Comparative study viruses with computer-aided phase microscope AIRYSCAN
NASA Astrophysics Data System (ADS)
Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.
1996-12-01
Traditionally viruses are studied with scanning electron microscopy (SEM) after complicated procedure of sample preparation without the possibility to study it under natural conditions. We obtained images of viruses (Vaccinia virus, Rotavirus) and rickettsias (Rickettsia provazekii, Coxiella burnetti) in native state with computer-aided phase microscope airyscan -- the interference microscope of Linnik layout with phase modulation of the reference wave with dissector image tube as coordinate-sensitive photodetector and computer processing of phase image. A light source was the He-Ne laser. The main result is coincidence of dimensions and shape of phase images with available information concerning their morphology obtained with SEM and other methods. The fine structure of surface and nuclei is observed. This method may be applied for virus recognition and express identification, investigation of virus structure and the analysis of cell-virus interaction.
Pliasunova, S A; Balugian, R Sh; Khmel'nitskiĭ, K E; Medovyĭ, V S; Parpara, A A; Piatnitskiĭ, A M; Sokolinskiĭ, B Z; Dem'ianov, V L; Nikolaenko, D S
2006-10-01
The paper presents the results of medical tests of a group of computer-aided procedures for microscopic analysis by means of a MECOS-Ts2 complex (ZAO "MECOS", Russia), which have been conducted at the Republican Children's Clinical Hospital, the Research Institute of Emergency Pediatric Surgery and Traumatology, and Moscow City Clinical Hospital No. 23. Computer-aided procedures for calculating the differential count and for analyzing the morphology of red blood cells were tested on blood smears from a total of 443 patients and donors, computer-aided calculation of the count of reticulocytes was tested on 318 smears. The tests were carried out under the US standard NCCLS-H20A. Manual microscopy (443 smears) and flow blood analysis on a Coulter GEN*S (125 smears) were used as reference methods. The quality of collection of samples and laboriousness were additionally assessed. The certified MECOS-Ts2 subsystems were additionally used as reference tools. The tests indicated the advantage of computer-aided MECOS-Tsl2 complex microscopy over manual microscopy.
NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering |
lithium-ion (Li-ion) batteries, known as a multi-scale multi-domain (GH-MSMD) model framework, was News | NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering March 16, 2016 NREL researcher looks across
Freeform surface measurement and characterisation using a toolmakers microscope
NASA Astrophysics Data System (ADS)
Seung-yin Wong, Francis; Chauh, Kong-Bieng; Venuvinod, Patri K.
2014-03-01
Current freeform surface (FFS) characterization systems mainly cover aspects related to computer-aided design/manufacture (CAD/CAM). This paper describes a new approach that extends into computer-aided inspection (CAI).The following novel features are addressed: blacksquare Feature recognition and extraction from surface data blacksquare Characterisation of properties of the surface's M and N vectors at individual vertex blacksquare Development of a measuring plan using a toolmakers microscope for the inspection of the FFS blacksquare Inspection of the actual FFS produced by CNC milling blacksquare Verification of the measurement results and comparison with the CAD design data Tests have shown that the deviations between the CAI and CAD data were within the estimated uncertainty limits.
Sharp-Focus Composite Microscope Imaging by Computer
NASA Technical Reports Server (NTRS)
Wall, R. J.
1983-01-01
Enhanced depth of focus aids medical analysis. Computer image-processing system synthesizes sharply-focused composite picture from series of photomicrographs of same object taken at different depths. Computer rejects blured parts of each photomicrograph. Remaining in focus portions form focused composite. System used to study alveolar lung tissue and has applications in medicine and physical sciences.
High-resolution electron microscope
NASA Technical Reports Server (NTRS)
Nathan, R.
1977-01-01
Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.
Particle-Based Simulations of Microscopic Thermal Properties of Confined Systems
2014-11-01
velocity versus electric field in gallium arsenide (GaAs) computed with the original CMC table structure (squares) at temperature T=150K, and the new...computer-aided design Cellular Monte Carlo Ensemble Monte Carlo gallium arsenide Heat Transport Equation DARPA Defense Advanced Research Projects
Microscopic medical image classification framework via deep learning and shearlet transform.
Rezaeilouyeh, Hadi; Mollahosseini, Ali; Mahoor, Mohammad H
2016-10-01
Cancer is the second leading cause of death in US after cardiovascular disease. Image-based computer-aided diagnosis can assist physicians to efficiently diagnose cancers in early stages. Existing computer-aided algorithms use hand-crafted features such as wavelet coefficients, co-occurrence matrix features, and recently, histogram of shearlet coefficients for classification of cancerous tissues and cells in images. These hand-crafted features often lack generalizability since every cancerous tissue and cell has a specific texture, structure, and shape. An alternative approach is to use convolutional neural networks (CNNs) to learn the most appropriate feature abstractions directly from the data and handle the limitations of hand-crafted features. A framework for breast cancer detection and prostate Gleason grading using CNN trained on images along with the magnitude and phase of shearlet coefficients is presented. Particularly, we apply shearlet transform on images and extract the magnitude and phase of shearlet coefficients. Then we feed shearlet features along with the original images to our CNN consisting of multiple layers of convolution, max pooling, and fully connected layers. Our experiments show that using the magnitude and phase of shearlet coefficients as extra information to the network can improve the accuracy of detection and generalize better compared to the state-of-the-art methods that rely on hand-crafted features. This study expands the application of deep neural networks into the field of medical image analysis, which is a difficult domain considering the limited medical data available for such analysis.
A constitutive model and numerical simulation of sintering processes at macroscopic level
NASA Astrophysics Data System (ADS)
Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy
2018-01-01
This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.
Ghane, Narjes; Vard, Alireza; Talebi, Ardeshir; Nematollahy, Pardis
2017-01-01
Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis system that assists pathologists in the diagnostic process can be so effective. Segmentation of WBCs is usually a first step in developing a computer-aided diagnosis system. The main purpose of this paper is to segment WBCs from microscopic images. For this purpose, we present a novel combination of thresholding, k-means clustering, and modified watershed algorithms in three stages including (1) segmentation of WBCs from a microscopic image, (2) extraction of nuclei from cell's image, and (3) separation of overlapping cells and nuclei. The evaluation results of the proposed method show that similarity measures, precision, and sensitivity respectively were 92.07, 96.07, and 94.30% for nucleus segmentation and 92.93, 97.41, and 93.78% for cell segmentation. In addition, statistical analysis presents high similarity between manual segmentation and the results obtained by the proposed method.
Telecentric 3D profilometry based on phase-shifting fringe projection.
Li, Dong; Liu, Chunyang; Tian, Jindong
2014-12-29
Three dimensional shape measurement in the microscopic range becomes increasingly important with the development of micro manufacturing technology. Microscopic fringe projection techniques offer a fast, robust, and full-field measurement for field sizes from approximately 1 mm2 to several cm2. However, the depth of field is very small due to the imaging of non-telecentric microscope, which is often not sufficient to measure the complete depth of a 3D-object. And the calibration of phase-to-depth conversion is complicated which need a precision translation stage and a reference plane. In this paper, we propose a novel telecentric phase-shifting projected fringe profilometry for small and thick objects. Telecentric imaging extends the depth of field approximately to millimeter order, which is much larger than that of microscopy. To avoid the complicated phase-to-depth conversion in microscopic fringe projection, we develop a new system calibration method of camera and projector based on telecentric imaging model. Based on these, a 3D reconstruction of telecentric imaging is presented with stereovision aided by fringe phase maps. Experiments demonstrated the feasibility and high measurement accuracy of the proposed system for thick object.
Lee, Wan-Sun; Kim, Woong-Chul
2015-01-01
PURPOSE To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. MATERIALS AND METHODS Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (α=.05), respectively. RESULTS The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). CONCLUSION Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (<120 µm). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced. PMID:25932310
Park, Jong-Kyoung; Lee, Wan-Sun; Kim, Hae-Young; Kim, Woong-Chul; Kim, Ji-Hwan
2015-04-01
To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (α=.05), respectively. The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (<120 µm). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced.
NASA Astrophysics Data System (ADS)
Figl, Michael; Birkfellner, Wolfgang; Watzinger, Franz; Wanschitz, Felix; Hummel, Johann; Hanel, Rudolf A.; Ewers, Rolf; Bergmann, Helmar
2002-05-01
Two main concepts of Head Mounted Displays (HMD) for augmented reality (AR) visualization exist, the optical and video-see through type. Several research groups have pursued both approaches for utilizing HMDs for computer aided surgery. While the hardware requirements for a video see through HMD to achieve acceptable time delay and frame rate seem to be enormous the clinical acceptance of such a device is doubtful from a practical point of view. Starting from previous work in displaying additional computer-generated graphics in operating microscopes, we have adapted a miniature head mounted operating microscope for AR by integrating two very small computer displays. To calibrate the projection parameters of this so called Varioscope AR we have used Tsai's Algorithm for camera calibration. Connection to a surgical navigation system was performed by defining an open interface to the control unit of the Varioscope AR. The control unit consists of a standard PC with a dual head graphics adapter to render and display the desired augmentation of the scene. We connected this control unit to a computer aided surgery (CAS) system by the TCP/IP interface. In this paper we present the control unit for the HMD and its software design. We tested two different optical tracking systems, the Flashpoint (Image Guided Technologies, Boulder, CO), which provided about 10 frames per second, and the Polaris (Northern Digital, Ontario, Canada) which provided at least 30 frames per second, both with a time delay of one frame.
Detecting Phase Boundaries in Hard-Sphere Suspensions
NASA Technical Reports Server (NTRS)
McDowell, Mark; Rogers, Richard B.; Gray, Elizabeth
2009-01-01
A special image-data-processing technique has been developed for use in experiments that involve observation, via optical microscopes equipped with electronic cameras, of moving boundaries between the colloidal-solid and colloidal-liquid phases of colloidal suspensions of monodisperse hard spheres. During an experiment, it is necessary to adjust the position of a microscope to keep the phase boundary within view. A boundary typically moves at a speed of the order of microns per hour. Because an experiment can last days or even weeks, it is impractical to require human intervention to keep the phase boundary in view. The present image-data-processing technique yields results within a computation time short enough to enable generation of automated-microscope-positioning commands to track the moving phase boundary
Computer-Aided Diagnosis of Acute Lymphoblastic Leukaemia
2018-01-01
Leukaemia is a form of blood cancer which affects the white blood cells and damages the bone marrow. Usually complete blood count (CBC) and bone marrow aspiration are used to diagnose the acute lymphoblastic leukaemia. It can be a fatal disease if not diagnosed at the earlier stage. In practice, manual microscopic evaluation of stained sample slide is used for diagnosis of leukaemia. But manual diagnostic methods are time-consuming, less accurate, and prone to errors due to various human factors like stress, fatigue, and so forth. Therefore, different automated systems have been proposed to wrestle the glitches in the manual diagnostic methods. In recent past, some computer-aided leukaemia diagnosis methods are presented. These automated systems are fast, reliable, and accurate as compared to manual diagnosis methods. This paper presents review of computer-aided diagnosis systems regarding their methodologies that include enhancement, segmentation, feature extraction, classification, and accuracy. PMID:29681996
A Computer-Aided Distinction Method of Borderline Grades of Oral Cancer
NASA Astrophysics Data System (ADS)
Sami, Mustafa M.; Saito, Masahisa; Muramatsu, Shogo; Kikuchi, Hisakazu; Saku, Takashi
We have developed a new computer-aided diagnostic system for differentiating oral borderline malignancies in hematoxylin-eosin stained microscopic images. Epithelial dysplasia and carcinoma in-situ (CIS) of oral mucosa are two different borderline grades similar to each other, and it is difficult to distinguish between them. A new image processing and analysis method has been applied to a variety of histopathological features and shows the possibility for differentiating the oral cancer borderline grades automatically. The method is based on comparing the drop-shape similarity level in a particular manually selected pair of neighboring rete ridges. It was found that the considered similarity level in dysplasia was higher than those in epithelial CIS, of which pathological diagnoses were conventionally made by pathologists. The developed image processing method showed a good promise for the computer-aided pathological assessment of oral borderline malignancy differentiation in clinical practice.
SAMO (Sistema de Apoyo Mechanizado a la Operacion): An operational aids computer system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stormer, T.D.; Laflor, E.V.
1989-01-01
SAMO (Sistema de Apoyo Mechanizado a la Operacion) is a sensor-driven, computer-based, graphic display system designed by Westinghouse to aid the A. N. Asco operations staff during all modes of plant operations, including emergencies. The SAMO system is being implemented in the A. N. Asco plant in two phases that coincide with consecutive refueling outages for each of two nuclear units at the Asco site. Phase 1 of the SAMO system implements the following functions: (1) emergency operational aids, (2) postaccident monitoring, (3) plant graphics display, (4) high-speed transient analysis recording, (5) historical data collection, storage, and retrieval, (6) sequencemore » of events, and (7) posttrip review. During phase 2 of the SAMO project, the current plant computer will be removed and the functions now performed by the plant computer will be performed by the SAMO system. In addition, the following functions will be implemented: (1) normal and simple transients operational aid, (2) plant information graphics; and (3) real-time radiological off-site dose calculation.« less
Statistical and Microscopic Approach to Gas Phase Chemical Kinetics.
ERIC Educational Resources Information Center
Perez, J. M.; Quereda, R.
1983-01-01
Describes advanced undergraduate laboratory exercise examining the dependence of the rate constants and the instantaneous concentrations with the nature and energy content in a gas-phase complex reaction. Computer program (with instructions and computation flow charts) used with the exercise is available from the author. (Author/JN)
NASA Astrophysics Data System (ADS)
Patel, Nimit R.; Chhaniwal, Vani K.; Javidi, Bahram; Anand, Arun
2015-07-01
Development of devices for automatic identification of diseases is desired especially in developing countries. In the case of malaria, even today the gold standard is the inspection of chemically treated blood smears through a microscope. This requires a trained technician/microscopist to identify the cells in the field of view, with which the labeling chemicals gets attached. Bright field microscopes provide only low contrast 2D images of red blood cells and cell thickness distribution cannot be obtained. Quantitative phase contrast microscopes can provide both intensity and phase profiles of the cells under study. The phase information can be used to determine thickness profile of the cell. Since cell morphology is available, many parameters pertaining to the 3D shape of the cell can be computed. These parameters in turn could be used to decide about the state of health of the cell leading to disease diagnosis. Here the investigations done on digital holographic microscope, which provides quantitative phase images, for comparison of parameters obtained from the 3D shape profile of objects leading to identification of diseased samples is described.
Directed polymers on a disordered tree with a defect subtree
NASA Astrophysics Data System (ADS)
Madras, Neal; Yıldırım, Gökhan
2018-04-01
We study the question of how the competition between bulk disorder and a localized microscopic defect affects the macroscopic behavior of a system in the directed polymer context at the free energy level. We consider the directed polymer model on a disordered d-ary tree and represent the localized microscopic defect by modifying the disorder distribution at each vertex in a single path (branch), or in a subtree, of the tree. The polymer must choose between following the microscopic defect and finding the best branches through the bulk disorder. We describe three possible phases, called the fully pinned, partially pinned and depinned phases. When the microscopic defect is associated only with a single branch, we compute the free energy and the critical curve of the model, and show that the partially pinned phase does not occur. When the localized microscopic defect is associated with a non-disordered regular subtree of the disordered tree, the picture is more complicated. We prove that all three phases are non-empty below a critical temperature, and that the partially pinned phase disappears above the critical temperature.
Program Aids Design Of Fluid-Circulating Systems
NASA Technical Reports Server (NTRS)
Bacskay, Allen; Dalee, Robert
1992-01-01
Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.
Equation-free multiscale computation: algorithms and applications.
Kevrekidis, Ioannis G; Samaey, Giovanni
2009-01-01
In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.
NASA Astrophysics Data System (ADS)
Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh
2017-05-01
We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system
The Development of a Scanning Soft X-Ray Microscope.
NASA Astrophysics Data System (ADS)
Rarback, Harvey Miles
We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.
Multi-object tracking of human spermatozoa
NASA Astrophysics Data System (ADS)
Sørensen, Lauge; Østergaard, Jakob; Johansen, Peter; de Bruijne, Marleen
2008-03-01
We propose a system for tracking of human spermatozoa in phase-contrast microscopy image sequences. One of the main aims of a computer-aided sperm analysis (CASA) system is to automatically assess sperm quality based on spermatozoa motility variables. In our case, the problem of assessing sperm quality is cast as a multi-object tracking problem, where the objects being tracked are the spermatozoa. The system combines a particle filter and Kalman filters for robust motion estimation of the spermatozoa tracks. Further, the combinatorial aspect of assigning observations to labels in the particle filter is formulated as a linear assignment problem solved using the Hungarian algorithm on a rectangular cost matrix, making the algorithm capable of handling missing or spurious observations. The costs are calculated using hidden Markov models that express the plausibility of an observation being the next position in the track history of the particle labels. Observations are extracted using a scale-space blob detector utilizing the fact that the spermatozoa appear as bright blobs in a phase-contrast microscope. The output of the system is the complete motion track of each of the spermatozoa. Based on these tracks, different CASA motility variables can be computed, for example curvilinear velocity or straight-line velocity. The performance of the system is tested on three different phase-contrast image sequences of varying complexity, both by visual inspection of the estimated spermatozoa tracks and by measuring the mean squared error (MSE) between the estimated spermatozoa tracks and manually annotated tracks, showing good agreement.
NALDA (Naval Aviation Logistics Data Analysis) CAI (computer aided instruction)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handler, B.H.; France, P.A.; Frey, S.C.
Data Systems Engineering Organization (DSEO) personnel developed a prototype computer aided instruction CAI system for the Naval Aviation Logistics Data Analysis (NALDA) system. The objective of this project was to provide a CAI prototype that could be used as an enhancement to existing NALDA training. The CAI prototype project was performed in phases. The task undertaken in Phase I was to analyze the problem and the alternative solutions and to develop a set of recommendations on how best to proceed. The findings from Phase I are documented in Recommended CAI Approach for the NALDA System (Duncan et al., 1987). Inmore » Phase II, a structured design and specifications were developed, and a prototype CAI system was created. A report, NALDA CAI Prototype: Phase II Final Report, was written to record the findings and results of Phase II. NALDA CAI: Recommendations for an Advanced Instructional Model, is comprised of related papers encompassing research on computer aided instruction CAI, newly developing training technologies, instructional systems development, and an Advanced Instructional Model. These topics were selected because of their relevancy to the CAI needs of NALDA. These papers provide general background information on various aspects of CAI and give a broad overview of new technologies and their impact on the future design and development of training programs. The paper within have been index separately elsewhere.« less
Data Management Standards in Computer-aided Acquisition and Logistic Support (CALS)
NASA Technical Reports Server (NTRS)
Jefferson, David K.
1990-01-01
Viewgraphs and discussion on data management standards in computer-aided acquisition and logistic support (CALS) are presented. CALS is intended to reduce cost, increase quality, and improve timeliness of weapon system acquisition and support by greatly improving the flow of technical information. The phase 2 standards, industrial environment, are discussed. The information resource dictionary system (IRDS) is described.
ERIC Educational Resources Information Center
Lancioni, Giulio E.; O'Reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Oliva, Doretta; Alberti, Gloria; Lang, Russell
2011-01-01
This study extended the assessment of a newly developed computer-aided telephone system with two participants (adults) who presented with blindness or severe visual impairment and motor or motor and intellectual disabilities. For each participant, the study was carried out according to an ABAB design, in which the A represented baseline phases and…
Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array.
Phillips, Zachary F; D'Ambrosio, Michael V; Tian, Lei; Rulison, Jared J; Patel, Hurshal S; Sadras, Nitin; Gande, Aditya V; Switz, Neil A; Fletcher, Daniel A; Waller, Laura
2015-01-01
We demonstrate the design and application of an add-on device for improving the diagnostic and research capabilities of CellScope--a low-cost, smartphone-based point-of-care microscope. We replace the single LED illumination of the original CellScope with a programmable domed LED array. By leveraging recent advances in computational illumination, this new device enables simultaneous multi-contrast imaging with brightfield, darkfield, and phase imaging modes. Further, we scan through illumination angles to capture lightfield datasets, which can be used to recover 3D intensity and phase images without any hardware changes. This digital refocusing procedure can be used for either 3D imaging or software-only focus correction, reducing the need for precise mechanical focusing during field experiments. All acquisition and processing is performed on the mobile phone and controlled through a smartphone application, making the computational microscope compact and portable. Using multiple samples and different objective magnifications, we demonstrate that the performance of our device is comparable to that of a commercial microscope. This unique device platform extends the field imaging capabilities of CellScope, opening up new clinical and research possibilities.
Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array
Phillips, Zachary F.; D'Ambrosio, Michael V.; Tian, Lei; Rulison, Jared J.; Patel, Hurshal S.; Sadras, Nitin; Gande, Aditya V.; Switz, Neil A.; Fletcher, Daniel A.; Waller, Laura
2015-01-01
We demonstrate the design and application of an add-on device for improving the diagnostic and research capabilities of CellScope—a low-cost, smartphone-based point-of-care microscope. We replace the single LED illumination of the original CellScope with a programmable domed LED array. By leveraging recent advances in computational illumination, this new device enables simultaneous multi-contrast imaging with brightfield, darkfield, and phase imaging modes. Further, we scan through illumination angles to capture lightfield datasets, which can be used to recover 3D intensity and phase images without any hardware changes. This digital refocusing procedure can be used for either 3D imaging or software-only focus correction, reducing the need for precise mechanical focusing during field experiments. All acquisition and processing is performed on the mobile phone and controlled through a smartphone application, making the computational microscope compact and portable. Using multiple samples and different objective magnifications, we demonstrate that the performance of our device is comparable to that of a commercial microscope. This unique device platform extends the field imaging capabilities of CellScope, opening up new clinical and research possibilities. PMID:25969980
Tourtellotte, W G; Lawrence, D T; Getting, P A; Van Hoesen, G W
1989-07-01
This report describes a computerized microscope charting system based on the IBM personal computer or compatible. Stepping motors are used to control the movement of the microscope stage and to encode its position by hand manipulation of a joystick. Tissue section contours and the location of cells labeled with various compounds are stored by the computer, plotted at any magnification and manipulated into composites created from several charted sections. The system has many advantages: (1) it is based on an industry standardized computer that is affordable and familiar; (2) compact and commercially available stepping motor microprocessors control the stage movement. These controllers increase reliability, simplify implementation, and increase efficiency by relieving the computer of time consuming control tasks; (3) the system has an interactive graphics interface allowing the operator to view the image during data collection. Regions of the graphics display can be enlarged during the charting process to provide higher resolution and increased accuracy; (4) finally, the digitized data are stored at 0.5 micron resolution and can be routed directly to a multi-pen plotter or exported to a computer-aided design (CAD) program to generate a publication-quality montage composed of several computerized chartings. The system provides a useful tool for the acquisition and qualitative analysis of data representing stained cells or chemical markers in tissue. The modular design, together with data storage at high resolution, allows for potential analytical enhancements involving planimetric, stereologic and 3-D serial section reconstruction.
High-resolution computer-aided moire
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Bhat, Gopalakrishna K.
1991-12-01
This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.
Microscopic Studies of Quantum Phase Transitions in Optical Lattices
NASA Astrophysics Data System (ADS)
Bakr, Waseem S.
2011-12-01
In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build-up near a quantum phase transition. We have demonstrated a quantum simulator in which all degrees of freedom can be read out microscopically, allowing the simulation of quantum many-body systems with manageable resources. More generally, the ability to image and manipulate individual atoms in optical lattices opens an avenue towards scalable quantum computation.
NASA Astrophysics Data System (ADS)
Tian, Lei; Waller, Laura
2017-05-01
Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.
Nucleation via an unstable intermediate phase.
Sear, Richard P
2009-08-21
The pathway for crystallization from dilute vapors and solutions is often observed to take a detour via a liquid or concentrated-solution phase. For example, in moist subzero air, droplets of liquid water form, which then freeze. In this example and in many others, an intermediate phase (here liquid water) is dramatically accelerating the kinetics of a phase transition between two other phases (water vapor and ice). Here we study this phenomenon via exact computer simulations of a simple lattice model. Surprisingly, we find that the rate of nucleation of the new equilibrium phase is actually fastest when the intermediate phase is slightly unstable in the bulk, i.e., has a slightly higher free energy than the phase we start in. Nucleation occurs at a concave part of the surface and microscopic amounts of the intermediate phase can form there even before the phase is stable in the bulk. As the nucleus of the equilibrium phase is microscopic, this allows nucleation to occur effectively in the intermediate phase before it is stable in the bulk.
Effects of Computer-Aided Manufacturing Technology on Precision of Clinical Metal-Free Restorations.
Lee, Ki-Hong; Yeo, In-Sung; Wu, Benjamin M; Yang, Jae-Ho; Han, Jung-Suk; Kim, Sung-Hun; Yi, Yang-Jin; Kwon, Taek-Ka
2015-01-01
The purpose of this study was to investigate the marginal fit of metal-free crowns made by three different computer-aided design/computer-aided manufacturing (CAD/CAM) systems. The maxillary left first premolar of a dentiform was prepared for all-ceramic crown restoration. Thirty all-ceramic premolar crowns were made, ten each manufactured by the Lava system, Cercon, and Cerec. Ten metal ceramic gold (MCG) crowns served as control. The marginal gap of each sample was measured under a stereoscopic microscope at 75x magnification after cementation. One-way ANOVA and the Duncan's post hoc test were used for data analysis at the significance level of 0.05. The mean (standard deviation) marginal gaps were 70.5 (34.4) μm for the MCG crowns, 87.2 (22.8) μm for Lava, 58.5 (17.6) μm for Cercon, and 72.3 (30.8) μm for Cerec. There were no significant differences in the marginal fit among the groups except that the Cercon crowns had significantly smaller marginal gaps than the Lava crowns (P < 0.001). Within the limitation of this study, all the metal-free restorations made by the digital CAD/CAM systems had clinically acceptable marginal accuracy.
NASA Astrophysics Data System (ADS)
Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet; Yu, Guichuan; Sasagawa, Takao; Greven, Martin; Mkhoyan, K. Andre
2018-05-01
We report the decomposition of L a2 -xS rxCu O4 into L a2O3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150 °C and is considerably expedited in the temperature range of 350 °C-450 °C. Two major resultant solid phases are identified as metallic Cu and L a2O3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, L a2O3 phases are further identified to be derivatives of a fluorite structure—fluorite, pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and La M4 ,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and L a2O3 phases remain unchanged after cooling to room temperature.
Development of a KSC test and flight engineering oriented computer language, Phase 1
NASA Technical Reports Server (NTRS)
Case, C. W.; Kinney, E. L.; Gyure, J.
1970-01-01
Ten, primarily test oriented, computer languages reviewed during the phase 1 study effort are described. Fifty characteristics of ATOLL, ATLAS, and CLASP are compared. Unique characteristics of the other languages, including deficiencies, problems, safeguards, and checking provisions are identified. Programming aids related to these languages are reported, and the conclusions resulting from this phase of the study are discussed. A glossary and bibliography are included. For the reports on phase 2 of the study, see N71-35027 and N71-35029.
Enhancing the performance of the light field microscope using wavefront coding.
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-10-06
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.
Examinations of the Chemical Step in Enzyme Catalysis.
Singh, P; Islam, Z; Kohen, A
2016-01-01
Advances in computational and experimental methods in enzymology have aided comprehension of enzyme-catalyzed chemical reactions. The main difficulty in comparing computational findings to rate measurements is that the first examines a single energy barrier, while the second frequently reflects a combination of many microscopic barriers. We present here intrinsic kinetic isotope effects and their temperature dependence as a useful experimental probe of a single chemical step in a complex kinetic cascade. Computational predictions are tested by this method for two model enzymes: dihydrofolate reductase and thymidylate synthase. The description highlights the significance of collaboration between experimentalists and theoreticians to develop a better understanding of enzyme-catalyzed chemical conversions. © 2016 Elsevier Inc. All rights reserved.
Field-Portable Pixel Super-Resolution Colour Microscope
Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan
2013-01-01
Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm2. This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate ‘rainbow’ like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings. PMID:24086742
Field-portable pixel super-resolution colour microscope.
Greenbaum, Alon; Akbari, Najva; Feizi, Alborz; Luo, Wei; Ozcan, Aydogan
2013-01-01
Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings.
Computer-aided navigation in dental implantology: 7 years of clinical experience.
Ewers, Rolf; Schicho, Kurt; Truppe, Michael; Seemann, Rudolf; Reichwein, Astrid; Figl, Michael; Wagner, Arne
2004-03-01
This long-term study gives a review over 7 years of research, development, and routine clinical application of computer-aided navigation technology in dental implantology. Benefits and disadvantages of up-to-date technologies are discussed. In the course of the current advancement, various hardware and software configurations are used. In the initial phase, universally applicable navigation software is adapted for implantology. Since 2001, a special software module for dental implantology is available. Preoperative planning is performed on the basis of prosthetic aspects and requirements. In clinical routine use, patient and drill positions are intraoperatively registered by means of optoelectronic tracking systems; during preclinical tests, electromagnetic trackers are also used. In 7 years (1995 to 2002), 55 patients with 327 dental implants were successfully positioned with computer-aided navigation technology. The mean number of implants per patient was 6 (minimum, 1; maximum, 11). No complications were observed; the preoperative planning could be exactly realized. The average expenditure of time for the preparation of a surgical intervention with navigation decreased from 2 to 3 days in the initial phase to one-half day in clinical routine use with software that is optimized for dental implantology. The use of computer-aided navigation technology can contribute to considerable quality improvement. Preoperative planning is exactly realized and intraoperative safety is increased, because damage to nerves or neighboring teeth can be avoided.
NASA Astrophysics Data System (ADS)
Mandula, Ondrej; Allier, Cédric; Hervé, Lionel; Denarier, Eric; Fourest-Lieuvin, Anne; Gory-Fauré, Sylvie; Vinit, Angélique; Morales, Sophie
2018-02-01
We present a simple and compact phase imaging microscope for long-term observation of non-absorbing biological samples such as unstained cells in nutritive media. The phase image is obtained from a single defocused image taken with a standard wide-field microscope. Using a semi-coherent light source allows us to computationally re-focus image post-acquisition and recover both phase and transmission of the complex specimen. The simplicity of the system reduces both the cost and its physical size and allows a long-term observation of samples directly in a standard biological incubator. The low cost of the system can contribute to the democratization of science by allowing to perform complex long-term biological experiments to the laboratories with constrained budget. In this proceeding we present several results taken with our prototype and discuss the possibilities and limitations of our system.
Quantitative phase imaging of platelet: assessment of cell morphology and function
NASA Astrophysics Data System (ADS)
Vasilenko, Irina; Vlasova, Elizaveta; Metelin, Vladislav; Agadzhanjan, B.; Lyfenko, R.
2017-02-01
It is well known that platelets play a central role in hemostasis and thrombosis, they also mediate tumor cell growth, dissemination and angiogenesis. The purpose of the present experiment was to evaluate living platelet size, function and morphology simultaneously in unactivated and activated states using Phase-Interference Microscope "Cytoscan" (Moscow, Russia). We enrolled 30 healthy volunteers, who had no past history of aeteriosclerosis-related disorders, such as coronary heart disease, cerebrovascular disease, hypertention, diabetes or hyperlipidemia and 30 patients with oropharynx cancer. We observed the optic-geometrical parameters of each isolated living cell and the distribution of platelets by sizes have been analysed to detect the dynamics of cell population heterogeneity. Simultaneously we identified 4 platelet forms that have different morphological features and different parameters of size distribution. We noticed that morphological platelet types correlate with morphometric platelet parameters. The data of polymorphisms of platelet reactivity in tumor progression can be used to improve patient outcomes in the cancer prevention and treatment. Moreover morphometric and functional platelet parameters can serve criteria of the efficiency of the radio- and chemotherapy carried out. In conclusion the computer phase-interference microscope provides rapid and effective analysis of living platelet morphology and function at the same time. The use of the computer phase-interference microscope could be an easy and fast method to check the state of platelets in patients with changed platelet activation and to follow a possible pharmacological therapy to reduce this phenomenon.
NASA Astrophysics Data System (ADS)
Chen, CHAI; Yiik Diew, WONG
2017-02-01
This study provides an integrated strategy, encompassing microscopic simulation, safety assessment, and multi-attribute decision-making, to optimize traffic performance at downstream merging area of signalized intersections. A Fuzzy Cellular Automata (FCA) model is developed to replicate microscopic movement and merging behavior. Based on simulation experiment, the proposed FCA approach is able to provide capacity and safety evaluation of different traffic scenarios. The results are then evaluated through data envelopment analysis (DEA) and analytic hierarchy process (AHP). Optimized geometric layout and control strategies are then suggested for various traffic conditions. An optimal lane-drop distance that is dependent on traffic volume and speed limit can thus be established at the downstream merging area.
Kriete, A; Schäffer, R; Harms, H; Aus, H M
1987-06-01
Nuclei of the cells from the thyroid gland were analyzed in a transmission electron microscope by direct TV scanning and on-line image processing. The method uses the advantages of a visual-perception model to detect structures in noisy and low-contrast images. The features analyzed include area, a form factor and texture parameters from the second derivative stage. Three tumor-free thyroid tissues, three follicular adenomas, three follicular carcinomas and three papillary carcinomas were studied. The computer-aided cytophotometric method showed that the most significant differences were the statistics of the chromatin texture features of homogeneity and regularity. These findings document the possibility of an automated differentiation of tumors at the ultrastructural level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet
Here, we report the decomposition of La 2–xSr xCuO 4 into La 2O 3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150°C and is considerably expedited in the temperature range of 350°C–450°C. Two major resultant solid phases are identified as metallic Cu and La 2O 3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, La 2O 3 phases are further identified to be derivatives of a fluorite structure—fluorite,more » pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and LaM 4,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and La 2O 3 phases remain unchanged after cooling to room temperature.« less
Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet; ...
2018-05-15
Here, we report the decomposition of La 2–xSr xCuO 4 into La 2O 3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150°C and is considerably expedited in the temperature range of 350°C–450°C. Two major resultant solid phases are identified as metallic Cu and La 2O 3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, La 2O 3 phases are further identified to be derivatives of a fluorite structure—fluorite,more » pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and LaM 4,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and La 2O 3 phases remain unchanged after cooling to room temperature.« less
Computer-aided-engineering system for modeling and analysis of ECLSS integration testing
NASA Technical Reports Server (NTRS)
Sepahban, Sonbol
1987-01-01
The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.
A computer aided engineering tool for ECLS systems
NASA Technical Reports Server (NTRS)
Bangham, Michal E.; Reuter, James L.
1987-01-01
The Computer-Aided Systems Engineering and Analysis tool used by NASA for environmental control and life support system design studies is capable of simulating atmospheric revitalization systems, water recovery and management systems, and single-phase active thermal control systems. The designer/analysis interface used is graphics-based, and allows the designer to build a model by constructing a schematic of the system under consideration. Data management functions are performed, and the program is translated into a format that is compatible with the solution routines.
Application of computer-aided dispatch in law enforcement: An introductory planning guide
NASA Technical Reports Server (NTRS)
Sohn, R. L.; Gurfield, R. M.; Garcia, E. A.; Fielding, J. E.
1975-01-01
A set of planning guidelines for the application of computer-aided dispatching (CAD) to law enforcement is presented. Some essential characteristics and applications of CAD are outlined; the results of a survey of systems in the operational or planning phases are summarized. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Detailed descriptions of typical law enforcement CAD systems, and a list of vendor sources, are given in appendixes.
Enhancing the performance of the light field microscope using wavefront coding
Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc
2014-01-01
Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective’s back focal plane and at the microscope’s native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain. PMID:25322056
NASA Astrophysics Data System (ADS)
Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong
2007-11-01
Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.
Automated quantitative muscle biopsy analysis system
NASA Technical Reports Server (NTRS)
Castleman, Kenneth R. (Inventor)
1980-01-01
An automated system to aid the diagnosis of neuromuscular diseases by producing fiber size histograms utilizing histochemically stained muscle biopsy tissue. Televised images of the microscopic fibers are processed electronically by a multi-microprocessor computer, which isolates, measures, and classifies the fibers and displays the fiber size distribution. The architecture of the multi-microprocessor computer, which is iterated to any required degree of complexity, features a series of individual microprocessors P.sub.n each receiving data from a shared memory M.sub.n-1 and outputing processed data to a separate shared memory M.sub.n+1 under control of a program stored in dedicated memory M.sub.n.
NASA Astrophysics Data System (ADS)
Schulz-Hildebrandt, H.; Münter, Michael; Ahrens, M.; Spahr, H.; Hillmann, D.; König, P.; Hüttmann, G.
2018-03-01
Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon's entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.
Boruah, B R; Neil, M A A
2009-01-01
We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.
Computer synthesis of high resolution electron micrographs
NASA Technical Reports Server (NTRS)
Nathan, R.
1976-01-01
Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.
Using machine-learning to optimize phase contrast in a low-cost cellphone microscope
Wartmann, Rolf; Schadwinkel, Harald; Heintzmann, Rainer
2018-01-01
Cellphones equipped with high-quality cameras and powerful CPUs as well as GPUs are widespread. This opens new prospects to use such existing computational and imaging resources to perform medical diagnosis in developing countries at a very low cost. Many relevant samples, like biological cells or waterborn parasites, are almost fully transparent. As they do not exhibit absorption, but alter the light’s phase only, they are almost invisible in brightfield microscopy. Expensive equipment and procedures for microscopic contrasting or sample staining often are not available. Dedicated illumination approaches, tailored to the sample under investigation help to boost the contrast. This is achieved by a programmable illumination source, which also allows to measure the phase gradient using the differential phase contrast (DPC) [1, 2] or even the quantitative phase using the derived qDPC approach [3]. By applying machine-learning techniques, such as a convolutional neural network (CNN), it is possible to learn a relationship between samples to be examined and its optimal light source shapes, in order to increase e.g. phase contrast, from a given dataset to enable real-time applications. For the experimental setup, we developed a 3D-printed smartphone microscope for less than 100 $ using off-the-shelf components only such as a low-cost video projector. The fully automated system assures true Koehler illumination with an LCD as the condenser aperture and a reversed smartphone lens as the microscope objective. We show that the effect of a varied light source shape, using the pre-trained CNN, does not only improve the phase contrast, but also the impression of an improvement in optical resolution without adding any special optics, as demonstrated by measurements. PMID:29494620
FPGA-based real-time phase measuring profilometry algorithm design and implementation
NASA Astrophysics Data System (ADS)
Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng
2016-11-01
Phase measuring profilometry (PMP) has been widely used in many fields, like Computer Aided Verification (CAV), Flexible Manufacturing System (FMS) et al. High frame-rate (HFR) real-time vision-based feedback control will be a common demands in near future. However, the instruction time delay in the computer caused by numerous repetitive operations greatly limit the efficiency of data processing. FPGA has the advantages of pipeline architecture and parallel execution, and it fit for handling PMP algorithm. In this paper, we design a fully pipelined hardware architecture for PMP. The functions of hardware architecture includes rectification, phase calculation, phase shifting, and stereo matching. The experiment verified the performance of this method, and the factors that may influence the computation accuracy was analyzed.
Kitayama, Shuzo; Nasser, Nasser A; Pilecki, Peter; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M
2011-05-01
To evaluate the effect of resin coating and occlusal loading on microleakage of class II computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic restorations. Molars were prepared for an mesio-occlusal-distal (MOD) inlay and were divided into two groups: non-coated (controls); and resin-coated, in which the cavity was coated with a combination of a dentin bonding system (Clearfil Protect Bond) and a flowable resin composite (Clearfil Majesty Flow). Ceramic inlays were fabricated using the CAD/CAM technique (CEREC 3) and cemented with resin cement (Clearfil Esthetic Cement). After 24 h of water storage, the restored teeth in each group were divided into two subgroups: unloaded or loaded with an axial force of 80 N at a rate of 2.5 cycles/s for 250,000 cycles while stored in water. After immersion in 0.25% Rhodamine B solution, the teeth were sectioned bucco-lingually at the mesial and distal boxes. Tandem scanning confocal microscopy (TSM) was used for evaluation of microleakage. The locations of the measurements were assigned to the cavity walls and floor. Loading did not have a significant effect on microleakage in either the resin-coated or non-coated group. Resin coating significantly reduced microleakage regardless of loading. The cavity floor exhibited greater microleakage compared to the cavity wall. TSM observation also revealed that microleakage at the enamel surface was minimal regardless of resin coating. In contrast, non-coated dentin showed extensive leakage, whereas resin-coated dentin showed decreased leakage. Resin coating with a combination of a dentin-bonding system and a flowable resin composite may be indicated prior to impression-taking when restoring teeth with CAD/CAM ceramic inlays in order to reduce microleakage at the tooth-resin interface.
Design of recursive digital filters having specified phase and magnitude characteristics
NASA Technical Reports Server (NTRS)
King, R. E.; Condon, G. W.
1972-01-01
A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.
NASA Astrophysics Data System (ADS)
Rivenson, Yair; Wu, Chris; Wang, Hongda; Zhang, Yibo; Ozcan, Aydogan
2017-03-01
Microscopic imaging of biological samples such as pathology slides is one of the standard diagnostic methods for screening various diseases, including cancer. These biological samples are usually imaged using traditional optical microscopy tools; however, the high cost, bulkiness and limited imaging throughput of traditional microscopes partially restrict their deployment in resource-limited settings. In order to mitigate this, we previously demonstrated a cost-effective and compact lens-less on-chip microscopy platform with a wide field-of-view of >20-30 mm^2. The lens-less microscopy platform has shown its effectiveness for imaging of highly connected biological samples, such as pathology slides of various tissue samples and smears, among others. This computational holographic microscope requires a set of super-resolved holograms acquired at multiple sample-to-sensor distances, which are used as input to an iterative phase recovery algorithm and holographic reconstruction process, yielding high-resolution images of the samples in phase and amplitude channels. Here we demonstrate that in order to reconstruct clinically relevant images with high resolution and image contrast, we require less than 50% of the previously reported nominal number of holograms acquired at different sample-to-sensor distances. This is achieved by incorporating a loose sparsity constraint as part of the iterative holographic object reconstruction. We demonstrate the success of this sparsity-based computational lens-less microscopy platform by imaging pathology slides of breast cancer tissue and Papanicolaou (Pap) smears.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twitty, A.F.; Handler, B.H.; Duncan, L.D.
