Sample records for computer-aided surgery optimization

  1. Linear Optimization and Image Reconstruction

    DTIC Science & Technology

    1994-06-01

    final example is again a novel one. We formulate the problem of computer assisted tomographic ( CAT ) image reconstruction as a linear optimization...possibility that a patient, Fred, suffers from a brain tumor. Further, the physician opts to make use of the CAT (Computer Aided Tomography) scan device...and examine the inside of Fred’s head without exploratory surgery. The CAT scan machine works by projecting a finite number of X-rays of known

  2. A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation.

    PubMed

    Chen, Xiaojun; Xu, Lu; Sun, Yi; Politis, Constantinus

    2016-11-01

    Currently, oral and maxillofacial surgery (OMFS) still poses a significant challenge for surgeons due to the anatomic complexity and limited field of view of the oral cavity. With the great development of computer technologies, he computer-aided surgery has been widely used for minimizing the risks and improving the precision of surgery. Areas covered: The major goal of this paper is to provide a comprehensive reference source of current and future development of computer-aided OMFS including surgical planning, simulation and navigation for relevant researchers. Expert commentary: Compared with the traditional OMFS, computer-aided OMFS overcomes the disadvantage that the treatment on the region of anatomically complex maxillofacial depends almost exclusively on the experience of the surgeon.

  3. Guided Immediate Implant Placement with Wound Closure by Computer-Aided Design/Computer-Assisted Manufacture Sealing Socket Abutment: Case Report.

    PubMed

    Finelle, Gary; Lee, Sang J

    Digital technology has been widely used in the field of implant dentistry. From a surgical standpoint, computer-guided surgery can be utilized to enhance primary implant stability and to improve the precision of implant placement. From a prosthetic standpoint, computer-aided design/computer-assisted manufacture (CAD/CAM) technology has brought about various restorative options, including the fabrication of customized abutments through a virtual design based on computer-guided surgical planning. This case report describes a novel technique combining the use of a three-dimensional (3D) printed surgical template for the immediate placement of an implant, with CAD/CAM technology to optimize hard and soft tissue healing after bone grafting with the use of a socket sealing abutment.

  4. Three-dimensional surgical simulation.

    PubMed

    Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-09-01

    In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. 3D printing in orthognathic surgery - A literature review.

    PubMed

    Lin, Hsiu-Hsia; Lonic, Daniel; Lo, Lun-Jou

    2018-07-01

    With the recent advances in three-dimensional (3D) imaging, computer-assisted surgical planning and simulation are now regularly used for analysis of craniofacial structures and improved prediction of surgical outcomes in orthognathic surgery. A variety of patient-specific surgical guides and devices have been designed and manufactured using 3D printing technology, which rapidly gained widespread popularity to improve the outcomes. The article presents an overview of 3D printing technology for state-of-the-art application in orthognathic surgery and discusses the impacts on treatment feasibility and patient outcome. The current available literature regarding the use of 3D printing methods in orthognathic surgery including 3D computer-aided design/computer-aided manufacturing, rapid prototyping, additive manufacturing, 3D printing, 3D printed models, surgical occlusal splints, custom-made guides, templates and fixation plates is reviewed. A Medline, PubMed, ProQuest and ScienceDirect search was performed to find relevant articles over the past 10 years. A total of 318 articles were found, out of which 69 were publications addressing the topic of this study. An additional 9 hand-searched articles were added. From the review, we can conclude that the use of 3D printing methods in orthognathic surgery provide the benefit of optimal functional and aesthetic results, patient satisfaction, and precise translation of the treatment plan. Copyright © 2018. Published by Elsevier B.V.

  6. Gastrointestinal robot-assisted surgery. A current perspective.

    PubMed

    Lunca, Sorinel; Bouras, George; Stanescu, Alexandru Calin

    2005-12-01

    Minimally invasive techniques have revolutionized operative surgery. Computer aided surgery and robotic surgical systems strive to improve further on currently available minimally invasive surgery and open new horizons. Only several centers are currently using surgical robots and publishing data. In gastrointestinal surgery, robotic surgery is applied to a wide range of procedures, but is still in its infancy. Cholecystectomy, Nissen fundoplication and Heller myotomy are among the most frequently performed operations. The ZEUS (Computer Motion, Goleta, CA) and the da Vinci (Intuitive Surgical, Mountain View, CA) surgical systems are today the most advanced robotic systems used in gastrointestinal surgery. Most studies reported that robotic gastrointestinal surgery is feasible and safe, provides improved dexterity, better visualization, reduced fatigue and high levels of precision when compared to conventional laparoscopic surgery. Its main drawbacks are the absence of force feedback and extremely high costs. At this moment there are no reports to clearly demonstrate the superiority of robotics over conventional laparoscopic surgery. Further research and more prospective randomized trials are needed to better define the optimal application of this new technology in gastrointestinal surgery.

  7. DigBody®: A new 3D modeling tool for nasal virtual surgery.

    PubMed

    Burgos, M A; Sanmiguel-Rojas, E; Singh, Narinder; Esteban-Ortega, F

    2018-07-01

    Recent studies have demonstrated that a significant number of surgical procedures for nasal airway obstruction (NAO) have a high rate of surgical failure. In part, this problem is due to the lack of reliable objective clinical parameters to aid surgeons during preoperative planning. Modeling tools that allow virtual surgery to be performed do exist, but all require direct manipulation of computed tomography (CT) or magnetic resonance imaging (MRI) data. Specialists in Rhinology have criticized these tools for their complex user interface, and have requested more intuitive, user-friendly and powerful software to make virtual surgery more accessible and realistic. In this paper we present a new virtual surgery software tool, DigBody ® . This new surgery module is integrated into the computational fluid dynamics (CFD) program MeComLand ® , which was developed exclusively to analyze nasal airflow. DigBody ® works directly with a 3D nasal model that mimics real surgery. Furthermore, this surgery module permits direct assessment of the operated cavity following virtual surgery by CFD simulation. The effectiveness of DigBody ® has been demonstrated by real surgery on two patients based on prior virtual operation results. Both subjects experienced excellent surgical outcomes with no residual nasal obstruction. This tool has great potential to aid surgeons in modeling potential surgical maneuvers, minimizing complications, and being confident that patients will receive optimal postoperative outcomes, validated by personalized CFD testing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. [Basic concept in computer assisted surgery].

    PubMed

    Merloz, Philippe; Wu, Hao

    2006-03-01

    To investigate application of medical digital imaging systems and computer technologies in orthopedics. The main computer-assisted surgery systems comprise the four following subcategories. (1) A collection and recording process for digital data on each patient, including preoperative images (CT scans, MRI, standard X-rays), intraoperative visualization (fluoroscopy, ultrasound), and intraoperative position and orientation of surgical instruments or bone sections (using 3D localises). Data merging based on the matching of preoperative imaging (CT scans, MRI, standard X-rays) and intraoperative visualization (anatomical landmarks, or bone surfaces digitized intraoperatively via 3D localiser; intraoperative ultrasound images processed for delineation of bone contours). (2) In cases where only intraoperative images are used for computer-assisted surgical navigation, the calibration of the intraoperative imaging system replaces the merged data system, which is then no longer necessary. (3) A system that provides aid in decision-making, so that the surgical approach is planned on basis of multimodal information: the interactive positioning of surgical instruments or bone sections transmitted via pre- or intraoperative images, display of elements to guide surgical navigation (direction, axis, orientation, length and diameter of a surgical instrument, impingement, etc. ). And (4) A system that monitors the surgical procedure, thereby ensuring that the optimal strategy defined at the preoperative stage is taken into account. It is possible that computer-assisted orthopedic surgery systems will enable surgeons to better assess the accuracy and reliability of the various operative techniques, an indispensable stage in the optimization of surgery.

  9. Virtual Surgical Planning in Craniofacial Surgery

    PubMed Central

    Chim, Harvey; Wetjen, Nicholas; Mardini, Samir

    2014-01-01

    The complex three-dimensional anatomy of the craniofacial skeleton creates a formidable challenge for surgical reconstruction. Advances in computer-aided design and computer-aided manufacturing technology have created increasing applications for virtual surgical planning in craniofacial surgery, such as preoperative planning, fabrication of cutting guides, and stereolithographic models and fabrication of custom implants. In this review, the authors describe current and evolving uses of virtual surgical planning in craniofacial surgery. PMID:25210509

  10. Computer-based planning of optimal donor sites for autologous osseous grafts

    NASA Astrophysics Data System (ADS)

    Krol, Zdzislaw; Chlebiej, Michal; Zerfass, Peter; Zeilhofer, Hans-Florian U.; Sader, Robert; Mikolajczak, Pawel; Keeve, Erwin

    2002-05-01

    Bone graft surgery is often necessary for reconstruction of craniofacial defects after trauma, tumor, infection or congenital malformation. In this operative technique the removed or missing bone segment is filled with a bone graft. The mainstay of the craniofacial reconstruction rests with the replacement of the defected bone by autogeneous bone grafts. To achieve sufficient incorporation of the autograft into the host bone, precise planning and simulation of the surgical intervention is required. The major problem is to determine as accurately as possible the donor site where the graft should be dissected from and to define the shape of the desired transplant. A computer-aided method for semi-automatic selection of optimal donor sites for autografts in craniofacial reconstructive surgery has been developed. The non-automatic step of graft design and constraint setting is followed by a fully automatic procedure to find the best fitting position. In extension to preceding work, a new optimization approach based on the Levenberg-Marquardt method has been implemented and embedded into our computer-based surgical planning system. This new technique enables, once the pre-processing step has been performed, selection of the optimal donor site in time less than one minute. The method has been applied during surgery planning step in more than 20 cases. The postoperative observations have shown that functional results, such as speech and chewing ability as well as restoration of bony continuity were clearly better compared to conventionally planned operations. Moreover, in most cases the duration of the surgical interventions has been distinctly reduced.

  11. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  12. Prosthetically guided maxillofacial surgery: evaluation of the accuracy of a surgical guide and custom-made bone plate in oncology patients after mandibular reconstruction.

    PubMed

    Mazzoni, Simona; Marchetti, Claudio; Sgarzani, Rossella; Cipriani, Riccardo; Scotti, Roberto; Ciocca, Leonardo

    2013-06-01

    The aim of the present study was to evaluate the accuracy of prosthetically guided maxillofacial surgery in reconstructing the mandible with a free vascularized flap using custom-made bone plates and a surgical guide to cut the mandible and fibula. The surgical protocol was applied in a study group of seven consecutive mandibular-reconstructed patients who were compared with a control group treated using the standard preplating technique on stereolithographic models (indirect computer-aided design/computer-aided manufacturing method). The precision of both surgical techniques (prosthetically guided maxillofacial surgery and indirect computer-aided design/computer-aided manufacturing procedure) was evaluated by comparing preoperative and postoperative computed tomographic data and assessment of specific landmarks. With regard to midline deviation, no significant difference was documented between the test and control groups. With regard to mandibular angle shift, only one left angle shift on the lateral plane showed a statistically significant difference between the groups. With regard to angular deviation of the body axis, the data showed a significant difference in the arch deviation. All patients in the control group registered greater than 8 degrees of deviation, determining a facial contracture of the external profile at the lower margin of the mandible. With regard to condylar position, the postoperative condylar position was better in the test group than in the control group, although no significant difference was detected. The new protocol for mandibular reconstruction using computer-aided design/computer-aided manufacturing prosthetically guided maxillofacial surgery to construct custom-made guides and plates may represent a viable method of reproducing the patient's anatomical contour, giving the surgeon better procedural control and reducing procedure time. Therapeutic, III.

  13. Visual and computer software-aided estimates of Dupuytren's contractures: correlation with clinical goniometric measurements.

    PubMed

    Smith, R P; Dias, J J; Ullah, A; Bhowal, B

    2009-05-01

    Corrective surgery for Dupuytren's disease represents a significant proportion of a hand surgeon's workload. The decision to go ahead with surgery and the success of surgery requires measuring the degree of contracture of the diseased finger(s). This is performed in clinic with a goniometer, pre- and postoperatively. Monitoring the recurrence of the contracture can inform on surgical outcome, research and audit. We compared visual and computer software-aided estimation of Dupuytren's contractures to clinical goniometric measurements in 60 patients with Dupuytren's disease. Patients' hands were digitally photographed. There were 76 contracted finger joints--70 proximal interphalangeal joints and six distal interphalangeal joints. The degrees of contracture of these images were visually assessed by six orthopaedic staff of differing seniority and re-assessed with computer software. Across assessors, the Pearson correlation between the goniometric measurements and the visual estimations was 0.83 and this significantly improved to 0.88 with computer software. Reliability with intra-class correlations achieved 0.78 and 0.92 for the visual and computer-aided estimations, respectively, and with test-retest analysis, 0.92 for visual estimation and 0.95 for computer-aided measurements. Visual estimations of Dupuytren's contractures correlate well with actual clinical goniometric measurements and improve further if measured with computer software. Digital images permit monitoring of contracture after surgery and may facilitate research into disease progression and auditing of surgical technique.

  14. Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery.

    PubMed

    Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir

    2015-06-01

    The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.

  15. Removal of Supernumerary Teeth Utilizing a Computer-Aided Design/Computer-Aided Manufacturing Surgical Guide.

    PubMed

    Jo, Chanwoo; Bae, Doohwan; Choi, Byungho; Kim, Jihun

    2017-05-01

    Supernumerary teeth need to be removed because they can cause various complications. Caution is needed because their removal can cause damage to permanent teeth or tooth germs in the local vicinity. Surgical guides have recently been used in maxillofacial surgery. Because surgical guides are designed through preoperative analysis by computer-aided design software and fabricated using a 3-dimensional printer applying computer-aided manufacturing technology, they increase the accuracy and predictability of surgery. This report describes 2 cases of removal of a mesiodens-1 from a child and 1 from an adolescent-using a surgical guide; these would have been difficult to remove with conventional surgical methods. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Patient-specific polyetheretherketone facial implants in a computer-aided planning workflow.

    PubMed

    Guevara-Rojas, Godoberto; Figl, Michael; Schicho, Kurt; Seemann, Rudolf; Traxler, Hannes; Vacariu, Apostolos; Carbon, Claus-Christian; Ewers, Rolf; Watzinger, Franz

    2014-09-01

    In the present study, we report an innovative workflow using polyetheretherketone (PEEK) patient-specific implants for esthetic corrections in the facial region through onlay grafting. The planning includes implant design according to virtual osteotomy and generation of a subtraction volume. The implant design was refined by stepwise changing the implant geometry according to soft tissue simulations. One patient was scanned using computed tomography. PEEK implants were interactively designed and manufactured using rapid prototyping techniques. Positioning intraoperatively was assisted by computer-aided navigation. Two months after surgery, a 3-dimensional surface model of the patient's face was generated using photogrammetry. Finally, the Hausdorff distance calculation was used to quantify the overall error, encompassing the failures in soft tissue simulation and implantation. The implant positioning process during surgery was satisfactory. The simulated soft tissue surface and the photogrammetry scan of the patient showed a high correspondence, especially where the skin covered the implants. The mean total error (Hausdorff distance) was 0.81 ± 1.00 mm (median 0.48, interquartile range 1.11). The spatial deviation remained less than 0.7 mm for the vast majority of points. The proposed workflow provides a complete computer-aided design, computer-aided manufacturing, and computer-aided surgery chain for implant design, allowing for soft tissue simulation, fabrication of patient-specific implants, and image-guided surgery to position the implants. Much of the surgical complexity resulting from osteotomies of the zygoma, chin, or mandibular angle might be transferred into the planning phase of patient-specific implants. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics.

    PubMed

    Siallagan, Dominik; Loke, Yue-Hin; Olivieri, Laura; Opfermann, Justin; Ong, Chin Siang; de Zélicourt, Diane; Petrou, Anastasios; Daners, Marianne Schmid; Kurtcuoglu, Vartan; Meboldt, Mirko; Nelson, Kevin; Vricella, Luca; Johnson, Jed; Hibino, Narutoshi; Krieger, Axel

    2018-04-01

    Despite advances in the Fontan procedure, there is an unmet clinical need for patient-specific graft designs that are optimized for variations in patient anatomy. The objective of this study is to design and produce patient-specific Fontan geometries, with the goal of improving hepatic flow distribution (HFD) and reducing power loss (P loss ), and manufacturing these designs by electrospinning. Cardiac magnetic resonance imaging data from patients who previously underwent a Fontan procedure (n = 2) was used to create 3-dimensional models of their native Fontan geometry using standard image segmentation and geometry reconstruction software. For each patient, alternative designs were explored in silico, including tube-shaped and bifurcated conduits, and their performance in terms of P loss and HFD probed by computational fluid dynamic (CFD) simulations. The best-performing options were then fabricated using electrospinning. CFD simulations showed that the bifurcated conduit improved HFD between the left and right pulmonary arteries, whereas both types of conduits reduced P loss . In vitro testing with a flow-loop chamber supported the CFD results. The proposed designs were then successfully electrospun into tissue-engineered vascular grafts. Our unique virtual cardiac surgery approach has the potential to improve the quality of surgery by manufacturing patient-specific designs before surgery, that are also optimized with balanced HFD and minimal P loss , based on refinement of commercially available options for image segmentation, computer-aided design, and flow simulations. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  18. Novel Treatment Planning of Hemimandibular Hyperplasia by the Use of Three-Dimensional Computer-Aided-Design and Computer-Aided-Manufacturing Technologies.

    PubMed

    Hatamleh, Muhanad M; Yeung, Elizabeth; Osher, Jonas; Huppa, Chrisopher

    2017-05-01

    Hemimandibular hyperplasia is characterized by an obvious overgrowth in the size of the mandible on one side, which can extend up to the midline causing facial asymmetry. Surgical resection of the overgrowth depends heavily on the skill and experience of the surgeon. This report describes a novel methodology of applying three-dimensional computer-aided-design and computer-aided-manufacturing principles in improving the outcome of surgery in 2 mandibular hyperplasia patients. Both patients had their cone beam computer tomography (CBCT) scan performed. CMF Pro Plan software (v. 2.1) was used to process the scan data into virtual 3-dimensional models of the maxilla and mandible. Head tilt was adjusted manually by following horizontal reference. Facial asymmetry secondary to mandibular hypertrophy was obvious on frontal and lateral views. Simulation functions were followed including mirror imaging of the unaffected mandibular side into the hyperplastic side and position was optimized by translation and orientation functions. Reconstruction of virtual symmetry was assessed and checked by running 3-dimensional measurements. Then, subtraction functions were used to create a 3-dimensional template defining the outline of the lower mandibular osteotomy needed. Precision of mandibular teeth was enhanced by amalgamating the CBCT scan with e-cast scan of the patient lower teeth. 3-Matic software (v. 10.0) was used in designing cutting guide(s) that define the amount of overgrowth to be resected. The top section of the guide was resting on the teeth hence ensuring stability and accuracy while positioning it. The guide design was exported as an .stl file and printed using in-house 3-dimensional printer in biocompatible resin. Three-dimensional technologies of both softwares (CMF Pro Plan and 3-Matic) are accurate and reliable methods in the diagnosis, treatment planning, and designing of cutting guides that optimize surgical correction of hemimandibular hyperplasia at timely and cost-effect manner.

  19. Optimizing Functional Outcomes in Mandibular Condyle Reconstruction With the Free Fibula Flap Using Computer-Aided Design and Manufacturing Technology.

    PubMed

    Lee, Z-Hye; Avraham, Tomer; Monaco, Casian; Patel, Ashish A; Hirsch, David L; Levine, Jamie P

    2018-05-01

    Mandibular defects involving the condyle represent a complex reconstructive challenge for restoring proper function of the temporomandibular joint (TMJ) because it requires precise bone graft alignment for full restoration of joint function. The use of computer-aided design and manufacturing (CAD/CAM) technology can aid in accurate reconstruction of mandibular condyle defects with a vascularized free fibula flap without the need for additional adjuncts. The purpose of this study was to analyze clinical and functional outcomes after reconstruction of mandibular condyle defects using only a free fibula graft with the help of virtual surgery techniques. A retrospective review was performed to identify all patients who underwent mandibular reconstruction with only a free fibula flap without any TMJ adjuncts after a total condylectomy. Three-dimensional modeling software was used to plan and execute reconstruction for all patients. From 2009 through 2014, 14 patients underwent reconstruction of mandibular defects involving the condyle with the aid of virtual surgery technology. The average age was 38.7 years (range, 11 to 77 yr). The average follow-up period was 2.6 years (range, 0.8 to 4.2 yr). Flap survival was 100% (N = 14). All patients reported improved facial symmetry, adequate jaw opening, and normal dental occlusion. In addition, they achieved good functional outcomes, including normal intelligible speech and the tolerance of a regular diet with solid foods. Maximal interincisal opening range for all patients was 25 to 38 mm with no lateral deviation or subjective joint pain. No patient had progressive joint hypomobility or condylar migration. One patient had ankylosis, which required release. TMJ reconstruction poses considerable challenges in bone graft alignment for full restoration of joint function. The use of CAD/CAM technology can aid in accurate reconstruction of mandibular condyle defects with a vascularized free fibula flap through precise planning and intraoperative manipulation with optimal functional outcomes. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Integrated Artificial Intelligence Approaches for Disease Diagnostics.

    PubMed

    Vashistha, Rajat; Chhabra, Deepak; Shukla, Pratyoosh

    2018-06-01

    Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.

  1. Optimal baseplate rotational alignment for locking-screw fixation in reverse total shoulder arthroplasty: a three-dimensional computer-aided design study.

    PubMed

    Stephens, Byron F; Hebert, Casey T; Azar, Frederick M; Mihalko, William M; Throckmorton, Thomas W

    2015-09-01

    Baseplate loosening in reverse total shoulder arthroplasty (RTSA) remains a concern. Placing peripheral screws into the 3 pillars of the densest scapular bone is believed to optimize baseplate fixation. Using a 3-dimensional computer-aided design (3D CAD) program, we investigated the optimal rotational baseplate alignment to maximize peripheral locking-screw purchase. Seventy-three arthritic scapulae were reconstructed from computed tomography images and imported into a 3D CAD software program along with representations of an RTSA baseplate that uses 4 fixed-angle peripheral locking screws. The baseplate position was standardized, and the baseplate was rotated to maximize individual and combined peripheral locking-screw purchase in each of the 3 scapular pillars. The mean ± standard error of the mean positions for optimal individual peripheral locking-screw placement (referenced in internal rotation) were 6° ± 2° for the coracoid pillar, 198° ± 2° for the inferior pillar, and 295° ± 3° for the scapular spine pillar. Of note, 78% (57 of 73) of the screws attempting to obtain purchase in the scapular spine pillar could not be placed without an in-out-in configuration. In contrast, 100% of coracoid and 99% of inferior pillar screws achieved full purchase. The position of combined maximal fixation was 11° ± 1°. These results suggest that approximately 11° of internal rotation is the ideal baseplate position for maximal peripheral locking-screw fixation in RTSA. In addition, these results highlight the difficulty in obtaining optimal purchase in the scapular spine. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Computer-assisted surgery in the lower jaw: double surgical guide for immediately loaded implants in postextractive sites-technical notes and a case report.

    PubMed

    De Santis, Daniele; Canton, Luciano Claudio; Cucchi, Alessandro; Zanotti, Guglielmo; Pistoia, Enrico; Nocini, Pier Francesco

    2010-01-01

    Computer-assisted surgery is based on computerized tomography (CT) scan technology to plan the placement of dental implants and a computer-aided design/computer-aided manufacturing (CAD-CAM) technology to create a custom surgical template. It provides guidance for insertion implants after analysis of existing alveolar bone and planning of implant position, which can be immediately loaded, therefore achieving esthetic and functional results in a surgical stage. The absence of guidelines to treat dentulous areas is often due to a lack of computer-assisted surgery. The authors have attempted to use this surgical methodology to replace residual teeth with an immediate implantoprosthetic restoration. The aim of this case report is to show the possibility of treating a dentulous patient by applying a computer-assisted surgical protocol associated with the use of a double surgical template: one before extraction and a second one after extraction of selected teeth.

  3. Fabricating a tooth- and implant-supported maxillary obturator for a patient after maxillectomy with computer-guided surgery and CAD/CAM technology: A clinical report.

    PubMed

    Noh, Kwantae; Pae, Ahran; Lee, Jung-Woo; Kwon, Yong-Dae

    2016-05-01

    An obturator prosthesis with insufficient retention and support may be improved with implant placement. However, implant surgery in patients after maxillary tumor resection can be complicated because of limited visibility and anatomic complexity. Therefore, computer-guided surgery can be advantageous even for experienced surgeons. In this clinical report, the use of computer-guided surgery is described for implant placement using a bone-supported surgical template for a patient with maxillary defects. The prosthetic procedure was facilitated and simplified by using computer-aided design/computer-aided manufacture (CAD/CAM) technology. Oral function and phonetics were restored using a tooth- and implant-supported obturator prosthesis. No clinical symptoms and no radiographic signs of significant bone loss around the implants were found at a 3-year follow-up. The treatment approach presented here can be a viable option for patients with insufficient remaining zygomatic bone after a hemimaxillectomy. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Accuracy of different types of computer-aided design/computer-aided manufacturing surgical guides for dental implant placement

    PubMed Central

    Geng, Wei; Liu, Changying; Su, Yucheng; Li, Jun; Zhou, Yanmin

    2015-01-01

    Purpose: To evaluate the clinical outcomes of implants placed using different types of computer-aided design/computer-aided manufacturing (CAD/CAM) surgical guides, including partially guided and totally guided templates, and determine the accuracy of these guides Materials and methods: In total, 111 implants were placed in 24 patients using CAD/CAM surgical guides. After implant insertion, the positions and angulations of the placed implants relative to those of the planned ones were determined using special software that matched pre- and postoperative computed tomography (CT) images, and deviations were calculated and compared between the different guides and templates. Results: The mean angular deviations were 1.72 ± 1.67 and 2.71 ± 2.58, the mean deviations in position at the neck were 0.27 ± 0.24 and 0.69 ± 0.66 mm, the mean deviations in position at the apex were 0.37 ± 0.35 and 0.94 ± 0.75 mm, and the mean depth deviations were 0.32 ± 0.32 and 0.51 ± 0.48 mm with tooth- and mucosa-supported stereolithographic guides, respectively (P < .05 for all). The mean distance deviations when partially guided (29 implants) and totally guided templates (30 implants) were used were 0.54 ± 0.50 mm and 0.89 ± 0.78 mm, respectively, at the neck and 1.10 ± 0.85 mm and 0.81 ± 0.64 mm, respectively, at the apex, with corresponding mean angular deviations of 2.56 ± 2.23° and 2.90 ± 3.0° (P > .05 for all). Conclusions: Tooth-supported surgical guides may be more accurate than mucosa-supported guides, while both partially and totally guided templates can simplify surgery and aid in optimal implant placement. PMID:26309497

  5. Computer-aided design and computer-aided manufacturing cutting guides and customized titanium plates are useful in upper maxilla waferless repositioning.

    PubMed

    Mazzoni, Simona; Bianchi, Alberto; Schiariti, Giulio; Badiali, Giovanni; Marchetti, Claudio

    2015-04-01

    The purpose of the present study was to develop a computer-aided design (CAD) and computer-aided manufacturing (CAM) technique that enabled fabrication of surgical cutting guides and titanium fixation plates that would allow the upper maxilla to be repositioned correctly without a surgical splint in orthognathic patients. Ten patients were recruited. A complete CAD-CAM workflow for orthognathic surgery has 3 steps: 1) virtual planning of the surgical treatment, 2) CAD-CAM and 3-dimensional printing of customized surgical devices (surgical cutting guide and titanium fixation plates), and 3) computer-aided surgery. Upper maxilla repositioning was performed in a waferless manner using a CAD-CAM device: the surgical cutting guide was used during surgery to pilot the osteotomy line that had been planned preoperatively at the computer and the custom-made fixation titanium plates allowed desired repositioning of the maxilla. To evaluate the reproducibility of this CAD-CAM orthognathic surgical method, the virtually planned and actually achieved positions of the upper maxilla were compared. Overlap errors using a threshold value smaller than 2 mm were evaluated, and the frequency of such errors was used as a measurement of accuracy. By this definition, the accuracy was 100% in 7 patients (range in all patients, 62 to 100%; median, 92.7%). These results tend to confirm that the use of CAD-CAM cutting guides and customized titanium plates for upper maxilla repositioning represents a promising method for the accurate reproduction of preoperative virtual planning without the use of surgical splints. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Computer-Aided Communication Satellite System Analysis and Optimization.

    ERIC Educational Resources Information Center

    Stagl, Thomas W.; And Others

    Various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. The rationale for selecting General Dynamics/Convair's Satellite Telecommunication Analysis and Modeling Program (STAMP) in modified form to aid in the system costing and sensitivity analysis work in the Program on…

  7. Application of digital diagnostic impression, virtual planning, and computer-guided implant surgery for a CAD/CAM-fabricated, implant-supported fixed dental prosthesis: a clinical report.

    PubMed

    Stapleton, Brandon M; Lin, Wei-Shao; Ntounis, Athanasios; Harris, Bryan T; Morton, Dean

    2014-09-01

    This clinical report demonstrated the use of an implant-supported fixed dental prosthesis fabricated with a contemporary digital approach. The digital diagnostic data acquisition was completed with a digital diagnostic impression with an intraoral scanner and cone-beam computed tomography with a prefabricated universal radiographic template to design a virtual prosthetically driven implant surgical plan. A surgical template fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) was used to perform computer-guided implant surgery. The definitive digital data were then used to design the definitive CAD/CAM-fabricated fixed dental prosthesis. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Digital approach to planning computer-guided surgery and immediate provisionalization in a partially edentulous patient.

    PubMed

    Arunyanak, Sirikarn P; Harris, Bryan T; Grant, Gerald T; Morton, Dean; Lin, Wei-Shao

    2016-07-01

    This report describes a digital approach for computer-guided surgery and immediate provisionalization in a partially edentulous patient. With diagnostic data obtained from cone-beam computed tomography and intraoral digital diagnostic scans, a digital pathway of virtual diagnostic waxing, a virtual prosthetically driven surgical plan, a computer-aided design and computer-aided manufacturing (CAD/CAM) surgical template, and implant-supported screw-retained interim restorations were realized with various open-architecture CAD/CAM systems. The optional CAD/CAM diagnostic casts with planned implant placement were also additively manufactured to facilitate preoperative inspection of the surgical template and customization of the CAD/CAM-fabricated interim restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. The smiling scan technique: Facially driven guided surgery and prosthetics.

    PubMed

    Pozzi, Alessandro; Arcuri, Lorenzo; Moy, Peter K

    2018-04-11

    To introduce a proof of concept technique and new integrated workflow to optimize the functional and esthetic outcome of the implant-supported restorations by means of a 3-dimensional (3D) facially-driven, digital assisted treatment plan. The Smiling Scan technique permits the creation of a virtual dental patient (VDP) showing a broad smile under static conditions. The patient is exposed to a cone beam computed tomography scan (CBCT), displaying a broad smile for the duration of the examination. Intraoral optical surface scanning (IOS) of the dental and soft tissue anatomy or extraoral optical surface scanning (EOS) of the study casts are achieved. The superimposition of the digital imaging and communications in medicine (DICOM) files with standard tessellation language (STL) files is performed using the virtual planning software program permitting the creation of a VDP. The smiling scan is an effective, easy to use, and low-cost technique to develop a more comprehensive and simplified facially driven computer-assisted treatment plan, allowing a prosthetically driven implant placement and the delivery of an immediate computer aided design (CAD) computer aided manufacturing (CAM) temporary fixed dental prostheses (CAD/CAM technology). Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Three-dimensional visualization system as an aid for facial surgical planning

    NASA Astrophysics Data System (ADS)

    Barre, Sebastien; Fernandez-Maloigne, Christine; Paume, Patricia; Subrenat, Gilles

    2001-05-01

    We present an aid for facial deformities treatment. We designed a system for surgical planning and prediction of human facial aspect after maxillo-facial surgery. We study the 3D reconstruction process of the tissues involved in the simulation, starting from CT acquisitions. 3D iso-surfaces meshes of soft tissues and bone structures are built. A sparse set of still photographs is used to reconstruct a 360 degree(s) texture of the facial surface and increase its visual realism. Reconstructed objects are inserted into an object-oriented, portable and scriptable visualization software allowing the practitioner to manipulate and visualize them interactively. Several LODs (Level-Of- Details) techniques are used to ensure usability. Bone structures are separated and moved by means of cut planes matching orthognatic surgery procedures. We simulate soft tissue deformations by creating a physically-based springs model between both tissues. The new static state of the facial model is computed by minimizing the energy of the springs system to achieve equilibrium. This process is optimized by transferring informations like participation hints at vertex-level between a warped generic model and the facial mesh.

  11. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence

    PubMed Central

    Xia, J. J.; Gateno, J.; Teichgraeber, J. F.; Yuan, P.; Chen, K.-C.; Li, J.; Zhang, X.; Tang, Z.; Alfi, D. M.

    2015-01-01

    The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also on an accurate surgical plan. The adoption of computer-aided surgical simulation (CASS) has created a paradigm shift in surgical planning. However, planning an orthognathic operation using CASS differs fundamentally from planning using traditional methods. With this in mind, the Surgical Planning Laboratory of Houston Methodist Research Institute has developed a CASS protocol designed specifically for orthognathic surgery. The purpose of this article is to present an algorithm using virtual tools for planning a double-jaw orthognathic operation. This paper will serve as an operation manual for surgeons wanting to incorporate CASS into their clinical practice. PMID:26573562

  12. Sinus barotrauma--late diagnosis and treatment with computer-aided endoscopic surgery.

    PubMed

    Larsen, Anders Schermacher; Buchwald, Christian; Vesterhauge, Søren

    2003-02-01

    Sinus barotrauma is usually easy to diagnose, and treatment achieves good results. We present two severe cases where delayed diagnosis caused significant morbidity. The signs and symptoms were atypical and neither the patients themselves, nor the initial examiners recognized that the onset of symptoms coincided with descent in a commercial airliner. CT and MRI scans of the brain were normal, but in both cases showed opafication of the sphenoid sinuses, which lead to the correct diagnosis. Subsequent surgical intervention consisting of endoscopic computer-aided surgery showed blood and petechia in the affected sinuses. This procedure provided immediate relief.

  13. Augmented reality in the surgery of cerebral aneurysms: a technical report.

    PubMed

    Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl

    2014-06-01

    Augmented reality is the overlay of computer-generated images on real-world structures. It has previously been used for image guidance during surgical procedures, but it has never been used in the surgery of cerebral aneurysms. To report our experience of cerebral aneurysm surgery aided by augmented reality. Twenty-eight patients with 39 unruptured aneurysms were operated on in a prospective manner with augmented reality. Preoperative 3-dimensional image data sets (angio-magnetic resonance imaging, angio-computed tomography, and 3-dimensional digital subtraction angiography) were used to create virtual segmentations of patients' vessels, aneurysms, aneurysm necks, skulls, and heads. These images were injected intraoperatively into the eyepiece of the operating microscope. An example case of an unruptured posterior communicating artery aneurysm clipping is illustrated in a video. The described operating procedure allowed continuous monitoring of the accuracy of patient registration with neuronavigation data and assisted in the performance of tailored surgical approaches and optimal clipping with minimized exposition. Augmented reality may add to the performance of a minimally invasive approach, although further studies need to be performed to evaluate whether certain groups of aneurysms are more likely to benefit from it. Further technological development is required to improve its user friendliness.

  14. Accuracy of virtual surgical planning of orthognathic surgery with aid of CAD/CAM fabricated surgical splint-A novel 3D analyzing algorithm.

    PubMed

    Chin, Shih-Jan; Wilde, Frank; Neuhaus, Michael; Schramm, Alexander; Gellrich, Nils-Claudius; Rana, Majeed

    2017-12-01

    The benefit of computer-assisted planning in orthognathic surgery has been extensively documented over the last decade. This study aims to evaluate the accuracy of a virtual orthognathic surgical plan by a novel three dimensional (3D) analysis method. Ten patients who required orthognathic surgery were included in this study. A virtual surgical plan was achieved by the combination of a 3D skull model acquired from computed tomography (CT) and surface scanning of the upper and lower dental arch respectively and final occlusal position. Osteotomies and movement of maxilla and mandible were simulated by Dolphin Imaging 11.8 Premium ® (Dolphin Imaging and Management Solutions, Chatsworth, CA). The surgical plan was transferred to surgical splints fabricated by means of Computer Aided Design/Computer Aided Manufacturing (CAD/CAM). Differences of three dimensional measurements between the virtual surgical plan and postoperative results were evaluated. The results from all parameters showed that the virtual surgical plans were successfully transferred by the assistance of CAD/CAM fabricated surgical splint. Wilcoxon's signed rank test showed that no statistically significant deviation between surgical plan and post-operational result could be detected. However, deviation of angle U1 axis-HP and distance of A-CP could not fulfill the clinical success criteria. Virtual surgical planning and CAD/CAM fabricated surgical splint are proven to facilitate treatment planning and offer an accurate surgical result in orthognathic surgery. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Strategic Use of Microscrews for Enhancing the Accuracy of Computer-Guided Implant Surgery in Fully Edentulous Arches: A Case History Report.

    PubMed

    Lee, Du-Hyeong

    Implant guide systems can be classified by their supporting structure as tooth-, mucosa-, or bone-supported. Mucosa-supported guides for fully edentulous arches show lower accuracy in implant placement because of errors in image registration and guide positioning. This article introduces the application of a novel microscrew system for computer-aided implant surgery. This technique can markedly improve the accuracy of computer-guided implant surgery in fully edentulous arches by eliminating errors from image fusion and guide positioning.

  16. Digital Workflow for Computer-Guided Implant Surgery in Edentulous Patients: A Case Report.

    PubMed

    Oh, Ji-Hyeon; An, Xueyin; Jeong, Seung-Mi; Choi, Byung-Ho

    2017-12-01

    The purpose of this article was to describe a fully digital workflow used to perform computer-guided flapless implant placement in an edentulous patient without the use of conventional impressions, models, or a radiographic guide. Digital data for the workflow were acquired using an intraoral scanner and cone-beam computed tomography (CBCT). The image fusion of the intraoral scan data and CBCT data was performed by matching resin markers placed in the patient's mouth. The definitive digital data were used to design a prosthetically driven implant position, surgical template, and computer-aided design and computer-aided manufacturing fabricated fixed dental prosthesis. The authors believe this is the first published case describing such a technique in computer-guided flapless implant surgery for edentulous patients. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Topology optimization aided structural design: Interpretation, computational aspects and 3D printing.

    PubMed

    Kazakis, Georgios; Kanellopoulos, Ioannis; Sotiropoulos, Stefanos; Lagaros, Nikos D

    2017-10-01

    Construction industry has a major impact on the environment that we spend most of our life. Therefore, it is important that the outcome of architectural intuition performs well and complies with the design requirements. Architects usually describe as "optimal design" their choice among a rather limited set of design alternatives, dictated by their experience and intuition. However, modern design of structures requires accounting for a great number of criteria derived from multiple disciplines, often of conflicting nature. Such criteria derived from structural engineering, eco-design, bioclimatic and acoustic performance. The resulting vast number of alternatives enhances the need for computer-aided architecture in order to increase the possibility of arriving at a more preferable solution. Therefore, the incorporation of smart, automatic tools in the design process, able to further guide designer's intuition becomes even more indispensable. The principal aim of this study is to present possibilities to integrate automatic computational techniques related to topology optimization in the phase of intuition of civil structures as part of computer aided architectural design. In this direction, different aspects of a new computer aided architectural era related to the interpretation of the optimized designs, difficulties resulted from the increased computational effort and 3D printing capabilities are covered here in.

