. Some significant keywords are also discovered in the free text fields by using the chi-squared (χ2) test, which can also be used in the model. The final model can act a decision support tool to help decide whether an individual patient should be offered a BTE or an ITE hearing aid. Results The final model was tested using 5-fold cross validation, and was able to replicate the decisions of audiologists whether to fit an ITE or a BTE hearing aid with precision in the range 0.79 to 0.87. Conclusions A decision support system was produced to predict the type of hearing aid which should be prescribed, with an explanation facility explaining how that decision was arrived at. This system should prove useful in providing a "second opinion" for audiologists. PMID:22595091
NASA Astrophysics Data System (ADS)
Hilliard, Antony
Energy Monitoring and Targeting is a well-established business process that develops information about utility energy consumption in a business or institution. While M&T has persisted as a worthwhile energy conservation support activity, it has not been widely adopted. This dissertation explains M&T challenges in terms of diagnosing and controlling energy consumption, informed by a naturalistic field study of M&T work. A Cognitive Work Analysis of M&T identifies structures that diagnosis can search, information flows un-supported in canonical support tools, and opportunities to extend the most popular tool for MM&T: Cumulative Sum of Residuals (CUSUM) charts. A design application outlines how CUSUM charts were augmented with a more contemporary statistical change detection strategy, Recursive Parameter Estimates, modified to better suit the M&T task using Representation Aiding principles. The design was experimentally evaluated in a controlled M&T synthetic task, and was shown to significantly improve diagnosis performance.
Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.
Aji, Ablimit; Wang, Fusheng; Saltz, Joel H
2012-11-06
Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.
Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data
Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.
2013-01-01
Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719
Sechopoulos, Ioannis
2013-01-01
Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127
[Medical computer-aided detection method based on deep learning].
Tao, Pan; Fu, Zhongliang; Zhu, Kai; Wang, Lili
2018-03-01
This paper performs a comprehensive study on the computer-aided detection for the medical diagnosis with deep learning. Based on the region convolution neural network and the prior knowledge of target, this algorithm uses the region proposal network, the region of interest pooling strategy, introduces the multi-task loss function: classification loss, bounding box localization loss and object rotation loss, and optimizes it by end-to-end. For medical image it locates the target automatically, and provides the localization result for the next stage task of segmentation. For the detection of left ventricular in echocardiography, proposed additional landmarks such as mitral annulus, endocardial pad and apical position, were used to estimate the left ventricular posture effectively. In order to verify the robustness and effectiveness of the algorithm, the experimental data of ultrasonic and nuclear magnetic resonance images are selected. Experimental results show that the algorithm is fast, accurate and effective.
1988-06-30
casting. 68 Figure 1-9: Line printer representation of roll solidification. 69 Figure I1-1: Test casting model. 76 Figure 11-2: Division of test casting...writing new casting analysis and design routines. The new routines would take advantage of advanced criteria for predicting casting soundness and cast...properties and technical advances in computer hardware and software. 11 2. CONCLUSIONS UPCAST, a comprehensive software package, has been developed for
In Vitro Evaluation of a Program for Machine-Aided Indexing.
ERIC Educational Resources Information Center
Jacquemin, Christian; Daille, Beatrice; Royaute, Jean; Polanco, Xavier
2002-01-01
Presents the human evaluation of ILIAD, a program for machine-aided indexing that was designed to assist expert librarians in computer-aided indexing and document analysis. Topics include controlled indexing and free indexing; natural language and concept-based information retrieval; evaluation methodology; syntactic variations; and a comparison…
Glez-Peña, Daniel; Díaz, Fernando; Hernández, Jesús M; Corchado, Juan M; Fdez-Riverola, Florentino
2009-06-18
Bioinformatics and medical informatics are two research fields that serve the needs of different but related communities. Both domains share the common goal of providing new algorithms, methods and technological solutions to biomedical research, and contributing to the treatment and cure of diseases. Although different microarray techniques have been successfully used to investigate useful information for cancer diagnosis at the gene expression level, the true integration of existing methods into day-to-day clinical practice is still a long way off. Within this context, case-based reasoning emerges as a suitable paradigm specially intended for the development of biomedical informatics applications and decision support systems, given the support and collaboration involved in such a translational development. With the goals of removing barriers against multi-disciplinary collaboration and facilitating the dissemination and transfer of knowledge to real practice, case-based reasoning systems have the potential to be applied to translational research mainly because their computational reasoning paradigm is similar to the way clinicians gather, analyze and process information in their own practice of clinical medicine. In addressing the issue of bridging the existing gap between biomedical researchers and clinicians who work in the domain of cancer diagnosis, prognosis and treatment, we have developed and made accessible a common interactive framework. Our geneCBR system implements a freely available software tool that allows the use of combined techniques that can be applied to gene selection, clustering, knowledge extraction and prediction for aiding diagnosis in cancer research. For biomedical researches, geneCBR expert mode offers a core workbench for designing and testing new techniques and experiments. For pathologists or oncologists, geneCBR diagnostic mode implements an effective and reliable system that can diagnose cancer subtypes based on the analysis of microarray data using a CBR architecture. For programmers, geneCBR programming mode includes an advanced edition module for run-time modification of previous coded techniques. geneCBR is a new translational tool that can effectively support the integrative work of programmers, biomedical researches and clinicians working together in a common framework. The code is freely available under the GPL license and can be obtained at http://www.genecbr.org.
Building a medical image processing algorithm verification database
NASA Astrophysics Data System (ADS)
Brown, C. Wayne
2000-06-01
The design of a database containing head Computed Tomography (CT) studies is presented, along with a justification for the database's composition. The database will be used to validate software algorithms that screen normal head CT studies from studies that contain pathology. The database is designed to have the following major properties: (1) a size sufficient for statistical viability, (2) inclusion of both normal (no pathology) and abnormal scans, (3) inclusion of scans due to equipment malfunction, technologist error, and uncooperative patients, (4) inclusion of data sets from multiple scanner manufacturers, (5) inclusion of data sets from different gender and age groups, and (6) three independent diagnosis of each data set. Designed correctly, the database will provide a partial basis for FDA (United States Food and Drug Administration) approval of image processing algorithms for clinical use. Our goal for the database is the proof of viability of screening head CT's for normal anatomy using computer algorithms. To put this work into context, a classification scheme for 'computer aided diagnosis' systems is proposed.
Semi-automated detection of anterior cruciate ligament injury from MRI.