Data Systems Engineering Organization (DSEO) personnel are developing a prototype computer aided instruction (CAI) system for the Naval Aviation Logistics Data Analysis (NALDA) system. The objective of this project is to provide a prototype for implementing CAI as an enhancement to existing NALDA training. The CAI prototype project is being performed in phases. The task undertaken in Phase I was to analyze the problem and the alternative solutions and to develop a set of recommendations on how best to proceed. In Phase II a structured design and specification document was completed that will provide the basis for development and implementationmore » of the desired CAI system. Phase III will consist of designing, developing, and testing a user interface which will extend the features of the Phase II prototype. The design of the CAI prototype has followed a rigorous structured analysis based on Yourdon/DeMarco methodology and Information Engineering tools. This document includes data flow diagrams, a data dictionary, process specifications, an entity-relationship diagram, a curriculum description, special function key definitions, and a set of standards developed for the NALDA CAI Prototype.« less
Kazakis, Georgios; Kanellopoulos, Ioannis; Sotiropoulos, Stefanos; Lagaros, Nikos D
2017-10-01
Construction industry has a major impact on the environment that we spend most of our life. Therefore, it is important that the outcome of architectural intuition performs well and complies with the design requirements. Architects usually describe as "optimal design" their choice among a rather limited set of design alternatives, dictated by their experience and intuition. However, modern design of structures requires accounting for a great number of criteria derived from multiple disciplines, often of conflicting nature. Such criteria derived from structural engineering, eco-design, bioclimatic and acoustic performance. The resulting vast number of alternatives enhances the need for computer-aided architecture in order to increase the possibility of arriving at a more preferable solution. Therefore, the incorporation of smart, automatic tools in the design process, able to further guide designer's intuition becomes even more indispensable. The principal aim of this study is to present possibilities to integrate automatic computational techniques related to topology optimization in the phase of intuition of civil structures as part of computer aided architectural design. In this direction, different aspects of a new computer aided architectural era related to the interpretation of the optimized designs, difficulties resulted from the increased computational effort and 3D printing capabilities are covered here in.
Development of an autonomous video rendezvous and docking system, phase 2
NASA Technical Reports Server (NTRS)
Tietz, J. C.; Richardson, T. E.
1983-01-01
The critical elements of an autonomous video rendezvous and docking system were built and used successfully in a physical laboratory simulation. The laboratory system demonstrated that a small, inexpensive electronic package and a flight computer of modest size can analyze television images to derive guidance information for spacecraft. In the ultimate application, the system would use a docking aid consisting of three flashing lights mounted on a passive target spacecraft. Television imagery of the docking aid would be processed aboard an active chase vehicle to derive relative positions and attitudes of the two spacecraft. The demonstration system used scale models of the target spacecraft with working docking aids. A television camera mounted on a 6 degree of freedom (DOF) simulator provided imagery of the target to simulate observations from the chase vehicle. A hardware video processor extracted statistics from the imagery, from which a computer quickly computed position and attitude. Computer software known as a Kalman filter derived velocity information from position measurements.
Coherent Backscattering by Particulate Planetary Media of Nonspherical Particles
NASA Astrophysics Data System (ADS)
Muinonen, Karri; Penttila, Antti; Wilkman, Olli; Videen, Gorden
2014-11-01
The so-called radiative-transfer coherent-backscattering method (RT-CB) has been put forward as a practical Monte Carlo method to compute multiple scattering in discrete random media mimicking planetary regoliths (K. Muinonen, Waves in Random Media 14, p. 365, 2004). In RT-CB, the interaction between the discrete scatterers takes place in the far-field approximation and the wave propagation faces exponential extinction. There is a significant constraint in the RT-CB method: it has to be assumed that the form of the scattering matrix is that of the spherical particle. We aim to extend the RT-CB method to nonspherical single particles showing significant depolarization characteristics. First, ensemble-averaged single-scattering albedos and phase matrices of nonspherical particles are matched using a phenomenological radiative-transfer model within a microscopic volume element. Second, the phenomenologial single-particle model is incorporated into the Monte Carlo RT-CB method. In the ray tracing, the electromagnetic phases within the microscopic volume elements are omitted as having negligible lengths, whereas the phases are duly accounted for in the paths between two or more microscopic volume elements. We assess the computational feasibility of the extended RT-CB method and show preliminary results for particulate media mimicking planetary regoliths. The present work can be utilized in the interpretation of astronomical observations of asteroids and other planetary objects. In particular, the work sheds light on the depolarization characteristics of planetary regoliths at small phase angles near opposition. The research has been partially funded by the ERC Advanced Grant No 320773 entitled “Scattering and Absorption of Electromagnetic Waves in Particulate Media” (SAEMPL), by the Academy of Finland (contract 257966), NASA Outer Planets Research Program (contract NNX10AP93G), and NASA Lunar Advanced Science and Exploration Research Program (contract NNX11AB25G).
Fostering At-Risk Preschoolers' Number Sense
ERIC Educational Resources Information Center
Baroody, Arthur; Eiland, Michael; Thompson, Bradley
2009-01-01
Research Findings: A 9-month study served to evaluate the effectiveness of a pre-kindergarten number sense curriculum. Phase 1 of the intervention involved manipulative-, game-based number sense instruction; Phase 2, computer-aided mental-arithmetic training with the simplest sums. Eighty 4- and 5-year-olds at risk for school failure were randomly…
Tanaka, Toyohiko; Nitta, Norihisa; Ohta, Shinichi; Kobayashi, Tsuyoshi; Kano, Akiko; Tsuchiya, Keiko; Murakami, Yoko; Kitahara, Sawako; Wakamiya, Makoto; Furukawa, Akira; Takahashi, Masashi; Murata, Kiyoshi
2009-12-01
A computer-aided detection (CAD) system was evaluated for its ability to detect microcalcifications and masses on images obtained with a digital phase-contrast mammography (PCM) system, a system characterised by the sharp images provided by phase contrast and by the high resolution of 25-μm-pixel mammograms. Fifty abnormal and 50 normal mammograms were collected from about 3,500 mammograms and printed on film for reading on a light box. Seven qualified radiologists participated in an observer study based on receiver operating characteristic (ROC) analysis. The average of the areas under ROC curve (AUC) values for the ROC analysis with and without CAD were 0.927 and 0.897 respectively (P = 0.015). The AUC values improved from 0.840 to 0.888 for microcalcifications (P = 0.034) and from 0.947 to 0.962 for masses (P = 0.025) respectively. The application of CAD to the PCM system is a promising approach for the detection of breast cancer in its early stages.
Lancioni, Giulio E; O'Reilly, Mark F; Singh, Nirbhay N; Sigafoos, Jeff; Oliva, Doretta; Alberti, Gloria; Lang, Russell
2011-01-01
This study extended the assessment of a newly developed computer-aided telephone system with two participants (adults) who presented with blindness or severe visual impairment and motor or motor and intellectual disabilities. For each participant, the study was carried out according to an ABAB design, in which the A represented baseline phases and the B represented intervention phases, during which the special telephone system was available. The system involved among others a net-book computer provided with specific software, a global system for mobile communication modem, and a microswitch. Both participants learned to use the system very rapidly and managed to make phone calls independently to a variety of partners such as family members, friends and staff personnel. The results were discussed in terms of the technology under investigation (its advantages, drawbacks, and need of improvement) and the social-communication impact it can make for persons with multiple disabilities. Copyright © 2011 Elsevier Ltd. All rights reserved.
Multimodal computational microscopy based on transport of intensity equation
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao
2016-12-01
Transport of intensity equation (TIE) is a powerful tool for phase retrieval and quantitative phase imaging, which requires intensity measurements only at axially closely spaced planes without a separate reference beam. It does not require coherent illumination and works well on conventional bright-field microscopes. The quantitative phase reconstructed by TIE gives valuable information that has been encoded in the complex wave field by passage through a sample of interest. Such information may provide tremendous flexibility to emulate various microscopy modalities computationally without requiring specialized hardware components. We develop a requisite theory to describe such a hybrid computational multimodal imaging system, which yields quantitative phase, Zernike phase contrast, differential interference contrast, and light field moment imaging, simultaneously. It makes the various observations for biomedical samples easy. Then we give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens-based TIE system, combined with the appropriate postprocessing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.
Understanding the optics to aid microscopy image segmentation.
Yin, Zhaozheng; Li, Kang; Kanade, Takeo; Chen, Mei
2010-01-01
Image segmentation is essential for many automated microscopy image analysis systems. Rather than treating microscopy images as general natural images and rushing into the image processing warehouse for solutions, we propose to study a microscope's optical properties to model its image formation process first using phase contrast microscopy as an exemplar. It turns out that the phase contrast imaging system can be relatively well explained by a linear imaging model. Using this model, we formulate a quadratic optimization function with sparseness and smoothness regularizations to restore the "authentic" phase contrast images that directly correspond to specimen's optical path length without phase contrast artifacts such as halo and shade-off. With artifacts removed, high quality segmentation can be achieved by simply thresholding the restored images. The imaging model and restoration method are quantitatively evaluated on two sequences with thousands of cells captured over several days.
NASA Astrophysics Data System (ADS)
Wang, Bohan; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Tang, Qinggong; Wu, Tongtong; Falola, Reuben; Smith, Tikina; Andrews, Peter M.; Chen, Yu
2017-12-01
Chronic kidney disease (CKD) is characterized by a progressive loss of renal function over time. Histopathological analysis of the condition of glomeruli and the proximal convolutional tubules over time can provide valuable insights into the progression of CKD. Optical coherence tomography (OCT) is a technology that can analyze the microscopic structures of a kidney in a nondestructive manner. Recently, we have shown that OCT can provide real-time imaging of kidney microstructures in vivo without administering exogenous contrast agents. A murine model of CKD induced by intravenous Adriamycin (ADR) injection is evaluated by OCT. OCT images of the rat kidneys have been captured every week up to eight weeks. Tubular diameter and hypertrophic tubule population of the kidneys at multiple time points after ADR injection have been evaluated through a fully automated computer-vision system. Results revealed that mean tubular diameter and hypertrophic tubule population increase with time in post-ADR injection period. The results suggest that OCT images of the kidney contain abundant information about kidney histopathology. Fully automated computer-aided diagnosis based on OCT has the potential for clinical evaluation of CKD conditions.
Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy
NASA Astrophysics Data System (ADS)
Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.
2014-06-01
Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.
Airfoil Vibration Dampers program
NASA Technical Reports Server (NTRS)
Cook, Robert M.
1991-01-01
The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.
Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T
2016-07-01
The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kaakinen, M; Huttunen, S; Paavolainen, L; Marjomäki, V; Heikkilä, J; Eklund, L
2014-01-01
Phase-contrast illumination is simple and most commonly used microscopic method to observe nonstained living cells. Automatic cell segmentation and motion analysis provide tools to analyze single cell motility in large cell populations. However, the challenge is to find a sophisticated method that is sufficiently accurate to generate reliable results, robust to function under the wide range of illumination conditions encountered in phase-contrast microscopy, and also computationally light for efficient analysis of large number of cells and image frames. To develop better automatic tools for analysis of low magnification phase-contrast images in time-lapse cell migration movies, we investigated the performance of cell segmentation method that is based on the intrinsic properties of maximally stable extremal regions (MSER). MSER was found to be reliable and effective in a wide range of experimental conditions. When compared to the commonly used segmentation approaches, MSER required negligible preoptimization steps thus dramatically reducing the computation time. To analyze cell migration characteristics in time-lapse movies, the MSER-based automatic cell detection was accompanied by a Kalman filter multiobject tracker that efficiently tracked individual cells even in confluent cell populations. This allowed quantitative cell motion analysis resulting in accurate measurements of the migration magnitude and direction of individual cells, as well as characteristics of collective migration of cell groups. Our results demonstrate that MSER accompanied by temporal data association is a powerful tool for accurate and reliable analysis of the dynamic behaviour of cells in phase-contrast image sequences. These techniques tolerate varying and nonoptimal imaging conditions and due to their relatively light computational requirements they should help to resolve problems in computationally demanding and often time-consuming large-scale dynamical analysis of cultured cells. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
ERIC Educational Resources Information Center
Marcovitz, Alan B., Ed.
The method of phase-plane presentation as an educational tool in the study of the dynamic behavior of systems is discussed. In the treatment of nonlinear or piecewise-linear systems, the phase-plane portrait is used to exhibit the nature of singular points, regions of stability, and switching lines to aid comprehension. A technique is described by…
Rajaraman, Sivaramakrishnan; Antani, Sameer K; Poostchi, Mahdieh; Silamut, Kamolrat; Hossain, Md A; Maude, Richard J; Jaeger, Stefan; Thoma, George R
2018-01-01
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
Patient-specific polyetheretherketone facial implants in a computer-aided planning workflow.
Guevara-Rojas, Godoberto; Figl, Michael; Schicho, Kurt; Seemann, Rudolf; Traxler, Hannes; Vacariu, Apostolos; Carbon, Claus-Christian; Ewers, Rolf; Watzinger, Franz
2014-09-01
In the present study, we report an innovative workflow using polyetheretherketone (PEEK) patient-specific implants for esthetic corrections in the facial region through onlay grafting. The planning includes implant design according to virtual osteotomy and generation of a subtraction volume. The implant design was refined by stepwise changing the implant geometry according to soft tissue simulations. One patient was scanned using computed tomography. PEEK implants were interactively designed and manufactured using rapid prototyping techniques. Positioning intraoperatively was assisted by computer-aided navigation. Two months after surgery, a 3-dimensional surface model of the patient's face was generated using photogrammetry. Finally, the Hausdorff distance calculation was used to quantify the overall error, encompassing the failures in soft tissue simulation and implantation. The implant positioning process during surgery was satisfactory. The simulated soft tissue surface and the photogrammetry scan of the patient showed a high correspondence, especially where the skin covered the implants. The mean total error (Hausdorff distance) was 0.81 ± 1.00 mm (median 0.48, interquartile range 1.11). The spatial deviation remained less than 0.7 mm for the vast majority of points. The proposed workflow provides a complete computer-aided design, computer-aided manufacturing, and computer-aided surgery chain for implant design, allowing for soft tissue simulation, fabrication of patient-specific implants, and image-guided surgery to position the implants. Much of the surgical complexity resulting from osteotomies of the zygoma, chin, or mandibular angle might be transferred into the planning phase of patient-specific implants. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Microscope self-calibration based on micro laser line imaging and soft computing algorithms
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.
2018-06-01
A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.
NASA Astrophysics Data System (ADS)
Weidinger, Peter; Günther, Kay; Fitzel, Martin; Logvinov, Ruslan; Ilin, Alexander; Ploshikhin, Vasily; Hugger, Florian; Mann, Vincent; Roth, Stephan; Schmidt, Michael
The necessity for weight reduction in motor vehicles in order to save fuel consumption pushes automotive suppliers to use materials of higher strength. Due to their excellent crash behavior high strength steels are increasingly applied in various structures. In this paper some predevelopment steps for a material change from a micro alloyed to dual phase and complex phase steels of a T-joint assembly are displayed. Initially the general weldability of the materials regarding pore formation, hardening in the heat affected zone and hot cracking susceptibility is discussed. After this basic investigation, the computer aided design optimization of a clamping device is shown, in which influences of the clamping jaw, the welding position and the clamping forces upon weld quality are presented. Finally experimental results of the welding process are displayed, which validate the numerical simulation.
A comparison of marginal fit between press-fabricated and CAD/CAM lithium disilicate crowns.
Carlile, Richard S; Owens, Wade H; Greenwood, William J; Guevara, Peter H
2018-01-01
The purpose of this study was to compare the marginal fit of press-fabricated lithium disilicate crowns with that of computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate crowns to determine if the fabrication method has an influence on marginal fit. The marginal fit of 25 pressed and 25 CAD/CAM crowns was measured using the replica technique. The sites measured were the mesial, distal, facial, and lingual margins. A microscope at 10× magnification was used to obtain the measurements. Each site was measured 4 times, and intraclass correlation coefficients were used to assess measurement errors. An unpaired t test was used to evaluate the differences between the 2 groups. Mean marginal gap measurements were greater for CAD/CAM crowns than for pressed crowns at all sites. Only the difference in mean gap at the facial margin was statistically significant (P < 0.001). Press-fabricated lithium disilicate crowns provided a better marginal fit than those fabricated by CAD/CAM, but both fabrication methods provided crowns with a clinically acceptable marginal fit.
Geometry-induced phase transition in fluids: Capillary prewetting
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim
2013-02-01
We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurmikko, Arto; Humphrey, Maris
2014-07-10
The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features – including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research programmore » has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a “non-focusing” optoacoustic microscope instrument (“POAM”), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (“SOAM”) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide computational models of the focusing of multi-GHz acoustic waves to the nanometer scale and innovated a series fabrication approaches for a new type of broadband high-frequency acoustic focusing microscope objective by applying methods on nanoimprinting and focused-ion beam techniques. In the following, the Phase I and Phase II instrument development is reported as Section II. The first segment of this section describes the POAM instrument and its development, while including much of the underlying ultrafast acoustic physics which is common to all of our work for this grant. Then, the science and engineering of the SOAM instrument is described, including the methods of fabricating new types of acoustic microlenses. The results section is followed by reports on publications (Section III), Participants (Section IV), and statement of full use of the allocated grant funds (Section V).« less
Imaging Chromosome Separation in Mouse Oocytes by Responsive 3D Confocal Timelapse Microscopy.
Lane, Simon I R; Crouch, Stephen; Jones, Keith T
2017-01-01
Accurate chromosome segregation is necessary so that genetic material is equally shared among daughter cells. However, maturing mammalian oocytes are particularly prone to chromosome segregation errors, making them a valuable tool for identifying the causes of mis-segregation. Factors such as aging, cohesion loss, DNA damage, and the roles of a plethora of kinetochore and cell cycle-related proteins are involved. To study chromosome segregation in oocytes in a live setting is an imaging challenge that requires advanced techniques. Here we describe a method for examining chromosomes in live oocytes in detail as they undergo maturation. Our method is based on tracking the "center of brightness" of fluorescently labeled chromosomes. Here we describe how to set up our software and run experiments on a Leica TCS SP8 confocal microscope, but the method would be transferable to other microscopes with computer-aided microscopy.
Computer Aided Wirewrap Interconnect.
1980-11-01
ECLI (180 MHz System Clock Generated via Ring Oscillator) Clock Waveform: Synchronous Phase 0 Output Binary Counter: Power Plane Noie: (Loaded) LSB...LOGIC (ECL) (185 MHz System Clock Generated via Ring Oscillator) Clock Woveform Synchronous Phase 0 Output Binary Counter- Power Plane Voise (Loaded...High Speed .. ......... . 98 Clock Signals Into Logic Panels in a Multiboard System On-Eoard Clock Distribution Via Fanout .... ......... 102 Through
Every factor helps: Rapid Ptychographic Reconstruction
NASA Astrophysics Data System (ADS)
Nashed, Youssef
2015-03-01
Recent advances in microscopy, specifically higher spatial resolution and data acquisition rates, require faster and more robust phase retrieval reconstruction methods. Ptychography is a phase retrieval technique for reconstructing the complex transmission function of a specimen from a sequence of diffraction patterns in visible light, X-ray, and electron microscopes. As technical advances allow larger fields to be imaged, computational challenges arise for reconstructing the correspondingly larger data volumes. Waiting to postprocess datasets offline results in missed opportunities. Here we present a parallel method for real-time ptychographic phase retrieval. It uses a hybrid parallel strategy to divide the computation between multiple graphics processing units (GPUs). A final specimen reconstruction is then achieved by different techniques to merge sub-dataset results into a single complex phase and amplitude image. Results are shown on a simulated specimen and real datasets from X-ray experiments conducted at a synchrotron light source.
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.
1972-01-01
A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.
Kontakiotis, Evangelos G; Tzanetakis, Giorgos N
2007-08-01
In this era of microscope-assisted endodontics, finding variations in root canal system anatomy is not uncommon. Operating microscopes combined with careful clinical examination and radiographic interpretation can aid the clinician to successfully treat cases with such internal anatomy. The understanding of this view enables the possible location of additional canals in any tooth requiring endodontic treatment. The present clinical article demonstrates a rare anatomical complexity in the mesial root of a mandibular first molar. Four independent root canal orifices were found in this root by clinical detection with the aid of a dental operating microscope. This case shows that additional canals can be located in any root undergoing endodontic treatment and clinicians should always be aware of aberrant internal anatomy.
Rigorous derivation of porous-media phase-field equations
NASA Astrophysics Data System (ADS)
Schmuck, Markus; Kalliadasis, Serafim
2017-11-01
The evolution of interfaces in Complex heterogeneous Multiphase Systems (CheMSs) plays a fundamental role in a wide range of scientific fields such as thermodynamic modelling of phase transitions, materials science, or as a computational tool for interfacial flow studies or material design. Here, we focus on phase-field equations in CheMSs such as porous media. To the best of our knowledge, we present the first rigorous derivation of error estimates for fourth order, upscaled, and nonlinear evolution equations. For CheMs with heterogeneity ɛ, we obtain the convergence rate ɛ 1 / 4 , which governs the error between the solution of the new upscaled formulation and the solution of the microscopic phase-field problem. This error behaviour has recently been validated computationally in. Due to the wide range of application of phase-field equations, we expect this upscaled formulation to allow for new modelling, analytic, and computational perspectives for interfacial transport and phase transformations in CheMSs. This work was supported by EPSRC, UK, through Grant Nos. EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, and EP/P011713/1 and from ERC via Advanced Grant No. 247031.
Microscopic aspects of wetting using classical density functional theory
NASA Astrophysics Data System (ADS)
Yatsyshin, P.; Durán-Olivencia, M.-A.; Kalliadasis, S.
2018-07-01
Wetting is a rather efficient mechanism for nucleation of a phase (typically liquid) on the interface between two other phases (typically solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid–fluid and fluid–substrate intermolecular interactions brings about an entire ‘zoo’ of possible fluid configurations, such as liquid films with a thickness of a few nanometers, liquid nanodrops and liquid bridges. These fluid configurations are often associated with phase transitions occurring at the solid–gas interface and at lengths of just several molecular diameters away from the substrate. In this special issue article, we demonstrate how a fully microscopic classical density-functional framework can be applied to the efficient, rational and systematic exploration of the rich phase space of wetting phenomena. We consider a number of model prototype systems such as wetting on a planar wall, a chemically patterned wall and a wedge. Through density-functional computations we demonstrate that for these simply structured substrates the behaviour of the solid–gas interface is already highly complex and non-trivial.
Lung cancer diagnosis with quantitative DIC microscopy and support vector machine
NASA Astrophysics Data System (ADS)
Zheng, Longfei; Cai, Shuangshuang; Zeng, Bixin; Xu, Min
2017-01-01
We report the study of lung squamous cell carcinoma diagnosis using the TI-DIC microscopy and the scattering-phase theorem. The spatially resolved optical properties of tissue are computed from the 2D phase map via the scattering-phase theorem. The scattering coefficient, the reduced scattering coefficient, and the anisotropy factor are all found to increase with the grade of lung cancer. The retrieved optical parameters are shown to distinguish cancer cases from the normal cases with high accuracy. This label-free microscopic approach applicable to fresh tissues may be promising for in situ rapid cancer diagnosis.
Spectroscopic characterization of nanohydroxyapatite synthesized by molten salt method.
Gopi, D; Indira, J; Kavitha, L; Kannan, S; Ferreira, J M F
2010-10-01
Hydroxyapatite (HAP) nanopowders were synthesized by molten salt method at 260 degrees C. The as-prepared powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo gravimetric analysis (TGA). With the aid of the obtained results the effect of calcining time on the crystallinity, size and morphology of HAP nanopowders is presented. The HAP nanopowders synthesized by molten salt method consist of pure phase of HAP without any impurities and showed the rod-like morphology without detectable decomposition up to 1100 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.
Production and characterization of pure cryogenic inertial fusion targets
NASA Astrophysics Data System (ADS)
Boyd, B. A.; Kamerman, G. W.
An experimental cryogenic inertial fusion target generator and two optical techniques for automated target inspection are described. The generator produces 100 microns diameter solid hydrogen spheres at a rate compatible with fueling requirements of conceptual inertial fusion power plants. A jet of liquified hydrogen is disrupted into droplets by an ultrasonically excited nozzle. The droplets solidify into microspheres while falling through a chamber maintained below the hydrogen triple point pressure. Stable operation of the generator has been demonstrated for up to three hours. The optical inspection techniques are computer aided photomicrography and coarse diffraction pattern analysis (CDPA). The photomicrography system uses a conventional microscope coupled to a computer by a solid state camera and digital image memory. The computer enhances the stored image and performs feature extraction to determine pellet parameters. The CDPA technique uses Fourier transform optics and a special detector array to perform optical processing of a target image.
Compressing a spinodal surface at fixed area: bijels in a centrifuge.
Rumble, Katherine A; Thijssen, Job H J; Schofield, Andrew B; Clegg, Paul S
2016-05-11
Bicontinuous interfacially jammed emulsion gels (bijels) are solid-stabilised emulsions with two inter-penetrating continuous phases. Employing the method of centrifugal compression we find that macroscopically the bijel yields at relatively low angular acceleration. Both continuous phases escape from the top of the structure, making any compression immediately irreversible. Microscopically, the bijel becomes anisotropic with the domains aligned perpendicular to the compression direction which inhibits further liquid expulsion; this contrasts strongly with the sedimentation behaviour of colloidal gels. The original structure can, however, be preserved close to the top of the sample and thus the change to an anisotropic structure suggests internal yielding. Any air bubbles trapped in the bijel are found to aid compression by forming channels aligned parallel to the compression direction which provide a route for liquid to escape.
Single-exposure quantitative phase imaging in color-coded LED microscopy.
Lee, Wonchan; Jung, Daeseong; Ryu, Suho; Joo, Chulmin
2017-04-03
We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Kaukler, William F.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. At mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. The model of cantilever oscillations is applicable to both non-contact and "tapping" AFM. This model can be farther enhanced to describe nanoparticle manipulation by cantilever. At microscopic level tip contamination and details of tip-surface interaction can be simulated using molecular dynamics approach. Integration of mesoscale model with molecular dynamic model is discussed.
Product definition data interface
NASA Technical Reports Server (NTRS)
Birchfield, B.; Downey, P.
1984-01-01
The development and application of advanced Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) technology in aerospace industry is discussed. New CAD/CAM capabilities provide the engineer and production worker with tools to produce better products and significantly improve productivity. This technology is expanding in all phases of engineering and manufacturing with large potential for improvements in productivity. The integration of CAD and CAM systematically to insure maximum utility throughout the U.S. Aerospace Industry, its large community of supporting suppliers, and the Department of Defense aircraft overhaul and repair facilities is outlined. The need for a framework for exchange of digital product definition data, which serves the function of the conventional engineering drawing is emphasized.
NASA Technical Reports Server (NTRS)
Treon, S. L.
1979-01-01
A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.
Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models
NASA Astrophysics Data System (ADS)
Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo
2014-04-01
We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.
Yoon, Soon Ho; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun
2014-01-01
Objective To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Results Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Conclusion Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation. PMID:24843245
Yoon, Soon Ho; Goo, Jin Mo; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun
2014-01-01
To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation.
Aspects of CO2 laser engraving of printing cylinders.
Atanasov, P A; Maeno, K; Manolov, V P
1999-03-20
Results of the experimental and theoretical investigations of CO(2) laser-engraved cylinders are presented. The processed surfaces of test samples are examined by a phase-stepping laser interferometer, digital microscope, and computer-controlled profilometer. Fourier analysis is made on the patterns parallel to the axis of the laser-scribed test ceramic cylinders. The problem of the visually observed banding is discussed.
Low cost omega navigation receiver
NASA Technical Reports Server (NTRS)
Lilley, R. W.
1974-01-01
The development of a low cost Omega navigation receiver is discussed. Emphasis is placed on the completion and testing of a modular, multipurpose Omega receiver which utilizes a digital memory-aided, phase-locked loop to provide phase measurement data to a variety of applications interfaces. The functional units contained in the prototype device are described. The receiver is capable of receiving and storing phase measurements for up to eight Omega signals and computes two switch-selectable lines of position, displaying this navigation data in chart-recorded form.
Detection of geometric phases in superconducting nanocircuits
Falci; Fazio; Palma; Siewert; Vedral
2000-09-21
When a quantum-mechanical system undergoes an adiabatic cyclic evolution, it acquires a geometrical phase factor' in addition to the dynamical one; this effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnology should enable the laws of quantum dynamics to be tested at the macroscopic level, by providing controllable artificial two-level systems (for example, in quantum dots and superconducting devices). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be realized, and show how the effect may be applied to the design of gates for quantum computation.
Recent development on computer aided tissue engineering--a review.
Sun, Wei; Lal, Pallavi
2002-02-01
The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.
NASA Astrophysics Data System (ADS)
Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi
2018-05-01
The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.
Phase-shifting interference microscope with extendable field of measurement
NASA Astrophysics Data System (ADS)
Lin, Shyh-Tsong; Hsu, Wei-Feng; Wang, Ming-Shiang
2018-04-01
An innovative phase-shifting interference microscope aimed at extending the field of measurement is proposed in this paper. The microscope comprises a light source module, a phase modulation module, and an interferometric module, which reconstructs the micro-structure contours of samples using the five-step phase-shifting algorithm. This paper discusses the measurement theory and outlines the configuration, experimental setup, and experimental results obtained using the proposed interference microscope. The results confirm the efficacy of the microscope, achieving a standard deviation of 2.4 nm from a step height of 86.2 nm in multiple examinations.
A machine learning approach to computer-aided molecular design
NASA Astrophysics Data System (ADS)
Bolis, Giorgio; Di Pace, Luigi; Fabrocini, Filippo
1991-12-01
Preliminary results of a machine learning application concerning computer-aided molecular design applied to drug discovery are presented. The artificial intelligence techniques of machine learning use a sample of active and inactive compounds, which is viewed as a set of positive and negative examples, to allow the induction of a molecular model characterizing the interaction between the compounds and a target molecule. The algorithm is based on a twofold phase. In the first one — the specialization step — the program identifies a number of active/inactive pairs of compounds which appear to be the most useful in order to make the learning process as effective as possible and generates a dictionary of molecular fragments, deemed to be responsible for the activity of the compounds. In the second phase — the generalization step — the fragments thus generated are combined and generalized in order to select the most plausible hypothesis with respect to the sample of compounds. A knowledge base concerning physical and chemical properties is utilized during the inductive process.
Kimber, James A; Kazarian, Sergei G
2017-10-01
Spectroscopic imaging of biomaterials and biological systems has received increased interest within the last decade because of its potential to aid in the detection of disease using biomaterials/biopsy samples and to probe the states of live cells in a label-free manner. The factors behind this increased attention include the availability of improved infrared microscopes and systems that do not require the use of a synchrotron as a light source, as well as the decreasing costs of these systems. This article highlights the current technical challenges and future directions of mid-infrared spectroscopic imaging within this field. Specifically, these are improvements in spatial resolution and spectral quality through the use of novel added lenses and computational algorithms, as well as quantum cascade laser imaging systems, which offer advantages over traditional Fourier transform infrared systems with respect to the speed of acquisition and field of view. Overcoming these challenges will push forward spectroscopic imaging as a viable tool for disease diagnostics and medical research. Graphical abstract Absorbance images of a biopsy obtained using an FTIR imaging microscope with and without an added lens, and also using a QCL microscope with high-NA objective.
Genetic Algorithms and Nucleation in VIH-AIDS transition.
NASA Astrophysics Data System (ADS)
Barranon, Armando
2003-03-01
VIH to AIDS transition has been modeled via a genetic algorithm that uses boom-boom principle and where population evolution is simulated with a cellular automaton based on SIR model. VIH to AIDS transition is signed by nucleation of infected cells and low probability of infection are obtained for different mutation rates in agreement with clinical results. A power law is obtained with a critical exponent close to the critical exponent of cubic, spherical percolation, colossal magnetic resonance, Ising Model and liquid-gas phase transition in heavy ion collisions. Computations were carried out at UAM-A Supercomputing Lab and author acknowledges financial support from Division of CBI at UAM-A.
Surface texture and hardness of dental alloys processed by alternative technologies
NASA Astrophysics Data System (ADS)
Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.
2017-08-01
Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.
Computer-aided diagnosis software for vulvovaginal candidiasis detection from Pap smear images.
Momenzadeh, Mohammadreza; Vard, Alireza; Talebi, Ardeshir; Mehri Dehnavi, Alireza; Rabbani, Hossein
2018-01-01
Vulvovaginal candidiasis (VVC) is a common gynecologic infection and it occurs when there is overgrowth of the yeast called Candida. VVC diagnosis is usually done by observing a Pap smear sample under a microscope and searching for the conidium and mycelium components of Candida. This manual method is time consuming, subjective and tedious. Any diagnosis tools that detect VVC, semi- or full-automatically, can be very helpful to pathologists. This article presents a computer aided diagnosis (CAD) software to improve human diagnosis of VVC from Pap smear samples. The proposed software is designed based on phenotypic and morphology features of the Candida in Pap smear sample images. This software provide a user-friendly interface which consists of a set of image processing tools and analytical results that helps to detect Candida and determine severity of illness. The software was evaluated on 200 Pap smear sample images and obtained specificity of 91.04% and sensitivity of 92.48% to detect VVC. As a result, the use of the proposed software reduces diagnostic time and can be employed as a second objective opinion for pathologists. © 2017 Wiley Periodicals, Inc.
Azimuthal phase retardation microscope for visualizing actin filaments of biological cells
NASA Astrophysics Data System (ADS)
Shin, In Hee; Shin, Sang-Mo
2011-09-01
We developed a new theory-based azimuthal phase retardation microscope to visualize distributions of actin filaments in biological cells without having them with exogenous dyes, fluorescence labels, or stains. The azimuthal phase retardation microscope visualizes distributions of actin filaments by measuring the intensity variations of each pixel of a charge coupled device camera while rotating a single linear polarizer. Azimuthal phase retardation δ between two fixed principal axes was obtained by calculating the rotation angles of the polarizer at the intensity minima from the acquired intensity data. We have acquired azimuthal phase retardation distributions of human breast cancer cell, MDA MB 231 by our microscope and compared the azimuthal phase retardation distributions with the fluorescence image of actin filaments by the commercial fluorescence microscope. Also, we have observed movement of human umbilical cord blood derived mesenchymal stem cells by measuring azimuthal phase retardation distributions.
Computational thermodynamics aided design of novel ferritic alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Chen, Tianyi; Tan, Lizhen
With the aid of computational thermodynamics, Ni was identified to suppress the liquidus temperature of Fe 2Zr and four Fe-Cr-Ni-Zr alloys were designed to study the Ni effect on the phase stability of Fe 2Zr laves_phase. These alloys were fabricated through traditional arc-metling, followed by annealing at 1000 C for 336 hours and 700 C for 1275 hours. The microstructure were examined and characterized by SEM BSE image, EDS compositional mapping and point scan, XRD and TEM analysis. The major results were summarized below: 1)For investigated alloys with 12wt% Cr, 3~6wt% Zr and 3~9 wt%Ni, the phases in equilibrium withmore » the BCC phase are C15_Laves phase, Fe 23Zr 6 phase. The volume fraction of intermetallic phases increases with Ni and Zr contents. 2)Instead of (Fe,Cr) 2Zr C14_Laves phase, Ni stabilizes the C15_Laves structure in Fe-Cr-Ni-Zr alloys by substituting Fe and Cr atoms with Ni atoms in the first sublattice. 3)Fe 23Zr 6, that is metastable in the Fe-Cr-Zr ternary, is also stabilized by Ni addition. 4)Ni 7Zr 2 phase was observed in samples with high Ni/Zr ratio. Extensive solubility of Fe was identified in the phase. The microstructural and composition results obtained from this study will be incorportated into the the Fe-Cr-Ni-Zr database. The current samples will be subjected to ion irradiaition to be compared with those results for Fe-Cr-Zr alloys. Additional alloys will be designed to form (Fe,Cr,Ni) 2Zr nanoprecipitates for further studies.« less
Highlighting material structure with transmission electron diffraction correlation coefficient maps.
Kiss, Ákos K; Rauch, Edgar F; Lábár, János L
2016-04-01
Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.
2016-11-01
Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.
A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories
ERIC Educational Resources Information Center
Jones, C. N.; Goncalves, J.
2010-01-01
This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…
Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM
NASA Astrophysics Data System (ADS)
Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng
2015-07-01
We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.
1978-08-01
21- accepts piping geometry as one of its basic inputs; whether this geometry comes from arrangement drawings or models is of no real consequence. c ... computer . Geometric data is taken from the catalogue and automatically merged with the piping geometry data. Also, fitting orientation is automatically...systems require a number of data manipulation routines to convert raw digitized data into logical pipe geometry acceptable to a computer -aided piping design
Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit
NASA Astrophysics Data System (ADS)
Izvekov, Sergei
2017-01-01
We derive alternative Markov approximations for the projected (stochastic) force and memory function in the coarse-grained (CG) generalized Langevin equation, which describes the time evolution of the center-of-mass coordinates of clusters of particles in the microscopic ensemble. This is done with the aid of the Mori-Zwanzig projection operator method based on the recently introduced projection operator [S. Izvekov, J. Chem. Phys. 138, 134106 (2013), 10.1063/1.4795091]. The derivation exploits the "generalized additive fluctuating force" representation to which the projected force reduces in the adopted projection operator formalism. For the projected force, we present a first-order time expansion which correctly extends the static fluctuating force ansatz with the terms necessary to maintain the required orthogonality of the projected dynamics in the Markov limit to the space of CG phase variables. The approximant of the memory function correctly accounts for the momentum dependence in the lowest (second) order and indicates that such a dependence may be important in the CG dynamics approaching the Markov limit. In the case of CG dynamics with a weak dependence of the memory effects on the particle momenta, the expression for the memory function presented in this work is applicable to non-Markov systems. The approximations are formulated in a propagator-free form allowing their efficient evaluation from the microscopic data sampled by standard molecular dynamics simulations. A numerical application is presented for a molecular liquid (nitromethane). With our formalism we do not observe the "plateau-value problem" if the friction tensors for dissipative particle dynamics (DPD) are computed using the Green-Kubo relation. Our formalism provides a consistent bottom-up route for hierarchical parametrization of DPD models from atomistic simulations.
Mixture of learners for cancer stem cell detection using CD13 and H and E stained images
NASA Astrophysics Data System (ADS)
Oǧuz, Oǧuzhan; Akbaş, Cem Emre; Mallah, Maen; Taşdemir, Kasım.; Akhan Güzelcan, Ece; Muenzenmayer, Christian; Wittenberg, Thomas; Üner, Ayşegül; Cetin, A. E.; ćetin Atalay, Rengül
2016-03-01
In this article, algorithms for cancer stem cell (CSC) detection in liver cancer tissue images are developed. Conventionally, a pathologist examines of cancer cell morphologies under microscope. Computer aided diagnosis systems (CAD) aims to help pathologists in this tedious and repetitive work. The first algorithm locates CSCs in CD13 stained liver tissue images. The method has also an online learning algorithm to improve the accuracy of detection. The second family of algorithms classify the cancer tissues stained with H and E which is clinically routine and cost effective than immunohistochemistry (IHC) procedure. The algorithms utilize 1D-SIFT and Eigen-analysis based feature sets as descriptors. Normal and cancerous tissues can be classified with 92.1% accuracy in H and E stained images. Classification accuracy of low and high-grade cancerous tissue images is 70.4%. Therefore, this study paves the way for diagnosing the cancerous tissue and grading the level of it using H and E stained microscopic tissue images.
Das, Suroopa; Warhadpande, Manjusha M; Redij, Saurabh A; Jibhkate, N G; Sabir, Husain
2015-01-01
The aim of this study was to investigate whether the combination of operating microscope and selective dentin removal increased the frequency of second mesiobuccal (MB2) canal detection in permanent maxillary first molar teeth. One hundred fifty permanent maxillary first molars indicated for root canal treatment were randomly selected from patients belonging to the age group of 18-45 years irrespective of gender. After access cavity preparation and location of main canals, the MB2 canal orifice was sought in all teeth with an endodontic explorer under direct vision (Stage I), then under magnification with the aid of operating microscope (Stage II) and finally with the combined use of operating microscope and selective dentin removal (Stage III). MB2 canals were detected in 36%, 54% and 72% of the teeth in Stages I-III, respectively. This study demonstrated that dental operating microscope when used along with adjunctive aids such as selective dentin removal/troughing and good clinical knowledge will increase the ability of dental clinician to locate MB2 canals.
Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography
Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji
2013-01-01
OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume < −950 HU of each lobe using (i) the slice-by-slice method (reference standard), (ii) number of segments method, and (iii) semi-automatic and (iv) automatic computer-aided diagnosis. We determined Pearson correlation coefficients between the reference standard and the three other methods for lobar volumes and emphysematous lobar volumes. We also compared the relative errors among the three measurement methods. RESULTS Both semi-automatic and automatic computer-aided diagnosis results were more strongly correlated with the reference standard than the number of segments method. The correlation coefficients for automatic computer-aided diagnosis were slightly lower than those for semi-automatic computer-aided diagnosis because there was one outlier among 50 cases (2%) in the right upper lobe and two outliers among 50 cases (4%) in the other lobes. The number of segments method relative error was significantly greater than those for semi-automatic and automatic computer-aided diagnosis (P < 0.001). The computational time for automatic computer-aided diagnosis was 1/2 to 2/3 than that of semi-automatic computer-aided diagnosis. CONCLUSIONS A novel lobar volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer-aided diagnosis failed. PMID:23526418
Conceptual spacecraft systems design and synthesis
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Interactive systems design and synthesis of future spacecraft concepts
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Airborne Intelligent Display (AID) Phase I Software Description,
1983-10-24
Board Computer Characteristics 10 3.0 SOFTWARE GENERAL DESCRIPTION 13 3.1 Overview 13 3.2 System Software 14 3.2.1 System Startup 14 3.2.1.1 Initial...3 A-2 Task States A-4 A-3 Task Program Structure A-6 A-4 Task States and State Change Mechanisms A-7 A-5 Computing Return Addresses: RUNADR, SLPADR A...techniques. 2.2 Design Approach The stated objectives were met by: 1. distributing the processing load among multiple Z80 single-board computers (SBC’s). This
1988-03-01
structure of the interface is a mapping from the physical world [for example, the use of icons, which S have inherent meaning to users but represent...design alternatives. Mechanisms for linking the user to the computer include physical devices (keyboards), actions taken with the devices (keystrokes...VALUATION AIDES TEMLATEI IITCOM1I LATOR IACTICAL KNOWLEDGE ACGIUISITION MICNnII t 1 Fig. 9. INTACVAL. * OtJiCTs ARE PHYSICAL ENTITIES OR CONCEPTUAL EN
Song, Yang; Zhao, Yi-jiao; Sun, Yu-chun; Lü, Pei-jun; Wang, Yong
2013-09-01
To evaluate the design and manufacture accuracy of a domestic computer aided design (CAD) and computer aided manufacture (CAM) system, and to compare it with similar foreign products. Thirty models of posterior-teeth-single-crown preparations were collected, and STL data of these preparations was collected by Denmark 3Shape scanner. Three copings were made for each preparation, the one designed and manufactured using commercial CAD/CAM system (3Shape CAD software and Wieland T1 CAM equipment) was assigned into control group T0, the one designed and manufactured using domestic CAD software (developed by Peking University School and Hospital of Stomatology and Nanjing University of Aeronautics and Astronautics) and Wieland T1 CAM equipment was assigned into experimental group TCAD for design accuracy evaluation, and the one designed and manufactured using 3Shape CAD software and domestic CAM equipment (developed by Peking University School and Hospital of Stomatology, Tsinghua University and ShanDong XinHua Incorporated Company of medical apparatus and instruments) was assigned into experimental group TCAM for manufacture accuracy evaluation. Finally, the marginal fitness were compared and evaluated by using 3D & Profile measurement microscope laser. The marginal fitness of TCAD was 27.98 (19.10, 46.57) µm in buccal, 32.67 (20.65, 50.82) µm in lingual, 27.38 (22.53, 52.61) µm in mesial, 29.50 (22.68, 53.65) µm in distal; of TCAM was 21.69 (15.87, 30.21) µm in buccal, 18.51 (13.50, 22.51) µm in lingual, 19.15 (15.42, 26.89) µm in mesial, 22.77 (18.58, 32.15) µm in distal; and there were no statistical differences compared with T0 [20.16 (17.16, 48.00) µm in buccal, 21.51 (17.05, 28.31) µm in lingual, 23.54 (17.89, 30.04) µm in mesial and 23.94 (17.93, 28.19) µm in distal] except lingual data of TCAD. The design and machining precision of this domestic CAD/CAM system is at the same level of those comparable foreign products.
Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-12-20
In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.
NASA Astrophysics Data System (ADS)
Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic
2017-03-01
This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.
Drift of Phase Fluctuations in the ABC Model
NASA Astrophysics Data System (ADS)
Bertini, Lorenzo; Buttà, Paolo
2013-07-01
In a recent work, Bodineau and Derrida analyzed the phase fluctuations in the ABC model. In particular, they computed the asymptotic variance and, on the basis of numerical simulations, they conjectured the presence of a drift, which they guessed to be an antisymmetric function of the three densities. By assuming the validity of the fluctuating hydrodynamic approximation, we prove the presence of such a drift, providing an analytical expression for it. This expression is then shown to be an antisymmetric function of the three densities. The antisymmetry of the drift can also be inferred from a symmetry property of the underlying microscopic dynamics.
Assessment of Computer Aids in Shipyards
1993-04-01
tank . The same need for an objective basis stands for construction processes. The computer provides an electronic medium which is equivalent to the water...in a towing tank . The virtual yard will serve a role for the industry equivalent to that of the USS Timmerman test bed for future destroyer 27 design...even beyond the contract design phase and spetications . We are taking a look at it as a cascade, which has appeared in a number of our presentations
Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong
2013-01-01
The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.
Samsi, Siddharth; Krishnamurthy, Ashok K.; Gurcan, Metin N.
2012-01-01
Follicular Lymphoma (FL) is one of the most common non-Hodgkin Lymphoma in the United States. Diagnosis and grading of FL is based on the review of histopathological tissue sections under a microscope and is influenced by human factors such as fatigue and reader bias. Computer-aided image analysis tools can help improve the accuracy of diagnosis and grading and act as another tool at the pathologist’s disposal. Our group has been developing algorithms for identifying follicles in immunohistochemical images. These algorithms have been tested and validated on small images extracted from whole slide images. However, the use of these algorithms for analyzing the entire whole slide image requires significant changes to the processing methodology since the images are relatively large (on the order of 100k × 100k pixels). In this paper we discuss the challenges involved in analyzing whole slide images and propose potential computational methodologies for addressing these challenges. We discuss the use of parallel computing tools on commodity clusters and compare performance of the serial and parallel implementations of our approach. PMID:22962572
Interference Confocal Microscope Integrated with Spatial Phase Shifter.
Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian
2016-08-24
We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.
Kurk, Toby; Adams, David G; Connell, Simon D; Thomson, Neil H
2010-05-01
Imaging signals derived from the atomic force microscope (AFM) are typically presented as separate adjacent images with greyscale or pseudo-colour palettes. We propose that information-rich false-colour composites are a useful means of presenting three-channel AFM image data. This method can aid the interpretation of complex surfaces and facilitate the perception of information that is convoluted across data channels. We illustrate this approach with images of filamentous cyanobacteria imaged in air and under aqueous buffer, using both deflection-modulation (contact) mode and amplitude-modulation (tapping) mode. Topography-dependent contrast in the error and tertiary signals aids the interpretation of the topography signal by contributing additional data, resulting in a more detailed image, and by showing variations in the probe-surface interaction. Moreover, topography-independent contrast and topography-dependent contrast in the tertiary data image (phase or friction) can be distinguished more easily as a consequence of the three dimensional colour-space.
An overview of the NASA electronic components information management system
NASA Technical Reports Server (NTRS)
Kramer, G.; Waterbury, S.
1991-01-01
The NASA Parts Project Office (NPPO) comprehensive data system to support all NASA Electric, Electronic, and Electromechanical (EEE) parts management and technical data requirements is described. A phase delivery approach is adopted, comprising four principal phases. Phases 1 and 2 support Space Station Freedom (SSF) and use a centralized architecture with all data and processing kept on a mainframe computer. Phases 3 and 4 support all NASA centers and projects and implement a distributed system architecture, in which data and processing are shared among networked database servers. The Phase 1 system, which became operational in February of 1990, implements a core set of functions. Phase 2, scheduled for release in 1991, adds functions to the Phase 1 system. Phase 3, to be prototyped beginning in 1991 and delivered in 1992, introduces a distributed system, separate from the Phase 1 and 2 system, with a refined semantic data model. Phase 4 extends the data model and functionality of the Phase 3 system to provide support for the NASA design community, including integration with Computer Aided Design (CAD) environments. Phase 4 is scheduled for prototyping in 1992 to 93 and delivery in 1994.
Mou, D G; Cooney, C L
1983-01-01
To broaden the practicality of on-line growth monitoring and control, its application in fedbatch penicillin fermentation using high corn steep liquor (CSL) concentration (53 g/L) is demonstrated. By employing a calculation method that considers the vagaries of CSL consumption, overall and instantaneous carbon-balancing equations are successfully used to calculate, on-line, the cell concentration and instantaneous specific growth rate in the penicillin production phase. As a consequence, these equations, together with a feedback control strategy, enable the computer control of glucose feed and maintenance of the preselected production-phase growth rate with error less than 0.002 h(-1).
Art in Science Competition invites artworks to the annual exhibition on ISMB 2018 in Chicago.
Welch, Lonnie; Gaeta, Bruno; Kovats, Diane E; Frenkel Morgenstern, Milana
2018-01-01
The International Society of Computational Biology and Bioinformatics (ISCB) brings together scientists from a wide range of disciplines, including biology, medicine, computer science, mathematics and statistics. Practitioners in these fields are constantly dealing with information in visual form: from microscope images and photographs of gels to scatter plots, network graphs and phylogenetic trees, structural formulae and protein models to flow diagrams, visual aids for problem-solving are omnipresent. The ISCB Art in Science Competition 2017 at the ISCB/ECCB 2017 conference in Prague offered a way to show the beauty of science in art form. Past artworks in this annual exhibition at ISMB combined outstanding beauty and aesthetics with deep insight that perfectly validated the exhibit's approach or went beyond the problem's solution. Others were surprising and inspiring through the transition from science to art, opening eyes and minds to reflect on the work being undertaken.
Digital photocontrol of the network of live excitable cells
NASA Astrophysics Data System (ADS)
Erofeev, I. S.; Magome, N.; Agladze, K. I.
2011-11-01
Recent development of tissue engineering techniques allows creating and maintaining almost indefinitely networks of excitable cells with desired architecture. We coupled the network of live excitable cardiac cells with a common computer by sensitizing them to light, projecting a light pattern on the layer of cells, and monitoring excitation with the aid of fluorescent probes (optical mapping). As a sensitizing substance we used azobenzene trimethylammonium bromide (AzoTAB). This substance undergoes cis-trans-photoisomerization and trans-isomer of AzoTAB inhibits excitation in the cardiac cells, while cis-isomer does not. AzoTAB-mediated sensitization allows, thus, reversible and dynamic control of the excitation waves through the entire cardiomyocyte network either uniformly, or in a preferred spatial pattern. Technically, it was achieved by coupling a common digital projector with a macroview microscope and using computer graphic software for creating the projected pattern of conducting pathways. This approach allows real time interactive photocontrol of the heart tissue.
Investigation into the development of computer aided design software for space based sensors
NASA Technical Reports Server (NTRS)
Pender, C. W.; Clark, W. L.
1987-01-01
The described effort is phase one of the development of a Computer Aided Design (CAD) software to be used to perform radiometric sensor design. The software package will be referred to as SCAD and is directed toward the preliminary phase of the design of space based sensor system. The approach being followed is to develop a modern, graphic intensive, user friendly software package using existing software as building blocks. The emphasis will be directed toward the development of a shell containing menus, smart defaults, and interfaces, which can accommodate a wide variety of existing application software packages. The shell will offer expected utilities such as graphics, tailored menus, and a variety of drivers for I/O devices. Following the development of the shell, the development of SCAD is planned as chiefly selection and integration of appropriate building blocks. The phase one development activities have included: the selection of hardware which will be used with SCAD; the determination of the scope of SCAD; the preliminary evaluation of a number of software packages for applicability to SCAD; determination of a method for achieving required capabilities where voids exist; and then establishing a strategy for binding the software modules into an easy to use tool kit.
NASA Astrophysics Data System (ADS)
Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian
2018-06-01
Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.
Phase-dependent noise in Josephson junctions
NASA Astrophysics Data System (ADS)
Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano
2018-03-01
In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.
Rosero, Amparo; Zárský, Viktor; Cvrčková, Fatima
2014-01-01
The cortical microtubules, and to some extent also the actin meshwork, play a central role in the shaping of plant cells. Transgenic plants expressing fluorescent protein markers specifically tagging the two main cytoskeletal systems are available, allowing noninvasive in vivo studies. Advanced microscopy techniques, in particular confocal laser scanning microscopy (CLSM) and variable angle epifluorescence microscopy (VAEM), can be nowadays used for imaging the cortical cytoskeleton of living cells with unprecedented spatial and temporal resolution. With the aid of suitable computing techniques, quantitative information can be extracted from microscopic images and video sequences, providing insight into both architecture and dynamics of the cortical cytoskeleton.
Integration of Histology Lectures and Practical Teaching in China
ERIC Educational Resources Information Center
Lu, Xiaoye; Cheng, Xin; Li, Ke; Lee, Kenneth Ka Ho; Yang, Xuesong
2016-01-01
Objectives: Human histology is a discipline concerning the study of microscopic structures of human tissues and organs--with the aid of light or electron microscopes. Traditional teaching of histology is composed of two separated components, theory and practice. The main disadvantage with traditional histology teaching is the detachment of theory…
Microscope-aided endodontic treatment of maxillary first premolars with three roots: a case series.
Karumaran, C S; Gunaseelan, R; Krithikadatta, J
2011-01-01
Maxillary premolars have a highly variable root canal morphology. However, the presence of three roots is a rare occurrence. This clinical article describes the unusual anatomy detected in maxillary premolars during routine endodontic treatment using microscope. The diagnosis and clinical management of maxillary first premolars with three roots and canals using radiographic interpretation, access cavity modification and visual enhancement with operative microscopes is discussed in the article.
3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy
Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan
2017-01-01
High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings. PMID:28819645
Boyde, A; Vesely, P; Gray, C; Jones, S J
1994-01-01
Chick and rat bone-derived cells were mounted in sealed coverslip-covered chambers; individual osteoclasts (but also osteoblasts) were selected and studied at 37 degrees C using three different types of high-speed scanning confocal microscopes: (1) A Noran Tandem Scanning Microscope (TSM) was used with a low light level, cooled CCD camera for image transfer to a Noran TN8502 frame store-based image analysing computer to make time lapse movie sequences using 0.1 s exposure periods, thus losing some of the advantage of the high frame rate of the TSM. Rapid focus adjustment using computer controlled piezo drivers permitted two or more focus planes to be imaged sequentially: thus (with additional light-source shuttering) the reflection confocal image could be alternated with the phase contrast image at a different focus. Individual cells were followed for up to 5 days, suggesting no significant irradiation problem. (2) Exceptional temporal and spatial resolution is available in video rate laser confocal scanning microscopes (VRCSLMs). We used the Noran Odyssey unitary beam VRCSLM with an argon ion laser at 488 nm and acousto-optic deflection (AOD) on the line axis: this instrument is truly and adjustably confocal in the reflection mode. (3) We also used the Lasertec 1LM11 line scan instrument, with an He-Ne laser at 633 nm, and AOD for the frame scan. We discuss the technical problems and merits of the different approaches. The VRCSLMs documented rapid, real-time oscillatory motion: all the methods used show rapid net movement of organelles within bone cells. The interference reflection mode gives particularly strong contrasts in confocal instruments. Phase contrast and other interference methods used in the microscopy of living cells can be used simultaneously in the TSM.
Field analysis & eddy current losses calculation in five-phase tubular actuator
NASA Astrophysics Data System (ADS)
Waindok, Andrzej; Tomczuk, Bronislaw
2017-12-01
Field analysis including eddy currents in the magnetic core of five-phase permanent magnet tubular linear actuator (TLA) has been carried out. The eddy currents induced in the magnetic core cause the losses which have been calculated. The results from 2D finite element (FE) analysis have been compared with those from 3D calculations. The losses in the mover of the five-phase actuator are much lower than the losses in its stator. That is why the former ones can be neglected in the computer aided designing. The calculation results have been verified experimentally
Digital receiver study and implementation
NASA Technical Reports Server (NTRS)
Fogle, D. A.; Lee, G. M.; Massey, J. C.
1972-01-01
Computer software was developed which makes it possible to use any general purpose computer with A/D conversion capability as a PSK receiver for low data rate telemetry processing. Carrier tracking, bit synchronization, and matched filter detection are all performed digitally. To aid in the implementation of optimum computer processors, a study of general digital processing techniques was performed which emphasized various techniques for digitizing general analog systems. In particular, the phase-locked loop was extensively analyzed as a typical non-linear communication element. Bayesian estimation techniques for PSK demodulation were studied. A hardware implementation of the digital Costas loop was developed.
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy
1989-01-01
Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; John, Renu
2015-12-01
Digital holographic microscope (DHM) is an emerging quantitative phase imaging technique with unique imaging scales and resolutions leading to multitude of applications. DHM is promising as a novel investigational and applied tool for cell imaging, studying the morphology and real time dynamics of cells and a number of related applications. The use of numerical propagation and computational digital optics offer unique flexibility to tune the depth of focus, and compensate for image aberrations. In this work, we report imaging the dynamics of cell division in E.coli and yeast cells using a DHM platform. We demonstrate 3-D and depth imaging as well as reconstruction of phase profiles of E.coli and yeast cells using the system. We record a digital hologram of E.coli and yeast cells and reconstruct the image using Fresnel propagation algorithm. We also use aberration compensation algorithms for correcting the aberrations that are introduced by the microscope objective in the object path using linear least square fitting techniques. This work demonstrates the strong potential of a DHM platform in 3-D live cell imaging, fast clinical quantifications and pathological applications.
Doblas, Ana; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Saavedra, Genaro; Garcia-Sucerquia, Jorge
2014-04-01
The advantages of using a telecentric imaging system in digital holographic microscopy (DHM) to study biological specimens are highlighted. To this end, the performances of nontelecentric DHM and telecentric DHM are evaluated from the quantitative phase imaging (QPI) point of view. The evaluated stability of the microscope allows single-shot QPI in DHM by using telecentric imaging systems. Quantitative phase maps of a section of the head of the drosophila melanogaster fly and of red blood cells are obtained via single-shot DHM with no numerical postprocessing. With these maps we show that the use of telecentric DHM provides larger field of view for a given magnification and permits more accurate QPI measurements with less number of computational operations.
Development and Demonstration of Innovations in Adult Agricultural Education. Final Report.
ERIC Educational Resources Information Center
Persons, Edgar A.; And Others
One of a series of related inquiries, this study focused on computer aided decision making and record keeping in farm management; and on instructional variables in adult agricultural education which affect the reception of agricultural innovations. Phases 1 and 2 of this project entailed use of farm record data in preparing concise summaries and…
CMU/IBM Usability Study: Final Report. CDC Technical Report No. 11.
ERIC Educational Resources Information Center
Ballay, Joseph M.; And Others
This report focuses on the activities and findings of the fourth phase of research carried out at Carnegie-Mellon University (CMU) on the development of user documentation for computer-aided design (CAD) systems. The first of four major sections provides an overview of recent research, issues involved in the research, and implications of the…
ERIC Educational Resources Information Center
Ozkan, Aysen; Yildirim, Kemal
2016-01-01
Problem Statement: Drafting course is essential for students in the design disciplines for becoming more organized and for complying with standards in the educational system. Drafting knowledge is crucial, both for comprehension of the issues and for the implementation phase. In any design project, drafting performance and success are as important…
1985-04-01
and Standards .. ... ....... ....... 9 A. General . ... .. .. ... ..... .. .. ... 9 B. ASME Boiler and Pressure Vessel Code .. .. ......9 C. Foreign...several different sources. B. American Society of Mechanial Engineers (ASME) Boiler and Pressure Vessel Code A shell and tube heat exchanger is indeed a
Transportable and vibration-free full-field low-coherent quantitative phase microscope
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Yamada, Hidenao; Goto, Kentaro; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio
2018-02-01
We developed a transportable Linnik-type full-field low-coherent quantitative phase microscope that is able to compensate for optical path length (OPL) disturbance due to environmental mechanical noises. Though two-beam interferometers such as Linnik ones suffer from unstable OPL difference, we overcame this problem with a mechanical feedback system based on digital signal-processing that controls the OPL difference in sub-nanometer resolution precisely with a feedback bandwidth of 4 kHz. The developed setup has a footprint of 200 mm by 200 mm, a height of 500 mm, and a weight of 4.5 kilograms. In the transmission imaging mode, cells were cultured on a reflection-enhanced glass-bottom dish, and we obtained interference images sequentially while performing stepwise quarter-wavelength phase-shifting. Real-time image processing, including retrieval of the unwrapped phase from interference images and its background correction, along with the acquisition of interference images, was performed on a laptop computer. Emulation of the phase contrast (PhC) images and the differential interference contrast (DIC) images was also performed in real time. Moreover, our setup was applied for full-field cell membrane imaging in the reflection mode, where the cells were cultured on an anti-reflection (AR)-coated glass-bottom dish. The phase and intensity of the light reflected by the membrane revealed the outer shape of the cells independent of the refractive index. In this paper, we show imaging results on cultured cells in both transmission and reflection modes.
Three-dimensional rendering of segmented object using matlab - biomed 2010.
Anderson, Jeffrey R; Barrett, Steven F
2010-01-01
The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.
Seruya, Mitchel; Fisher, Mark; Rodriguez, Eduardo D
2013-11-01
There has been rising interest in computer-aided design/computer-aided manufacturing for preoperative planning and execution of osseous free flap reconstruction. The purpose of this study was to compare outcomes between computer-assisted and conventional fibula free flap techniques for craniofacial reconstruction. A two-center, retrospective review was carried out on patients who underwent fibula free flap surgery for craniofacial reconstruction from 2003 to 2012. Patients were categorized by the type of reconstructive technique: conventional (between 2003 and 2009) or computer-aided design/computer-aided manufacturing (from 2010 to 2012). Demographics, surgical factors, and perioperative and long-term outcomes were compared. A total of 68 patients underwent microsurgical craniofacial reconstruction: 58 conventional and 10 computer-aided design and manufacturing fibula free flaps. By demographics, patients undergoing the computer-aided design/computer-aided manufacturing method were significantly older and had a higher rate of radiotherapy exposure compared with conventional patients. Intraoperatively, the median number of osteotomies was significantly higher (2.0 versus 1.0, p=0.002) and the median ischemia time was significantly shorter (120 minutes versus 170 minutes, p=0.004) for the computer-aided design/computer-aided manufacturing technique compared with conventional techniques; operative times were shorter for patients undergoing the computer-aided design/computer-aided manufacturing technique, although this did not reach statistical significance. Perioperative and long-term outcomes were equivalent for the two groups, notably, hospital length of stay, recipient-site infection, partial and total flap loss, and rate of soft-tissue and bony tissue revisions. Microsurgical craniofacial reconstruction using a computer-assisted fibula flap technique yielded significantly shorter ischemia times amidst a higher number of osteotomies compared with conventional techniques. Therapeutic, III.
Sub-diffraction nano manipulation using STED AFM.
Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto
2013-01-01
In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.
The Use of a Microcomputer in Collecting Data from Cardiovascular Experiments on Muscle Relaxants
Thut, Paul D.; Polansky, Gregg; Pruzansky, Elysa
1983-01-01
The possible association of cardiovascular side-effects from potentially, clinically useful non-depolarizing neuromuscular blocking drugs has been studied with the aid of a micro- computer. The maximal changes in heart rate, systolic, diastolic and mean arterial pressure and pulse pressure were recorded in the onset, maximal effect and recovery phase of relaxant activity in dogs anesthetized with isoflurane. The data collection system employed a Gould 2800S polygraph, an Apple II Plus microcomputer, a Cyborg Corp. ‘Issac’ 12 bit analog to digital converter, two 5 1/4″ floppy disk drives, a ‘Videoterm’ 80 column display board and a 12″ green phosphor monitor. Prior to development of the computer system, direct analysis of polygraph records required more than three times more time than the actual experiment. With the aid of the computer, analysis of data, tabular and graphic presentation and narrative reports were completed within 15 minutes after the end of the experiment.
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir A.; Lüttjohann, Annika; Makarov, Vladimir V.; Goremyko, Mikhail V.; Koronovskii, Alexey A.; Nedaivozov, Vladimir; Runnova, Anastasia E.; van Luijtelaar, Gilles; Hramov, Alexander E.; Boccaletti, Stefano
2017-07-01
We introduce a practical and computationally not demanding technique for inferring interactions at various microscopic levels between the units of a network from the measurements and the processing of macroscopic signals. Starting from a network model of Kuramoto phase oscillators, which evolve adaptively according to homophilic and homeostatic adaptive principles, we give evidence that the increase of synchronization within groups of nodes (and the corresponding formation of synchronous clusters) causes also the defragmentation of the wavelet energy spectrum of the macroscopic signal. Our methodology is then applied to getting a glance into the microscopic interactions occurring in a neurophysiological system, namely, in the thalamocortical neural network of an epileptic brain of a rat, where the group electrical activity is registered by means of multichannel EEG. We demonstrate that it is possible to infer the degree of interaction between the interconnected regions of the brain during different types of brain activities and to estimate the regions' participation in the generation of the different levels of consciousness.
Shaw, S L; Salmon, E D; Quatrano, R S
1995-12-01
In this report, we describe a relatively inexpensive method for acquiring, storing and processing light microscope images that combines the advantages of video technology with the powerful medium now termed digital photography. Digital photography refers to the recording of images as digital files that are stored, manipulated and displayed using a computer. This report details the use of a gated video-rate charge-coupled device (CCD) camera and a frame grabber board for capturing 256 gray-level digital images from the light microscope. This camera gives high-resolution bright-field, phase contrast and differential interference contrast (DIC) images but, also, with gated on-chip integration, has the capability to record low-light level fluorescent images. The basic components of the digital photography system are described, and examples are presented of fluorescence and bright-field micrographs. Digital processing of images to remove noise, to enhance contrast and to prepare figures for printing is discussed.
Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.
2010-01-01
We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464
Computer-Aided Facilities Management Systems (CAFM).
ERIC Educational Resources Information Center
Cyros, Kreon L.
Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…
Warpage Measurement of Thin Wafers by Reflectometry
NASA Astrophysics Data System (ADS)
Ng, Chi Seng; Asundi, Anand Krishna
To cope with advances in the electronic and portable devices, electronic packaging industries have employed thinner and larger wafers to produce thinner packages/ electronic devices. As the thickness of the wafer decrease (below 250um), there is an increased tendency for it to warp. Large stresses are induced during manufacturing processes, particularly during backside metal deposition. The wafers bend due to these stresses. Warpage results from the residual stress will affect subsequent manufacturing processes. For example, warpage due to this residual stresses lead to crack dies during singulation process which will severely reorient the residual stress distributions, thus, weakening the mechanical and electrical properties of the singulated die. It is impossible to completely prevent the residual stress induced on thin wafers during the manufacturing processes. Monitoring of curvature/flatness is thus necessary to ensure reliability of device and its uses. A simple whole-field curvature measurement system using a novel computer aided phase shift reflection grating method has been developed and this project aims to take it to the next step for residual stress and full field surface shape measurement. The system was developed from our earlier works on Computer Aided Moiré Methods and Novel Techniques in Reflection Moiré, Experimental Mechanics (1994) in which novel structured light approach was shown for surface slope and curvature measurement. This method uses similar technology but coupled with a novel phase shift system to accurately measure slope and curvature. In this study, slope of the surface were obtain using the versatility of computer aided reflection grating method to manipulate and generate gratings in two orthogonal directions. The curvature and stress can be evaluated by performing a single order differentiation on slope data.
Evaluation of sperm motility with CASA-Mot: which factors may influence our measurements?
Yeste, Marc; Bonet, Sergi; Rodríguez-Gil, Joan E; Rivera Del Álamo, Maria M
2018-03-14
Computer-aided sperm analysis (CASA) is now routinely used in IVF clinics, animal breeding centres and research laboratories. Although CASA provides a more objective way to evaluate sperm parameters, a significant number of factors can affect these measurements. This paper classifies these factors into four categories: (1) sample and slide (e.g. preincubation time, type of specimen and type of chamber slide); (2) microscope (e.g. light source and microscope stage); (3) hardware and software, including the settings of each system; and (4) user-related factors. We review the effects of the different factors in each category on the measurements made and emphasise the need to take measures to standardise evaluations. The take-home message of the present article is that there are several commercial and useful CASA systems, and all are appropriate for routine analysis. Non-commercial systems may also be good choices when the user needs to adapt the device to specific experimental conditions. In both cases (commercial and non-commercial), it is important that standard protocols are put in place for evaluation, as well as methods to validate the system.
The application of virtual reality systems as a support of digital manufacturing and logistics
NASA Astrophysics Data System (ADS)
Golda, G.; Kampa, A.; Paprocka, I.
2016-08-01
Modern trends in development of computer aided techniques are heading toward the integration of design competitive products and so-called "digital manufacturing and logistics", supported by computer simulation software. All phases of product lifecycle: starting from design of a new product, through planning and control of manufacturing, assembly, internal logistics and repairs, quality control, distribution to customers and after-sale service, up to its recycling or utilization should be aided and managed by advanced packages of product lifecycle management software. Important problems for providing the efficient flow of materials in supply chain management of whole product lifecycle, using computer simulation will be described on that paper. Authors will pay attention to the processes of acquiring relevant information and correct data, necessary for virtual modeling and computer simulation of integrated manufacturing and logistics systems. The article describes possibilities of use an applications of virtual reality software for modeling and simulation the production and logistics processes in enterprise in different aspects of product lifecycle management. The authors demonstrate effective method of creating computer simulations for digital manufacturing and logistics and show modeled and programmed examples and solutions. They pay attention to development trends and show options of the applications that go beyond enterprise.
Tomographic imaging of transparent biological samples using the pyramid phase microscope
Iglesias, Ignacio
2016-01-01
We show how a pyramid phase microscope can be used to obtain tomographic information of the spatial variation of refractive index in biological samples using the Radon transform. A method that uses the information provided by the phase microscope for axial and lateral repositioning of the sample when it rotates is also described. Its application to the reconstruction of mouse embryos in the blastocyst stage is demonstrated. PMID:27570696
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zi-Kui; Gleeson, Brian; Shang, Shunli
This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities,more » which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.« less
ERIC Educational Resources Information Center
Hagge, John
1986-01-01
Focuses on problems encountered with computer-aided writing instruction. Discusses conflicts caused by the computer classroom concept, some general paradoxes and ethical implications of computer-aided instruction. (EL)
Project-Based Teaching-Learning Computer-Aided Engineering Tools
ERIC Educational Resources Information Center
Simoes, J. A.; Relvas, C.; Moreira, R.
2004-01-01
Computer-aided design, computer-aided manufacturing, computer-aided analysis, reverse engineering and rapid prototyping are tools that play an important key role within product design. These are areas of technical knowledge that must be part of engineering and industrial design courses' curricula. This paper describes our teaching experience of…
Wide-field computational imaging of pathology slides using lens-free on-chip microscopy.
Greenbaum, Alon; Zhang, Yibo; Feizi, Alborz; Chung, Ping-Luen; Luo, Wei; Kandukuri, Shivani R; Ozcan, Aydogan
2014-12-17
Optical examination of microscale features in pathology slides is one of the gold standards to diagnose disease. However, the use of conventional light microscopes is partially limited owing to their relatively high cost, bulkiness of lens-based optics, small field of view (FOV), and requirements for lateral scanning and three-dimensional (3D) focus adjustment. We illustrate the performance of a computational lens-free, holographic on-chip microscope that uses the transport-of-intensity equation, multi-height iterative phase retrieval, and rotational field transformations to perform wide-FOV imaging of pathology samples with comparable image quality to a traditional transmission lens-based microscope. The holographically reconstructed image can be digitally focused at any depth within the object FOV (after image capture) without the need for mechanical focus adjustment and is also digitally corrected for artifacts arising from uncontrolled tilting and height variations between the sample and sensor planes. Using this lens-free on-chip microscope, we successfully imaged invasive carcinoma cells within human breast sections, Papanicolaou smears revealing a high-grade squamous intraepithelial lesion, and sickle cell anemia blood smears over a FOV of 20.5 mm(2). The resulting wide-field lens-free images had sufficient image resolution and contrast for clinical evaluation, as demonstrated by a pathologist's blinded diagnosis of breast cancer tissue samples, achieving an overall accuracy of ~99%. By providing high-resolution images of large-area pathology samples with 3D digital focus adjustment, lens-free on-chip microscopy can be useful in resource-limited and point-of-care settings. Copyright © 2014, American Association for the Advancement of Science.
Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro
2016-01-28
Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.
Experiments to evolve toward a tangible user interface for computer-aided design parts assembly
NASA Astrophysics Data System (ADS)
Legardeur, Jeremy; Garreau, Ludovic; Couture, Nadine
2004-05-01
In this paper, we present the concepts of the ESKUA (Experimentation of a Kinesics System Usable for Assembly) platform that allows designers to carry out the assembly of mechanical CAD (Computer Aided Design) parts. This platform, based on tangible user interface lead taking into account assembly constraints from the beginning of the design phase and especially during the phase of CAD models manipulation. Our goal is to propose a working environment where the designer is confronted with real assembly constraints which are currently masked by existing CAD software functionalities. Thus, the platform is based on the handling of physical objects, called tangible interactors, which enable having a physical perception of the assembly constraints. In this goal, we have defined a typology of interactors based on concepts proposed in Design For Assembly methods. We present here the results of studies that led to the evolution of this first interactors set. One is concerning an experiment to evaluate the cognitive aspects of the use of interactors. The other is about an analysis of existing mechanical product and fasteners. We will show how these studies lead to the evolution of the interactors based on the functional surfaces use.
Herbst appliance in lingual orthodontics.
Wiechmann, Dirk; Schwestka-Polly, Rainer; Hohoff, Ariane
2008-09-01
The aims of this article were to outline a technique for attaching Herbst telescopes to a customized lingual orthodontic (LO) appliance and to demonstrate the treatment phases and outcome with a case report. The interface between the LO appliance and the telescopes consists of a computer-aided design/computer-aided manufacturing (CAD/CAM), custom-made labial pivot base connected to the custom-made bands of the maxillary molars and mandibular canines. The individual CAD depiction of the interface ensures an optimal 3-dimensional tube-and-plunger position for correct and smooth function of the telescope mechanism. Because of the lingual location of the brackets, a small buccal tooth-to-telescope distance can be achieved, increasing patient comfort. Various options of anchorage are possible with only 1 device. After bite jumping, the telescopes and pivot bases can be removed easily without debonding the bands or removing the archwires. Experience from the first patient suggests that the Herbst-LO appliance facilitates treatment control during all phases, decreases the risk of interface breakage and mandibular incisor flaring, and might reduce overall treatment time. These initial clinical observations justify further research to provide evidence about the efficacy of Herbst-LO appliances.
Three-dimensional reconstruction of glycosomes in trypanosomatids of the genus Phytomonas.
Attias, M; de Souza, W
1995-02-01
Computer aided three dimensional (3-D) reconstruction of cells from two isolates of protozoa of the genus Phytomonas, trypanosomatids found in plants, were made from 0.3 microm thick sections, imaged on a Zeiss 902 electron microscope with a energy filter for in ellastically scattered electrons, in order to obtain information about glycosomal shape diversity. Direct counts of peroxisomes (glycosomes) from Phytomonas sp. from Chamaesyce thymifolia indicated that there were fewer glycosomes per cell than the simple count of ultrathin section profiles would suggest and that these organelles could be long and branched. On the other hand, the stacked glycosomes observed in the isolate from Euphorbia characias were small individual structures and no connection was seen between them.
Reid, Jeffrey C.
1989-01-01
Computer processing and high resolution graphics display of geochemical data were used to quickly, accurately, and efficiently obtain important decision-making information for tin (cassiterite) exploration, Seward Peninsula, Alaska (USA). Primary geochemical dispersion patterns were determined for tin-bearing intrusive granite phases of Late Cretaceous age with exploration bedrock lithogeochemistry at the Kougarok tin prospect. Expensive diamond drilling footage was required to reach exploration objectives. Recognition of element distribution and dispersion patterns was useful in subsurface interpretation and correlation, and to aid location of other holes.
Mostafavi, Kamal; Tutunea-Fatan, O Remus; Bordatchev, Evgueni V; Johnson, James A
2014-12-01
The strong advent of computer-assisted technologies experienced by the modern orthopedic surgery prompts for the expansion of computationally efficient techniques to be built on the broad base of computer-aided engineering tools that are readily available. However, one of the common challenges faced during the current developmental phase continues to remain the lack of reliable frameworks to allow a fast and precise conversion of the anatomical information acquired through computer tomography to a format that is acceptable to computer-aided engineering software. To address this, this study proposes an integrated and automatic framework capable to extract and then postprocess the original imaging data to a common planar and closed B-Spline representation. The core of the developed platform relies on the approximation of the discrete computer tomography data by means of an original two-step B-Spline fitting technique based on successive deformations of the control polygon. In addition to its rapidity and robustness, the developed fitting technique was validated to produce accurate representations that do not deviate by more than 0.2 mm with respect to alternate representations of the bone geometry that were obtained through different-contact-based-data acquisition or data processing methods. © IMechE 2014.
Cellular solidification of transparent monotectics
NASA Technical Reports Server (NTRS)
Kaulker, W. F.
1986-01-01
Understanding how liquid phase particles are engulfed or pushed during freezing of a monotectic is addressed. The additional complication is that the solid-liquid interface is nonplanar due to constitutional undercooling. Some evidence of particle pushing where the particles are the liquid phase of the montectic was already observed. Cellular freezing of the succinonitrile-glycerol system also occurred. Only a few compositions were tested at that time. The starting materials were not especially pure so that cellular interface observed was likely due to the presence of unkown impurities, the major portion of which was water. Topics addressed include: the effort of modeling the particle pushing process using the computer, establishing an apparatus for the determination of phase diagrams, and the measurement of the temperature gradients with a specimen which will solidify on the temperature gradient microscope stage.
First-principles Raman Spectra of Lead Titanate with Pressure
NASA Astrophysics Data System (ADS)
Schad, A.; Ganesh, P.; Cohen, R. E.; Ahart, M.
2010-03-01
PbTiO3 displays[1,2] a morphotropic phase boundary (MPB) under pressure at which electromechanical properties are maximal. Previously only complex solid-solutions were thought to exhibit such a boundary. To aid in the experimental study of the MPB region, we compute Raman scattering spectra of different phases of PbTiO3 with pressure using a DFT based first-principles approach and Density Functional Perturbation Theory (DFPT) [3]. The computed intensities and shifts with pressure agree very well with the experimental data measured on powder samples. Computations further allow comparison of Raman spectra and shifts in energetically competing phases raising the possibility of using calculations for experimental calibration of Raman spectra at any pressure. The results substantiate previous claims of a low-temperature monoclinic phase at the MPB at approximately 10 GPa in PbTiO3 as well as refute the possibility of an I4cm phase at higher pressures as suggested by other groups [4]. [1] Z. Wu and R. E. Cohen, Phys. Rev. Lett. 95, 037601 (2005), [2] M. Ahart et.al., Nature 451, 545 (2008), [3] P. Hermet et.al., J. Phys.:Condens. Matter 21, 215901 (2009) [4] P.E. Janolin et.al., Phys. Rev. Lett. 101, 237601 (2008).
GEMPAK: An arbitrary aircraft geometry generator
NASA Technical Reports Server (NTRS)
Stack, S. H.; Edwards, C. L. W.; Small, W. J.
1977-01-01
A computer program, GEMPAK, has been developed to aid in the generation of detailed configuration geometry. The program was written to allow the user as much flexibility as possible in his choices of configurations and the detail of description desired and at the same time keep input requirements and program turnaround and cost to a minimum. The program consists of routines that generate fuselage and planar-surface (winglike) geometry and a routine that will determine the true intersection of all components with the fuselage. This paper describes the methods by which the various geometries are generated and provides input description with sample input and output. Also included are descriptions of the primary program variables and functions performed by the various routines. The FORTRAN program GEMPAK has been used extensively in conjunction with interfaces to several aerodynamic and plotting computer programs and has proven to be an effective aid in the preliminary design phase of aircraft configurations.
Xing, Fuyong; Yang, Lin
2016-01-01
Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.
Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress.
Odijk, T
1998-01-01
A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error. PMID:9726924
ERIC Educational Resources Information Center
Georgia Univ., Athens. Div. of Vocational Education.
This guide describes the requirements for courses in computer-aided design and computer-aided manufacturing (CAD/CAM) that are part of engineering technology programs conducted in vocational-technical schools in Georgia. The guide is organized in five sections. The first section provides a rationale for occupations in design and in production,…
ERIC Educational Resources Information Center
Corpuz, Edgar D.; Rebello, N. Sanjay
2011-01-01
In this paper, we discuss the first phase of a multiphase study aimed at investigating the dynamics of students' knowledge construction in the context of unfamiliar physical phenomenon--microscopic friction. The first phase of this study involved the investigation of the variations in students' mental models of microscopic friction. Clinical…
Employment Opportunities for the Handicapped in Programmable Automation.
ERIC Educational Resources Information Center
Swift, Richard; Leneway, Robert
A Computer Integrated Manufacturing System may make it possible for severely disabled people to custom design, machine, and manufacture either wood or metal parts. Programmable automation merges computer aided design, computer aided manufacturing, computer aided engineering, and computer integrated manufacturing systems with automated production…
Vector Observation-Aided/Attitude-Rate Estimation Using Global Positioning System Signals
NASA Technical Reports Server (NTRS)
Oshman, Yaakov; Markley, F. Landis
1997-01-01
A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.
Computer-aided software development process design
NASA Technical Reports Server (NTRS)
Lin, Chi Y.; Levary, Reuven R.
1989-01-01
The authors describe an intelligent tool designed to aid managers of software development projects in planning, managing, and controlling the development process of medium- to large-scale software projects. Its purpose is to reduce uncertainties in the budget, personnel, and schedule planning of software development projects. It is based on dynamic model for the software development and maintenance life-cycle process. This dynamic process is composed of a number of time-varying, interacting developmental phases, each characterized by its intended functions and requirements. System dynamics is used as a modeling methodology. The resulting Software LIfe-Cycle Simulator (SLICS) and the hybrid expert simulation system of which it is a subsystem are described.
1990-05-01
vital problem. During flight conditions a sensor, or a combination of sensors might undergo a failure, causing the loss of sensor signals that are...by solving the optimization problem max I k - k I(Z 00 (55) d(zk) e n V~ l where k denotes the nominal sensor gains and I1.11 denotes the weighted I...the Weapon System. Parameters like volume and weight have to be approximately defined at the begining of this phase. It is equally important to obtain
Diffracting aperture based differential phase contrast for scanning X-ray microscopy.
Kaulich, Burkhard; Polack, Francois; Neuhaeusler, Ulrich; Susini, Jean; di Fabrizio, Enzo; Wilhein, Thomas
2002-10-07
It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.
A pragmatic guide to multiphoton microscope design
Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff
2016-01-01
Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429
Su, Hang; Yin, Zhaozheng; Huh, Seungil; Kanade, Takeo
2013-10-01
Phase-contrast microscopy is one of the most common and convenient imaging modalities to observe long-term multi-cellular processes, which generates images by the interference of lights passing through transparent specimens and background medium with different retarded phases. Despite many years of study, computer-aided phase contrast microscopy analysis on cell behavior is challenged by image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose (1) a phase contrast microscopy image restoration method that produces phase retardation features, which are intrinsic features of phase contrast microscopy, and (2) a semi-supervised learning based algorithm for cell segmentation, which is a fundamental task for various cell behavior analysis. Specifically, the image formation process of phase contrast microscopy images is first computationally modeled with a dictionary of diffraction patterns; as a result, each pixel of a phase contrast microscopy image is represented by a linear combination of the bases, which we call phase retardation features. Images are then partitioned into phase-homogeneous atoms by clustering neighboring pixels with similar phase retardation features. Consequently, cell segmentation is performed via a semi-supervised classification technique over the phase-homogeneous atoms. Experiments demonstrate that the proposed approach produces quality segmentation of individual cells and outperforms previous approaches. Copyright © 2013 Elsevier B.V. All rights reserved.
The use of porcine corrosion casts for teaching human anatomy.
Eberlova, Lada; Liska, Vaclav; Mirka, Hynek; Tonar, Zbynek; Haviar, Stanislav; Svoboda, Milos; Benes, Jan; Palek, Richard; Emingr, Michal; Rosendorf, Jachym; Mik, Patrik; Leupen, Sarah; Lametschwandtner, Alois
2017-09-01
In teaching and learning human anatomy, anatomical autopsy and prosected specimens have always been indispensable. However, alternative methods must often be used to demonstrate particularly delicate structures. Corrosion casting of porcine organs with Biodur E20 ® Plus is valuable for teaching and learning both gross anatomy and, uniquely, the micromorphology of cardiovascular, respiratory, digestive, and urogenital systems. Assessments of casts with a stereomicroscope and/or scanning electron microscope as well as highlighting cast structures using color coding help students to better understand how the structures that they have observed as two-dimensional images actually exist in three dimensions, and students found using the casts to be highly effective in their learning. Reconstructions of cast hollow structures from (micro-)computed tomography scans and videos facilitate detailed analyses of branching patterns and spatial arrangements in cast structures, aid in the understanding of clinically relevant structures and provide innovative visual aids. The casting protocol and teaching manual we offer can be adjusted to different technical capabilities and might also be found useful for veterinary or other biological science classes. Copyright © 2017 Elsevier GmbH. All rights reserved.
Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope
Wilson, Jesse W.; Samineni, Prathyush; Warren, Warren S.; Fischer, Martin C.
2012-01-01
Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context. PMID:22567580
SWAT system performance predictions
NASA Astrophysics Data System (ADS)
Parenti, Ronald R.; Sasiela, Richard J.