  18. [Guided maxillofacial surgery: Simulation and surgery aided by stereolithographic guides and custom-made miniplates.

    PubMed

    Philippe, B

    2013-08-05

    We present a new model of guided surgery, exclusively using computer assistance, from the preoperative planning of osteotomies to the actual surgery with the aid of stereolithographic cutting guides and osteosynthetic miniplates designed and made preoperatively, using custom-made titanium miniplates thanks to direct metal laser sintering. We describe the principles that guide the designing and industrial manufacturing of this new type of osteosynthesis miniplates. The surgical procedure is described step-by-step using several representative cases of dento-maxillofacial dysmorphosis. The encouraging short-term results demonstrate the wide range of application of this new technology for cranio-maxillofacial surgery, whatever the type of osteotomy performed, and for plastic reconstructive surgery. Copyright © 2013. Published by Elsevier Masson SAS.

  19. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    PubMed Central

    Chae, Michael P.; Rozen, Warren M.; McMenamin, Paul G.; Findlay, Michael W.; Spychal, Robert T.; Hunter-Smith, David J.

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing intraoperative guidance tools, teaching patients and surgical trainees, and producing patient-specific prosthetics in everyday surgical practice. PMID:26137465

  20. Emerging Applications of Bedside 3D Printing in Plastic Surgery.

    PubMed

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing intraoperative guidance tools, teaching patients and surgical trainees, and producing patient-specific prosthetics in everyday surgical practice.

  1. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing.

    PubMed

    Oh, Ji-Hyeon

    2018-12-01

    With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

  2. Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 1

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1989-01-01

    Control/Structures Integration program software needs, computer aided control engineering for flexible spacecraft, computer aided design, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software for flexible structures and robots are among the topics discussed.

  3. Optimization of lattice surgery is NP-hard

    NASA Astrophysics Data System (ADS)

    Herr, Daniel; Nori, Franco; Devitt, Simon J.

    2017-09-01

    The traditional method for computation in either the surface code or in the Raussendorf model is the creation of holes or "defects" within the encoded lattice of qubits that are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work, we focus on the lattice surgery representation, which realizes transversal logic operations without destroying the intrinsic 2D nearest-neighbor properties of the braid-based surface code and achieves universality without defects and braid-based logic. For both techniques there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult and the classical complexity associated with this problem has yet to be determined. In the context of lattice-surgery-based logic, we can introduce an optimality condition, which corresponds to a circuit with the lowest resource requirements in terms of physical qubits and computational time, and prove that the complexity of optimizing a quantum circuit in the lattice surgery model is NP-hard.

  4. A study on automated anatomical labeling to arteries concerning with colon from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Hoang, Bui Huy; Oda, Masahiro; Jiang, Zhengang; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2011-03-01

    This paper presents an automated anatomical labeling method of arteries extracted from contrasted 3D CT images based on multi-class AdaBoost. In abdominal surgery, understanding of vasculature related to a target organ such as the colon is very important. Therefore, the anatomical structure of blood vessels needs to be understood by computers in a system supporting abdominal surgery. There are several researches on automated anatomical labeling, but there is no research on automated anatomical labeling to arteries concerning with the colon. The proposed method obtains a tree structure of arteries from the artery region and calculates features values of each branch. These feature values are thickness, curvature, direction, and running vectors of branch. Then, candidate arterial names are computed by classifiers that are trained to output artery names. Finally, a global optimization process is applied to the candidate arterial names to determine final names. Target arteries of this paper are nine lower abdominal arteries (AO, LCIA, RCIA, LEIA, REIA, SMA, IMA, LIIA, RIIA). We applied the proposed method to 14 cases of 3D abdominal contrasted CT images, and evaluated the results by leave-one-out scheme. The average precision and recall rates of the proposed method were 87.9% and 93.3%, respectively. The results of this method are applicable for anatomical name display of surgical simulation and computer aided surgery.

  5. Application of Particle Swarm Optimization in Computer Aided Setup Planning

    NASA Astrophysics Data System (ADS)

    Kafashi, Sajad; Shakeri, Mohsen; Abedini, Vahid

    2011-01-01

    New researches are trying to integrate computer aided design (CAD) and computer aided manufacturing (CAM) environments. The role of process planning is to convert the design specification into manufacturing instructions. Setup planning has a basic role in computer aided process planning (CAPP) and significantly affects the overall cost and quality of machined part. This research focuses on the development for automatic generation of setups and finding the best setup plan in feasible condition. In order to computerize the setup planning process, three major steps are performed in the proposed system: a) Extraction of machining data of the part. b) Analyzing and generation of all possible setups c) Optimization to reach the best setup plan based on cost functions. Considering workshop resources such as machine tool, cutter and fixture, all feasible setups could be generated. Then the problem is adopted with technological constraints such as TAD (tool approach direction), tolerance relationship and feature precedence relationship to have a completely real and practical approach. The optimal setup plan is the result of applying the PSO (particle swarm optimization) algorithm into the system using cost functions. A real sample part is illustrated to demonstrate the performance and productivity of the system.

  6. Distal radius osteotomy with volar locking plates based on computer simulation.

    PubMed

    Miyake, Junichi; Murase, Tsuyoshi; Moritomo, Hisao; Sugamoto, Kazuomi; Yoshikawa, Hideki

    2011-06-01

    Corrective osteotomy using dorsal plates and structural bone graft usually has been used for treating symptomatic distal radius malunions. However, the procedure is technically demanding and requires an extensive dorsal approach. Residual deformity is a relatively frequent complication of this technique. We evaluated the clinical applicability of a three-dimensional osteotomy using computer-aided design and manufacturing techniques with volar locking plates for distal radius malunions. Ten patients with metaphyseal radius malunions were treated. Corrective osteotomy was simulated with the help of three-dimensional bone surface models created using CT data. We simulated the most appropriate screw holes in the deformed radius using computer-aided design data of a locking plate. During surgery, using a custom-made surgical template, we predrilled the screw holes as simulated. After osteotomy, plate fixation using predrilled screw holes enabled automatic reduction of the distal radial fragment. Autogenous iliac cancellous bone was grafted after plate fixation. The median volar tilt, radial inclination, and ulnar variance improved from -20°, 13°, and 6 mm, respectively, before surgery to 12°, 24°, and 1 mm, respectively, after surgery. The median wrist flexion improved from 33° before surgery to 60° after surgery. The median wrist extension was 70° before surgery and 65° after surgery. All patients experienced wrist pain before surgery, which disappeared or decreased after surgery. Surgeons can operate precisely and easily using this advanced technique. It is a new treatment option for malunion of distal radius fractures.

  7. Clinical feasibility and efficacy of using virtual surgical planning in bimaxillary orthognathic surgery without intermediate splint.

    PubMed

    Li, Yunfeng; Jiang, Yangmei; Zhang, Nan; Xu, Rui; Hu, Jing; Zhu, Songsong

    2015-03-01

    Computer-aided jaw surgery has been extensively studied recently. The purpose of this study was to determine the clinical feasibility of performing bimaxillary orthognathic surgery without intermediate splint using virtual surgical planning and rapid prototyping technology. Twelve consecutive patients who underwent bimaxillary orthognathic surgery were included. The presented treatment plan here mainly consists of 6 procedures: (1) data acquisition from computed tomography (CT) of the skull and laser scanning of the dentition; (2) reconstruction and fusion of a virtual skull model with accurate dentition; (3) virtual surgery simulation including osteotomy and movement and repositioning of bony segments; (4) final surgical splint fabrication (no intermediate splint) using computer-aided design and rapid prototyping technology; (5) transfer of the virtual surgical plan to the operating room; and (6) comparison of the actual surgical outcome to the virtual surgical plan. All procedures of the treatment were successfully performed on all 12 patients. In quantification of differences between simulated and actual postoperative outcome, we found that the mean linear difference was less than 1.8 mm, and the mean angular difference was less than 2.5 degrees in all evaluated patients. Results from this study suggested that it was feasible to perform bimaxillary orthognathic surgery without intermediate splint. Virtual surgical planning and the guiding splints facilitated the diagnosis, treatment planning, accurate osteotomy, and bony segments repositioning in orthognathic surgery.

  8. Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Rahman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.

    1980-01-01

    Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems.

  9. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence.

    PubMed

    Xia, J J; Gateno, J; Teichgraeber, J F; Yuan, P; Chen, K-C; Li, J; Zhang, X; Tang, Z; Alfi, D M

    2015-12-01

    The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also on an accurate surgical plan. The adoption of computer-aided surgical simulation (CASS) has created a paradigm shift in surgical planning. However, planning an orthognathic operation using CASS differs fundamentally from planning using traditional methods. With this in mind, the Surgical Planning Laboratory of Houston Methodist Research Institute has developed a CASS protocol designed specifically for orthognathic surgery. The purpose of this article is to present an algorithm using virtual tools for planning a double-jaw orthognathic operation. This paper will serve as an operation manual for surgeons wanting to incorporate CASS into their clinical practice. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Computer-assisted versus conventional free fibula flap technique for craniofacial reconstruction: an outcomes comparison.

    PubMed

    Seruya, Mitchel; Fisher, Mark; Rodriguez, Eduardo D

    2013-11-01

    There has been rising interest in computer-aided design/computer-aided manufacturing for preoperative planning and execution of osseous free flap reconstruction. The purpose of this study was to compare outcomes between computer-assisted and conventional fibula free flap techniques for craniofacial reconstruction. A two-center, retrospective review was carried out on patients who underwent fibula free flap surgery for craniofacial reconstruction from 2003 to 2012. Patients were categorized by the type of reconstructive technique: conventional (between 2003 and 2009) or computer-aided design/computer-aided manufacturing (from 2010 to 2012). Demographics, surgical factors, and perioperative and long-term outcomes were compared. A total of 68 patients underwent microsurgical craniofacial reconstruction: 58 conventional and 10 computer-aided design and manufacturing fibula free flaps. By demographics, patients undergoing the computer-aided design/computer-aided manufacturing method were significantly older and had a higher rate of radiotherapy exposure compared with conventional patients. Intraoperatively, the median number of osteotomies was significantly higher (2.0 versus 1.0, p=0.002) and the median ischemia time was significantly shorter (120 minutes versus 170 minutes, p=0.004) for the computer-aided design/computer-aided manufacturing technique compared with conventional techniques; operative times were shorter for patients undergoing the computer-aided design/computer-aided manufacturing technique, although this did not reach statistical significance. Perioperative and long-term outcomes were equivalent for the two groups, notably, hospital length of stay, recipient-site infection, partial and total flap loss, and rate of soft-tissue and bony tissue revisions. Microsurgical craniofacial reconstruction using a computer-assisted fibula flap technique yielded significantly shorter ischemia times amidst a higher number of osteotomies compared with conventional techniques. Therapeutic, III.

  11. Software and resources for computational medicinal chemistry

    PubMed Central

    Liao, Chenzhong; Sitzmann, Markus; Pugliese, Angelo; Nicklaus, Marc C

    2011-01-01

    Computer-aided drug design plays a vital role in drug discovery and development and has become an indispensable tool in the pharmaceutical industry. Computational medicinal chemists can take advantage of all kinds of software and resources in the computer-aided drug design field for the purposes of discovering and optimizing biologically active compounds. This article reviews software and other resources related to computer-aided drug design approaches, putting particular emphasis on structure-based drug design, ligand-based drug design, chemical databases and chemoinformatics tools. PMID:21707404

  12. The role of computer-aided 3D surgery and stereolithographic modelling for vector orientation in premaxillary and trans-sinusoidal maxillary distraction osteogenesis.

    PubMed

    Varol, Altan; Basa, Selçuk

    2009-06-01

    Maxillary distraction osteogenesis is a challenging procedure when it is performed with internal submerged distractors due to obligation of setting accurate distraction vectors. Five patients with severe maxillary retrognathy were planned with Mimics 10.01 CMF and Simplant 10.01 software. Distraction vectors and rods of distractors were arranged in 3D environment and on STL models. All patients were operated under general anaesthesia and complete Le Fort I downfracture was performed. All distractions were performed according to orientated vectors. All patients achieved stable occlusion and satisfactory aesthetic outcome at the end of the treatment period. Preoperative bending of internal maxillary distractors prevents significant loss of operation time. 3D computer-aided surgical simulation and model surgery provide accurate orientation of distraction vectors for premaxillary and internal trans-sinusoidal maxillary distraction. Combination of virtual surgical simulation and stereolithographic models surgery can be validated as an effective method of preoperative planning for complicated maxillofacial surgery cases.

  13. Optimization of topological quantum algorithms using Lattice Surgery is hard

    NASA Astrophysics Data System (ADS)

    Herr, Daniel; Nori, Franco; Devitt, Simon

    The traditional method for computation in the surface code or the Raussendorf model is the creation of holes or ''defects'' within the encoded lattice of qubits which are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work we turn attention to the Lattice Surgery representation, which realizes encoded logic operations without destroying the intrinsic 2D nearest-neighbor interactions sufficient for braided based logic and achieves universality without using defects for encoding information. In both braided and lattice surgery logic there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult to define and the classical complexity associated with this problem has yet to be determined. In the context of lattice surgery based logic, we can introduce an optimality condition, which corresponds to a circuit with lowest amount of physical qubit requirements, and prove that the complexity of optimizing the geometric (lattice surgery) representation of a quantum circuit is NP-hard.

  14. Clinical application of three-dimensional printing technology in craniofacial plastic surgery.

    PubMed

    Choi, Jong Woo; Kim, Namkug

    2015-05-01

    Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models.

  15. Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery

    PubMed Central

    Kim, Namkug

    2015-01-01

    Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models. PMID:26015880

  16. Creation of a 3-dimensional virtual dental patient for computer-guided surgery and CAD-CAM interim complete removable and fixed dental prostheses: A clinical report.

    PubMed

    Harris, Bryan T; Montero, Daniel; Grant, Gerald T; Morton, Dean; Llop, Daniel R; Lin, Wei-Shao

    2017-02-01

    This clinical report proposes a digital workflow using 2-dimensional (2D) digital photographs, a 3D extraoral facial scan, and cone beam computed tomography (CBCT) volumetric data to create a 3D virtual patient with craniofacial hard tissue, remaining dentition (including surrounding intraoral soft tissue), and the realistic appearance of facial soft tissue at an exaggerated smile under static conditions. The 3D virtual patient was used to assist the virtual diagnostic tooth arrangement process, providing patient with a pleasing preoperative virtual smile design that harmonized with facial features. The 3D virtual patient was also used to gain patient's pretreatment approval (as a communication tool), design a prosthetically driven surgical plan for computer-guided implant surgery, and fabricate the computer-aided design and computer-aided manufacturing (CAD-CAM) interim prostheses. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Computer-aided osteotomy design for harvesting autologous bone grafts in reconstructive surgery

    NASA Astrophysics Data System (ADS)

    Krol, Zdzislaw; Zerfass, Peter; von Rymon-Lipinski, Bartosz; Jansen, Thomas; Hauck, Wolfgang; Zeilhofer, Hans-Florian U.; Sader, Robert; Keeve, Erwin

    2001-05-01

    Autologous grafts serve as the standard grafting material in the treatment of maxillofacial bone tumors, traumatic defects or congenital malformations. The pre-selection of a donor site depends primarily on the morphological fit of the available bone mass and the shape of the part that has to be transplanted. To achieve sufficient incorporation of the autograft into the host bone, precise planning and simulation of the surgical intervention based on 3D CT studies is required. This paper presents a method to identify an optimal donor site by performing an optimization of appropriate similarity measures between donor region and a given transplant. At the initial stage the surgeon has to delineate the osteotomy border lines in the template CT data set and to define a set of constraints for the optimization of appropriate similarity measures between donor region and a given transplant. At the initial stage the surgeon has to delineate the osteotomy border lines in the template CT data set and to define a set of constraints for the optimization task in the donor site CT data set. The following fully automatic optimization stage delivers a set of sub-optimal and optimal donor sites for a given template. All generated solutions can be explored interactively on the computer display using an efficient graphical interface. Reconstructive operations supported by our system were performed on 28 patients. We found that the operation time can be considerably shortened by this approach.

  18. Precision of a CAD/CAM-engineered surgical template based on a facebow for orthognathic surgery: an experiment with a rapid prototyping maxillary model.

    PubMed

    Lee, Jae-Won; Lim, Se-Ho; Kim, Moon-Key; Kang, Sang-Hoon

    2015-12-01

    We examined the precision of a computer-aided design/computer-aided manufacturing-engineered, manufactured, facebow-based surgical guide template (facebow wafer) by comparing it with a bite splint-type orthognathic computer-aided design/computer-aided manufacturing-engineered surgical guide template (bite wafer). We used 24 rapid prototyping (RP) models of the craniofacial skeleton with maxillary deformities. Twelve RP models each were used for the facebow wafer group and the bite wafer group (experimental group). Experimental maxillary orthognathic surgery was performed on the RP models of both groups. Errors were evaluated through comparisons with surgical simulations. We measured the minimum distances from 3 planes of reference to determine the vertical, lateral, and anteroposterior errors at specific measurement points. The measured errors were compared between experimental groups using a t test. There were significant intergroup differences in the lateral error when we compared the absolute values of the 3-D linear distance, as well as vertical, lateral, and anteroposterior errors between experimental groups. The bite wafer method exhibited little lateral error overall and little error in the anterior tooth region. The facebow wafer method exhibited very little vertical error in the posterior molar region. The clinical precision of the facebow wafer method did not significantly exceed that of the bite wafer method. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Image calibration and registration in cone-beam computed tomogram for measuring the accuracy of computer-aided implant surgery

    NASA Astrophysics Data System (ADS)

    Lam, Walter Y. H.; Ngan, Henry Y. T.; Wat, Peter Y. P.; Luk, Henry W. K.; Goto, Tazuko K.; Pow, Edmond H. N.

    2015-02-01

    Medical radiography is the use of radiation to "see through" a human body without breaching its integrity (surface). With computed tomography (CT)/cone beam computed tomography (CBCT), three-dimensional (3D) imaging can be produced. These imagings not only facilitate disease diagnosis but also enable computer-aided surgical planning/navigation. In dentistry, the common method for transfer of the virtual surgical planning to the patient (reality) is the use of surgical stent either with a preloaded planning (static) like a channel or a real time surgical navigation (dynamic) after registration with fiducial markers (RF). This paper describes using the corner of a cube as a radiopaque fiducial marker on an acrylic (plastic) stent, this RF allows robust calibration and registration of Cartesian (x, y, z)- coordinates for linking up the patient (reality) and the imaging (virtuality) and hence the surgical planning can be transferred in either static or dynamic way. The accuracy of computer-aided implant surgery was measured with reference to coordinates. In our preliminary model surgery, a dental implant was planned virtually and placed with preloaded surgical guide. The deviation of the placed implant apex from the planning was x=+0.56mm [more right], y=- 0.05mm [deeper], z=-0.26mm [more lingual]) which was within clinically 2mm safety range. For comparison with the virtual planning, the physically placed implant was CT/CBCT scanned and errors may be introduced. The difference of the actual implant apex to the virtual apex was x=0.00mm, y=+0.21mm [shallower], z=-1.35mm [more lingual] and this should be brought in mind when interpret the results.

  20. Valuable use of computer-aided surgery in congenital bony aural atresia.

    PubMed

    Caversaccio, Marco; Romualdez, Joel; Baechler, Richard; Nolte, Lutz-Peter; Kompis, Martin; Häusler, Rudolf

    2003-04-01

    Congenital aural atresia repair is difficult owing to unpredictable anatomy. Benefits may be gained from computer-aided surgery (CAS), but its exact role has yet to be clearly defined. This is a retrospective study of 18 patients with bony type C (Schuknecht classification) congenital atresia. In the first group (n = 9), repair was performed with CAS while in the second group (n = 9), similar intervention was applied without CAS. Intra- and post-operative clinical and audiological findings were compared. CAS computed tomography (CT) images correlated well with intra-operative findings giving the surgeon more security and reducing operative time by 25 minutes. In our estimation, CAS is valuable for type C congenital aural atresia repair. It serves as an educational tool and as a guide for the experienced surgeon in critical situations where anatomical landmarks are distorted and where access is limited.

  1. A new oscillating saw for robotic aided surgery.

    PubMed

    Moctezuma, J L; Schuster, D; Gossé, F; Schulz, H J

    1997-01-01

    In this paper a brief description of a computer and robotic aided surgery system is given with a detailed overview of the necessity to develop special tools for robotic surgery. The application range of this robotic system has been specially focused on the orthopaedics field and, more particularly, on the execution of osteotomies. It was therefore necessary to develop a new saw device which would meet medical and--from the robot system point of view--mechanical as well as functional requirements. After describing the device which was developed on the basis of these requirements, a detailed comparative study of off-the-shelf oscillating saws and the new device is given at the end of the paper.

  2. Medical imaging and registration in computer assisted surgery.

    PubMed

    Simon, D A; Lavallée, S

    1998-09-01

    Imaging, sensing, and computing technologies that are being introduced to aid in the planning and execution of surgical procedures are providing orthopaedic surgeons with a powerful new set of tools for improving clinical accuracy, reliability, and patient outcomes while reducing costs and operating times. Current computer assisted surgery systems typically include a measurement process for collecting patient specific medical data, a decision making process for generating a surgical plan, a registration process for aligning the surgical plan to the patient, and an action process for accurately achieving the goals specified in the plan. Some of the key concepts in computer assisted surgery applied to orthopaedics with a focus on the basic framework and underlying technologies is outlined. In addition, technical challenges and future trends in the field are discussed.

  3. Entertainment education for breast cancer surgery decisions: a randomized trial among patients with low health literacy.

    PubMed

    Jibaja-Weiss, Maria L; Volk, Robert J; Granchi, Thomas S; Neff, Nancy E; Robinson, Emily K; Spann, Stephen J; Aoki, Noriaki; Friedman, Lois C; Beck, J Robert

    2011-07-01

    To evaluate an entertainment-based patient decision aid for early stage breast cancer surgery in low health literacy patients. Newly diagnosed female patients with early stage breast cancer from two public hospitals were randomized to receive an entertainment-based decision aid for breast cancer treatment along with usual care (intervention arm) or to receive usual care only (control arm). Pre-decision (baseline), pre-surgery, and 1-year follow-up assessments were conducted. Patients assigned to the intervention arm of the study were more likely than the controls to choose mastectomy rather than breast-conserving surgery; however, they appeared better informed and clearer about their surgical options than women assigned to the control group. No differences in satisfaction with the surgical decision or the decision-making process were observed between the patients who viewed the intervention and those assigned to the control group. Entertainment education may be a desirable strategy for informing lower health literate women about breast cancer surgery options. Incorporating patient decision aids, particularly computer-based decision aids, into standard clinical practice remains a challenge; however, patients may be directed to view programs at home or at public locations (e.g., libraries, community centers). Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Interfacing Computer Aided Parallelization and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)

    2003-01-01

    When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.

  5. Analysis and Outcomes of Cataract Surgery in Patients with Acquired Immunodeficiency Syndrome.

    PubMed

    Chew, Grace W M; Teoh, Stephen C B; Agrawal, Rupesh

    2017-08-01

    To investigate the surgical outcomes, complications and postoperative progression in HIV patients undergoing cataract surgery in a teaching hospital. A retrospective cohort study of patients with HIV/AIDS who had cataract surgery from January 2000 until December 2011 at a tertiary referral multidisciplinary hospital in Singapore. We identified 44 eyes from 29 patients. Preoperatively, 41.3% had no ophthalmic manifestations of HIV/AIDS, while 16 eyes had quiescent cytomegalovirus retinitis (CMVR). Postoperatively, 1 eye developed new CMVR, while 1 eye had reactivation of previous CMVR. Of eyes with new or previous CMVR, 1 eye developed rhegmatogenous retinal detachment (RD) postoperatively. Only 3 eyes had prolonged postoperative inflammation. There were no cases of endophthalmitis or cystoid macular edema. Postoperative improvement of at least two Snellen lines was achieved in 86.6% of eyes. Cataract surgery in HIV patients is generally safe, regardless of CD4 count, but their general and ocular health should be optimized preoperatively.

  6. Computer-assisted innovations in craniofacial surgery.

    PubMed

    Rudman, Kelli; Hoekzema, Craig; Rhee, John

    2011-08-01

    Reconstructive surgery for complex craniofacial defects challenges even the most experienced surgeons. Preoperative reconstructive planning requires consideration of both functional and aesthetic properties of the mandible, orbit, and midface. Technological innovations allow for computer-assisted preoperative planning, computer-aided manufacturing of patient-specific implants (PSIs), and computer-assisted intraoperative navigation. Although many case reports discuss computer-assisted preoperative planning and creation of custom implants, a general overview of computer-assisted innovations is not readily available. This article reviews innovations in computer-assisted reconstructive surgery including anatomic considerations when using PSIs, technologies available for preoperative planning, work flow and process of obtaining a PSI, and implant materials available for PSIs. A case example follows illustrating the use of this technology in the reconstruction of an orbital-frontal-temporal defect with a PSI. Computer-assisted reconstruction of complex craniofacial defects provides the reconstructive surgeon with innovative options for challenging reconstructive cases. As technology advances, applications of computer-assisted reconstruction will continue to expand. © Thieme Medical Publishers.

  7. Concept design and simulation study on a "phantom" anvil for circular stapler.

    PubMed

    Rulli, Francesco; Kartheuser, Alex; Amirhassankhani, Sasan; Mourad, Michel; Stefani, Mario; de Ferrá Aureli, Andrés; Sileri, Pierpaolo; Valentini, Pier Paolo

    2015-04-01

    Complications and challenges arising from the intraoperative double-stapling technique are seldom reported in colorectal surgery literature. Partial or full-thickness rectal injuries can occur during the introduction and the advancement of the circular stapler along the upper rectum. The aim of this study is to address some of these issues by designing and optimizing a "phantom" anvil manufactured to overcome difficulties throughout the rectal introduction and advancement of the circular stapler for the treatment of benign and malignant colon disease. The design of the "phantom" anvil has been performed using computer-aided modeling techniques, finite element investigations, and 2 essential keynotes in mind. The first one is the internal shape of the anvil, which is used for the connection to the gun. The second is the shape of the cap, which makes possible the insertion of the gun through the rectum. The "phantom" anvil has 2 functional requirements, which have been taken into account. The design has been optimized to avoid colorectal injuries, neoplastic dissemination (ie, mechanical seeding) and to reduce the fecal contamination. Numerical simulations show that a right combination of both top and bottom fillet radii of the shape of the anvil can reduce the stress for the considered anatomic configuration of >90%. Both the fillet radii at the top and the bottom of the device influence the local stress of the colon rectum. A dismountable device, which is used only for the insertion and advancement of the stapler, allows a dedicated design of its shape, keeping the remainder of the stapler unmodified. Computer-aided simulations are useful to perform numerical investigations to optimize the design of this auxiliary part for both the safety of the patient and the ease of the stapler advancement through the rectum.

  8. Automated detection and quantification of residual brain tumor using an interactive computer-aided detection scheme

    NASA Astrophysics Data System (ADS)

    Gaffney, Kevin P.; Aghaei, Faranak; Battiste, James; Zheng, Bin

    2017-03-01

    Detection of residual brain tumor is important to evaluate efficacy of brain cancer surgery, determine optimal strategy of further radiation therapy if needed, and assess ultimate prognosis of the patients. Brain MR is a commonly used imaging modality for this task. In order to distinguish between residual tumor and surgery induced scar tissues, two sets of MRI scans are conducted pre- and post-gadolinium contrast injection. The residual tumors are only enhanced in the post-contrast injection images. However, subjective reading and quantifying this type of brain MR images faces difficulty in detecting real residual tumor regions and measuring total volume of the residual tumor. In order to help solve this clinical difficulty, we developed and tested a new interactive computer-aided detection scheme, which consists of three consecutive image processing steps namely, 1) segmentation of the intracranial region, 2) image registration and subtraction, 3) tumor segmentation and refinement. The scheme also includes a specially designed and implemented graphical user interface (GUI) platform. When using this scheme, two sets of pre- and post-contrast injection images are first automatically processed to detect and quantify residual tumor volume. Then, a user can visually examine segmentation results and conveniently guide the scheme to correct any detection or segmentation errors if needed. The scheme has been repeatedly tested using five cases. Due to the observed high performance and robustness of the testing results, the scheme is currently ready for conducting clinical studies and helping clinicians investigate the association between this quantitative image marker and outcome of patients.

  9. A web-based computer aided system for liver surgery planning: initial implementation on RayPlus

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Yuan, Rong; Sun, Zhi; Li, Tianhong; Xie, Qingguo

    2016-03-01

    At present, computer aided systems for liver surgery design and risk evaluation are widely used in clinical all over the world. However, most systems are local applications that run on high-performance workstations, and the images have to processed offline. Compared with local applications, a web-based system is accessible anywhere and for a range of regardless of relative processing power or operating system. RayPlus (http://rayplus.life.hust.edu.cn), a B/S platform for medical image processing, was developed to give a jump start on web-based medical image processing. In this paper, we implement a computer aided system for liver surgery planning on the architecture of RayPlus. The system consists of a series of processing to CT images including filtering, segmentation, visualization and analyzing. Each processing is packaged into an executable program and runs on the server side. CT images in DICOM format are processed step by to interactive modeling on browser with zero-installation and server-side computing. The system supports users to semi-automatically segment the liver, intrahepatic vessel and tumor from the pre-processed images. Then, surface and volume models are built to analyze the vessel structure and the relative position between adjacent organs. The results show that the initial implementation meets satisfactorily its first-order objectives and provide an accurate 3D delineation of the liver anatomy. Vessel labeling and resection simulation are planned to add in the future. The system is available on Internet at the link mentioned above and an open username for testing is offered.

  10. The Impact of Machine Translation and Computer-aided Translation on Translators

    NASA Astrophysics Data System (ADS)

    Peng, Hao

    2018-03-01

    Under the context of globalization, communications between countries and cultures are becoming increasingly frequent, which make it imperative to use some techniques to help translate. This paper is to explore the influence of computer-aided translation on translators, which is derived from the field of the computer-aided translation (CAT) and machine translation (MT). Followed by an introduction to the development of machine and computer-aided translation, it then depicts the technologies practicable to translators, which are trying to analyze the demand of designing the computer-aided translation so far in translation practice, and optimize the designation of computer-aided translation techniques, and analyze its operability in translation. The findings underline the advantages and disadvantages of MT and CAT tools, and the serviceability and future development of MT and CAT technologies. Finally, this thesis probes into the impact of these new technologies on translators in hope that more translators and translation researchers can learn to use such tools to improve their productivity.

  11. Learning and Optimization of Cognitive Capabilities. Final Project Report.

    ERIC Educational Resources Information Center

    Lumsdaine, A.A.; And Others

    The work of a three-year series of experimental studies of human cognition is summarized in this report. Proglem solving and learning in man-machine interaction was investigated, as well as relevant variables and processes. The work included four separate projects: (1) computer-aided problem solving, (2) computer-aided instruction techniques, (3)…

  12. Computer Aided Learning of Mathematics: Software Evaluation

    ERIC Educational Resources Information Center

    Yushau, B.; Bokhari, M. A.; Wessels, D. C. J.

    2004-01-01

    Computer Aided Learning of Mathematics (CALM) has been in use for some time in the Prep-Year Mathematics Program at King Fahd University of Petroleum & Minerals. Different kinds of software (both locally designed and imported) have been used in the quest of optimizing the recitation/problem session hour of the mathematics classes. This paper…

  13. Manufacturing engineering: Principles for optimization

    NASA Astrophysics Data System (ADS)

    Koenig, Daniel T.

    Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.

  14. Measurement of breast volume using body scan technology(computer-aided anthropometry).

    PubMed

    Veitch, Daisy; Burford, Karen; Dench, Phil; Dean, Nicola; Griffin, Philip

    2012-01-01

    Assessment of breast volume is an important tool for preoperative planning in various breast surgeries and other applications, such as bra development. Accurate assessment can improve the consistency and quality of surgery outcomes. This study outlines a non-invasive method to measure breast volume using a whole body 3D laser surface anatomy scanner, the Cyberware WBX. It expands on a previous publication where this method was validated against patients undergoing mastectomy. It specifically outlines and expands the computer-aided anthropometric (CAA) method for extracting breast volumes in a non-invasive way from patients enrolled in a breast reduction study at Flinders Medical Centre, South Australia. This step-by-step description allows others to replicate this work and provides an additional tool to assist them in their own clinical practice and development of designs.

  15. Optimizing Surgical Quality Datasets to Care for Older Adults: Lessons from the American College of Surgeons NSQIP Geriatric Surgery Pilot.

    PubMed

    Berian, Julia R; Zhou, Lynn; Hornor, Melissa A; Russell, Marcia M; Cohen, Mark E; Finlayson, Emily; Ko, Clifford Y; Robinson, Thomas N; Rosenthal, Ronnie A

    2017-12-01

    Surgical quality datasets can be better tailored toward older adults. The American College of Surgeons (ACS) NSQIP Geriatric Surgery Pilot collected risk factors and outcomes in 4 geriatric-specific domains: cognition, decision-making, function, and mobility. This study evaluated the contributions of geriatric-specific factors to risk adjustment in modeling 30-day outcomes and geriatric-specific outcomes (postoperative delirium, new mobility aid use, functional decline, and pressure ulcers). Using ACS NSQIP Geriatric Surgery Pilot data (January 2014 to December 2016), 7 geriatric-specific risk factors were evaluated for selection in 14 logistic models (morbidities/mortality) in general-vascular and orthopaedic surgery subgroups. Hierarchical models evaluated 4 geriatric-specific outcomes, adjusting for hospitals-level effects and including Bayesian-type shrinkage, to estimate hospital performance. There were 36,399 older adults who underwent operations at 31 hospitals in the ACS NSQIP Geriatric Surgery Pilot. Geriatric-specific risk factors were selected in 10 of 14 models in both general-vascular and orthopaedic surgery subgroups. After risk adjustment, surrogate consent (odds ratio [OR] 1.5; 95% CI 1.3 to 1.8) and use of a mobility aid (OR 1.3; 95% CI 1.1 to 1.4) increased the risk for serious morbidity or mortality in the general-vascular cohort. Geriatric-specific factors were selected in all 4 geriatric-specific outcomes models. Rates of geriatric-specific outcomes were: postoperative delirium in 12.1% (n = 3,650), functional decline in 42.9% (n = 13,000), new mobility aid in 29.7% (n = 9,257), and new or worsened pressure ulcers in 1.7% (n = 527). Geriatric-specific risk factors are important for patient-centered care and contribute to risk adjustment in modeling traditional and geriatric-specific outcomes. To provide optimal patient care for older adults, surgical datasets should collect measures that address cognition, decision-making, mobility, and function. Copyright © 2017 American College of Surgeons. All rights reserved.

  16. Orthodontics: computer-aided diagnosis and treatment planning

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Li, Zhongke; Wei, Suyuan; Deng, Fanglin; Yao, Sen

    2000-10-01

    The purpose of this article is to introduce the outline of our newly developed computer-aided 3D dental cast analyzing system with laser scanning, and its preliminary clinical applications. The system is composed of a scanning device and a personal computer as a scanning controller and post processor. The scanning device is composed of a laser beam emitter, two sets of linear CCD cameras and a table which is rotatable by two-degree-of-freedom. The rotating is controlled precisely by a personal computer. The dental cast is projected and scanned with a laser beam. Triangulation is applied to determine the location of each point. Generation of 3D graphics of the dental cast takes approximately 40 minutes. About 170,000 sets of X,Y,Z coordinates are store for one dental cast. Besides the conventional linear and angular measurements of the dental cast, we are also able to demonstrate the size of the top surface area of each molar. The advantage of this system is that it facilitates the otherwise complicated and time- consuming mock surgery necessary for treatment planning in orthognathic surgery.

  17. Computer-Aided Design and Computer-Aided Manufacturing Hydroxyapatite/Epoxide Acrylate Maleic Compound Construction for Craniomaxillofacial Bone Defects.

    PubMed

    Zhang, Lei; Shen, Shunyao; Yu, Hongbo; Shen, Steve Guofang; Wang, Xudong

    2015-07-01

    The aim of this study was to investigate the use of computer-aided design and computer-aided manufacturing hydroxyapatite (HA)/epoxide acrylate maleic (EAM) compound construction artificial implants for craniomaxillofacial bone defects. Computed tomography, computer-aided design/computer-aided manufacturing and three-dimensional reconstruction, as well as rapid prototyping were performed in 12 patients between 2008 and 2013. The customized HA/EAM compound artificial implants were manufactured through selective laser sintering using a rapid prototyping machine into the exact geometric shapes of the defect. The HA/EAM compound artificial implants were then implanted during surgical reconstruction. Color-coded superimpositions demonstrated the discrepancy between the virtual plan and achieved results using Geomagic Studio. As a result, the HA/EAM compound artificial bone implants were perfectly matched with the facial areas that needed reconstruction. The postoperative aesthetic and functional results were satisfactory. The color-coded superimpositions demonstrated good consistency between the virtual plan and achieved results. The three-dimensional maximum deviation is 2.12 ± 0.65  mm and the three-dimensional mean deviation is 0.27 ± 0.07  mm. No facial nerve weakness or pain was observed at the follow-up examinations. Only 1 implant had to be removed 2 months after the surgery owing to severe local infection. No other complication was noted during the follow-up period. In conclusion, computer-aided, individually fabricated HA/EAM compound construction artificial implant was a good craniomaxillofacial surgical technique that yielded improved aesthetic results and functional recovery after reconstruction.

  18. Construction of a Urologic Robotic Surgery Training Curriculum: How Many Simulator Sessions Are Required for Residents to Achieve Proficiency?

    PubMed

    Wiener, Scott; Haddock, Peter; Shichman, Steven; Dorin, Ryan

    2015-11-01

    To define the time needed by urology residents to attain proficiency in computer-aided robotic surgery to aid in the refinement of a robotic surgery simulation curriculum. We undertook a retrospective review of robotic skills training data acquired during January 2012 to December 2014 from junior (postgraduate year [PGY] 2-3) and senior (PGY4-5) urology residents using the da Vinci Skills Simulator. We determined the number of training sessions attended and the level of proficiency achieved by junior and senior residents in attempting 11 basic or 6 advanced tasks, respectively. Junior residents successfully completed 9.9 ± 1.8 tasks, with 62.5% completing all 11 basic tasks. The maximal cumulative success rate of junior residents completing basic tasks was 89.8%, which was achieved within 7.0 ± 1.5 hours of training. Of senior residents, 75% successfully completed all six advanced tasks. Senior residents attended 6.3 ± 3.5 hours of training during which 5.1 ± 1.6 tasks were completed. The maximal cumulative success rate of senior residents completing advanced tasks was 85.4%. When designing and implementing an effective robotic surgical training curriculum, an allocation of 10 hours of training may be optimal to allow junior and senior residents to achieve an acceptable level of surgical proficiency in basic and advanced robotic surgical skills, respectively. These data help guide the design and scheduling of a residents training curriculum within the time constraints of a resident's workload.

  19. Determination of optimal parameters for dual-layer cathode of polymer electrolyte fuel cell using computational intelligence-aided design.

    PubMed

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference η and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs.