Štajduhar, Ivan; Mamula, Mihaela; Miletić, Damir; Ünal, Gözde
2017-03-01
A radiologist's work in detecting various injuries or pathologies from radiological scans can be tiresome, time consuming and prone to errors. The field of computer-aided diagnosis aims to reduce these factors by introducing a level of automation in the process. In this paper, we deal with the problem of detecting the presence of anterior cruciate ligament (ACL) injury in a human knee. We examine the possibility of aiding the diagnosis process by building a decision-support model for detecting the presence of milder ACL injuries (not requiring operative treatment) and complete ACL ruptures (requiring operative treatment) from sagittal plane magnetic resonance (MR) volumes of human knees. Histogram of oriented gradient (HOG) descriptors and gist descriptors are extracted from manually selected rectangular regions of interest enveloping the wider cruciate ligament area. Performance of two machine-learning models is explored, coupled with both feature extraction methods: support vector machine (SVM) and random forests model. Model generalisation properties were determined by performing multiple iterations of stratified 10-fold cross validation whilst observing the area under the curve (AUC) score. Sagittal plane knee joint MR data was retrospectively gathered at the Clinical Hospital Centre Rijeka, Croatia, from 2007 until 2014. Type of ACL injury was established in a double-blind fashion by comparing the retrospectively set diagnosis against the prospective opinion of another radiologist. After clean up, the resulting dataset consisted of 917 usable labelled exam sequences of left or right knees. Experimental results suggest that a linear-kernel SVM learned from HOG descriptors has the best generalisation properties among the experimental models compared, having an area under the curve of 0.894 for the injury-detection problem and 0.943 for the complete-rupture-detection problem. Although the problem of performing semi-automated ACL-injury diagnosis by observing knee-joint MR volumes alone is a difficult one, experimental results suggest potential clinical application of computer-aided decision making, both for detecting milder injuries and detecting complete ruptures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Recent development on computer aided tissue engineering--a review.
Sun, Wei; Lal, Pallavi
2002-02-01
The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.
Aided diagnosis methods of breast cancer based on machine learning
NASA Astrophysics Data System (ADS)
Zhao, Yue; Wang, Nian; Cui, Xiaoyu
2017-08-01
In the field of medicine, quickly and accurately determining whether the patient is malignant or benign is the key to treatment. In this paper, K-Nearest Neighbor, Linear Discriminant Analysis, Logistic Regression were applied to predict the classification of thyroid,Her-2,PR,ER,Ki67,metastasis and lymph nodes in breast cancer, in order to recognize the benign and malignant breast tumors and achieve the purpose of aided diagnosis of breast cancer. The results showed that the highest classification accuracy of LDA was 88.56%, while the classification effect of KNN and Logistic Regression were better than that of LDA, the best accuracy reached 96.30%.
Interactive computer programs for the graphic analysis of nucleotide sequence data.
Luckow, V A; Littlewood, R K; Rownd, R H
1984-01-01
A group of interactive computer programs have been developed which aid in the collection and graphical analysis of nucleotide and protein sequence data. The programs perform the following basic functions: a) enter, edit, list, and rearrange sequence data; b) permit automatic entry of nucleotide sequence data directly from an autoradiograph into the computer; c) search for restriction sites or other specified patterns and plot a linear or circular restriction map, or print their locations; d) plot base composition; e) analyze homology between sequences by plotting a two-dimensional graphic matrix; and f) aid in plotting predicted secondary structures of RNA molecules. PMID:6546437
Bergman, Lars G; Fors, Uno GH
2008-01-01
Background Correct diagnosis in psychiatry may be improved by novel diagnostic procedures. Computerized Decision Support Systems (CDSS) are suggested to be able to improve diagnostic procedures, but some studies indicate possible problems. Therefore, it could be important to investigate CDSS systems with regard to their feasibility to improve diagnostic procedures as well as to save time. Methods This study was undertaken to compare the traditional 'paper and pencil' diagnostic method SCID1 with the computer-aided diagnostic system CB-SCID1 to ascertain processing time and accuracy of diagnoses suggested. 63 clinicians volunteered to participate in the study and to solve two paper-based cases using either a CDSS or manually. Results No major difference between paper and pencil and computer-supported diagnosis was found. Where a difference was found it was in favour of paper and pencil. For example, a significantly shorter time was found for paper and pencil for the difficult case, as compared to computer support. A significantly higher number of correct diagnoses were found in the diffilt case for the diagnosis 'Depression' using the paper and pencil method. Although a majority of the clinicians found the computer method supportive and easy to use, it took a longer time and yielded fewer correct diagnoses than with paper and pencil. Conclusion This study could not detect any major difference in diagnostic outcome between traditional paper and pencil methods and computer support for psychiatric diagnosis. Where there were significant differences, traditional paper and pencil methods were better than the tested CDSS and thus we conclude that CDSS for diagnostic procedures may interfere with diagnosis accuracy. A limitation was that most clinicians had not previously used the CDSS system under study. The results of this study, however, confirm that CDSS development for diagnostic purposes in psychiatry has much to deal with before it can be used for routine clinical purposes. PMID:18261222
Pusic, Martin V.; LeBlanc, Vicki; Patel, Vimla L.
2001-01-01
Traditional task analysis for instructional design has emphasized the importance of precisely defining behavioral educational objectives and working back to select objective-appropriate instructional strategies. However, this approach may miss effective strategies. Cognitive task analysis, on the other hand, breaks a process down into its component knowledge representations. Selection of instructional strategies based on all such representations in a domain is likely to lead to optimal instructional design. In this demonstration, using the interpretation of cervical spine x-rays as an educational example, we show how a detailed cognitive task analysis can guide the development of computer-aided instruction.