1993-03-01
In the next phase of Lincoln Laboratory's SWAT (Short-Wavelength Adaptive Techniques) program, the performance of a 241-actuator adaptive-optics system will be measured using a variety of synthetic-beacon geometries. As an aid in this experimental investigation, a detailed set of theoretical predictions has also been assembled. The computational tools that have been applied in this study include a numerical approach in which Monte-Carlo ray-trace simulations of accumulated phase error are developed, and an analytical analysis of the expected system behavior. This report describes the basis of these two computational techniques and compares their estimates of overall system performance. Although their regions of applicability tend to be complementary rather than redundant, good agreement is usually obtained when both sets of results can be derived for the same engagement scenario.
Palanisamy, Vinupritha; Mariamichael, Anburajan
2016-10-01
Background and Aim: Diabetes mellitus is a metabolic disorder characterized by varying hyperglycemias either due to insufficient secretion of insulin by the pancreas or improper utilization of glucose. The study was aimed to investigate the association of morphological features of erythrocytes among normal and diabetic subjects and its gender-based changes and thereby to develop a computer aided tool to diagnose diabetes using features extracted from RBC. Materials and Methods: The study involved 138 normal and 144 diabetic subjects. The blood was drawn from the subjects and the blood smear prepared was digitized using Zeiss fluorescent microscope. The digitized images were pre-processed and texture segmentation was performed to extract the various morphological features. The Pearson correlation test was performed and subsequently, classification of subjects as normal and diabetes was carried out by a neural network classifier based on the features that demonstrated significance at the level of P <0.05. Result: The proposed system demonstrated an overall accuracy, sensitivity, specificity, positive predictive value and negative predictive value of 93.3, 93.71, 92.8, 93.1 and 93.5% respectively. Conclusion: The morphological features exhibited a statistically significant difference (P<0.01) between the normal and diabetic cells, suggesting that it could be helpful in the diagnosis of Diabetes mellitus using a computer aided system. © Georg Thieme Verlag KG Stuttgart · New York.
Mai, Hang-Nga; Lee, Kyeong Eun; Lee, Kyu-Bok; Jeong, Seung-Mi; Lee, Seok-Jae; Lee, Cheong-Hee; An, Seo-Young; Lee, Du-Hyeong
2017-10-01
The purpose of this study was to evaluate the reliability of computer-aided replica technique (CART) by calculating its agreement with the replica technique (RT), using statistical agreement analysis. A prepared metal die and a metal crown were fabricated. The gap between the restoration and abutment was replicated using silicone indicator paste (n = 25). Gap measurements differed in the control (RT) and experimental (CART) groups. In the RT group, the silicone replica was manually sectioned, and the marginal and occlusal gaps were measured using a microscope. In the CART group, the gap was digitized using optical scanning and image superimposition, and the gaps were measured using a software program. The agreement between the measurement techniques was evaluated by using the 95% Bland-Altman limits of agreement and concordance correlation coefficients (CCC). The least acceptable CCC was 0.90. The RT and CART groups showed linear association, with a strong positive correlation in gap measurements, but without significant differences. The 95% limits of agreement between the paired gap measurements were 3.84% and 7.08% of the mean. The lower 95% confidence limits of CCC were 0.9676 and 0.9188 for the marginal and occlusal gap measurements, respectively, and the values were greater than the allowed limit. The CART is a reliable digital approach for evaluating the fit accuracy of fixed dental prostheses.
Schönberger, Joana; Erdelt, Kurt-Jürgen; Bäumer, Daniel; Beuer, Florian
2017-11-01
The purpose of this in vitro study was to compare the precision of fit of frameworks milled from semi-sintered regular zirconia and high-translucent (HT) zirconia blanks, fabricated with two different CAD/CAM systems. Three-unit, posterior fixed dental prostheses (FDP) frameworks were fabricated for standardized dies (n = 11) with two different laboratory computer-aided design (CAD)/computer-aided manufacturing (CAM) systems (Cercon/Ceramill). The replica technique was used to evaluate the marginal and internal fit under an optical microscope. Evaluation of the data was performed according to prior studies at a level of significance of 5%. The systems showed a statistically significant influence on the internal fit of the frameworks (p ≤ 0.001) and on the marginal fit (p < 0.001). The type of material showed no influence on the marginal fit for the Cercon system (p = 0.636) and on the marginal fit (p = 0.064) and the internal fit (p = 0.316) for the Ceramill system, while regular zirconia from Cercon showed higher internal values than HT zirconia (p = 0.016). Both investigated systems showed clinically acceptable values within the limitations of this in vitro study. However, one showed less internal accuracy when regular zirconia was used.
Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra
2016-01-01
The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532
Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra
2016-03-25
The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.
Ranasinghesagara, Janaka C.; Hayakawa, Carole K.; Davis, Mitchell A.; Dunn, Andrew K.; Potma, Eric O.; Venugopalan, Vasan
2014-01-01
We develop an efficient method for accurately calculating the electric field of tightly focused laser beams in the presence of specific configurations of microscopic scatterers. This Huygens–Fresnel wave-based electric field superposition (HF-WEFS) method computes the amplitude and phase of the scattered electric field in excellent agreement with finite difference time-domain (FDTD) solutions of Maxwell’s equations. Our HF-WEFS implementation is 2–4 orders of magnitude faster than the FDTD method and enables systematic investigations of the effects of scatterer size and configuration on the focal field. We demonstrate the power of the new HF-WEFS approach by mapping several metrics of focal field distortion as a function of scatterer position. This analysis shows that the maximum focal field distortion occurs for single scatterers placed below the focal plane with an offset from the optical axis. The HF-WEFS method represents an important first step toward the development of a computational model of laser-scanning microscopy of thick cellular/tissue specimens. PMID:25121440
ERIC Educational Resources Information Center
Havas, George D.
This brief guide to materials in the Library of Congress (LC) on computer aided design and/or computer aided manufacturing lists reference materials and other information sources under 13 headings: (1) brief introductions; (2) LC subject headings used for such materials; (3) textbooks; (4) additional titles; (5) glossaries and handbooks; (6)…
Student Achievement in Computer Programming: Lecture vs Computer-Aided Instruction
ERIC Educational Resources Information Center
Tsai, San-Yun W.; Pohl, Norval F.
1978-01-01
This paper discusses a study of the differences in student learning achievement, as measured by four different types of common performance evaluation techniques, in a college-level computer programming course under three teaching/learning environments: lecture, computer-aided instruction, and lecture supplemented with computer-aided instruction.…
Phase equilibrium modeling for high temperature metallization on GaAs solar cells
NASA Technical Reports Server (NTRS)
Chung, M. A.; Davison, J. E.; Smith, S. R.
1991-01-01
Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.
Shearing interference microscope for step-height measurements.
Trịnh, Hưng-Xuân; Lin, Shyh-Tsong; Chen, Liang-Chia; Yeh, Sheng-Lih; Chen, Chin-Sheng; Hoang, Hong-Hai
2017-05-01
A shearing interference microscope using a Savart prism as the shear plate is proposed for inspecting step-heights. Where the light beam propagates through the Savart prism and microscopic system to illuminate the sample, it then turns back to re-pass through the Savart prism and microscopic system to generate a shearing interference pattern on the camera. Two measurement modes, phase-shifting and phase-scanning, can be utilized to determine the depths of the step-heights on the sample. The first mode, which employs a narrowband source, is based on the five-step phase-shifting algorithm and has a measurement range of a quarter-wavelength. The second mode, which adopts a broadband source, is based on peak-intensity identification technology and has a measurement range up to a few micrometres. This paper is to introduce the configuration and measurement theory of this microscope, perform a setup used to implement it, and present the experimental results from the uses of the setup. The results not only verify the validity but also confirm the high measurement repeatability of the proposed microscope. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Meng, X. F.; Peng, X.; Cai, L. Z.; Li, A. M.; Gao, Z.; Wang, Y. R.
2009-08-01
A hybrid cryptosystem is proposed, in which one image is encrypted to two interferograms with the aid of double random-phase encoding (DRPE) and two-step phase-shifting interferometry (2-PSI), then three pairs of public-private keys are utilized to encode and decode the session keys (geometrical parameters, the second random-phase mask) and interferograms. In the stage of decryption, the ciphered image can be decrypted by wavefront reconstruction, inverse Fresnel diffraction, and real amplitude normalization. This approach can successfully solve the problem of key management and dispatch, resulting in increased security strength. The feasibility of the proposed cryptosystem and its robustness against some types of attack are verified and analyzed by computer simulations.
[Microcytomorphometric video-image detection of nuclear chromatin in ovarian cancer].
Grzonka, Dariusz; Kamiński, Kazimierz; Kaźmierczak, Wojciech
2003-09-01
Technology of detection of tissue preparates precisious evaluates contents of nuclear chromatine, largeness and shape of cellular nucleus, indicators of mitosis, DNA index, ploidy, phase-S fraction and other parameters. Methods of detection of picture are: microcytomorphometry video-image (MCMM-VI), flow, double flow and activated by fluorescence. Diagnostic methods of malignant neoplasm of ovary are still nonspecific and not precise, that is a reason of unsatisfied results of treatment. Evaluation of microcytomorphometric measurements of nuclear chromatine histopathologic tissue preparates (HP) of ovarian cancer and comparison to normal ovarian tissue. Estimated 10 paraffin embedded tissue preparates of serous ovarian cancer, 4 preparates mucinous cancer and 2 cases of tumor Kruckenberg patients operated in Clinic of Perinatology and Gynaecology Silesian Medical Academy in Zabrze in period 2001-2002, MCMM-VI estimation based on computer aided analysis system: microscope Axioscop 20, camera tv JVCTK-C 1380, CarlZeiss KS Vision 400 rel.3.0 software. Following MCMM-VI parameters assessed: count of pathologic nucleus, diameter of nucleus, area, min/max diameter ratio, equivalent circle diameter (Dcircle), mean of brightness (mean D), integrated optical density (IOD = area x mean D), DNA index and 2.5 c exceeding rate percentage (2.5 c ER%). MCMM-VI performed on the 160 areas of 16 preparates of cancer and 100 areas of normal ovarian tissue. Statistical analysis was performed by used t-Student test. We obtained stastistically significant higher values parameters of nuclear chromatine, DI, 2.5 c ER of mucinous cancer and tumor Kruckenberg comparison to serous cancer. MCMM-VI parameters of chromatine malignant ovarian neoplasm were statistically significantly higher than normal ovarian tissue. Cytometric and karyometric parametres of nuclear chromatine estimated MCMM-VI are useful in the diagnostics and prognosis of ovarian cancer.
High-Throughput Histopathological Image Analysis via Robust Cell Segmentation and Hashing
Zhang, Xiaofan; Xing, Fuyong; Su, Hai; Yang, Lin; Zhang, Shaoting
2015-01-01
Computer-aided diagnosis of histopathological images usually requires to examine all cells for accurate diagnosis. Traditional computational methods may have efficiency issues when performing cell-level analysis. In this paper, we propose a robust and scalable solution to enable such analysis in a real-time fashion. Specifically, a robust segmentation method is developed to delineate cells accurately using Gaussian-based hierarchical voting and repulsive balloon model. A large-scale image retrieval approach is also designed to examine and classify each cell of a testing image by comparing it with a massive database, e.g., half-million cells extracted from the training dataset. We evaluate this proposed framework on a challenging and important clinical use case, i.e., differentiation of two types of lung cancers (the adenocarcinoma and squamous carcinoma), using thousands of lung microscopic tissue images extracted from hundreds of patients. Our method has achieved promising accuracy and running time by searching among half-million cells. PMID:26599156
Pezzotti, Giuseppe; Kumakura, Tsuyoshi; Yamada, Kiyotaka; Tateiwa, Toshiyuki; Puppulin, Leonardo; Zhu, Wenliang; Yamamoto, Kengo
2007-01-01
Confocal spectroscopic techniques are applied to selected Raman bands to study the microscopic features of acetabular cups made of ultra-high molecular weight polyethylene (UHMWPE) before and after implantation in vivo. The micrometric lateral resolution of a laser beam focused on the polymeric surface (or subsurface) enables a highly resolved visualization of 2-D conformational population patterns, including crystalline, amorphous, orthorhombic phase fractions, and oxidation index. An optimized confocal probe configuration, aided by a computational deconvolution of the optical probe, allows minimization of the probe size along the in-depth direction and a nondestructive evaluation of microstructural properties along the material subsurface. Computational deconvolution is also attempted, based on an experimental assessment of the probe response function of the polyethylene Raman spectrum, according to a defocusing technique. A statistical set of high-resolution microstructural data are collected on a fully 3-D level on gamma-ray irradiated UHMWPE acetabular cups both as-received from the maker and after retrieval from a human body. Microstructural properties reveal significant gradients along the immediate material subsurface and distinct differences are found due to the loading history in vivo, which cannot be revealed by conventional optical spectroscopy. The applicability of the confocal spectroscopic technique is valid beyond the particular retrieval cases examined in this study, and can be easily extended to evaluate in-vitro tested components or to quality control of new polyethylene brands. Confocal Raman spectroscopy may also contribute to rationalize the complex effects of gamma-ray irradiation on the surface of medical grade UHMWPE for total joint replacement and, ultimately, to predict their actual lifetime in vivo.
1984-06-01
TEMPERATURE MAT’LS IMAGE RECOGNITION ROCKET PROPULSION SPEECH RECOGNITION/TRANSLATION COMPUTER-AIDED DESIGN ARTIFICIAL INTELLIGENCE PRODUCTION TECHNOLOGY...planning, intelligence exchange, and logistics. While not called out in the Guidelines, any further standardization in equipments and interoperability...COST AND TIME THAN DEVELCPING THEM -ESTABLISHMENT OF PRODUCTIVE LONG-TERM BUSINESS RELATIONSH IPS WITH JAPANESE COMPAN IES * PROBLEM -POSSIBILITY OF
Alencar, Estefania Queiroga de Santana e; Nobrega, Maria de Lourdes Martins; Dametto, Fabio Roberto; dos Santos, Patrícia Bittencourt Dutra; Pinheiro, Fabio Henrique de Sá Leitão
2016-01-01
ABSTRACT Objective: This study aimed to evaluate the effectiveness of two methods of visual magnification (operating microscope and light head magnifying glass) for removal of composite flash around orthodontic metal brackets. Material and Methods: Brackets were bonded in the center of the clinical crown of sixty well-preserved human premolars. Half of the sample was bonded with conventional Transbond XT (3M Unitek TM, USA), whereas the other half was bonded with Transbond TM Plus Color Change (3M Unitek TM, USA). For each type of composite, the choice of method to remove the flash was determined by randomly distributing the teeth into the following subgroups: A (removal by naked eye, n = 10), B (removal with the aid of light head magnifying glass, under 4x magnification, n = 10), and C (removal with the aid of an operating microscope, under 40x magnification, n = 10). Brackets were debonded and teeth taken to a scanning electron microscope (SS-x-550, Shimadzu, Japan) for visualization of their buccal surface. Quantification of composite flash was performed with Image Pro Plus software, and values were compared by Kruskal-Wallis test and Dunn’s post-hoc test at 5% significance level. Results: Removal of pigmented orthodontic adhesive with the aid of light head magnifying glass proved, in general, to be advantageous in comparison to all other methods. Conclusion: There was no advantage in using Transbond TM Plus Color Change alone. Further studies are necessary to draw a more definitive conclusion in regards to the benefits of using an operating microscope. PMID:28125139
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; D'Amico, Fiora; Buonocunto, Francesca; Navarro, Jorge; Lanzilotti, Crocifissa; Fiore, Pietro; Megna, Marisa; Damiani, Sabino; Marvulli, Riccardo
2017-06-01
Postcoma persons in a minimally conscious state (MCS) and with extensive motor impairment cannot independently access and control environmental stimulation. Assessing the effects of a microswitch-aided program aimed at helping MCS persons develop responding and stimulation control and conducting a social validation/evaluation of the program. A single-subject ABAB design was used for each participant to determine the impact of the program on his or her responding. Staff interviews were used for the social validation/evaluation of the program. Rehabilitation and care facilities that the participants attended. Eleven MCS persons with extensive motor impairment and lack of speech or any other functional communication. For each participant, baseline (A) phases were alternated with intervention (B) phases during which the program was used. The program relied on microswitches to monitor participants' specific responses (e.g., prolonged eyelid closures) and on a computer system to enable those responses to control stimulation. In practice, the participants could use a simple response such as prolonged eyelid closure to generate a new stimulation input. Sixty-six staff people took part in the social validation of the program. They were to compare the program to basic and elaborate forms of externally controlled stimulation, scoring each of them on a six-item questionnaire. All participants showed increased response frequencies (and thus higher levels of independent stimulation input/control) during the B phases of the study. Their frequencies for each intervention phase more than doubled their frequencies for the preceding baseline phase with the difference between the two being clearly significant (P<0.01). Staff involved in the social validation procedure provided significantly higher scoring (P<0.01) for the program on five of the six questionnaire items. A microswitch-aided program can be an effective and socially acceptable tool in the work with MCS persons. The participants and staff's data can be taken as an encouragement for the use of a microswitch-aided program within care and rehabilitation settings for MCS persons.
Silicon Wafer Advanced Packaging (SWAP). Multichip Module (MCM) Foundry Study. Version 2
1991-04-08
Next Layer Dielectric Spacing - Additional Metal Thickness Impact on Dielectric Uniformity/Adhiesion. The first step in .!Ie EPerimental design would be... design CAM - computer aided manufacturing CAE - computer aided engineering CALCE - computer aided life cycle engineering center CARMA - computer aided...expansion 5 j- CVD - chemical vapor deposition J . ..- j DA - design automation J , DEC - Digital Equipment Corporation --- DFT - design for testability
The application of computer-aided technologies in automotive styling design
NASA Astrophysics Data System (ADS)
Zheng, Ze-feng; Zhang, Ji; Zheng, Ying
2012-04-01
In automotive industry, outline design is its life and creative design is its soul indeed. Computer-aided technology has been widely used in the automotive industry and more and more attention has been paid. This paper chiefly introduce the application of computer-aided technologies including CAD, CAM and CAE, analyses the process of automotive structural design and describe the development tendency of computer-aided design.
Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants
McCann, Billy W.; Silva, Nuwan De; Windus, Theresa L.; ...
2016-02-17
Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R 2(O)P-link-P(O)R 2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theorymore » and the performance of known bis-phosphine oxide extractants. For the case where link is -CH 2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the ‘anomalous aryl strengthening’ effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.« less
Near real-time digital holographic microscope based on GPU parallel computing
NASA Astrophysics Data System (ADS)
Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan
2018-01-01
A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,
Computer-aided diagnosis of liver tumors on computed tomography images.
Chang, Chin-Chen; Chen, Hong-Hao; Chang, Yeun-Chung; Yang, Ming-Yang; Lo, Chung-Ming; Ko, Wei-Chun; Lee, Yee-Fan; Liu, Kao-Lang; Chang, Ruey-Feng
2017-07-01
Liver cancer is the tenth most common cancer in the USA, and its incidence has been increasing for several decades. Early detection, diagnosis, and treatment of the disease are very important. Computed tomography (CT) is one of the most common and robust imaging techniques for the detection of liver cancer. CT scanners can provide multiple-phase sequential scans of the whole liver. In this study, we proposed a computer-aided diagnosis (CAD) system to diagnose liver cancer using the features of tumors obtained from multiphase CT images. A total of 71 histologically-proven liver tumors including 49 benign and 22 malignant lesions were evaluated with the proposed CAD system to evaluate its performance. Tumors were identified by the user and then segmented using a region growing algorithm. After tumor segmentation, three kinds of features were obtained for each tumor, including texture, shape, and kinetic curve. The texture was quantified using 3 dimensional (3-D) texture data of the tumor based on the grey level co-occurrence matrix (GLCM). Compactness, margin, and an elliptic model were used to describe the 3-D shape of the tumor. The kinetic curve was established from each phase of tumor and represented as variations in density between each phase. Backward elimination was used to select the best combination of features, and binary logistic regression analysis was used to classify the tumors with leave-one-out cross validation. The accuracy and sensitivity for the texture were 71.82% and 68.18%, respectively, which were better than for the shape and kinetic curve under closed specificity. Combining all of the features achieved the highest accuracy (58/71, 81.69%), sensitivity (18/22, 81.82%), and specificity (40/49, 81.63%). The Az value of combining all features was 0.8713. Combining texture, shape, and kinetic curve features may be able to differentiate benign from malignant tumors in the liver using our proposed CAD system. Copyright © 2017 Elsevier B.V. All rights reserved.
Distributed phased array architecture study
NASA Technical Reports Server (NTRS)
Bourgeois, Brian
1987-01-01
Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.
A design handbook for phase change thermal control and energy storage devices. [selected paraffins
NASA Technical Reports Server (NTRS)
Humphries, W. R.; Griggs, E. I.
1977-01-01
Comprehensive survey is given of the thermal aspects of phase change material devices. Fundamental mechanisms of heat transfer within the phase change device are discussed. Performance in zero-g and one-g fields are examined as it relates to such a device. Computer models for phase change materials, with metal fillers, undergoing conductive and convective processes are detailed. Using these models, extensive parametric data are presented for a hypothetical configuration with a rectangular phase change housing, using straight fins as the filler, and paraffin as the phase change material. These data are generated over a range of realistic sizes, material properties, and thermal boundary conditions. A number of illustrative examples are given to demonstrate use of the parametric data. Also, a complete listing of phase change material property data are reproduced herein as an aid to the reader.
Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter
NASA Astrophysics Data System (ADS)
Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.
2013-10-01
An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.
NASA Technical Reports Server (NTRS)
Cross, James H., II
1990-01-01
The study, formulation, and generation of structures for Ada (GRASP/Ada) are discussed in this second phase report of a three phase effort. Various graphical representations that can be extracted or generated from source code are described and categorized with focus on reverse engineering. The overall goal is to provide the foundation for a CASE (computer-aided software design) environment in which reverse engineering and forward engineering (development) are tightly coupled. Emphasis is on a subset of architectural diagrams that can be generated automatically from source code with the control structure diagram (CSD) included for completeness.
Wang, Zhaojun; Cai, Yanan; Liang, Yansheng; Zhou, Xing; Yan, Shaohui; Dan, Dan; Bianco, Piero R.; Lei, Ming; Yao, Baoli
2017-01-01
A wide-field fluorescence microscope with a double-helix point spread function (PSF) is constructed to obtain the specimen’s three-dimensional distribution with a single snapshot. Spiral-phase-based computer-generated holograms (CGHs) are adopted to make the depth-of-field of the microscope adjustable. The impact of system aberrations on the double-helix PSF at high numerical aperture is analyzed to reveal the necessity of the aberration correction. A modified cepstrum-based reconstruction scheme is promoted in accordance with properties of the new double-helix PSF. The extended depth-of-field images and the corresponding depth maps for both a simulated sample and a tilted section slice of bovine pulmonary artery endothelial (BPAE) cells are recovered, respectively, verifying that the depth-of-field is properly extended and the depth of the specimen can be estimated at a precision of 23.4nm. This three-dimensional fluorescence microscope with a framerate-rank time resolution is suitable for studying the fast developing process of thin and sparsely distributed micron-scale cells in extended depth-of-field. PMID:29296483
Analysis of a dual-reflector antenna system using physical optics and digital computers
NASA Technical Reports Server (NTRS)
Schmidt, R. F.
1972-01-01
The application of physical-optics diffraction theory to a deployable dual-reflector geometry is discussed. The methods employed are not restricted to the Conical-Gregorian antenna, but apply in a general way to dual and even multiple reflector systems. Complex vector wave methods are used in the Fresnel and Fraunhofer regions of the reflectors. Field amplitude, phase, polarization data, and time average Poynting vectors are obtained via an IBM 360/91 digital computer. Focal region characteristics are plotted with the aid of a CalComp plotter. Comparison between the GSFC Huygens wavelet approach, JPL measurements, and JPL computer results based on the near field spherical wave expansion method are made wherever possible.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka
2012-03-01
Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.
Is cell viability always directly related to corrosion resistance of stainless steels?
Salahinejad, E; Ghaffari, M; Vashaee, D; Tayebi, L
2016-05-01
It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhancing an appointment diary on a pocket computer for use by people after brain injury.
Wright, P; Rogers, N; Hall, C; Wilson, B; Evans, J; Emslie, H
2001-12-01
People with memory loss resulting from brain injury benefit from purpose-designed memory aids such as appointment diaries on pocket computers. The present study explores the effects of extending the range of memory aids and including games. For 2 months, 12 people who had sustained brain injury were loaned a pocket computer containing three purpose-designed memory aids: diary, notebook and to-do list. A month later they were given another computer with the same memory aids but a different method of text entry (physical keyboard or touch-screen keyboard). Machine order was counterbalanced across participants. Assessment was by interviews during the loan periods, rating scales, performance tests and computer log files. All participants could use the memory aids and ten people (83%) found them very useful. Correlations among the three memory aids were not significant, suggesting individual variation in how they were used. Games did not increase use of the memory aids, nor did loan of the preferred pocket computer (with physical keyboard). Significantly more diary entries were made by people who had previously used other memory aids, suggesting that a better understanding of how to use a range of memory aids could benefit some people with brain injury.
Baumgart, Pia; Kirsten, Holger; Haak, Rainer; Olms, Constanze
2018-05-23
Implant and superstructure provide a complex system, which has to withstand oral conditions. Concerning the brittleness of many ceramics, fractures are a greatly feared issue. Therefore, polymer-infiltrated ceramic networks (PICNs) were developed. Because of its low Young's modulus and high elastic modulus, the PICN crown on a one-piece zirconia implant might absorb forces to prevent the system from fracturing in order to sustain oral forces. Recommendations for the material of superstructure on zirconia implants are lacking, and only one study investigates PICN crowns on these types of implants. Accordingly, this study aimed to examine PICN crowns on one-piece zirconia implants regarding bond strength and surface wear after long-term chewing simulation (CS). Twenty-five hybrid ceramic crowns (Vita Enamic, Vita Zahnfabrik) were produced using computer-aided design/computer-aided manufacturing (CAD/CAM) technology and adhesively bonded (RelyX™ Ultimate, 3M ESPE) to zirconia implants. Twenty of the specimens underwent simultaneous mechanical loading and thermocycling simulating a 5-year clinical situation (SD Mechatronik GmbH). Wear depth and wear volume, based on X-ray micro-computed tomography volume scans (Skyscan 1172-100-50, Bruker) before and after CS, were evaluated. All crowns were removed from the implants using a universal testing machine (Z010, Zwick GmbH&Co.KG). Subsequently, luting agent was light microscopically localized (Stemi 2000-C, Zeiss). With a scanning electron microscope (SEM, Phenom™ G2 pro, Phenom World), the area of abrasion was assessed. 1. After CS, none of the tested crowns were fractured or loosened. 2. The maximum vertical wear after CS was M = 0.31 ± 0.04 mm (mean ± standard deviation), and the surface wear was M = 0.74 ± 0.23 mm 3 . 3. The pull-off tests revealed a 1.8 times higher bond strength of the control group compared to the experimental group (t(23) = 8.69, p < 0.001). 4. Luting agent was mostly located in the crowns, not on the implants. 5. The area of abrasion showed avulsion and a rough surface. PICN on one-piece zirconia implants showed high bond strength and high wear after CS.
Histopathology slide projector: a simple improvisation.
Agarwal, Akhilesh K R; Bhattacharya, Nirjhar
2008-07-01
The ability to examine histopathology and other hematological slides under microscope is a necessary and important service which should be available in every health facility. The slides need to be projected on to a screen. We describe an inexpensive and easily constructed technique for projecting magnified images of slides using a simple microscope. It is effective both for making observations and for use as a teaching aid.
Diblíková, P; Veselý, M; Sysel, P; Čapek, P
2018-03-01
Properties of a composite material made of a continuous matrix and particles often depend on microscopic details, such as contacts between particles. Focusing on processing raw focused-ion beam scanning electron microscope (FIB-SEM) tomography data, we reconstructed three mixed-matrix membrane samples made of 6FDA-ODA polyimide and silicalite-1 particles. In the first step of image processing, backscattered electron (BSE) and secondary electron (SE) signals were mixed in a ratio that was expected to obtain a segmented 3D image with a realistic volume fraction of silicalite-1. Second, after spatial alignment of the stacked FIB-SEM data, the 3D image was smoothed using adaptive median and anisotropic nonlinear diffusion filters. Third, the image was segmented using the power watershed method coupled with a seeding algorithm based on geodesic reconstruction from the markers. If the resulting volume fraction did not match the target value quantified by chemical analysis of the sample, the BSE and SE signals were mixed in another ratio and the procedure was repeated until the target volume fraction was achieved. Otherwise, the segmented 3D image (replica) was accepted and its microstructure was thoroughly characterized with special attention paid to connectivity of the silicalite phase. In terms of the phase connectivity, Monte Carlo simulations based on the pure-phase permeability values enabled us to calculate the effective permeability tensor, the main diagonal elements of which were compared with the experimental permeability. In line with the hypothesis proposed in our recent paper (Čapek, P. et al. (2014) Comput. Mater. Sci. 89, 142-156), the results confirmed that the existence of particle clusters was a key microstructural feature determining effective permeability. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Transfer-function-parameter estimation from frequency response data: A FORTRAN program
NASA Technical Reports Server (NTRS)
Seidel, R. C.
1975-01-01
A FORTRAN computer program designed to fit a linear transfer function model to given frequency response magnitude and phase data is presented. A conjugate gradient search is used that minimizes the integral of the absolute value of the error squared between the model and the data. The search is constrained to insure model stability. A scaling of the model parameters by their own magnitude aids search convergence. Efficient computer algorithms result in a small and fast program suitable for a minicomputer. A sample problem with different model structures and parameter estimates is reported.
1984-01-01
working drawings, lists, and miscellaneous information needed for construction and testing (fig. 4). Detail design and construction in- cludes...still in test and evaluation phases, and is currently operational on a CDC computer. Its approach to management of geometric data is a unique and...been to provide the high degree of engineering user flexibility and yet achieve acceptable response times. In late 1983, a test system which has user
Computer-aided design and computer science technology
NASA Technical Reports Server (NTRS)
Fulton, R. E.; Voigt, S. J.
1976-01-01
A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.
Computer Instructional Aids for Undergraduate Control Education.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…
A Practical Guide to Experimental Geometrical Optics
NASA Astrophysics Data System (ADS)
Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.
2017-12-01
Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.
Textural pattern classification for oral squamous cell carcinoma.
Rahman, T Y; Mahanta, L B; Chakraborty, C; DAS, A K; Sarma, J D
2018-01-01
Despite being an area of cancer with highest worldwide incidence, oral cancer yet remains to be widely researched. Studies on computer-aided analysis of pathological slides of oral cancer contribute a lot to the diagnosis and treatment of the disease. Some researches in this direction have been carried out on oral submucous fibrosis. In this work an approach for analysing abnormality based on textural features present in squamous cell carcinoma histological slides have been considered. Histogram and grey-level co-occurrence matrix approaches for extraction of textural features from biopsy images with normal and malignant cells are used here. Further, we have used linear support vector machine classifier for automated diagnosis of the oral cancer, which gives 100% accuracy. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Oh, Eun-Yeong; Lerwill, Melinda F.; Brachtel, Elena F.; Jones, Nicholas C.; Knoblauch, Nicholas W.; Montaser-Kouhsari, Laleh; Johnson, Nicole B.; Rao, Luigi K. F.; Faulkner-Jones, Beverly; Wilbur, David C.; Schnitt, Stuart J.; Beck, Andrew H.
2014-01-01
The categorization of intraductal proliferative lesions of the breast based on routine light microscopic examination of histopathologic sections is in many cases challenging, even for experienced pathologists. The development of computational tools to aid pathologists in the characterization of these lesions would have great diagnostic and clinical value. As a first step to address this issue, we evaluated the ability of computational image analysis to accurately classify DCIS and UDH and to stratify nuclear grade within DCIS. Using 116 breast biopsies diagnosed as DCIS or UDH from the Massachusetts General Hospital (MGH), we developed a computational method to extract 392 features corresponding to the mean and standard deviation in nuclear size and shape, intensity, and texture across 8 color channels. We used L1-regularized logistic regression to build classification models to discriminate DCIS from UDH. The top-performing model contained 22 active features and achieved an AUC of 0.95 in cross-validation on the MGH data-set. We applied this model to an external validation set of 51 breast biopsies diagnosed as DCIS or UDH from the Beth Israel Deaconess Medical Center, and the model achieved an AUC of 0.86. The top-performing model contained active features from all color-spaces and from the three classes of features (morphology, intensity, and texture), suggesting the value of each for prediction. We built models to stratify grade within DCIS and obtained strong performance for stratifying low nuclear grade vs. high nuclear grade DCIS (AUC = 0.98 in cross-validation) with only moderate performance for discriminating low nuclear grade vs. intermediate nuclear grade and intermediate nuclear grade vs. high nuclear grade DCIS (AUC = 0.83 and 0.69, respectively). These data show that computational pathology models can robustly discriminate benign from malignant intraductal proliferative lesions of the breast and may aid pathologists in the diagnosis and classification of these lesions. PMID:25490766
1986-07-01
COMPUTER-AIDED OPERATION MANAGEMENT SYSTEM ................. 29 Functions of an Off-Line Computer-Aided Operation Management System Applications of...System Comparisons 85 DISTRIBUTION 5V J. • 0. FIGURES Number Page 1 Hardware Components 21 2 Basic Functions of a Computer-Aided Operation Management System...Plant Visits 26 4 Computer-Aided Operation Management Systems Reviewed for Analysis of Basic Functions 29 5 Progress of Software System Installation and
21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction... or embryos. Variations of microscopes and accessories used for these purposes would include phase...
Coy, Heidi; Young, Jonathan R; Douek, Michael L; Brown, Matthew S; Sayre, James; Raman, Steven S
2017-07-01
To evaluate the performance of a novel, quantitative computer-aided diagnostic (CAD) algorithm on four-phase multidetector computed tomography (MDCT) to detect peak lesion attenuation to enable differentiation of clear cell renal cell carcinoma (ccRCC) from chromophobe RCC (chRCC), papillary RCC (pRCC), oncocytoma, and fat-poor angiomyolipoma (fp-AML). We queried our clinical databases to obtain a cohort of histologically proven renal masses with preoperative MDCT with four phases [unenhanced (U), corticomedullary (CM), nephrographic (NP), and excretory (E)]. A whole lesion 3D contour was obtained in all four phases. The CAD algorithm determined a region of interest (ROI) of peak lesion attenuation within the 3D lesion contour. For comparison, a manual ROI was separately placed in the most enhancing portion of the lesion by visual inspection for a reference standard, and in uninvolved renal cortex. Relative lesion attenuation for both CAD and manual methods was obtained by normalizing the CAD peak lesion attenuation ROI (and the reference standard manually placed ROI) to uninvolved renal cortex with the formula [(peak lesion attenuation ROI - cortex ROI)/cortex ROI] × 100%. ROC analysis and area under the curve (AUC) were used to assess diagnostic performance. Bland-Altman analysis was used to compare peak ROI between CAD and manual method. The study cohort comprised 200 patients with 200 unique renal masses: 106 (53%) ccRCC, 32 (16%) oncocytomas, 18 (9%) chRCCs, 34 (17%) pRCCs, and 10 (5%) fp-AMLs. In the CM phase, CAD-derived ROI enabled characterization of ccRCC from chRCC, pRCC, oncocytoma, and fp-AML with AUCs of 0.850 (95% CI 0.732-0.968), 0.959 (95% CI 0.930-0.989), 0.792 (95% CI 0.716-0.869), and 0.825 (95% CI 0.703-0.948), respectively. On Bland-Altman analysis, there was excellent agreement of CAD and manual methods with mean differences between 14 and 26 HU in each phase. A novel, quantitative CAD algorithm enabled robust peak HU lesion detection and discrimination of ccRCC from other renal lesions with similar performance compared to the manual method.
tool for conflict management , preliminary version of which is the Computer Aided Conflict Information System. Using expert judgments to describe...1961. The combined model is more relevant during the crisis phase. The results have implications for conflict modelling. With respect to conflict ... management , there is an important implication. Since the organizational processes model may be more valid than an event interaction model, then conflict
Computer Aided System for Developing Aircrew Training (CASDAT).
1983-03-01
sequence of training within the phase of training. An example lesson code and title is: FAPA 20 fuel system The lesson reference number can be...syllabus. Some typical titles and their sequence numbers are: FAPA 20 Fuel System FAPA 40 Power Plant System FAPA 60 Hydraulic System FAPA 80...portion of the syllabus worksheet. 59 NAVTRAEQUIPCEN 79-C-0076-1 SYLLABUS WORKSHEET *** FAPA 20 NORMAL COMMUNCATIONS VT-VIDEO TAPE NIL-MEDIATED
1991-01-01
EXPERIENCE IN DEVELOPING INTEGRATED OPTICAL DEVICES, NONLINEAR MAGNETIC-OPTIC MATERIALS, HIGH FREQUENCY MODULATORS, COMPUTER-AIDED MODELING AND SOPHISTICATED... HIGH -LEVEL PRESENTATION AND DISTRIBUTED CONTROL MODELS FOR INTEGRATING HETEROGENEOUS MECHANICAL ENGINEERING APPLICATIONS AND TOOLS. THE DESIGN IS FOCUSED...STATISTICALLY ACCURATE WORST CASE DEVICE MODELS FOR CIRCUIT SIMULATION. PRESENT METHODS OF WORST CASE DEVICE DESIGN ARE AD HOC AND DO NOT ALLOW THE
Computer aided solution for segmenting the neuron line in hippocampal microscope images
NASA Astrophysics Data System (ADS)
Albaidhani, Tahseen; Jassim, Sabah; Al-Assam, Hisham
2017-05-01
The brain Hippocampus component is known to be responsible for memory and spatial navigation. Its functionality depends on the status of different blood vessels within the Hippocampus and is severely impaired by Alzheimer's disease as a result blockage of increasing number of blood vessels by accumulation of amyloid-beta (Aβ) protein. Accurate counting of blood vessels within the Hippocampus of mice brain, from microscopic images, is an active research area for the understanding of Alzheimer's disease. Here, we report our work on automatic detection of the Region of Interest, i.e. the region in which blood vessels are located. This area typically falls between the hippocampus edge and the line of neurons within the Hippocampus. This paper proposes a new method to detect and exclude the neuron line to improve the accuracy of blood vessel counting because some neurons on it might lead to false positive cases as they look like blood vessels. Our proposed solution is based on using trainable segmentation approach with morphological operations, taking into account variation in colour, intensity values, and image texture. Experiments on a sufficient number of microscopy images of mouse brain demonstrate the effectiveness of the developed solution in preparation for blood vessels counting.
Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun
2013-11-05
We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.
Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar
2018-01-01
To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.
Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.
Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus
2015-05-14
Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.
Quantum coherent optical phase modulation in an ultrafast transmission electron microscope
NASA Astrophysics Data System (ADS)
Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus
2015-05-01
Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.
Microscopic studies of polycrystalline nanoparticle growth in free space
NASA Astrophysics Data System (ADS)
Mohan, A.; Kaiser, M.; Verheijen, M. A.; Schropp, R. E. I.; Rath, J. K.
2017-06-01
We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.
ERIC Educational Resources Information Center
Cheng, Wan-Lee
This instructional manual contains 12 learning activity packets for use in a workshop in computer-aided design and drafting (CADD). The lessons cover the following topics: introduction to computer graphics and computer-aided design/drafting; coordinate systems; advance space graphics hardware configuration and basic features of the IBM PC…
RASCAL: A Rudimentary Adaptive System for Computer-Aided Learning.
ERIC Educational Resources Information Center
Stewart, John Christopher
Both the background of computer-assisted instruction (CAI) systems in general and the requirements of a computer-aided learning system which would be a reasonable assistant to a teacher are discussed. RASCAL (Rudimentary Adaptive System for Computer-Aided Learning) is a first attempt at defining a CAI system which would individualize the learning…
Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID
Le, Quy; Maizels, Nancy
2015-01-01
AID (Activation Induced Deaminase) deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome. PMID:26355458
Shadmi, A; Griffel, B
1985-01-01
With the aid of the electron microscope, a number of histopathological changes in the liver of mice caused by mycotoxins from mouldy hay were examined and studied. These changes were observed in the mitochondria, the cell nucleus, and the cell membranes, and included fatty and parenchymal degeneration, plasma granulation, vacuolisation and vesiculation, glycogen secretion, incorporation into RNA, karyolysis and karyolaxis, and space of Disse constriction.
Computational imaging of sperm locomotion.
Daloglu, Mustafa Ugur; Ozcan, Aydogan
2017-08-01
Not only essential for scientific research, but also in the analysis of male fertility and for animal husbandry, sperm tracking and characterization techniques have been greatly benefiting from computational imaging. Digital image sensors, in combination with optical microscopy tools and powerful computers, have enabled the use of advanced detection and tracking algorithms that automatically map sperm trajectories and calculate various motility parameters across large data sets. Computational techniques are driving the field even further, facilitating the development of unconventional sperm imaging and tracking methods that do not rely on standard optical microscopes and objective lenses, which limit the field of view and volume of the semen sample that can be imaged. As an example, a holographic on-chip sperm imaging platform, only composed of a light-emitting diode and an opto-electronic image sensor, has emerged as a high-throughput, low-cost and portable alternative to lens-based traditional sperm imaging and tracking methods. In this approach, the sample is placed very close to the image sensor chip, which captures lensfree holograms generated by the interference of the background illumination with the light scattered from sperm cells. These holographic patterns are then digitally processed to extract both the amplitude and phase information of the spermatozoa, effectively replacing the microscope objective lens with computation. This platform has further enabled high-throughput 3D imaging of spermatozoa with submicron 3D positioning accuracy in large sample volumes, revealing various rare locomotion patterns. We believe that computational chip-scale sperm imaging and 3D tracking techniques will find numerous opportunities in both sperm related research and commercial applications. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Automated adaptive inference of phenomenological dynamical models.
Daniels, Bryan C; Nemenman, Ilya
2015-08-21
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.
Automated adaptive inference of phenomenological dynamical models
Daniels, Bryan C.; Nemenman, Ilya
2015-01-01
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508
Cellular automaton model for molecular traffic jams
NASA Astrophysics Data System (ADS)
Belitsky, V.; Schütz, G. M.
2011-07-01
We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.
Molecular engineering of colloidal liquid crystals using DNA origami
NASA Astrophysics Data System (ADS)
Siavashpouri, Mahsa; Wachauf, Christian; Zakhary, Mark; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir
Understanding the microscopic origin of cholesteric phase remains a foundational, yet unresolved problem in the field of liquid crystals. Lack of experimental model system that allows for the systematic control of the microscopic chiral structure makes it difficult to investigate this problem for several years. Here, using DNA origami technology, we systematically vary the chirality of the colloidal particles with molecular precision and establish a quantitative relationship between the microscopic structure of particles and the macroscopic cholesteric pitch. Our study presents a new methodology for predicting bulk behavior of diverse phases based on the microscopic architectures of the constituent molecules.