  20. Computer-aided drug discovery.

    PubMed

    Bajorath, Jürgen

    2015-01-01

    Computational approaches are an integral part of interdisciplinary drug discovery research. Understanding the science behind computational tools, their opportunities, and limitations is essential to make a true impact on drug discovery at different levels. If applied in a scientifically meaningful way, computational methods improve the ability to identify and evaluate potential drug molecules, but there remain weaknesses in the methods that preclude naïve applications. Herein, current trends in computer-aided drug discovery are reviewed, and selected computational areas are discussed. Approaches are highlighted that aid in the identification and optimization of new drug candidates. Emphasis is put on the presentation and discussion of computational concepts and methods, rather than case studies or application examples. As such, this contribution aims to provide an overview of the current methodological spectrum of computational drug discovery for a broad audience.

  1. The Primary Care Computer Simulation: Optimal Primary Care Manager Empanelment.

    DTIC Science & Technology

    1997-05-01

    explored in which a team consisted of two providers, two nurses, and a nurse aide . Each team had a specific exam room assigned to them. Additionally, a...team consisting of one provider, one nurse, and one nurse aide was simulated. The model also examined the effects of adding two exam rooms. The study...minutes. The optimal solution, which reduced patient time to below 90 minutes, was the mix of one provider, a nurse, and a nurse aide in which each

  2. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.

    PubMed

    Pycinski, Bartlomiej; Czajkowska, Joanna; Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers.

  3. Connecting the virtual world of computers to the real world of medicinal chemistry.

    PubMed

    Glen, Robert C

    2011-03-01

    Drug discovery involves the simultaneous optimization of chemical and biological properties, usually in a single small molecule, which modulates one of nature's most complex systems: the balance between human health and disease. The increased use of computer-aided methods is having a significant impact on all aspects of the drug-discovery and development process and with improved methods and ever faster computers, computer-aided molecular design will be ever more central to the discovery process.

  4. Patient Education for Endoscopic Sinus Surgery: Preliminary Experience Using 3D-Printed Clinical Imaging Data.

    PubMed

    Sander, Ian M; Liepert, Taimi T; Doney, Evan L; Leevy, W Matthew; Liepert, Douglas R

    2017-04-07

    Within the Ear, Nose, and Throat (ENT) medical space, a relatively small fraction of patients follow through with elective surgeries to fix ailments such as a deviated septum or occluded sinus passage. Patient understanding of their diagnosis and treatment plan is integral to compliance, which ultimately yields improved medical outcomes and better quality of life. Here we report the usage of advanced, polyjet 3D printing methods to develop a multimaterial replica of human nasal sinus anatomy, derived from clinical X-ray computed tomography (CT) data, to be used as an educational aid during physician consultation. The final patient education model was developed over several iterations to optimize material properties, anatomical accuracy and overall display. A two-arm, single-center, randomized, prospective study was then performed in which 50 ENT surgical candidates (and an associated control group, n = 50) were given an explanation of their anatomy, disease state, and treatment options using the education model as an aid. Statistically significant improvements in patient ratings of their physician's explanation of their treatment options ( p = 0.020), self-rated anatomical understanding ( p = 0.043), self-rated understanding of disease state ( p = 0.016), and effectiveness of the visualization ( p = 0.007) were noted from the population that viewed the 3D education model, indicating it is an effective tool which ENT surgeons may use to educate and interact with patients.

  5. Giga-voxel computational morphogenesis for structural design

    NASA Astrophysics Data System (ADS)

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan S.; Sigmund, Ole

    2017-10-01

    In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution—more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.

  6. Giga-voxel computational morphogenesis for structural design.

    PubMed

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan S; Sigmund, Ole

    2017-10-04

    In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution-more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.

  7. Computer-supported implant planning and guided surgery: a narrative review.

    PubMed

    Vercruyssen, Marjolein; Laleman, Isabelle; Jacobs, Reinhilde; Quirynen, Marc

    2015-09-01

    To give an overview of the workflow from examination to planning and execution, including possible errors and pitfalls, in order to justify the indications for guided surgery. An electronic literature search of the PubMed database was performed with the intention of collecting relevant information on computer-supported implant planning and guided surgery. Currently, different computer-supported systems are available to optimize and facilitate implant surgery. The transfer of the implant planning (in a software program) to the operative field remains however the most difficult part. Guided implant surgery clearly reduces the inaccuracy, defined as the deviation between the planned and the final position of the implant in the mouth. It might be recommended for the following clinical indications: need for minimal invasive surgery, optimization of implant planning and positioning (i.e. aesthetic cases), and immediate restoration. The digital technology rapidly evolves and new developments have resulted in further improvement of the accuracy. Future developments include the reduction of the number of steps needed from the preoperative examination of the patient to the actual execution of the guided surgery. The latter will become easier with the implementation of optical scans and 3D-printing. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Timing of Surgery in Rasmussen Syndrome: Is Patience a Virtue?

    PubMed Central

    Hartman, Adam L.; Cross, J. Helen

    2014-01-01

    Rasmussen syndrome affects previously normal people and forever changes their lives and the lives of their families. Although understood as a probable autoimmune condition, medical treatment remains limited and surgery remains the only cure, although with inevitable functional consequences. Difficulties remain in deciding on the optimal timing of surgery. Here, we review data available to aid clinicians faced with making the decision of when to recommend hemispherectomy. Not all patients have rapidly progressive disease, however, and such patients may benefit from immunomodulatory treatment. Thus, a patient's clinical course requires careful evaluation in order to identify those who would benefit most from early surgery. PMID:24955069

  9. Development of an integrated automated retinal surgical laser system.

    PubMed

    Barrett, S F; Wright, C H; Oberg, E D; Rockwell, B A; Cain, C; Rylander, H G; Welch, A J

    1996-01-01

    Researchers at the University of Texas and the USAF Academy have worked toward the development of a retinal robotic laser system. The overall goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Preliminary testing on rhesus primate subjects have been accomplished with the CW argon laser and also the ultrashort pulse laser. Recent efforts have concentrated on combining the two subsystems into a single prototype capable of simultaneously controlling both lesion depth and placement. We have designated this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. Several interesting areas of study have developed in integrating the two subsystems: 1) "doughnut" shaped lesions that occur under certain combinations of laser power, spot size, and irradiation time complicating measurements of central lesion reflectance, 2) the optimal retinal field of view (FOV) to achieve both tracking and lesion parameter control, and 3) development of a hybrid analog/digital tracker using confocal reflectometry to achieve retinal tracking speeds of up to 100 dgs. This presentation will discuss these design issues of this clinically significant prototype system. Details of the hybrid prototype system are provided in "Hybrid Eye Tracking for Computer-Aided Retinal Surgery" at this conference. The paper will close with remaining technical hurdles to clear prior to testing the full-up clinical prototype system.

  10. Computer aided analysis and optimization of mechanical system dynamics

    NASA Technical Reports Server (NTRS)

    Haug, E. J.

    1984-01-01

    The purpose is to outline a computational approach to spatial dynamics of mechanical systems that substantially enlarges the scope of consideration to include flexible bodies, feedback control, hydraulics, and related interdisciplinary effects. Design sensitivity analysis and optimization is the ultimate goal. The approach to computer generation and solution of the system dynamic equations and graphical methods for creating animations as output is outlined.

  11. Three-dimensional virtual planning in orthognathic surgery enhances the accuracy of soft tissue prediction.

    PubMed

    Van Hemelen, Geert; Van Genechten, Maarten; Renier, Lieven; Desmedt, Maria; Verbruggen, Elric; Nadjmi, Nasser

    2015-07-01

    Throughout the history of computing, shortening the gap between the physical and digital world behind the screen has always been strived for. Recent advances in three-dimensional (3D) virtual surgery programs have reduced this gap significantly. Although 3D assisted surgery is now widely available for orthognathic surgery, one might still argue whether a 3D virtual planning approach is a better alternative to a conventional two-dimensional (2D) planning technique. The purpose of this study was to compare the accuracy of a traditional 2D technique and a 3D computer-aided prediction method. A double blind randomised prospective study was performed to compare the prediction accuracy of a traditional 2D planning technique versus a 3D computer-aided planning approach. The accuracy of the hard and soft tissue profile predictions using both planning methods was investigated. There was a statistically significant difference between 2D and 3D soft tissue planning (p < 0.05). The statistically significant difference found between 2D and 3D planning and the actual soft tissue outcome was not confirmed by a statistically significant difference between methods. The 3D planning approach provides more accurate soft tissue planning. However, the 2D orthognathic planning is comparable to 3D planning when it comes to hard tissue planning. This study provides relevant results for choosing between 3D and 2D planning in clinical practice. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Development of customized positioning guides using computer-aided design and manufacturing technology for orthognathic surgery.

    PubMed

    Lin, Hsiu-Hsia; Chang, Hsin-Wen; Lo, Lun-Jou

    2015-12-01

    The purpose of this study was to devise a method for producing customized positioning guides for translating virtual plans to actual orthognathic surgery, and evaluation of the feasibility and validity of the devised method. Patients requiring two-jaw orthognathic surgery were enrolled and consented before operation. Two types of positioning guides were designed and fabricated using computer-aided design and manufacturing technology: One of the guides was used for the LeFort I osteotomy, and the other guide was used for positioning the maxillomandibular complex. The guides were fixed to the medial side of maxilla. For validation, the simulation images and postoperative cone beam computed tomography images were superimposed using surface registration to quantify the difference between the images. The data were presented in root-mean-square difference (RMSD) values. Both sets of guides were experienced to provide ideal fit and maximal contact to the maxillary surface to facilitate their accurate management in clinical applications. The validation results indicated that RMSD values between the images ranged from 0.18 to 0.33 mm in the maxilla and from 0.99 to 1.56 mm in the mandible. The patients were followed up for 6 months or more, and all of them were satisfied with the results. The proposed customized positioning guides are practical and reliable for translation of virtual plans to actual surgery. Furthermore, these guides improved the efficiency and outcome of surgery. This approach is uncomplicated in design, cost-effective in fabrication, and particularly convenient to use.

  13. Pre-operative assessment of patients undergoing endoscopic, transnasal, transsphenoidal pituitary surgery.

    PubMed

    Lubbe, D; Semple, P

    2008-06-01

    To demonstrate the importance of pre-operative ear, nose and throat assessment in patients undergoing endoscopic, transsphenoidal surgery for pituitary tumours. Literature pertaining to the pre-operative otorhinolaryngological assessment and management of patients undergoing endoscopic anterior skull base surgery is sparse. We describe two cases from our series of 59 patients undergoing endoscopic pituitary surgery. The first case involved a young male patient with a large pituitary macroadenoma. His main complaint was visual impairment. He had no previous history of sinonasal pathology and did not complain of any nasal symptoms during the pre-operative neurosurgical assessment. At the time of surgery, a purulent nasal discharge was seen emanating from both middle meati. Surgery was abandoned due to the risk of post-operative meningitis, and postponed until the patient's chronic rhinosinusitis was optimally managed. The second patient was a 47-year-old woman with a large pituitary macroadenoma, who presented to the neurosurgical department with a main complaint of diplopia. She too gave no history of previous nasal problems, and she underwent uneventful surgery using the endoscopic, transnasal approach. Two weeks after surgery, she presented to the emergency unit with severe epistaxis. A previous diagnosis of hereditary haemorrhagic telangiectasia was discovered, and further surgical and medical intervention was required before the epistaxis was finally controlled. Pre-operative otorhinolaryngological assessment is essential prior to endoscopic pituitary or anterior skull base surgery. A thorough otorhinolaryngological history will determine whether any co-morbid diseases exist which could affect the surgical field. Nasal anatomy can be assessed via nasal endoscopy and sinusitis excluded. Computed tomography imaging is a valuable aid to decisions regarding additional procedures needed to optimise access to the pituitary fossa.

  14. Is Virtual Surgical Planning in Orthognathic Surgery Faster Than Conventional Planning? A Time and Workflow Analysis of an Office-Based Workflow for Single- and Double-Jaw Surgery.

    PubMed

    Steinhuber, Thomas; Brunold, Silvia; Gärtner, Catherina; Offermanns, Vincent; Ulmer, Hanno; Ploder, Oliver

    2018-02-01

    The purpose of this study was to measure and compare the working time for virtual surgical planning (VSP) in orthognathic surgery in a largely office-based workflow in comparison with conventional surgical planning (CSP) regarding the type of surgery, staff involved, and working location. This prospective cohort study included patients treated with orthognathic surgery from May to December 2016. For each patient, both CSP with manual splint fabrication and VSP with fabrication of computer-aided design-computer-aided manufacturing splints were performed. The predictor variables were planning method (CSP or VSP) and type of surgery (single or double jaw), and the outcome was time. Descriptive and analytic statistics, including analysis of variance for repeated measures, were computed. The sample was composed of 40 patients (25 female and 15 male patients; mean age, 24.6 years) treated with single-jaw surgery (n = 18) or double-jaw surgery (n = 22). The mean times for planning single-jaw surgery were 145.5 ± 11.5 minutes for CSP and 109.3 ± 10.8 minutes for VSP, and those for planning double-jaw surgery were 224.1 ± 11.2 minutes and 149.6 ± 15.3 minutes, respectively. Besides the expected result that the working time was shorter for single-versus double-jaw surgery (P < .001), it was shown that VSP shortened the working time significantly versus CSP (P < .001). The reduction of time through VSP was relatively stronger for double-jaw surgery (P < .001 for interaction). All differences between CSP and VSP regarding profession (except for the surgeon's time investment) and location were statistically significant (P < .01). The surgeon's time to plan single-jaw surgery was 37.0 minutes for CSP and 41.2 minutes for VSP; for double-jaw surgery, it was 53.8 minutes and 53.6 minutes, respectively. Office-based VSP for orthognathic surgery was significantly faster for single- and double-jaw surgery. The time investment of the surgeon was equal for both methods, and all other steps of the workflow differed significantly compared with CSP. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Vascular tissue engineering by computer-aided laser micromachining.

    PubMed

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  16. [Automated procedures for microscopic analyses of blood smears: medical testing a MECOS-Ts2 complex].

    PubMed

    Pliasunova, S A; Balugian, R Sh; Khmel'nitskiĭ, K E; Medovyĭ, V S; Parpara, A A; Piatnitskiĭ, A M; Sokolinskiĭ, B Z; Dem'ianov, V L; Nikolaenko, D S

    2006-10-01

    The paper presents the results of medical tests of a group of computer-aided procedures for microscopic analysis by means of a MECOS-Ts2 complex (ZAO "MECOS", Russia), which have been conducted at the Republican Children's Clinical Hospital, the Research Institute of Emergency Pediatric Surgery and Traumatology, and Moscow City Clinical Hospital No. 23. Computer-aided procedures for calculating the differential count and for analyzing the morphology of red blood cells were tested on blood smears from a total of 443 patients and donors, computer-aided calculation of the count of reticulocytes was tested on 318 smears. The tests were carried out under the US standard NCCLS-H20A. Manual microscopy (443 smears) and flow blood analysis on a Coulter GEN*S (125 smears) were used as reference methods. The quality of collection of samples and laboriousness were additionally assessed. The certified MECOS-Ts2 subsystems were additionally used as reference tools. The tests indicated the advantage of computer-aided MECOS-Tsl2 complex microscopy over manual microscopy.

  17. Determination of Optimal Parameters for Dual-Layer Cathode of Polymer Electrolyte Fuel Cell Using Computational Intelligence-Aided Design

    PubMed Central

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs. PMID:25490761

  18. [Application of computer-assisted 3D imaging simulation for surgery].

    PubMed

    Matsushita, S; Suzuki, N

    1994-03-01

    This article describes trends in application of various imaging technology in surgical planning, navigation, and computer aided surgery. Imaging information is essential factor for simulation in medicine. It includes three dimensional (3D) image reconstruction, neuro-surgical navigation, creating substantial model based on 3D imaging data and etc. These developments depend mostly on 3D imaging technique, which is much contributed by recent computer technology. 3D imaging can offer new intuitive information to physician and surgeon, and this method is suitable for mechanical control. By utilizing simulated results, we can obtain more precise surgical orientation, estimation, and operation. For more advancement, automatic and high speed recognition of medical imaging is being developed.

  19. Redistricting Is Less Torturous When a Computer Does the Nitty-Gritty for You.

    ERIC Educational Resources Information Center

    Rust, Albert O.; Judd, Frank F.

    1984-01-01

    Describes "optimization" computer programing to aid in school redistricting. Using diverse demographic data, the computer plots district boundaries to minimize children's walking distance and maximize safety, improve racial balance, and keep enrollment within school capacity. (TE)

  20. Lattice surgery on the Raussendorf lattice

    NASA Astrophysics Data System (ADS)

    Herr, Daniel; Paler, Alexandru; Devitt, Simon J.; Nori, Franco

    2018-07-01

    Lattice surgery is a method to perform quantum computation fault-tolerantly by using operations on boundary qubits between different patches of the planar code. This technique allows for universal planar code computation without eliminating the intrinsic two-dimensional nearest-neighbor properties of the surface code that eases physical hardware implementations. Lattice surgery approaches to algorithmic compilation and optimization have been demonstrated to be more resource efficient for resource-intensive components of a fault-tolerant algorithm, and consequently may be preferable over braid-based logic. Lattice surgery can be extended to the Raussendorf lattice, providing a measurement-based approach to the surface code. In this paper we describe how lattice surgery can be performed on the Raussendorf lattice and therefore give a viable alternative to computation using braiding in measurement-based implementations of topological codes.

  1. Complex facial deformity reconstruction with a surgical guide incorporating a built-in occlusal stent as the positioning reference.

    PubMed

    Fang, Jing-Jing; Liu, Jia-Kuang; Wu, Tzu-Chieh; Lee, Jing-Wei; Kuo, Tai-Hong

    2013-05-01

    Computer-aided design has gained increasing popularity in clinical practice, and the advent of rapid prototyping technology has further enhanced the quality and predictability of surgical outcomes. It provides target guides for complex bony reconstruction during surgery. Therefore, surgeons can efficiently and precisely target fracture restorations. Based on three-dimensional models generated from a computed tomographic scan, precise preoperative planning simulation on a computer is possible. Combining the interdisciplinary knowledge of surgeons and engineers, this study proposes a novel surgical guidance method that incorporates a built-in occlusal wafer that serves as the positioning reference.Two patients with complex facial deformity suffering from severe facial asymmetry problems were recruited. In vitro facial reconstruction was first rehearsed on physical models, where a customized surgical guide incorporating a built-in occlusal stent as the positioning reference was designed to implement the surgery plan. This study is intended to present the authors' preliminary experience in a complex facial reconstruction procedure. It suggests that in regions with less information, where intraoperative computed tomographic scans or navigation systems are not available, our approach could be an effective, expedient, straightforward aid to enhance surgical outcome in a complex facial repair.

  2. A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and "classic" intermaxillary splints to surgical transfer of virtual orthognathic planning.

    PubMed

    Zinser, Max J; Sailer, Hermann F; Ritter, Lutz; Braumann, Bert; Maegele, Marc; Zöller, Joachim E

    2013-12-01

    Advances in computers and imaging have permitted the adoption of 3-dimensional (3D) virtual planning protocols in orthognathic surgery, which may allow a paradigm shift when the virtual planning can be transferred properly. The purpose of this investigation was to compare the versatility and precision of innovative computer-aided designed and computer-aided manufactured (CAD/CAM) surgical splints, intraoperative navigation, and "classic" intermaxillary occlusal splints for surgical transfer of virtual orthognathic planning. The protocols consisted of maxillofacial imaging, diagnosis, virtual orthognathic planning, and surgical planning transfer using newly designed CAD/CAM splints (approach A), navigation (approach B), and intermaxillary occlusal splints (approach C). In this prospective observational study, all patients underwent bimaxillary osteotomy. Eight patients were treated using approach A, 10 using approach B, and 12 using approach C. These techniques were evaluated by applying 13 hard and 7 soft tissue parameters to compare the virtual orthognathic planning (T0) with the postoperative result (T1) using 3D cephalometry and image fusion (ΔT1 vs T0). The highest precision (ΔT1 vs T0) for the maxillary planning transfer was observed with CAD/CAM splints (<0.23 mm; P > .05) followed by surgical "waferless" navigation (<0.61 mm, P < .05) and classic intermaxillary occlusal splints (<1.1 mm; P < .05). Only the innovative CAD/CAM splints kept the condyles in their central position in the temporomandibular joint. However, no technique enables a precise prediction of the mandible and soft tissue. CAD/CAM splints and surgical navigation provide a reliable, innovative, and precise approach for the transfer of virtual orthognathic planning. These computer-assisted techniques may offer an alternate approach to the use of classic intermaxillary occlusal splints. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Application of evolutionary computation in ECAD problems

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Hyun; Hwang, Seung H.

    1998-10-01

    Design of modern electronic system is a complicated task which demands the use of computer- aided design (CAD) tools. Since a lot of problems in ECAD are combinatorial optimization problems, evolutionary computations such as genetic algorithms and evolutionary programming have been widely employed to solve those problems. We have applied evolutionary computation techniques to solve ECAD problems such as technology mapping, microcode-bit optimization, data path ordering and peak power estimation, where their benefits are well observed. This paper presents experiences and discusses issues in those applications.

  4. Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review.

    PubMed

    Ewers, R; Schicho, K; Undt, G; Wanschitz, F; Truppe, M; Seemann, R; Wagner, A

    2005-01-01

    Computer-aided surgical navigation technology is commonly used in craniomaxillofacial surgery. It offers substantial improvement regarding esthetic and functional aspects in a range of surgical procedures. Based on augmented reality principles, where the real operative site is merged with computer generated graphic information, computer-aided navigation systems were employed, among other procedures, in dental implantology, arthroscopy of the temporomandibular joint, osteotomies, distraction osteogenesis, image guided biopsies and removals of foreign bodies. The decision to perform a procedure with or without computer-aided intraoperative navigation depends on the expected benefit to the procedure as well as on the technical expenditure necessary to achieve that goal. This paper comprises the experience gained in 12 years of research, development and routine clinical application. One hundred and fifty-eight operations with successful application of surgical navigation technology--divided into five groups--are evaluated regarding the criteria "medical benefit" and "technical expenditure" necessary to perform these procedures. Our results indicate that the medical benefit is likely to outweight the expenditure of technology with few exceptions (calvaria transplant, resection of the temporal bone, reconstruction of the orbital floor). Especially in dental implantology, specialized software reduces time and additional costs necessary to plan and perform procedures with computer-aided surgical navigation.

  5. Computer-aided linear-circuit design.

    NASA Technical Reports Server (NTRS)

    Penfield, P.

    1971-01-01

    Usually computer-aided design (CAD) refers to programs that analyze circuits conceived by the circuit designer. Among the services such programs should perform are direct network synthesis, analysis, optimization of network parameters, formatting, storage of miscellaneous data, and related calculations. The program should be embedded in a general-purpose conversational language such as BASIC, JOSS, or APL. Such a program is MARTHA, a general-purpose linear-circuit analyzer embedded in APL.

  6. Computing elastic anisotropy to discover gum-metal-like structural alloys

    NASA Astrophysics Data System (ADS)

    Winter, I. S.; de Jong, M.; Asta, M.; Chrzan, D. C.

    2017-08-01

    The computer aided discovery of structural alloys is a burgeoning but still challenging area of research. A primary challenge in the field is to identify computable screening parameters that embody key structural alloy properties. Here, an elastic anisotropy parameter that captures a material's susceptibility to solute solution strengthening is identified. The parameter has many applications in the discovery and optimization of structural materials. As a first example, the parameter is used to identify alloys that might display the super elasticity, super strength, and high ductility of the class of TiNb alloys known as gum metals. In addition, it is noted that the parameter can be used to screen candidate alloys for shape memory response, and potentially aid in the optimization of the mechanical properties of high-entropy alloys.

  7. Update of patient-specific maxillofacial implant.

    PubMed

    Owusu, James A; Boahene, Kofi

    2015-08-01

    Patient-specific implant (PSI) is a personalized approach to reconstructive and esthetic surgery. This is particularly useful in maxillofacial surgery in which restoring the complex three-dimensional (3D) contour can be quite challenging. In certain situations, the best results can only be achieved with implants custom-made to fit a particular need. Significant progress has been made over the past decade in the design and manufacture of maxillofacial PSIs. Computer-aided design (CAD)/computer-aided manufacturing (CAM) technology is rapidly advancing and has provided new options for fabrication of PSIs with better precision. Maxillofacial PSIs can now be designed using preoperative imaging data as input into CAD software. The designed implant is then fabricated using a CAM technique such as 3D printing. This approach increases precision and decreases or completely eliminates the need for intraoperative modification of implants. The use of CAD/CAM-produced PSIs for maxillofacial reconstruction and augmentation can significantly improve contour outcomes and decrease operating time. CAD/CAM technology allows timely and precise fabrication of maxillofacial PSIs. This approach is gaining increasing popularity in maxillofacial reconstructive surgery. Continued advances in CAD technology and 3D printing are bound to improve the cost-effectiveness and decrease the production time of maxillofacial PSIs.

  8. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.

    PubMed

    Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto

    2005-01-01

    Preoperative simulation and planning of surgical robot setup should accompany advanced robotic surgery if their advantages are to be further pursued. Feedback from the planning system will plays an essential role in computer-aided robotic surgery in addition to preoperative detailed geometric information from patient CT/MRI images. Surgical robot setup simulation systems for appropriate trocar site placement have been developed especially for abdominal surgery. The motion of the surgical robot can be simulated and rehearsed with kinematic constraints at the trocar site, and the inverse-kinematics of the robot. Results from simulation using clinical patient data verify the effectiveness of the proposed system.

  9. Computer-aided design/computer-aided manufacturing skull base drill.

    PubMed

    Couldwell, William T; MacDonald, Joel D; Thomas, Charles L; Hansen, Bradley C; Lapalikar, Aniruddha; Thakkar, Bharat; Balaji, Alagar K

    2017-05-01

    The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.

  10. Computed Tomographic Angiographic Perforator Localization for Virtual Surgical Planning of Osteocutaneous Fibular Free Flaps in Head and Neck Reconstruction.

    PubMed

    Ettinger, Kyle S; Alexander, Amy E; Arce, Kevin

    2018-04-10

    Virtual surgical planning (VSP), computer-aided design and computer-aided modeling, and 3-dimensional printing are 3 distinct technologies that have become increasingly used in head and neck oncology and microvascular reconstruction. Although each of these technologies has long been used for treatment planning in other surgical disciplines, such as craniofacial surgery, trauma surgery, temporomandibular joint surgery, and orthognathic surgery, its widespread use in head and neck reconstructive surgery remains a much more recent event. In response to the growing trend of VSP being used for the planning of fibular free flaps in head and neck reconstruction, some surgeons have questioned the technology's implementation based on its inadequacy in addressing other reconstructive considerations beyond hard tissue anatomy. Detractors of VSP for head and neck reconstruction highlight its lack of capability in accounting for multiple reconstructive factors, such as recipient vessel selection, vascular pedicle reach, need for dead space obliteration, and skin paddle perforator location. It is with this premise in mind that the authors report on a straightforward technique for anatomically localizing peroneal artery perforators during VSP for osteocutaneous fibular free flaps in which bone and a soft tissue skin paddle are required for ablative reconstruction. The technique allows for anatomic perforator localization during the VSP session based solely on data existent at preoperative computed tomographic angiography (CTA); it does not require any modifications to preoperative clinical workflows. It is the authors' presumption that many surgeons in the field are unaware of this planning capability within the context of modern VSP for head and neck reconstruction. The primary purpose of this report is to introduce and further familiarize surgeons with the technique of CTA perforator localization as a method of improving intraoperative fidelity for VSP of osteocutaneous fibular free flaps. Copyright © 2018. Published by Elsevier Inc.

  11. Enhanced Preoperative Deep Inferior Epigastric Artery Perforator Flap Planning with a 3D-Printed Perforasome Template: Technique and Case Report.

    PubMed

    Chae, Michael P; Hunter-Smith, David J; Rostek, Marie; Smith, Julian A; Rozen, Warren Matthew

    2018-01-01

    Optimizing preoperative planning is widely sought in deep inferior epigastric artery perforator (DIEP) flap surgery. One reason for this is that rates of fat necrosis remain relatively high (up to 35%), and that adjusting flap design by an improved understanding of individual perforasomes and perfusion characteristics may be useful in reducing the risk of fat necrosis. Imaging techniques have substantially improved over the past decade, and with recent advances in 3D printing, an improved demonstration of imaged anatomy has become available. We describe a 3D-printed template that can be used preoperatively to mark out a patient's individualized perforasome for flap planning in DIEP flap surgery. We describe this "perforasome template" technique in a case of a 46-year-old woman undergoing immediate unilateral breast reconstruction with a DIEP flap. Routine preoperative computed tomographic angiography was performed, with open-source software (3D Slicer, Autodesk MeshMixer and Cura) and a desktop 3D printer (Ultimaker 3E) used to create a template used to mark intra-flap, subcutaneous branches of deep inferior epigastric artery (DIEA) perforators on the abdomen. An individualized 3D printed template was used to estimate the size and boundaries of a perforasome and perfusion map. The information was used to aid flap design. We describe a new technique of 3D printing a patient-specific perforasome template that can be used preoperatively to infer perforasomes and aid flap design.

  12. Enhanced Preoperative Deep Inferior Epigastric Artery Perforator Flap Planning with a 3D-Printed Perforasome Template: Technique and Case Report

    PubMed Central

    Hunter-Smith, David J.; Rostek, Marie; Smith, Julian A.; Rozen, Warren Matthew

    2018-01-01

    Summary: Optimizing preoperative planning is widely sought in deep inferior epigastric artery perforator (DIEP) flap surgery. One reason for this is that rates of fat necrosis remain relatively high (up to 35%), and that adjusting flap design by an improved understanding of individual perforasomes and perfusion characteristics may be useful in reducing the risk of fat necrosis. Imaging techniques have substantially improved over the past decade, and with recent advances in 3D printing, an improved demonstration of imaged anatomy has become available. We describe a 3D-printed template that can be used preoperatively to mark out a patient’s individualized perforasome for flap planning in DIEP flap surgery. We describe this “perforasome template” technique in a case of a 46-year-old woman undergoing immediate unilateral breast reconstruction with a DIEP flap. Routine preoperative computed tomographic angiography was performed, with open-source software (3D Slicer, Autodesk MeshMixer and Cura) and a desktop 3D printer (Ultimaker 3E) used to create a template used to mark intra-flap, subcutaneous branches of deep inferior epigastric artery (DIEA) perforators on the abdomen. An individualized 3D printed template was used to estimate the size and boundaries of a perforasome and perfusion map. The information was used to aid flap design. We describe a new technique of 3D printing a patient-specific perforasome template that can be used preoperatively to infer perforasomes and aid flap design. PMID:29464169

  13. Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery.

    PubMed

    Polley, John W; Figueroa, Alvaro A

    2013-05-01

    To introduce the concept and use of an occlusal-based "orthognathic positioning system" (OPS) to be used during orthognathic surgery. The OPS consists of intraoperative occlusal-based devices that transfer virtual surgical planning to the operating field for repositioning of the osteotomized dentoskeletal segments. The system uses detachable guides connected to an occlusal splint. An initial drilling guide is used to establish stable references or landmarks. These are drilled on the bone that will not be repositioned adjacent to the osteotomy line. After mobilization of the skeletal segment, a final positioning guide, referenced to the drilled landmarks, is used to transfer the skeletal segment according to the virtual surgical planning. The OPS is digitally designed using 3-dimensional computer-aided design/computer-aided manufacturing technology and manufactured with stereolithographic techniques. Virtual surgical planning has improved the preoperative assessment and, in conjunction with the OPS, the execution of orthognathic surgery. The OPS has the possibility to eliminate the inaccuracies commonly associated with traditional orthognathic surgery planning and to simplify the execution by eliminating surgical steps such as intraoperative measuring, determining the condylar position, the use of bulky intermediate splints, and the use of intermaxillary wire fixation. The OPS attempts precise translation of the virtual plan to the operating field, bridging the gap between virtual and actual surgery. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Computer-Aided Design/Computer-Assisted Manufacture Monolithic Restorations for Severely Worn Dentition: A Case History Report.

    PubMed

    Abou-Ayash, Samir; Boldt, Johannes; Vuck, Alexander

    Full-arch rehabilitation of patients with severe tooth wear due to parafunctional behavior is a challenge for dentists and dental technicians, especially when a highly esthetic outcome is desired. A variety of different treatment options and prosthetic materials are available for such a clinical undertaking. The ongoing progress of computer-aided design/computer-assisted manufacture technologies in combination with all-ceramic materials provides a predictable workflow for these complex cases. This case history report describes a comprehensive, step-by-step treatment protocol leading to an optimally predictable treatment outcome for an esthetically compromised patient.

  15. Teaching Simulation and Computer-Aided Separation Optimization in Liquid Chromatography by Means of Illustrative Microsoft Excel Spreadsheets

    ERIC Educational Resources Information Center

    Fasoula, S.; Nikitas, P.; Pappa-Louisi, A.

    2017-01-01

    A series of Microsoft Excel spreadsheets were developed to simulate the process of separation optimization under isocratic and simple gradient conditions. The optimization procedure is performed in a stepwise fashion using simple macros for an automatic application of this approach. The proposed optimization approach involves modeling of the peak…

  16. Computer-aided design and rapid prototyping-assisted contouring of costal cartilage graft for facial reconstructive surgery.

    PubMed

    Lee, Shu Jin; Lee, Heow Pueh; Tse, Kwong Ming; Cheong, Ee Cherk; Lim, Siak Piang

    2012-06-01

    Complex 3-D defects of the facial skeleton are difficult to reconstruct with freehand carving of autogenous bone grafts. Onlay bone grafts are hard to carve and are associated with imprecise graft-bone interface contact and bony resorption. Autologous cartilage is well established in ear reconstruction as it is easy to carve and is associated with minimal resorption. In the present study, we aimed to reconstruct the hypoplastic orbitozygomatic region in a patient with left hemifacial microsomia using computer-aided design and rapid prototyping to facilitate costal cartilage carving and grafting. A three-step process of (1) 3-D reconstruction of the computed tomographic image, (2) mirroring the facial skeleton, and (3) modeling and rapid prototyping of the left orbitozygomaticomalar region and reconstruction template was performed. The template aided in donor site selection and extracorporeal contouring of the rib cartilage graft to allow for an accurate fit of the graft to the bony model prior to final fixation in the patient. We are able to refine the existing computer-aided design and rapid prototyping methods to allow for extracorporeal contouring of grafts and present rib cartilage as a good alternative to bone for autologous reconstruction.

  17. Computer-aided drug discovery research at a global contract research organization

    NASA Astrophysics Data System (ADS)

    Kitchen, Douglas B.

    2017-03-01

    Computer-aided drug discovery started at Albany Molecular Research, Inc in 1997. Over nearly 20 years the role of cheminformatics and computational chemistry has grown throughout the pharmaceutical industry and at AMRI. This paper will describe the infrastructure and roles of CADD throughout drug discovery and some of the lessons learned regarding the success of several methods. Various contributions provided by computational chemistry and cheminformatics in chemical library design, hit triage, hit-to-lead and lead optimization are discussed. Some frequently used computational chemistry techniques are described. The ways in which they may contribute to discovery projects are presented based on a few examples from recent publications.

  18. Computer-aided drug discovery research at a global contract research organization.

    PubMed

    Kitchen, Douglas B

    2017-03-01

    Computer-aided drug discovery started at Albany Molecular Research, Inc in 1997. Over nearly 20 years the role of cheminformatics and computational chemistry has grown throughout the pharmaceutical industry and at AMRI. This paper will describe the infrastructure and roles of CADD throughout drug discovery and some of the lessons learned regarding the success of several methods. Various contributions provided by computational chemistry and cheminformatics in chemical library design, hit triage, hit-to-lead and lead optimization are discussed. Some frequently used computational chemistry techniques are described. The ways in which they may contribute to discovery projects are presented based on a few examples from recent publications.

  19. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1997-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  20. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1996-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  1. Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration

    PubMed Central

    Badura, Pawel; Juszczyk, Jan; Pietka, Ewa

    2016-01-01

    Purpose A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. Methods We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. Results The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. Conclusion The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers. PMID:27434396

  2. Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.

    PubMed

    Huynh, Linh; Tagkopoulos, Ilias

    2015-08-21

    In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees.

  3. Towards ubiquitous access of computer-assisted surgery systems.

    PubMed

    Liu, Hui; Lufei, Hanping; Shi, Weishong; Chaudhary, Vipin

    2006-01-01

    Traditional stand-alone computer-assisted surgery (CAS) systems impede the ubiquitous and simultaneous access by multiple users. With advances in computing and networking technologies, ubiquitous access to CAS systems becomes possible and promising. Based on our preliminary work, CASMIL, a stand-alone CAS server developed at Wayne State University, we propose a novel mobile CAS system, UbiCAS, which allows surgeons to retrieve, review and interpret multimodal medical images, and to perform some critical neurosurgical procedures on heterogeneous devices from anywhere at anytime. Furthermore, various optimization techniques, including caching, prefetching, pseudo-streaming-model, and compression, are used to guarantee the QoS of the UbiCAS system. UbiCAS enables doctors at remote locations to actively participate remote surgeries, share patient information in real time before, during, and after the surgery.

  4. Computer-aided resource planning and scheduling for radiological services

    NASA Astrophysics Data System (ADS)

    Garcia, Hong-Mei C.; Yun, David Y.; Ge, Yiqun; Khan, Javed I.

    1996-05-01

    There exists tremendous opportunity in hospital-wide resource optimization based on system integration. This paper defines the resource planning and scheduling requirements integral to PACS, RIS and HIS integration. An multi-site case study is conducted to define the requirements. A well-tested planning and scheduling methodology, called Constrained Resource Planning model, has been applied to the chosen problem of radiological service optimization. This investigation focuses on resource optimization issues for minimizing the turnaround time to increase clinical efficiency and customer satisfaction, particularly in cases where the scheduling of multiple exams are required for a patient. How best to combine the information system efficiency and human intelligence in improving radiological services is described. Finally, an architecture for interfacing a computer-aided resource planning and scheduling tool with the existing PACS, HIS and RIS implementation is presented.

  5. COMPUTER-AIDED DRUG DISCOVERY AND DEVELOPMENT (CADDD): in silico-chemico-biological approach

    PubMed Central

    Kapetanovic, I.M.

    2008-01-01

    It is generally recognized that drug discovery and development are very time and resources consuming processes. There is an ever growing effort to apply computational power to the combined chemical and biological space in order to streamline drug discovery, design, development and optimization. In biomedical arena, computer-aided or in silico design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, optimize the absorption, distribution, metabolism, excretion and toxicity profile and avoid safety issues. Commonly used computational approaches include ligand-based drug design (pharmacophore, a 3-D spatial arrangement of chemical features essential for biological activity), structure-based drug design (drug-target docking), and quantitative structure-activity and quantitative structure-property relationships. Regulatory agencies as well as pharmaceutical industry are actively involved in development of computational tools that will improve effectiveness and efficiency of drug discovery and development process, decrease use of animals, and increase predictability. It is expected that the power of CADDD will grow as the technology continues to evolve. PMID:17229415

  6. Aircraft to Medicine

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video discusses how the technology of computer modeling can improve the design and durability of artificial joints for human joint replacement surgery. Also, ultrasound, originally used to detect structural flaws in aircraft, can also be used to quickly assess the severity of a burn patient's injuries, thus aiding the healing process.

  7. [Impact of digital technology on clinical practices: perspectives from surgery].