Computer-aided Classification of Mammographic Masses Using Visually Sensitive Image Features
Wang, Yunzhi; Aghaei, Faranak; Zarafshani, Ali; Qiu, Yuchen; Qian, Wei; Zheng, Bin
2017-01-01
Purpose To develop a new computer-aided diagnosis (CAD) scheme that computes visually sensitive image features routinely used by radiologists to develop a machine learning classifier and distinguish between the malignant and benign breast masses detected from digital mammograms. Methods An image dataset including 301 breast masses was retrospectively selected. From each segmented mass region, we computed image features that mimic five categories of visually sensitive features routinely used by radiologists in reading mammograms. We then selected five optimal features in the five feature categories and applied logistic regression models for classification. A new CAD interface was also designed to show lesion segmentation, computed feature values and classification score. Results Areas under ROC curves (AUC) were 0.786±0.026 and 0.758±0.027 when to classify mass regions depicting on two view images, respectively. By fusing classification scores computed from two regions, AUC increased to 0.806±0.025. Conclusion This study demonstrated a new approach to develop CAD scheme based on 5 visually sensitive image features. Combining with a “visual aid” interface, CAD results may be much more easily explainable to the observers and increase their confidence to consider CAD generated classification results than using other conventional CAD approaches, which involve many complicated and visually insensitive texture features. PMID:27911353
Multi-view information fusion for automatic BI-RADS description of mammographic masses
NASA Astrophysics Data System (ADS)
Narvaez, Fabián; Díaz, Gloria; Romero, Eduardo
2011-03-01
Most CBIR-based CAD systems (Content Based Image Retrieval systems for Computer Aided Diagnosis) identify lesions that are eventually relevant. These systems base their analysis upon a single independent view. This article presents a CBIR framework which automatically describes mammographic masses with the BI-RADS lexicon, fusing information from the two mammographic views. After an expert selects a Region of Interest (RoI) at the two views, a CBIR strategy searches similar masses in the database by automatically computing the Mahalanobis distance between shape and texture feature vectors of the mammography. The strategy was assessed in a set of 400 cases, for which the suggested descriptions were compared with the ground truth provided by the data base. Two information fusion strategies were evaluated, allowing a retrieval precision rate of 89.6% in the best scheme. Likewise, the best performance obtained for shape, margin and pathology description, using a ROC methodology, was reported as AUC = 0.86, AUC = 0.72 and AUC = 0.85, respectively.
NASA Astrophysics Data System (ADS)
Horodinca, M.
2016-08-01
This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.
HIV / AIDS: Symptoms, Diagnosis, Prevention and Treatment
Skip Navigation Bar Home Current Issue Past Issues HIV / AIDS HIV / AIDS: Symptoms , Diagnosis, Prevention and Treatment Past Issues / ... Most people who have become recently infected with HIV will not have any symptoms. They may, however, ...
NASA Astrophysics Data System (ADS)
Tang, Li; Kwon, Young H.; Alward, Wallace L. M.; Greenlee, Emily C.; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.
2010-03-01
The shape of the optic nerve head (ONH) is reconstructed automatically using stereo fundus color images by a robust stereo matching algorithm, which is needed for a quantitative estimate of the amount of nerve fiber loss for patients with glaucoma. Compared to natural scene stereo, fundus images are noisy because of the limits on illumination conditions and imperfections of the optics of the eye, posing challenges to conventional stereo matching approaches. In this paper, multi scale pixel feature vectors which are robust to noise are formulated using a combination of both pixel intensity and gradient features in scale space. Feature vectors associated with potential correspondences are compared with a disparity based matching score. The deep structures of the optic disc are reconstructed with a stack of disparity estimates in scale space. Optical coherence tomography (OCT) data was collected at the same time, and depth information from 3D segmentation was registered with the stereo fundus images to provide the ground truth for performance evaluation. In experiments, the proposed algorithm produces estimates for the shape of the ONH that are close to the OCT based shape, and it shows great potential to help computer-aided diagnosis of glaucoma and other related retinal diseases.
Okoror, Titilayo Ainegbesua; Falade, Catherine Olufunke; Walker, Ebunlomo Mary; Olorunlana, Adetayo; Anaele, Agaptus
2016-06-13
Though research has documented experiences of stigma and its effects on the lives of women living with HIV/AIDS, there is limited research on heterosexual positive HIV men experience of stigma in Nigeria. This study explored how social context surrounding HIV diagnosis impacts stigma experiences of heterosexual HIV positive men and their construction of masculinity in southwest Nigeria. Using purposive sampling, 17 heterosexual HIV positive men were recruited through community based organization to participate in two hours focus group discussions or 45 min in-depth interviews that were audio-recorded. Without using the word stigma, discussions and interviews were guided by four questions that explored participants' experiences of living with HIV/AIDS. Interviews and discussions were conducted in three languages: English, Yoruba and Pidgin English. Thematic data analysis approach was in coding transcribed data, while social constructivist thinking guided data analysis. Participants ranged in age from 30 to 57 years old, and all were receiving antiretroviral therapy. Findings indicated that participants' experiences of stigma might be moderated by the social context surrounding their HIV diagnosis, and whether they have met the socio-cultural construction of masculinity. Participants whose diagnosis were preceded by immediate family members' diagnosis were less likely to report experiencing HIV stigma and more likely to report "not feeling less than a man" and educating others about HIV/AIDS. Contrarily, participants whose diagnosis was preceded by their own sickness were more likely to report isolation, sigma and feeling of being less than a man. All participants reported limiting their sexual intimacy, and those with children reported adjusting how they performed their role as fathers. Social context surrounding HIV diagnosis impact how heterosexual HIV positive men experience HIV related stigma and how they perceive themselves as men, which may influence their care seeking behaviors. These findings have implications for HIV programs geared towards African heterosexual men in general and HIV positive men in particular.
NASA Technical Reports Server (NTRS)
Lahoti, G. D.; Akgerman, N.; Altan, T.
1978-01-01
Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.
Computer-aided diagnosis of malignant mammograms using Zernike moments and SVM.
Sharma, Shubhi; Khanna, Pritee
2015-02-01
This work is directed toward the development of a computer-aided diagnosis (CAD) system to detect abnormalities or suspicious areas in digital mammograms and classify them as malignant or nonmalignant. Original mammogram is preprocessed to separate the breast region from its background. To work on the suspicious area of the breast, region of interest (ROI) patches of a fixed size of 128×128 are extracted from the original large-sized digital mammograms. For training, patches are extracted manually from a preprocessed mammogram. For testing, patches are extracted from a highly dense area identified by clustering technique. For all extracted patches corresponding to a mammogram, Zernike moments of different orders are computed and stored as a feature vector. A support vector machine (SVM) is used to classify extracted ROI patches. The experimental study shows that the use of Zernike moments with order 20 and SVM classifier gives better results among other studies. The proposed system is tested on Image Retrieval In Medical Application (IRMA) reference dataset and Digital Database for Screening Mammography (DDSM) mammogram database. On IRMA reference dataset, it attains 99% sensitivity and 99% specificity, and on DDSM mammogram database, it obtained 97% sensitivity and 96% specificity. To verify the applicability of Zernike moments as a fitting texture descriptor, the performance of the proposed CAD system is compared with the other well-known texture descriptors namely gray-level co-occurrence matrix (GLCM) and discrete cosine transform (DCT).