Computer measurement of particle sizes in electron microscope images
NASA Technical Reports Server (NTRS)
Hall, E. L.; Thompson, W. B.; Varsi, G.; Gauldin, R.
1976-01-01
Computer image processing techniques have been applied to particle counting and sizing in electron microscope images. Distributions of particle sizes were computed for several images and compared to manually computed distributions. The results of these experiments indicate that automatic particle counting within a reasonable error and computer processing time is feasible. The significance of the results is that the tedious task of manually counting a large number of particles can be eliminated while still providing the scientist with accurate results.
Transformation of the θ-phase in Mg-Li-Al alloys: a density functional theory study.
Zhang, Caili; Han, Peide; Zhang, Zhuxia; Dong, Minghui; Zhang, Lili; Gu, Xiangyang; Yang, Yanqing; Xu, Bingshe
2012-03-01
In Mg-Li-Al alloys, θ-phase MgAlLi(2) is a strengthening and metastable phase which is liable to be transformed to the equilibrium phase AlLi on overaging. While the structural details of the θ-phase MgAlLi(2) and the microscopic transformation are still unknown. In this paper, the structure of MgAlLi(2) unit cell was determined through X-ray powder diffraction simulation. Microscopic transformation process of θ-phase MgAlLi(2) was discussed in detail using first principles method.
Portable smartphone based quantitative phase microscope
NASA Astrophysics Data System (ADS)
Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu
2018-01-01
To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.
Computer-Aided Drug Discovery: Molecular Docking of Diminazene Ligands to DNA Minor Groove
ERIC Educational Resources Information Center
Kholod, Yana; Hoag, Erin; Muratore, Katlynn; Kosenkov, Dmytro
2018-01-01
The reported project-based laboratory unit introduces upper-division undergraduate students to the basics of computer-aided drug discovery as a part of a computational chemistry laboratory course. The students learn to perform model binding of organic molecules (ligands) to the DNA minor groove with computer-aided drug discovery (CADD) tools. The…
The design of a microscopic system for typical fluorescent in-situ hybridization applications
NASA Astrophysics Data System (ADS)
Yi, Dingrong; Xie, Shaochuan
2013-12-01
Fluorescence in situ hybridization (FISH) is a modern molecular biology technique used for the detection of genetic abnormalities in terms of the number and structure of chromosomes and genes. The FISH technique is typically employed for prenatal diagnosis of congenital dementia in the Obstetrics and Genecology department. It is also routinely used to pick up qualifying breast cancer patients that are known to be highly curable by the prescription of Her2 targeted therapy. During the microscopic observation phase, the technician needs to count typically green probe dots and red probe dots contained in a single nucleus and calculate their ratio. This procedure need to be done to over hundreds of nuclei. Successful implementation of FISH tests critically depends on a suitable fluorescent microscope which is primarily imported from overseas due to the complexity of such a system beyond the maturity of the domestic optoelectrical industry. In this paper, the typical requirements of a fluorescent microscope that is suitable for FISH applications are first reviewed. The focus of this paper is on the system design and computational methods of an automatic florescent microscopy with high magnification APO objectives, a fast spinning automatic filter wheel, an automatic shutter, a cooled CCD camera used as a photo-detector, and a software platform for image acquisition, registration, pseudo-color generation, multi-channel fusing and multi-focus fusion. Preliminary results from FISH experiments indicate that this system satisfies routine FISH microscopic observation tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marlow, W.H.
An aerosol here is understood to be a two-component system comprised of gaseous and condensed phases with the characteristic that the condensed phase is not an equilibrium subsystem. In contrast to the usual definitions based upon geometrical or mechanical variables, this quasi-thermodynamic formulation is framed to emphasize the dynamical behavior of aerosols by allowing for coagulation and other aerosol evolutionary processes as natural consequences of the interactions and state variables appropriate to the system. As will become clear later, it also provides a point of departure for distinguishing aerosol particles from unstable gas-phase cluster systems. The question of accommodation inmore » particle collisions must be addressed as a prelude to the discussion of the role of long-range forces. Microscopic reversibility is frequently assumed for molecular collisions with either molecules or solid surfaces. In the case of aerosol collisions, the implication of this assumption is that collisions are elastic, which is contrary to the evidence from coagulation experiments and the conventional operational assumption of sticking upon collision. Gay and Berne have performed computer simulations of the collision of two clusters consisting of a total of 135 molecules interacting via Lennard-Jones potentials. That work showed that complete accommodation, accompanied by overall heating of the unified cluster, occurred. Since heating represents an irreversible degradation of the kinetic energy of the collision, the hamiltonian of the two-cluster system should be considered as dissipative and therefore microscopic reversibility does not apply.« less
NASA Astrophysics Data System (ADS)
Battaile, Corbett; Owen, Steven; Moore, Nathan
2017-06-01
The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.
Pechprasarn, Suejit; Chow, Terry W K; Somekh, Michael G
2018-06-04
In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave. Such waves with opposing phase and group velocities are well known in acoustics and electromagnetic metamaterials but usually require structured or layered surfaces, here the effective wave is produced externally in the microscope illumination path. Key features of the technique developed here are that it (i) is self-calibrating and (ii) can distinguish between attenuation arising from ohmic loss (k″ Ω ) and coupling (reradiation) loss (k″ c ). This latter feature has not been achieved with existing methods. In addition to providing a unique measurement the measurement occurs of over a localized region of a few microns. The results were then validated against the surface plasmons (SP) dip measurement in the BFP and a theoretical model based on a simplified Green's function.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.
McLeod, Euan; Luo, Wei; Mudanyali, Onur; Greenbaum, Alon
2013-01-01
The development of lensfree on-chip microscopy in the past decade has opened up various new possibilities for biomedical imaging across ultra-large fields of view using compact, portable, and cost-effective devices. However, until recently, its ability to resolve fine features and detect ultra-small particles has not rivalled the capabilities of the more expensive and bulky laboratory-grade optical microscopes. In this Frontier Review, we highlight the developments over the last two years that have enabled computational lensfree holographic on-chip microscopy to compete with and, in some cases, surpass conventional bright-field microscopy in its ability to image nano-scale objects across large fields of view, yielding giga-pixel phase and amplitude images. Lensfree microscopy has now achieved a numerical aperture as high as 0.92, with a spatial resolution as small as 225 nm across a large field of view e.g., >20 mm2. Furthermore, the combination of lensfree microscopy with self-assembled nanolenses, forming nano-catenoid minimal surfaces around individual nanoparticles has boosted the image contrast to levels high enough to permit bright-field imaging of individual particles smaller than 100 nm. These capabilities support a number of new applications, including, for example, the detection and sizing of individual virus particles using field-portable computational on-chip microscopes. PMID:23592185
McLeod, Euan; Luo, Wei; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan
2013-06-07
The development of lensfree on-chip microscopy in the past decade has opened up various new possibilities for biomedical imaging across ultra-large fields of view using compact, portable, and cost-effective devices. However, until recently, its ability to resolve fine features and detect ultra-small particles has not rivalled the capabilities of the more expensive and bulky laboratory-grade optical microscopes. In this Frontier Review, we highlight the developments over the last two years that have enabled computational lensfree holographic on-chip microscopy to compete with and, in some cases, surpass conventional bright-field microscopy in its ability to image nano-scale objects across large fields of view, yielding giga-pixel phase and amplitude images. Lensfree microscopy has now achieved a numerical aperture as high as 0.92, with a spatial resolution as small as 225 nm across a large field of view e.g., >20 mm(2). Furthermore, the combination of lensfree microscopy with self-assembled nanolenses, forming nano-catenoid minimal surfaces around individual nanoparticles has boosted the image contrast to levels high enough to permit bright-field imaging of individual particles smaller than 100 nm. These capabilities support a number of new applications, including, for example, the detection and sizing of individual virus particles using field-portable computational on-chip microscopes.
Wei, Xuelei; Dong, Fuhui
2011-12-01
To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.
The Impact of Machine Translation and Computer-aided Translation on Translators
NASA Astrophysics Data System (ADS)
Peng, Hao
2018-03-01
Under the context of globalization, communications between countries and cultures are becoming increasingly frequent, which make it imperative to use some techniques to help translate. This paper is to explore the influence of computer-aided translation on translators, which is derived from the field of the computer-aided translation (CAT) and machine translation (MT). Followed by an introduction to the development of machine and computer-aided translation, it then depicts the technologies practicable to translators, which are trying to analyze the demand of designing the computer-aided translation so far in translation practice, and optimize the designation of computer-aided translation techniques, and analyze its operability in translation. The findings underline the advantages and disadvantages of MT and CAT tools, and the serviceability and future development of MT and CAT technologies. Finally, this thesis probes into the impact of these new technologies on translators in hope that more translators and translation researchers can learn to use such tools to improve their productivity.
Xing, Fuyong; Yang, Lin
2016-01-01
Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to inter-observer variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literatures. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast (DIC), fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation. PMID:26742143
Bi-model processing for early detection of breast tumor in CAD system
NASA Astrophysics Data System (ADS)
Mughal, Bushra; Sharif, Muhammad; Muhammad, Nazeer
2017-06-01
Early screening of skeptical masses in mammograms may reduce mortality rate among women. This rate can be further reduced upon developing the computer-aided diagnosis system with decrease in false assumptions in medical informatics. This method highlights the early tumor detection in digitized mammograms. For improving the performance of this system, a novel bi-model processing algorithm is introduced. It divides the region of interest into two parts, the first one is called pre-segmented region (breast parenchyma) and other is the post-segmented region (suspicious region). This system follows the scheme of the preprocessing technique of contrast enhancement that can be utilized to segment and extract the desired feature of the given mammogram. In the next phase, a hybrid feature block is presented to show the effective performance of computer-aided diagnosis. In order to assess the effectiveness of the proposed method, a database provided by the society of mammographic images is tested. Our experimental outcomes on this database exhibit the usefulness and robustness of the proposed method.
Computer-aided detection in musculoskeletal projection radiography: A systematic review.
Gundry, M; Knapp, K; Meertens, R; Meakin, J R
2018-05-01
To investigated the accuracy of computer-aided detection (CAD) software in musculoskeletal projection radiography via a systematic review. Following selection screening, eligible studies were assessed for bias, and had their study characteristics extracted resulting in 22 studies being included. Of these 22 three studies had tested their CAD software in a clinical setting; the first study investigated vertebral fractures, reporting a sensitivity score of 69.3% with CAD, compared to 59.8% sensitivity without CAD. The second study tested dental caries diagnosis producing a sensitivity score of 68.8% and specificity of 94.1% with CAD, compared to sensitivity of 39.3% and specificity of 96.7% without CAD. The third indicated osteoporotic cases based on CAD, resulting in 100% sensitivity and 81.3% specificity. The current evidence reported shows a lack of development into the clinical testing phase; however the research does show future promise in the variation of different CAD systems. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Computer-aided meiotic maturation assay (CAMMA) of zebrafish (danio rerio) oocytes in vitro.
Lessman, Charles A; Nathani, Ravikanth; Uddin, Rafique; Walker, Jamie; Liu, Jianxiong
2007-01-01
We have developed a new technique called Computer-Aided Meiotic Maturation Assay (CAMMA) for imaging large arrays of zebrafish oocytes and automatically collecting image files at regular intervals during meiotic maturation. This novel method uses a transparency scanner interfaced to a computer with macro programming that automatically scans and archives the image files. Images are stacked and analyzed with ImageJ to quantify changes in optical density characteristic of zebrafish oocyte maturation. Major advantages of CAMMA include (1) ability to image very large arrays of oocytes and follow individual cells over time, (2) simultaneously image many treatment groups, (3) digitized images may be stacked, animated, and analyzed in programs such as ImageJ, NIH-Image, or ScionImage, and (4) CAMMA system is inexpensive, costing less than most microscopes used in traditional assays. We have used CAMMA to determine the dose response and time course of oocyte maturation induced by 17alpha-hydroxyprogesterone (HP). Maximal decrease in optical density occurs around 5 hr after 0.1 micro g/ml HP (28.5 degrees C), approximately 3 hr after germinal vesicle migration (GVM) and dissolution (GVD). In addition to changes in optical density, GVD is accompanied by streaming of ooplasm to the animal pole to form a blastodisc. These dynamic changes are readily visualized by animating image stacks from CAMMA; thus, CAMMA provides a valuable source of time-lapse movies for those studying zebrafish oocyte maturation. The oocyte clearing documented by CAMMA is correlated to changes in size distribution of major yolk proteins upon SDS-PAGE, and, this in turn, is related to increased cyclin B(1) protein.
Interferometric scanning optical microscope for surface characterization.
Offside, M J; Somekh, M G
1992-11-01
A phase-sensitive scanning optical microscope is described that can measure surface height changes down to 0.1 nm. This is achieved by using two heterodyne Michelson interferometers in parallel. One interferometer probes the sample with a tightly focused beam, and the second has a collimated beam that illuminates a large area of the surface, providing a large area on sample reference. This is facilitated by using a specially constructed objective lens that permits the relative areas illuminated by the two probe beams to be varied both arbitrarily and independently, thus ensuring an accurate absolute phase measurement. We subtracted the phase outputs from each interferometer to provide the sample phase information, canceling the phase noise resulting from microphonics in the process. Results from a prototype version of the microscope are presented that demonstrate the advantages of the system over existing techniques.
BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schempf, H.; Bares, J.E.
This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potentialmore » of a robotic pipe-insulation abatement system.« less
Lee, S C; Lee, E T; Kingsley, R M; Wang, Y; Russell, D; Klein, R; Warn, A
2001-04-01
To investigate whether a computer vision system is comparable with humans in detecting early retinal lesions of diabetic retinopathy using color fundus photographs. A computer system has been developed using image processing and pattern recognition techniques to detect early lesions of diabetic retinopathy (hemorrhages and microaneurysms, hard exudates, and cotton-wool spots). Color fundus photographs obtained from American Indians in Oklahoma were used in developing and testing the system. A set of 369 color fundus slides were used to train the computer system using 3 diagnostic categories: lesions present, questionable, or absent (Y/Q/N). A different set of 428 slides were used to test and evaluate the system, and its diagnostic results were compared with those of 2 human experts-the grader at the University of Wisconsin Fundus Photograph Reading Center (Madison) and a general ophthalmologist. The experiments included comparisons using 3 (Y/Q/N) and 2 diagnostic categories (Y/N) (questionable cases excluded in the latter). In the training phase, the agreement rates, sensitivity, and specificity in detecting the 3 lesions between the retinal specialist and the computer system were all above 90%. The kappa statistics were high (0.75-0.97), indicating excellent agreement between the specialist and the computer system. In the testing phase, the results obtained between the computer system and human experts were consistent with those of the training phase, and they were comparable with those between the human experts. The performance of the computer vision system in diagnosing early retinal lesions was comparable with that of human experts. Therefore, this mobile, electronically easily accessible, and noninvasive computer system, could become a mass screening tool and a clinical aid in diagnosing early lesions of diabetic retinopathy.
Simulation and visualization of face seal motion stability by means of computer generated movies
NASA Technical Reports Server (NTRS)
Etsion, I.; Auer, B. M.
1980-01-01
A computer aided design method for mechanical face seals is described. Based on computer simulation, the actual motion of the flexibly mounted element of the seal can be visualized. This is achieved by solving the equations of motion of this element, calculating the displacements in its various degrees of freedom vs. time, and displaying the transient behavior in the form of a motion picture. Incorporating such a method in the design phase allows one to detect instabilities and to correct undesirable behavior of the seal. A theoretical background is presented. Details of the motion display technique are described, and the usefulness of the method is demonstrated by an example of a noncontacting conical face seal.
Simulation and visualization of face seal motion stability by means of computer generated movies
NASA Technical Reports Server (NTRS)
Etsion, I.; Auer, B. M.
1981-01-01
A computer aided design method for mechanical face seals is described. Based on computer simulation, the actual motion of the flexibly mounted element of the seal can be visualized. This is achieved by solving the equations of motion of this element, calculating the displacements in its various degrees of freedom vs. time, and displaying the transient behavior in the form of a motion picture. Incorporating such a method in the design phase allows one to detect instabilities and to correct undesirable behavior of the seal. A theoretical background is presented. Details of the motion display technique are described, and the usefulness of the method is demonstrated by an example of a noncontacting conical face seal.
Marginal and internal fits of fixed dental prostheses zirconia retainers.
Beuer, Florian; Aggstaller, Hans; Edelhoff, Daniel; Gernet, Wolfgang; Sorensen, John
2009-01-01
CAM (computer-aided manufacturing) and CAD (computer-aided design)/CAM systems facilitate the use of zirconia substructure materials for all-ceramic fixed partial dentures. This in vitro study compared the precision of fit of frameworks milled from semi-sintered zirconia blocks that were designed and machined with two CAD/CAM and one CAM system. Three-unit posterior fixed dental prostheses (FDP) (n=10) were fabricated for standardized dies by: a milling center CAD/CAM system (Etkon), a laboratory CAD/CAM system (Cerec InLab), and a laboratory CAM system (Cercon). After adaptation by a dental technician, the FDP were cemented on definitive dies, embedded and sectioned. The marginal and internal fits were measured under an optical microscope at 50x magnification. A one-way analysis of variance (ANOVA) was used to compare data (alpha=0.05). The mean (S.D.) for the marginal fit and internal fit adaptation were: 29.1 microm (14.0) and 62.7 microm (18.9) for the milling center system, 56.6 microm (19.6) and 73.5 microm (20.6) for the laboratory CAD/CAM system, and 81.4 microm (20.3) and 119.2 microm (37.5) for the laboratory CAM system. One-way ANOVA showed significant differences between systems for marginal fit (P<0.001) and internal fit (P<0.001). All systems showed marginal gaps below 120 microm and were therefore considered clinically acceptable. The CAD/CAM systems were more precise than the CAM system.
Conventional Microscopy vs. Computer Imagery in Chiropractic Education.
Cunningham, Christine M; Larzelere, Elizabeth D; Arar, Ilija
2008-01-01
As human tissue pathology slides become increasingly difficult to obtain, other methods of teaching microscopy in educational laboratories must be considered. The purpose of this study was to evaluate our students' satisfaction with newly implemented computer imagery based laboratory instruction and to obtain input from their perspective on the advantages and disadvantages of computerized vs. traditional microscope laboratories. This undertaking involved the creation of a new computer laboratory. Robbins and Cotran Pathologic Basis of Disease, 7(th)ed, was chosen as the required text which gave students access to the Robbins Pathology website, including complete content of text, Interactive Case Study Companion, and Virtual Microscope. Students had experience with traditional microscopes in their histology and microbiology laboratory courses. Student satisfaction with computer based learning was assessed using a 28 question survey which was administered to three successive trimesters of pathology students (n=193) using the computer survey website Zoomerang. Answers were given on a scale of 1-5 and statistically analyzed using weighted averages. The survey data indicated that students were satisfied with computer based learning activities during pathology laboratory instruction. The most favorable aspect to computer imagery was 24-7 availability (weighted avg. 4.16), followed by clarification offered by accompanying text and captions (weighted avg. 4.08). Although advantages and disadvantages exist in using conventional microscopy and computer imagery, current pathology teaching environments warrant investigation of replacing traditional microscope exercises with computer applications. Chiropractic students supported the adoption of computer-assisted instruction in pathology laboratories.
Differential phase acoustic microscope for micro-NDE
NASA Technical Reports Server (NTRS)
Waters, David D.; Pusateri, T. L.; Huang, S. R.
1992-01-01
A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.
Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.
Asghar, Z; Requena, G; Sket, F
2015-07-01
The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Cheshire charge in (3+1)-dimensional topological phases
NASA Astrophysics Data System (ADS)
Else, Dominic V.; Nayak, Chetan
2017-07-01
We show that (3 +1 ) -dimensional topological phases of matter generically support loop excitations with topological degeneracy. The loops carry "Cheshire charge": topological charge that is not the integral of a locally defined topological charge density. Cheshire charge has previously been discussed in non-Abelian gauge theories, but we show that it is a generic feature of all (3+1)-D topological phases (even those constructed from an Abelian gauge group). Indeed, Cheshire charge is closely related to nontrivial three-loop braiding. We use a dimensional reduction argument to compute the topological degeneracy of loop excitations in the (3 +1 ) -dimensional topological phases associated with Dijkgraaf-Witten gauge theories. We explicitly construct membrane operators associated with such excitations in soluble microscopic lattice models in Z2×Z2 Dijkgraaf-Witten phases and generalize this construction to arbitrary membrane-net models. We explain why these loop excitations are the objects in the braided fusion 2-category Z (2 VectGω) , thereby supporting the hypothesis that 2-categories are the correct mathematical framework for (3 +1 ) -dimensional topological phases.
Attributes Affecting Computer-Aided Decision Making--A Literature Survey.
ERIC Educational Resources Information Center
Moldafsky, Neil I; Kwon, Ik-Whan
1994-01-01
Reviews current literature about personal, demographic, situational, and cognitive attributes that affect computer-aided decision making. The effectiveness of computer-aided decision making is explored in relation to decision quality, effectiveness, and confidence. Studies of the effects of age, anxiety, cognitive type, attitude, gender, and prior…
User-Centered Computer Aided Language Learning
ERIC Educational Resources Information Center
Zaphiris, Panayiotis, Ed.; Zacharia, Giorgos, Ed.
2006-01-01
In the field of computer aided language learning (CALL), there is a need for emphasizing the importance of the user. "User-Centered Computer Aided Language Learning" presents methodologies, strategies, and design approaches for building interfaces for a user-centered CALL environment, creating a deeper understanding of the opportunities and…
Hearing Impairments. Tech Use Guide: Using Computer Technology.
ERIC Educational Resources Information Center
Council for Exceptional Children, Reston, VA. Center for Special Education Technology.
One of nine brief guides for special educators on using computer technology, this guide focuses on advances in electronic aids, computers, telecommunications, and videodiscs to assist students with hearing impairments. Electronic aids include hearing aids, telephone devices for the deaf, teletypes, closed captioning systems for television, and…
3D geometric phase analysis and its application in 3D microscopic morphology measurement
NASA Astrophysics Data System (ADS)
Zhu, Ronghua; Shi, Wenxiong; Cao, Quankun; Liu, Zhanwei; Guo, Baoqiao; Xie, Huimin
2018-04-01
Although three-dimensional (3D) morphology measurement has been widely applied on the macro-scale, there is still a lack of 3D measurement technology on the microscopic scale. In this paper, a microscopic 3D measurement technique based on the 3D-geometric phase analysis (GPA) method is proposed. In this method, with machine vision and phase matching, the traditional GPA method is extended to three dimensions. Using this method, 3D deformation measurement on the micro-scale can be realized using a light microscope. Simulation experiments were conducted in this study, and the results demonstrate that the proposed method has a good anti-noise ability. In addition, the 3D morphology of the necking zone in a tensile specimen was measured, and the results demonstrate that this method is feasible.
NASA Astrophysics Data System (ADS)
Qiu, Yuchen; Wang, Xingwei; Chen, Xiaodong; Li, Yuhua; Liu, Hong; Li, Shibo; Zheng, Bin
2010-02-01
Visually searching for analyzable metaphase chromosome cells under microscopes is quite time-consuming and difficult. To improve detection efficiency, consistency, and diagnostic accuracy, an automated microscopic image scanning system was developed and tested to directly acquire digital images with sufficient spatial resolution for clinical diagnosis. A computer-aided detection (CAD) scheme was also developed and integrated into the image scanning system to search for and detect the regions of interest (ROI) that contain analyzable metaphase chromosome cells in the large volume of scanned images acquired from one specimen. Thus, the cytogeneticists only need to observe and interpret the limited number of ROIs. In this study, the high-resolution microscopic image scanning and CAD performance was investigated and evaluated using nine sets of images scanned from either bone marrow (three) or blood (six) specimens for diagnosis of leukemia. The automated CAD-selection results were compared with the visual selection. In the experiment, the cytogeneticists first visually searched for the analyzable metaphase chromosome cells from specimens under microscopes. The specimens were also automated scanned and followed by applying the CAD scheme to detect and save ROIs containing analyzable cells while deleting the others. The automated selected ROIs were then examined by a panel of three cytogeneticists. From the scanned images, CAD selected more analyzable cells than initially visual examinations of the cytogeneticists in both blood and bone marrow specimens. In general, CAD had higher performance in analyzing blood specimens. Even in three bone marrow specimens, CAD selected 50, 22, 9 ROIs, respectively. Except matching with the initially visual selection of 9, 7, and 5 analyzable cells in these three specimens, the cytogeneticists also selected 41, 15 and 4 new analyzable cells, which were missed in initially visual searching. This experiment showed the feasibility of applying this CAD-guided high-resolution microscopic image scanning system to prescreen and select ROIs that may contain analyzable metaphase chromosome cells. The success and the further improvement of this automated scanning system may have great impact on the future clinical practice in genetic laboratories to detect and diagnose diseases.
Computational-optical microscopy for 3D biological imaging beyond the diffraction limit
NASA Astrophysics Data System (ADS)
Grover, Ginni
In recent years, super-resolution imaging has become an important fluorescent microscopy tool. It has enabled imaging of structures smaller than the optical diffraction limit with resolution less than 50 nm. Extension to high-resolution volume imaging has been achieved by integration with various optical techniques. In this thesis, development of a fluorescent microscope to enable high resolution, extended depth, three dimensional (3D) imaging is discussed; which is achieved by integration of computational methods with optical systems. In the first part of the thesis, point spread function (PSF) engineering for volume imaging is discussed. A class of PSFs, referred to as double-helix (DH) PSFs, is generated. The PSFs exhibit two focused spots in the image plane which rotate about the optical axis, encoding depth in rotation of the image. These PSFs extend the depth-of-field up to a factor of ˜5. Precision performance of the DH-PSFs, based on an information theoretical analysis, is compared with other 3D methods with conclusion that the DH-PSFs provide the best precision and the longest depth-of-field. Out of various possible DH-PSFs, a suitable PSF is obtained for super-resolution microscopy. The DH-PSFs are implemented in imaging systems, such as a microscope, with a special phase modulation at the pupil plane. Surface-relief elements which are polarization-insensitive and ˜90% light efficient are developed for phase modulation. The photon-efficient DH-PSF microscopes thus developed are used, along with optimal position estimation algorithms, for tracking and super-resolution imaging in 3D. Imaging at depths-of-field of up to 2.5 microm is achieved without focus scanning. Microtubules were imaged with 3D resolution of (6, 9, 39) nm, which is in close agreement with the theoretical limit. A quantitative study of co-localization of two proteins in volume was conducted in live bacteria. In the last part of the thesis practical aspects of the DH-PSF microscope are discussed. A method to stabilize it, for extended periods of time, with 3-4 nm precision in 3D is developed. 3D Super-resolution is demonstrated without drift. A PSF correction algorithm is demonstrated to improve characteristics of the DH-PSF in an experiment, where it is implemented with a polarization-insensitive liquid crystal spatial light modulator.
Computer Aided Design in Engineering Education.
ERIC Educational Resources Information Center
Gobin, R.
1986-01-01
Discusses the use of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) systems in an undergraduate engineering education program. Provides a rationale for CAD/CAM use in the already existing engineering program. Describes the methods used in choosing the systems, some initial results, and warnings for first-time users. (TW)
Yoon, Hyung-In; Han, Jung-Suk
2016-02-01
The fabrication of dental prostheses with computer-aided design and computer-aided manufacturing shows acceptable marginal fits and favorable treatment outcomes. This clinical report describes the management of a patient who had undergone a mandibulectomy and received an implant-supported fixed prosthesis by using additive manufacturing for the framework and subtractive manufacturing for the monolithic zirconia restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Heterodyne Interferometry with a Scanning Optical Microscope.
NASA Astrophysics Data System (ADS)
Hobbs, Philip Charles Danby
The design and implementation of a confocal optical microscope which functions as an electronically scanned heterodyne interferometer are described. Theoretical models based on Fourier optics for general samples and on exact series solution of the scalar Helmholtz equation for a class of trench structures are developed and compared with experimental data. Good agreement is obtained. The associated data acquisition system, also described, enables the system to measure both the amplitude (to 12 bits) and the phase (to 0.1^circ) of a returned optical beam, at a continuous rate of 30,000 points per second. The microscope system uses a wide-band tellurium dioxide acousto-optic cell for electronic scanning, frequency shifting, and beam splitting/combining. It uses a stationary reference beam on the sample for vibration cancellation, which results in a system of great vibration immunity. It can measure relief ranging from a few tenths of a micron down to a few Angstroms, and line widths down to well below 0.4 micron, using light of 0.5 micron wavelength. Angstrom resolution can be achieved in a single full-speed scan, without special vibration isolation equipment, providing that folding mirrors are avoided. A signal processing algorithm based on Fourier deconvolution is presented; it takes advantage of the extra bandwidth of a confocal system and the availability of both amplitude and phase, to improve the lateral resolution by approximately a factor of two. Experimental results are shown, which demonstrate phase edge resolution (10%-90%) of 0.45 lambda (raw data), and 0.18 lambda (after filtering), in excellent agreement with the Fourier optics prediction. The exact scalar theory calculates the response of the microscope as it scans over an infinitely long rectangular trench in a plane boundary on which Dirichlet boundary conditions apply. An expansion in cavity modes inside the trench is used to match the field and its derivatives across the mouth of the trench to get the self-consistent solution. A listing is appended of a program for an HP personal computer which performs the simulation in 1 to 5 minutes' running time for most cases. The trench theory is compared with the Fourier theory and with experimental results for actual metal trenches, with good results.
A Weak Quantum Blind Signature with Entanglement Permutation
NASA Astrophysics Data System (ADS)
Lou, Xiaoping; Chen, Zhigang; Guo, Ying
2015-09-01
Motivated by the permutation encryption algorithm, a weak quantum blind signature (QBS) scheme is proposed. It involves three participants, including the sender Alice, the signatory Bob and the trusted entity Charlie, in four phases, i.e., initializing phase, blinding phase, signing phase and verifying phase. In a small-scale quantum computation network, Alice blinds the message based on a quantum entanglement permutation encryption algorithm that embraces the chaotic position string. Bob signs the blinded message with private parameters shared beforehand while Charlie verifies the signature's validity and recovers the original message. Analysis shows that the proposed scheme achieves the secure blindness for the signer and traceability for the message owner with the aid of the authentic arbitrator who plays a crucial role when a dispute arises. In addition, the signature can neither be forged nor disavowed by the malicious attackers. It has a wide application to E-voting and E-payment system, etc.
Garg, Amit Kumar; Bhardwaj, Anuj; Mantri, Vijay R; Agrawal, Neha
2014-05-01
A case of unusual Root morphology is presented to demonstrate anatomic variations in mandibular third molar. The most common configuration of mandibular third molar is two Roots and three canals; however they may have many different combinations. Endodontic treatment was performed in mandibular third molar having aberrant anatomy. Four Root canal orifices were located with the aid of dental operating microscope (DOM) and three separate Roots were diagnosed with radiographs. Spiral computed tomography (SCT) showed the presence of an extra canal and extra Root, indicating a rare anatomic configuration. Looking for additional canals and Roots are important part of successful endodontics, as the knowledge of their existence enable clinicians to treat a case successfully that otherwise might end in failure. The use of DOM and SCT in this case greatly contributed toward making a confirmatory diagnosis and successful endodontic treatment of four-rooted and five-canalled mandibular third molar. Variation in Root canal anatomy is very common. Knowledge of these variations is very essential for successful Root canal outcome, inability to do so can lead to missed canals and failures. Hence, thorough knowledge of Root canal anatomy and advances in diagnostic aids are essential.
ERIC Educational Resources Information Center
Hudson, C. A.
1982-01-01
Advances in factory computerization (computer-aided design and computer-aided manufacturing) are reviewed, including discussions of robotics, human factors engineering, and the sociological impact of automation. (JN)
Computational imaging of defects in commercial substrates for electronic and photonic devices
NASA Astrophysics Data System (ADS)
Fukuzawa, Masayuki; Kashiwagi, Ryo; Yamada, Masayoshi
2012-03-01
Computational defect imaging has been performed in commercial substrates for electronic and photonic devices by combining the transmission profile acquired with an imaging type of linear polariscope and the computational algorithm to extract a small amount of birefringence. The computational images of phase retardation δ exhibited spatial inhomogeneity of defect-induced birefringence in GaP, LiNbO3, and SiC substrates, which were not detected by conventional 'visual inspection' based on simple optical refraction or transmission because of poor sensitivity. The typical imaging time was less than 30 seconds for 3-inch diameter substrate with the spatial resolution of 200 μm, while that by scanning polariscope was 2 hours to get the same spatial resolution. Since our proposed technique have been achieved high sensitivity, short imaging time, and wide coverage of substrate materials, which are practical advantages over the laboratory-scale apparatus such as X-ray topography and electron microscope, it is useful for nondestructive inspection of various commercial substrates in production of electronic and photonic devices.
Optics of Water Microdroplets with Soot Inclusions: Exact Versus Approximate Results
NASA Technical Reports Server (NTRS)
Liu, Li; Mishchenko, Michael I.
2016-01-01
We use the recently generalized version of the multi-sphere superposition T-matrix method (STMM) to compute the scattering and absorption properties of microscopic water droplets contaminated by black carbon. The soot material is assumed to be randomly distributed throughout the droplet interior in the form of numerous small spherical inclusions. Our numerically-exact STMM results are compared with approximate ones obtained using the Maxwell-Garnett effective-medium approximation (MGA) and the Monte Carlo ray-tracing approximation (MCRTA). We show that the popular MGA can be used to calculate the droplet optical cross sections, single-scattering albedo, and asymmetry parameter provided that the soot inclusions are quasi-uniformly distributed throughout the droplet interior, but can fail in computations of the elements of the scattering matrix depending on the volume fraction of soot inclusions. The integral radiative characteristics computed with the MCRTA can deviate more significantly from their exact STMM counterparts, while accurate MCRTA computations of the phase function require droplet size parameters substantially exceeding 60.
Research-oriented teaching in optical design course and its function in education
NASA Astrophysics Data System (ADS)
Cen, Zhaofeng; Li, Xiaotong; Liu, Xiangdong; Deng, Shitao
2008-03-01
The principles and operation plans of research-oriented teaching in the course of computer aided optical design are presented, especially the mode of research in practice course. This program includes contract definition phase, project organization and execution, post project evaluation and discussion. Modes of academic organization are used in the practice course of computer aided optical design. In this course the students complete their design projects in research teams by autonomous group approach and cooperative exploration. In this research process they experience the interpersonal relationship in modern society, the importance of cooperation in team, the functions of each individual, the relationships between team members, the competition and cooperation in one academic group and with other groups, and know themselves objectively. In the design practice the knowledge of many academic fields is applied including applied optics, computer programming, engineering software and etc. The characteristic of interdisciplinary is very useful for academic research and makes the students be ready for innovation by integrating the knowledge of interdisciplinary field. As shown by the practice that this teaching mode has taken very important part in bringing up the abilities of engineering, cooperation, digesting the knowledge at a high level and problem analyzing and solving.
NASA Astrophysics Data System (ADS)
Kuncoro, K. S.; Junaedi, I.; Dwijanto
2018-03-01
This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.
NASA Astrophysics Data System (ADS)
Aguilar, Juan C.; Berriel-Valdos, L. R.; Aguilar, J. Felix; Mejia-Romero, S.
An optical system formed by four point-diffraction interferometers is used for measuring the refractive index distribution of a phase object. The phase of the object is assumed enough smooth to be computed in terms of the Radon Transform and it is processed with a tomographic iterative algorithm. Then, the associated refractive index distribution is calculated. To recovery the phase from the inteferograms we use the Kreis method, which is useful for interferograms having only few fringes. As an application of our technique, the temperature distribution of a candle flame is retrieved, this was made with the aid of the Gladstone-Dale equation. We also describe the process of manufacturing the point-diffraction interferometer (PDI) plates. These were made by means of the thermocavitation process. The obtained three dimensional distribution of temperature is presented.
Kao, E-Fong; Liu, Gin-Chung; Lee, Lo-Yeh; Tsai, Huei-Yi; Jaw, Twei-Shiun
2015-06-01
The ability to give high priority to examinations with pathological findings could be very useful to radiologists with large work lists who wish to first evaluate the most critical studies. A computer-aided detection (CAD) system for identifying chest examinations with abnormalities has therefore been developed. To evaluate the effectiveness of a CAD system on report turnaround times of chest examinations with abnormalities. The CAD system was designed to automatically mark chest examinations with possible abnormalities in the work list of radiologists interpreting chest examinations. The system evaluation was performed in two phases: two radiologists interpreted the chest examinations without CAD in phase 1 and with CAD in phase 2. The time information recorded by the radiology information system was then used to calculate the turnaround times. All chest examinations were reviewed by two other radiologists and were divided into normal and abnormal groups. The turnaround times for the examinations with pathological findings with and without the CAD system assistance were compared. The sensitivity and specificity of the CAD for chest abnormalities were 0.790 and 0.697, respectively, and use of the CAD system decreased the turnaround time for chest examinations with abnormalities by 44%. The turnaround times required for radiologists to identify chest examinations with abnormalities could be reduced by using the CAD system. This system could be useful for radiologists with large work lists who wish to first evaluate the most critical studies. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Site preference of alloying elements in DO22-Ni3V phase: Phase-field and first-principles study
NASA Astrophysics Data System (ADS)
Zhang, Ding-Ni; Shangguan, Qian-Qian; Liu, Fu; Zhang, Ming-Yi
2015-07-01
Site preference of alloying elements in DO22-Ni3V phase was investigated using phase-field and first-principles method. The concentrations of alloying elements on sublattices of DO22-Ni3V phase were quantitatively studied using phase-field model based on microscopic diffusion equations. The phase-field computation results demonstrate that the concentration differences of alloying elements on the NiI and NiII site are attributed to the coordination environment difference. Host atoms Ni and substitutional ternary additions Al prefer to occupy NiI site. Antisite atoms V show site preference on the NiII site. Further reason of site preference of alloying elements on the two different Ni sites were studied using first-principles method to calculate the electronic structure of DO22-Ni3V phase. Calculation of density of states, orbitals population and charge population of the optimized Ni3V structure found that the electronic structures of NiI and NiII sites are different. Electronic structure difference, which is caused by coordination environment difference, is the essential reason for site selectivity behaviors of alloying elements on NiI and NiII sites.
NASA Astrophysics Data System (ADS)
Chung, Hayoung; Choi, Joonmyung; Yun, Jung-Hoon; Cho, Maenghyo
2016-02-01
A liquid crystal network whose chromophores are functionalized by photochromic dye exhibits light-induced mechanical behaviour. As a result, the micro-scaled thermotropic traits of the network and the macroscopic phase behaviour are both influenced as light alternates the shape of the dyes. In this paper, we present an analysis of this photomechanical behaviour based on the proposed multiscale framework, which incorporates the molecular details of microstate evolution into a continuum-based understanding. The effects of trans-to-cis photoisomerization driven by actinic light irradiation are first examined using molecular dynamics simulations, and are compared against the predictions of the classical dilution model; this reveals certain characteristics of mesogenic interaction upon isomerization, followed by changes in the polymeric structure. We then upscale the thermotropic phase-related information with the aid of a nonlinear finite element analysis; macroscopic deflection with respect to the wide ranges of temperature and actinic light intensity are thereby examined, which reveals that the classical model underestimates the true deformation. This work therefore provides measures for analysing photomechanics in general by bridging the gap between the micro- and macro-scales.
The effect of lanthanum on the fabrication of ZrB{sub 2}-ZrC composites by spark plasma sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyoung Hun; Shim, Kwang Bo
2003-01-15
The effect of the addition of the rare earth element, lanthanum, on the sintering characteristics of ZrB{sub 2}-ZrC composites has been analyzed during a spark plasma sintering (SPS) process. Microscopic observation confirmed that lanthanum accelerated mass transport by the formation of the liquid phase between the particles induced by the spark plasma in the initial stage of the SPS process, and then these were recrystallized to form a lanthanum-containing secondary phase at the grain boundaries and at the grain boundary triple junctions. In spite of the strong covalent bonding characteristics of the ZrB{sub 2}-ZrC composite there are many well-developed dislocationmore » structures observed. The fracture toughness of the lanthanum-containing ZrB{sub 2}-ZrC is about 2.56 MPa m{sup 1/2}, which is comparable to that of the pure composite. Therefore, it is concluded that lanthanum is very effective as a sintering aid for the ZrB{sub 2}-ZrC composite without any degradation of the mechanical properties.« less
Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems.
Kluczyk, Katarzyna; Jacak, Lucjan; Jacak, Witold; David, Christin
2018-06-25
Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA) and semi-classical (hydrodynamic) theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.
The Effects of Computer-Aided Design Software on Engineering Students' Spatial Visualisation Skills
ERIC Educational Resources Information Center
Kösa, Temel; Karakus, Fatih
2018-01-01
The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations…
Teaching Computer-Aided Design of Fluid Flow and Heat Transfer Engineering Equipment.
ERIC Educational Resources Information Center
Gosman, A. D.; And Others
1979-01-01
Describes a teaching program for fluid mechanics and heat transfer which contains both computer aided learning (CAL) and computer aided design (CAD) components and argues that the understanding of the physical and numerical modeling taught in the CAL course is essential to the proper implementation of CAD. (Author/CMV)
Computer-Presented Organizational/Memory Aids as Instruction for Solving Pico-Fomi Problems.
ERIC Educational Resources Information Center
Steinberg, Esther R.; And Others
1985-01-01
Describes investigation of effectiveness of computer-presented organizational/memory aids (matrix and verbal charts controlled by computer or learner) as instructional technique for solving Pico-Fomi problems, and the acquisition of deductive inference rules when such aids are present. Results indicate chart use control should be adapted to…
Lopez-Suarez, Carlos; Gonzalo, Esther; Pelaez, Jesus; Serrano, Benjamin; Suarez, Maria J
2016-01-01
The aim of this study was to investigate and compare the marginal fit of posterior fixed dental prostheses (FDPs) made of monolithic and veneered computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia ceramic with metal-ceramic posterior FDPs. Thirty standardized steel dies were prepared to receive posterior three-unit FDPs. Specimens were randomly divided into three groups (n = 10): (1) metal-ceramic (control group), (2) veneered zirconia, and (3) monolithic zirconia. All FDPs were cemented using a glass-ionomer cement. The specimens were subjected to thermal cycling (5°C to 55°C). A scanning electron microscope (SEM) with a magnification of ×500 was used for measurements. The data were statistically analyzed using one-way analysis of variance and paired t test. Both zirconia groups showed similar vertical marginal discrepancies, and no significant differences (P = .661) in marginal adaptation were observed among the groups. No differences were observed in either group in marginal discrepancies between surfaces or abutments. Monolithic zirconia posterior FDPs exhibit similar vertical marginal discrepancies to veneered zirconia posterior FDPs. No influence of localization measurements was observed.