    PubMed

    Zhang, Y; Liu, X J

    2016-04-09

    Digital medical technologies or computer aided medical procedures, refer to imaging, 3D reconstruction, virtual design, 3D printing, navigation guided surgery and robotic assisted surgery techniques. These techniques are integrated into conventional surgical procedures to create new clinical protocols that are known as "digital surgical techniques". Conventional health care is characterized by subjective experiences, while digital medical technologies bring quantifiable information, transferable data, repeatable methods and predictable outcomes into clinical practices. Being integrated into clinical practice, digital techniques facilitate surgical care by improving outcomes and reducing risks. Digital techniques are becoming increasingly popular in trauma surgery, orthopedics, neurosurgery, plastic and reconstructive surgery, imaging and anatomic sciences. Robotic assisted surgery is also evolving and being applied in general surgery, cardiovascular surgery and orthopedic surgery. Rapid development of digital medical technologies is changing healthcare and clinical practices. It is therefore important for all clinicians to purposefully adapt to these technologies and improve their clinical outcomes.

  8. What's new in perioperative nutritional support?

    PubMed

    Awad, Sherif; Lobo, Dileep N

    2011-06-01

    To highlight recent developments in the field of perioperative nutritional support by reviewing clinically pertinent English language articles from October 2008 to December 2010, that examined the effects of malnutrition on surgical outcomes, optimizing metabolic function and nutritional status preoperatively and postoperatively. Recognition of patients with or at risk of malnutrition remains poor despite the availability of numerous clinical aids and clear evidence of the adverse effects of poor nutritional status on postoperative clinical outcomes. Unfortunately, poor design and significant heterogeneity remain amongst many studies of nutritional interventions in surgical patients. Patients undergoing elective surgery should be managed within a multimodal pathway that includes evidence-based interventions to optimize nutritional status perioperatively. The aforementioned should include screening patients to identify those at high nutritional risk, perioperative immuno-nutrition, minimizing 'metabolic stress' and insulin resistance by preoperative conditioning with carbohydrate-based drinks, glutamine supplementation, minimal access surgery and enhanced recovery protocols. Finally gut-specific nutrients and prokinetics should be utilized to improve enteral feed tolerance thereby permitting early enteral feeding. An evidence-based multimodal pathway that includes interventions to optimize nutritional status may improve outcomes following elective surgery.

  9. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic.

    PubMed

    Talele, Tanaji T; Khedkar, Santosh A; Rigby, Alan C

    2010-01-01

    Drug discovery and development is an interdisciplinary, expensive and time-consuming process. Scientific advancements during the past two decades have changed the way pharmaceutical research generate novel bioactive molecules. Advances in computational techniques and in parallel hardware support have enabled in silico methods, and in particular structure-based drug design method, to speed up new target selection through the identification of hits to the optimization of lead compounds in the drug discovery process. This review is focused on the clinical status of experimental drugs that were discovered and/or optimized using computer-aided drug design. We have provided a historical account detailing the development of 12 small molecules (Captopril, Dorzolamide, Saquinavir, Zanamivir, Oseltamivir, Aliskiren, Boceprevir, Nolatrexed, TMI-005, LY-517717, Rupintrivir and NVP-AUY922) that are in clinical trial or have become approved for therapeutic use.

  10. Computational Planning in Facial Surgery.

    PubMed

    Zachow, Stefan

    2015-10-01

    This article reflects the research of the last two decades in computational planning for cranio-maxillofacial surgery. Model-guided and computer-assisted surgery planning has tremendously developed due to ever increasing computational capabilities. Simulators for education, planning, and training of surgery are often compared with flight simulators, where maneuvers are also trained to reduce a possible risk of failure. Meanwhile, digital patient models can be derived from medical image data with astonishing accuracy and thus can serve for model surgery to derive a surgical template model that represents the envisaged result. Computerized surgical planning approaches, however, are often still explorative, meaning that a surgeon tries to find a therapeutic concept based on his or her expertise using computational tools that are mimicking real procedures. Future perspectives of an improved computerized planning may be that surgical objectives will be generated algorithmically by employing mathematical modeling, simulation, and optimization techniques. Planning systems thus act as intelligent decision support systems. However, surgeons can still use the existing tools to vary the proposed approach, but they mainly focus on how to transfer objectives into reality. Such a development may result in a paradigm shift for future surgery planning. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Implementation of a low-cost mobile devices to support medical diagnosis.

    PubMed

    García Sánchez, Carlos; Botella Juan, Guillermo; Ayuso Márquez, Fermín; González Rodríguez, Diego; Prieto-Matías, Manuel; Tirado Fernández, Francisco

    2013-01-01

    Medical imaging has become an absolutely essential diagnostic tool for clinical practices; at present, pathologies can be detected with an earliness never before known. Its use has not only been relegated to the field of radiology but also, increasingly, to computer-based imaging processes prior to surgery. Motion analysis, in particular, plays an important role in analyzing activities or behaviors of live objects in medicine. This short paper presents several low-cost hardware implementation approaches for the new generation of tablets and/or smartphones for estimating motion compensation and segmentation in medical images. These systems have been optimized for breast cancer diagnosis using magnetic resonance imaging technology with several advantages over traditional X-ray mammography, for example, obtaining patient information during a short period. This paper also addresses the challenge of offering a medical tool that runs on widespread portable devices, both on tablets and/or smartphones to aid in patient diagnostics.

  12. Implementation of a Low-Cost Mobile Devices to Support Medical Diagnosis

    PubMed Central

    García Sánchez, Carlos; Botella Juan, Guillermo; Ayuso Márquez, Fermín; González Rodríguez, Diego; Prieto-Matías, Manuel; Tirado Fernández, Francisco

    2013-01-01

    Medical imaging has become an absolutely essential diagnostic tool for clinical practices; at present, pathologies can be detected with an earliness never before known. Its use has not only been relegated to the field of radiology but also, increasingly, to computer-based imaging processes prior to surgery. Motion analysis, in particular, plays an important role in analyzing activities or behaviors of live objects in medicine. This short paper presents several low-cost hardware implementation approaches for the new generation of tablets and/or smartphones for estimating motion compensation and segmentation in medical images. These systems have been optimized for breast cancer diagnosis using magnetic resonance imaging technology with several advantages over traditional X-ray mammography, for example, obtaining patient information during a short period. This paper also addresses the challenge of offering a medical tool that runs on widespread portable devices, both on tablets and/or smartphones to aid in patient diagnostics. PMID:24489600

  13. Hybrid tracking and control system for computer-aided retinal surgery

    NASA Astrophysics Data System (ADS)

    Ferguson, R. D.; Wright, Cameron H. G.; Rylander, Henry G., III; Welch, Ashley J.; Barrett, Steven F.

    1996-05-01

    We describe initial experimental results of a new hybrid digital and analog design for retinal tracking and laser beam control. Initial results demonstrate tracking rates which exceed the equivalent of 50 degrees per second in the eye, with automatic lesion pattern creation and robust loss of lock detection. Robotically assisted laser surgery to treat conditions such as diabetic retinopathy, macular degeneration, and retinal tears can now be realized under clinical conditions with requisite safety using standard video hardware and inexpensive optical components.

  14. Optimization and surgical design for applications in pediatric cardiology

    NASA Astrophysics Data System (ADS)

    Marsden, Alison; Bernstein, Adam; Taylor, Charles; Feinstein, Jeffrey

    2007-11-01

    The coupling of shape optimization to cardiovascular blood flow simulations has potential to improve the design of current surgeries and to eventually allow for optimization of surgical designs for individual patients. This is particularly true in pediatric cardiology, where geometries vary dramatically between patients, and unusual geometries can lead to unfavorable hemodynamic conditions. Interfacing shape optimization to three-dimensional, time-dependent fluid mechanics problems is particularly challenging because of the large computational cost and the difficulty in computing objective function gradients. In this work a derivative-free optimization algorithm is coupled to a three-dimensional Navier-Stokes solver that has been tailored for cardiovascular applications. The optimization code employs mesh adaptive direct search in conjunction with a Kriging surrogate. This framework is successfully demonstrated on several geometries representative of cardiovascular surgical applications. We will discuss issues of cost function choice for surgical applications, including energy loss and wall shear stress distribution. In particular, we will discuss the creation of new designs for the Fontan procedure, a surgery done in pediatric cardiology to treat single ventricle heart defects.

  15. Program Aids Analysis And Optimization Of Design

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Lamarsh, William J., II

    1994-01-01

    NETS/ PROSSS (NETS Coupled With Programming System for Structural Synthesis) computer program developed to provide system for combining NETS (MSC-21588), neural-network application program and CONMIN (Constrained Function Minimization, ARC-10836), optimization program. Enables user to reach nearly optimal design. Design then used as starting point in normal optimization process, possibly enabling user to converge to optimal solution in significantly fewer iterations. NEWT/PROSSS written in C language and FORTRAN 77.

  16. A Novel Paradigm for Computer-Aided Design: TRIZ-Based Hybridization of Topologically Optimized Density Distributions

    NASA Astrophysics Data System (ADS)

    Cardillo, A.; Cascini, G.; Frillici, F. S.; Rotini, F.

    In a recent project the authors have proposed the adoption of Optimization Systems [1] as a bridging element between Computer-Aided Innovation (CAI) and PLM to identify geometrical contradictions [2], a particular case of the TRIZ physical contradiction [3]. A further development of the research [4] has revealed that the solutions obtained from several topological optimizations can be considered as elementary customized modeling features for a specific design task. The topology overcoming the arising geometrical contradiction can be obtained through a manipulation of the density distributions constituting the conflicting pair. Already two strategies of density combination have been identified as capable to solve geometrical contradictions and several others are under extended testing. The paper illustrates the most recent results of the ongoing research mainly related to the extension of the algorithms from 2D to 3D design spaces. The whole approach is clarified by means of two detailed examples, where the proposed technique is compared with classical multi-goal optimization.

  17. Acute appendicitis: proposal of a new comprehensive grading system based on clinical, imaging and laparoscopic findings.

    PubMed

    Gomes, Carlos Augusto; Sartelli, Massimo; Di Saverio, Salomone; Ansaloni, Luca; Catena, Fausto; Coccolini, Federico; Inaba, Kenji; Demetriades, Demetrios; Gomes, Felipe Couto; Gomes, Camila Couto

    2015-01-01

    Advances in the technology and improved access to imaging modalities such as Computed Tomography and laparoscopy have changed the contemporary diagnostic and management of acute appendicitis. Complicated appendicitis (phlegmon, abscess and/ or diffuse peritonitis), is now reliably distinguished from uncomplicated cases. Therefore, a new comprehensive grading system for acute appendicitis is necessary. The goal is review and update the laparoscopic grading system of acute appendicitis and to provide a new standardized classification system to allow more uniform patient stratification. During the last World Society of Emergency Surgery Congress in Israel (July, 2015), a panel involving Acute Appendicitis Experts and the author's discussed many current aspects about the acute appendicitis between then, it will be submitted a new comprehensive disease grading system. It was idealized based on three aspect of the disease (clinical and imaging presentation and laparoscopic findings). The new grading system may provide a standardized system to allow more uniform patient stratification for appendicitis research. In addition, may aid in determining optimal management according to grade. Lastly, what we want is to draw a multicenter observational study within the World Society of Emergency Surgery (WSES) based on this design.

  18. Computer aided planning of orthopaedic surgeries: the definition of generic planning steps for bone removal procedures.

    PubMed

    Putzer, David; Moctezuma, Jose Luis; Nogler, Michael

    2017-11-01

    An increasing number of orthopaedic surgeons are using computer aided planning tools for bone removal applications. The aim of the study was to consolidate a set of generic functions to be used for a 3D computer assisted planning or simulation. A limited subset of 30 surgical procedures was analyzed and verified in 243 surgical procedures of a surgical atlas. Fourteen generic functions to be used in 3D computer assisted planning and simulations were extracted. Our results showed that the average procedure comprises 14 ± 10 (SD) steps with ten different generic planning steps and four generic bone removal steps. In conclusion, the study shows that with a limited number of 14 planning functions it is possible to perform 243 surgical procedures out of Campbell's Operative Orthopedics atlas. The results may be used as a basis for versatile generic intraoperative planning software.

  19. Application of GA package in functional packaging

    NASA Astrophysics Data System (ADS)

    Belousova, D. A.; Noskova, E. E.; Kapulin, D. V.

    2018-05-01

    The approach to application program for the task of configuration of the elements of the commutation circuit for design of the radio-electronic equipment on the basis of the genetic algorithm is offered. The efficiency of the used approach for commutation circuits with different characteristics for computer-aided design on radio-electronic manufacturing is shown. The prototype of the computer-aided design subsystem on the basis of a package GA for R with a set of the general functions for optimization of multivariate models is programmed.

  20. Quantitative validation of a computer-aided maxillofacial planning system, focusing on soft tissue deformations.

    PubMed

    Nadjmi, Nasser; Defrancq, Ellen; Mollemans, Wouter; Hemelen, Geert Van; Bergé, Stefaan

    2014-01-01

    The aim of this study was to evaluate the accuracy of 3D soft tissue predictions generated by a computer-aided maxillofacial planning system in patients undergoing orthognathic surgery. Twenty patients with dentofacial dysmorphosis were treated with orthognathic surgery after a preoperative orthodontic treatment. Fourteen patients had an Angle Class II malocclusion; three patients had an Angle class III malocclusion, and three patients had an Angle Class I malocclusion. Skeletal asymmetry was observed in six patient. The surgeries were planned using the Maxilim software. Computer assisted surgical planning was transferred to the patient by digitally generated splints. The validation procedures were performed in the following steps: (1) Standardized registration of the pre- and postoperative Cone Beam CT volumes; (2) Automated adjustment of the bone-related planning to the actual operative bony displacement; (3) Simulation of soft tissue changes; (4) Calculation of the soft tissue differences between the predicted and the postoperative results by distance mapping. Eighty four percent of the mapped distances between the predicted and actual postoperative results measured between -2 mm and +2 mm. The mean absolute linear measurements between the predicted and actual postoperative surface was 1.18. Our study shows the overall prediction was dependent on neither the surgical procedures nor the dentofacial deformity type. Despite some shortcomings in the prediction of the final position of the lower lip and cheek area, this software promises a clinically acceptable soft tissue prediction for orthognathic surgical procedures.

  1. Design and Fabrication of a Precision Template for Spine Surgery Using Selective Laser Melting (SLM).

    PubMed

    Wang, Di; Wang, Yimeng; Wang, Jianhua; Song, Changhui; Yang, Yongqiang; Zhang, Zimian; Lin, Hui; Zhen, Yongqiang; Liao, Suixiang

    2016-07-22

    In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM) technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient's body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient's surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness) were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units) in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians.

  2. Design and Fabrication of a Precision Template for Spine Surgery Using Selective Laser Melting (SLM)

    PubMed Central

    Wang, Di; Wang, Yimeng; Wang, Jianhua; Song, Changhui; Yang, Yongqiang; Zhang, Zimian; Lin, Hui; Zhen, Yongqiang; Liao, Suixiang

    2016-01-01

    In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM) technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient’s body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient’s surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness) were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units) in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians. PMID:28773730

  3. The operating room case-mix problem under uncertainty and nurses capacity constraints.

    PubMed

    Yahia, Zakaria; Eltawil, Amr B; Harraz, Nermine A

    2016-12-01

    Surgery is one of the key functions in hospitals; it generates significant revenue and admissions to hospitals. In this paper we address the decision of choosing a case-mix for a surgery department. The objective of this study is to generate an optimal case-mix plan of surgery patients with uncertain surgery operations, which includes uncertainty in surgery durations, length of stay, surgery demand and the availability of nurses. In order to obtain an optimal case-mix plan, a stochastic optimization model is proposed and the sample average approximation method is applied. The proposed model is used to determine the number of surgery cases to be weekly served, the amount of operating rooms' time dedicated to each specialty and the number of ward beds dedicated to each specialty. The optimal case-mix selection criterion is based upon a weighted score taking into account both the waiting list and the historical demand of each patient category. The score aims to maximizing the service level of the operating rooms by increasing the total number of surgery cases that could be served. A computational experiment is presented to demonstrate the performance of the proposed method. The results show that the stochastic model solution outperforms the expected value problem solution. Additional analysis is conducted to study the effect of varying the number of ORs and nurses capacity on the overall ORs' performance.

  4. Computer-Aided Process Model For Carbon/Phenolic Materials

    NASA Technical Reports Server (NTRS)

    Letson, Mischell A.; Bunker, Robert C.

    1996-01-01

    Computer program implements thermochemical model of processing of carbon-fiber/phenolic-matrix composite materials into molded parts of various sizes and shapes. Directed toward improving fabrication of rocket-engine-nozzle parts, also used to optimize fabrication of other structural components, and material-property parameters changed to apply to other materials. Reduces costs by reducing amount of laboratory trial and error needed to optimize curing processes and to predict properties of cured parts.

  5. Research and development activities in unified control-structure modeling and design

    NASA Technical Reports Server (NTRS)

    Nayak, A. P.

    1985-01-01

    Results of work to develop a unified control/structures modeling and design capability for large space structures modeling are presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. Parallel research done by other researchers is reviewed. The development of a methodology for global design optimization is recommended as a long-term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization.

  6. Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Ku, Walter H.

    1989-05-01

    The objectives of this research are to develop analytical and computer aided design techniques for monolithic microwave and millimeter wave integrated circuits (MMIC and MIMIC) and subsystems and to design and fabricate those ICs. Emphasis was placed on heterojunction-based devices, especially the High Electron Mobility Transition (HEMT), for both low noise and medium power microwave and millimeter wave applications. Circuits to be considered include monolithic low noise amplifiers, power amplifiers, and distributed and feedback amplifiers. Interactive computer aided design programs were developed, which include large signal models of InP MISFETs and InGaAs HEMTs. Further, a new unconstrained optimization algorithm POSM was developed and implemented in the general Analysis and Design program for Integrated Circuit (ADIC) for assistance in the design of largesignal nonlinear circuits.

  7. Planning acetabular fracture reduction using patient-specific multibody simulation of the hip

    NASA Astrophysics Data System (ADS)

    Oliveri, Hadrien; Boudissa, Mehdi; Tonetti, Jerome; Chabanas, Matthieu

    2017-03-01

    Acetabular fractures are a challenge in orthopedic surgery. Computer-aided solutions were proposed to segment bone fragments, simulate the fracture reduction or design the osteosynthesis fixation plates. This paper addresses the simulation part, which is usually carried out by freely moving bone fragments with six degrees of freedom to reproduce the pre-fracture state. Instead we propose a different paradigm, closer to actual surgeon's requirements: to simulate the surgical procedure itself rather than the desired result. A simple, patient-specific, biomechanical multibody model is proposed, integrating the main ligaments and muscles of the hip joint while accounting for contacts between bone fragments. Main surgical tools and actions can be simulated, such as clamps, Schanz screws or traction of the femur. Simulations are computed interactively, which enables clinicians to evaluate different strategies for an optimal surgical planning. Six retrospective cases were studied, with simple and complex fracture patterns. After interactively building the models from preoperative CT, gestures from the surgical reports were reproduced. Results of the simulations could then be compared with postoperative CT data. A qualitative study shows the model behavior is excellent and the simulated reductions fit the observed data. A more quantitative analysis is currently being completed. Two cases are particularly significant, for which the surgical reduction actually failed. Simulations show it was indeed not possible to reduce these fractures with the chosen approach. Had our simulator being used, a better planning may have avoided a second surgery to these patients.

  8. The combined use of computer-guided, minimally invasive, flapless corticotomy and clear aligners as a novel approach to moderate crowding: A case report

    PubMed Central

    Cassetta, Michele; Altieri, Federica; Pandolfi, Stefano; Giansanti, Matteo

    2017-01-01

    The aim of this case report was to describe an innovative orthodontic treatment method that combined surgical and orthodontic techniques. The novel method was used to achieve a positive result in a case of moderate crowding by employing a computer-guided piezocision procedure followed by the use of clear aligners. A 23-year-old woman had a malocclusion with moderate crowding. Her periodontal indices, oral health-related quality of life (OHRQoL), and treatment time were evaluated. The treatment included interproximal corticotomy cuts extending through the entire thickness of the cortical layer, without a full-thickness flap reflection. This was achieved with a three-dimensionally printed surgical guide using computer-aided design and computer-aided manufacturing. Orthodontic force was applied to the teeth immediately after surgery by using clear appliances for better control of tooth movement. The total treatment time was 8 months. The periodontal indices improved after crowding correction, but the oral health impact profile showed a slight deterioration of OHRQoL during the 3 days following surgery. At the 2-year retention follow-up, the stability of treatment was excellent. The reduction in surgical time and patient discomfort, increased periodontal safety and patient acceptability, and accurate control of orthodontic movement without the risk of losing anchorage may encourage the use of this combined technique in appropriate cases. PMID:28337422

  9. Mandibular reconstruction after cancer: an in-house approach to manufacturing cutting guides.

    PubMed

    Bosc, R; Hersant, B; Carloni, R; Niddam, J; Bouhassira, J; De Kermadec, H; Bequignon, E; Wojcik, T; Julieron, M; Meningaud, J-P

    2017-01-01

    The restoration of mandibular bone defects after cancer can be facilitated by computer-assisted preoperative planning. The aim of this study was to assess an in-house manufacturing approach to customized cutting guides for use in the reconstruction of the mandible with osteocutaneous free flaps. A retrospective cohort study was performed, involving 18 patients who underwent mandibular reconstruction with a fibula free flap at three institutions during the period July 2012 to March 2015. A single surgeon designed and manufactured fibula and mandible cutting guides using a computer-aided design process and three-dimensional (3D) printing technology. The oncological outcomes, production parameters, and quality of the reconstructions performed for each patient were recorded. Computed tomography scans were acquired after surgery, and these were compared with the preoperative 3D models. Eighteen consecutive patients with squamous cell carcinoma underwent surgery and then reconstruction using this customized in-house surgical approach. The lengths of the fibula bone segments and the angle measurements in the simulations were similar to those of the postoperative volume rendering (P=0.61). The ease of access to 3D printing technology has enabled the computer-aided design and manufacturing of customized cutting guides for oral cancer treatment without the need for input from external laboratories. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. The combined use of computer-guided, minimally invasive, flapless corticotomy and clear aligners as a novel approach to moderate crowding: A case report.

    PubMed

    Cassetta, Michele; Altieri, Federica; Pandolfi, Stefano; Giansanti, Matteo

    2017-03-01

    The aim of this case report was to describe an innovative orthodontic treatment method that combined surgical and orthodontic techniques. The novel method was used to achieve a positive result in a case of moderate crowding by employing a computer-guided piezocision procedure followed by the use of clear aligners. A 23-year-old woman had a malocclusion with moderate crowding. Her periodontal indices, oral health-related quality of life (OHRQoL), and treatment time were evaluated. The treatment included interproximal corticotomy cuts extending through the entire thickness of the cortical layer, without a full-thickness flap reflection. This was achieved with a three-dimensionally printed surgical guide using computer-aided design and computer-aided manufacturing. Orthodontic force was applied to the teeth immediately after surgery by using clear appliances for better control of tooth movement. The total treatment time was 8 months. The periodontal indices improved after crowding correction, but the oral health impact profile showed a slight deterioration of OHRQoL during the 3 days following surgery. At the 2-year retention follow-up, the stability of treatment was excellent. The reduction in surgical time and patient discomfort, increased periodontal safety and patient acceptability, and accurate control of orthodontic movement without the risk of losing anchorage may encourage the use of this combined technique in appropriate cases.

  11. Enhanced cephalomedullary nail lag screw placement and intraoperative tip-apex distance measurement with a novel computer assisted surgery system.

    PubMed

    Kuhl, Mitchell; Beimel, Claudia

    2016-10-01

    The goal of this study was to evaluate the ability of a novel computer assisted surgery system to guide ideal placement of a lag screw during cephalomedullary nailing and then accurately measure the tip-apex distance (TAD) measurement intraoperatively. Retrospective case review. Level II trauma hospital. The initial 98 consecutive clinical cases treated with a cephalomedullary nail in conjunction with a novel computer assisted surgery system were retrospectively reviewed. A novel computer assisted surgery system was utilized to enhance lag screw placement during cephalomedullary nailing procedures. The computer assisted surgery system calculates the TAD intraoperatively after final lag screw placement. The ideal TAD was considered to be within a range of 5mm-20mm. The ability of the computer assisted surgery system (CASS) to assist in placement of a lag screw within the ideal TAD was evaluated. Intraoperative TAD measurements provided by the computer assisted surgery system were then compared to standard postoperative TAD measurements on PACS (picture archiving and communication system) images to determine whether these measurements are equivalent. 79 cases (80.6%) were available with complete information for a retrospective review. All cases had CASS TAD and PACS TAD measurements >5mm and<20mm. In addition, no significant difference could be detected between the intraoperative CASS TAD and the postoperative PACS TAD (p=0.374, Wilcoxon Test; p=0.174, paired T-Test). A cut-out rate of 0% was observed in all patients who were treated with CASS in this case series (95% CI: 0 - 3.01%). The novel computer assisted surgery system tested here is an effective and reliable adjunct that can be utilized for optimal lag screw placement in cephalomedullary nailing procedures. The computer assisted surgery system provides an accurate intraoperative TAD measurement that is equivalent to the standard postoperative measurement utilizing PACS images. Therapeutic Level IV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Computer-aided diagnostic strategy selection.

    PubMed

    Greenes, R A

    1986-03-01

    Determination of the optimal diagnostic work-up strategy for the patient is becoming a major concern for the practicing physician. Overlap of the indications for various diagnostic procedures, differences in their invasiveness or risk, and high costs have made physicians aware of the need to consider the choice of procedure carefully, as well as its relation to management actions available. In this article, the author discusses research approaches that aim toward development of formal decision analytic methods to allow the physician to determine optimal strategy; clinical algorithms or rules as guides to physician decisions; improved measures for characterizing the performance of diagnostic tests; educational tools for increasing the familiarity of physicians with the concepts underlying these measures and analytic procedures; and computer-based aids for facilitating the employment of these resources in actual clinical practice.

  13. Constructing a simple parametric model of shoulder from medical images

    NASA Astrophysics Data System (ADS)

    Atmani, H.; Fofi, D.; Merienne, F.; Trouilloud, P.

    2006-02-01

    The modelling of the shoulder joint is an important step to set a Computer-Aided Surgery System for shoulder prosthesis placement. Our approach mainly concerns the bones structures of the scapulo-humeral joint. Our goal is to develop a tool that allows the surgeon to extract morphological data from medical images in order to interpret the biomechanical behaviour of a prosthesised shoulder for preoperative and peroperative virtual surgery. To provide a light and easy-handling representation of the shoulder, a geometrical model composed of quadrics, planes and other simple forms is proposed.

  14. Integrating three-dimensional digital technologies for comprehensive implant dentistry.

    PubMed

    Patel, Neal

    2010-06-01

    The increase in the popularity of and the demand for the use of dental implants to replace teeth has encouraged advancement in clinical technology and materials to improve patients' acceptance and clinical outcomes. Recent advances such as three-dimensional dental radiography with cone-beam computed tomography (CBCT), precision dental implant planning software and clinical execution with guided surgery all play a role in the success of implant dentistry. The author illustrates the technique of comprehensive implant dentistry planning through integration of computer-aided design/computer-aided manufacturing (CAD/CAM) and CBCT data. The technique includes clinical treatment with guided surgery, including the creation of a final restoration with a high-strength ceramic (IPS e.max CAD, Ivoclar Vivadent, Amherst, N.Y.). The author also introduces a technique involving CAD/CAM for fabricating custom implant abutments. The release of software integrating CEREC Acquisition Center with Bluecam (Sirona Dental Systems, Charlotte, N.C.) chairside CAD/CAM and Galileos CBCT imaging (Sirona Dental Systems) allows dentists to plan implant placement, perform implant dentistry with increased precision and provide predictable restorative results by using chairside IPS e.max CAD. The precision of clinical treatment provided by the integration of CAD/CAM and CBCT allows dentists to plan for ideal surgical placement and the appropriate thickness of restorative modalities before placing implants.

  15. Research on Computer Aided Innovation Model of Weapon Equipment Requirement Demonstration

    NASA Astrophysics Data System (ADS)

    Li, Yong; Guo, Qisheng; Wang, Rui; Li, Liang

    Firstly, in order to overcome the shortcoming of using only AD or TRIZ solely, and solve the problems currently existed in weapon equipment requirement demonstration, the paper construct the method system of weapon equipment requirement demonstration combining QFD, AD, TRIZ, FA. Then, we construct a CAI model frame of weapon equipment requirement demonstration, which include requirement decomposed model, requirement mapping model and requirement plan optimization model. Finally, we construct the computer aided innovation model of weapon equipment requirement demonstration, and developed CAI software of equipment requirement demonstration.

  16. Decision analysis to define the optimal management of athletes with anomalous aortic origin of a coronary artery.

    PubMed

    Mery, Carlos M; Lopez, Keila N; Molossi, Silvana; Sexson-Tejtel, S Kristen; Krishnamurthy, Rajesh; McKenzie, E Dean; Fraser, Charles D; Cantor, Scott B

    2016-11-01

    The goal of this study was to use decision analysis to evaluate the impact of varying uncertainties on the outcomes of patients with anomalous aortic origin of a coronary artery. Two separate decision analysis models were created: one for anomalous left coronary artery (ALCA) and one for anomalous right coronary artery (ARCA). Three strategies were compared: observation, exercise restriction, and surgery. Probabilities and health utilities were estimated on the basis of existing literature. Deterministic and probabilistic sensitivity analyses were performed. Surgery was the optimal management strategy for patients <30 years of age with ALCA. As age increased, observation became an equivalent strategy and eventually surpassed surgery as the treatment of choice. The advantage on life expectancy for surgery over observation ranged from 2.6 ± 1.7 years for a 10-year-old patient to -0.03 ± 0.1 for a 65-year old patient. In patients with ARCA, observation was the optimal strategy for most patients with a life expectancy advantage over surgery of 0.1 ± 0.1 years to 0.2 ± 0.4 years, depending on age. Surgery was the preferred strategy only for patients <25 years of age when the perceived risk of sudden cardiac death was high and the perioperative mortality was low. Exercise restriction was a suboptimal strategy for both ALCA and ARCA in all scenarios. The optimal management in anomalous aortic origin of a coronary artery depends on multiple factors, including individual patient characteristics. Decision analysis provides a tool to understand how these characteristics affect the outcomes with each management strategy and thus may aid in the decision making process for a particular patient. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. Computer-assisted navigation in orthopedic surgery.

    PubMed

    Mavrogenis, Andreas F; Savvidou, Olga D; Mimidis, George; Papanastasiou, John; Koulalis, Dimitrios; Demertzis, Nikolaos; Papagelopoulos, Panayiotis J

    2013-08-01

    Computer-assisted navigation has a role in some orthopedic procedures. It allows the surgeons to obtain real-time feedback and offers the potential to decrease intra-operative errors and optimize the surgical result. Computer-assisted navigation systems can be active or passive. Active navigation systems can either perform surgical tasks or prohibit the surgeon from moving past a predefined zone. Passive navigation systems provide intraoperative information, which is displayed on a monitor, but the surgeon is free to make any decisions he or she deems necessary. This article reviews the available types of computer-assisted navigation, summarizes the clinical applications and reviews the results of related series using navigation, and informs surgeons of the disadvantages and pitfalls of computer-assisted navigation in orthopedic surgery. Copyright 2013, SLACK Incorporated.

  18. Reconstruction of a Severely Atrophied Alveolar Ridge by Computer-Aided Gingival Simulation and 3D-Printed Surgical Guide: A Case Report.

    PubMed

    Song, In-Seok; Lee, Mi-Ran; Ryu, Jae-Jun; Lee, Ui-Lyong

    Dental implants positioned in severely atrophied anterior maxillae require esthetic or functional compromises. This case report describes the rehabilitation of a severely atrophied alveolar ridge with a three-dimensional (3D) computer-aided design/computer-aided manufacture (CAD/CAM) surgical guide. A 50-year-old woman had a severely atrophied anterior maxilla with unfavorably positioned dental implants. Functional and esthetic prosthodontic restoration was difficult to achieve. An anterior segmental osteotomy was planned to reposition the dental implants. A 3D surgical guide was designed for precise relocation of the segment. The surgical guide firmly grasped the impression copings of the dental implants, minimizing surgical errors. Three-dimensional gingival simulation was used preoperatively to estimate the appropriate position of the gingiva. Rigid fixation to the surrounding bone allowed immobilization of the implant-bone segment. Satisfactory esthetic and functional outcomes were attained 6 months after surgery. Finally, a severely atrophied alveolar ridge with unfavorably positioned dental implants was recovered with minimal esthetic and functional deterioration using gingival simulation and a 3D CAD/CAM surgical guide.

  19. Expert System for Automated Design Synthesis

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Barthelemy, Jean-Francois M.

    1987-01-01

    Expert-system computer program EXADS developed to aid users of Automated Design Synthesis (ADS) general-purpose optimization program. EXADS aids engineer in determining best combination based on knowledge of specific problem and expert knowledge stored in knowledge base. Available in two interactive machine versions. IBM PC version (LAR-13687) written in IQ-LISP. DEC VAX version (LAR-13688) written in Franz-LISP.

  20. Medical Robotic and Telesurgical Simulation and Education Research

    DTIC Science & Technology

    2014-09-01

    versions of the device for sale . A B 13 C D Figure 6: The Computer Aided Design of the Dome (A-B) and the last High Fidelity Prototype (C...FRxS Advanced Etc. Etc. Virtual Worlds for Robotic Surgery 31 HumanSim Preview for iPad is available on iTunes VIRTURLHEROES OMS ION O F

  1. Prosthetic Rehabilitation After Fibular Free Flap Surgery of Mandibular Defects in a Patient With Oral Squamous Cell Carcinoma.

    PubMed

    Yoon, Hyung-In

    2016-10-01

    This report is to present the treatment procedure and clinical considerations of prosthodontic management of a patient who had undergone a partial mandibulectomy and fibular free flap surgery. A 59-year-old man with a squamous cell carcinoma received a partial mandibular resection. Microsurgical reconstruction with a fibular free flap surgery and implant-supported zirconia-fixed prosthesis produced by computer-aided manufacturing led to successful results for the oral rehabilitation of mandibular defects. The implant-supported zirconia-fixed prosthesis can be recommended for use in patients with mandibulectomy and fibular free flaps. Close cooperation between the surgeon and the prosthodontist is mandatory for the satisfaction of the patient.

  2. Custom CAD-CAM healing abutment and impression coping milled from a poly(methyl methacrylate) block and bonded to a titanium insert.

    PubMed

    Proussaefs, Periklis

    2016-11-01

    This article describes a technique in which a custom-made computer-aided design and computer-aided manufacturing (CAD-CAM) healing abutment milled from a poly(methyl methacrylate) (PMMA) block is fabricated and bonded to a titanium metal insert. An impression is made during dental implant surgery, and the CAD-CAM custom-made healing abutment is fabricated before second-stage surgery while appropriate healing time is allowed for the dental implant to osseointegrate. The contours of the healing abutment are based on the contours of a tentatively designed definitive prosthesis. The healing tissue obtains contours that will be compatible with the contours of the definitive prosthesis. After the milling process is complete, a titanium metal insert is bonded to the healing abutment. Placement of the custom-made CAD-CAM healing abutment at second-stage surgery allows the tissue to obtain contours similar to those of the definitive prosthesis. A custom-made CAD-CAM impression coping milled from a PMMA block and with a titanium insert is used for the definitive impression after the soft tissue has healed. This technique allows guided soft tissue healing by using a custom-made CAD-CAM healing abutment and impression coping. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. CAD/CAM techniques help in the rebuilding of ideal marginal gingiva contours of anterior maxillary teeth: A case report.

    PubMed

    Yin, Jiayue; Liu, Dan; Huang, Yuehua; Wu, Lin; Tang, Xiaolin

    2017-11-01

    "Pink esthetics," which are considered to be as important as "white esthetics," have attracted increasing attention. To date, clinicians rarely have applied computer-aided design and computer-aided manufacturing (CAD/CAM) techniques in the rebuilding of the contour of the marginal gingiva in the esthetic zone. In this case report, the authors describe a female patient who had gingival inflammation and an asymmetrical contour of the marginal gingiva of the anterior maxillary teeth because previously placed ceramic crowns violated the biological width. The authors used a 3-dimensional-printing surgery template to guide precise crown-lengthening surgery to expose subgingival shoulders and to obtain an ideal marginal gingival contour. Then the authors used interim CAD/CAM crowns to induce the growth of the interdental papilla by 0.5 to 1.5 millimeters. Finally, the patient had a symmetrical and well-balanced contour of the marginal gingiva. In addition, the authors reduced the patient's "black triangle" areas to the greatest possible extent. This case report illustrates that CAD/CAM products, including 3-dimensional-printing surgery templates and CAD/CAM interim crowns, are helpful in shaping and rebuilding the ideal contour of the marginal gingiva in the esthetic zone, such as the anterior maxillary teeth. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  4. Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity.

    PubMed

    Azuma, Masaki; Yanagawa, Toru; Ishibashi-Kanno, Naomi; Uchida, Fumihiko; Ito, Takaaki; Yamagata, Kenji; Hasegawa, Shogo; Sasaki, Kaoru; Adachi, Koji; Tabuchi, Katsuhiko; Sekido, Mitsuru; Bukawa, Hiroki

    2014-10-23

    Recently, medical rapid prototyping (MRP) models, fabricated with computer-aided design and computer-aided manufacture (CAD/CAM) techniques, have been applied to reconstructive surgery in the treatment of head and neck cancers. Here, we tested the use of preoperatively manufactured reconstruction plates, which were produced using MRP models. The clinical efficacy and esthetic outcome of using these products in mandibular reconstruction was evaluated. A series of 28 patients with malignant oral tumors underwent unilateral segmental resection of the mandible and simultaneous mandibular reconstruction. Twelve patients were treated with prebent reconstruction plates that were molded to MRP mandibular models designed with CAD/CAM techniques and fabricated on a combined powder bed and inkjet head three-dimensional printer. The remaining 16 patients were treated using conventional reconstruction methods. The surgical and esthetic outcomes of the two groups were compared by imaging analysis using post-operative panoramic tomography. The mandibular symmetry in patients receiving the MRP-model-based prebent plates was significantly better than that in patients receiving conventional reconstructive surgery. Patients with head and neck cancer undergoing reconstructive surgery using a prebent reconstruction plate fabricated according to an MRP mandibular model showed improved mandibular contour compared to patients undergoing conventional mandibular reconstruction. Thus, use of this new technology for mandibular reconstruction results in an improved esthetic outcome with the potential for improved quality of life for patients.

  5. Composite panel development at JPL

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul; Helms, Rich

    1988-01-01

    Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.

  6. A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery

    NASA Astrophysics Data System (ADS)

    Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.

    2007-03-01

    This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.