Oloumi, Faraz; Rangayyan, Rangaraj M.; Ells, Anna L.
2016-01-01
Abstract. Retinopathy of prematurity (ROP), a disorder of the retina occurring in preterm infants, is the leading cause of preventable childhood blindness. An active phase of ROP that requires treatment is associated with the presence of plus disease, which is diagnosed clinically in a qualitative manner by visual assessment of the existence of a certain level of increase in the thickness and tortuosity of retinal vessels. The present study performs computer-aided diagnosis (CAD) of plus disease via quantitative measurement of tortuosity in retinal fundus images of preterm infants. Digital image processing techniques were developed for the detection of retinal vessels and measurement of their tortuosity. The total lengths of abnormally tortuous vessels in each quadrant and the entire image were then computed. A minimum-length diagnostic-decision-making criterion was developed to assess the diagnostic sensitivity and specificity of the values obtained. The area (Az) under the receiver operating characteristic curve was used to assess the overall diagnostic accuracy of the methods. Using a set of 19 retinal fundus images of preterm infants with plus disease and 91 without plus disease, the proposed methods provided an overall diagnostic accuracy of Az=0.98. Using the total length of all abnormally tortuous vessel segments in an image, our techniques are capable of CAD of plus disease with high accuracy without the need for manual selection of vessels to analyze. The proposed methods may be used in a clinical or teleophthalmological setting. PMID:28018938
Parallel Algorithms for Image Analysis.
1982-06-01
8217 _ _ _ _ _ _ _ 4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED PARALLEL ALGORITHMS FOR IMAGE ANALYSIS TECHNICAL 6. PERFORMING O4G. REPORT NUMBER TR-1180...Continue on reverse side it neceesary aid Identlfy by block number) Image processing; image analysis ; parallel processing; cellular computers. 20... IMAGE ANALYSIS TECHNICAL 6. PERFORMING ONG. REPORT NUMBER TR-1180 - 7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s) Azriel Rosenfeld AFOSR-77-3271 9
An Instructor's Diagnostic Aid for Feedback in Training.
ERIC Educational Resources Information Center
Andrews, Dee H.; Uliano, Kevin C.
1988-01-01
Instructor's Diagnostic Aid for Feedback in Training (IDAFT) is a computer-assisted method based on error analysis, domains of learning, and events of instruction. Its use with Navy team instructors is currently being explored. (JOW)
NASA Technical Reports Server (NTRS)
Goltz, G. L.; Kaiser, L. M.; Weiner, H.
1979-01-01
Design synthesis and performance analysis (DSPA) program package is collection of subroutines used for computation of design and performance characteristics of viable solar-array-charged battery powered system for flashing-lamp buoys employed as maritime aids to navigation.
Combining Feature Extraction Methods to Assist the Diagnosis of Alzheimer's Disease.
Segovia, F; Górriz, J M; Ramírez, J; Phillips, C
2016-01-01
Neuroimaging data as (18)F-FDG PET is widely used to assist the diagnosis of Alzheimer's disease (AD). Looking for regions with hypoperfusion/ hypometabolism, clinicians may predict or corroborate the diagnosis of the patients. Modern computer aided diagnosis (CAD) systems based on the statistical analysis of whole neuroimages are more accurate than classical systems based on quantifying the uptake of some predefined regions of interests (ROIs). In addition, these new systems allow determining new ROIs and take advantage of the huge amount of information comprised in neuroimaging data. A major branch of modern CAD systems for AD is based on multivariate techniques, which analyse a neuroimage as a whole, considering not only the voxel intensities but also the relations among them. In order to deal with the vast dimensionality of the data, a number of feature extraction methods have been successfully applied. In this work, we propose a CAD system based on the combination of several feature extraction techniques. First, some commonly used feature extraction methods based on the analysis of the variance (as principal component analysis), on the factorization of the data (as non-negative matrix factorization) and on classical magnitudes (as Haralick features) were simultaneously applied to the original data. These feature sets were then combined by means of two different combination approaches: i) using a single classifier and a multiple kernel learning approach and ii) using an ensemble of classifier and selecting the final decision by majority voting. The proposed approach was evaluated using a labelled neuroimaging database along with a cross validation scheme. As conclusion, the proposed CAD system performed better than approaches using only one feature extraction technique. We also provide a fair comparison (using the same database) of the selected feature extraction methods.
Evaluation of direct and indirect additive manufacture of maxillofacial prostheses.
Eggbeer, Dominic; Bibb, Richard; Evans, Peter; Ji, Lu
2012-09-01
The efficacy of computer-aided technologies in the design and manufacture of maxillofacial prostheses has not been fully proven. This paper presents research into the evaluation of direct and indirect additive manufacture of a maxillofacial prosthesis against conventional laboratory-based techniques. An implant/magnet-retained nasal prosthesis case from a UK maxillofacial unit was selected as a case study. A benchmark prosthesis was fabricated using conventional laboratory-based techniques for comparison against additive manufactured prostheses. For the computer-aided workflow, photogrammetry, computer-aided design and additive manufacture (AM) methods were evaluated in direct prosthesis body fabrication and indirect production using an additively manufactured mould. Qualitative analysis of position, shape, colour and edge quality was undertaken. Mechanical testing to ISO standards was also used to compare the silicone rubber used in the conventional prosthesis with the AM material. Critical evaluation has shown that utilising a computer-aided work-flow can produce a prosthesis body that is comparable to that produced using existing best practice. Technical limitations currently prevent the direct fabrication method demonstrated in this paper from being clinically viable. This research helps prosthesis providers understand the application of a computer-aided approach and guides technology developers and researchers to address the limitations identified.