Bendyk-Szeffer, Maja; Łagocka, Ryta; Trusewicz, Matylda; Lipski, Mariusz; Buczkowska-Radlińska, Jadwiga
2015-02-01
An extensive perforating internal root resorption accompanied by apical periodontitis and odontogenic sinus mucositis was detected on preoperative cone-beam computed tomographic scans in a first maxillary molar. After the chemomechanical debridement of the root canals, calcium hydroxide was placed as a temporary dressing for 7 days. Mineral trioxide aggregate was used to fill the perforation site with the aid of a surgical microscope. At the next visit, the root with the resorption defect was filled with warm vertical compaction of gutta-percha. A control cone-beam computed tomographic scan acquired 6 months after the endodontic treatment revealed complete resolution of the sinus retention cyst. Moreover, the patient's frequent otolaryngologic disturbances ceased. The tooth was functional with satisfactory clinical and radiographic results after 12 months. Based on the results of this case, successful repair of an extensive, perforating internal resorption with mineral trioxide aggregate may lead to complete resolution of apical periodontitis and maxillary sinus retention cyst. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Identification of the human pathogens Cryptosporidium and Giardia can be grouped into general morphology by microscopy, chemical and immunofluorescent staining methods aiding microscopy, and biochemical and molecular tests. Microscopic observations can be made using brightfield with or without spec...
Slant Perception Under Stereomicroscopy.
Horvath, Samantha; Macdonald, Kori; Galeotti, John; Klatzky, Roberta L
2017-11-01
Objective These studies used threshold and slant-matching tasks to assess and quantitatively measure human perception of 3-D planar images viewed through a stereomicroscope. The results are intended for use in developing augmented-reality surgical aids. Background Substantial research demonstrates that slant perception is performed with high accuracy from monocular and binocular cues, but less research concerns the effects of magnification. Viewing through a microscope affects the utility of monocular and stereo slant cues, but its impact is as yet unknown. Method Participants performed in a threshold slant-detection task and matched the slant of a tool to a surface. Different stimuli and monocular versus binocular viewing conditions were implemented to isolate stereo cues alone, stereo with perspective cues, accommodation cue only, and cues intrinsic to optical-coherence-tomography images. Results At magnification of 5x, slant thresholds with stimuli providing stereo cues approximated those reported for direct viewing, about 12°. Most participants (75%) who passed a stereoacuity pretest could match a tool to the slant of a surface viewed with stereo at 5x magnification, with mean compressive error of about 20% for optimized surfaces. Slant matching to optical coherence tomography images of the cornea viewed under the microscope was also demonstrated. Conclusion Despite the distortions and cue loss introduced by viewing under the stereomicroscope, most participants were able to detect and interact with slanted surfaces. Application The experiments demonstrated sensitivity to surface slant that supports the development of augmented-reality systems to aid microscope-aided surgery.
Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; D'Amico, Fiora; Buonocunto, Francesca; Navarro, Jorge; Lanzilotti, Crocifissa; Fiore, Piero; Megna, Marisa; Damiani, Sabino
2015-01-01
Post-coma persons in a minimally conscious state (MCS) and with extensive motor impairment and lack of speech tend to be passive and isolated. This study aimed to (a) further assess a technology-aided approach for fostering MCS participants' responding and stimulation control and (b) carry out a social validation check about the approach. Eight MCS participants were exposed to the aforementioned approach according to an ABAB design. The technology included optic, pressure or touch microswitches to monitor eyelid, hand or finger responses and a computer system that allowed those responses to produce brief periods of positive stimulation during the B (intervention) phases of the study. Eighty-four university psychology students and 42 care and health professionals were involved in the social validation check. The MCS participants showed clear increases in their response frequencies, thus producing increases in their levels of environmental stimulation input, during the B phases of the study. The students and care and health professionals involved in the social validation check rated the technology-aided approach more positively than a control condition in which stimulation was automatically presented to the participants. A technology-aided approach to foster responding and stimulation control in MCS persons may be effective and socially desirable.
Two-peak structure in the K-edge RIXS spectra of a spatially frustrated Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Datta, Trinanjan; Luo, Cheng; Yao, Dao-Xin
2014-03-01
Quantum fluctuations due to spatial anisotropy and strong magnetic frustration lead to the formation of a two-peak structure in the K-edge bimagnon RIXS intensity spectra of a Jx-Jy-J2 Heisenberg model on a square lattice. We compute the RIXS intensity, including up to first order 1/S spin wave expansion correction, using the Bethe-Salpeter equation within the ladder approximation scheme. The two-peak feature occurs in both the antiferromagnetic phase and the collinear antiferromagnetic phase. A knowledge of the peak splitting energy from both magnetically ordered regime can provide experimentalists with an alternative means to measure and study the effects of local microscopic exchange constants. Cottrell Research Corporation, NSFC-11074310, NSFC-11275279, Specialized Research Fund for the Doctoral Program of Higher Education.
Rickmann, M; Siklós, L; Joó, F; Wolff, J R
1990-09-01
An interface for IBM XT/AT-compatible computers is described which has been designed to read the actual specimen stage position of electron microscopes. The complete system consists of (i) optical incremental encoders attached to the x- and y-stage drivers of the microscope, (ii) two keypads for operator input, (iii) an interface card fitted to the bus of the personal computer, (iv) a standard configuration IBM XT (or compatible) personal computer optionally equipped with a (v) HP Graphic Language controllable colour plotter. The small size of the encoders and their connection to the stage drivers by simple ribbed belts allows an easy adaptation of the system to most electron microscopes. Operation of the interface card itself is supported by any high-level language available for personal computers. By the modular concept of these languages, the system can be customized to various applications, and no computer expertise is needed for actual operation. The present configuration offers an inexpensive attachment, which covers a wide range of applications from a simple notebook to high-resolution (200-nm) mapping of tissue. Since section coordinates can be processed in real-time, stereological estimations can be derived directly "on microscope". This is exemplified by an application in which particle numbers were determined by the disector method.
Computer-aided design development transition for IPAD environment
NASA Technical Reports Server (NTRS)
Owens, H. G.; Mock, W. D.; Mitchell, J. C.
1980-01-01
The relationship of federally sponsored computer-aided design/computer-aided manufacturing (CAD/CAM) programs to the aircraft life cycle design process, an overview of NAAD'S CAD development program, an evaluation of the CAD design process, a discussion of the current computing environment within which NAAD is developing its CAD system, some of the advantages/disadvantages of the NAAD-IPAD approach, and CAD developments during transition into the IPAD system are discussed.
CAD/CAE Integration Enhanced by New CAD Services Standard
NASA Technical Reports Server (NTRS)
Claus, Russell W.
2002-01-01
A Government-industry team led by the NASA Glenn Research Center has developed a computer interface standard for accessing data from computer-aided design (CAD) systems. The Object Management Group, an international computer standards organization, has adopted this CAD services standard. The new standard allows software (e.g., computer-aided engineering (CAE) and computer-aided manufacturing software to access multiple CAD systems through one programming interface. The interface is built on top of a distributed computing system called the Common Object Request Broker Architecture (CORBA). CORBA allows the CAD services software to operate in a distributed, heterogeneous computing environment.
Abdulhay, Enas; Mohammed, Mazin Abed; Ibrahim, Dheyaa Ahmed; Arunkumar, N; Venkatraman, V
2018-02-17
Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using the texture feature. The performance of the foreseen approach has been tried in appearing differently in relation to the system against manual examination by a gynaecologist utilizing diverse scales. A total of 100 microscope images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual segmentation method for accurately determining the ROI. We have evaluated the blood leucocytes identification using the ROI texture (LBP Feature). The identification accuracy in the technique used is about 95.3%., with 100 sensitivity and 91.66% specificity.
Whole slide imaging of unstained tissue using lensfree microscopy
NASA Astrophysics Data System (ADS)
Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Cioni, Olivier; Delon, Antoine; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric
2016-04-01
Pathologist examination of tissue slides provides insightful information about a patient's disease. Traditional analysis of tissue slides is performed under a binocular microscope, which requires staining of the sample and delays the examination. We present a simple cost-effective lensfree imaging method to record 2-4μm resolution wide-field (10 mm2 to 6 cm2) images of unstained tissue slides. The sample processing time is reduced as there is no need for staining. A wide field of view (10 mm2) lensfree hologram is recorded in a single shot and the image is reconstructed in 2s providing a very fast acquisition chain. The acquisition is multispectral, i.e. multiple holograms are recorded simultaneously at three different wavelengths, and a dedicated holographic reconstruction algorithm is used to retrieve both amplitude and phase. Whole tissue slides imaging is obtained by recording 130 holograms with X-Y translation stages and by computing the mosaic of a 25 x 25 mm2 reconstructed image. The reconstructed phase provides a phase-contrast-like image of the unstained specimen, revealing structures of healthy and diseased tissue. Slides from various organs can be reconstructed, e.g. lung, colon, ganglion, etc. To our knowledge, our method is the first technique that enables fast wide-field lensfree imaging of such unlabeled dense samples. This technique is much cheaper and compact than a conventional phase contrast microscope and could be made portable. In sum, we present a new methodology that could quickly provide useful information when a rapid diagnosis is needed, such as tumor margin identification on frozen section biopsies during surgery.
NASA Astrophysics Data System (ADS)
Li, Yan; Wu, Mingwei; Du, Xinwei; Xu, Zhuoran; Gurusamy, Mohan; Yu, Changyuan; Kam, Pooi-Yuen
2018-02-01
A novel soft-decision-aided maximum likelihood (SDA-ML) carrier phase estimation method and its simplified version, the decision-aided and soft-decision-aided maximum likelihood (DA-SDA-ML) methods are tested in a nonlinear phase noise-dominant channel. The numerical performance results show that both the SDA-ML and DA-SDA-ML methods outperform the conventional DA-ML in systems with constant-amplitude modulation formats. In addition, modified algorithms based on constellation partitioning are proposed. With partitioning, the modified SDA-ML and DA-SDA-ML are shown to be useful for compensating the nonlinear phase noise in multi-level modulation systems.
Investigations in Computer-Aided Instruction and Computer-Aided Controls. Final Report.
ERIC Educational Resources Information Center
Rosenberg, R.C.; And Others
These research projects, designed to delve into certain relationships between humans and computers, are focused on computer-assisted instruction and on man-computer interaction. One study demonstrates that within the limits of formal engineering theory, a computer simulated laboratory (Dynamic Systems Laboratory) can be built in which freshmen…
ERIC Educational Resources Information Center
Sinn, John W.
This instructional manual contains five learning activity packets for use in a workshop on computer numerical control for computer-aided manufacturing. The lessons cover the following topics: introduction to computer-aided manufacturing, understanding the lathe, using the computer, computer numerically controlled part programming, and executing a…
Software and resources for computational medicinal chemistry
Liao, Chenzhong; Sitzmann, Markus; Pugliese, Angelo; Nicklaus, Marc C
2011-01-01
Computer-aided drug design plays a vital role in drug discovery and development and has become an indispensable tool in the pharmaceutical industry. Computational medicinal chemists can take advantage of all kinds of software and resources in the computer-aided drug design field for the purposes of discovering and optimizing biologically active compounds. This article reviews software and other resources related to computer-aided drug design approaches, putting particular emphasis on structure-based drug design, ligand-based drug design, chemical databases and chemoinformatics tools. PMID:21707404
Yang, J; Feng, H L
2018-04-09
With the rapid development of the chair-side computer aided design and computer aided manufacture (CAD/CAM) technology, its accuracy and operability of have been greatly improved in recent years. Chair-side CAD/CAM system may produce all kinds of indirect restorations, and has the advantages of rapid, accurate and stable production. It has become the future development direction of Stomatology. This paper describes the clinical application of the chair-side CAD/CAM technology for anterior aesthetic restorations from the aspects of shade and shape.
Yu, Q
2018-04-09
Computer aided design and computer aided manufacture (CAD/CAM) technology is a kind of oral digital system which is applied to clinical diagnosis and treatment. It overturns the traditional pattern, and provides a solution to restore defect tooth quickly and efficiently. In this paper we mainly discuss the clinical skills of chair-side CAD/CAM system, including tooth preparation, digital impression, the three-dimensional design of prosthesis, numerical control machining, clinical bonding and so on, and review the outcomes of several common kinds of materials at the same time.
3D surface rendered MR images of the brain and its vasculature.
Cline, H E; Lorensen, W E; Souza, S P; Jolesz, F A; Kikinis, R; Gerig, G; Kennedy, T E
1991-01-01
Both time-of-flight and phase contrast magnetic resonance angiography images are combined with stationary tissue images to provide data depicting two contrast relationships yielding intrinsic discrimination of brain matter and flowing blood. A computer analysis is based on nearest neighbor segmentation and the connection between anatomical structures to partition the images into different tissue categories: from which, high resolution brain parenchymal and vascular surfaces are constructed and rendered in juxtaposition, aiding in surgical planning.
Using the nursing process to implement a Y2K computer application.
Hobbs, C F; Hardinge, T T
2000-01-01
Because of the coming year 2000, the need was assessed to upgrade the order entry system at many hospitals. At Somerset Medical Center, a training team divided the transition into phases and used a modified version of the nursing process to implement the new program. The entire process required fewer than 6 months and was relatively problem-free. This successful transition was aided by the nursing process, training team, and innovative educational techniques.
NASA Technical Reports Server (NTRS)
Steele, Gynelle C.
1999-01-01
The NASA Lewis Research Center and Flow Parametrics will enter into an agreement to commercialize the National Combustion Code (NCC). This multidisciplinary combustor design system utilizes computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. This integrated system can facilitate and enhance various phases of the design and analysis process.
Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang
2018-04-20
Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.
ERIC Educational Resources Information Center
Wilkinson-Riddle, G. J.; Patel, Ashok
1998-01-01
Discusses courseware development, including intelligent tutoring systems, under the Teaching and Learning Technology Programme and the Byzantium project that was designed to define computer-aided learning performance standards suitable for numerate business subjects; examine reasons to use computer-aided learning; and improve access to educational…
Enhancing Engineering Computer-Aided Design Education Using Lectures Recorded on the PC
ERIC Educational Resources Information Center
McGrann, Roy T. R.
2006-01-01
Computer-Aided Engineering (CAE) is a course that is required during the third year in the mechanical engineering curriculum at Binghamton University. The primary objective of the course is to educate students in the procedures of computer-aided engineering design. The solid modeling and analysis program Pro/Engineer[TM] (PTC[R]) is used as the…
1998-04-01
34AFRL-HE-WP-TR-1999-0216 UNITED STATES AIR FORCE RESEARCH LABORATORY STUDIES AND ANALYSES OF AIDED ADVERSARIAL DECISION MAKING PHASE 2: RESEARCH ON...Analyses of Aided Adversarial Decision Making . C: F41624-94-D-6000 Phase 2: Research on Human Trust in Automation PE: 62202F PR: 7184 6. AUTHOR(S) TA...Buffalo. This work focused on Aided Adversarial Decision Making (AADM) in Information Warfare (1W) environments. Previous work examined informational
Key Issues in Instructional Computer Graphics.
ERIC Educational Resources Information Center
Wozny, Michael J.
1981-01-01
Addresses key issues facing universities which plan to establish instructional computer graphics facilities, including computer-aided design/computer aided manufacturing systems, role in curriculum, hardware, software, writing instructional software, faculty involvement, operations, and research. Thirty-seven references and two appendices are…
[Physiological mechanisms of the etiology of visual fatigue during work involving visual stress].
Korniushina, T A
2000-01-01
Physiological parameters of vision were studied in three professional groups (a total of 1204 subjects): microscope operators, subjects working with magnifying glasses, and computer users. General and specific features of visual system fatigue formation were identified. Because of complete (in microscope operators) or partial (in subjects working with magnifying glasses and display users) "deprivation" of accommodation, these subjects develop early presbyopia (at the age of 30-35 years). In microscope operators long strain of accommodation system leads to professional myopia, while display users develop pseudomyopia. The highest overstrain is observed after 4 years of work in microscope operators, after 5 years in magnifying glass users, and after 6 years in computer users.
Microscopic origin of black hole reentrant phase transitions
NASA Astrophysics Data System (ADS)
Zangeneh, M. Kord; Dehyadegari, A.; Sheykhi, A.; Mann, R. B.
2018-04-01
Understanding the microscopic behavior of the black hole ingredients has been one of the important challenges in black hole physics during the past decades. In order to shed some light on the microscopic structure of black holes, in this paper, we explore a recently observed phenomenon for black holes namely reentrant phase transition, by employing the Ruppeiner geometry. Interestingly enough, we observe two properties for the phase behavior of small black holes that leads to reentrant phase transition. They are correlated and they are of the interaction type. For the range of pressure in which the system underlies reentrant phase transition, it transits from the large black holes phase to the small one which possesses higher correlation than the other ranges of pressures. On the other hand, the type of interaction between small black holes near the large/small transition line differs for usual and reentrant phase transitions. Indeed, for the usual case, the dominant interaction is repulsive whereas for the reentrant case we encounter an attractive interaction. We show that in the reentrant phase transition case, the small black holes behave like a bosonic gas whereas in the usual phase transition case, they behave like a quantum anyon gas.
Exploring the free energy surface using ab initio molecular dynamics
Samanta, Amit; Morales, Miguel A.; Schwegler, Eric
2016-04-22
Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO 2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string methodmore » in collective variables to study the melting pathways in the high pressure cotunnite phase of SiO 2 and the hcp to fcc phase transition in Ti.« less
Electron microscope phase enhancement
Jin, Jian; Glaeser, Robert M.
2010-06-15
A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.
NASA Technical Reports Server (NTRS)
Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.
1992-01-01
Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation.
Computer Programming Languages and Expertise Needed by Practicing Engineers.
ERIC Educational Resources Information Center
Doelling, Irvin
1980-01-01
Discussed is the present engineering computer environment of a large aerospace company recognized as a leader in the application and development of computer-aided design and computer-aided manufacturing techniques. A review is given of the exposure spectrum of engineers to the world of computing, the computer languages used, and the career impacts…
NASA Astrophysics Data System (ADS)
Traverso, A.; Lopez Torres, E.; Fantacci, M. E.; Cerello, P.
2017-05-01
Lung cancer is one of the most lethal types of cancer, because its early diagnosis is not good enough. In fact, the detection of pulmonary nodule, potential lung cancers, in Computed Tomography scans is a very challenging and time-consuming task for radiologists. To support radiologists, researchers have developed Computer-Aided Diagnosis (CAD) systems for the automated detection of pulmonary nodules in chest Computed Tomography scans. Despite the high level of technological developments and the proved benefits on the overall detection performance, the usage of Computer-Aided Diagnosis in clinical practice is far from being a common procedure. In this paper we investigate the causes underlying this discrepancy and present a solution to tackle it: the M5L WEB- and Cloud-based on-demand Computer-Aided Diagnosis. In addition, we prove how the combination of traditional imaging processing techniques with state-of-art advanced classification algorithms allows to build a system whose performance could be much larger than any Computer-Aided Diagnosis developed so far. This outcome opens the possibility to use the CAD as clinical decision support for radiologists.
On the detection of early osteoarthritis by quantitative microscopic imaging
NASA Astrophysics Data System (ADS)
Mittelstaedt, Daniel John
Articular cartilage is a thin layer of connective tissue that protects the ends of bones in diarthroidal joints. Cartilage distributes mechanical forces during daily movement throughout its unique depth-dependent structure. The extracellular matrix (ECM) of cartilage primarily contains water, collagen, and glycosaminoglycan (GAG). The collagen fibers are intertwined with negatively charged GAG and surround the cells (i.e. chondrocytes) in cartilage. Degradation to the ECM reduces the load bearing properties of cartilage which can be initiated by injury (e.g. anterior cruciate ligament (ACL) rupture) or disease (e.g. osteoarthritis (OA)). Magnetic resonance imaging (MRI) and x-ray computed tomography (CT) are noninvasive imaging techniques that are increasingly being used in the clinical detection of cartilage degradation. The aim of the first project in this dissertation was to quantify and compare the depth-dependent GAG concentration from healthy and biochemically degraded humeral ex vivo articular cartilage using quantitative contrast enhanced micro-computed tomography (qCECT) at high resolution. The second project in this dissertation was aimed to measure the topographical and depth-dependent GAG concentration using qCECT and delayed gadolinium enhanced magnetic resonance imaging of cartilage (dGEMRIC) from the medial tibia cartilage three weeks after unilateral ACL transection which is an animal model of OA (i.e. modified Pond-Nuki model). These GAG measurements were correlated with a biochemical method, inductively couple plasma optical emission spectrometry, to compare the degradation on the medial tibia between the OA and contralateral cartilage. The third project in this dissertation used the same cartilage specimens as in project two to investigate the change in T2 due to OA and the effect on T2 from a contrast agent. Furthermore, the change in T2 relaxation was investigated from static unconfined compression with correlations by biomechanical measurements. These studies demonstrate the ability to use two quantitative microscopic imaging techniques, microCT and microMRI, to detect microscopic changes in collagen and GAG from healthy, biochemically degraded, and early OA cartilage. The capability for microscopic imaging to detect alterations at the earliest stages of OA will ultimately improve the understanding of degradation and may help aid in the detection for the prevention of disease and repair of damaged cartilage.
Tracking interface and common curve dynamics for two-fluid flow in porous media
Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...
2016-04-29
Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less
Computer Assisted Instructional Design for Computer-Based Instruction. Final Report. Working Papers.
ERIC Educational Resources Information Center
Russell, Daniel M.; Pirolli, Peter
Recent advances in artificial intelligence and the cognitive sciences have made it possible to develop successful intelligent computer-aided instructional systems for technical and scientific training. In addition, computer-aided design (CAD) environments that support the rapid development of such computer-based instruction have also been recently…
Polarization Imaging Apparatus
NASA Technical Reports Server (NTRS)
Zou, Yingyin K.; Chen, Qiushui
2010-01-01
A polarization imaging apparatus has shown promise as a prototype of instruments for medical imaging with contrast greater than that achievable by use of non-polarized light. The underlying principles of design and operation are derived from observations that light interacts with tissue ultrastructures that affect reflectance, scattering, absorption, and polarization of light. The apparatus utilizes high-speed electro-optical components for generating light properties and acquiring polarization images through aligned polarizers. These components include phase retarders made of OptoCeramic (registered TradeMark) material - a ceramic that has a high electro-optical coefficient. The apparatus includes a computer running a program that implements a novel algorithm for controlling the phase retarders, capturing image data, and computing the Stokes polarization images. Potential applications include imaging of superficial cancers and other skin lesions, early detection of diseased cells, and microscopic analysis of tissues. The high imaging speed of this apparatus could be beneficial for observing live cells or tissues, and could enable rapid identification of moving targets in astronomy and national defense. The apparatus could also be used as an analysis tool in material research and industrial processing.
Impurity precipitation in atomized particles evidenced by nano x-ray diffraction computed tomography
NASA Astrophysics Data System (ADS)
Bonnin, Anne; Wright, Jonathan P.; Tucoulou, Rémi; Palancher, Hervé
2014-08-01
Performances and physical properties of high technology materials are influenced or even determined by their initial microstructure and by the behavior of impurity phases. Characterizing these impurities and their relations with the surrounding matrix is therefore of primary importance but it unfortunately often requires a destructive approach, with the risk of misinterpreting the observations. The improvement we have done in high resolution X-ray diffraction computed tomography combined with the use of an X-ray nanoprobe allows non-destructive crystallographic description of materials with microscopic heterogeneous microstructure (with a grain size between 10 nm and 10 μm). In this study, the grain localization in a 2D slice of a 20 μm solidified atomized γU-Mo particle is shown and a minority U(C,O) phase (1 wt. %) with sub-micrometer sized grains was characterized inside. Evidence is presented showing that the onset of U(C,O) grain crystallization can be described by a precipitation mechanism since one single U-Mo grain has direct orientation relationship with more than one surrounding U(C,O) grains.
A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation.
Chen, Xiaojun; Xu, Lu; Sun, Yi; Politis, Constantinus
2016-11-01
Currently, oral and maxillofacial surgery (OMFS) still poses a significant challenge for surgeons due to the anatomic complexity and limited field of view of the oral cavity. With the great development of computer technologies, he computer-aided surgery has been widely used for minimizing the risks and improving the precision of surgery. Areas covered: The major goal of this paper is to provide a comprehensive reference source of current and future development of computer-aided OMFS including surgical planning, simulation and navigation for relevant researchers. Expert commentary: Compared with the traditional OMFS, computer-aided OMFS overcomes the disadvantage that the treatment on the region of anatomically complex maxillofacial depends almost exclusively on the experience of the surgeon.
Software For Computer-Aided Design Of Control Systems
NASA Technical Reports Server (NTRS)
Wette, Matthew
1994-01-01
Computer Aided Engineering System (CAESY) software developed to provide means to evaluate methods for dealing with users' needs in computer-aided design of control systems. Interpreter program for performing engineering calculations. Incorporates features of both Ada and MATLAB. Designed to be flexible and powerful. Includes internally defined functions, procedures and provides for definition of functions and procedures by user. Written in C language.
Defense Acquisitions Acronyms and Terms
2012-12-01
Computer-Aided Design CADD Computer-Aided Design and Drafting CAE Component Acquisition Executive; Computer-Aided Engineering CAIV Cost As an...Radiation to Ordnance HFE Human Factors Engineering HHA Health Hazard Assessment HNA Host-Nation Approval HNS Host-Nation Support HOL High -Order...Engineering Change Proposal VHSIC Very High Speed Integrated Circuit VLSI Very Large Scale Integration VOC Volatile Organic Compound W WAN Wide
[The automatic iris map overlap technology in computer-aided iridiagnosis].
He, Jia-feng; Ye, Hu-nian; Ye, Miao-yuan
2002-11-01
In the paper, iridology and computer-aided iridiagnosis technologies are briefly introduced and the extraction method of the collarette contour is then investigated. The iris map can be overlapped on the original iris image based on collarette contour extraction. The research on collarette contour extraction and iris map overlap is of great importance to computer-aided iridiagnosis technologies.
New Paradigms for Computer Aids to Invention.
ERIC Educational Resources Information Center
Langston, M. Diane
Many people are interested in computer aids to rhetorical invention and want to know how to evaluate an invention aid, what the criteria are for a good one, and how to assess the trade-offs involved in buying one product or another. The frame of reference for this evaluation is an "old paradigm," which treats the computer as if it were…
Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis
NASA Astrophysics Data System (ADS)
Nan, Song
2018-03-01
Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.
Three-Dimensional Computational Fluid Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
Refining Students' Explanations of an Unfamiliar Physical Phenomenon-Microscopic Friction
NASA Astrophysics Data System (ADS)
Corpuz, Edgar De Guzman; Rebello, N. Sanjay
2017-08-01
The first phase of this multiphase study involves modeling of college students' thinking of friction at the microscopic level. Diagnostic interviews were conducted with 11 students with different levels of physics backgrounds. A phenomenographic approach of data analysis was used to generate categories of responses which subsequently were used to generate a model of explanation. Most of the students interviewed consistently used mechanical interactions in explaining microscopic friction. According to these students, friction is due to the interlocking or rubbing of atoms. Our data suggest that students' explanations of microscopic friction are predominantly influenced by their macroscopic experiences. In the second phase of the research, teaching experiment was conducted with 18 college students to investigate how students' explanations of microscopic friction can be refined by a series of model-building activities. Data were analyzed using Redish's two-level transfer framework. Our results show that through sequences of hands-on and minds-on activities, including cognitive dissonance and resolution, it is possible to facilitate the refinement of students' explanations of microscopic friction. The activities seemed to be productive in helping students activate associations that refine their ideas about microscopic friction.
Kinetics of a gas adsorption compressor
NASA Technical Reports Server (NTRS)
Chan, C. K.; Tward, E.; Elleman, D. D.
1984-01-01
Chan (1981) has suggested that a process based on gas adsorption could be used as a means to drive a Joule-Thomson (J-T) device. The resulting system has several advantages. It is heat powered, it has no sealing, there are no mechanical moving parts, and no active control is required. In the present investigation, a two-phase model is used to analyze the transients of a gas adsorption compressor. The modeling of the adsorption process is based on a consideration of complete thermal and mechanical equilibrium between the gaseous phase and the adsorbed gas phase. The experimental arrangement for two sets of kinetic tests is discussed, and data regarding the experimental results are presented in graphs. For a theoretical study, a two-phase model was developed to predict the transient behavior of the compressor. A computer code was written to solve the governing equations with the aid of a standard forward marching predictor-corrector method.
In vitro motility evaluation of aggregated cancer cells by means of automatic image processing.
De Hauwer, C; Darro, F; Camby, I; Kiss, R; Van Ham, P; Decaesteker, C
1999-05-01
Set up of an automatic image processing based method that enables the motility of in vitro aggregated cells to be evaluated for a number of hours. Our biological model included the PC-3 human prostate cancer cell line growing as a monolayer on the bottom of Falcon plastic dishes containing conventional culture media. Our equipment consisted of an incubator, an inverted phase contrast microscope, a Charge Coupled Device (CCD) video camera, and a computer equipped with an image processing software developed in our laboratory. This computer-assisted microscope analysis of aggregated cells enables global cluster motility to be evaluated. This analysis also enables the trajectory of each cell to be isolated and parametrized within a given cluster or, indeed, the trajectories of individual cells outside a cluster. The results show that motility inside a PC-3 cluster is not restricted to slight motion due to cluster expansion, but rather consists of a marked cell movement within the cluster. The proposed equipment enables in vitro aggregated cell motility to be studied. This method can, therefore, be used in pharmacological studies in order to select anti-motility related compounds. The compounds selected by the equipment described could then be tested in vivo as potential anti-metastatic.
ERIC Educational Resources Information Center
Insolia, Gerard
This document contains course outlines in computer-aided manufacturing developed for a business-industry technology resource center for firms in eastern Pennsylvania by Northampton Community College. The four units of the course cover the following: (1) introduction to computer-assisted design (CAD)/computer-assisted manufacturing (CAM); (2) CAM…
ERIC Educational Resources Information Center
Meloy, Jim; And Others
1990-01-01
The relationship between computer-aided design (CAD), computer-aided manufacturing (CAM), and computer numerical control (CNC) computer applications is described. Tips for helping educate the CAM buyer on what to look for and what to avoid when searching for the most appropriate instructional CAM package are provided. (KR)
Zhang, Lei; Shen, Shunyao; Yu, Hongbo; Shen, Steve Guofang; Wang, Xudong
2015-07-01
The aim of this study was to investigate the use of computer-aided design and computer-aided manufacturing hydroxyapatite (HA)/epoxide acrylate maleic (EAM) compound construction artificial implants for craniomaxillofacial bone defects. Computed tomography, computer-aided design/computer-aided manufacturing and three-dimensional reconstruction, as well as rapid prototyping were performed in 12 patients between 2008 and 2013. The customized HA/EAM compound artificial implants were manufactured through selective laser sintering using a rapid prototyping machine into the exact geometric shapes of the defect. The HA/EAM compound artificial implants were then implanted during surgical reconstruction. Color-coded superimpositions demonstrated the discrepancy between the virtual plan and achieved results using Geomagic Studio. As a result, the HA/EAM compound artificial bone implants were perfectly matched with the facial areas that needed reconstruction. The postoperative aesthetic and functional results were satisfactory. The color-coded superimpositions demonstrated good consistency between the virtual plan and achieved results. The three-dimensional maximum deviation is 2.12 ± 0.65 mm and the three-dimensional mean deviation is 0.27 ± 0.07 mm. No facial nerve weakness or pain was observed at the follow-up examinations. Only 1 implant had to be removed 2 months after the surgery owing to severe local infection. No other complication was noted during the follow-up period. In conclusion, computer-aided, individually fabricated HA/EAM compound construction artificial implant was a good craniomaxillofacial surgical technique that yielded improved aesthetic results and functional recovery after reconstruction.
Prolonged CT urography in duplex kidney.
Gong, Honghan; Gao, Lei; Dai, Xi-Jian; Zhou, Fuqing; Zhang, Ning; Zeng, Xianjun; Jiang, Jian; He, Laichang
2016-05-13
Duplex kidney is a common anomaly that is frequently associated with multiple complications. Typical computed tomography urography (CTU) includes four phases (unenhanced, arterial, parenchymal and excretory) and has been suggested to considerably aid in the duplex kidney diagnosi. Unfortunately, regarding duplex kidney with prolonged dilatation, the affected parenchyma and tortuous ureters demonstrate a lack of or delayed excretory opacification. We used prolonged-delay CTU, which consists of another prolonged-delay phase (1- to 72-h delay; mean delay: 24 h) to opacify the duplicated ureters and affected parenchyma. Seventeen patients (9 males and 8 females; age range: 2.5-56 y; mean age: 40.4 y) with duplex kidney were included in this study. Unenhanced scans did not find typical characteristics of duplex kidney, except for irregular perirenal morphology. Duplex kidney could not be confirmed on typical four-phase CTU, whereas it could be easily diagnosed in axial and CT-3D reconstruction using prolonged CTU (prolonged-delay phase). Between January 2005 and October 2010, in this review board-approved study (with waived informed consent), 17 patients (9 males and 8 females; age range: 2.5 ~ 56 y; mean age: 40.4 y) with suspicious duplex kidney underwent prolonged CTU to opacify the duplicated ureters and confirm the diagnosis. Our results suggest the validity of prolonged CTU to aid in the evaluation of the function of the affected parenchyma and in the demonstration of urinary tract malformations.
Low-energy nuclear spectroscopy in a microscopic multiphonon approach
NASA Astrophysics Data System (ADS)
Lo Iudice, N.; Ponomarev, V. Yu; Stoyanov, Ch; Sushkov, A. V.; Voronov, V. V.
2012-04-01
The low-lying spectra of heavy nuclei are investigated within the quasiparticle-phonon model. This microscopic approach goes beyond the quasiparticle random-phase approximation by treating a Hamiltonian of separable form in a microscopic multiphonon basis. It is therefore able to describe the anharmonic features of collective modes as well as the multiphonon states, whose experimental evidence is continuously growing. The method can be put in close correspondence with the proton-neutron interacting boson model. By associating the microscopic isoscalar and isovector quadrupole phonons with proton-neutron symmetric and mixed-symmetry quadrupole bosons, respectively, the microscopic states can be classified, just as in the algebraic model, according to their phonon content and their symmetry. In addition, these states disclose the nuclear properties which are to be ascribed to genuine shell effects, not included in the algebraic approach. Due to its flexibility, the method can be implemented numerically for systematic studies of spectroscopic properties throughout entire regions of vibrational nuclei. The spectra and multipole transition strengths so computed are in overall good agreement with the experimental data. By exploiting the correspondence of the method with the interacting boson model, it is possible to embed the microscopic states into this algebraic frame and, therefore, face the study of nuclei far from shell closures, not directly accessible to merely microscopic approaches. Here, it is shown how this task is accomplished through systematic investigations of magnetic dipole and, especially, electric dipole modes along paths moving from the vibrational to the transitional regions. The method is very well suited to the study of well-deformed nuclei. It provides reliable descriptions of low-lying magnetic as well as electric multipole modes of nuclei throughout the rare-earth and actinide regions. Attention is focused here on the low-lying 0+ states produced in large abundance in recent experiments. The analysis shows that the quasiparticle-phonon model accounts for the occurrence of so many 0+ levels and discloses their nature.
NASA Astrophysics Data System (ADS)
Sedarous, Salah S.
1996-03-01
Despite the large quantity of data on the macroscopic changes in the physical properties of ferroelectric crystals during phase transition, there is a continued need for understanding their microscopic origin. Here we describe a novel method for examining the microscopic dynamics of the ferroelectric phase transition using time-resolved fluorescence spectroscopy. The fluorescence properties of organic chromophores embedded in the ferroelectric crystals triglycine sulfate and potassium dihydrogen phosphate are altered in response to the structural phase transitions. The lifetime and the fractional intensity decay show large changes around Tc and the order of the phase transition is readily recovered (first or second order). To explain the fluorescence lifetime data we present a novel theoretical model based on the concept of polaritons in these crystals. Deactivation of the excited state chromophore involves the participation of the vibrational modes of the chromophore. These modes are coupled to the polarization dispersion of the matrix and facilitate the coupling of the excited state to the collective modes in the crystal. The net result is the flow of energy from the excited state chromophore to the lattice phonon. The data indicate that changes in fluorescence lifetime can be used to examine directly the collective modes in these crystals. Our work provides important insight into the emergence of macroscopic phase transition behavior out of microscopic fluctuations.
Quantitative phase imaging by wide field lensless digital holographic microscope
NASA Astrophysics Data System (ADS)
Adinda-Ougba, A.; Koukourakis, N.; Essaidi, A.; GerÂhardt, N. C.; Hofmann, M. R.
2015-05-01
Wide field, lensless microscopes have been developed for telemedicine and for resource limited setting [1]. They are based on in-line digital holography which is capable to provide amplitude and phase information resulting from numerical reconstruction. The phase information enables achieving axial resolution in the nanometer range. Hence, such microscopes provide a powerful tool to determine three-dimensional topologies of microstructures. In this contribution, a compact, low-cost, wide field, lensless microscope is presented, which is capable of providing topological profiles of microstructures in transparent material. Our setup consist only of two main components: a CMOSsensor chip and a laser diode without any need of a pinhole. We use this very simple setup to record holograms of microobjects. A wide field of view of ~24 mm², and a lateral resolution of ~2 μm are achieved. Moreover, amplitude and phase information are obtained from the numerical reconstruction of the holograms using a phase retrieval algorithm together with the angular spectrum propagation method. Topographic information of highly transparent micro-objects is obtained from the phase data. We evaluate our system by recording holograms of lines with different depths written by a focused laser beam. A reliable characterization of laser written microstructures is crucial for their functionality. Our results show that this system is valuable for determination of topological profiles of microstructures in transparent material.
Four-probe measurements with a three-probe scanning tunneling microscope.
Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A
2014-04-01
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.
Hachtel, Jordan A.; Marvinney, Claire; Mouti, Anas; ...
2016-03-02
The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows usmore » to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. Furthermore, the approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.« less
NASA Technical Reports Server (NTRS)
Oshman, Yaakov; Markley, Landis
1998-01-01
A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.
NASA Technical Reports Server (NTRS)
Woolston, Donald S.
1961-01-01
As a byproduct of the preparation of solar and lunar coordinates for use in trajectory calculations a time history has been obtained of the radial distance and declination of the moon and its phases. Results are intended for use as an aid in the selection of launch dates. Results are presented for the years 1961 to 1971 in a form which permits a rapid approximate determination of the combination of declination and lighting for any calendar date. The information provides a time basis for entering tables of the moon's coordinates to obtain more precise data for use in computing insertion conditions.
Lavigne, Claire; Durand, Gérard; Roblin, Antoine
2009-04-20
In the atmosphere pointlike sources are surrounded by an aureole due to molecular and aerosol scattering. UV phase functions of haze droplets have a very important forward peak that limits signal angular spreading in relation to the clear atmosphere case where Rayleigh scattering predominates. This specific property can be exploited using solar blind UV source detection as an aircraft landing aid under foggy conditions. Two methods have been used to compute UV light propagation, based on the Monte Carlo technique and a semi-empirical approach. Results obtained after addition of three types of sensor and UV runway light models show that an important improvement in landing conditions during foggy weather could be achieved by use of a solar blind UV intensified CCD camera with two stages of microchannel plates.
NASA Astrophysics Data System (ADS)
Abedin, Farhana
The clinical lifetime of moderate-to-large dental composite restorations is lower than dental amalgam restorations. With the imminent and significant reduction in the use and availability of dental amalgam, the application of composite for the restoration of teeth will increase. Since composite has a higher failure rate, the increased use of composite will translate to an increase in the frequency of dental restoration replacement, overall cost for dental health and discomfort for patients. The composite is too viscous to bond directly to the tooth and thus, a low viscosity adhesive is used to form the bond between the composite and tooth. The bond at the adhesive/tooth is intended to form an impervious seal that protects the restored tooth from acids, oral fluids and bacteria that will undermine the composite restoration. The integrity of the adhesive/tooth bond (the exposed tooth structure is largely composed of enamel and dentin) plays an important role in preventing secondary caries which undermine the composite restoration. This study focuses on the durability of etch-and-rinse dental adhesives. As the adhesive infiltrates the demineralized dentin matrix, it undergoes phase separation into hydrophobic- and hydrophilic-rich phases. The hydrophilic-rich phase contains the conventional hydrophobic photo-initiator system (camphorquinone/ethyl 4-(dimethylamino)benzoate) and cross-linker both in inadequate concentrations. This may compromise the polymerization reaction and the cross-linking density of this phase, making it vulnerable to failure. The goal of this study is to characterize the hydrophilic-rich phase of the dental adhesive by monitoring its polymerization kinetics and glass transition temperature under the presence of an iodonium salt (reaction accelerator), and varying water concentration, photo-initiator concentration and light intensity. The final goal is to develop a computational framework for designing water compatible visible light photosensitizers specifically for the hydrophilic-rich phase of dental adhesives. It was observed that the degree of conversion of the hydrophilic-rich mimics is dominated by the photo-initiator concentration and not the cross-linker. A secondary rate maxima was observed in the case of hydrophilic-rich phase mimics which was associated with the formation of microgels during polymerization. A polymerization mechanism involving polymerization- and solvent-induced phase separation was proposed for the hydrophilic-rich mimics. The hydrophilic dental resins were sensitive to light intensity, i.e. at low light intensities the degree of conversion of the hydrophilic resin was reduced substantially in the presence of camphorquinone/ethyl 4-(dimethylamino)benzoate as photo-initiators, whereas a substantial degree of conversion was observed for the hydrophobic resin even at these lower light intensities. The addition of iodonium salt in the hydrophilic resin significantly improved the degree of conversion of the hydrophilic resin at low light intensities. These studies also showed that the iodonium salt could lead to enhanced cyclization and shorter polymer chain lengths within the hydrophilic-rich phase. For the physically separated hydrophilic-rich phase specimens, it was observed that in the presence of the conventional photo-initiator system (camphorquinone/ethyl 4-(dimethylamino)benzoate), there was no polymerization, mostly due to the insufficient partition concentrations of the photo-initiator components within this phase. The addition of iodoinum salt in this case significantly improved the degree of conversion but it was still significantly lower. These studies indicated that the overall polymerization efficiency of the hydrophilic-rich phase was lower than the hydrophobic-rich phase. The lower polymerization efficiency of the hydrophilic-rich phase led to a phase that lacks integrity; the hydrophilic-rich phase could be infiltrated by oral fluids and cariogenic bacteria. The infiltration of these noxious agents at the interface between the material and tooth could pave the way for enhanced degradation of the tooth structure (collagen and mineral) as well as the adhesive polymer. Novel photosensitizer molecules were proposed to improve the polymerization efficiency of this phase. Computer-aided molecular design (CAMD) was employed to obtain the new photosensitizers. These photosensitizers were capable of improving the degree of conversion of the hydrophilic-rich phase. An enhanced degree of conversion of the hydrophilic-rich phase would lead to a better seal at the adhesive/dentin interface and higher bond strength. Computer-aided molecular design (CAMD) is a fast and inexpensive technique compared to the conventional trial-and-error method to rationally design products. (Abstract shortened by ProQuest.).