  7. Investigation of Navier-Stokes Code Verification and Design Optimization

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar

    2004-01-01

    With rapid progress made in employing computational techniques for various complex Navier-Stokes fluid flow problems, design optimization problems traditionally based on empirical formulations and experiments are now being addressed with the aid of computational fluid dynamics (CFD). To be able to carry out an effective CFD-based optimization study, it is essential that the uncertainty and appropriate confidence limits of the CFD solutions be quantified over the chosen design space. The present dissertation investigates the issues related to code verification, surrogate model-based optimization and sensitivity evaluation. For Navier-Stokes (NS) CFD code verification a least square extrapolation (LSE) method is assessed. This method projects numerically computed NS solutions from multiple, coarser base grids onto a freer grid and improves solution accuracy by minimizing the residual of the discretized NS equations over the projected grid. In this dissertation, the finite volume (FV) formulation is focused on. The interplay between the xi concepts and the outcome of LSE, and the effects of solution gradients and singularities, nonlinear physics, and coupling of flow variables on the effectiveness of LSE are investigated. A CFD-based design optimization of a single element liquid rocket injector is conducted with surrogate models developed using response surface methodology (RSM) based on CFD solutions. The computational model consists of the NS equations, finite rate chemistry, and the k-6 turbulence closure. With the aid of these surrogate models, sensitivity and trade-off analyses are carried out for the injector design whose geometry (hydrogen flow angle, hydrogen and oxygen flow areas and oxygen post tip thickness) is optimized to attain desirable goals in performance (combustion length) and life/survivability (the maximum temperatures on the oxidizer post tip and injector face and a combustion chamber wall temperature). A preliminary multi-objective optimization study is carried out using a geometric mean approach. Following this, sensitivity analyses with the aid of variance-based non-parametric approach and partial correlation coefficients are conducted using data available from surrogate models of the objectives and the multi-objective optima to identify the contribution of the design variables to the objective variability and to analyze the variability of the design variables and the objectives. In summary the present dissertation offers insight into an improved coarse to fine grid extrapolation technique for Navier-Stokes computations and also suggests tools for a designer to conduct design optimization study and related sensitivity analyses for a given design problem.

  8. Multiple burn fuel-optimal orbit transfers: Numerical trajectory computation and neighboring optimal feedback guidance

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.

    1995-01-01

    This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.

  9. Computer-aided design of antenna structures and components

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1976-01-01

    This paper discusses computer-aided design procedures for antenna reflector structures and related components. The primary design aid is a computer program that establishes cross sectional sizes of the structural members by an optimality criterion. Alternative types of deflection-dependent objectives can be selected for designs subject to constraints on structure weight. The computer program has a special-purpose formulation to design structures of the type frequently used for antenna construction. These structures, in common with many in other areas of application, are represented by analytical models that employ only the three translational degrees of freedom at each node. The special-purpose construction of the program, however, permits coding and data management simplifications that provide advantages in problem size and execution speed. Size and speed are essentially governed by the requirements of structural analysis and are relatively unaffected by the added requirements of design. Computation times to execute several design/analysis cycles are comparable to the times required by general-purpose programs for a single analysis cycle. Examples in the paper illustrate effective design improvement for structures with several thousand degrees of freedom and within reasonable computing times.

  10. Virtual Surgery for Conduit Reconstruction of the Right Ventricular Outflow Tract.

    PubMed

    Ong, Chin Siang; Loke, Yue-Hin; Opfermann, Justin; Olivieri, Laura; Vricella, Luca; Krieger, Axel; Hibino, Narutoshi

    2017-05-01

    Virtual surgery involves the planning and simulation of surgical reconstruction using three-dimensional (3D) modeling based upon individual patient data, augmented by simulation of planned surgical alterations including implantation of devices or grafts. Here we describe a case in which virtual cardiac surgery aided us in determining the optimal conduit size to use for the reconstruction of the right ventricular outflow tract. The patient is a young adolescent male with a history of tetralogy of Fallot with pulmonary atresia, requiring right ventricle-to-pulmonary artery (RV-PA) conduit replacement. Utilizing preoperative magnetic resonance imaging data, virtual surgery was undertaken to construct his heart in 3D and to simulate the implantation of three different sizes of RV-PA conduit (18, 20, and 22 mm). Virtual cardiac surgery allowed us to predict the ability to implant a conduit of a size that would likely remain adequate in the face of continued somatic growth and also allow for the possibility of transcatheter pulmonary valve implantation at some time in the future. Subsequently, the patient underwent uneventful conduit change surgery with implantation of a 22-mm Hancock valved conduit. As predicted, the intrathoracic space was sufficient to accommodate the relatively large conduit size without geometric distortion or sternal compression. Virtual cardiac surgery gives surgeons the ability to simulate the implantation of prostheses of different sizes in relation to the dimensions of a specific patient's own heart and thoracic cavity in 3D prior to surgery. This can be very helpful in predicting optimal conduit size, determining appropriate timing of surgery, and patient education.

  11. Advanced decision aiding techniques applicable to space

    NASA Technical Reports Server (NTRS)

    Kruchten, Robert J.

    1987-01-01

    RADC has had an intensive program to show the feasibility of applying advanced technology to Air Force decision aiding situations. Some aspects of the program, such as Satellite Autonomy, are directly applicable to space systems. For example, RADC has shown the feasibility of decision aids that combine the advantages of laser disks and computer generated graphics; decision aids that interface object-oriented programs with expert systems; decision aids that solve path optimization problems; etc. Some of the key techniques that could be used in space applications are reviewed. Current applications are reviewed along with their advantages and disadvantages, and examples are given of possible space applications. The emphasis is to share RADC experience in decision aiding techniques.

  12. Monitoring and decision making by people in man machine systems

    NASA Technical Reports Server (NTRS)

    Johannsen, G.

    1979-01-01

    The analysis of human monitoring and decision making behavior as well as its modeling are described. Classic and optimal control theoretical, monitoring models are surveyed. The relationship between attention allocation and eye movements is discussed. As an example of applications, the evaluation of predictor displays by means of the optimal control model is explained. Fault detection involving continuous signals and decision making behavior of a human operator engaged in fault diagnosis during different operation and maintenance situations are illustrated. Computer aided decision making is considered as a queueing problem. It is shown to what extent computer aids can be based on the state of human activity as measured by psychophysiological quantities. Finally, management information systems for different application areas are mentioned. The possibilities of mathematical modeling of human behavior in complex man machine systems are also critically assessed.

  13. Computer-aided drug design at Boehringer Ingelheim

    NASA Astrophysics Data System (ADS)

    Muegge, Ingo; Bergner, Andreas; Kriegl, Jan M.

    2017-03-01

    Computer-Aided Drug Design (CADD) is an integral part of the drug discovery endeavor at Boehringer Ingelheim (BI). CADD contributes to the evaluation of new therapeutic concepts, identifies small molecule starting points for drug discovery, and develops strategies for optimizing hit and lead compounds. The CADD scientists at BI benefit from the global use and development of both software platforms and computational services. A number of computational techniques developed in-house have significantly changed the way early drug discovery is carried out at BI. In particular, virtual screening in vast chemical spaces, which can be accessed by combinatorial chemistry, has added a new option for the identification of hits in many projects. Recently, a new framework has been implemented allowing fast, interactive predictions of relevant on and off target endpoints and other optimization parameters. In addition to the introduction of this new framework at BI, CADD has been focusing on the enablement of medicinal chemists to independently perform an increasing amount of molecular modeling and design work. This is made possible through the deployment of MOE as a global modeling platform, allowing computational and medicinal chemists to freely share ideas and modeling results. Furthermore, a central communication layer called the computational chemistry framework provides broad access to predictive models and other computational services.

  14. ECMO and cytokine removal for bridging to surgery in a patient with ischemic ventricular septal defect - a case report.

    PubMed

    Marek, Stefanie; Gamper, Gunnar; Reining, Georg; Bergmann, Peter; Mayr, Harald; Kliegel, Andreas

    2017-09-15

    Even in the modern era of percutaneous coronary intervention, postinfarction ventricular septal defect (VSD) remains a serious and often lethal complication. Whether or not immediate surgical repair or delaying surgery a few days aided by intra-aortic counterpulsation provides the optimal strategy remains a matter of debate. An interdisciplinary approach of intensivists and cardiac surgeons in this setting is mandatory. We report the use of veno-arterial extracorporeal membrane oxygenation and extracorporeal blood purification therapy (CytoSorb®) as bridging to surgical closure in a patient with an ischemic VSD leading to protracted cardiogenic shock after posterior myocardial infarction.

  15. Computer assisted surgery with 3D robot models and visualisation of the telesurgical action.

    PubMed

    Rovetta, A

    2000-01-01

    This paper deals with the support of virtual reality computer action in the procedures of surgical robotics. Computer support gives a direct representation of the surgical theatre. The modelization of the procedure in course and in development gives a psychological reaction towards safety and reliability. Robots similar to the ones used by the manufacturing industry can be used with little modification as very effective surgical tools. They have high precision, repeatability and are versatile in integrating with the medical instrumentation. Now integrated surgical rooms, with computer and robot-assisted intervention, are operating. The computer is the element for a decision taking aid, and the robot works as a very effective tool.

  16. Audiometric evaluation of an attempt to optimize the fixation of the transducer of a middle-ear implant to the ossicular chain with bone cement.

    PubMed

    Snik, A; Cremers, C

    2004-02-01

    Typically, an implantable hearing device consists of a transducer that is coupled to the ossicular chain and electronics. The coupling is of major importance. The Vibrant Soundbridge (VSB) is such an implantable device; normally, the VSB transducer is fixed to the ossicular chain by means of a special clip that is crimped around the long process of the incus. In addition to crimping, bone cement was used to optimize the fixation in six patients. Long-term results were compared to those of five controls with crimp fixation alone. To assess the effect of bone cement (SerenoCem, Corinthian Medical Ltd, Nottingham, UK) on hearing thresholds, long-term post-surgery thresholds were compared to pre-surgery thresholds. Bone cement did not have any negative effect. Next, to test the hypothesis that aided thresholds might be better with the use of bone cement, aided thresholds were studied. After correction for the severity of hearing loss, only a small difference was found between the two groups at one frequency, viz. 2 kHz. It was concluded that there was no negative effect of using bone cement; however, there is also no reason to use bone cement in VSB users on a regular basis.

  17. VERS: a virtual environment for reconstructive surgery planning

    NASA Astrophysics Data System (ADS)

    Montgomery, Kevin N.

    1997-05-01

    The virtual environment for reconstructive surgery (VERS) project at the NASA Ames Biocomputation Center is applying virtual reality technology to aid surgeons in planning surgeries. We are working with a craniofacial surgeon at Stanford to assemble and visualize the bone structure of patients requiring reconstructive surgery either through developmental abnormalities or trauma. This project is an extension of our previous work in 3D reconstruction, mesh generation, and immersive visualization. The current VR system, consisting of an SGI Onyx RE2, FakeSpace BOOM and ImmersiveWorkbench, Virtual Technologies CyberGlove and Ascension Technologies tracker, is currently in development and has already been used to visualize defects preoperatively. In the near future it will be used to more fully plan the surgery and compute the projected result to soft tissue structure. This paper presents the work in progress and details the production of a high-performance, collaborative, and networked virtual environment.

  18. [Computer-aided method and rapid prototyping for the personalized fabrication of a silicone bandage digital prosthesis].

    PubMed

    Ventura Ferreira, Nuno; Leal, Nuno; Correia Sá, Inês; Reis, Ana; Marques, Marisa

    2014-01-01

    The fabrication of digital prostheses has acquired growing importance not only for the possibility for the patient to overcome psychosocial trauma but also to promote grip functionality. An application method of three dimensional-computer-aided design technologies for the production of passive prostheses is presented by means of a fifth finger amputee clinical case following bilateral hand replantation.Three-dimensional-computerized tomography was used for the collection of anthropometric images of the hands. Computer-aided design techniques were used to develop the digital file-based prosthesis from the reconstruction images by inversion and superimposing the contra-lateral finger images. The rapid prototyping manufacturing method was used for the production of a silicone bandage prosthesis prototype. This approach replaces the traditional manual method by a virtual method that is basis for the optimization of a high speed, accurate and innovative process.

  19. A new milling machine for computer-aided, in-office restorations.

    PubMed

    Kurbad, Andreas

    Chairside computer-aided design/computer-aided manufacturing (CAD/CAM) technology requires an effective technical basis to obtain dental restorations with optimal marginal accuracy, esthetics, and longevity in as short a timeframe as possible. This article describes a compact, 5-axis milling machine based on an innovative milling technology (5XT - five-axis turn-milling technique), which is capable of achieving high-precision milling results within a very short processing time. Furthermore, the device's compact dimensioning and state-of-the-art mode of operation facilitate its use in the dental office. This model is also an option to be considered for use in smaller dental laboratories, especially as the open input format enables it to be quickly and simply integrated into digital processing systems already in use. The possibility of using ceramic and polymer materials with varying properties enables the manufacture of restorations covering all conceivable indications in the field of fixed dental prosthetics.

  20. A software methodology for compiling quantum programs

    NASA Astrophysics Data System (ADS)

    Häner, Thomas; Steiger, Damian S.; Svore, Krysta; Troyer, Matthias

    2018-04-01

    Quantum computers promise to transform our notions of computation by offering a completely new paradigm. To achieve scalable quantum computation, optimizing compilers and a corresponding software design flow will be essential. We present a software architecture for compiling quantum programs from a high-level language program to hardware-specific instructions. We describe the necessary layers of abstraction and their differences and similarities to classical layers of a computer-aided design flow. For each layer of the stack, we discuss the underlying methods for compilation and optimization. Our software methodology facilitates more rapid innovation among quantum algorithm designers, quantum hardware engineers, and experimentalists. It enables scalable compilation of complex quantum algorithms and can be targeted to any specific quantum hardware implementation.

  1. PC-based control unit for a head-mounted operating microscope for augmented-reality visualization in surgical navigation

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Birkfellner, Wolfgang; Watzinger, Franz; Wanschitz, Felix; Hummel, Johann; Hanel, Rudolf A.; Ewers, Rolf; Bergmann, Helmar

    2002-05-01

    Two main concepts of Head Mounted Displays (HMD) for augmented reality (AR) visualization exist, the optical and video-see through type. Several research groups have pursued both approaches for utilizing HMDs for computer aided surgery. While the hardware requirements for a video see through HMD to achieve acceptable time delay and frame rate seem to be enormous the clinical acceptance of such a device is doubtful from a practical point of view. Starting from previous work in displaying additional computer-generated graphics in operating microscopes, we have adapted a miniature head mounted operating microscope for AR by integrating two very small computer displays. To calibrate the projection parameters of this so called Varioscope AR we have used Tsai's Algorithm for camera calibration. Connection to a surgical navigation system was performed by defining an open interface to the control unit of the Varioscope AR. The control unit consists of a standard PC with a dual head graphics adapter to render and display the desired augmentation of the scene. We connected this control unit to a computer aided surgery (CAS) system by the TCP/IP interface. In this paper we present the control unit for the HMD and its software design. We tested two different optical tracking systems, the Flashpoint (Image Guided Technologies, Boulder, CO), which provided about 10 frames per second, and the Polaris (Northern Digital, Ontario, Canada) which provided at least 30 frames per second, both with a time delay of one frame.

  2. Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery.

    PubMed

    Flügge, Tabea Viktoria; Nelson, Katja; Schmelzeisen, Rainer; Metzger, Marc Christian

    2013-08-01

    To present an efficient workflow for the production of implant drilling guides using virtual planning tools. For this purpose, laser surface scanning, cone beam computed tomography, computer-aided design and manufacturing, and 3-dimensional (3D) printing were combined. Intraoral optical impressions (iTero, Align Technologies, Santa Clara, CA) and digital 3D radiographs (cone beam computed tomography) were performed at the first consultation of 1 exemplary patient. With image processing techniques, the intraoral surface data, acquired using an intraoral scanner, and radiologic 3D data were fused. The virtual implant planning process (using virtual library teeth) and the in-office production of the implant drilling guide was performed after only 1 clinical consultation of the patient. Implant surgery with a computer-aided design and manufacturing produced implant drilling guide was performed during the second consultation. The production of a scan prosthesis and multiple preoperative consultations of the patient were unnecessary. The presented procedure offers another step in facilitating the production of drilling guides in dental implantology. Four main advantages are realized with this procedure. First, no additional scan prosthesis is needed. Second, data acquisition can be performed during the first consultation. Third, the virtual planning is directly transferred to the drilling guide without a loss of accuracy. Finally, the treatment cost and time required are reduced with this facilitated production process. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. John Bell (1763-1820): brother artist and anatomist.

    PubMed

    Gardner-Thorpe, Christopher

    2013-01-01

    John Bell, brother-surgeon of Charles Bell, was, like Charles, an outstanding surgeon and a good artist. John was one of the few who illustrated his work with their own drawings in the days before audiovisual aids were available and without the benefit of reliable drawing aids, photography and computer-aided design. Charles, on the other hand, was the better artist and illustrated much of the normal anatomy of the nervous system. Each brother undertook extensive surgery of men who had been wounded in war; John Bell left us his engravings from the textbooks, more numerous perhaps than Charles, but Charles left us a series of oil paintings and watercolours in addition to the illustrations in his textbooks. © 2013 Elsevier B.V. All rights reserved.

  4. Reoperation for rhegmatogenous retinal detachment as quality indicator for disease management: a register study.

    PubMed

    Hajari, Javad N; Christensen, Ulrik; Kiilgaard, Jens F; Bek, Toke; la Cour, Morten

    2015-09-01

    To establish a quality indicator that could be used in optimizing treatment for rhegmatogenous retinal detachment (RRD). The Danish National Patient Registry was used to identify surgery conducted in Denmark for RRD in the period 01 January 2001-31 December 2009. Cases were identified by diagnosis and surgical codes. A total of 6522 cases were operated for a primary RRD in the study period, and 22% (1434 patients) were reoperated for a redetachment. A Cox regression analysis showed that the risk of redetachment was equal to or less than detachment on the fellow eye 1 year after primary surgery with techniques not using silicone oil. The same was true 1.5 years after surgery for techniques using silicone oil. Based on this, we established a quality indicator defining failure as the need for operation for redetachment within 1 year from initial surgery when using techniques without oil and after 1.5 years for techniques using oil. Also the lack of oil removal within 1 year from initial surgery should be noted as an operational failure. We applied the quality indicators on the cohort of 6522 RRDs and found that in Denmark the need for redetachment surgery has decreased over time and also that high-volume departments have better outcome compared to smaller ones. The risk of reoperation for redetachment after initial surgery fulfils the criteria for a good quality indicator and can be used in RRD surgery. This indicator could aid in optimizing the management of RRD patients to minimize morbidity. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Some Problems of Computer-Aided Testing and "Interview-Like Tests"

    ERIC Educational Resources Information Center

    Smoline, D.V.

    2008-01-01

    Computer-based testing--is an effective teacher's tool, intended to optimize course goals and assessment techniques in a comparatively short time. However, this is accomplished only if we deal with high-quality tests. It is strange, but despite the 100-year history of Testing Theory (see, Anastasi, A., Urbina, S. (1997). Psychological testing.…

  6. Image-guided laser projection for port placement in minimally invasive surgery.

    PubMed

    Marmurek, Jonathan; Wedlake, Chris; Pardasani, Utsav; Eagleson, Roy; Peters, Terry

    2006-01-01

    We present an application of an augmented reality laser projection system in which procedure-specific optimal incision sites, computed from pre-operative image acquisition, are superimposed on a patient to guide port placement in minimally invasive surgery. Tests were conducted to evaluate the fidelity of computed and measured port configurations, and to validate the accuracy with which a surgical tool-tip can be placed at an identified virtual target. A high resolution volumetric image of a thorax phantom was acquired using helical computed tomography imaging. Oriented within the thorax, a phantom organ with marked targets was visualized in a virtual environment. A graphical interface enabled marking the locations of target anatomy, and calculation of a grid of potential port locations along the intercostal rib lines. Optimal configurations of port positions and tool orientations were determined by an objective measure reflecting image-based indices of surgical dexterity, hand-eye alignment, and collision detection. Intra-operative registration of the computed virtual model and the phantom anatomy was performed using an optical tracking system. Initial trials demonstrated that computed and projected port placement provided direct access to target anatomy with an accuracy of 2 mm.

  7. ODIN system technology module library, 1972 - 1973

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Watson, D. A.; Glatt, C. R.; Jones, R. T.; Galipeau, J.; Phoa, Y. T.; White, R. J.

    1978-01-01

    ODIN/RLV is a digital computing system for the synthesis and optimization of reusable launch vehicle preliminary designs. The system consists of a library of technology modules in the form of independent computer programs and an executive program, ODINEX, which operates on the technology modules. The technology module library contains programs for estimating all major military flight vehicle system characteristics, for example, geometry, aerodynamics, economics, propulsion, inertia and volumetric properties, trajectories and missions, steady state aeroelasticity and flutter, and stability and control. A general system optimization module, a computer graphics module, and a program precompiler are available as user aids in the ODIN/RLV program technology module library.

  8. Custom-Machined Miniplates and Bone-Supported Guides for Orthognathic Surgery: A New Surgical Procedure.

    PubMed

    Brunso, Joan; Franco, Maria; Constantinescu, Thomas; Barbier, Luis; Santamaría, Joseba Andoni; Alvarez, Julio

    2016-05-01

    Several surgical strategies exist to improve accuracy in orthognathic surgery, but ideal planning and treatment have yet to be described. The purpose of this study was to present and assess the accuracy of a virtual orthognathic positioning system (OPS), based on the use of bone-supported guides for placement of custom, highly rigid, machined titanium miniplates produced using computer-aided design and computer-aided manufacturing technology. An institutional review board-approved prospective observational study was designed to evaluate our early experience with the OPS. The inclusion criteria were as follows: adult patients who were classified as skeletal Class II or III patients and as candidates for orthognathic surgery or who were candidates for maxillomandibular advancement as a treatment for obstructive sleep apnea. Reverse planning with computed tomography and modeling software was performed. Our OPS was designed to avoid the use of intermaxillary fixation and occlusal splints. The minimum follow-up period was 1 year. Six patients were enrolled in the study. The custom OPS miniplates fit perfectly with the anterior buttress of the maxilla and the mandible body surface intraoperatively. To evaluate accuracy, the postoperative 3-dimensional reconstructed computed tomography image and the presurgical plan were compared. In the maxillary fragments that underwent less than 6 mm of advancement, the OPS enabled an SD of 0.14 mm (92% within 1 mm) at the upper maxilla and 0.34 mm (86% within 1 mm) at the mandible. In the case of great advancements of more than 10 mm, the SD was 1.33 mm (66% within 1 mm) at the upper maxilla and 0.67 mm (73% within 1 mm) at the mandibular level. Our novel OPS was safe and well tolerated, providing positional control with considerable surgical accuracy. The OPS simplified surgery by being independent of support from the opposite maxilla and obviating the need for classic intermaxillary occlusal splints. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results - our experience in 16 cases.

    PubMed

    Aboul-Hosn Centenero, Samir; Hernández-Alfaro, Federico

    2012-02-01

    The aim of this article is to determine the advantages of 3D planning in predicting postoperative results and manufacturing surgical splints using CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) technology in orthognathic surgery when the software program Simplant OMS 10.1 (Materialise(®), Leuven, Belgium) was used for the purpose of this study which was carried out on 16 patients. A conventional preoperative treatment plan was devised for each patient following our Centre's standard protocol, and surgical splints were manufactured. These splints were used as study controls. The preoperative treatment plans devised were then transferred to a 3D-virtual environment on a personal computer (PC). Surgery was simulated, the prediction of results on soft and hard tissue produced, and surgical splints manufactured using CAD/CAM technology. In the operating room, both types of surgical splints were compared and the degree of similitude in results obtained in three planes was calculated. The maxillary osteotomy line was taken as the point of reference. The level of concordance was used to compare the surgical splints. Three months after surgery a second set of 3D images were obtained and used to obtain linear and angular measurements on screen. Using the Intraclass Correlation Coefficient these postoperative measurements were compared with the measurements obtained when predicting postoperative results. Results showed that a high degree of correlation in 15 of the 16 cases. A high coefficient of correlation was obtained in the majority of predictions of results in hard tissue, although less precise results were obtained in measurements in soft tissue in the labial area. The study shows that the software program used in the study is reliable for 3D planning and for the manufacture of surgical splints using CAD/CAM technology. Nevertheless, further progress in the development of technologies for the acquisition of 3D images, new versions of software programs, and further studies of objective data are necessary to increase precision in computerised 3D planning. Copyright © 2011 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Testing of New Materials and Computer Aided Optimization of Process Parameters and Clamping Device During Predevelopment of Laser Welding Processes

    NASA Astrophysics Data System (ADS)

    Weidinger, Peter; Günther, Kay; Fitzel, Martin; Logvinov, Ruslan; Ilin, Alexander; Ploshikhin, Vasily; Hugger, Florian; Mann, Vincent; Roth, Stephan; Schmidt, Michael

    The necessity for weight reduction in motor vehicles in order to save fuel consumption pushes automotive suppliers to use materials of higher strength. Due to their excellent crash behavior high strength steels are increasingly applied in various structures. In this paper some predevelopment steps for a material change from a micro alloyed to dual phase and complex phase steels of a T-joint assembly are displayed. Initially the general weldability of the materials regarding pore formation, hardening in the heat affected zone and hot cracking susceptibility is discussed. After this basic investigation, the computer aided design optimization of a clamping device is shown, in which influences of the clamping jaw, the welding position and the clamping forces upon weld quality are presented. Finally experimental results of the welding process are displayed, which validate the numerical simulation.

  11. A Novel Computer-Aided Approach for Parametric Investigation of Custom Design of Fracture Fixation Plates.

    PubMed

    Chen, Xiaozhong; He, Kunjin; Chen, Zhengming

    2017-01-01

    The present study proposes an integrated computer-aided approach combining femur surface modeling, fracture evidence recover plate creation, and plate modification in order to conduct a parametric investigation of the design of custom plate for a specific patient. The study allows for improving the design efficiency of specific plates on the patients' femur parameters and the fracture information. Furthermore, the present approach will lead to exploration of plate modification and optimization. The three-dimensional (3D) surface model of a detailed femur and the corresponding fixation plate were represented with high-level feature parameters, and the shape of the specific plate was recursively modified in order to obtain the optimal plate for a specific patient. The proposed approach was tested and verified on a case study, and it could be helpful for orthopedic surgeons to design and modify the plate in order to fit the specific femur anatomy and the fracture information.

  12. Costs incurred by applying computer-aided design/computer-aided manufacturing techniques for the reconstruction of maxillofacial defects.

    PubMed

    Rustemeyer, Jan; Melenberg, Alex; Sari-Rieger, Aynur

    2014-12-01

    This study aims to evaluate the additional costs incurred by using a computer-aided design/computer-aided manufacturing (CAD/CAM) technique for reconstructing maxillofacial defects by analyzing typical cases. The medical charts of 11 consecutive patients who were subjected to the CAD/CAM technique were considered, and invoices from the companies providing the CAD/CAM devices were reviewed for every case. The number of devices used was significantly correlated with cost (r = 0.880; p < 0.001). Significant differences in mean costs were found between cases in which prebent reconstruction plates were used (€3346.00 ± €29.00) and cases in which they were not (€2534.22 ± €264.48; p < 0.001). Significant differences were also obtained between the costs of two, three and four devices, even when ignoring the cost of reconstruction plates. Additional fees provided by statutory health insurance covered a mean of 171.5% ± 25.6% of the cost of the CAD/CAM devices. Since the additional fees provide financial compensation, we believe that the CAD/CAM technique is suited for wide application and not restricted to complex cases. Where additional fees/funds are not available, the CAD/CAM technique might be unprofitable, so the decision whether or not to use it remains a case-to-case decision with respect to cost versus benefit. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Improving lung cancer prognosis assessment by incorporating synthetic minority oversampling technique and score fusion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Shiju; Qian, Wei; Guan, Yubao

    2016-06-15

    Purpose: This study aims to investigate the potential to improve lung cancer recurrence risk prediction performance for stage I NSCLS patients by integrating oversampling, feature selection, and score fusion techniques and develop an optimal prediction model. Methods: A dataset involving 94 early stage lung cancer patients was retrospectively assembled, which includes CT images, nine clinical and biological (CB) markers, and outcome of 3-yr disease-free survival (DFS) after surgery. Among the 94 patients, 74 remained DFS and 20 had cancer recurrence. Applying a computer-aided detection scheme, tumors were segmented from the CT images and 35 quantitative image (QI) features were initiallymore » computed. Two normalized Gaussian radial basis function network (RBFN) based classifiers were built based on QI features and CB markers separately. To improve prediction performance, the authors applied a synthetic minority oversampling technique (SMOTE) and a BestFirst based feature selection method to optimize the classifiers and also tested fusion methods to combine QI and CB based prediction results. Results: Using a leave-one-case-out cross-validation (K-fold cross-validation) method, the computed areas under a receiver operating characteristic curve (AUCs) were 0.716 ± 0.071 and 0.642 ± 0.061, when using the QI and CB based classifiers, respectively. By fusion of the scores generated by the two classifiers, AUC significantly increased to 0.859 ± 0.052 (p < 0.05) with an overall prediction accuracy of 89.4%. Conclusions: This study demonstrated the feasibility of improving prediction performance by integrating SMOTE, feature selection, and score fusion techniques. Combining QI features and CB markers and performing SMOTE prior to feature selection in classifier training enabled RBFN based classifier to yield improved prediction accuracy.« less

  14. The hounsfield unit value calculated with the aid of non-contrast computed tomography and its effect on the outcome of percutaneous nephrolithotomy.

    PubMed

    Gok, Alper; Polat, Haci; Cift, Ali; Yucel, Mehmet Ozgur; Gok, Bahri; Sirik, Mehmet; Benlioglu, Can; Kalyenci, Bedreddin

    2015-06-01

    To evaluate the effect of the Hounsfield unit (HU) value, calculated with the aid of non-contrast computed tomography, on the outcome of percutaneous nephrolithotomy (PCNL). Data for 83 patients evaluated in our clinic between November 2011 and February 2014 that had similar stone sizes, localizations, and radio opacities were retrospectively reviewed. The patients were grouped according to their HU value, in a low HU group (HU ≤ 1000) or a high HU group (HU > 1000). The two groups were compared based on their PCNL success rates, complications, duration of surgery, duration of fluoroscopy, and decrease in the hematocrit. There were no significant differences in terms of mean age, female-male ratio, or mean body mass index between the two groups (p > 0.05). The stone size and stone surface area did not differ significantly between the groups (p = 0.820 and p = 0.394, respectively). The unsuccessful PCNL rate and the prevalence of complications did not differ significantly between the two groups (p > 0.05). The duration of surgery, duration of fluoroscopy, and decrease in the hematocrit were significantly greater in the high HU group compared to the low HU group (p < 0.001). Calculating the HU value using this imaging method may predict cases with longer surgery durations, longer fluoroscopy durations, and greater decreases in hematocrite levels, but this value is not related to the success rate of PCNL.

  15. Computational Modeling in Liver Surgery

    PubMed Central

    Christ, Bruno; Dahmen, Uta; Herrmann, Karl-Heinz; König, Matthias; Reichenbach, Jürgen R.; Ricken, Tim; Schleicher, Jana; Ole Schwen, Lars; Vlaic, Sebastian; Waschinsky, Navina

    2017-01-01

    The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery. PMID:29249974

  16. Artificial Intelligence in Surgery: Promises and Perils.

    PubMed

    Hashimoto, Daniel A; Rosman, Guy; Rus, Daniela; Meireles, Ozanan R

    2018-07-01

    The aim of this review was to summarize major topics in artificial intelligence (AI), including their applications and limitations in surgery. This paper reviews the key capabilities of AI to help surgeons understand and critically evaluate new AI applications and to contribute to new developments. AI is composed of various subfields that each provide potential solutions to clinical problems. Each of the core subfields of AI reviewed in this piece has also been used in other industries such as the autonomous car, social networks, and deep learning computers. A review of AI papers across computer science, statistics, and medical sources was conducted to identify key concepts and techniques within AI that are driving innovation across industries, including surgery. Limitations and challenges of working with AI were also reviewed. Four main subfields of AI were defined: (1) machine learning, (2) artificial neural networks, (3) natural language processing, and (4) computer vision. Their current and future applications to surgical practice were introduced, including big data analytics and clinical decision support systems. The implications of AI for surgeons and the role of surgeons in advancing the technology to optimize clinical effectiveness were discussed. Surgeons are well positioned to help integrate AI into modern practice. Surgeons should partner with data scientists to capture data across phases of care and to provide clinical context, for AI has the potential to revolutionize the way surgery is taught and practiced with the promise of a future optimized for the highest quality patient care.

  17. Technological aids in uniportal video-assisted thoracoscopic surgery.

    PubMed

    Roque Cañas, Sonia Raquelline; Oviedo Argueta, Alonso José; Wu, Ching Feng; Gonzalez-Rivas, Diego

    2017-01-01

    With the evolution of uniportal video-assisted thoracoscopic surgery (VATS), the technological aids have come to help skill surgeons to improve the results in thoracic surgery and feasible to perform a complex surgery. The technological aids are divided into three important groups, which make surgical steps easy to perform, besides reducing surgical time and surgical accidents in the hands of experienced surgeons. The groups are: (I) conventional thoracoscopic instruments; (II) sealing devices using in uniportal VATS; (III) high definition cameras, robotic arms prototype and the future robotic aids for uniportal VATS surgery. Uniportal VATS is an example of the continuing search for methods that aim to provide the patient a surgical cure of the disease with the lowest morbidity. That is the reason companies are creating more and new technologies, but the surgeon have to choose properly and to know how, when and where is the moment to use each new aids to avoid mistakes. The future of the thoracic surgery is based on evolution of surgical procedures and innovations to try to reduce even more the surgical and anesthetic trauma. This article summarizes the technological aids to improve and help a thoracoscopics surgeons perform a uniportal VATS feasible and safe.

  18. Full-mouth rehabilitation with immediate loading of implants inserted with computer-guided flap-less surgery: a 3-year multicenter clinical evaluation with oral health impact profile.

    PubMed

    Marra, Roberto; Acocella, Alessandro; Rispoli, Alessandra; Sacco, Roberto; Ganz, Scott D; Blasi, Andrea

    2013-10-01

    The purpose of this report is to present the clinical outcomes and patients' satisfaction of full-mouth rehabilitation using computer-aided flapless implant placement and immediate loading of a prefabricated prosthesis. The study included 30 consecutive fully edentulous patients who received 312 implants. Mandible and maxilla were treated in the same surgical session with computer-guided flapless approach using the NobelGuide protocol. Prefabricated screw-retained fixed prostheses were inserted at the end of surgery. Clinical and radiographic evaluations were assessed at 6, 12, and 36 months. At baseline and 6 months after surgery, patients answered Oral Health Impact Profile in Edentulous Adults questionnaire to assess satisfaction. The implant survival rate was 97.9%, whereas the average marginal bone loss was 1.9 ± 1.3 mm after 3 years. At 6 months, patients showed significantly greater satisfaction with their fixed rehabilitation when compared with conventional dentures. The results of this study confirm that rehabilitation with a prefabricated fixed prosthesis supported by implants placed with NobelGuide protocol is a viable and predictable treatment and increases patients' satisfaction and improves oral health-related quality of life.

  19. Modular preoperative planning software for computer-aided oral implantology and the application of a novel stereolithographic template: a pilot study.

    PubMed

    Chen, Xiaojun; Yuan, Jianbing; Wang, Chengtao; Huang, Yuanliang; Kang, Lu

    2010-09-01

    In the field of oral implantology, there is a trend toward computer-aided implant surgery, especially the application of computerized tomography (CT)-derived surgical templates. However, because of relatively unsatisfactory match between the templates and receptor sites, conventional surgical templates may not be accurate enough for the severely resorbed edentulous cases during the procedure of transferring the preoperative plan to the actual surgery. The purpose of this study is to introduce a novel bone-tooth-combined-supported surgical guide, which is designed by utilizing a special modular software and fabricated via stereolithography technique using both laser scanning and CT imaging, thus improving the fit accuracy and reliability. A modular preoperative planning software was developed for computer-aided oral implantology. With the introduction of dynamic link libraries and some well-known free, open-source software libraries such as Visualization Toolkit (Kitware, Inc., New York, USA) and Insight Toolkit (Kitware, Inc.) a plug-in evolutive software architecture was established, allowing for expandability, accessibility, and maintainability in our system. To provide a link between the preoperative plan and the actual surgery, a novel bone-tooth-combined-supported surgical template was fabricated, utilizing laser scanning, image registration, and rapid prototyping. Clinical studies were conducted on four partially edentulous cases to make a comparison with the conventional bone-supported templates. The fixation was more stable than tooth-supported templates because laser scanning technology obtained detailed dentition information, which brought about the unique topography between the match surface of the templates and the adjacent teeth. The average distance deviations at the coronal and apical point of the implant were 0.66 mm (range: 0.3-1.2) and 0.86 mm (range: 0.4-1.2), and the average angle deviation was 1.84 degrees (range: 0.6-2.8 degrees ). This pilot study proves that the novel combined-supported templates are superior to the conventional ones. However, more clinical cases will be conducted to demonstrate their feasibility and reliability.

  20. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft, supplemental data

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1975-01-01

    Computational aspects of (1) flutter optimization (minimization of structural mass subject to specified flutter requirements), (2) methods for solving the flutter equation, and (3) efficient methods for computing generalized aerodynamic force coefficients in the repetitive analysis environment of computer-aided structural design are discussed. Specific areas included: a two-dimensional Regula Falsi approach to solving the generalized flutter equation; method of incremented flutter analysis and its applications; the use of velocity potential influence coefficients in a five-matrix product formulation of the generalized aerodynamic force coefficients; options for computational operations required to generate generalized aerodynamic force coefficients; theoretical considerations related to optimization with one or more flutter constraints; and expressions for derivatives of flutter-related quantities with respect to design variables.

  1. Demonstration of decomposition and optimization in the design of experimental space systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon; Sandridge, Chris A.; Haftka, Raphael T.; Walsh, Joanne L.

    1989-01-01

    Effective design strategies for a class of systems which may be termed Experimental Space Systems (ESS) are needed. These systems, which include large space antenna and observatories, space platforms, earth satellites and deep space explorers, have special characteristics which make them particularly difficult to design. It is argued here that these same characteristics encourage the use of advanced computer-aided optimization and planning techniques. The broad goal of this research is to develop optimization strategies for the design of ESS. These strategics would account for the possibly conflicting requirements of mission life, safety, scientific payoffs, initial system cost, launch limitations and maintenance costs. The strategies must also preserve the coupling between disciplines or between subsystems. Here, the specific purpose is to describe a computer-aided planning and scheduling technique. This technique provides the designer with a way to map the flow of data between multidisciplinary analyses. The technique is important because it enables the designer to decompose the system design problem into a number of smaller subproblems. The planning and scheduling technique is demonstrated by its application to a specific preliminary design problem.

  2. Self-learning computers for surgical planning and prediction of postoperative alignment.

    PubMed

    Lafage, Renaud; Pesenti, Sébastien; Lafage, Virginie; Schwab, Frank J

    2018-02-01

    In past decades, the role of sagittal alignment has been widely demonstrated in the setting of spinal conditions. As several parameters can be affected, identifying the driver of the deformity is the cornerstone of a successful treatment approach. Despite the importance of restoring sagittal alignment for optimizing outcome, this task remains challenging. Self-learning computers and optimized algorithms are of great interest in spine surgery as in that they facilitate better planning and prediction of postoperative alignment. Nowadays, computer-assisted tools are part of surgeons' daily practice; however, the use of such tools remains to be time-consuming. NARRATIVE REVIEW AND RESULTS: Computer-assisted methods for the prediction of postoperative alignment consist of a three step analysis: identification of anatomical landmark, definition of alignment objectives, and simulation of surgery. Recently, complex rules for the prediction of alignment have been proposed. Even though this kind of work leads to more personalized objectives, the number of parameters involved renders it difficult for clinical use, stressing the importance of developing computer-assisted tools. The evolution of our current technology, including machine learning and other types of advanced algorithms, will provide powerful tools that could be useful in improving surgical outcomes and alignment prediction. These tools can combine different types of advanced technologies, such as image recognition and shape modeling, and using this technique, computer-assisted methods are able to predict spinal shape. The development of powerful computer-assisted methods involves the integration of several sources of information such as radiographic parameters (X-rays, MRI, CT scan, etc.), demographic information, and unusual non-osseous parameters (muscle quality, proprioception, gait analysis data). In using a larger set of data, these methods will aim to mimic what is actually done by spine surgeons, leading to real tailor-made solutions. Integrating newer technology can change the current way of planning/simulating surgery. The use of powerful computer-assisted tools that are able to integrate several parameters and learn from experience can change the traditional way of selecting treatment pathways and counseling patients. However, there is still much work to be done to reach a desired level as noted in other orthopedic fields, such as hip surgery. Many of these tools already exist in non-medical fields and their adaptation to spine surgery is of considerable interest.