Zinser, Max J; Sailer, Hermann F; Ritter, Lutz; Braumann, Bert; Maegele, Marc; Zöller, Joachim E
2013-12-01
Advances in computers and imaging have permitted the adoption of 3-dimensional (3D) virtual planning protocols in orthognathic surgery, which may allow a paradigm shift when the virtual planning can be transferred properly. The purpose of this investigation was to compare the versatility and precision of innovative computer-aided designed and computer-aided manufactured (CAD/CAM) surgical splints, intraoperative navigation, and "classic" intermaxillary occlusal splints for surgical transfer of virtual orthognathic planning. The protocols consisted of maxillofacial imaging, diagnosis, virtual orthognathic planning, and surgical planning transfer using newly designed CAD/CAM splints (approach A), navigation (approach B), and intermaxillary occlusal splints (approach C). In this prospective observational study, all patients underwent bimaxillary osteotomy. Eight patients were treated using approach A, 10 using approach B, and 12 using approach C. These techniques were evaluated by applying 13 hard and 7 soft tissue parameters to compare the virtual orthognathic planning (T0) with the postoperative result (T1) using 3D cephalometry and image fusion (ΔT1 vs T0). The highest precision (ΔT1 vs T0) for the maxillary planning transfer was observed with CAD/CAM splints (<0.23 mm; P > .05) followed by surgical "waferless" navigation (<0.61 mm, P < .05) and classic intermaxillary occlusal splints (<1.1 mm; P < .05). Only the innovative CAD/CAM splints kept the condyles in their central position in the temporomandibular joint. However, no technique enables a precise prediction of the mandible and soft tissue. CAD/CAM splints and surgical navigation provide a reliable, innovative, and precise approach for the transfer of virtual orthognathic planning. These computer-assisted techniques may offer an alternate approach to the use of classic intermaxillary occlusal splints. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Barchuk, A A; Podolsky, M D; Tarakanov, S A; Kotsyuba, I Yu; Gaidukov, V S; Kuznetsov, V I; Merabishvili, V M; Barchuk, A S; Levchenko, E V; Filochkina, A V; Arseniev, A I
2015-01-01
This review article analyzes data of literature devoted to the description, interpretation and classification of focal (nodal) changes in the lungs detected by computed tomography of the chest cavity. There are discussed possible criteria for determining the most likely of their character--primary and metastatic tumor processes, inflammation, scarring, and autoimmune changes, tuberculosis and others. Identification of the most characteristic, reliable and statistically significant evidences of a variety of pathological processes in the lungs including the use of modern computer-aided detection and diagnosis of sites will optimize the diagnostic measures and ensure processing of a large volume of medical data in a short time.
DeCourcy, Kelly; Hostnik, Eric T; Lorbach, Josh; Knoblaugh, Sue
2016-12-01
An adult leopard gecko ( Eublepharis macularius ) presented for lethargy, hyporexia, weight loss, decreased passage of waste, and a palpable caudal coelomic mass. Computed tomography showed a heterogeneous hyperattenuating (∼143 Hounsfield units) structure within the right caudal coelom. The distal colon-coprodeum lumen or urinary bladder was hypothesized as the most likely location for the heterogeneous structure. Medical support consisted of warm water and lubricant enema, as well as a heated environment. Medical intervention aided the passage of a plug comprised centrally of cholesterol and urates with peripheral stratified layers of fibrin, macrophages, heterophils, and bacteria. Within 24 hr, a follow-up computed tomography scan showed resolution of the pelvic canal plug.
Computer-aided diagnosis with potential application to rapid detection of disease outbreaks.
Burr, Tom; Koster, Frederick; Picard, Rick; Forslund, Dave; Wokoun, Doug; Joyce, Ed; Brillman, Judith; Froman, Phil; Lee, Jack
2007-04-15
Our objectives are to quickly interpret symptoms of emergency patients to identify likely syndromes and to improve population-wide disease outbreak detection. We constructed a database of 248 syndromes, each syndrome having an estimated probability of producing any of 85 symptoms, with some two-way, three-way, and five-way probabilities reflecting correlations among symptoms. Using these multi-way probabilities in conjunction with an iterative proportional fitting algorithm allows estimation of full conditional probabilities. Combining these conditional probabilities with misdiagnosis error rates and incidence rates via Bayes theorem, the probability of each syndrome is estimated. We tested a prototype of computer-aided differential diagnosis (CADDY) on simulated data and on more than 100 real cases, including West Nile Virus, Q fever, SARS, anthrax, plague, tularaemia and toxic shock cases. We conclude that: (1) it is important to determine whether the unrecorded positive status of a symptom means that the status is negative or that the status is unknown; (2) inclusion of misdiagnosis error rates produces more realistic results; (3) the naive Bayes classifier, which assumes all symptoms behave independently, is slightly outperformed by CADDY, which includes available multi-symptom information on correlations; as more information regarding symptom correlations becomes available, the advantage of CADDY over the naive Bayes classifier should increase; (4) overlooking low-probability, high-consequence events is less likely if the standard output summary is augmented with a list of rare syndromes that are consistent with observed symptoms, and (5) accumulating patient-level probabilities across a larger population can aid in biosurveillance for disease outbreaks. c 2007 John Wiley & Sons, Ltd.
Komeda, Yoriaki; Handa, Hisashi; Watanabe, Tomohiro; Nomura, Takanobu; Kitahashi, Misaki; Sakurai, Toshiharu; Okamoto, Ayana; Minami, Tomohiro; Kono, Masashi; Arizumi, Tadaaki; Takenaka, Mamoru; Hagiwara, Satoru; Matsui, Shigenaga; Nishida, Naoshi; Kashida, Hiroshi; Kudo, Masatoshi
2017-01-01
Computer-aided diagnosis (CAD) is becoming a next-generation tool for the diagnosis of human disease. CAD for colon polyps has been suggested as a particularly useful tool for trainee colonoscopists, as the use of a CAD system avoids the complications associated with endoscopic resections. In addition to conventional CAD, a convolutional neural network (CNN) system utilizing artificial intelligence (AI) has been developing rapidly over the past 5 years. We attempted to generate a unique CNN-CAD system with an AI function that studied endoscopic images extracted from movies obtained with colonoscopes used in routine examinations. Here, we report our preliminary results of this novel CNN-CAD system for the diagnosis of colon polyps. A total of 1,200 images from cases of colonoscopy performed between January 2010 and December 2016 at Kindai University Hospital were used. These images were extracted from the video of actual endoscopic examinations. Additional video images from 10 cases of unlearned processes were retrospectively assessed in a pilot study. They were simply diagnosed as either an adenomatous or nonadenomatous polyp. The number of images used by AI to learn to distinguish adenomatous from nonadenomatous was 1,200:600. These images were extracted from the videos of actual endoscopic examinations. The size of each image was adjusted to 256 × 256 pixels. A 10-hold cross-validation was carried out. The accuracy of the 10-hold cross-validation is 0.751, where the accuracy is the ratio of the number of correct answers over the number of all the answers produced by the CNN. The decisions by the CNN were correct in 7 of 10 cases. A CNN-CAD system using routine colonoscopy might be useful for the rapid diagnosis of colorectal polyp classification. Further prospective studies in an in vivo setting are required to confirm the effectiveness of a CNN-CAD system in routine colonoscopy. © 2017 S. Karger AG, Basel.