Probe-Hole Field Emission Microscope System Controlled by Computer
NASA Astrophysics Data System (ADS)
Gong, Yunming; Zeng, Haishan
1991-09-01
A probe-hole field emission microscope system, controlled by an Apple II computer, has been developed and operated successfully for measuring the work function of a single crystal plane. The work functions on the clean W(100) and W(111) planes are measured to be 4.67 eV and 4.45 eV, respectively.
Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques
NASA Astrophysics Data System (ADS)
Rekha, Suganthini; Bupesh Raja, V. K.
2017-05-01
The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.
1982-10-01
TANK- AUTOMOTIVE COMMAND RESEARCH AND DEVELOPMENT CENTER ýAj Warren, Michigan 48090 A;••~ ISILJI REPRODUCTION QUALITY NOTICE This document is the best...CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE U. S. Army Tank- Automotive Command October 1982 Attention: DRSTA-RCKM 13. NUMBER OF PAGES Warren...Forging of Sprial Bevel Gears". It is being conducted under the direction of Mr. Donald Ostberg of the Metals & Welding Subfunction (DRSTA/RCKM) of the
Rodríguez García, José Ignacio; Sierra Velasco, José Manuel; Villazón Suárez, Marta; Cabrera Pereira, Ana; Sosa, Valentina; Cortizo Rodríguez, José Luis
2018-04-01
Industry 4.0 offers new development opportunities for surgeons. Computer-aided design and 3D printing allow for the creation of prototypes and functional end products. Until now, it was difficult for new devices to get to the manufacturing phase. Nowadays, the main limitations are our creativity, available spaces to test our creations and obtaining financing. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Improvements in low-cost label-free QPI microscope for live cell imaging
NASA Astrophysics Data System (ADS)
Seniya, C.; Towers, C. E.; Towers, D. P.
2017-07-01
This paper reports an improvement in the development of a low-cost QPI microscope offering new capabilities in term of phase measurement accuracy for label-free live samples in the longer term (i.e., hours to days). The spatially separated scattered and non-scattered image light fields are reshaped in the Fourier plane and modulated to form an interference image at a CCD camera. The apertures that enable these two beams to be generated have been optimised by means of laser-cut apertures placed on the mirrors of a Michelson interferometer and has improved the phase measuring and reconstruction capability of the QPI microscope. The microscope was tested with transparent onion cells as an object of interest.
Nelson, Neha; K S, Jyothi; Sunny, Kiran
2017-03-01
The margins of copings for crowns and retainers of fixed partial dentures affect the progress of microleakage and dental caries. Failures occur due to altered fit which is also influenced by the method of fabrication. An in-vitro study was conducted to determine among the cast base metal, copy milled zirconia, computer aided designing computer aided machining/manufacturing zirconia and direct metal laser sintered copings which showed best marginal accuracy and internal fit. Forty extracted maxillary premolars were mounted on an acrylic model and reduced occlusally using a milling machine up to a final tooth height of 4 mm from the cementoenamel junction. Axial reduction was accomplished on a surveyor and a chamfer finish line was given. The impressions and dies were made for fabrication of copings which were luted on the prepared teeth under standardized loading, embedded in self-cure acrylic resin, sectioned and observed using scanning electron microscope for internal gap and marginal accuracy. The copings fabricated using direct metal laser sintering technique exhibited best marginal accuracy and internal fit. Comparison of mean between the four groups by ANOVA and post-hoc Tukey HSD tests showed a statistically significant difference between all the groups (p⟨0.05). It was concluded that the copings fabricated using direct metal laser sintering technique exhibited best marginal accuracy and internal fit. Additive digital technologies such as direct metal laser sintering could be cost-effective for the clinician, minimize failures related to fit and increase longevity of teeth and prostheses. Copyright© 2017 Dennis Barber Ltd.
Diffusion of CO2 in Large Crystals of Cu-BTC MOF.
Tovar, Trenton M; Zhao, Junjie; Nunn, William T; Barton, Heather F; Peterson, Gregory W; Parsons, Gregory N; LeVan, M Douglas
2016-09-14
Carbon dioxide adsorption in metal-organic frameworks has been widely studied for applications in carbon capture and sequestration. A critical component that has been largely overlooked is the measurement of diffusion rates. This paper describes a new reproducible procedure to synthesize millimeter-scale Cu-BTC single crystals using concentrated reactants and an acetic acid modulator. Microscopic images, X-ray diffraction patterns, Brunauer-Emmett-Teller surface areas, and thermogravimetric analysis results all confirm the high quality of these Cu-BTC single crystals. The large crystal size aids in the accurate measurement of micropore diffusion coefficients. Concentration-swing frequency response performed at varying gas-phase concentrations gives diffusion coefficients that show very little dependence on the loading up to pressures of 0.1 bar. The measured micropore diffusion coefficient for CO2 in Cu-BTC is 1.7 × 10(-9) m(2)/s.
A Review of Developments in Computer-Based Systems to Image Teeth and Produce Dental Restorations
Rekow, E. Dianne; Erdman, Arthur G.; Speidel, T. Michael
1987-01-01
Computer-aided design and manufacturing (CAD/CAM) make it possible to automate the creation of dental restorations. Currently practiced techniques are described. Three automated systems currently under development are described and compared. Advances in computer-aided design and computer-aided manufacturing (CAD/CAM) provide a new option for dentistry, creating an alternative technique for producing dental restorations. It is possible to create dental restorations that are automatically produced and meet or exceed current requirements for fit and occlusion.
Photogrammetry and computer-aided piping design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keneflick, J.F.; Chirillo, R.D.
1985-02-18
Three-dimensional measurements taken from photographs of a plant model can be digitized and linked with computer-aided piping design. This can short-cut the design and construction of new plants and expedite repair and retrofitting projects. Some designers bridge the gap between model and computer by digitizing from orthographic prints obtained via orthography or the laser scanning of model sections. Such valve or fitting then processed is described in this paper. The marriage of photogrammetry and computer-aided piping design can economically produce such numerical drawings.
Integration of the Execution Support System for the Computer-Aided Prototyping System (CAPS)
1990-09-01
SUPPORT SYSTEM FOR THE COMPUTER -AIDED PROTOTYPING SYSTEM (CAPS) by Frank V. Palazzo September 1990 Thesis Advisor: Luq± Approved for public release...ZATON REPOR ,,.VBE (, 6a NAME OF PERPORMING ORGAN ZAT7ON 6b OFF:CE SYVBOL 7a NAME OF MONITORINC O0-CA’Za- ON Computer Science Department (if applicable...Include Security Classification) Integration of the Execution Support System for the Computer -Aided Prototyping System (C S) 12 PERSONAL AUTHOR(S) Frank V
Influence of Computer-Aided Detection on Performance of Screening Mammography
Fenton, Joshua J.; Taplin, Stephen H.; Carney, Patricia A.; Abraham, Linn; Sickles, Edward A.; D'Orsi, Carl; Berns, Eric A.; Cutter, Gary; Hendrick, R. Edward; Barlow, William E.; Elmore, Joann G.
2011-01-01
Background Computer-aided detection identifies suspicious findings on mammograms to assist radiologists. Since the Food and Drug Administration approved the technology in 1998, it has been disseminated into practice, but its effect on the accuracy of interpretation is unclear. Methods We determined the association between the use of computer-aided detection at mammography facilities and the performance of screening mammography from 1998 through 2002 at 43 facilities in three states. We had complete data for 222,135 women (a total of 429,345 mammograms), including 2351 women who received a diagnosis of breast cancer within 1 year after screening. We calculated the specificity, sensitivity, and positive predictive value of screening mammography with and without computer-aided detection, as well as the rates of biopsy and breast-cancer detection and the overall accuracy, measured as the area under the receiver-operating-characteristic (ROC) curve. Results Seven facilities (16%) implemented computer-aided detection during the study period. Diagnostic specificity decreased from 90.2% before implementation to 87.2% after implementation (P<0.001), the positive predictive value decreased from 4.1% to 3.2% (P = 0.01), and the rate of biopsy increased by 19.7% (P<0.001). The increase in sensitivity from 80.4% before implementation of computer-aided detection to 84.0% after implementation was not significant (P = 0.32). The change in the cancer-detection rate (including invasive breast cancers and ductal carcinomas in situ) was not significant (4.15 cases per 1000 screening mammograms before implementation and 4.20 cases after implementation, P = 0.90). Analyses of data from all 43 facilities showed that the use of computer-aided detection was associated with significantly lower overall accuracy than was nonuse (area under the ROC curve, 0.871 vs. 0.919; P = 0.005). Conclusions The use of computer-aided detection is associated with reduced accuracy of interpretation of screening mammograms. The increased rate of biopsy with the use of computer-aided detection is not clearly associated with improved detection of invasive breast cancer. PMID:17409321
NASA Astrophysics Data System (ADS)
Carollo, Federico; Garrahan, Juan P.; Lesanovsky, Igor; Pérez-Espigares, Carlos
2017-11-01
We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.
Carollo, Federico; Garrahan, Juan P; Lesanovsky, Igor; Pérez-Espigares, Carlos
2017-11-01
We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.
Improper magnetic ferroelectricity of nearly pure electronic nature in helicoidal spiral CaMn7O12
NASA Astrophysics Data System (ADS)
Lim, Jin Soo; Saldana-Greco, Diomedes; Rappe, Andrew M.
2018-01-01
Helicoidal magnetic order breaks inversion symmetry in quadruple perovskite CaMn7O12 , generating one of the largest spin-induced ferroelectric polarizations measured to date. Here, the microscopic origin of the polarization, including exchange interactions, coupling to the spin helicity, and charge density redistribution, is explored via first-principles calculations. The B -site Mn4 + (Mn3) spin adopts a noncentrosymmetric configuration, stabilized not only by spin-orbit coupling (SOC), but also by the fully anisotropic Hubbard J parameter in the absence of SOC, to break inversion symmetry and generate polarization. Berry phase computed polarization (Pelec=2169 μ C /m2 ) exhibits nearly pure electronic behavior, with negligible Mn displacements (≈0.7 m Å ). Orbital-resolved density of states shows that p -d orbital mixing is microscopically driven by nonrelativistic exchange striction within the commensurate ionic structure. Persistent electronic polarization induced by helical spin order in the nearly inversion-symmetric ionic crystal lattice suggests opportunities for ultrafast magnetoelectric response.
Breast cancer histopathology image analysis: a review.
Veta, Mitko; Pluim, Josien P W; van Diest, Paul J; Viergever, Max A
2014-05-01
This paper presents an overview of methods that have been proposed for the analysis of breast cancer histopathology images. This research area has become particularly relevant with the advent of whole slide imaging (WSI) scanners, which can perform cost-effective and high-throughput histopathology slide digitization, and which aim at replacing the optical microscope as the primary tool used by pathologist. Breast cancer is the most prevalent form of cancers among women, and image analysis methods that target this disease have a huge potential to reduce the workload in a typical pathology lab and to improve the quality of the interpretation. This paper is meant as an introduction for nonexperts. It starts with an overview of the tissue preparation, staining and slide digitization processes followed by a discussion of the different image processing techniques and applications, ranging from analysis of tissue staining to computer-aided diagnosis, and prognosis of breast cancer patients.
A Clinicopathological Study of Various Oral Cancer Diagnostic Techniques
Ulaganathan, G.; Mohamed Niazi, K. Thanvir; Srinivasan, Soundarya; Balaji, V. R.; Manikandan, D.; Hameed, K. A. Shahul; Banumathi, A.
2017-01-01
Oral cancer is one of the most commonly occurring malignant tumors in the head and neck regions with high incident rate and mortality rate in the developed countries than in the developing countries. Generally, the survival rate of cancer patients may increase when diagnosed at early stage, followed by prompt treatment and therapy. Recently, cancer diagnosis and therapy design for a specific cancer patient have been performed with the advanced computer-aided techniques. The responses of the cancer therapy could be continuously monitored to ensure the effectiveness of the treatment process that hardly requires diagnostic result as quick as possible to improve the quality and patient care. This paper gives an overview of oral cancer occurrence, different types, and various diagnostic techniques. In addition, a brief introduction is given to various stages of immunoanalysis including tissue image preparation, whole slide imaging, and microscopic image analysis. PMID:29284926
Rykowski, M C; Parmelee, S J; Agard, D A; Sedat, J W
1988-08-12
We have aligned the molecular map of the Notch locus to the cytological features of the salivary gland polytene chromosomes of D. melanogaster in order to determine the interphase chromatin structure of this gene. Using high-resolution in situ hybridization and computer-aided optical microscope data collection and image analysis, we have determined that the coding portions and introns of the Notch gene, which is not expressed in this tissue, are all contained within the polytene chromosome band 3C7. The portion of the Notch gene that resides 5' to the start of transcription lies in an open chromatin conformation, the interband between bands 3C6 and 3C7. Our data are most consistent with condensation of the chromosomal DNA into 30 nm fibers in this polytene band.
An innovative approach to compensator design
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Mcdaniel, W. L., Jr.
1973-01-01
The design is considered of a computer-aided-compensator for a control system from a frequency domain point of view. The design technique developed is based on describing the open loop frequency response by n discrete frequency points which result in n functions of the compensator coefficients. Several of these functions are chosen so that the system specifications are properly portrayed; then mathematical programming is used to improve all of these functions which have values below minimum standards. To do this, several definitions in regard to measuring the performance of a system in the frequency domain are given, e.g., relative stability, relative attenuation, proper phasing, etc. Next, theorems which govern the number of compensator coefficients necessary to make improvements in a certain number of functions are proved. After this a mathematical programming tool for aiding in the solution of the problem is developed. This tool is called the constraint improvement algorithm. Then for applying the constraint improvement algorithm generalized, gradients for the constraints are derived. Finally, the necessary theory is incorporated in a Computer program called CIP (compensator Improvement Program). The practical usefulness of CIP is demonstrated by two large system examples.
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem
2016-03-01
We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.
Lungu, Radu P; Huckaby, Dale A
2008-07-21
An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, T.M.; Wagner, A.; Berger, A.S.
1975-06-01
An ultra-high vacuum time-of-flight (TOF) atom-probe field ion microscope (FIM) specifically designed for the study of defects in metals is described. The variable magnification FIM image is viewed with the aid of an internal image intensification system based on a channel electron-multiplier array. The specimen is held in a liquid-helium-cooled goniometer stage, and the specimen is exchanged by means of a high-vacuum (less than 10/sup -6/ torr) specimen exchange device. This stage allows the specimen to be maintained at a tip temperature anywhere in the range from 13 to 450/sup 0/K. Specimens can also be irradiated in-situ with any low-energymore » (less than 1 keV) gas ion employing a specially constructed ion gun. The pulse-field evaporated ions are detected by a Chevron ion-detector located 2.22 m from the FIM specimen. The TOF of the ions are measured by a specially constructed eight-channel digital timer with a resolution of +-10 ns. The entire process of applying the evaporation pulse to the specimen, measuring the dc and pulse voltages, and analyzing the TOF data is controlled by a NOVA 1220 computer. The computer is also interfaced to a Tektronix graphics terminal which displays the data in the form of a histogram of the number of events versus the mass-to-charge ratio. An extensive set of computer programs to test and operate the atom-probe FIM have been developed. With this automated system we can presently record and analyze 10 TOF s/sup -1/. In the performance tests reported here the instrument has resolved the seven stable isotopes of molybdenum, the five stable isotopes of tungsten, and the two stable isotopes of rhenium in a tungsten--25 at. percent rhenium alloy. (auth)« less
Statistical mechanics of self-driven Carnot cycles.
Smith, E
1999-10-01
The spontaneous generation and finite-amplitude saturation of sound, in a traveling-wave thermoacoustic engine, are derived as properties of a second-order phase transition. It has previously been argued that this dynamical phase transition, called "onset," has an equivalent equilibrium representation, but the saturation mechanism and scaling were not computed. In this work, the sound modes implementing the engine cycle are coarse-grained and statistically averaged, in a partition function derived from microscopic dynamics on criteria of scale invariance. Self-amplification performed by the engine cycle is introduced through higher-order modal interactions. Stationary points and fluctuations of the resulting phenomenological Lagrangian are analyzed and related to background dynamical currents. The scaling of the stable sound amplitude near the critical point is derived and shown to arise universally from the interaction of finite-temperature disorder, with the order induced by self-amplification.
Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.
Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C
2014-05-09
We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.
Computer-aided Instructional System for Transmission Line Simulation.
ERIC Educational Resources Information Center
Reinhard, Erwin A.; Roth, Charles H., Jr.
A computer-aided instructional system has been developed which utilizes dynamic computer-controlled graphic displays and which requires student interaction with a computer simulation in an instructional mode. A numerical scheme has been developed for digital simulation of a uniform, distortionless transmission line with resistive terminations and…
Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 1
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr. (Compiler)
1989-01-01
Control/Structures Integration program software needs, computer aided control engineering for flexible spacecraft, computer aided design, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software for flexible structures and robots are among the topics discussed.
Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L
2016-12-13
In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.
Computer aided field editing in the DHS context: the Turkey experiment.
Cushing, J; Loaiza, E
1994-01-01
"In this study two types of field editing used during the Turkey Demographic and Health Survey are compared. These two types of editing are computer aided field editing and manual editing. It is known that manual editing by field editors is a tedious job in which errors especially on skip questions can be missed; however, with the aid of computers field editors could quickly find all occasions on which an interviewer incorrectly followed a skip instruction. At the end of the experiment it has been found...that the field editing done with the aid of a notebook computer was consistently better than that done in the standard manual manner." (SUMMARY IN TUR) excerpt
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio
2018-02-01
We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.
Quantitative Phase Imaging in a Volume Holographic Microscope
NASA Astrophysics Data System (ADS)
Waller, Laura; Luo, Yuan; Barbastathis, George
2010-04-01
We demonstrate a method for quantitative phase imaging in a Volume Holographic Microscope (VHM) from a single exposure, describe the properties of the system and show experimental results. The VHM system uses a multiplexed volume hologram (VH) to laterally separate images from different focal planes. This 3D intensity information is then used to solve the transport of intensity (TIE) equation and recover phase quantitatively. We discuss the modifications to the technique that were made in order to give accurate results.
Quality indexing with computer-aided lexicography
NASA Technical Reports Server (NTRS)
Buchan, Ronald L.
1992-01-01
Indexing with computers is a far cry from indexing with the first indexing tool, the manual card sorter. With the aid of computer-aided lexicography, both indexing and indexing tools can provide standardization, consistency, and accuracy, resulting in greater quality control than ever before. A brief survey of computer activity in indexing is presented with detailed illustrations from NASA activity. Applications from techniques mentioned, such as Retrospective Indexing (RI), can be made to many indexing systems. In addition to improving the quality of indexing with computers, the improved efficiency with which certain tasks can be done is demonstrated.
COMPUTER-AIDED DATA ACQUISITION FOR COMBUSTION EXPERIMENTS
The article describes the use of computer-aided data acquisition techniques to aid the research program of the Combustion Research Branch (CRB) of the U.S. EPA's Air and Energy Engineering Research Laboratory (AEERL) in Research Triangle Park, NC, in particular on CRB's bench-sca...
NASA Technical Reports Server (NTRS)
Gilbert, Percy; Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.
1987-01-01
Using a recently developed technology called thermal-wave microscopy, NASA Lewis Research Center has developed a computer controlled submicron thermal-wave microscope for the purpose of investigating III-V compound semiconductor devices and materials. This paper describes the system's design and configuration and discusses the hardware and software capabilities. Knowledge of the Concurrent 3200 series computers is needed for a complete understanding of the material presented. However, concepts and procedures are of general interest.
Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase
Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling
2015-01-01
In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate. PMID:26378533
Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase.
Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling
2015-09-10
In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate.
Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review.
Liedlgruber, Michael; Uhl, Andreas
2011-01-01
Today, medical endoscopy is a widely used procedure to inspect the inner cavities of the human body. The advent of endoscopic imaging techniques-allowing the acquisition of images or videos-created the possibility for the development of the whole new branch of computer-aided decision support systems. Such systems aim at helping physicians to identify possibly malignant abnormalities more accurately. At the beginning of this paper, we give a brief introduction to the history of endoscopy, followed by introducing the main types of endoscopes which emerged so far (flexible endoscope, wireless capsule endoscope, and confocal laser endomicroscope). We then give a brief introduction to computer-aided decision support systems specifically targeted at endoscopy in the gastrointestinal tract. Then we present general facts and figures concerning computer-aided decision support systems and summarize work specifically targeted at computer-aided decision support in the gastrointestinal tract. This summary is followed by a discussion of some common issues concerning the approaches reviewed and suggestions of possible ways to resolve them.
ERIC Educational Resources Information Center
Sonmez, Duygu; Altun, Arif; Mazman, Sacide Guzin
2012-01-01
This study investigates how prior content knowledge and prior exposure to microscope slides on the phases of mitosis effect students' visual search strategies and their ability to differentiate cells that are going through any phases of mitosis. Two different sets of microscope slide views were used for this purpose; with high and low colour…
Takagi, Mutsumi; Kitabayashi, Takayuki; Ito, Syunsuke; Fujiwara, Masashi; Tokuda, Akio
2007-01-01
Noninvasive measurement of 3-D morphology of adhered animal cells employing a phase-shifting laser microscope (PLM) is investigated, in which the phase shift for each pixel in the view field caused by cell height and the difference in refractive indices between the cells and the medium is determined. By employing saline with different refractive indices instead of a culture medium, the refractive index of the cells, which is necessary for the determination of cell height, is determined under PLM. The observed height of Chinese hamster ovary (CHO) cells cultivated under higher osmolarity is lower than that of the cells cultivated under physiological osmolarity, which is in agreement with previous data observed under an atomic force microscope (AFM). Maximum heights of human bone marrow mesenchymal stem cells and human umbilical cord vein endothelial cells measured under PLM and AFM agree well with each other. The maximum height of nonadherent spherical CHO cells observed under PLM is comparable to the cell diameter measured under a phase contrast inverted microscope. Laser irradiation, which is necessary for the observation under PLM, did not affect 3-D cell morphology. In conclusion, 3-D morphology of adhered animal cells can be noninvasively measured under PLM.
Implementing a new curriculum for computer-assisted restorations in prosthetic dentistry.
Schweyen, R; Beuer, F; Bochskanl, M; Hey, J
2018-05-01
Computer-aided design/computer-aided manufacturing (CAD/CAM) of fixed prosthetic restorations has gained popularity in the last decade. However, this field of dentistry has not been integrated in the dental curriculum at most universities. According to the method of Kern, a curriculum was designed and established on a voluntary basis in the prosthetic education of a German dental school. The success of the implementation was measured by evaluation carried out by the participants on a visual analogue scale. Furthermore, the clinical performance of the fabricated restorations was evaluated. Ninety-four percent of all students participated in the CAD/CAM curriculum indicating considerable interest. Nearly half of all students used the acquired knowledge to design crowns for their patients. All restorations fabricated by participants of the new CAD/CAM programme showed good clinical performance. By phasing-in the CAD/CAM training programme, independent CAD/CAM-based fabrication of all-ceramic crowns increased student's self-confidence in tooth preparation. A tendency was found that students using CAD/CAM technology prepared more teeth than their fellow students who did not use CAD/CAM technology. Further studies are required to investigate the influence of independent CAD/CAM-based single-crown fabrication on the quality of the preparation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluation of a completely robotized neurosurgical operating microscope.
Kantelhardt, Sven R; Finke, Markus; Schweikard, Achim; Giese, Alf
2013-01-01
Operating microscopes are essential for most neurosurgical procedures. Modern robot-assisted controls offer new possibilities, combining the advantages of conventional and automated systems. We evaluated the prototype of a completely robotized operating microscope with an integrated optical coherence tomography module. A standard operating microscope was fitted with motors and control instruments, with the manual control mode and balance preserved. In the robot mode, the microscope was steered by a remote control that could be fixed to a surgical instrument. External encoders and accelerometers tracked microscope movements. The microscope was additionally fitted with an optical coherence tomography-scanning module. The robotized microscope was tested on model systems. It could be freely positioned, without forcing the surgeon to take the hands from the instruments or avert the eyes from the oculars. Positioning error was about 1 mm, and vibration faded in 1 second. Tracking of microscope movements, combined with an autofocus function, allowed determination of the focus position within the 3-dimensional space. This constituted a second loop of navigation independent from conventional infrared reflector-based techniques. In the robot mode, automated optical coherence tomography scanning of large surface areas was feasible. The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.
Observation of Phase Objects by Using an X-ray Microscope with a Foucault Knife-Edge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, N.; Sasaya, T.; Imai, Y.
2011-09-09
An x-ray microscope with a zone plate was assembled at the synchrotron radiation source of BL3C, Photon Factory. A Foucault knife-edge was set at the back focal plate of the objective zone plate and phase retrieval was tested by scanning the knife-edge. A preliminary result shows that scanning the knife-edge during exposure was effective for phase retrieval. Phase-contrast tomography was investigated using differential projection images calculated from two Schlieren images with the oppositely oriented knife-edges. Fairly good reconstruction images of polystyrene beads and spores could be obtained.
2018-03-30
ARL-TR-8336 ● MAR 2018 US Army Research Laboratory Manipulating the Geometric Computer-aided Design of the Operational...so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of...Army Research Laboratory Manipulating the Geometric Computer-aided Design of the Operational Requirements-based Casualty Assessment Model within
Increasing productivity of the McAuto CAD/CAE system by user-specific applications programming
NASA Technical Reports Server (NTRS)
Plotrowski, S. M.; Vu, T. H.
1985-01-01
Significant improvements in the productivity of the McAuto Computer-Aided Design/Computer-Aided Engineering (CAD/CAE) system were achieved by applications programming using the system's own Graphics Interactive Programming language (GRIP) and the interface capabilities with the main computer on which the system resides. The GRIP programs for creating springs, bar charts, finite element model representations and aiding management planning are presented as examples.
R&D100 Finalist: Neuromorphic Cyber Microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, David; Naegle, John; Suppona, Roger
The Neuromorphic Cyber Microscope provides security analysts with unprecedented visibility of their network, computer and storage assets. This processor is the world's first practical implementation of neuromorphic technology to a major computer science mission. Working with Lewis Rhodes Labs, engineers at Sandia National Laboratories have created a device that is orders of magnitude faster at analyzing data to identify cyber-attacks.
Possible Computer Vision Systems and Automated or Computer-Aided Edging and Trimming
Philip A. Araman
1990-01-01
This paper discusses research which is underway to help our industry reduce costs, increase product volume and value recovery, and market more accurately graded and described products. The research is part of a team effort to help the hardwood sawmill industry automate with computer vision systems, and computer-aided or computer controlled processing. This paper...
Features of Computer-Based Decision Aids: Systematic Review, Thematic Synthesis, and Meta-Analyses.
Syrowatka, Ania; Krömker, Dörthe; Meguerditchian, Ari N; Tamblyn, Robyn
2016-01-26
Patient information and education, such as decision aids, are gradually moving toward online, computer-based environments. Considerable research has been conducted to guide content and presentation of decision aids. However, given the relatively new shift to computer-based support, little attention has been given to how multimedia and interactivity can improve upon paper-based decision aids. The first objective of this review was to summarize published literature into a proposed classification of features that have been integrated into computer-based decision aids. Building on this classification, the second objective was to assess whether integration of specific features was associated with higher-quality decision making. Relevant studies were located by searching MEDLINE, Embase, CINAHL, and CENTRAL databases. The review identified studies that evaluated computer-based decision aids for adults faced with preference-sensitive medical decisions and reported quality of decision-making outcomes. A thematic synthesis was conducted to develop the classification of features. Subsequently, meta-analyses were conducted based on standardized mean differences (SMD) from randomized controlled trials (RCTs) that reported knowledge or decisional conflict. Further subgroup analyses compared pooled SMDs for decision aids that incorporated a specific feature to other computer-based decision aids that did not incorporate the feature, to assess whether specific features improved quality of decision making. Of 3541 unique publications, 58 studies met the target criteria and were included in the thematic synthesis. The synthesis identified six features: content control, tailoring, patient narratives, explicit values clarification, feedback, and social support. A subset of 26 RCTs from the thematic synthesis was used to conduct the meta-analyses. As expected, computer-based decision aids performed better than usual care or alternative aids; however, some features performed better than others. Integration of content control improved quality of decision making (SMD 0.59 vs 0.23 for knowledge; SMD 0.39 vs 0.29 for decisional conflict). In contrast, tailoring reduced quality of decision making (SMD 0.40 vs 0.71 for knowledge; SMD 0.25 vs 0.52 for decisional conflict). Similarly, patient narratives also reduced quality of decision making (SMD 0.43 vs 0.65 for knowledge; SMD 0.17 vs 0.46 for decisional conflict). Results were varied for different types of explicit values clarification, feedback, and social support. Integration of media rich or interactive features into computer-based decision aids can improve quality of preference-sensitive decision making. However, this is an emerging field with limited evidence to guide use. The systematic review and thematic synthesis identified features that have been integrated into available computer-based decision aids, in an effort to facilitate reporting of these features and to promote integration of such features into decision aids. The meta-analyses and associated subgroup analyses provide preliminary evidence to support integration of specific features into future decision aids. Further research can focus on clarifying independent contributions of specific features through experimental designs and refining the designs of features to improve effectiveness.
Computer Skill Acquisition and Retention: The Effects of Computer-Aided Self-Explanation
ERIC Educational Resources Information Center
Chi, Tai-Yin
2016-01-01
This research presents an experimental study to determine to what extent computer skill learners can benefit from generating self-explanation with the aid of different computer-based visualization technologies. Self-explanation was stimulated with dynamic visualization (Screencast), static visualization (Screenshot), or verbal instructions only,…
Zikmund, T; Kvasnica, L; Týč, M; Křížová, A; Colláková, J; Chmelík, R
2014-11-01
Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Sandoz, J.-P.; Steenaart, W.
1984-12-01
The nonuniform sampling digital phase-locked loop (DPLL) with sequential loop filter, in which the correction sizes are controlled by the accumulated differences of two additional phase comparators, is graphically analyzed. In the absence of noise and frequency drift, the analysis gives some physical insight into the acquisition and tracking behavior. Taking noise into account, a mathematical model is derived and a random walk technique is applied to evaluate the rms phase error and the mean acquisition time. Experimental results confirm the appropriate simplifying hypotheses used in the numerical analysis. Two related performance measures defined in terms of the rms phase error and the acquisition time for a given SNR are used. These measures provide a common basis for comparing different digital loops and, to a limited extent, also with a first-order linear loop. Finally, the behavior of a modified DPLL under frequency deviation in the presence of Gaussian noise is tested experimentally and by computer simulation.
Computer Aided Design of Ni-Based Single Crystal Superalloy for Industrial Gas Turbine Blades
NASA Astrophysics Data System (ADS)
Wei, Xianping; Gong, Xiufang; Yang, Gongxian; Wang, Haiwei; Li, Haisong; Chen, Xueda; Gao, Zhenhuan; Xu, Yongfeng; Yang, Ming
The influence of molybdenum, tungsten and cobalt on stress-rupture properties of single crystal superalloy PWA1483 has been investigated using the simulated calculation of JMatPro software which ha s been widely used to develop single crystal superalloy, and the effect of alloying element on the stability of strengthening phase has been revealed by using the Thermo-Calc software. Those properties calculation results showed that the increasing of alloy content could facilitate the precipitation of TCP phases and increase the lattice misfit between γ and γ' phase, and the effect of molybdenum, tantalum was the strongest and that of cobalt was the weakest. Then the chemical composition was optimized, and the selected compositions showed excellent microstructure stability and stress-rupture properties by the confirmation of d-electrons concept and software calculation.
Deason, Vance A.; Telschow, Kenneth L.
2006-10-17
An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.
Jan Wiedenbeck; Jeff Parsons; Bruce Beeken
2009-01-01
Computer-aided manufacturing (CAM), in which computer-aided design (CAD) and computer numerically controlled (CNC) machining are integrated for the production of parts, became a viable option for the woodworking industry in the 1980s.
WINCADRE (COMPUTER-AIDED DATA REVIEW AND EVALUATION)
WinCADRE (Computer-Aided Data Review and Evaluation) is a Windows -based program designed for computer-assisted data validation. WinCADRE is a powerful tool which significantly decreases data validation turnaround time. The electronic-data-deliverable format has been designed ...
Computer aided radiation analysis for manned spacecraft
NASA Technical Reports Server (NTRS)
Appleby, Matthew H.; Griffin, Brand N.; Tanner, Ernest R., II; Pogue, William R.; Golightly, Michael J.
1991-01-01
In order to assist in the design of radiation shielding an analytical tool is presented that can be employed in combination with CAD facilities and NASA transport codes. The nature of radiation in space is described, and the operational requirements for protection are listed as background information for the use of the technique. The method is based on the Boeing radiation exposure model (BREM) for combining NASA radiation transport codes and CAD facilities, and the output is given as contour maps of the radiation-shield distribution so that dangerous areas can be identified. Computational models are used to solve the 1D Boltzmann transport equation and determine the shielding needs for the worst-case scenario. BREM can be employed directly with the radiation computations to assess radiation protection during all phases of design which saves time and ultimately spacecraft weight.
Improvements to the fastex flutter analysis computer code
NASA Technical Reports Server (NTRS)
Taylor, Ronald F.
1987-01-01
Modifications to the FASTEX flutter analysis computer code (UDFASTEX) are described. The objectives were to increase the problem size capacity of FASTEX, reduce run times by modification of the modal interpolation procedure, and to add new user features. All modifications to the program are operable on the VAX 11/700 series computers under the VAX operating system. Interfaces were provided to aid in the inclusion of alternate aerodynamic and flutter eigenvalue calculations. Plots can be made of the flutter velocity, display and frequency data. A preliminary capability was also developed to plot contours of unsteady pressure amplitude and phase. The relevant equations of motion, modal interpolation procedures, and control system considerations are described and software developments are summarized. Additional information documenting input instructions, procedures, and details of the plate spline algorithm is found in the appendices.
Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole; Pedersen, Bodil Ginnerup; Andersen, Gratien; Høyer, Søren; Borre, Michael
2017-08-01
The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention, each animal was randomized to a postoperative follow-up period of 1, 2, or 4 weeks, after which computed tomography perfusion and magnetic resonance imaging scans were performed. Immediately after imaging, open bilateral nephrectomy was performed allowing for histopathological examination of the cryolesions. On computed tomography perfusion and magnetic resonance imaging examinations, rim enhancement was observed in the transition zone of the cryolesion 1week after laparoscopic-assisted cryoablation. This rim enhancement was found to subside after 2 and 4 weeks of follow-up, which was consistent with the microscopic examinations revealing of fibrotic scar tissue formation in the peripheral zone of the cryolesion. On T2 magnetic resonance imaging sequences, a thin hypointense rim surrounded the cryolesion, separating it from the adjacent renal parenchyma. Microscopic examinations revealed hemorrhage and later hemosiderin located in the peripheral zone. No nodular or diffuse contrast enhancement was found in the central zone of the cryolesions at any follow-up stage on neither computed tomography perfusion nor magnetic resonance imaging. On microscopic examinations, the central zone was found to consist of coagulative necrosis 1 week after laparoscopic-assisted cryoablation, which was partially replaced by fibrotic scar tissue 4 weeks following laparoscopic-assisted cryoablation. Both computed tomography perfusion and magnetic resonance imaging found the renal collecting system to be involved at all 3 stages of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings but with some differences, especially regarding the peripheral zone. Magnetic resonance imaging seems an attractive modality for early postoperative follow-up.
Jitaree, Sirinapa; Phinyomark, Angkoon; Boonyaphiphat, Pleumjit; Phukpattaranont, Pornchai
2015-01-01
Having a classifier of cell types in a breast cancer microscopic image (BCMI), obtained with immunohistochemical staining, is required as part of a computer-aided system that counts the cancer cells in such BCMI. Such quantitation by cell counting is very useful in supporting decisions and planning of the medical treatment of breast cancer. This study proposes and evaluates features based on texture analysis by fractal dimension (FD), for the classification of histological structures in a BCMI into either cancer cells or non-cancer cells. The cancer cells include positive cells (PC) and negative cells (NC), while the normal cells comprise stromal cells (SC) and lymphocyte cells (LC). The FD feature values were calculated with the box-counting method from binarized images, obtained by automatic thresholding with Otsu's method of the grayscale images for various color channels. A total of 12 color channels from four color spaces (RGB, CIE-L*a*b*, HSV, and YCbCr) were investigated, and the FD feature values from them were used with decision tree classifiers. The BCMI data consisted of 1,400, 1,200, and 800 images with pixel resolutions 128 × 128, 192 × 192, and 256 × 256, respectively. The best cross-validated classification accuracy was 93.87%, for distinguishing between cancer and non-cancer cells, obtained using the Cr color channel with window size 256. The results indicate that the proposed algorithm, based on fractal dimension features extracted from a color channel, performs well in the automatic classification of the histology in a BCMI. This might support accurate automatic cell counting in a computer-assisted system for breast cancer diagnosis. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nakamura, Shin
2012-09-01
We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly interacting (3+1)-dimensional N=4 large-Nc SU(Nc) supersymmetric Yang-Mills theory with a single flavor of fundamental N=2 hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.
Understanding and revisiting the most complex perovskite system via atomistic simulations
NASA Astrophysics Data System (ADS)
Yang, Yali; Xu, Bin; Xu, Changsong; Ren, Wei; Bellaiche, Laurent
2018-05-01
A first-principles-based effective Hamiltonian is developed and used, along with direct ab initio techniques, to investigate finite-temperature properties of the system commonly coined the most complex perovskite, that is NaNbO3. Such simulations successfully reproduce the existence of seven different phases in its phase diagram. The decomposition of the total energy of this effective Hamiltonian into different terms, altogether with the values of the parameters associated with these terms, also allow us to shed some light into puzzling features of such a compound. Examples include revealing the microscopic reasons of why R 3 c is its ground state and why it solely adopts in-phase tiltings at high temperatures versus complex nanotwins for intermediate temperatures. The results of the computations also call for a revisiting of the so-called P ,R , and S states, in the sense that an unexpected and previously overlooked inhomogeneous electrical polarization is numerically found in the P state while complex tiltings associated with the simultaneous condensation of several k points are predicted for the controversial R and S phases.
Optical design and system characterization of an imaging microscope at 121.6 nm
NASA Astrophysics Data System (ADS)
Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.
2018-03-01
We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.
MTF measurements on real time for performance analysis of electro-optical systems
NASA Astrophysics Data System (ADS)
Stuchi, Jose Augusto; Signoreto Barbarini, Elisa; Vieira, Flavio Pascoal; dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fatima Maria Mitsue; Castro Neto, Jarbas C.; Linhari Rodrigues, Evandro Luis
2012-06-01
The need of methods and tools that assist in determining the performance of optical systems is actually increasing. One of the most used methods to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality. This paper presents the implementation of the software, in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The MTF information aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems. The results obtained with the Fundus Camera and Thermal Imager was compared with the theoretical values. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope.
Four-probe measurements with a three-probe scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik
2014-04-15
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less
NASA Astrophysics Data System (ADS)
Kärcher, Hans J.; Kunz, Nans; Temi, Pasquale; Krabbe, Alfred; Wagner, Jörg; Süß, Martin
2014-07-01
The original pointing accuracy requirement of the Stratospheric Observatory for Infrared Astronomy SOFIA was defined at the beginning of the program in the late 1980s as very challenging 0.2 arcsec rms. The early science flights of the observatory started in December 2010 and the observatory has reached in the mean time nearly 0.7 arcsec rms, which is sufficient for most of the SOFIA science instruments. NASA and DLR, the owners of SOFIA, are planning now a future 4 year program to bring the pointing down to the ultimate 0.2 arcsec rms. This may be the right time to recall the history of the pointing requirement and its verification and the possibility of its achievement via early computer models and wind tunnel tests, later computer aided end-to-end simulations up to the first commissioning flights some years ago. The paper recollects the tools used in the different project phases for the verification of the pointing performance, explains the achievements and may give hints for the planning of the upcoming final pointing improvement phase.
Machine Phase Fullerene Nanotechnology: 1996
NASA Technical Reports Server (NTRS)
Globus, Al; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional information is contained within the original extended abstract.
NASA Astrophysics Data System (ADS)
Pál, B.; Kereszturi, Á.
2017-01-01
Microscopic liquid brines, especially calcium-perchlorate could emerge by deliquescence on Mars during night time hours. Using climate model computations and orbital humidity observations, the ideal periods and their annual plus daily characteristics at various past, current and future landing sites were compared. Such results provide context for future analysis and targeting the related observations by the next missions for Mars. Based on the analysis, at most (but not all) past missions' landing sites, microscopic brine could emerge during night time for different durations. Analysing the conditions at ExoMars rover's primary landing site at Oxia Planum, the best annual period was found to be between Ls 115-225, and in Local Time 2-5, after midnight. In an ideal case, 4 h of continuous liquid phase can emerge there. Local conditions might cause values to differ from those estimated by the model. Thermal inertia could especially make such differences (low TI values favour fast cooling and H2O cold trapping at loose surfaces) and the concentration of calcium-perchlorate salt in the regolith also influences the process (it might occur preferentially at long-term exposed surfaces without recent loose dust coverage). These factors should be taken into account while targeting future liquid water observations on Mars.
3D on-chip microscopy of optically cleared tissue
NASA Astrophysics Data System (ADS)
Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan
2018-02-01
Traditional pathology relies on tissue biopsy, micro-sectioning, immunohistochemistry and microscopic imaging, which are relatively expensive and labor-intensive, and therefore are less accessible in resource-limited areas. Low-cost tissue clearing techniques, such as the simplified CLARITY method (SCM), are promising to potentially reduce the cost of disease diagnosis by providing 3D imaging and phenotyping of thicker tissue samples with simpler preparation steps. However, the mainstream imaging approach for cleared tissue, fluorescence microscopy, suffers from high-cost, photobleaching and signal fading. As an alternative approach to fluorescence, here we demonstrate 3D imaging of SCMcleared tissue using on-chip holography, which is based on pixel-super-resolution and multi-height phase recovery algorithms to digitally compute the sample's amplitude and phase images at various z-slices/depths through the sample. The tissue clearing procedures and the lens-free imaging system were jointly optimized to find the best illumination wavelength, tissue thickness, staining solution pH, and the number of hologram heights to maximize the imaged tissue volume, minimize the amount of acquired data, while maintaining a high contrast-to-noise ratio for the imaged cells. After this optimization, we achieved 3D imaging of a 200-μm thick cleared mouse brain tissue over a field-of-view of <20mm2 , and the resulting 3D z-stack agrees well with the images acquired with a scanning lens-based microscope (20× 0.75NA). Moreover, the lens-free microscope achieves an order-of-magnitude better data efficiency compared to its lens-based counterparts for volumetric imaging of samples. The presented low-cost and high-throughput lens-free tissue imaging technique enabled by CLARITY can be used in various biomedical applications in low-resource-settings.
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Tsay, Chung-Biau
1987-01-01
The authors have proposed a method for the generation of circular arc helical gears which is based on the application of standard equipment, worked out all aspects of the geometry of the gears, proposed methods for the computer aided simulation of conditions of meshing and bearing contact, investigated the influence of manufacturing and assembly errors, and proposed methods for the adjustment of gears to these errors. The results of computer aided solutions are illustrated with computer graphics.