  3. Automatic repositioning of jaw segments for three-dimensional virtual treatment planning of orthognathic surgery.

    PubMed

    Santos, Rodrigo Mologni Gonçalves Dos; De Martino, José Mario; Passeri, Luis Augusto; Attux, Romis Ribeiro de Faissol; Haiter Neto, Francisco

    2017-09-01

    To develop a computer-based method for automating the repositioning of jaw segments in the skull during three-dimensional virtual treatment planning of orthognathic surgery. The method speeds up the planning phase of the orthognathic procedure, releasing surgeons from laborious and time-consuming tasks. The method finds the optimal positions for the maxilla, mandibular body, and bony chin in the skull. Minimization of cephalometric differences between measured and standard values is considered. Cone-beam computed tomographic images acquired from four preoperative patients with skeletal malocclusion were used for evaluating the method. Dentofacial problems of the four patients were rectified, including skeletal malocclusion, facial asymmetry, and jaw discrepancies. The results show that the method is potentially able to be used in routine clinical practice as support for treatment-planning decisions in orthognathic surgery. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Use of CAD Geometry in MDO

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1996-01-01

    The purpose of this paper is to discuss the use of Computer-Aided Design (CAD) geometry in a Multi-Disciplinary Design Optimization (MDO) environment. Two techniques are presented to facilitate the use of CAD geometry by different disciplines, such as Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM). One method is to transfer the load from a CFD grid to a CSM grid. The second method is to update the CAD geometry for CSM deflection.

  5. An image-guided planning system for endosseous oral implants.

    PubMed

    Verstreken, K; Van Cleynenbreugel, J; Martens, K; Marchal, G; van Steenberghe, D; Suetens, P

    1998-10-01

    A preoperative planning system for oral implant surgery was developed which takes as input computed tomographies (CT's) of the jaws. Two-dimensional (2-D) reslices of these axial CT slices orthogonal to a curve following the jaw arch are computed and shown together with three-dimensional (3-D) surface rendered models of the bone and computer-aided design (CAD)-like implant models. A technique is developed for scanning and visualizing an eventual existing removable prosthesis together with the bone structures. Evaluation of the planning done with the system shows a difference between 2-D and 3-D planning methods. Validation studies measure the benefits of the 3-D approach by comparing plans made in 2-D mode only with those further adjusted using the full 3-D visualization capabilities of the system. The benefits of a 3-D approach are then evident where a prosthesis is involved in the planning. For the majority of the patients, clinically important adjustments and optimizations to the 2-D plans are made once the 3-D visualization is enabled, effectively resulting in a better plan. The alterations are related to bone quality and quantity (p < 0.05), biomechanics (p < 0.005), and esthetics (p < 0.005), and are so obvious that the 3-D plan stands out clearly (p < 0.005). The improvements often avoid complications such as mandibular nerve damage, sinus perforations, fenestrations, or dehiscences.

  6. [Diagnossis and treatment of complicated anterior teeth esthetic defects by combination of whole-process digital esthetic rehabilitation with periodontic surgery].

    PubMed

    Li, Z; Liu, Y S; Ye, H Q; Liu, Y S; Hu, W J; Zhou, Y S

    2017-02-18

    To explore a new method of whole-process digital esthetic prosthodontic rehabilitation combined with periodontic surgery for complicated anterior teeth esthetic defects accompanied by soft tissue morphology, to provide an alternative choice for solving this problem under the guidance of three-dimensional (3D) printing digital dental model and surgical guide, thus completing periodontic surgery and digital esthetic rehabilitation of anterior teeth. In this study, 12 patients with complicated esthetic problems accompanied by soft tissue morphology in their anterior teeth were included. The dentition and facial images were obtained by intra-oral scanning and three-dimensional (3D) facial scanning and then calibrated. Two esthetic designs and prosthodontic outcome predictions were created by computer aided design /computer aided manufacturing (CAD/CAM) software combined with digital photography, including consideration of white esthetics and comprehensive consideration of pink-white esthetics. The predictive design of prostheses and the facial appearances of the two designs were evaluated by the patients. If the patients chose the design of comprehensive consideration of pink-white esthetics, they would choose whether they would receive periodontic surgery before esthetic rehabilitation. The dentition design cast of those who chose periodontic surgery would be 3D printed for the guide of periodontic surgery accordingly. In light of the two digital designs based on intra-oral scanning, facing scanning and digital photography, the satisfaction rate of the patients was significantly higher for the comprehensive consideration of pink-white esthetic design (P<0.05) and more patients tended to choose priodontic surgery before esthetic rehabilitation. The 3D printed digital dental model and surgical guide provided significant instructions for periodontic surgery, and achieved success transfer from digital design to clinical application. The prostheses were fabricated by CAD/CAM, thus realizing the whole-process digital esthetic rehabilitation. The new method for esthetic rehabilitation of complicated anterior teeth esthetic defects accompanied by soft tissue morphology, including patient-involved digital esthetic analysis, design, esthetic outcome prediction, 3D printing surgical guide for periodontic surgery and digital fabrication is a practical technology. This method is useful for improvement of clinical communication efficiency between doctor-patient, doctor-technician and doctors from different departments, and is conducive to multidisciplinary treatment of this complicated anterior teeth esthetic problem.

  7. Computer simulation of the NASA water vapor electrolysis reactor

    NASA Technical Reports Server (NTRS)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  8. Computer-assisted total hip arthroplasty: coding the next generation of navigation systems for orthopedic surgery.

    PubMed

    Renkawitz, Tobias; Tingart, Markus; Grifka, Joachim; Sendtner, Ernst; Kalteis, Thomas

    2009-09-01

    This article outlines the scientific basis and a state-of-the-art application of computer-assisted orthopedic surgery in total hip arthroplasty (THA) and provides a future perspective on this technology. Computer-assisted orthopedic surgery in primary THA has the potential to couple 3D simulations with real-time evaluations of surgical performance, which has brought these developments from the research laboratory all the way to clinical use. Nonimage- or imageless-based navigation systems without the need for additional pre- or intra-operative image acquisition have stood the test to significantly reduce the variability in positioning the acetabular component and have shown precise measurement of leg length and offset changes during THA. More recently, computer-assisted orthopedic surgery systems have opened a new frontier for accurate surgical practice in minimally invasive, tissue-preserving THA. The future generation of imageless navigation systems will switch from simple measurement tasks to real navigation tools. These software algorithms will consider the cup and stem as components of a coupled biomechanical system, navigating the orthopedic surgeon to find an optimized complementary component orientation rather than target values intraoperatively, and are expected to have a high impact on clinical practice and postoperative functionality in modern THA.

  9. A novel computer system for the evaluation of nasolabial morphology, symmetry and aesthetics after cleft lip and palate treatment. Part 1: General concept and validation.

    PubMed

    Pietruski, Piotr; Majak, Marcin; Debski, Tomasz; Antoszewski, Boguslaw

    2017-04-01

    The need for a widely accepted method suitable for a multicentre quantitative evaluation of facial aesthetics after surgical treatment of cleft lip and palate (CLP) has been emphasized for years. The aim of this study was to validate a novel computer system 'Analyse It Doc' (A.I.D.) as a tool for objective anthropometric analysis of the nasolabial region. An indirect anthropometric analysis of facial photographs was conducted with the A.I.D. system and Adobe Photoshop/ImageJ software. Intra-rater and inter-rater reliability and the time required for the analysis were estimated separately for each method and compared. Analysis with A.I.D. system was nearly 10-fold faster than that with the reference evaluation method. The A.I.D. system provided strong inter-rater and intra-rater correlations for linear, angular and area measurements of the nasolabial region, as well as a significantly higher accuracy and reproducibility of angular measurements in submental view. No statistically significant inter-method differences were found for other measurements. The hereby presented novel computer system is suitable for simple, time-efficient and reliable multicenter photogrammetric analyses of the nasolabial region in CLP patients and healthy subjects. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Computer-aided design for metabolic engineering.

    PubMed

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A novel method for soft tissue retraction during periapical surgery using 3D technology: a case report.

    PubMed

    Patel, S; Aldowaisan, A; Dawood, A

    2017-08-01

    This case report describes a new approach to isolation and soft tissue retraction during endodontic surgery using cone-beam computed tomography (CBCT), computer-aided design (CAD) and three-dimensional (3D) printing. A 53-year-old patient presented for endodontic treatment of her maxillary left central incisor. It was decided to treat this tooth with a microsurgical approach. The data from the diagnostic CBCT scan were also used to make a physical model of the operative site, and CAD software was used to design a soft tissue retractor to be used during the patient's surgery. A custom retractor was then fabricated using a 3D printer. The custom-made retractor enhanced visualization and soft tissue handling during the patient's surgery. The patient was asymptomatic at a 1-year review. No abnormalities were detected during her clinical examination, and radiographic examination revealed complete healing of the surgical site. The significance of proper soft tissue retraction in periapical microsurgery is underemphasized. Geometric data from CBCT scans may be harvested for a variety of uses, adding value to the examination. 3D printing is a promising technology that may potentially have many uses in endodontic surgery. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Design of Computer-aided Instruction for Radiology Interpretation: The Role of Cognitive Task Analysis

    PubMed Central

    Pusic, Martin V.; LeBlanc, Vicki; Patel, Vimla L.

    2001-01-01

    Traditional task analysis for instructional design has emphasized the importance of precisely defining behavioral educational objectives and working back to select objective-appropriate instructional strategies. However, this approach may miss effective strategies. Cognitive task analysis, on the other hand, breaks a process down into its component knowledge representations. Selection of instructional strategies based on all such representations in a domain is likely to lead to optimal instructional design. In this demonstration, using the interpretation of cervical spine x-rays as an educational example, we show how a detailed cognitive task analysis can guide the development of computer-aided instruction.

  13. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) Joint Consensus Statement on Optimal Analgesia within an Enhanced Recovery Pathway for Colorectal Surgery: Part 2-From PACU to the Transition Home.

    PubMed

    Scott, Michael J; McEvoy, Matthew D; Gordon, Debra B; Grant, Stuart A; Thacker, Julie K M; Wu, Christopher L; Gan, Tong J; Mythen, Monty G; Shaw, Andrew D; Miller, Timothy E

    2017-01-01

    Within an enhanced recovery pathway (ERP), the approach to treating pain should be multifaceted and the goal should be to deliver "optimal analgesia", which we define in this paper as a technique that optimizes patient comfort and facilitates functional recovery with the fewest medication side effects. With input from a multidisciplinary, international group of experts and through a structured review of the literature and use of a modified Delphi method, we achieved consensus surrounding the topic of optimal analgesia in the perioperative period for colorectal surgery patients. As a part of the first Perioperative Quality Improvement (POQI) workgroup meeting, we sought to develop a consensus document describing a comprehensive, yet rational and practical, approach for developing an evidence-based plan for achieving optimal analgesia, specifically for a colorectal surgery within an ERP. The goal was twofold: (a) that application of this process would lead to improved patient outcomes and (b) that investigation of the questions raised would identify knowledge gaps to aid the direction for research into analgesia within ERPs in the years to come. This document details the evidence for a wide range of analgesic components, with particular focus on care in the post-anesthesia care unit, general care ward, and transition to home after discharge. The preoperative and operative consensus statement for analgesia was covered in Part 1 of this paper. The overall conclusion is that the combination of analgesic techniques employed in the perioperative period is not important as long as it is effective in delivering the goal of "optimal analgesia" as set forth in this document.

  14. A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone

    PubMed Central

    Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof

    2013-01-01

    The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone. PMID:28788390

  15. A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone.

    PubMed

    Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof

    2013-11-19

    The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant's location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map ( n = 10) with conventional surgery without assistance ( n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient's safety during BAP surgery in the temporal bone.

  16. Computer-aided design and manufacturing of surgical templates and their clinical applications: a review.

    PubMed

    Chen, Xiaojun; Xu, Lu; Wang, Wei; Li, Xing; Sun, Yi; Politis, Constantinus

    2016-09-01

    The surgical template is a guide aimed at directing the implant placement, tumor resection, osteotomy and bone repositioning. Using it, preoperative planning can be transferred to the actual surgical site, and the precision, safety and reliability of the surgery can be improved. However, the actual workflow of the surgical template design and manufacturing is quite complicated before the final clinical application. The major goal of the paper is to provide a comprehensive reference source of the current and future development of the template design and manufacturing for relevant researchers. Expert commentary: This paper aims to present a review of the necessary procedures in the template-guided surgery including the image processing, 3D visualization, preoperative planning, surgical guide design and manufacturing. In addition, the template-guided clinical applications for various kinds of surgeries are reviewed, and it demonstrated that the precision of the surgery has been improved compared with the non-guided operations.

  17. New and emerging patient-centered CT imaging and image-guided treatment paradigms for maxillofacial trauma.

    PubMed

    Dreizin, David; Nam, Arthur J; Hirsch, Jeffrey; Bernstein, Mark P

    2018-06-20

    This article reviews the conceptual framework, available evidence, and practical considerations pertaining to nascent and emerging advances in patient-centered CT-imaging and CT-guided surgery for maxillofacial trauma. These include cinematic rendering-a novel method for advanced 3D visualization, incorporation of quantitative CT imaging into the assessment of orbital fractures, low-dose CT imaging protocols made possible with contemporary scanners and reconstruction techniques, the rapidly growing use of cone-beam CT, virtual fracture reduction with design software for surgical pre-planning, the use of 3D printing for fabricating models and implants, and new avenues in CT-guided computer-aided surgery.

  18. Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization

    NASA Astrophysics Data System (ADS)

    Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.

    2007-03-01

    We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.

  19. Engaging Undergraduate Math Majors in Geoscience Research using Interactive Simulations and Computer Art

    NASA Astrophysics Data System (ADS)

    Matott, L. S.; Hymiak, B.; Reslink, C. F.; Baxter, C.; Aziz, S.

    2012-12-01

    As part of the NSF-sponsored 'URGE (Undergraduate Research Group Experiences) to Compute' program, Dr. Matott has been collaborating with talented Math majors to explore the design of cost-effective systems to safeguard groundwater supplies from contaminated sites. Such activity is aided by a combination of groundwater modeling, simulation-based optimization, and high-performance computing - disciplines largely unfamiliar to the students at the outset of the program. To help train and engage the students, a number of interactive and graphical software packages were utilized. Examples include: (1) a tutorial for exploring the behavior of evolutionary algorithms and other heuristic optimizers commonly used in simulation-based optimization; (2) an interactive groundwater modeling package for exploring alternative pump-and-treat containment scenarios at a contaminated site in Billings, Montana; (3) the R software package for visualizing various concepts related to subsurface hydrology; and (4) a job visualization tool for exploring the behavior of numerical experiments run on a large distributed computing cluster. Further engagement and excitement in the program was fostered by entering (and winning) a computer art competition run by the Coalition for Academic Scientific Computation (CASC). The winning submission visualizes an exhaustively mapped optimization cost surface and dramatically illustrates the phenomena of artificial minima - valley locations that correspond to designs whose costs are only partially optimal.

  20. Is outpatient brain tumor surgery feasible in India?

    PubMed

    Turel, Mazda K; Bernstein, Mark

    2016-01-01

    The current trend in all fields of surgery is towards less invasive procedures with shorter hospital stays. The reasons for this change include convenience to patients, optimal resource utilization, and cost saving. Technological advances in neurosurgery, aided by improvements in anesthesia, have resulted in surgery that is faster, simpler, and safer with excellent perioperative recovery. As a result of improved outcomes, some centers are performing brain tumor surgery on an outpatient basis, wherein patients arrive at the hospital the morning of their procedure and leave the hospital the same evening, thus avoiding an overnight stay in the hospital. In addition to the medical benefits of the outpatient procedure, its impact on patient satisfaction is substantial. The economic benefits are extremely favorable for the patient, physician, as well as the hospital. In high volume centers, a day surgery program can exist alongside those for elective and emergency surgeries, providing another pathway for patient care. However, due to skepticism surrounding the medicolegal aspects, and how radical the concept at first sounds, these procedures have not gained widespread popularity. We provide an overview of outpatient brain tumor surgery in the western world, discussing the socioeconomic, medicolegal, and ethical issues related to its adaptability in a developing nation.

  1. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part II: proofs of results.

    PubMed

    Orellana, Liliana; Rotnitzky, Andrea; Robins, James M

    2010-03-03

    In this companion article to "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content" [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption.

  2. A low-cost multimodal head-mounted display system for neuroendoscopic surgery.

    PubMed

    Xu, Xinghua; Zheng, Yi; Yao, Shujing; Sun, Guochen; Xu, Bainan; Chen, Xiaolei

    2018-01-01

    With rapid advances in technology, wearable devices as head-mounted display (HMD) have been adopted for various uses in medical science, ranging from simply aiding in fitness to assisting surgery. We aimed to investigate the feasibility and practicability of a low-cost multimodal HMD system in neuroendoscopic surgery. A multimodal HMD system, mainly consisted of a HMD with two built-in displays, an action camera, and a laptop computer displaying reconstructed medical images, was developed to assist neuroendoscopic surgery. With this intensively integrated system, the neurosurgeon could freely switch between endoscopic image, three-dimensional (3D) reconstructed virtual endoscopy images, and surrounding environment images. Using a leap motion controller, the neurosurgeon could adjust or rotate the 3D virtual endoscopic images at a distance to better understand the positional relation between lesions and normal tissues at will. A total of 21 consecutive patients with ventricular system diseases underwent neuroendoscopic surgery with the aid of this system. All operations were accomplished successfully, and no system-related complications occurred. The HMD was comfortable to wear and easy to operate. Screen resolution of the HMD was high enough for the neurosurgeon to operate carefully. With the system, the neurosurgeon might get a better comprehension on lesions by freely switching among images of different modalities. The system had a steep learning curve, which meant a quick increment of skill with it. Compared with commercially available surgical assistant instruments, this system was relatively low-cost. The multimodal HMD system is feasible, practical, helpful, and relatively cost efficient in neuroendoscopic surgery.

  3. Sizing of complex structure by the integration of several different optimal design algorithms

    NASA Technical Reports Server (NTRS)

    Sobieszczanski, J.

    1974-01-01

    Practical design of large-scale structures can be accomplished with the aid of the digital computer by bringing together in one computer program algorithms of nonlinear mathematical programing and optimality criteria with weight-strength and other so-called engineering methods. Applications of this approach to aviation structures are discussed with a detailed description of how the total problem of structural sizing can be broken down into subproblems for best utilization of each algorithm and for efficient organization of the program into iterative loops. Typical results are examined for a number of examples.

  4. Development of a computer-aided design software for dental splint in orthognathic surgery

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan

    2016-12-01

    In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated.

  5. Development of a computer-aided design software for dental splint in orthognathic surgery

    PubMed Central

    Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan

    2016-01-01

    In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated. PMID:27966601

  6. Development of a computer-aided design software for dental splint in orthognathic surgery.

    PubMed

    Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan

    2016-12-14

    In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated.

  7. Using an In-House Approach to Computer-Assisted Design and Computer-Aided Manufacturing Reconstruction of the Maxilla.

    PubMed

    Numajiri, Toshiaki; Morita, Daiki; Nakamura, Hiroko; Tsujiko, Shoko; Yamochi, Ryo; Sowa, Yoshihiro; Toyoda, Kenichiro; Tsujikawa, Takahiro; Arai, Akihito; Yasuda, Makoto; Hirano, Shigeru

    2018-06-01

    Computer-assisted design (CAD) and computer-aided manufacturing (CAM) techniques are in widespread use for maxillofacial reconstruction. However, CAD/CAM surgical guides are commercially available only in limited areas. To use this technology in areas where these commercial guides are not available, the authors developed a CAD/CAM technique in which all processes are performed by the surgeon (in-house approach). The authors describe their experience and the characteristics of their in-house CAD/CAM reconstruction of the maxilla. This was a retrospective study of maxillary reconstruction with a free osteocutaneous flap. Free CAD software was used for virtual surgery and to design the cutting guides (maxilla and fibula), which were printed by a 3-dimensional printer. After the model surgery and pre-bending of the titanium plates, the actual reconstructions were performed. The authors compared the clinical information, preoperative plan, and postoperative reconstruction data. The reconstruction was judged as accurate if more than 80% of the reconstructed points were within a deviation of 2 mm. Although on-site adjustment was necessary in particular cases, all 4 reconstructions were judged as accurate. In total, 3 days were needed before the surgery for planning, printing, and pre-bending of plates. The average ischemic time was 134 minutes (flap suturing and bone fixation, 70 minutes; vascular anastomoses, 64 minutes). The mean deviation after reconstruction was 0.44 mm (standard deviation, 0.97). The deviations were 67.8% for 1 mm, 93.8% for 2 mm, and 98.6% for 3 mm. The disadvantages of the regular use of CAD/CAM reconstruction are the intraoperative changes in defect size and local tissue scarring. Good accuracy was obtained for CAD/CAM-guided reconstructions based on an in-house approach. The theoretical advantage of computer simulation contributes to the accuracy. An in-house approach could be an option for maxillary reconstruction. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Endodontic applications of 3D printing.

    PubMed

    Anderson, J; Wealleans, J; Ray, J

    2018-02-27

    Computer-aided design (CAD) and computer-aided manufacturing (CAM) technologies can leverage cone beam computed tomography data for production of objects used in surgical and nonsurgical endodontics and in educational settings. The aim of this article was to review all current applications of 3D printing in endodontics and to speculate upon future directions for research and clinical use within the specialty. A literature search of PubMed, Ovid and Scopus was conducted using the following terms: stereolithography, 3D printing, computer aided rapid prototyping, surgical guide, guided endodontic surgery, guided endodontic access, additive manufacturing, rapid prototyping, autotransplantation rapid prototyping, CAD, CAM. Inclusion criteria were articles in the English language documenting endodontic applications of 3D printing. Fifty-one articles met inclusion criteria and were utilized. The endodontic literature on 3D printing is generally limited to case reports and pre-clinical studies. Documented solutions to endodontic challenges include: guided access with pulp canal obliteration, applications in autotransplantation, pre-surgical planning and educational modelling and accurate location of osteotomy perforation sites. Acquisition of technical expertise and equipment within endodontic practices present formidable obstacles to widespread deployment within the endodontic specialty. As knowledge advances, endodontic postgraduate programmes should consider implementing 3D printing into their curriculums. Future research directions should include clinical outcomes assessments of treatments employing 3D printed objects. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  9. [How to make your own custom cutting guides for both mandibular and fibular stair step osteotomies?

    PubMed

    Rem, K; Bosc, R; De Kermadec, H; Hersant, B; Meningaud, J-P

    2017-12-01

    Using tailored cutting guides for osteocutaneous free fibula flap in complex mandibular reconstruction after cancer resection surgery constitutes a substantial improvement. Autonomously conceiving and manufacturing the cutting guides within a plastic surgery department with computer-aided design (CAD) and three-dimensional (3D) printing allows planning more complex osteotomies, such as stair-step osteotomies, in order to achieve more stable internal fixations. For the past three years, we have been producing by ourselves patient-tailored cutting guides using CAD and 3D printing. Osteotomies were virtually planned, making the cutting lines more complex in order to optimize the internal fixation stability. We also printed reconstructed mandible templates and shaped the reconstruction plates on them. We recorded data including manufacturing techniques and surgical outcomes. Eleven consecutive patients were operated on for an oral cavity cancer. For each patient, we planned the fibular and mandibular stair-step osteotomies and we produced tailored cutting guides. In all patients, we achieved to get immediately stable internal fixations and in 10 patients, a complete bone consolidation after 6 months. Autonomously manufacturing surgical cutting guides for mandibular reconstruction by free fibula flap is a significant improvement, regarding ergonomics and precision. Planning stair-step osteotomies to perform complementary internal fixation increases contact surface and congruence between the bone segments, thus improving the reconstructed mandible stability. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Applications of patient-specific 3D printing in medicine.

    PubMed

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Roth, Klaus E; Drees, Philipp; Maier, Gerrit S; Dorweiler, Bernhard; Ghazy, Ahmed; Neufurth, Meik; Müller, Werner E G; Schröder, Heinz C; Wang, Xiaohong; Vahl, Christian-Friedrich; Al-Nawas, Bilal

    Already three decades ago, the potential of medical 3D printing (3DP) or rapid prototyping for improved patient treatment began to be recognized. Since then, more and more medical indications in different surgical disciplines have been improved by using this new technique. Numerous examples have demonstrated the enormous benefit of 3DP in the medical care of patients by, for example, planning complex surgical interventions preoperatively, reducing implantation steps and anesthesia times, and helping with intraoperative orientation. At the beginning of every individual 3D model, patient-specific data on the basis of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound data is generated, which is then digitalized and processed using computer-aided design/computer-aided manufacturing (CAD/CAM) software. Finally, the resulting data sets are used to generate 3D-printed models or even implants. There are a variety of different application areas in the various medical fields, eg, drill or positioning templates, or surgical guides in maxillofacial surgery, or patient-specific implants in orthopedics. Furthermore, in vascular surgery it is possible to visualize pathologies such as aortic aneurysms so as to improve the planning of surgical treatment. Although rapid prototyping of individual models and implants is already applied very successfully in regenerative medicine, most of the materials used for 3DP are not yet suitable for implantation in the body. Therefore, it will be necessary in future to develop novel therapy approaches and design new materials in order to completely reconstruct natural tissue.

  11. Development of a surgical navigation system based on 3D Slicer for intraoperative implant placement surgery

    PubMed Central

    Chen, Xiaojun; Xu, Lu; Wang, Huixiang; Wang, Fang; Wang, Qiugen; Kikinis, Ron

    2017-01-01

    Implant placement has been widely used in various kinds of surgery. However, accurate intraoperative drilling performance is essential to avoid injury to adjacent structures. Although some commercially-available surgical navigation systems have been approved for clinical applications, these systems are expensive and the source code is not available to researchers. 3D Slicer is a free, open source software platform for the research community of computer-aided surgery. In this study, a loadable module based on Slicer has been developed and validated to support surgical navigation. This research module allows reliable calibration of the surgical drill, point-based registration and surface matching registration, so that the position and orientation of the surgical drill can be tracked and displayed on the computer screen in real time, aiming at reducing risks. In accuracy verification experiments, the mean target registration error (TRE) for point-based and surface-based registration were 0.31±0.06mm and 1.01±0.06mm respectively, which should meet clinical requirements. Both phantom and cadaver experiments demonstrated the feasibility of our surgical navigation software module. PMID:28109564

  12. Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes.

    PubMed

    Luboz, Vincent; Chabanas, Matthieu; Swider, Pascal; Payan, Yohan

    2005-08-01

    This paper addresses an important issue raised for the clinical relevance of Computer-Assisted Surgical applications, namely the methodology used to automatically build patient-specific finite element (FE) models of anatomical structures. From this perspective, a method is proposed, based on a technique called the mesh-matching method, followed by a process that corrects mesh irregularities. The mesh-matching algorithm generates patient-specific volume meshes from an existing generic model. The mesh regularization process is based on the Jacobian matrix transform related to the FE reference element and the current element. This method for generating patient-specific FE models is first applied to computer-assisted maxillofacial surgery, and more precisely, to the FE elastic modelling of patient facial soft tissues. For each patient, the planned bone osteotomies (mandible, maxilla, chin) are used as boundary conditions to deform the FE face model, in order to predict the aesthetic outcome of the surgery. Seven FE patient-specific models were successfully generated by our method. For one patient, the prediction of the FE model is qualitatively compared with the patient's post-operative appearance, measured from a computer tomography scan. Then, our methodology is applied to computer-assisted orbital surgery. It is, therefore, evaluated for the generation of 11 patient-specific FE poroelastic models of the orbital soft tissues. These models are used to predict the consequences of the surgical decompression of the orbit. More precisely, an average law is extrapolated from the simulations carried out for each patient model. This law links the size of the osteotomy (i.e. the surgical gesture) and the backward displacement of the eyeball (the consequence of the surgical gesture).

  13. Optimization of Breast Tomosynthesis Imaging Systems for Computer-Aided Detection

    DTIC Science & Technology

    2011-05-01

    R. Saunders, E. Samei, C. Badea, H. Yuan, K. Ghaghada, Y. Qi, L. Hedlund, and S. Mukundan, “Optimization of dual energy contrast enhanced breast...14 4 1 Introduction This is the final report for this body of research. Screen-film mammography and...digital mammography have been used for over 30 years in the early detection of cancer. The combination of screening and adjuvant therapies have led to

  14. Computer-Aided Classification of Visual Ventilation Patterns in Patients with Chronic Obstructive Pulmonary Disease at Two-Phase Xenon-Enhanced CT

    PubMed Central

    Yoon, Soon Ho; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun

    2014-01-01

    Objective To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Results Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Conclusion Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation. PMID:24843245

  15. Computer-aided classification of visual ventilation patterns in patients with chronic obstructive pulmonary disease at two-phase xenon-enhanced CT.

    PubMed

    Yoon, Soon Ho; Goo, Jin Mo; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun

    2014-01-01

    To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation.

  16. Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study.

    PubMed

    Hsu, Sam Sheng-Pin; Gateno, Jaime; Bell, R Bryan; Hirsch, David L; Markiewicz, Michael R; Teichgraeber, John F; Zhou, Xiaobo; Xia, James J

    2013-01-01

    The purpose of this prospective multicenter study was to assess the accuracy of a computer-aided surgical simulation (CASS) protocol for orthognathic surgery. The accuracy of the CASS protocol was assessed by comparing planned outcomes with postoperative outcomes of 65 consecutive patients enrolled from 3 centers. Computer-generated surgical splints were used for all patients. For the genioplasty, 1 center used computer-generated chin templates to reposition the chin segment only for patients with asymmetry. Standard intraoperative measurements were used without the chin templates for the remaining patients. The primary outcome measurements were the linear and angular differences for the maxilla, mandible, and chin when the planned and postoperative models were registered at the cranium. The secondary outcome measurements were the maxillary dental midline difference between the planned and postoperative positions and the linear and angular differences of the chin segment between the groups with and without the use of the template. The latter were measured when the planned and postoperative models were registered at the mandibular body. Statistical analyses were performed, and the accuracy was reported using root mean square deviation (RMSD) and the Bland-Altman method for assessing measurement agreement. In the primary outcome measurements, there was no statistically significant difference among the 3 centers for the maxilla and mandible. The largest RMSDs were 1.0 mm and 1.5° for the maxilla and 1.1 mm and 1.8° for the mandible. For the chin, there was a statistically significant difference between the groups with and without the use of the chin template. The chin template group showed excellent accuracy, with the largest positional RMSD of 1.0 mm and the largest orientation RMSD of 2.2°. However, larger variances were observed in the group not using the chin template. This was significant in the anteroposterior and superoinferior directions and the in pitch and yaw orientations. In the secondary outcome measurements, the RMSD of the maxillary dental midline positions was 0.9 mm. When registered at the body of the mandible, the linear and angular differences of the chin segment between the groups with and without the use of the chin template were consistent with the results found in the primary outcome measurements. Using this computer-aided surgical simulation protocol, the computerized plan can be transferred accurately and consistently to the patient to position the maxilla and mandible at the time of surgery. The computer-generated chin template provides greater accuracy in repositioning the chin segment than the intraoperative measurements. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Virtual modeling of robot-assisted manipulations in abdominal surgery.

    PubMed

    Berelavichus, Stanislav V; Karmazanovsky, Grigory G; Shirokov, Vadim S; Kubyshkin, Valeriy A; Kriger, Andrey G; Kondratyev, Evgeny V; Zakharova, Olga P

    2012-06-27

    To determine the effectiveness of using multidetector computed tomography (MDCT) data in preoperative planning of robot-assisted surgery. Fourteen patients indicated for surgery underwent MDCT using 64 and 256-slice MDCT. Before the examination, a specially constructed navigation net was placed on the patient's anterior abdominal wall. Processing of MDCT data was performed on a Brilliance Workspace 4 (Philips). Virtual vectors that imitate robotic and assistant ports were placed on the anterior abdominal wall of the 3D model of the patient, considering the individual anatomy of the patient and the technical capabilities of robotic arms. Sites for location of the ports were directed by projection on the roentgen-positive tags of the navigation net. There were no complications observed during surgery or in the post-operative period. We were able to reduce robotic arm interference during surgery. The surgical area was optimal for robotic and assistant manipulators without any need for reinstallation of the trocars. This method allows modeling of the main steps in robot-assisted intervention, optimizing operation of the manipulator and lowering the risk of injuries to internal organs.

  18. Accuracy comparison of guided surgery for dental implants according to the tissue of support: a systematic review and meta-analysis.

    PubMed

    Raico Gallardo, Yolanda Natali; da Silva-Olivio, Isabela Rodrigues Teixeira; Mukai, Eduardo; Morimoto, Susana; Sesma, Newton; Cordaro, Luca

    2017-05-01

    To systematically assess the current dental literature comparing the accuracy of computer-aided implant surgery when using different supporting tissues (tooth, mucosa, or bone). Two reviewers searched PubMed (1972 to January 2015) and the Cochrane Central Register of Controlled Trials (Central) (2002 to January 2015). For the assessment of accuracy, studies were included with the following outcome measures: (i) angle deviation, (ii) deviation at the entry point, and (iii) deviation at the apex. Eight clinical studies from the 1602 articles initially identified met the inclusion criteria for the qualitative analysis. Four studies (n = 599 implants) were evaluated using meta-analysis. The bone-supported guides showed a statistically significant greater deviation in angle (P < 0.001), entry point (P = 0.01), and the apex (P = 0.001) when compared to the tooth-supported guides. Conversely, when only retrospective studies were analyzed, not significant differences are revealed in the deviation of the entry point and apex. The mucosa-supported guides indicated a statistically significant greater reduction in angle deviation (P = 0.02), deviation at the entry point (P = 0.002), and deviation at the apex (P = 0.04) when compared to the bone-supported guides. Between the mucosa- and tooth-supported guides, there were no statistically significant differences for any of the outcome measures. It can be concluded that the tissue of the guide support influences the accuracy of computer-aided implant surgery. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Lazzara, David; Haimes, Robert

    2010-01-01

    The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.

  20. Automatic and accurate reconstruction of distal humerus contours through B-Spline fitting based on control polygon deformation.

    PubMed

    Mostafavi, Kamal; Tutunea-Fatan, O Remus; Bordatchev, Evgueni V; Johnson, James A

    2014-12-01

    The strong advent of computer-assisted technologies experienced by the modern orthopedic surgery prompts for the expansion of computationally efficient techniques to be built on the broad base of computer-aided engineering tools that are readily available. However, one of the common challenges faced during the current developmental phase continues to remain the lack of reliable frameworks to allow a fast and precise conversion of the anatomical information acquired through computer tomography to a format that is acceptable to computer-aided engineering software. To address this, this study proposes an integrated and automatic framework capable to extract and then postprocess the original imaging data to a common planar and closed B-Spline representation. The core of the developed platform relies on the approximation of the discrete computer tomography data by means of an original two-step B-Spline fitting technique based on successive deformations of the control polygon. In addition to its rapidity and robustness, the developed fitting technique was validated to produce accurate representations that do not deviate by more than 0.2 mm with respect to alternate representations of the bone geometry that were obtained through different-contact-based-data acquisition or data processing methods. © IMechE 2014.

  1. The effect of mannitol on intraoperative brain relaxation in patients undergoing supratentorial tumor surgery: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background The risk of brain swelling after dural opening is high in patients with midline shift undergoing supratentorial tumor surgery. Brain swelling may result in increased intracranial pressure, impeded tumor exposure, and adverse outcomes. Mannitol is recommended as a first-line dehydration treatment to reduce brain edema and enable brain relaxation during neurosurgery. Research has indicated that mannitol enhanced brain relaxation in patients undergoing supratentorial tumor surgery; however, these results need further confirmation, and the optimal mannitol dose has not yet been established. We propose to examine whether different doses of 20% mannitol improve brain relaxation in a dose-dependent manner when administered at the time of incision. We will examine patients with preexisting mass effects and midline shift undergoing elective supratentorial brain tumor surgery. Methods This is a single-center, randomized controlled, parallel group trial that will be carried out at Beijing Tiantan Hospital, Capital Medical University. Randomization will be achieved using a computer-generated table. The study will include 220 patients undergoing supratentorial tumor surgery whose preoperative computed tomography/magnetic resonance imaging results indicate a brain midline shift. Patients in group A, group B, and group C will receive dehydration treatment at incision with 20% mannitol solutions of 0.7, 1.0, and 1.4 g/kg, respectively, at a rate of 600 mL/h. The patients in the control group will not receive mannitol. The primary outcome is an improvement in intraoperative brain relaxation and dura tension after dehydration with mannitol. Secondary outcomes are postoperative outcomes and the incidence of mannitol side effects. Discussion The aim of this study is to determine the optimal dose of 20% mannitol for intraoperative infusion. We will examine brain relaxation and outcome in patients undergoing supratentorial tumor surgery. If our results are positive, the study will indicate the optimal dose of mannitol to improve brain relaxation and avoid side effects during brain tumor surgery. Trial registration The study is registered with the registry website http://www.chictr.org with the registration number ChiCTRTRC13003984 (17 December 2013). PMID:24884731

  2. [Guided and computer-assisted implant surgery and prosthetic: The continuous digital workflow].