Role of Gist and PHOG Features in Computer-Aided Diagnosis of Tuberculosis without Segmentation
Chauhan, Arun; Chauhan, Devesh; Rout, Chittaranjan
2014-01-01
Purpose Effective diagnosis of tuberculosis (TB) relies on accurate interpretation of radiological patterns found in a chest radiograph (CXR). Lack of skilled radiologists and other resources, especially in developing countries, hinders its efficient diagnosis. Computer-aided diagnosis (CAD) methods provide second opinion to the radiologists for their findings and thereby assist in better diagnosis of cancer and other diseases including TB. However, existing CAD methods for TB are based on the extraction of textural features from manually or semi-automatically segmented CXRs. These methods are prone to errors and cannot be implemented in X-ray machines for automated classification. Methods Gabor, Gist, histogram of oriented gradients (HOG), and pyramid histogram of oriented gradients (PHOG) features extracted from the whole image can be implemented into existing X-ray machines to discriminate between TB and non-TB CXRs in an automated manner. Localized features were extracted for the above methods using various parameters, such as frequency range, blocks and region of interest. The performance of these features was evaluated against textural features. Two digital CXR image datasets (8-bit DA and 14-bit DB) were used for evaluating the performance of these features. Results Gist (accuracy 94.2% for DA, 86.0% for DB) and PHOG (accuracy 92.3% for DA, 92.0% for DB) features provided better results for both the datasets. These features were implemented to develop a MATLAB toolbox, TB-Xpredict, which is freely available for academic use at http://sourceforge.net/projects/tbxpredict/. This toolbox provides both automated training and prediction modules and does not require expertise in image processing for operation. Conclusion Since the features used in TB-Xpredict do not require segmentation, the toolbox can easily be implemented in X-ray machines. This toolbox can effectively be used for the mass screening of TB in high-burden areas with improved efficiency. PMID:25390291
COINGRAD; Control Oriented Interactive Graphical Analysis and Design.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
The computer is currently a vital tool in engineering analysis and design. With the introduction of moderately priced graphics terminals, it will become even more important in the future as rapid graphic interaction between the engineer and the computer becomes more feasible in computer-aided design (CAD). To provide a vehicle for introducing…
Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis
NASA Technical Reports Server (NTRS)
Kopp, H.; Trettau, R.; Zolotar, B.
1984-01-01
The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.
Computer-aided drug design for AMP-activated protein kinase activators.
Wang, Zhanli; Huo, Jianxin; Sun, Lidan; Wang, Yongfu; Jin, Hongwei; Yu, Hui; Zhang, Liangren; Zhou, Lishe
2011-09-01
AMP-activated protein kinase (AMPK) is an important therapeutic target for the potential treatment of metabolic disorders, cardiovascular disease and cancer. Recently, various classes of compounds that activate AMPK by direct or indirect interactions have been reported. The importance of computer-aided drug design approaches in the search for potent activators of AMPK is now established, including structure-based design, ligand-based design, fragment-based design, as well as structural analysis. This review article highlights the computer-aided drug design approaches utilized to discover of activators targeting AMPK. The principles, advantages or limitation of the different methods are also being discussed together with examples of applications taken from the literatures.
Toward a standard reference database for computer-aided mammography
NASA Astrophysics Data System (ADS)
Oliveira, Júlia E. E.; Gueld, Mark O.; de A. Araújo, Arnaldo; Ott, Bastian; Deserno, Thomas M.
2008-03-01
Because of the lack of mammography databases with a large amount of codified images and identified characteristics like pathology, type of breast tissue, and abnormality, there is a problem for the development of robust systems for computer-aided diagnosis. Integrated to the Image Retrieval in Medical Applications (IRMA) project, we present an available mammography database developed from the union of: The Mammographic Image Analysis Society Digital Mammogram Database (MIAS), The Digital Database for Screening Mammography (DDSM), the Lawrence Livermore National Laboratory (LLNL), and routine images from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Using the IRMA code, standardized coding of tissue type, tumor staging, and lesion description was developed according to the American College of Radiology (ACR) tissue codes and the ACR breast imaging reporting and data system (BI-RADS). The import was done automatically using scripts for image download, file format conversion, file name, web page and information file browsing. Disregarding the resolution, this resulted in a total of 10,509 reference images, and 6,767 images are associated with an IRMA contour information feature file. In accordance to the respective license agreements, the database will be made freely available for research purposes, and may be used for image based evaluation campaigns such as the Cross Language Evaluation Forum (CLEF). We have also shown that it can be extended easily with further cases imported from a picture archiving and communication system (PACS).
Opportunistic Neurologic Infections in Patients with Acquired Immunodeficiency Syndrome (AIDS).
Albarillo, Fritzie; O'Keefe, Paul
2016-01-01
Infections of the central nervous system (CNS) in individuals with human immunodeficiency virus (HIV) remain a substantial cause of morbidity and mortality despite the introduction of highly active antiretroviral therapy (HAART) especially in the resource-limited regions of the world. Diagnosis of these infections may be challenging because findings on cerebrospinal fluid (CSF) analysis and brain imaging are nonspecific. While brain biopsy provides a definitive diagnosis, it is an invasive procedure associated with a relatively low mortality rate, thus less invasive modalities have been studied in recent years. Diagnosis, therefore, can be established based on a combination of a compatible clinical syndrome, radiologic and CSF findings, and understanding of the role of HIV in these infections. The most common CNS opportunistic infections are AIDS-defining conditions; thus, treatment of these infections in combination with HAART has greatly improved survival.
Computer-aided diagnostic approach of dermoscopy images acquiring relevant features
NASA Astrophysics Data System (ADS)
Castillejos-Fernández, H.; Franco-Arcega, A.; López-Ortega, O.