Computer-aided drug discovery.
Bajorath, Jürgen
2015-01-01
Computational approaches are an integral part of interdisciplinary drug discovery research. Understanding the science behind computational tools, their opportunities, and limitations is essential to make a true impact on drug discovery at different levels. If applied in a scientifically meaningful way, computational methods improve the ability to identify and evaluate potential drug molecules, but there remain weaknesses in the methods that preclude naïve applications. Herein, current trends in computer-aided drug discovery are reviewed, and selected computational areas are discussed. Approaches are highlighted that aid in the identification and optimization of new drug candidates. Emphasis is put on the presentation and discussion of computational concepts and methods, rather than case studies or application examples. As such, this contribution aims to provide an overview of the current methodological spectrum of computational drug discovery for a broad audience.
Computer-Aided Engineering Education at the K.U. Leuven.
ERIC Educational Resources Information Center
Snoeys, R.; Gobin, R.
1987-01-01
Describes some recent initiatives and developments in the computer-aided design program in the engineering faculty of the Katholieke Universiteit Leuven (Belgium). Provides a survey of the engineering curriculum, the computer facilities, and the main software packages available. (TW)
General Mode Scanning Probe Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somnath, Suhas; Jesse, Stephen
A critical part of SPM measurements is the information transfer from the probe-sample junction to the measurement system. Current information transfer methods heavily compress the information-rich data stream by averaging the data over a time interval, or via heterodyne detection approaches such as lock-in amplifiers and phase-locked loops. As a consequence, highly valuable information at the sub-microsecond time scales or information from frequencies outside the measurement band is lost. We have developed a fundamentally new approach called General Mode (G-mode), where we can capture the complete information stream from the detectors in the microscope. The availability of the complete informationmore » allows the microscope operator to analyze the data via information-theory analysis or comprehensive physical models. Furthermore, the complete data stream enables advanced data-driven filtering algorithms, multi-resolution imaging, ultrafast spectroscropic imaging, spatial mapping of multidimensional variability in material properties, etc. Though we applied this approach to scanning probe microscopy, the general philosophy of G-mode can be applied to many other modes of microscopy. G-mode data is captured by completely custom software written in LabVIEW and Matlab. The software generates the waveforms to electrically, thermally, or mechanically excite the SPM probe. It handles real-time communications with the microscope software for operations such as moving the SPM probe position and also controls other instrumentation hardware. The software also controls multiple variants of high-speed data acquisition cards to excite the SPM probe with the excitation waveform and simultaneously measure multiple channels of information from the microscope detectors at sampling rates of 1-100 MHz. The software also saves the raw data to the computer and allows the microscope operator to visualize processed or filtered data during the experiment. The software performs all these features while offering a user-friendly interface.« less
Software Tools for Shipbuilding Productivity
1984-12-01
shipbuilding, is that design, manufacturing and robotic technology applications to shipbuilding have been proven. all aspects of shipbuilding is now a task...technical information about the process of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) effectively has been a problem of serious and...Design (CAD) 3.4.1 CAD System Components 3.4.2 CAD System Benefits 3.4.3 New and Future CAD Technologies Computer Aided Manufacturing (CAM) 3.5.1 CAM
Lin, Wei-Shao; Metz, Michael J; Pollini, Adrien; Ntounis, Athanasios; Morton, Dean
2014-12-01
This dental technique report describes a digital workflow with digital data acquisition at the implant level, computer-aided design and computer-aided manufacturing fabricated, tissue-colored, anodized titanium framework, individually luted zirconium oxide restorations, and autopolymerizing injection-molded acrylic resin to fabricate an implant-supported, metal-ceramic-resin fixed complete dental prosthesis in an edentulous mandible. The 1-step computer-aided design and computer-aided manufacturing fabrication of titanium framework and zirconium oxide restorations can provide a cost-effective alternative to the conventional metal-resin fixed complete dental prosthesis. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Watson, Jason; Hatamleh, Muhanad; Alwahadni, Ahed; Srinivasan, Dilip
2014-05-01
Patients with significant craniofacial asymmetry may have functional problems associated with their occlusion and aesthetic concerns related to the imbalance in soft and hard tissue profiles. This report details a case of facial asymmetry secondary to left mandible angle deficiency due to undergoing previous radiotherapy. We describe the correction of the bony deformity using computer aided design/computer aided manufacturing custom-made titanium onlay using novel direct metal laser sintering. The direct metal laser sintering onlay proved a very accurate operative fit and showed a good aesthetic correction of the bony defect with no reported complications postoperatively. It is a useful low-morbidity technique, and there is no resorption or associated donor-site complications.
Wauters, Lauri D J; Miguel-Moragas, Joan San; Mommaerts, Maurice Y
2015-11-01
To gain insight into the methodology of different computer-aided design-computer-aided manufacturing (CAD-CAM) applications for the reconstruction of cranio-maxillo-facial (CMF) defects. We reviewed and analyzed the available literature pertaining to CAD-CAM for use in CMF reconstruction. We proposed a classification system of the techniques of implant and cutting, drilling, and/or guiding template design and manufacturing. The system consisted of 4 classes (I-IV). These classes combine techniques used for both the implant and template to most accurately describe the methodology used. Our classification system can be widely applied. It should facilitate communication and immediate understanding of the methodology of CAD-CAM applications for the reconstruction of CMF defects.
Andreiuolo, Rafael Ferrone; Sabrosa, Carlos Eduardo; Dias, Katia Regina H Cervantes
2013-09-01
The use of bi-layered all-ceramic crowns has continuously grown since the introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia cores. Unfortunately, despite the outstanding mechanical properties of zirconia, problems related to porcelain cracking or chipping remain. One of the reasons for this is that ceramic copings are usually milled to uniform thicknesses of 0.3-0.6 mm around the whole tooth preparation. This may not provide uniform thickness or appropriate support for the veneering porcelain. To prevent these problems, the dual-scan technique demonstrates an alternative that allows the restorative team to customize zirconia CAD/CAM frameworks with adequate porcelain thickness and support in a simple manner.
Computer Simulated Visual and Tactile Feedback as an Aid to Manipulator and Vehicle Control,
1981-05-08
STATEMENT ........................ 8 Artificial Intellegence Versus Supervisory Control ....... 8 Computer Generation of Operator Feedback...operator. Artificial Intelligence Versus Supervisory Control The use of computers to aid human operators can be divided into two catagories: artificial ...operator. Artificial intelligence ( A. I. ) attempts to give the computer maximum intelligence and to replace all operator functions by the computer
Hard x-ray phase contrastmicroscopy - techniques and applications
NASA Astrophysics Data System (ADS)
Holzner, Christian
In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.
High-Fidelity Micromechanics Model Developed for the Response of Multiphase Materials
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
2002-01-01
A new high-fidelity micromechanics model has been developed under funding from the NASA Glenn Research Center for predicting the response of multiphase materials with arbitrary periodic microstructures. The model's analytical framework is based on the homogenization technique, but the method of solution for the local displacement and stress fields borrows concepts previously employed in constructing the higher order theory for functionally graded materials. The resulting closed-form macroscopic and microscopic constitutive equations, valid for both uniaxial and multiaxial loading of periodic materials with elastic and inelastic constitutive phases, can be incorporated into a structural analysis computer code. Consequently, this model now provides an alternative, accurate method.
Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon
2015-05-10
Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.
Virtual Reality versus Computer-Aided Exposure Treatments for Fear of Flying
ERIC Educational Resources Information Center
Tortella-Feliu, Miquel; Botella, Cristina; Llabres, Jordi; Breton-Lopez, Juana Maria; del Amo, Antonio Riera; Banos, Rosa M.; Gelabert, Joan M.
2011-01-01
Evidence is growing that two modalities of computer-based exposure therapies--virtual reality and computer-aided psychotherapy--are effective in treating anxiety disorders, including fear of flying. However, they have not yet been directly compared. The aim of this study was to analyze the efficacy of three computer-based exposure treatments for…
The Implications of Cognitive Psychology for Computer-Based Learning Tools.
ERIC Educational Resources Information Center
Kozma, Robert B.
1987-01-01
Defines cognitive computer tools as software programs that use the control capabilities of computers to amplify, extend, or enhance human cognition; suggests seven ways in which computers can aid learning; and describes the "Learning Tool," a software package for the Apple Macintosh microcomputer that is designed to aid learning of…
Artificial Intelligence and Computer Assisted Instruction. CITE Report No. 4.
ERIC Educational Resources Information Center
Elsom-Cook, Mark
The purpose of the paper is to outline some of the major ways in which artificial intelligence research and techniques can affect usage of computers in an educational environment. The role of artificial intelligence is defined, and the difference between Computer Aided Instruction (CAI) and Intelligent Computer Aided Instruction (ICAI) is…
Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S
2013-10-01
A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Li, Zhidong; Firoozabadi, Abbas
2012-12-01
Most simulators for subsurface flow of water, gas, and oil phases use empirical correlations, such as Henry's law, for the CO2 composition in the aqueous phase, and equations of state (EOS) that do not represent the polar interactions between CO2and water. Widely used simulators are also based on lowest-order finite difference methods and suffer from numerical dispersion and grid sensitivity. They may not capture the viscous and gravitational fingering that can negatively affect hydrocarbon (HC) recovery, or aid carbon sequestration in aquifers. We present a three-phase compositional model based on higher-order finite element methods and incorporate rigorous and efficient three-phase-split computations for either three HC phases or water-oil-gas systems. For HC phases, we use the Peng-Robinson EOS. We allow solubility of CO2in water and adopt a new cubic-plus-association (CPA) EOS, which accounts for cross association between H2O and CO2 molecules, and association between H2O molecules. The CPA-EOS is highly accurate over a broad range of pressures and temperatures. The main novelty of this work is the formulation of a reservoir simulator with new EOS-based unique three-phase-split computations, which satisfy both the equalities of fugacities in all three phases and the global minimum of Gibbs free energy. We provide five examples that demonstrate twice the convergence rate of our method compared with a finite difference approach, and compare with experimental data and other simulators. The examples consider gravitational fingering during CO2sequestration in aquifers, viscous fingering in water-alternating-gas injection, and full compositional modeling of three HC phases.
Electronic Circuit Analysis Language (ECAL)
NASA Astrophysics Data System (ADS)
Chenghang, C.
1983-03-01
The computer aided design technique is an important development in computer applications and it is an important component of computer science. The special language for electronic circuit analysis is the foundation of computer aided design or computer aided circuit analysis (abbreviated as CACD and CACA) of simulated circuits. Electronic circuit analysis language (ECAL) is a comparatively simple and easy to use circuit analysis special language which uses the FORTRAN language to carry out the explanatory executions. It is capable of conducting dc analysis, ac analysis, and transient analysis of a circuit. Futhermore, the results of the dc analysis can be used directly as the initial conditions for the ac and transient analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, R.D.; Russell, P.E.
The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.
1994-06-30
transmissive Fresnel lens. We have made considerable effort in the last few years to explore the potential of x-ray multilayer-coated Schwarzschild x-ray...ray mirror fabrication and efficient x-ray mirror design. A 120mm diameter, NA = 0.35, 15X Schwarzschild microscope coated with Ni/C multilayer mios for...et al 2 developed a smaller, 33mm diameter, NA - 0.28, 15X Schwarzschild microscope coated with a W/C multilayer mirror for 4.4nm, in the socalled
WINCADRE INORGANIC (WINDOWS COMPUTER-AIDED DATA REVIEW AND EVALUATION)
WinCADRE (Computer-Aided Data Review and Evaluation) is a Windows -based program designed for computer-assisted data validation. WinCADRE is a powerful tool which significantly decreases data validation turnaround time. The electronic-data-deliverable format has been designed in...
Space shuttle post-entry and landing analysis. Volume 1: Candidate system evaluations
NASA Technical Reports Server (NTRS)
Crawford, B. S.; Duiven, E. M.
1973-01-01
The general purpose of this study is to aid in the evaluation and design of multi-sensor navigation schemes proposed for the orbiter. The scope of the effort is limited to the post-entry, energy management, and approach and landing mission phases. One candidate system based on conventional navigation aids is illustrated including two DME (Distance Measuring Equipment) stations and ILS (Instrument Landing System) glide slope and localizer antennas. Some key elements of the system not shown are the onboard IMUs (Inertial Measurement Units), altimeters, and a computer. The latter is programmed to mix together (filter) the IMU data and the externally-derived data. A completely automatic, all-weather landing capability is required. Since no air-breathing engines will be carried on orbital flights, there will be no chance to go around and try again following a missed approach.
Wetting of heterogeneous substrates. A classical density-functional-theory approach
NASA Astrophysics Data System (ADS)
Yatsyshin, Peter; Parry, Andrew O.; Rascón, Carlos; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim
2017-11-01
Wetting is a nucleation of a third phase (liquid) on the interface between two different phases (solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid-fluid and fluid-substrate intermolecular interactions leads to the appearance of a whole ``zoo'' of exciting interface phase transitions, associated with the formation of nano-droplets/bubbles, and thin films. Practical applications of wetting at small scales are numerous and include the design of lab-on-a-chip devices and superhydrophobic surfaces. In this talk, we will use a fully microscopic approach to explore the phase space of a planar wall, decorated with patches of different hydrophobicity, and demonstrate the highly non-trivial behaviour of the liquid-gas interface near the substrate. We will present fluid density profiles, adsorption isotherms and wetting phase diagrams. Our analysis is based on a formulation of statistical mechanics, commonly known as classical density-functional theory. It provides a computationally-friendly and rigorous framework, suitable for probing small-scale physics of classical fluids and other soft-matter systems. EPSRC Grants No. EP/L027186,EP/K503733;ERC Advanced Grant No. 247031.
Ductility of Advanced High-Strength Steel in the Presence of a Sheared Edge
NASA Astrophysics Data System (ADS)
Ruggles, Tim; Cluff, Stephen; Miles, Michael; Fullwood, David; Daniels, Craig; Avila, Alex; Chen, Ming
2016-07-01
The ductility of dual-phase (DP) 980 and transformation-induced plasticity (TRIP) assisted bainitic ferritic (TBF) 980 steels was studied in the presence of a sheared edge. Specimens were tested in uniaxial tension in a standard test frame as well as in situ in the scanning electron microscope (SEM). Incremental tensile straining was done in the SEM with images taken at each strain increment. Then digital image correlation (DIC) was used to compute the effective strain at the level of the individual phases in the microstructure. Shear banding across multiple phases was seen in strained TBF specimens, while the DP specimens exhibited more of a patchwork strain pattern, with high strains concentrated in ferrite and low strains observed in the martensite. Two-point statistics were applied to the strain data from the DIC work and the corresponding microstructure images to evaluate the effect of phase hardness on localization and fracture. It was observed that the DP 980 material had a greater tendency for localization around hard phases compared to the TBF 980. This at least partially explains the greater ductility of the TBF material, especially in specimens where a sheared edge was present.
Computer-aided US diagnosis of breast lesions by using cell-based contour grouping.
Cheng, Jie-Zhi; Chou, Yi-Hong; Huang, Chiun-Sheng; Chang, Yeun-Chung; Tiu, Chui-Mei; Chen, Kuei-Wu; Chen, Chung-Ming
2010-06-01
To develop a computer-aided diagnostic algorithm with automatic boundary delineation for differential diagnosis of benign and malignant breast lesions at ultrasonography (US) and investigate the effect of boundary quality on the performance of a computer-aided diagnostic algorithm. This was an institutional review board-approved retrospective study with waiver of informed consent. A cell-based contour grouping (CBCG) segmentation algorithm was used to delineate the lesion boundaries automatically. Seven morphologic features were extracted. The classifier was a logistic regression function. Five hundred twenty breast US scans were obtained from 520 subjects (age range, 15-89 years), including 275 benign (mean size, 15 mm; range, 5-35 mm) and 245 malignant (mean size, 18 mm; range, 8-29 mm) lesions. The newly developed computer-aided diagnostic algorithm was evaluated on the basis of boundary quality and differentiation performance. The segmentation algorithms and features in two conventional computer-aided diagnostic algorithms were used for comparative study. The CBCG-generated boundaries were shown to be comparable with the manually delineated boundaries. The area under the receiver operating characteristic curve (AUC) and differentiation accuracy were 0.968 +/- 0.010 and 93.1% +/- 0.7, respectively, for all 520 breast lesions. At the 5% significance level, the newly developed algorithm was shown to be superior to the use of the boundaries and features of the two conventional computer-aided diagnostic algorithms in terms of AUC (0.974 +/- 0.007 versus 0.890 +/- 0.008 and 0.788 +/- 0.024, respectively). The newly developed computer-aided diagnostic algorithm that used a CBCG segmentation method to measure boundaries achieved a high differentiation performance. Copyright RSNA, 2010
Augmented reality in the surgery of cerebral aneurysms: a technical report.
Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl
2014-06-01
Augmented reality is the overlay of computer-generated images on real-world structures. It has previously been used for image guidance during surgical procedures, but it has never been used in the surgery of cerebral aneurysms. To report our experience of cerebral aneurysm surgery aided by augmented reality. Twenty-eight patients with 39 unruptured aneurysms were operated on in a prospective manner with augmented reality. Preoperative 3-dimensional image data sets (angio-magnetic resonance imaging, angio-computed tomography, and 3-dimensional digital subtraction angiography) were used to create virtual segmentations of patients' vessels, aneurysms, aneurysm necks, skulls, and heads. These images were injected intraoperatively into the eyepiece of the operating microscope. An example case of an unruptured posterior communicating artery aneurysm clipping is illustrated in a video. The described operating procedure allowed continuous monitoring of the accuracy of patient registration with neuronavigation data and assisted in the performance of tailored surgical approaches and optimal clipping with minimized exposition. Augmented reality may add to the performance of a minimally invasive approach, although further studies need to be performed to evaluate whether certain groups of aneurysms are more likely to benefit from it. Further technological development is required to improve its user friendliness.
Software for imaging phase-shift interference microscope
NASA Astrophysics Data System (ADS)
Malinovski, I.; França, R. S.; Couceiro, I. B.
2018-03-01
In recent years absolute interference microscope was created at National Metrology Institute of Brazil (INMETRO). The instrument by principle of operation is imaging phase-shifting interferometer (PSI) equipped with two stabilized lasers of different colour as traceable reference wavelength sources. We report here some progress in development of the software for this instrument. The status of undergoing internal validation and verification of the software is also reported. In contrast with standard PSI method, different methodology of phase evaluation is applied. Therefore, instrument specific procedures for software validation and verification are adapted and discussed.
Portable telepathology: methods and tools.
Alfaro, Luis; Roca, Ma José
2008-07-15
Telepathology is becoming easier to implement in most pathology departments. In fact e-mail image transmit can be done from almost any pathologist as a simplistic telepathology system. We tried to develop a way to improve capabilities of communication among pathologists with the idea that the system should be affordable for everybody. We took the premise that any pathology department would have microscopes and computers with Internet connection, and selected a few elements to convert them into a telepathology station. Needs were reduced to a camera to collect images, a universal microscope adapter for the camera, a device to connect the camera to the computer, and a software for the remote image transmit. We found out a microscope adapter (MaxView Plus) that allowed us connect almost any domestic digital camera to any microscope. The video out signal from the camera was sent to the computer through an Aver Media USB connector. At last, we selected a group of portable applications that were assembled into a USB memory device. Portable applications are computer programs that can be carried generally on USB flash drives, but also in any other portable device, and used on any (Windows) computer without installation. Besides, when unplugging the device, none of personal data is left behind. We selected open-source applications, and based the pathology image transmission to VLC Media Player due to its functionality as streaming server, portability and ease of use and configuration. Audio transmission was usually done through normal phone lines. We also employed alternative videoconferencing software, SightSpeed for bi-directional image transmission from microscopes, and conventional cameras allowing visual communication and also image transmit from gross pathology specimens. All these elements allowed us to install and use a telepathology system in a few minutes, fully prepared for real time image broadcast.
Portable telepathology: methods and tools
Alfaro, Luis; Roca, Ma José
2008-01-01
Telepathology is becoming easier to implement in most pathology departments. In fact e-mail image transmit can be done from almost any pathologist as a simplistic telepathology system. We tried to develop a way to improve capabilities of communication among pathologists with the idea that the system should be affordable for everybody. We took the premise that any pathology department would have microscopes and computers with Internet connection, and selected a few elements to convert them into a telepathology station. Needs were reduced to a camera to collect images, a universal microscope adapter for the camera, a device to connect the camera to the computer, and a software for the remote image transmit. We found out a microscope adapter (MaxView Plus) that allowed us connect almost any domestic digital camera to any microscope. The video out signal from the camera was sent to the computer through an Aver Media USB connector. At last, we selected a group of portable applications that were assembled into a USB memory device. Portable applications are computer programs that can be carried generally on USB flash drives, but also in any other portable device, and used on any (Windows) computer without installation. Besides when unplugging the device, none of personal data is left behind. We selected open-source applications, and based the pathology image transmission to VLC Media Player due to its functionality as streaming server, portability and ease of use and configuration. Audio transmission was usually done through normal phone lines. We also employed alternative videoconferencing software, SightSpeed for bi-directional image transmission from microscopes, and conventional cameras allowing visual communication and also image transmit from gross pathology specimens. All these elements allowed us to install and use a telepathology system in a few minutes, fully prepared for real time image broadcast. PMID:18673507
Lin, Chun-Li; Chang, Yen-Hsiang; Hsieh, Shih-Kai; Chang, Wen-Jen
2013-03-01
This study evaluated the risk of failure for an endodontically treated premolar with different crack depths, which was shearing toward the pulp chamber and was restored by using 3 different computer-aided design/computer-aided manufacturing ceramic restoration configurations. Three 3-dimensional finite element models designed with computer-aided design/computer-aided manufacturing ceramic onlay, endocrown, and conventional crown restorations were constructed to perform simulations. The Weibull function was incorporated with finite element analysis to calculate the long-term failure probability relative to different load conditions. The results indicated that the stress values on the enamel, dentin, and luting cement for endocrown restorations exhibited the lowest values relative to the other 2 restoration methods. Weibull analysis revealed that the overall failure probabilities in a shallow cracked premolar were 27%, 2%, and 1% for the onlay, endocrown, and conventional crown restorations, respectively, in the normal occlusal condition. The corresponding values were 70%, 10%, and 2% for the depth cracked premolar. This numeric investigation suggests that the endocrown provides sufficient fracture resistance only in a shallow cracked premolar with endodontic treatment. The conventional crown treatment can immobilize the premolar for different cracked depths with lower failure risk. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Advances in computer-aided well-test interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, R.N.
1994-07-01
Despite the feeling expressed several times over the past 40 years that well-test analysis had reached it peak development, an examination of recent advances shows continuous expansion in capability, with future improvement likely. The expansion in interpretation capability over the past decade arose mainly from the development of computer-aided techniques, which, although introduced 20 years ago, have come into use only recently. The broad application of computer-aided interpretation originated with the improvement of the methodologies and continued with the expansion in computer access and capability that accompanied the explosive development of the microcomputer industry. This paper focuses on the differentmore » pieces of the methodology that combine to constitute a computer-aided interpretation and attempts to compare some of the approaches currently used. Future directions of the approach are also discussed. The separate areas discussed are deconvolution, pressure derivatives, model recognition, nonlinear regression, and confidence intervals.« less
Features of Computer-Based Decision Aids: Systematic Review, Thematic Synthesis, and Meta-Analyses
Krömker, Dörthe; Meguerditchian, Ari N; Tamblyn, Robyn
2016-01-01
Background Patient information and education, such as decision aids, are gradually moving toward online, computer-based environments. Considerable research has been conducted to guide content and presentation of decision aids. However, given the relatively new shift to computer-based support, little attention has been given to how multimedia and interactivity can improve upon paper-based decision aids. Objective The first objective of this review was to summarize published literature into a proposed classification of features that have been integrated into computer-based decision aids. Building on this classification, the second objective was to assess whether integration of specific features was associated with higher-quality decision making. Methods Relevant studies were located by searching MEDLINE, Embase, CINAHL, and CENTRAL databases. The review identified studies that evaluated computer-based decision aids for adults faced with preference-sensitive medical decisions and reported quality of decision-making outcomes. A thematic synthesis was conducted to develop the classification of features. Subsequently, meta-analyses were conducted based on standardized mean differences (SMD) from randomized controlled trials (RCTs) that reported knowledge or decisional conflict. Further subgroup analyses compared pooled SMDs for decision aids that incorporated a specific feature to other computer-based decision aids that did not incorporate the feature, to assess whether specific features improved quality of decision making. Results Of 3541 unique publications, 58 studies met the target criteria and were included in the thematic synthesis. The synthesis identified six features: content control, tailoring, patient narratives, explicit values clarification, feedback, and social support. A subset of 26 RCTs from the thematic synthesis was used to conduct the meta-analyses. As expected, computer-based decision aids performed better than usual care or alternative aids; however, some features performed better than others. Integration of content control improved quality of decision making (SMD 0.59 vs 0.23 for knowledge; SMD 0.39 vs 0.29 for decisional conflict). In contrast, tailoring reduced quality of decision making (SMD 0.40 vs 0.71 for knowledge; SMD 0.25 vs 0.52 for decisional conflict). Similarly, patient narratives also reduced quality of decision making (SMD 0.43 vs 0.65 for knowledge; SMD 0.17 vs 0.46 for decisional conflict). Results were varied for different types of explicit values clarification, feedback, and social support. Conclusions Integration of media rich or interactive features into computer-based decision aids can improve quality of preference-sensitive decision making. However, this is an emerging field with limited evidence to guide use. The systematic review and thematic synthesis identified features that have been integrated into available computer-based decision aids, in an effort to facilitate reporting of these features and to promote integration of such features into decision aids. The meta-analyses and associated subgroup analyses provide preliminary evidence to support integration of specific features into future decision aids. Further research can focus on clarifying independent contributions of specific features through experimental designs and refining the designs of features to improve effectiveness. PMID:26813512
NASA Astrophysics Data System (ADS)
El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.
2017-08-01
Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.
Ultra high frequency imaging acoustic microscope
Deason, Vance A.; Telschow, Kenneth L.
2006-05-23
An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.
Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Glaser, Christian; Wismuller, Axel
2013-10-01
Visualization of ex vivo human patellar cartilage matrix through the phase contrast imaging X-ray computed tomography (PCI-CT) has been previously demonstrated. Such studies revealed osteoarthritis-induced changes to chondrocyte organization in the radial zone. This study investigates the application of texture analysis to characterizing such chondrocyte patterns in the presence and absence of osteoarthritic damage. Texture features derived from Minkowski functionals (MF) and gray-level co-occurrence matrices (GLCM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These texture features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver operating characteristic curve (AUC). The best classification performance was observed with the MF features perimeter (AUC: 0.94 ±0.08 ) and "Euler characteristic" (AUC: 0.94 ±0.07 ), and GLCM-derived feature "Correlation" (AUC: 0.93 ±0.07). These results suggest that such texture features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix, enabling classification of cartilage as healthy or osteoarthritic with high accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, R. A.; Aghamir, F. M.
The behavior of current drop and its correlation with ion beam emission during the radial phase of a high inductance low energy Mather type plasma focus device have been studied. The study includes two ranges of filling gas pressure, namely the low range of 0.2-0.8 mbar and the high range of 0.8-1.5 mbar. Two different current simulation processes were performed to aid the interpretation of the experimental results. Within the low range of operating pressure, an acceptable match between the computed and experimental current signals was achieved when the effects of anomalous resistances were contemplated. While in the high rangemore » of pressure, the computed and experimental current traces were in line even without considering the effects of anomalous resistances. The analysis shows that by decreasing the filling gas pressure the effects of instabilities are intensified. The computed and experimental current traces, along with ion beam signals gathered from a faraday cup, show that there is a strong correlation between the intensity of ion beam and its duration with the current drop during the radial phase.« less
Skelton, J M; Elliott, S R
2013-05-22
Phase-change materials are the alloys at the heart of an emerging class of next-generation, non-volatile digital memory technologies. However, the widely studied Ge-Sb-Te system possesses several undesirable properties, and enhancing its properties, e.g. by doping, is an area of active research. Various first-row transition-metal dopants have been shown to impart useful property enhancements, but a systematic study of the entire period has yet to be undertaken, and little has been done to investigate their interaction with the host material at the atomic level. We have carried out first-principles computer simulations of the complete phase-change cycle in Ge2Sb2Te5 doped with each of the ten first-row transition metals. In this article, we present a comprehensive survey of the electronic, magnetic and optical properties of these doped materials. We discuss in detail their atomic-level structure, and relate the microscopic behaviours of the dopant atoms to their influence on the Ge2Sb2Te5 host. By considering an entire family of similar materials, we identify trends and patterns which might be used to predict suitable dopants for optimizing materials for specific phase-change applications. The computational method employed here is general, and this materials-discovery approach could be applied in the future to study other families of potential dopants for such materials.
Progress on PEEM3 -- An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, A. A.; Feng, J.; DeMello, A.
2007-01-19
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDowell, Alastair A.; Feng, J.; DeMello, A.
2006-05-20
A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less
ERIC Educational Resources Information Center
Lintz, Larry M.; And Others
This study investigated the feasibility of a low cost computer-aided instruction/computer-managed instruction (CAI/CMI) system. Air Force instructors and training supervisors were surveyed to determine the potential payoffs of various CAI and CMI functions. Results indicated that a wide range of capabilities had potential for resident technical…
ERIC Educational Resources Information Center
Pollard, Jim
This report reviews software packages for Apple Macintosh and Apple II computers available to secondary schools to teach computer-aided drafting (CAD). Products for the report were gathered through reviews of CAD periodicals, computers in education periodicals, advertisements, and teacher recommendations. The first section lists the primary…
Multi-phase simultaneous segmentation of tumor in lung 4D-CT data with context information.
Shen, Zhengwen; Wang, Huafeng; Xi, Weiwen; Deng, Xiaogang; Chen, Jin; Zhang, Yu
2017-01-01
Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.
Computer Aided Drug Design: Success and Limitations.
Baig, Mohammad Hassan; Ahmad, Khurshid; Roy, Sudeep; Ashraf, Jalaluddin Mohammad; Adil, Mohd; Siddiqui, Mohammad Haris; Khan, Saif; Kamal, Mohammad Amjad; Provazník, Ivo; Choi, Inho
2016-01-01
Over the last few decades, computer-aided drug design has emerged as a powerful technique playing a crucial role in the development of new drug molecules. Structure-based drug design and ligand-based drug design are two methods commonly used in computer-aided drug design. In this article, we discuss the theory behind both methods, as well as their successful applications and limitations. To accomplish this, we reviewed structure based and ligand based virtual screening processes. Molecular dynamics simulation, which has become one of the most influential tool for prediction of the conformation of small molecules and changes in their conformation within the biological target, has also been taken into account. Finally, we discuss the principles and concepts of molecular docking, pharmacophores and other methods used in computer-aided drug design.
Jo, Chanwoo; Bae, Doohwan; Choi, Byungho; Kim, Jihun
2017-05-01
Supernumerary teeth need to be removed because they can cause various complications. Caution is needed because their removal can cause damage to permanent teeth or tooth germs in the local vicinity. Surgical guides have recently been used in maxillofacial surgery. Because surgical guides are designed through preoperative analysis by computer-aided design software and fabricated using a 3-dimensional printer applying computer-aided manufacturing technology, they increase the accuracy and predictability of surgery. This report describes 2 cases of removal of a mesiodens-1 from a child and 1 from an adolescent-using a surgical guide; these would have been difficult to remove with conventional surgical methods. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jesacher, Alexander; Ritsch-Marte, Monika; Piestun, Rafael
2015-08-01
Recently we introduced RESCH microscopy [1] - a scanning microscope that allows slightly refocusing the sample after the acquisition has been performed, solely by performing appropriate data post-processing. The microscope features a double-helix phase-engineered emission point spread function in combination with camera-based detection. Based on the principle of transverse resolution enhancement in Image Scanning Microscopy [2,3], we demonstrate similar resolution improvement in RESCH. Furthermore, we outline a pathway for how the collected 3D sample information can be used to construct sharper optical sections. [1] A. Jesacher, M. Ritsch-Marte and R. Piestun, accepted for Optica. [2] C.J.R. Sheppard, "Super-resolution in Confocal imaging," Optik, 80, 53-54 (1988). [3] C.B. Müller and J. Enderlein "Image Scanning Microscopy," Phys. Rev. Lett. 104, 198101 (2010).
NASA Astrophysics Data System (ADS)
Gordon, Michael; Seiler, Theo; Carey, Joseph P.; Friedman, Marc D.; Johnsson, N. M. F.; King, Michael C.; Muller, David F.
1993-06-01
This paper reports on our progress using an erodible mask to perform photorefractive keratectomy (PRK) for the correction of myopic astigmatism. We describe modifications to the mask, the mask eye cup and the surgical microscope aimed at simplifying the procedure and improving the ergonomics of the hardware. We report the clinical results of the post-op exam for 20 patients who have undergone PRK for myopic astigmatism under a Phase IIA study. The results compare favorably with an earlier Phase IIA study for performing PRK with a computer-controlled iris. Most important, the clinical data show the absence of any significant corneal haze and no significant decrease in spectacle corrected visual acuity. Although more long term follow-up is needed, the preliminary results support the safety and effectiveness of using an erodible mask to perform PRK for myopic astigmatism.
Soft control of scanning probe microscope with high flexibility.
Liu, Zhenghui; Guo, Yuzheng; Zhang, Zhaohui; Zhu, Xing
2007-01-01
Most commercial scanning probe microscopes have multiple embedded digital microprocessors and utilize complex software for system control, which is not easily obtained or modified by researchers wishing to perform novel and special applications. In this paper, we present a simple and flexible control solution that just depends on software running on a single-processor personal computer with real-time Linux operating system to carry out all the control tasks including negative feedback, tip moving, data processing and user interface. In this way, we fully exploit the potential of a personal computer in calculating and programming, enabling us to manipulate the scanning probe as required without any special digital control circuits and related technical know-how. This solution has been successfully applied to a homemade ultrahigh vacuum scanning tunneling microscope and a multiprobe scanning tunneling microscope.
Low cost paths to binary optics
NASA Technical Reports Server (NTRS)
Nelson, Arthur; Domash, Lawrence
1993-01-01
Application of binary optics has been limited to a few major laboratories because of the limited availability of fabrication facilities such as e-beam machines and the lack of standardized design software. Foster-Miller has attempted to identify low cost approaches to medium-resolution binary optics using readily available computer and fabrication tools, primarily for the use of students and experimenters in optical computing. An early version of our system, MacBEEP, made use of an optimized laser film recorder from the commercial typesetting industry with 10 micron resolution. This report is an update on our current efforts to design and build a second generation MacBEEP, which aims at 1 micron resolution and multiple phase levels. Trails included a low cost scanning electron microscope in microlithography mode, and alternative laser inscribers or photomask generators. Our current software approach is based on Mathematica and PostScript compatibility.
The high squareness Sm-Co magnet having Hcb=10.6 kOe at 150°C
NASA Astrophysics Data System (ADS)
Machida, Hiroaki; Fujiwara, Teruhiko; Kamada, Risako; Morimoto, Yuji; Takezawa, Masaaki
2017-05-01
The relationship between magnetic properties and magnetic domain structures of Sm(Fe, Cu, Zr, Co)7.5 magnet was investigated. The developed Sm-Co magnet, which is conducted homogenization heat treatment at ingot state, high temperature short time sintering and long time solid solution heat treatment showed the maximum energy product, [BH]m of 34.0 MGOe and the coercivity, Hcb of 11.3 kOe at 20°C respectively. Moreover, Hcb of 10.6 kOe at 150°C was achieved. Heat treated ingot has clear 1-7 phase in mother phase from optical microscope observation. Kerr effect microscope with magnetic field applied was used to investigate magnetic domain structure. Reverse magnetic domains were generated evenly but generation of them from inside grain were not observed. Cell structure was observed by scanning transmission electron microscope and composition analysis was conducted by energy dispersive X-ray spectroscopy. Cell size was approximately 150 ˜ 300 nm, Fe and Cu were clearly separated and concentrated to 2-17 phase and 1-5 phase respectively. Moreover, Cu concentration went up to 40 at% in 1-5 phase. That means the gap of domain wall energy between 1-5 phase and 2-17 phase was increased due to microstructure control by conducting heat treatment for compositional homogeneity.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2011-11-01
We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.
Web-Based Learning in the Computer-Aided Design Curriculum.
ERIC Educational Resources Information Center
Sung, Wen-Tsai; Ou, S. C.
2002-01-01
Applies principles of constructivism and virtual reality (VR) to computer-aided design (CAD) curriculum, particularly engineering, by integrating network, VR and CAD technologies into a Web-based learning environment that expands traditional two-dimensional computer graphics into a three-dimensional real-time simulation that enhances user…
Integrated Computer-Aided Drafting Instruction (ICADI).
ERIC Educational Resources Information Center
Chen, C. Y.; McCampbell, David H.
Until recently, computer-aided drafting and design (CAD) systems were almost exclusively operated on mainframes or minicomputers and their cost prohibited many schools from offering CAD instruction. Today, many powerful personal computers are capable of performing the high-speed calculation and analysis required by the CAD application; however,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skontorp, A.; Wang, S.S.; Shibuya, Y.
1994-12-31
In this paper, a homogenization theory is developed to determine high-temperature effective viscoelastic constitutive equations for fiber-reinforced polymer composites. The homogenization theory approximates the microstructure of a fiber composite, and determine simultaneously effective macroscopic constitutive properties of the composite and the associated microscopic strain and stress in the heterogeneous material. The time-temperature dependent homogenization theory requires that the viscoelastic constituent properties of the matrix phase at elevated temperatures, the governing equations for the composites, and the boundary conditions of the problem be Laplace transformed to a conjugate problem. The homogenized effective properties in the transformed domain are determined, using amore » two-scale asymptotic expansion of field variables and an averaging procedure. Field solutions in the unit cell are determined from basic and first-order governing equations with the aid of a boundary integral method (BIM). Effective viscoelastic constitutive properties of the composite at elevated temperatures are determined by an inverse transformation, as are the microscopic stress and deformation in the composite. Using this method, interactions among fibers and between the fibers and the matrix can be evaluated explicitly, resulting in accurate solutions for composites with high-volume fraction of reinforcing fibers. Examples are given for the case of a carbon-fiber reinforced thermoplastic polyamide composite in an elevated temperature environment. The homogenization predictions are in good agreement with experimental data available for the composite.« less
Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS). Phase 1: Users handbook
NASA Technical Reports Server (NTRS)
Kim, S.; Lee, J.; Cho, B. H.; Lee, F. C.
1986-01-01
The EASY5 macro component models developed for the spacecraft power system simulation are described. A brief explanation about how to use the macro components with the EASY5 Standard Components to build a specific system is given through an example. The macro components are ordered according to the following functional group: converter power stage models, compensator models, current-feedback models, constant frequency control models, load models, solar array models, and shunt regulator models. Major equations, a circuit model, and a program listing are provided for each macro component.
The role of networks and artificial intelligence in nanotechnology design and analysis.
Hudson, D L; Cohen, M E
2004-05-01
Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.
NASA Technical Reports Server (NTRS)
Stiffler, J. J.; Bryant, L. A.; Guccione, L.
1979-01-01
A computer program to aid in accessing the reliability of fault tolerant avionics systems was developed. A simple mathematical expression was used to evaluate the reliability of any redundant configuration over any interval during which the failure rates and coverage parameters remained unaffected by configuration changes. Provision was made for convolving such expressions in order to evaluate the reliability of a dual mode system. A coverage model was also developed to determine the various relevant coverage coefficients as a function of the available hardware and software fault detector characteristics, and subsequent isolation and recovery delay statistics.
1989-05-02
DELIVERIES BEGIN 1990. 29 Air Force Tech Order Management System (AFTOMS) -B. ’C. AT - L Amtiorng TOC /Reglonal DC $can? Y AcquIsition Becomeis Azchlvlng N...Keyport, WA 98345 309-782-5804 Pittsfield, MA 01201 206-396-4200 413-494-5944 Mr. F.A. Paris Mr. Kevin D. Paulson Mr. Michael 0. PetreaGud Sistemas
Salazar-Souza, Mônica; Couri, Márcia S; Aguiar, Valeria M
2018-04-12
Insects display different patterns of development, and blow flies have one of the most specialized patterns of intrapuparial development of all. In forensic entomology, pupae can be used as a tool to estimate the minimum postmortem time interval (minPMI). We analyzed the intrapuparial development of Chrysomya albiceps (Diptera: Caloricidade), whose larvae had been fed pig lungs and reared in a climate-controlled room at 28°C day/26°C night, 70 ± 10% RH, and 12 h of photophase and monitored daily. After the third-instar larvae abandoned their diet, the process of pupariation and pupation was monitored. At pre-established times, five pupae were collected, euthanized, and fixed in 5% formaldehyde, inside polypropylene test tubes with caps. Since they were the first, they were classified as 0 h pupae. Twelve collections occurred until the emergence of the adults, at 0, 2, 4, 6, 8, 10, 24, 30, 48, 54, 72, 78, 96, and 99 h (n = 84). The fixed pupae were dissected under the microscope, with the aid of anatomical tweezers and hypodermic needles, and photographed. The stages of metamorphosis and the morphological alterations occurring during the process were identified, described, and recorded before and after pupation. These phases were: pupation, larval pupal apolysis, cryptocephalic, phanerocephalic, pharate adult, emergence, and adult. The cryptophalic phase occurred between 4 and 6 h after pupation; the phanerocephalic phase between 6 and 10 h after; the pharate adult phase between 24 and 96 h after; and the imago/emergence phase 99 h after pupation.
NASA Astrophysics Data System (ADS)
Huber, Robert A.; Draxinger, Wolfgang; Wieser, Wolfgang; Kolb, Jan Philip; Pfeiffer, Tom; Karpf, Sebastian N.; Eibl, Matthias; Klein, Thomas
2016-03-01
Over the last 20 years, optical coherence tomography (OCT) has become a valuable diagnostic tool in ophthalmology with several 10,000 devices sold today. Other applications, like intravascular OCT in cardiology and gastro-intestinal imaging will follow. OCT provides 3-dimensional image data with microscopic resolution of biological tissue in vivo. In most applications, off-line processing of the acquired OCT-data is sufficient. However, for OCT applications like OCT aided surgical microscopes, for functional OCT imaging of tissue after a stimulus, or for interactive endoscopy an OCT engine capable of acquiring, processing and displaying large and high quality 3D OCT data sets at video rate is highly desired. We developed such a prototype OCT engine and demonstrate live OCT with 25 volumes per second at a size of 320x320x320 pixels. The computer processing load of more than 1.5 TFLOPS was handled by a GTX 690 graphics processing unit with more than 3000 stream processors operating in parallel. In the talk, we will describe the optics and electronics hardware as well as the software of the system in detail and analyze current limitations. The talk also focuses on new OCT applications, where such a system improves diagnosis and monitoring of medical procedures. The additional acquisition of hyperspectral stimulated Raman signals with the system will be discussed.