    PubMed

    Pascual, D; Vaysse, J

    2016-02-01

    New continuous digital workflow protocols of guided and computer-assisted implant surgery improve accuracy of implant positioning. The design of the future prosthesis is based on the available prosthetic space, gingival height and occlusal relationship with the opposing and adjacent teeth. The implant position and length depend on volume, density and bone quality, gingival height, tooth-implant and implant-implant distances, implant parallelism, axis and type of the future prosthesis. The crown modeled on the software will therefore serve as a guide to the future implant axis and not the reverse. The guide is made by 3D printing. The software determines surgical protocol with the drilling sequences. The unitary or plural prosthesis, modeled on the software and built before surgery, is loaded directly after implant placing, if needed. These protocols allow for a full continuity of the digital workflow. The software provides the surgeon and the dental technician a total freedom for the prosthetic-surgery guide design and the position of the implants. The prosthetic project, occlusal and aesthetic, taking the bony and surgical constraints into account, is optimized. The implant surgery is simplified and becomes less "stressful" for the patient and the surgeon. Guided and computer-assisted surgery with continuous digital workflow is becoming the technique of choice to improve the accuracy and quality of implant rehabilitation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. LIFESPAN: A tool for the computer-aided design of longitudinal studies

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; Ghisletta, Paolo; Hertzog, Christopher; Lindenberger, Ulman

    2015-01-01

    Researchers planning a longitudinal study typically search, more or less informally, a multivariate space of possible study designs that include dimensions such as the hypothesized true variance in change, indicator reliability, the number and spacing of measurement occasions, total study time, and sample size. The main search goal is to select a research design that best addresses the guiding questions and hypotheses of the planned study while heeding applicable external conditions and constraints, including time, money, feasibility, and ethical considerations. Because longitudinal study selection ultimately requires optimization under constraints, it is amenable to the general operating principles of optimization in computer-aided design. Based on power equivalence theory (MacCallum et al., 2010; von Oertzen, 2010), we propose a computational framework to promote more systematic searches within the study design space. Starting with an initial design, the proposed framework generates a set of alternative models with equal statistical power to detect hypothesized effects, and delineates trade-off relations among relevant parameters, such as total study time and the number of measurement occasions. We present LIFESPAN (Longitudinal Interactive Front End Study Planner), which implements this framework. LIFESPAN boosts the efficiency, breadth, and precision of the search for optimal longitudinal designs. Its initial version, which is freely available at http://www.brandmaier.de/lifespan, is geared toward the power to detect variance in change as specified in a linear latent growth curve model. PMID:25852596

  4. Computer-Aided Parallelizer and Optimizer

    NASA Technical Reports Server (NTRS)

    Jin, Haoqiang

    2011-01-01

    The Computer-Aided Parallelizer and Optimizer (CAPO) automates the insertion of compiler directives (see figure) to facilitate parallel processing on Shared Memory Parallel (SMP) machines. While CAPO currently is integrated seamlessly into CAPTools (developed at the University of Greenwich, now marketed as ParaWise), CAPO was independently developed at Ames Research Center as one of the components for the Legacy Code Modernization (LCM) project. The current version takes serial FORTRAN programs, performs interprocedural data dependence analysis, and generates OpenMP directives. Due to the widely supported OpenMP standard, the generated OpenMP codes have the potential to run on a wide range of SMP machines. CAPO relies on accurate interprocedural data dependence information currently provided by CAPTools. Compiler directives are generated through identification of parallel loops in the outermost level, construction of parallel regions around parallel loops and optimization of parallel regions, and insertion of directives with automatic identification of private, reduction, induction, and shared variables. Attempts also have been made to identify potential pipeline parallelism (implemented with point-to-point synchronization). Although directives are generated automatically, user interaction with the tool is still important for producing good parallel codes. A comprehensive graphical user interface is included for users to interact with the parallelization process.

  5. Image guidance in orthopaedics and traumatology: A historical perspective.

    PubMed

    Székely, Gabor; Nolte, Lutz-P

    2016-10-01

    In this note we summarize the history of computer aided surgery in orthopaedics and traumatology from the end of the nineteenth century to currently observable future trends. We concentrate on the two major components of such systems, pre-operative planning and intra-operative execution. The evolution of the necessary technological components, the numerous platforms and components offered commercially as well as their clinical use are surveyed. Copyright © 2016. Published by Elsevier B.V.

  6. Creating an advance-care-planning decision aid for high-risk surgery: a qualitative study

    PubMed Central

    2014-01-01

    Background High-risk surgery patients may lose decision-making capacity as a result of surgical complications. Advance care planning prior to surgery may be beneficial, but remains controversial and is hindered by a lack of appropriate decision aids. This study sought to examine stakeholders’ views on the appropriateness of using decision aids, in general, to support advance care planning among high-risk surgery populations and the design of such a decision aid. Methods Key informants were recruited through purposive and snowball sampling. Semi-structured interviews were conducted by phone until data collected reached theoretical saturation. Key informants were asked to discuss their thoughts about advance care planning and interventions to support advance care planning, particularly for this population. Researchers took de-identified notes that were analyzed for emerging concordant, discordant, and recurrent themes using interpretative phenomenological analysis. Results Key informants described the importance of initiating advance care planning preoperatively, despite potential challenges present in surgical settings. In general, decision aids were viewed as an appropriate approach to support advance care planning for this population. A recipe emerged from the data that outlines tools, ingredients, and tips for success that are needed to design an advance care planning decision aid for high-risk surgical settings. Conclusions Stakeholders supported incorporating advance care planning in high-risk surgical settings and endorsed the appropriateness of using decision aids to do so. Findings will inform the next stages of developing the first advance care planning decision aid for high-risk surgery patients. PMID:25067908

  7. Creating an advance-care-planning decision aid for high-risk surgery: a qualitative study.

    PubMed

    Schuster, Anne Lr; Aslakson, Rebecca A; Bridges, John Fp

    2014-01-01

    High-risk surgery patients may lose decision-making capacity as a result of surgical complications. Advance care planning prior to surgery may be beneficial, but remains controversial and is hindered by a lack of appropriate decision aids. This study sought to examine stakeholders' views on the appropriateness of using decision aids, in general, to support advance care planning among high-risk surgery populations and the design of such a decision aid. Key informants were recruited through purposive and snowball sampling. Semi-structured interviews were conducted by phone until data collected reached theoretical saturation. Key informants were asked to discuss their thoughts about advance care planning and interventions to support advance care planning, particularly for this population. Researchers took de-identified notes that were analyzed for emerging concordant, discordant, and recurrent themes using interpretative phenomenological analysis. Key informants described the importance of initiating advance care planning preoperatively, despite potential challenges present in surgical settings. In general, decision aids were viewed as an appropriate approach to support advance care planning for this population. A recipe emerged from the data that outlines tools, ingredients, and tips for success that are needed to design an advance care planning decision aid for high-risk surgical settings. Stakeholders supported incorporating advance care planning in high-risk surgical settings and endorsed the appropriateness of using decision aids to do so. Findings will inform the next stages of developing the first advance care planning decision aid for high-risk surgery patients.

  8. Recent advances in fixation of the craniomaxillofacial skeleton.

    PubMed

    Meslemani, Danny; Kellman, Robert M

    2012-08-01

    Fixation of the craniomaxillofacial skeleton is an evolving aspect for facial plastic, oral and maxillofacial, and plastic surgery. This review looks at the recent advances that aid in reduction and fixation of the craniomaxillofacial skeleton. More surgeons are using resorbable plates for craniomaxillofacial fixation. A single miniplate on the inferior border of the mandible may be sufficient to reduce and fixate an angle fracture. Percutaneous K-wires may assist in plating angle fractures. Intraoperative computed tomography (CT) may prove to be useful for assessing reduction and fixation. Resorbable plates are becoming increasingly popular in orthognathic surgery and facial trauma surgery. There are newer operative techniques for fixating the angle of the mandible. Also, the utilization of the intraoperative CT provides immediate feedback for accurate reduction and fixation. Prebent surgical plates save operative time, decrease errors, and provide more accurate fixation.

  9. The Evolution of Complex Microsurgical Midface Reconstruction: A Classification Scheme and Reconstructive Algorithm.

    PubMed

    Alam, Daniel; Ali, Yaseen; Klem, Christopher; Coventry, Daniel

    2016-11-01

    Orbito-malar reconstruction after oncological resection represents one of the most challenging facial reconstructive procedures. Until the last few decades, rehabilitation was typically prosthesis based with a limited role for surgery. The advent of microsurgical techniques allowed large-volume tissue reconstitution from a distant donor site, revolutionizing the potential approaches to these defects. The authors report a novel surgery-based algorithm and a classification scheme for complete midface reconstruction with a foundation in the Gillies principles of like-to-like reconstruction and with a significant role of computer-aided virtual planning. With this approach, the authors have been able to achieve significantly better patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices

    DTIC Science & Technology

    2006-08-15

    approximations to the metric, and space mapping wherein low-accuracy (coarse mesh) solutions can potentially be used more effectively in an...interface and algorithm development. • Work on space - mapping or related methods for utilizing models of varying levels of approximation within an

  11. Treatment of Brodie's Syndrome using parasymphyseal distraction through virtual surgical planning and RP assisted customized surgical osteotomy guide-A mock surgery report

    NASA Astrophysics Data System (ADS)

    Dahake, Sandeep; Kuthe, Abhaykumar; Mawale, Mahesh

    2017-10-01

    This paper aims to describe virtual surgical planning (VSP), computer aided design (CAD) and rapid prototyping (RP) systems for the preoperative planning of accurate treatment of the Brodie's Syndrome. 3D models of the patient's maxilla and mandible were separately generated based on computed tomography (CT) image data and fabricated using RP. During the customized surgical osteotmy guide (CSOG) design process, the correct position was identified and the geometry of the CSOG was generated based on affected mandible of the patient and fabricated by a RP technique. Surgical approach such as preoperative planning and simulation of surgical procedures was performed using advanced software. The VSP and RP assisted CSOG was used to avoid the damage of the adjacent teeth and neighboring healthy tissues. Finally the mock surgery was performed on the biomodel (i.e. diseased RP model) of mandible with reference to the normal maxilla using osteotomy bur with the help of CSOG. Using this CSOG the exact osteotomy of the mandible and the accurate placement of the distractor were obtained. It ultimately improved the accuracy of the surgery in context of the osteotomy and distraction. The time required in cutting the mandible and placement of the distractor was found comparatively less than the regular free hand surgery.

  12. Configuration optimization of space structures

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos; Crivelli, Luis A.; Vandenbelt, David

    1991-01-01

    The objective is to develop a computer aid for the conceptual/initial design of aerospace structures, allowing configurations and shape to be apriori design variables. The topics are presented in viewgraph form and include the following: Kikuchi's homogenization method; a classical shape design problem; homogenization method steps; a 3D mechanical component design example; forming a homogenized finite element; a 2D optimization problem; treatment of volume inequality constraint; algorithms for the volume inequality constraint; object function derivatives--taking advantage of design locality; stiffness variations; variations of potential; and schematics of the optimization problem.

  13. Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part II: Proofs of Results*

    PubMed Central

    Orellana, Liliana; Rotnitzky, Andrea; Robins, James M.

    2010-01-01

    In this companion article to “Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content” [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption. PMID:20405047

  14. Research and development activities in unified control-structure modeling and design

    NASA Technical Reports Server (NTRS)

    Nayak, A. P.

    1985-01-01

    Results of work sponsored by JPL and other organizations to develop a unified control/structures modeling and design capability for large space structures is presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. The development of a methodology for global design optimization is recommended as a long term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization. Recommendations are also presented for near term research activities at JPL. The key recommendation is to continue the development of integrated dynamic modeling/control design techniques, with special attention given to the development of structural models specially tailored to support design.

  15. The optimal design support system for shell components of vehicles using the methods of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Szczepanik, M.; Poteralski, A.

    2016-11-01

    The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.

  16. Computer-aided navigation in dental implantology: 7 years of clinical experience.

    PubMed

    Ewers, Rolf; Schicho, Kurt; Truppe, Michael; Seemann, Rudolf; Reichwein, Astrid; Figl, Michael; Wagner, Arne

    2004-03-01

    This long-term study gives a review over 7 years of research, development, and routine clinical application of computer-aided navigation technology in dental implantology. Benefits and disadvantages of up-to-date technologies are discussed. In the course of the current advancement, various hardware and software configurations are used. In the initial phase, universally applicable navigation software is adapted for implantology. Since 2001, a special software module for dental implantology is available. Preoperative planning is performed on the basis of prosthetic aspects and requirements. In clinical routine use, patient and drill positions are intraoperatively registered by means of optoelectronic tracking systems; during preclinical tests, electromagnetic trackers are also used. In 7 years (1995 to 2002), 55 patients with 327 dental implants were successfully positioned with computer-aided navigation technology. The mean number of implants per patient was 6 (minimum, 1; maximum, 11). No complications were observed; the preoperative planning could be exactly realized. The average expenditure of time for the preparation of a surgical intervention with navigation decreased from 2 to 3 days in the initial phase to one-half day in clinical routine use with software that is optimized for dental implantology. The use of computer-aided navigation technology can contribute to considerable quality improvement. Preoperative planning is exactly realized and intraoperative safety is increased, because damage to nerves or neighboring teeth can be avoided.

  17. Integration of a CAD System Into an MDO Framework

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Samareh, J. A.; Weston, R. P.; Zorumski, W. E.

    1998-01-01

    NASA Langley has developed a heterogeneous distributed computing environment, called the Framework for Inter-disciplinary Design Optimization, or FIDO. Its purpose has been to demonstrate framework technical feasibility and usefulness for optimizing the preliminary design of complex systems and to provide a working environment for testing optimization schemes. Its initial implementation has been for a simplified model of preliminary design of a high-speed civil transport. Upgrades being considered for the FIDO system include a more complete geometry description, required by high-fidelity aerodynamics and structures codes and based on a commercial Computer Aided Design (CAD) system. This report presents the philosophy behind some of the decisions that have shaped the FIDO system and gives a brief case study of the problems and successes encountered in integrating a CAD system into the FEDO framework.

  18. Transmitted wavefront testing with large dynamic range based on computer-aided deflectometry

    NASA Astrophysics Data System (ADS)

    Wang, Daodang; Xu, Ping; Gong, Zhidong; Xie, Zhongmin; Liang, Rongguang; Xu, Xinke; Kong, Ming; Zhao, Jun

    2018-06-01

    The transmitted wavefront testing technique is demanded for the performance evaluation of transmission optics and transparent glass, in which the achievable dynamic range is a key issue. A computer-aided deflectometric testing method with fringe projection is proposed for the accurate testing of transmitted wavefronts with a large dynamic range. Ray tracing of the modeled testing system is carried out to achieve the virtual ‘null’ testing of transmitted wavefront aberrations. The ray aberration is obtained from the ray tracing result and measured slope, with which the test wavefront aberration can be reconstructed. To eliminate testing system modeling errors, a system geometry calibration based on computer-aided reverse optimization is applied to realize accurate testing. Both numerical simulation and experiments have been carried out to demonstrate the feasibility and high accuracy of the proposed testing method. The proposed testing method can achieve a large dynamic range compared with the interferometric method, providing a simple, low-cost and accurate way for the testing of transmitted wavefronts from various kinds of optics and a large amount of industrial transmission elements.

  19. Computer-aided resection and endoprosthesis design for the management of malignant bone tumors around the knee: outcomes of 12 cases.

    PubMed

    Ding, Huan-wen; Yu, Guang-wen; Tu, Qiang; Liu, Bao; Shen, Jian-jian; Wang, Hong; Wang, Ying-jun

    2013-11-22

    To report the outcomes of computer-aided resection and endoprosthesis design for the management of malignant bone tumors around the knee. Computed tomography (CT) and magnetic resonance imaging (MRI) data were input into computer software to produce three-dimensional (3D) models of the tumor extent. Imaging data was then used to create a template for surgical resection, and development of an individualized combined allogeneic bone/endoprosthesis. Surgical simulations were performed prior to the actual surgery. This study included 9 males and 3 females with a mean age of 25.3 years (range, 13 to 40 years). There were 9 tumors in the distal femur and 3 in the proximal tibia. There were no surgical complications. In all cases pathologically confirmed clear surgical margins were obtained. Postoperative radiographs showed the range of tumor resection was in accordance with the preoperative design, and the morphological reconstruction of the bone defect was satisfactory with complete bilateral symmetry. The mean follow-up time was 26.5 months. Two patients died of their disease and the remaining are alive and well without evidence of recurrence. All patients are able to ambulate freely without restrictions. At the last follow-up, the average International Society of Limb Salvage score was 25.8 (range, 18 to 27), and was excellent in 8 cases and good in 4 cases. Computer-aided design and modeling for the surgical management of bone tumors and subsequent limb reconstruction provides accurate tumor removal with the salvage of a maximal amount of unaffected bone and precise endoprosthesis reconstruction.

  20. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping.

    PubMed

    Wu, Yixiao; Yang, Ran; Jia, Sen; Li, Zhanjun; Zhou, Zhiyang; Lou, Ting

    2014-01-01

    This work was aimed at studying the method of computer-aided diagnosis of early knee OA (OA: osteoarthritis). Based on the technique of MRI (MRI: Magnetic Resonance Imaging) T2 Mapping, through computer image processing, feature extraction, calculation and analysis via constructing a classifier, an effective computer-aided diagnosis method for knee OA was created to assist doctors in their accurate, timely and convenient detection of potential risk of OA. In order to evaluate this method, a total of 1380 data from the MRI images of 46 samples of knee joints were collected. These data were then modeled through linear regression on an offline general platform by the use of the ImageJ software, and a map of the physical parameter T2 was reconstructed. After the image processing, the T2 values of ten regions in the WORMS (WORMS: Whole-organ Magnetic Resonance Imaging Score) areas of the articular cartilage were extracted to be used as the eigenvalues in data mining. Then,a RBF (RBF: Radical Basis Function) network classifier was built to classify and identify the collected data. The classifier exhibited a final identification accuracy of 75%, indicating a good result of assisting diagnosis. Since the knee OA classifier constituted by a weights-directly-determined RBF neural network didn't require any iteration, our results demonstrated that the optimal weights, appropriate center and variance could be yielded through simple procedures. Furthermore, the accuracy for both the training samples and the testing samples from the normal group could reach 100%. Finally, the classifier was superior both in time efficiency and classification performance to the frequently used classifiers based on iterative learning. Thus it was suitable to be used as an aid to computer-aided diagnosis of early knee OA.

  1. Computer-aided sperm analysis: a useful tool to evaluate patient's response to varicocelectomy.

    PubMed

    Ariagno, Julia I; Mendeluk, Gabriela R; Furlan, María J; Sardi, M; Chenlo, P; Curi, Susana M; Pugliese, Mercedes N; Repetto, Herberto E; Cohen, Mariano

    2017-01-01

    Preoperative and postoperative sperm parameter values from infertile men with varicocele were analyzed by computer-aided sperm analysis (CASA) to assess if sperm characteristics improved after varicocelectomy. Semen samples of men with proven fertility (n = 38) and men with varicocele-related infertility (n = 61) were also analyzed. Conventional semen analysis was performed according to WHO (2010) criteria and a CASA system was employed to assess kinetic parameters and sperm concentration. Seminal parameters values in the fertile group were very far above from those of the patients, either before or after surgery. No significant improvement in the percentage normal sperm morphology (P = 0.10), sperm concentration (P = 0.52), total sperm count (P = 0.76), subjective motility (%) (P = 0.97) nor kinematics (P = 0.30) was observed after varicocelectomy when all groups were compared. Neither was significant improvement found in percentage normal sperm morphology (P = 0.91), sperm concentration (P = 0.10), total sperm count (P = 0.89) or percentage motility (P = 0.77) after varicocelectomy in paired comparisons of preoperative and postoperative data. Analysis of paired samples revealed that the total sperm count (P = 0.01) and most sperm kinetic parameters: curvilinear velocity (P = 0.002), straight-line velocity (P = 0.0004), average path velocity (P = 0.0005), linearity (P = 0.02), and wobble (P = 0.006) improved after surgery. CASA offers the potential for accurate quantitative assessment of each patient's response to varicocelectomy.

  2. Stereolithography: a potential new tool in forensic medicine.

    PubMed

    Dolz, M S; Cina, S J; Smith, R

    2000-06-01

    Stereolithography is a computer-mediated method that can be used to quickly create anatomically correct three-dimensional epoxy and acrylic resin models from various types of medical data. Multiple imaging modalities can be exploited, including computed tomography and magnetic resonance imaging. The technology was first developed and used in 1986 to overcome limitations in previous computer-aided manufacturing/milling techniques. Stereolithography is presently used to accurately reproduce both the external and internal anatomy of body structures. Current medical uses of stereolithography include preoperative planning of orthopedic and maxillofacial surgeries, the fabrication of custom prosthetic devices; and the assessment of the degree of bony and soft-tissue injury caused by trauma. We propose that there is a useful, as yet untapped, potential for this technology in forensic medicine.

  3. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM).

    PubMed

    Pekkan, Kerem; Whited, Brian; Kanter, Kirk; Sharma, Shiva; de Zelicourt, Diane; Sundareswaran, Kartik; Frakes, David; Rossignac, Jarek; Yoganathan, Ajit P

    2008-11-01

    The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human-shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement "manual hemodynamic optimization" at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model anatomical design studies are performed on a total of eight different complex patient specific anatomies. Using SURGEM, more than 30 new anatomical designs (or candidate configurations) are created, and the corresponding user times presented. CFD performances for eight of these candidate configurations are also presented.

  4. Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery.

    PubMed

    Zhao, Linping; Patel, Pravin K; Cohen, Mimis

    2012-07-01

    Computer aided design and manufacturing (CAD/CAM) technology today is the standard in manufacturing industry. The application of the CAD/CAM technology, together with the emerging 3D medical images based virtual surgical planning (VSP) technology, to craniomaxillofacial reconstruction has been gaining increasing attention to reconstructive surgeons. This article illustrates the components, system and clinical management of the VSP and CAD/CAM technology including: data acquisition, virtual surgical and treatment planning, individual implant design and fabrication, and outcome assessment. It focuses primarily on the technical aspects of the VSP and CAD/CAM system to improve the predictability of the planning and outcome.

  5. A Comprehensive Computer Package for Ambulatory Surgical Facilities

    PubMed Central

    Kessler, Robert R.

    1980-01-01

    Ambulatory surgical centers are a cost effective alternative to hospital surgery. Their increasing popularity has contributed to heavy case loads, an accumulation of vast amounts of medical and financial data and economic pressures to maintain a tight control over “cash flow”. Computerization is now a necessity to aid ambulatory surgical centers to maintain their competitive edge. An on-line system is especially necessary as it allows interactive scheduling of surgical cases, immediate access to financial data and rapid gathering of medical and statistical information. This paper describes the significant features of the computer package in use at the Salt Lake Surgical Center, which processes 500 cases per month.

  6. Analgesics for orthopedic postoperative pain.

    PubMed

    Bourne, Michael H

    2004-03-01

    Postoperative pain management is critical for optimal care of orthopedic surgery patients. Opioids, administered intramuscularly, as epidurals, or IV as patient-controlled analgesia, are effective for severe pain. Adjunctive therapy and preemptive analgesia such as nerve blocks, and methods of delivery such as infusion pumps, may be used after total knee arthroplasty and anterior cruciate ligament (ACL) reconstruction. Oral opioids are effective for moderate to severe pain, and tramadol, with efficacy comparable to morphine but with fewer severe side effects, is selected for moderate to moderately severe pain. Opioid-sparing NSAIDs, such as ketorolac, and COX-2-specific NSAIDS have use in pain management of hip, knee, and ACL procedures. An individualized regimen of appropriate analgesics, combined with nonpharmacologic treatments such as physical therapy or cryotherapy and patient education, can aid orthopedic surgery patients' recovery.

  7. Minimally invasive paediatric cardiac surgery.

    PubMed

    Bacha, Emile; Kalfa, David

    2014-01-01

    The concept of minimally invasive surgery for congenital heart disease in paediatric patients is broad, and has the aim of reducing the trauma of the operation at each stage of management. Firstly, in the operating room using minimally invasive incisions, video-assisted thoracoscopic and robotically assisted surgery, hybrid procedures, image-guided intracardiac surgery, and minimally invasive cardiopulmonary bypass strategies. Secondly, in the intensive-care unit with neuroprotection and 'fast-tracking' strategies that involve early extubation, early hospital discharge, and less exposure to transfused blood products. Thirdly, during postoperative mid-term and long-term follow-up by providing the children and their families with adequate support after hospital discharge. Improvement of these strategies relies on the development of new devices, real-time multimodality imaging, aids to instrument navigation, miniaturized and specialized instrumentation, robotic technology, and computer-assisted modelling of flow dynamics and tissue mechanics. In addition, dedicated multidisciplinary co-ordinated teams involving congenital cardiac surgeons, perfusionists, intensivists, anaesthesiologists, cardiologists, nurses, psychologists, and counsellors are needed before, during, and after surgery to go beyond apparent technological and medical limitations with the goal to 'treat more while hurting less'.

  8. Academic consortium for the evaluation of computer-aided diagnosis (CADx) in mammography

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Freedman, Matthew T.; Wu, Chris Y.; Lo, Shih-Chung B.; Floyd, Carey E., Jr.; Lo, Joseph Y.; Chan, Heang-Ping; Helvie, Mark A.; Petrick, Nicholas; Sahiner, Berkman; Wei, Datong; Chakraborty, Dev P.; Clarke, Laurence P.; Kallergi, Maria; Clark, Bob; Kim, Yongmin

    1995-04-01

    Computer aided diagnosis (CADx) is a promising technology for the detection of breast cancer in screening mammography. A number of different approaches have been developed for CADx research that have achieved significant levels of performance. Research teams now recognize the need for a careful and detailed evaluation study of approaches to accelerate the development of CADx, to make CADx more clinically relevant and to optimize the CADx algorithms based on unbiased evaluations. The results of such a comparative study may provide each of the participating teams with new insights into the optimization of their individual CADx algorithms. This consortium of experienced CADx researchers is working as a group to compare results of the algorithms and to optimize the performance of CADx algorithms by learning from each other. Each institution will be contributing an equal number of cases that will be collected under a standard protocol for case selection, truth determination, and data acquisition to establish a common and unbiased database for the evaluation study. An evaluation procedure for the comparison studies are being developed to analyze the results of individual algorithms for each of the test cases in the common database. Optimization of individual CADx algorithms can be made based on the comparison studies. The consortium effort is expected to accelerate the eventual clinical implementation of CADx algorithms at participating institutions.

  9. Computer-aided classification of breast masses using contrast-enhanced digital mammograms

    NASA Astrophysics Data System (ADS)

    Danala, Gopichandh; Aghaei, Faranak; Heidari, Morteza; Wu, Teresa; Patel, Bhavika; Zheng, Bin

    2018-02-01

    By taking advantages of both mammography and breast MRI, contrast-enhanced digital mammography (CEDM) has emerged as a new promising imaging modality to improve efficacy of breast cancer screening and diagnosis. The primary objective of study is to develop and evaluate a new computer-aided detection and diagnosis (CAD) scheme of CEDM images to classify between malignant and benign breast masses. A CEDM dataset consisting of 111 patients (33 benign and 78 malignant) was retrospectively assembled. Each case includes two types of images namely, low-energy (LE) and dual-energy subtracted (DES) images. First, CAD scheme applied a hybrid segmentation method to automatically segment masses depicting on LE and DES images separately. Optimal segmentation results from DES images were also mapped to LE images and vice versa. Next, a set of 109 quantitative image features related to mass shape and density heterogeneity was initially computed. Last, four multilayer perceptron-based machine learning classifiers integrated with correlationbased feature subset evaluator and leave-one-case-out cross-validation method was built to classify mass regions depicting on LE and DES images, respectively. Initially, when CAD scheme was applied to original segmentation of DES and LE images, the areas under ROC curves were 0.7585+/-0.0526 and 0.7534+/-0.0470, respectively. After optimal segmentation mapping from DES to LE images, AUC value of CAD scheme significantly increased to 0.8477+/-0.0376 (p<0.01). Since DES images eliminate overlapping effect of dense breast tissue on lesions, segmentation accuracy was significantly improved as compared to regular mammograms, the study demonstrated that computer-aided classification of breast masses using CEDM images yielded higher performance.

  10. Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning.

    PubMed

    Yuan, Peng; Mai, Huaming; Li, Jianfu; Ho, Dennis Chun-Yu; Lai, Yingying; Liu, Siting; Kim, Daeseung; Xiong, Zixiang; Alfi, David M; Teichgraeber, John F; Gateno, Jaime; Xia, James J

    2017-12-01

    There are many proven problems associated with traditional surgical planning methods for orthognathic surgery. To address these problems, we developed a computer-aided surgical simulation (CASS) system, the AnatomicAligner, to plan orthognathic surgery following our streamlined clinical protocol. The system includes six modules: image segmentation and three-dimensional (3D) reconstruction, registration and reorientation of models to neutral head posture, 3D cephalometric analysis, virtual osteotomy, surgical simulation, and surgical splint generation. The accuracy of the system was validated in a stepwise fashion: first to evaluate the accuracy of AnatomicAligner using 30 sets of patient data, then to evaluate the fitting of splints generated by AnatomicAligner using 10 sets of patient data. The industrial gold standard system, Mimics, was used as the reference. When comparing the results of segmentation, virtual osteotomy and transformation achieved with AnatomicAligner to the ones achieved with Mimics, the absolute deviation between the two systems was clinically insignificant. The average surface deviation between the two models after 3D model reconstruction in AnatomicAligner and Mimics was 0.3 mm with a standard deviation (SD) of 0.03 mm. All the average surface deviations between the two models after virtual osteotomy and transformations were smaller than 0.01 mm with a SD of 0.01 mm. In addition, the fitting of splints generated by AnatomicAligner was at least as good as the ones generated by Mimics. We successfully developed a CASS system, the AnatomicAligner, for planning orthognathic surgery following the streamlined planning protocol. The system has been proven accurate. AnatomicAligner will soon be available freely to the boarder clinical and research communities.

  11. Reconstruction of a mandibular segmental defect with a customized 3-dimensional-printed titanium prosthesis in a cat with a mandibular osteosarcoma.

    PubMed

    Liptak, Julius M; Thatcher, Graham P; Bray, Jonathan P

    2017-04-15

    CASE DESCRIPTION A 12-year-old neutered male domestic shorthair cat had been treated for a mass arising from the lingual aspect of the caudal right mandibular body. Cytoreductive surgery of the mass had been performed twice over a 2-year period, but the mass recurred following both surgeries. The mass was diagnosed as an osteosarcoma, and the cat was referred for further evaluation and treatment. CLINICAL FINDINGS Clinical findings were unremarkable, except for a 2-cm-diameter mass arising from the lingual aspect of the right mandible and mild anemia and lymphopenia. Pre- and postcontrast CT scans of the head, neck, and thorax were performed, revealing that the osteosarcoma was confined to the caudal right mandibular body, with no evidence of lymph node or pulmonary metastasis. TREATMENT AND OUTCOME The stereolithographic files of the CT scan of the head were sent for computer-aided design and manufacture of a customized 3-D-printed titanium prosthesis. Segmental mandibulectomy was performed, and the mandibular defect was reconstructed in a single stage with the 3-D-printed titanium prosthesis. The cat had 1 minor postoperative complication but had no signs of eating difficulties at any point after surgery. The cat was alive and disease free 14 months postoperatively. CLINICAL RELEVANCE Reconstruction of the mandible of a cat following mandibulectomy was possible with computer-aided design and manufacture of a customized 3-D-printed titanium prosthesis. Cats have a high rate of complications following mandibulectomy, and these initial findings suggested that mandibular reconstruction may reduce the risk of these complications and result in a better functional outcome.

  12. Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning

    PubMed Central

    Yuan, Peng; Mai, Huaming; Li, Jianfu; Ho, Dennis Chun-Yu; Lai, Yingying; Liu, Siting; Kim, Daeseung; Xiong, Zixiang; Alfi, David M.; Teichgraeber, John F.; Gateno, Jaime

    2017-01-01

    Purpose There are many proven problems associated with traditional surgical planning methods for orthognathic surgery. To address these problems, we developed a computer-aided surgical simulation (CASS) system, the AnatomicAligner, to plan orthognathic surgery following our streamlined clinical protocol. Methods The system includes six modules: image segmentation and three-dimensional (3D) reconstruction, registration and reorientation of models to neutral head posture, 3D cephalometric analysis, virtual osteotomy, surgical simulation, and surgical splint generation. The accuracy of the system was validated in a stepwise fashion: first to evaluate the accuracy of AnatomicAligner using 30 sets of patient data, then to evaluate the fitting of splints generated by AnatomicAligner using 10 sets of patient data. The industrial gold standard system, Mimics, was used as the reference. Result When comparing the results of segmentation, virtual osteotomy and transformation achieved with AnatomicAligner to the ones achieved with Mimics, the absolute deviation between the two systems was clinically insignificant. The average surface deviation between the two models after 3D model reconstruction in AnatomicAligner and Mimics was 0.3 mm with a standard deviation (SD) of 0.03 mm. All the average surface deviations between the two models after virtual osteotomy and transformations were smaller than 0.01 mm with a SD of 0.01 mm. In addition, the fitting of splints generated by AnatomicAligner was at least as good as the ones generated by Mimics. Conclusion We successfully developed a CASS system, the AnatomicAligner, for planning orthognathic surgery following the streamlined planning protocol. The system has been proven accurate. AnatomicAligner will soon be available freely to the boarder clinical and research communities. PMID:28432489

  13. A Data-Driven Solution for Performance Improvement

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Marketed as the "Software of the Future," Optimal Engineering Systems P.I. EXPERT(TM) technology offers statistical process control and optimization techniques that are critical to businesses looking to restructure or accelerate operations in order to gain a competitive edge. Kennedy Space Center granted Optimal Engineering Systems the funding and aid necessary to develop a prototype of the process monitoring and improvement software. Completion of this prototype demonstrated that it was possible to integrate traditional statistical quality assurance tools with robust optimization techniques in a user- friendly format that is visually compelling. Using an expert system knowledge base, the software allows the user to determine objectives, capture constraints and out-of-control processes, predict results, and compute optimal process settings.

  14. Enhanced Recovery after Urological Surgery: A Contemporary Systematic Review of Outcomes, Key Elements, and Research Needs.

    PubMed

    Azhar, Raed A; Bochner, Bernard; Catto, James; Goh, Alvin C; Kelly, John; Patel, Hiten D; Pruthi, Raj S; Thalmann, George N; Desai, Mihir

    2016-07-01

    Enhanced Recovery after Surgery (ERAS) programs are multimodal care pathways that aim to decrease intra-operative blood loss, decrease postoperative complications, and reduce recovery times. To overview the use and key elements of ERAS pathways, and define needs for future clinical trials. A comprehensive systematic MEDLINE search was performed for English language reports published before May 2015 using the terms "postoperative period," "postoperative care," "enhanced recovery after surgery," "enhanced recovery," "accelerated recovery," "fast track recovery," "recovery program," "recovery pathway", "ERAS," and "urology" or "cystectomy" or "urologic surgery." We identified 18 eligible articles. Patient counseling, physical conditioning, avoiding excessive alcohol and smoking, and good nutrition appeared to protect against postoperative complications. Fasting from solid food for only 6h and perioperative liquid-carbohydrate loading up to 2h prior to surgery appeared to be safe and reduced recovery times. Restricted, balanced, and goal-directed fluid replacement is effective when individualized, depending on patient morbidity and surgical procedure. Decreased intraoperative blood loss may be achieved by several measures. Deep vein thrombosis prophylaxis, antibiotic prophylaxis, and thermoregulation were found to help reduce postsurgical complications, as was a multimodal approach to postoperative nausea, vomiting, and analgesia. Chewing gum, prokinetic agents, oral laxatives, and an early resumption to normal diet appear to aid faster return to normal bowel function. Further studies should compare anesthetic protocols, refine analgesia, and evaluate the importance of robot-assisted surgery and the need/timing for drains and catheters. ERAS regimens are multidisciplinary, multimodal pathways that optimize postoperative recovery. This review provides an overview of the use and key elements of Enhanced Recovery after Surgery programs, which are multimodal, multidisciplinary care pathways that aim to optimize postoperative recovery. Additional conclusions include identifying effective procedures within Enhanced Recovery after Surgery programs and defining needs for future clinical trials. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  15. Computer-aided design and experimental investigation of a hydrodynamic device: the microwire electrode

    PubMed

    Fulian; Gooch; Fisher; Stevens; Compton

    2000-08-01

    The development and application of a new electrochemical device using a computer-aided design strategy is reported. This novel design is based on the flow of electrolyte solution past a microwire electrode situated centrally within a large duct. In the design stage, finite element simulations were employed to evaluate feasible working geometries and mass transport rates. The computer-optimized designs were then exploited to construct experimental devices. Steady-state voltammetric measurements were performed for a reversible one-electron-transfer reaction to establish the experimental relationship between electrolysis current and solution velocity. The experimental results are compared to those predicted numerically, and good agreement is found. The numerical studies are also used to establish an empirical relationship between the mass transport limited current and the volume flow rate, providing a simple and quantitative alternative for workers who would prefer to exploit this device without the need to develop the numerical aspects.

  16. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.

    PubMed

    Nishio, Mizuho; Nishizawa, Mitsuo; Sugiyama, Osamu; Kojima, Ryosuke; Yakami, Masahiro; Kuroda, Tomohiro; Togashi, Kaori

    2018-01-01

    We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.

  17. Computational Methods in Drug Discovery

    PubMed Central

    Sliwoski, Gregory; Kothiwale, Sandeepkumar; Meiler, Jens

    2014-01-01

    Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature. PMID:24381236

  18. Data engineering systems: Computerized modeling and data bank capabilities for engineering analysis

    NASA Technical Reports Server (NTRS)

    Kopp, H.; Trettau, R.; Zolotar, B.

    1984-01-01

    The Data Engineering System (DES) is a computer-based system that organizes technical data and provides automated mechanisms for storage, retrieval, and engineering analysis. The DES combines the benefits of a structured data base system with automated links to large-scale analysis codes. While the DES provides the user with many of the capabilities of a computer-aided design (CAD) system, the systems are actually quite different in several respects. A typical CAD system emphasizes interactive graphics capabilities and organizes data in a manner that optimizes these graphics. On the other hand, the DES is a computer-aided engineering system intended for the engineer who must operationally understand an existing or planned design or who desires to carry out additional technical analysis based on a particular design. The DES emphasizes data retrieval in a form that not only provides the engineer access to search and display the data but also links the data automatically with the computer analysis codes.

  19. Research in the design of high-performance reconfigurable systems

    NASA Technical Reports Server (NTRS)

    Mcewan, S. D.; Spry, A. J.

    1985-01-01

    Computer aided design and computer aided manufacturing have the potential for greatly reducing the cost and lead time in the development of VLSI components. This potential paves the way for the design and fabrication of a wide variety of economically feasible high level functional units. It was observed that current computer systems have only a limited capacity to absorb new VLSI component types other than memory, microprocessors, and a relatively small number of other parts. The first purpose is to explore a system design which is capable of effectively incorporating a considerable number of VLSI part types and will both increase the speed of computation and reduce the attendant programming effort. A second purpose is to explore design techniques for VLSI parts which when incorporated by such a system will result in speeds and costs which are optimal. The proposed work may lay the groundwork for future efforts in the extensive simulation and measurements of the system's cost effectiveness and lead to prototype development.

  20. The virtual mirror: a new interaction paradigm for augmented reality environments.

    PubMed

    Bichlmeier, Christoph; Heining, Sandro Michael; Feuerstein, Marco; Navab, Nassir

    2009-09-01

    Medical augmented reality (AR) has been widely discussed within the medical imaging as well as computer aided surgery communities. Different systems for exemplary medical applications have been proposed. Some of them produced promising results. One major issue still hindering AR technology to be regularly used in medical applications is the interaction between physician and the superimposed 3-D virtual data. Classical interaction paradigms, for instance with keyboard and mouse, to interact with visualized medical 3-D imaging data are not adequate for an AR environment. This paper introduces the concept of a tangible/controllable Virtual Mirror for medical AR applications. This concept intuitively augments the direct view of the surgeon with all desired views on volumetric medical imaging data registered with the operation site without moving around the operating table or displacing the patient. We selected two medical procedures to demonstrate and evaluate the potentials of the Virtual Mirror for the surgical workflow. Results confirm the intuitiveness of this new paradigm and its perceptive advantages for AR-based computer aided interventions.