2016-09-01
In skin cancer detection, automated analysis of borders, colors, and structures of a lesion relies upon an accurate segmentation process and it is an important first step in any Computer-Aided Diagnosis (CAD) system. However, irregular and disperse lesion borders, low contrast, artifacts in images and variety of colors within the interest region make the problem difficult. In this paper, we propose an efficient approach of automatic classification which considers specific lesion features. First, for the selection of lesion skin we employ the segmentation algorithm W-FCM.1 Then, in the feature extraction stage we consider several aspects: the area of the lesion, which is calculated by correlating axes and we calculate the specific the value of asymmetry in both axes. For color analysis we employ an ensemble of clusterers including K-Means, Fuzzy K-Means and Kohonep maps, all of which estimate the presence of one or more colors defined in ABCD rule and the values for each of the segmented colors. Another aspect to consider is the type of structures that appear in the lesion Those are defined by using the ell-known GLCM method. During the classification stage we compare several methods in order to define if the lesion is benign or malignant. An important contribution of the current approach in segmentation-classification problem resides in the use of information from all color channels together, as well as the measure of each color in the lesion and the axes correlation. The segmentation and classification measures have been performed using sensibility, specificity, accuracy and AUC metric over a set of dermoscopy images from ISDIS data set
NASA Technical Reports Server (NTRS)
STACK S. H.
1981-01-01
A computer-aided design system has recently been developed specifically for the small research group environment. The system is implemented on a Prime 400 minicomputer linked with a CDC 6600 computer. The goal was to assign the minicomputer specific tasks, such as data input and graphics, thereby reserving the large mainframe computer for time-consuming analysis codes. The basic structure of the design system consists of GEMPAK, a computer code that generates detailed configuration geometry from a minimum of input; interface programs that reformat GEMPAK geometry for input to the analysis codes; and utility programs that simplify computer access and data interpretation. The working system has had a large positive impact on the quantity and quality of research performed by the originating group. This paper describes the system, the major factors that contributed to its particular form, and presents examples of its application.
Progressive data transmission for anatomical landmark detection in a cloud.
Sofka, M; Ralovich, K; Zhang, J; Zhou, S K; Comaniciu, D
2012-01-01
In the concept of cloud-computing-based systems, various authorized users have secure access to patient records from a number of care delivery organizations from any location. This creates a growing need for remote visualization, advanced image processing, state-of-the-art image analysis, and computer aided diagnosis. This paper proposes a system of algorithms for automatic detection of anatomical landmarks in 3D volumes in the cloud computing environment. The system addresses the inherent problem of limited bandwidth between a (thin) client, data center, and data analysis server. The problem of limited bandwidth is solved by a hierarchical sequential detection algorithm that obtains data by progressively transmitting only image regions required for processing. The client sends a request to detect a set of landmarks for region visualization or further analysis. The algorithm running on the data analysis server obtains a coarse level image from the data center and generates landmark location candidates. The candidates are then used to obtain image neighborhood regions at a finer resolution level for further detection. This way, the landmark locations are hierarchically and sequentially detected and refined. Only image regions surrounding landmark location candidates need to be trans- mitted during detection. Furthermore, the image regions are lossy compressed with JPEG 2000. Together, these properties amount to at least 30 times bandwidth reduction while achieving similar accuracy when compared to an algorithm using the original data. The hierarchical sequential algorithm with progressive data transmission considerably reduces bandwidth requirements in cloud-based detection systems.
Computer-Aided Design Of Turbine Blades And Vanes
NASA Technical Reports Server (NTRS)
Hsu, Wayne Q.
1988-01-01
Quasi-three-dimensional method for determining aerothermodynamic configuration of turbine uses computer-interactive analysis and design and computer-interactive graphics. Design procedure executed rapidly so designer easily repeats it to arrive at best performance, size, structural integrity, and engine life. Sequence of events in aerothermodynamic analysis and design starts with engine-balance equations and ends with boundary-layer analysis and viscous-flow calculations. Analysis-and-design procedure interactive and iterative throughout.
Caro-Murillo, Ana María; Gil Luciano, Ana; Navarro Rubio, Gemma; Leal Noval, Manuel; Blanco Ramos, José Ramón
2010-04-24
To describe the characteristics of HIV infected adults according to their age at recruitment in CoRIS. Analysis of an open, prospective, multicentric cohort of HIV+ adults without previous antiretroviral treatment, attended for the first time from January/2004 to November/2008, in 28 Spanish hospitals (CoRIS). We analyzed their characteristics at recruitment and the distribution of AIDS defining illnesses (ADI) prior to cohort entry and during follow up, according to their age at recruitment. Delayed diagnosis was defined as a patient with AIDS diagnosis and/or CD4+ cell count lower than 200 cells/microl within the first year after HIV diagnosis. Of 4,418 patients included, 30.4% were < or =30 years old, 60.6% between 31 and 50 and 8.9% older than 50 at cohort entry; 31.6% of patients were immigrants (44.1% in the youngest group), 79.6% had been sexually transmitted and 15.2% had an AIDS diagnosis at cohort entry (28.1% between those older than 50). In 34.6% of cases there was a late diagnosis (53.3% in the oldest group). The ADIs varied according to age; tuberculosis was more frequent in the youngest. Pneumocystis jiroveci pneumonia, progressive multifocal leukoencephalopathy, HIV related encephalopathy, recurrent pneumonia and primary lymphoma of brain were more frequent among the oldest. The immunological characteristics and the distribution of ADIs varied according to age. The proportion of late diagnosis was unacceptably high, suggesting the need of specific interventions designed to promote earlier diagnosis. 2009 Elsevier España, S.L. All rights reserved.
A study on spatial decision support systems for HIV/AIDS prevention based on COM GIS technology
NASA Astrophysics Data System (ADS)
Yang, Kun; Luo, Huasong; Peng, Shungyun; Xu, Quanli
2007-06-01
Based on the deeply analysis of the current status and the existing problems of GIS technology applications in Epidemiology, this paper has proposed the method and process for establishing the spatial decision support systems of AIDS epidemic prevention by integrating the COM GIS, Spatial Database, GPS, Remote Sensing, and Communication technologies, as well as ASP and ActiveX software development technologies. One of the most important issues for constructing the spatial decision support systems of AIDS epidemic prevention is how to integrate the AIDS spreading models with GIS. The capabilities of GIS applications in the AIDS epidemic prevention have been described here in this paper firstly. Then some mature epidemic spreading models have also been discussed for extracting the computation parameters. Furthermore, a technical schema has been proposed for integrating the AIDS spreading models with GIS and relevant geospatial technologies, in which the GIS and model running platforms share a common spatial database and the computing results can be spatially visualized on Desktop or Web GIS clients. Finally, a complete solution for establishing the decision support systems of AIDS epidemic prevention has been offered in this paper based on the model integrating methods and ESRI COM GIS software packages. The general decision support systems are composed of data acquisition sub-systems, network communication sub-systems, model integrating sub-systems, AIDS epidemic information spatial database sub-systems, AIDS epidemic information querying and statistical analysis sub-systems, AIDS epidemic dynamic surveillance sub-systems, AIDS epidemic information spatial analysis and decision support sub-systems, as well as AIDS epidemic information publishing sub-systems based on Web GIS.
Schwingenschuh, P; Deuschl, G
2016-01-01
Functional tremor is the commonest reported functional movement disorder. A confident clinical diagnosis of functional tremor is often possible based on the following "positive" criteria: a sudden tremor onset, unusual disease course, often with fluctuations or remissions, distractibility of the tremor if attention is removed from the affected body part, tremor entrainment, tremor variability, and a coactivation sign. Many patients show excessive exhaustion during examination. Other somatizations may be revealed in the medical history and patients may show additional functional neurologic symptoms and signs. In cases where the clinical diagnosis remains challenging, providing a "laboratory-supported" level of certainty aids an early positive diagnosis. In rare cases, in which the distinction from Parkinson's disease is difficult, dopamine transporter single-photon emission computed tomography (DAT-SPECT) can be indicated. © 2016 Elsevier B.V. All rights reserved.
Cerebellar toxoplasmosis in HIV/AIDS infant: case report and review of the literature.
Ibebuike, Kaunda; Mantanga, Leo; Emereole, Obioma; Ndolo, Patrice; Kajee, Afsana; Gopal, Rasik; Pather, Sugeshnee
2012-12-01
Cerebellar mass lesion is an uncommon presentation of toxoplasmosis. The authors report one rare case in an 11-month-old HIV/AIDS female infant who presented with deterioration in her developmental milestones. CT scan revealed a ring-enhancing mass lesion in the right cerebellar hemisphere with secondary obstructive hydrocephalus. A ventriculoperitoneal shunt was inserted prior to posterior fossa decompression and biopsy of the lesion. The specimens obtained were divided into two. One specimen was sent for histological diagnosis immediately after surgery while the second specimen was preserved until the release of the histology report. The initial histopathology report indicated a neoplastic process. Immunohistochemical stains were attempted but interpreted with difficulty due to severe tissue necrosis. After waiting for close to 6 weeks without a definite histological diagnosis, the preserved second specimen was sent for histological analysis as a fresh specimen, and reported a diagnosis of toxoplasmosis. This case presented diagnostic challenges to the authors whose radiological impressions of either a neoplastic lesion or a tuberculoma (based on our local neuroepidemiology) were reinforced by intraoperative findings highly suggestive of tuberculoma but which contrasted with the histological report, first as a neoplastic lesion and later toxoplasmosis. Although cerebellar toxoplasmosis is a rare complication of HIV/AIDS, this case report shows that toxoplasmosis should not be overlooked as a differential diagnosis of ring-enhancing cerebellar masses in HIV/AIDS patients irrespective of the patient's age and the absence of constitutional symptoms of toxoplasmosis.
Abdominal hernias: Radiological features
Lassandro, Francesco; Iasiello, Francesca; Pizza, Nunzia Luisa; Valente, Tullio; Stefano, Maria Luisa Mangoni di Santo; Grassi, Roberto; Muto, Roberto
2011-01-01
Abdominal wall hernias are common diseases of the abdomen with a global incidence approximately 4%-5%. They are distinguished in external, diaphragmatic and internal hernias on the basis of their localisation. Groin hernias are the most common with a prevalence of 75%, followed by femoral (15%) and umbilical (8%). There is a higher prevalence in males (M:F, 8:1). Diagnosis is usually made on physical examination. However, clinical diagnosis may be difficult, especially in patients with obesity, pain or abdominal wall scarring. In these cases, abdominal imaging may be the first clue to the correct diagnosis and to confirm suspected complications. Different imaging modalities are used: conventional radiographs or barium studies, ultrasonography and Computed Tomography. Imaging modalities can aid in the differential diagnosis of palpable abdominal wall masses and can help to define hernial contents such as fatty tissue, bowel, other organs or fluid. This work focuses on the main radiological findings of abdominal herniations. PMID:21860678
Integrating computer programs for engineering analysis and design
NASA Technical Reports Server (NTRS)
Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.
1983-01-01
The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.
The effect of feature selection methods on computer-aided detection of masses in mammograms
NASA Astrophysics Data System (ADS)
Hupse, Rianne; Karssemeijer, Nico
2010-05-01
In computer-aided diagnosis (CAD) research, feature selection methods are often used to improve generalization performance of classifiers and shorten computation times. In an application that detects malignant masses in mammograms, we investigated the effect of using a selection criterion that is similar to the final performance measure we are optimizing, namely the mean sensitivity of the system in a predefined range of the free-response receiver operating characteristics (FROC). To obtain the generalization performance of the selected feature subsets, a cross validation procedure was performed on a dataset containing 351 abnormal and 7879 normal regions, each region providing a set of 71 mass features. The same number of noise features, not containing any information, were added to investigate the ability of the feature selection algorithms to distinguish between useful and non-useful features. It was found that significantly higher performances were obtained using feature sets selected by the general test statistic Wilks' lambda than using feature sets selected by the more specific FROC measure. Feature selection leads to better performance when compared to a system in which all features were used.
Efficient method for events detection in phonocardiographic signals
NASA Astrophysics Data System (ADS)
Martinez-Alajarin, Juan; Ruiz-Merino, Ramon
2005-06-01
The auscultation of the heart is still the first basic analysis tool used to evaluate the functional state of the heart, as well as the first indicator used to submit the patient to a cardiologist. In order to improve the diagnosis capabilities of auscultation, signal processing algorithms are currently being developed to assist the physician at primary care centers for adult and pediatric population. A basic task for the diagnosis from the phonocardiogram is to detect the events (main and additional sounds, murmurs and clicks) present in the cardiac cycle. This is usually made by applying a threshold and detecting the events that are bigger than the threshold. However, this method usually does not allow the detection of the main sounds when additional sounds and murmurs exist, or it may join several events into a unique one. In this paper we present a reliable method to detect the events present in the phonocardiogram, even in the presence of heart murmurs or additional sounds. The method detects relative maxima peaks in the amplitude envelope of the phonocardiogram, and computes a set of parameters associated with each event. Finally, a set of characteristics is extracted from each event to aid in the identification of the events. Besides, the morphology of the murmurs is also detected, which aids in the differentiation of different diseases that can occur in the same temporal localization. The algorithms have been applied to real normal heart sounds and murmurs, achieving satisfactory results.