  1. Lung lobe segmentation based on statistical atlas and graph cuts

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2012-03-01

    This paper presents a novel method that can extract lung lobes by utilizing probability atlas and multilabel graph cuts. Information about pulmonary structures plays very important role for decision of the treatment strategy and surgical planning. The human lungs are divided into five anatomical regions, the lung lobes. Precise segmentation and recognition of lung lobes are indispensable tasks in computer aided diagnosis systems and computer aided surgery systems. A lot of methods for lung lobe segmentation are proposed. However, these methods only target the normal cases. Therefore, these methods cannot extract the lung lobes in abnormal cases, such as COPD cases. To extract lung lobes in abnormal cases, this paper propose a lung lobe segmentation method based on probability atlas of lobe location and multilabel graph cuts. The process consists of three components; normalization based on the patient's physique, probability atlas generation, and segmentation based on graph cuts. We apply this method to six cases of chest CT images including COPD cases. Jaccard index was 79.1%.

  2. Multimedia patient education to assist the informed consent process for knee arthroscopy.

    PubMed

    Cornoiu, Andrei; Beischer, Andrew D; Donnan, Leo; Graves, Stephen; de Steiger, Richard

    2011-03-01

    In contemporary clinical practice, the ability for orthopaedic surgeons to obtain true 'informed consent' is becoming increasingly difficult. This problem has been driven by factors including increased expectations of surgical outcome by patients and increasing complexity of surgical procedures. Surgical pamphlets and computer presentations have been advocated as ways of improving patient education, but evidence of their efficacy is limited. The aim of this study was to compare the efficacy of a computer-based multimedia (MM) presentation against standardized verbal consent and information pamphlets for patients considering knee arthroscopy surgery. A randomized, controlled prospective trial was conducted, comparing the efficacy of three methods of providing preoperative informed consent information to patients. Sixty-one patients were randomly allocated into MM, verbal consent or pamphlet groups 3-6 weeks prior to knee arthroscopy surgery. Information recall after the initial consent process was assessed by questionnaire. Retention of this information was again assessed by questionnaire at the time of surgery and 6 weeks after surgery. The MM group demonstrated a significantly greater proportion of correct responses, 98%, in the questionnaire at the time of consent, in comparison with 88% for verbal and 76% for pamphlet groups, with no difference in anxiety levels. Information was also better retained by the MM group up to 6 weeks after surgery. Patient satisfaction with information delivery was higher in the MM group. MM is an effective tool for aiding in the provision and retention of information during the informed consent process. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.

  3. Database Design Methodology and Database Management System for Computer-Aided Structural Design Optimization.

    DTIC Science & Technology

    1984-12-01

    52242 Prepared for the AIR FORCE OFFICE OF SCIENTIFIC RESEARCH Under Grant No. AFOSR 82-0322 December 1984 ~ " ’w Unclassified SECURITY CLASSIFICATION4...OF THIS PAGE REPORT DOCUMENTATION PAGE is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS Unclassified None 20 SECURITY CLASSIFICATION...designer .and computer- are 20 DIiRIBUTION/AVAILABI LIT Y 0P ABSTR4ACT 21 ABSTRACT SECURITY CLASSIFICA1ONr UNCLASSIFIED/UNLIMITED SAME AS APT OTIC USERS

  4. Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    DTIC Science & Technology

    2009-11-01

    dynamics of the complex predicted by multiple molecular dynamics simulations , and discuss further structural optimization to achieve better in vivo efficacy...complex with BoNTAe and the dynamics of the complex predicted by multiple molecular dynamics simulations (MMDSs). On the basis of the 3D model, we discuss...is unlimited whereas AHP exhibited 54% inhibition under the same conditions (Table 1). Computer Simulation Twenty different molecular dynamics

  5. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    PubMed

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  6. Applications of structural optimization methods to fixed-wing aircraft and spacecraft in the 1980s

    NASA Technical Reports Server (NTRS)

    Miura, Hirokazu; Neill, Douglas J.

    1992-01-01

    This report is the summary of a technical survey on the applications of structural optimization in the U.S. aerospace industry through the 1980s. Since applications to rotary wing aircraft will be covered by other literature, applications to fixed-wing aircraft and spacecraft were considered. It became clear that very significant progress has been made during this decade, indicating this technology is about to become one of the practical tools in computer aided structural design.

  7. Exploratory benchtop study evaluating the use of surgical design and simulation in fibula free flap mandibular reconstruction

    PubMed Central

    2013-01-01

    Background Surgical design and simulation (SDS) is a useful tool to help surgeons visualize the anatomy of the patient and perform operative maneuvers on the computer before implementation in the operating room. While these technologies have many advantages, further evidence of their potential to improve outcomes is required. The present benchtop study was intended to identify if there is a difference in surgical outcome between free-hand surgery completed without virtual surgical planning (VSP) software and preoperatively planned surgery completed with the use of VSP software. Methods Five surgeons participated in the study. In Session A, participants were asked to do a free-hand reconstruction of a 3d printed mandible with a defect using a 3d printed fibula. Four weeks later, in Session B, the participants were asked to do the same reconstruction, but in this case using a preoperatively digitally designed surgical plan. Digital registration computer software, hard tissue measures and duration of the task were used to compare the outcome of the benchtop reconstructions. Results The study revealed that: (1) superimposed images produced in a computer aided design (CAD) software were effective in comparing pre and post-surgical outcomes, (2) there was a difference, based on hard tissue measures, in surgical outcome between the two scenarios and (3) there was no difference in the time it took to complete the sessions. Conclusion The study revealed that the participants were more consistent in the preoperatively digitally planned surgery than they were in the free hand surgery. PMID:23800209

  8. Design Engineering in Surgery. How to Design, Test and Market Surgical Devices Made With 3D Printing?

    PubMed

    Rodríguez García, José Ignacio; Sierra Velasco, José Manuel; Villazón Suárez, Marta; Cabrera Pereira, Ana; Sosa, Valentina; Cortizo Rodríguez, José Luis

    2018-04-01

    Industry 4.0 offers new development opportunities for surgeons. Computer-aided design and 3D printing allow for the creation of prototypes and functional end products. Until now, it was difficult for new devices to get to the manufacturing phase. Nowadays, the main limitations are our creativity, available spaces to test our creations and obtaining financing. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Computer-aided design analysis of 57-mm, angular-contact, cryogenic turbopump bearings

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.; Coe, Harold H.

    1988-01-01

    The Space Shuttle main engine high-pressure oxygen turbopumps have not experienced the sevice life required of them. This insufficiency has been due in part to the shortened life of the bearings. To improve the life of the existing turbopump bearings, an effort is under way to investigate bearing modifications that could be retrofitted into the present bearing cavity. Several bearing parameters were optimized using the computer program SHABERTH, which performs a thermomechanical simulation of a load support system. The computer analysis showed that improved bearing performance is feasible if low friction coefficients can be attained. Bearing geometries were optimized considering heat generation, equilibrium temperatures, and relative life. Thermal gradients through the bearings were found to be lower with liquid lubrication than with solid film lubrication, and a liquid oxygen coolant flowrate of approximately 4.0 kg/s was found to be optimal. This paper describes the analytical modeling used to determine these feasible modifications to improve bearing performance.

  10. Combined Soft and Hard Tissue Peri-Implant Plastic Surgery Techniques to Enhance Implant Rehabilitation: A Case Report

    PubMed Central

    Baltacıoğlu, Esra; Korkmaz, Fatih Mehmet; Bağış, Nilsun; Aydın, Güven; Yuva, Pınar; Korkmaz, Yavuz Tolga; Bağış, Bora

    2014-01-01

    This case report presents an implant-aided prosthetic treatment in which peri-implant plastic surgery techniques were applied in combination to satisfactorily attain functional aesthetic expectations. Peri-implant plastic surgery enables the successful reconstruction and restoration of the balance between soft and hard tissues and allows the option of implant-aided fixed prosthetic rehabilitation. PMID:25489351

  11. Recent development on computer aided tissue engineering--a review.

    PubMed

    Sun, Wei; Lal, Pallavi

    2002-02-01

    The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.

  12. The Design and Evaluation of "CAPTools"--A Computer Aided Parallelization Toolkit

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Frumkin, Michael; Hribar, Michelle; Jin, Haoqiang; Waheed, Abdul; Johnson, Steve; Cross, Jark; Evans, Emyr; Ierotheou, Constantinos; Leggett, Pete; hide

    1998-01-01

    Writing applications for high performance computers is a challenging task. Although writing code by hand still offers the best performance, it is extremely costly and often not very portable. The Computer Aided Parallelization Tools (CAPTools) are a toolkit designed to help automate the mapping of sequential FORTRAN scientific applications onto multiprocessors. CAPTools consists of the following major components: an inter-procedural dependence analysis module that incorporates user knowledge; a 'self-propagating' data partitioning module driven via user guidance; an execution control mask generation and optimization module for the user to fine tune parallel processing of individual partitions; a program transformation/restructuring facility for source code clean up and optimization; a set of browsers through which the user interacts with CAPTools at each stage of the parallelization process; and a code generator supporting multiple programming paradigms on various multiprocessors. Besides describing the rationale behind the architecture of CAPTools, the parallelization process is illustrated via case studies involving structured and unstructured meshes. The programming process and the performance of the generated parallel programs are compared against other programming alternatives based on the NAS Parallel Benchmarks, ARC3D and other scientific applications. Based on these results, a discussion on the feasibility of constructing architectural independent parallel applications is presented.

  13. Temporal lobe epilepsy surgery: what do patients want to know?

    PubMed

    Choi, Hyunmi; Pargeon, Kim; Bausell, Rebecca; Wong, John B; Mendiratta, Anil; Bakken, Suzanne

    2011-11-01

    Patients with pharmacoresistant temporal lobe epilepsy (TLE) contemplating brain surgery must make a complex treatment decision involving trade-offs. Patient decision aids, containing information on the risks and benefits of treatment interventions, increase patient knowledge and facilitate shared decision making between patients and physicians. We conducted five focus groups to describe the information patients need to make informed decisions about TLE surgery. Twenty patients who had undergone TLE surgery described the information used in their decision-making process, and evaluated the potential for a patient decision aid to assist other patients who are considering surgery. Thematic analysis revealed information needs that were both experiential (i.e., learning about other patients' experiences through testimonials) and factual (i.e., individualized statistical information). Patients also made suggestions on how this information should be delivered to patients. These data will accelerate the development of a patient decision aid designed to assist TLE patients in their decision making about epilepsy surgery. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Modelling, simulation and computer-aided design (CAD) of gyrotrons for novel applications in the high-power terahertz science and technologies

    NASA Astrophysics Data System (ADS)

    Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.

    2018-03-01

    Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.

  15. Decision Aid for Cigarette Smokers Scheduled for Elective Surgery.

    PubMed

    Warner, David O; LeBlanc, Annie; Kadimpati, Sandeep; Vickers, Kristin S; Shi, Yu; Montori, Victor M

    2015-07-01

    Decision aids can increase patient involvement in decision-making about health care. The study goal was to develop and test a decision aid for use by clinicians in discussion options for changing smoking behavior before and after elective surgery. In formative work, a decision aid was designed to facilitate patient-clinician discussion regarding three options: continue smoking, attempt a period of temporary abstinence, and attempt to quit smoking for good. A randomized, two-group pilot study was then conducted in smokers evaluated in preparation for elective surgery in a preoperative clinic to test the hypothesis that the decision aid would improve measures of decisional quality compared with usual care. The final decision aid consisted of three laminated cards. The front of each card included a colorful graphic describing each choice; the reverse including two to three pros and cons for each decision, a simple graphic illustrating the effects of smoking on the body, and a motivational phrase. In the randomized trial of 130 patients, the decision aid significantly (P < 0.05) improved measures of decisional quality and patient involvement in decision making (Cohen's d effect sizes of 0.76 and 1.20 for the Decisional Conflict Scale and Observing PatienT involvement In decisiON-making scale, respectively). However, the decision aid did not affect any aspect of perioperative smoking behavior, including the distribution of or adherence to choices. Although the use of a decision aid to facilitate clinician-patient discussions regarding tobacco use around the time of surgery substantially improved measures of decisional quality, it alone did not change perioperative tobacco use behavior.

  16. Computer-Aided Design/Computer-Assisted Manufacture-Derived Needle Guide for Injection of Botulinum Toxin into the Lateral Pterygoid Muscle in Patients with Oromandibular Dystonia.

    PubMed

    Yoshida, Kazuya

    2018-01-01

    To evaluate the effectiveness and safety of botulinum toxin administration into the inferior head of the lateral pterygoid muscle of patients with jaw opening dystonia by using a computer-aided design/computer-assisted manufacture (CAD/CAM)-derived needle guide. A total of 17 patients with jaw opening dystonia were enrolled. After the patient's computed tomography (CT) scan was imported and fused with a scan of a plaster cast model of the maxilla, the optimal needle insertion site over the lateral pterygoid muscle was determined using the NobelClinician software. A total of 13 patients were injected both with and without the guide, and 4 patients underwent guided injection alone. The therapeutic effects of botulinum toxin injection and its associated complications were statistically compared between the guided and unguided procedures using paired t test. Botulinum toxin therapy was performed 42 and 32 times with and without the guides, respectively. The needle was easily inserted without any complications in all procedures. There was a significant difference (P < .001) between the mean comprehensive improvements observed with (66.3%) and without (54.4%) the guides. The findings suggest that the use of needle guides during the injection of botulinum toxin into the inferior head of the lateral pterygoid muscle is very useful for aiding the accurate and safe administration of botulinum toxin therapy for jaw opening dystonia.

  17. Computational modeling and prototyping of a pediatric airway management instrument.

    PubMed

    Gonzalez-Cota, Alan; Kruger, Grant H; Raghavan, Padmaja; Reynolds, Paul I

    2010-09-01

    Anterior retraction of the tongue is used to enhance upper airway patency during pediatric fiberoptic intubation. This can be achieved by the use of Magill forceps as a tongue retractor, but lingual grip can become unsteady and traumatic. Our objective was to modify this instrument using computer-aided engineering for the purpose of stable tongue retraction. We analyzed the geometry and mechanical properties of standard Magill forceps with a combination of analytical and empirical methods. This design was captured using computer-aided design techniques to obtain a 3-dimensional model allowing further geometric refinements and mathematical testing for rapid prototyping. On the basis of our experimental findings we adjusted the design constraints to optimize the device for tongue retraction. Stereolithography prototyping was used to create a partially functional plastic model to further assess the functional and ergonomic effectiveness of the design changes. To reduce pressure on the tongue by regular Magill forceps, we incorporated (1) a larger diameter tip for better lingual tissue pressure profile, (2) a ratchet to stabilize such pressure, and (3) a soft molded tip with roughened surface to improve grip. Computer-aided engineering can be used to redesign and prototype a popular instrument used in airway management. On a computational model, our modified Magill forceps demonstrated stable retraction forces, while maintaining the original geometry and versatility. Its application in humans and utility during pediatric fiberoptic intubation are yet to be studied.

  18. Optimizing patient flow in a large hospital surgical centre by means of discrete-event computer simulation models.

    PubMed

    Ferreira, Rodrigo B; Coelli, Fernando C; Pereira, Wagner C A; Almeida, Renan M V R

    2008-12-01

    This study used the discrete-events computer simulation methodology to model a large hospital surgical centre (SC), in order to analyse the impact of increases in the number of post-anaesthetic beds (PABs), of changes in surgical room scheduling strategies and of increases in surgery numbers. The used inputs were: number of surgeries per day, type of surgical room scheduling, anaesthesia and surgery duration, surgical teams' specialty and number of PABs, and the main outputs were: number of surgeries per day, surgical rooms' use rate and blocking rate, surgical teams' use rate, patients' blocking rate, surgery delays (minutes) and the occurrence of postponed surgeries. Two basic strategies were implemented: in the first strategy, the number of PABs was increased under two assumptions: (a) following the scheduling plan actually used by the hospital (the 'rigid' scheduling - surgical rooms were previously assigned and assignments could not be changed) and (b) following a 'flexible' scheduling (surgical rooms, when available, could be freely used by any surgical team). In the second, the same analysis was performed, increasing the number of patients (up to the system 'feasible maximum') but fixing the number of PABs, in order to evaluate the impact of the number of patients over surgery delays. It was observed that the introduction of a flexible scheduling/increase in PABs would lead to a significant improvement in the SC productivity.

  19. [Research on direct forming of comminuted fracture surgery orienting model by selective laser melting].

    PubMed

    He, Xingrong; Yang, Yongqiang; Wu, Weihui; Wang, Di; Ding, Huanwen; Huang, Weihong

    2010-06-01

    In order to simplify the distal femoral comminuted fracture surgery and improve the accuracy of the parts to be reset, a kind of surgery orienting model for the surgery operation was designed according to the scanning data of computer tomography and the three-dimensional reconstruction image. With the use of DiMetal-280 selective laser melting rapid prototyping system, the surgery orienting model of 316L stainless steel was made through orthogonal experiment for processing parameter optimization. The technology of direct manufacturing of surgery orienting model by selective laser melting was noted to have obvious superiority with high speed, precise profile and good accuracy in size when compared with the conventional one. The model was applied in a real surgical operation for thighbone replacement; it worked well. The successful development of the model provides a new method for the automatic manufacture of customized surgery model, thus building a foundation for more clinical applications in the future.

  20. A New Approach to Implant-Based Midface Reconstruction Following Subtotal Maxillectomy.

    PubMed

    Dawood, Andrew; Kalavrezos, Nicholas; Tanner, Susan

    2016-01-01

    This case presentation describes the reconstruction of an extensive maxillary-orbital defect following subtotal resection of the maxilla en bloc with orbital exenteration in a young adult following the diagnosis of chondrosarcoma. A new approach to composite midface reconstruction with dental implants is described, in which computer-guided surgery (CGS) was used to obliquely position dental implants interradicularly in the residual maxilla, such that the implant tips lie in close proximity to the root apices of the remaining teeth. The implants were then used to fixate a milled-titanium bar, fabricated using computer-aided design and manufacture (CAD/CAM), and provided with attachments for the stabilization and retention of a maxillary obturator.

  1. Orbital endoscopic surgery

    PubMed Central

    Selva, Dinesh

    2008-01-01

    Minimally invasive ″keyhole″ surgery performed using endoscopic visualization is increasing in popularity and is being used by almost all surgical subspecialties. Within ophthalmology, however, endoscopic surgery is not commonly performed and there is little literature on the use of the endoscope in orbital surgery. Transorbital use of the endoscope can greatly aid in visualizing orbital roof lesions and minimizing the need for bone removal. The endoscope is also useful during decompression procedures and as a teaching aid to train orbital surgeons. In this article, we review the history of endoscopic orbital surgery and provide an overview of the technique and describe situations where the endoscope can act as a useful adjunct to orbital surgery. PMID:18158397

  2. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci™ robotic console.

    PubMed

    Volonté, Francesco; Buchs, Nicolas C; Pugin, François; Spaltenstein, Joël; Schiltz, Boris; Jung, Minoa; Hagen, Monika; Ratib, Osman; Morel, Philippe

    2013-09-01

    Computerized management of medical information and 3D imaging has become the norm in everyday medical practice. Surgeons exploit these emerging technologies and bring information previously confined to the radiology rooms into the operating theatre. The paper reports the authors' experience with integrated stereoscopic 3D-rendered images in the da Vinci surgeon console. Volume-rendered images were obtained from a standard computed tomography dataset using the OsiriX DICOM workstation. A custom OsiriX plugin was created that permitted the 3D-rendered images to be displayed in the da Vinci surgeon console and to appear stereoscopic. These rendered images were displayed in the robotic console using the TilePro multi-input display. The upper part of the screen shows the real endoscopic surgical field and the bottom shows the stereoscopic 3D-rendered images. These are controlled by a 3D joystick installed on the console, and are updated in real time. Five patients underwent a robotic augmented reality-enhanced procedure. The surgeon was able to switch between the classical endoscopic view and a combined virtual view during the procedure. Subjectively, the addition of the rendered images was considered to be an undeniable help during the dissection phase. With the rapid evolution of robotics, computer-aided surgery is receiving increasing interest. This paper details the authors' experience with 3D-rendered images projected inside the surgical console. The use of this intra-operative mixed reality technology is considered very useful by the surgeon. It has been shown that the usefulness of this technique is a step toward computer-aided surgery that will progress very quickly over the next few years. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Computer-Aided Diagnosis of Anterior Segment Eye Abnormalities using Visible Wavelength Image Analysis Based Machine Learning.

    PubMed

    S V, Mahesh Kumar; R, Gunasundari

    2018-06-02

    Eye disease is a major health problem among the elderly people. Cataract and corneal arcus are the major abnormalities that exist in the anterior segment eye region of aged people. Hence, computer-aided diagnosis of anterior segment eye abnormalities will be helpful for mass screening and grading in ophthalmology. In this paper, we propose a multiclass computer-aided diagnosis (CAD) system using visible wavelength (VW) eye images to diagnose anterior segment eye abnormalities. In the proposed method, the input VW eye images are pre-processed for specular reflection removal and the iris circle region is segmented using a circular Hough Transform (CHT)-based approach. The first-order statistical features and wavelet-based features are extracted from the segmented iris circle and used for classification. The Support Vector Machine (SVM) by Sequential Minimal Optimization (SMO) algorithm was used for the classification. In experiments, we used 228 VW eye images that belong to three different classes of anterior segment eye abnormalities. The proposed method achieved a predictive accuracy of 96.96% with 97% sensitivity and 99% specificity. The experimental results show that the proposed method has significant potential for use in clinical applications.

  4. Rapid prototyping and stereolithography in dentistry

    PubMed Central

    Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor

    2015-01-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715

  5. Rapid prototyping and stereolithography in dentistry.

    PubMed

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  6. Geometry Modeling and Grid Generation for Design and Optimization

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1998-01-01

    Geometry modeling and grid generation (GMGG) have played and will continue to play an important role in computational aerosciences. During the past two decades, tremendous progress has occurred in GMGG; however, GMGG is still the biggest bottleneck to routine applications for complicated Computational Fluid Dynamics (CFD) and Computational Structures Mechanics (CSM) models for analysis, design, and optimization. We are still far from incorporating GMGG tools in a design and optimization environment for complicated configurations. It is still a challenging task to parameterize an existing model in today's Computer-Aided Design (CAD) systems, and the models created are not always good enough for automatic grid generation tools. Designers may believe their models are complete and accurate, but unseen imperfections (e.g., gaps, unwanted wiggles, free edges, slivers, and transition cracks) often cause problems in gridding for CSM and CFD. Despite many advances in grid generation, the process is still the most labor-intensive and time-consuming part of the computational aerosciences for analysis, design, and optimization. In an ideal design environment, a design engineer would use a parametric model to evaluate alternative designs effortlessly and optimize an existing design for a new set of design objectives and constraints. For this ideal environment to be realized, the GMGG tools must have the following characteristics: (1) be automated, (2) provide consistent geometry across all disciplines, (3) be parametric, and (4) provide sensitivity derivatives. This paper will review the status of GMGG for analysis, design, and optimization processes, and it will focus on some emerging ideas that will advance the GMGG toward the ideal design environment.

  7. Image-Based Patient-Specific Ventricle Models with Fluid-Structure Interaction for Cardiac Function Assessment and Surgical Design Optimization

    PubMed Central

    Tang, Dalin; Yang, Chun; Geva, Tal; del Nido, Pedro J.

    2010-01-01

    Recent advances in medical imaging technology and computational modeling techniques are making it possible that patient-specific computational ventricle models be constructed and used to test surgical hypotheses and replace empirical and often risky clinical experimentation to examine the efficiency and suitability of various reconstructive procedures in diseased hearts. In this paper, we provide a brief review on recent development in ventricle modeling and its potential application in surgical planning and management of tetralogy of Fallot (ToF) patients. Aspects of data acquisition, model selection and construction, tissue material properties, ventricle layer structure and tissue fiber orientations, pressure condition, model validation and virtual surgery procedures (changing patient-specific ventricle data and perform computer simulation) were reviewed. Results from a case study using patient-specific cardiac magnetic resonance (CMR) imaging and right/left ventricle and patch (RV/LV/Patch) combination model with fluid-structure interactions (FSI) were reported. The models were used to evaluate and optimize human pulmonary valve replacement/insertion (PVR) surgical procedure and patch design and test a surgical hypothesis that PVR with small patch and aggressive scar tissue trimming in PVR surgery may lead to improved recovery of RV function and reduced stress/strain conditions in the patch area. PMID:21344066

  8. Use of notebook computers for third-year surgical students.

    PubMed

    Prystowsky, J B; Hassan, M B; Nahrwold, D L

    1996-08-01

    Computer-aided instruction has become increasingly popular in medical education. Notebook computers (NCs) are attractive, convenient microcomputers. We hypothesized that use of NCs by third-year surgical students would enhance their performance of educational activities. During the 1994-1995 academic year 25 student volunteers used NCs during the surgery clerkship. NC software included questions for self-examination, anatomy self-instruction program, word processing and electronic mail (e-mail) for recording and sending history and physicals (H & Ps) to faculty for review, and MEDLINE search software. Identical software was available to all students at on-campus computer centers. All students were asked to record the number of hours that they used the self-examination and anatomy programs, number of H & Ps performed and reviewed by faculty, and number of literature searches performed. NC users were interviewed regarding the value of NC use and their rating of software programs. NC users (n = 25) used the self-examination and anatomy programs more often, performed more literature searches, and had a greater percentage of their H & Ps reviewed by faculty compared with non-NC users (n = 143) (p < 0.05 for all outcomes). Most NC users agreed that NC use was enjoyable and valuable, and they believed that all students should have NCs during the surgery clerkship. Students rated software in order of preference: e-mail > self-examination > MEDLINE search > anatomy program. NC use enhanced performance of educational activities in the surgery clerkship. Effort toward developing educational software for surgical students is warranted because students are likely to use such programs.

  9. An expert system for choosing the best combination of options in a general purpose program for automated design synthesis

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Barthelemy, J.-F. M.

    1986-01-01

    An expert system called EXADS has been developed to aid users of the Automated Design Synthesis (ADS) general purpose optimization program. ADS has approximately 100 combinations of strategy, optimizer, and one-dimensional search options from which to choose. It is difficult for a nonexpert to make this choice. This expert system aids the user in choosing the best combination of options based on the users knowledge of the problem and the expert knowledge stored in the knowledge base. The knowledge base is divided into three categories; constrained problems, unconstrained problems, and constrained problems being treated as unconstrained problems. The inference engine and rules are written in LISP, contains about 200 rules, and executes on DEC-VAX (with Franz-LISP) and IBM PC (with IQ-LISP) computers.

  10. Artery cross-clamping during laparoscopic vascular surgeries; a computational tactile sensing approach.

    PubMed

    Pahlavan, Pedram; Najarian, Siamak; Afshari, Elnaz; Moini, Majid

    2013-01-01

    Artificial palpation is one of the most valuable achievements of artificial tactile sensing approach that can be used in various fields of medicine and more specifically in surgery. These techniques cause different surgical maneuvers to be done more precisely and noninvasively. In this study, considering the present problems and limitations of cross-clamping an artery during laparoscopic vascular surgeries, a new tactile sensory system will be introduced.Having imitated surgeon's palpation during open vascular surgeries and modeled it conceptually, the optimal amount of the total angular displacement of each robot joint in order to cross-clamping an artery without damaging to the artery surrounding tissues will be calculated. The elastic governing equation of contact occurred between the tactile sensor placed on the first link of the robot and the surrounding tissues around the artery were developed. A finite element model is coupled with genetic algorithm optimization method so that the normal stress and displacements in contact surface of the robot and artery's surrounding tissues would be minimized. Thus, reliability and accuracy of artificial tactile sensing method in artery cross-clamping will be demonstrated. Finally, the functional principles of the new tactile system capable of cross-clamping an artery during laparoscopic surgeries will be presented.

  11. Systematic Review of Retraction Devices for Laparoscopic Surgery.

    PubMed

    Vargas-Palacios, Armando; Hulme, Claire; Veale, Thomas; Downey, Candice L

    2016-02-01

    Retraction plays a vital role in optimizing the field of vision in minimal-access surgery. As such, a number of devices have been marketed to aid the surgeon in laparoscopic retraction. This systematic review explores the advantages and disadvantages of the different instruments in order to aid surgeons and their institutions in selecting the appropriate device. Primary outcome measures include operation time, length of stay, use of staff, patient morbidity, ease of use, conversion rates to open surgery, and cost. Systematic literature searches were performed in MEDLINE, EMBASE, The Cochrane Library, Current Controlled Trials, and ClinicalTrials.gov. The search strategy focused on studies testing a retraction device. The selection process was based on a predefined set of inclusion and exclusion criteria. Data were then extracted and analyzed. Out of 1360 papers initially retrieved, 12 articles were selected for data extraction and analysis. A total of 10 instruments or techniques were tested. Devices included the Nathanson's liver retractor, liver suspension tape, the V-List technique, a silicone disk with or without a snake retractor, the Endoloop, the Endograb, a magnetic retractor, the VaroLift, a laparoscope holder, and a retraction sponge. None of the instruments reported were associated with increased morbidity. No studies found increased rates of conversion to open surgery. All articles reported that the tested instruments might spare the use of an assistant during the procedure. It was not possible to determine the impact on length of stay or operation time. Each analyzed device facilitates retraction, providing a good field of view while allowing reduced staff numbers and minimal patient morbidity. Due to economic and environmental advantages, reusable devices may be preferable to disposable instruments, although the choice must be primarily based on clinical judgement. © The Author(s) 2015.

  12. Indocyanine Green Fluorescence for Free-Flap Perfusion Imaging Revisited: Advanced Decision Making by Virtual Perfusion Reality in Visionsense Fusion Imaging Angiography.

    PubMed

    Bigdeli, Amir Khosrow; Gazyakan, Emre; Schmidt, Volker Juergen; Hernekamp, Frederick Jochen; Harhaus, Leila; Henzler, Thomas; Kremer, Thomas; Kneser, Ulrich; Hirche, Christoph

    2016-06-01

    Near-infrared indocyanine green video angiography (ICG-NIR-VA) has been introduced for free-flap surgery and may provide intraoperative flap designing as well as postoperative monitoring. Nevertheless, the technique has not been established in clinical routine because of controversy over benefits. Improved technical features of the novel Visionsense ICG-NIR-VA surgery system are promising to revisit the field of application. It features a unique real-time fusion image of simultaneous NIR and white light visualization, with highlighted perfusion, including a color-coded perfusion flow scale for optimized anatomical understanding. In a feasibility study, the Visionsense ICG-NIR-VA system was applied during 10 free-flap surgeries in 8 patients at our center. Indications included anterior lateral thigh (ALT) flap (n = 4), latissimus dorsi muscle flap (n = 1), tensor fascia latae flap (n = 1), and two bilateral deep inferior epigastric artery perforator flaps (n = 4). The system was used intraoperatively and postoperatively to investigate its impact on surgical decision making and to observe perfusion patterns correlated to clinical monitoring. Visionsense ICG-NIR-VA aided assessing free-flap design and perfusion patterns in all cases and correlated with clinical observations. Additional interventions were performed in 2 cases (22%). One venous anastomosis was revised, and 1 flap was redesigned. Indicated by ICG-NIR-VA, 1 ALT flap developed partial flap necrosis (11%). The Visionsense ICG-NIR-VA system allowed a virtual view of flap perfusion anatomy by fusion imaging in real-time. The system improved decision making for flap design and surgical decisions. Clinical and ICG-NIR-VA parameters correlated. Its future implementation may aid in improving outcomes for free-flap surgery, but additional experience is needed to define its final role. © The Author(s) 2015.

  13. The use of methods of structural optimization at the stage of designing high-rise buildings with steel construction

    NASA Astrophysics Data System (ADS)

    Vasilkin, Andrey

    2018-03-01

    The more designing solutions at the search stage for design for high-rise buildings can be synthesized by the engineer, the more likely that the final adopted version will be the most efficient and economical. However, in modern market conditions, taking into account the complexity and responsibility of high-rise buildings the designer does not have the necessary time to develop, analyze and compare any significant number of options. To solve this problem, it is expedient to use the high potential of computer-aided designing. To implement automated search for design solutions, it is proposed to develop the computing facilities, the application of which will significantly increase the productivity of the designer and reduce the complexity of designing. Methods of structural and parametric optimization have been adopted as the basis of the computing facilities. Their efficiency in the synthesis of design solutions is shown, also the schemes, that illustrate and explain the introduction of structural optimization in the traditional design of steel frames, are constructed. To solve the problem of synthesis and comparison of design solutions for steel frames, it is proposed to develop the computing facilities that significantly reduces the complexity of search designing and based on the use of methods of structural and parametric optimization.

  14. Computer-aided communication satellite system analysis and optimization

    NASA Technical Reports Server (NTRS)

    Stagl, T. W.; Morgan, N. H.; Morley, R. E.; Singh, J. P.

    1973-01-01

    The capabilities and limitations of the various published computer programs for fixed/broadcast communication satellite system synthesis and optimization are discussed. A satellite Telecommunication analysis and Modeling Program (STAMP) for costing and sensitivity analysis work in application of communication satellites to educational development is given. The modifications made to STAMP include: extension of the six beam capability to eight; addition of generation of multiple beams from a single reflector system with an array of feeds; an improved system costing to reflect the time value of money, growth in earth terminal population with time, and to account for various measures of system reliability; inclusion of a model for scintillation at microwave frequencies in the communication link loss model; and, an updated technological environment.

  15. High speed civil transport: Sonic boom softening and aerodynamic optimization

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1994-01-01

    An improvement in sonic boom extrapolation techniques has been the desire of aerospace designers for years. This is because the linear acoustic theory developed in the 60's is incapable of predicting the nonlinear phenomenon of shock wave propagation. On the other hand, CFD techniques are too computationally expensive to employ on sonic boom problems. Therefore, this research focused on the development of a fast and accurate sonic boom extrapolation method that solves the Euler equations for axisymmetric flow. This new technique has brought the sonic boom extrapolation techniques up to the standards of the 90's. Parallel computing is a fast growing subject in the field of computer science because of its promising speed. A new optimizer (IIOWA) for the parallel computing environment has been developed and tested for aerodynamic drag minimization. This is a promising method for CFD optimization making use of the computational resources of workstations, which unlike supercomputers can spend most of their time idle. Finally, the OAW concept is attractive because of its overall theoretical performance. In order to fully understand the concept, a wind-tunnel model was built and is currently being tested at NASA Ames Research Center. The CFD calculations performed under this cooperative agreement helped to identify the problem of the flow separation, and also aided the design by optimizing the wing deflection for roll trim.

  16. Anesthesia and fast-track in video-assisted thoracic surgery (VATS): from evidence to practice.

    PubMed

    Umari, Marzia; Falini, Stefano; Segat, Matteo; Zuliani, Michele; Crisman, Marco; Comuzzi, Lucia; Pagos, Francesco; Lovadina, Stefano; Lucangelo, Umberto

    2018-03-01

    In thoracic surgery, the introduction of video-assisted thoracoscopic techniques has allowed the development of fast-track protocols, with shorter hospital lengths of stay and improved outcomes. The perioperative management needs to be optimized accordingly, with the goal of reducing postoperative complications and speeding recovery times. Premedication performed in the operative room should be wisely administered because often linked to late discharge from the post-anesthesia care unit (PACU). Inhalatory anesthesia, when possible, should be preferred based on protective effects on postoperative lung inflammation. Deep neuromuscular blockade should be pursued and carefully monitored, and an appropriate reversal administered before extubation. Management of one-lung ventilation (OLV) needs to be optimized to prevent not only intraoperative hypoxemia but also postoperative acute lung injury (ALI): protective ventilation strategies are therefore to be implemented. Locoregional techniques should be favored over intravenous analgesia: the thoracic epidural, the paravertebral block (PVB), the intercostal nerve block (ICNB), and the serratus anterior plane block (SAPB) are thoroughly reviewed and the most common dosages are reported. Fluid therapy needs to be administered critically, to avoid both overload and cardiovascular compromisation. All these practices are analyzed singularly with the aid of the most recent evidences aimed at the best patient care. Finally, a few notes on some of the latest trends in research are presented, such as non-intubated video-assisted thoracoscopic surgery (VATS) and intravenous lidocaine.

  17. Anesthesia and fast-track in video-assisted thoracic surgery (VATS): from evidence to practice

    PubMed Central

    Falini, Stefano; Segat, Matteo; Zuliani, Michele; Crisman, Marco; Comuzzi, Lucia; Pagos, Francesco; Lovadina, Stefano; Lucangelo, Umberto

    2018-01-01

    In thoracic surgery, the introduction of video-assisted thoracoscopic techniques has allowed the development of fast-track protocols, with shorter hospital lengths of stay and improved outcomes. The perioperative management needs to be optimized accordingly, with the goal of reducing postoperative complications and speeding recovery times. Premedication performed in the operative room should be wisely administered because often linked to late discharge from the post-anesthesia care unit (PACU). Inhalatory anesthesia, when possible, should be preferred based on protective effects on postoperative lung inflammation. Deep neuromuscular blockade should be pursued and carefully monitored, and an appropriate reversal administered before extubation. Management of one-lung ventilation (OLV) needs to be optimized to prevent not only intraoperative hypoxemia but also postoperative acute lung injury (ALI): protective ventilation strategies are therefore to be implemented. Locoregional techniques should be favored over intravenous analgesia: the thoracic epidural, the paravertebral block (PVB), the intercostal nerve block (ICNB), and the serratus anterior plane block (SAPB) are thoroughly reviewed and the most common dosages are reported. Fluid therapy needs to be administered critically, to avoid both overload and cardiovascular compromisation. All these practices are analyzed singularly with the aid of the most recent evidences aimed at the best patient care. Finally, a few notes on some of the latest trends in research are presented, such as non-intubated video-assisted thoracoscopic surgery (VATS) and intravenous lidocaine. PMID:29629201

  18. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  19. Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography

    PubMed Central

    Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji

    2013-01-01

    OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume < −950 HU of each lobe using (i) the slice-by-slice method (reference standard), (ii) number of segments method, and (iii) semi-automatic and (iv) automatic computer-aided diagnosis. We determined Pearson correlation coefficients between the reference standard and the three other methods for lobar volumes and emphysematous lobar volumes. We also compared the relative errors among the three measurement methods. RESULTS Both semi-automatic and automatic computer-aided diagnosis results were more strongly correlated with the reference standard than the number of segments method. The correlation coefficients for automatic computer-aided diagnosis were slightly lower than those for semi-automatic computer-aided diagnosis because there was one outlier among 50 cases (2%) in the right upper lobe and two outliers among 50 cases (4%) in the other lobes. The number of segments method relative error was significantly greater than those for semi-automatic and automatic computer-aided diagnosis (P < 0.001). The computational time for automatic computer-aided diagnosis was 1/2 to 2/3 than that of semi-automatic computer-aided diagnosis. CONCLUSIONS A novel lobar volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer-aided diagnosis failed. PMID:23526418

  20. Congenital aural atresia.

    PubMed

    Abdel-Aziz, Mosaad

    2013-07-01

    Congenital aural atresia is a spectrum of ear deformities present at birth that involves some degree of failure of the development of the external auditory canal. This malformation may be associated with other congenital anomalies; it occurs as a result of abnormal development of the first and second branchial arches and the first branchial cleft and most often occurs sporadically, although the disease may be manifested in different syndromes. Congenital aural atresia is considered one of the most difficult and challenging surgeries for the otologic surgeon. The goals of atresia surgery are to restore functional hearing, preferably without the requirement of a hearing aid, and to reconstruct a patent, infection-free external auditory canal. The repair is usually done at the age of 6 years, so children with bilateral atresia may need hearing amplification in the first few weeks of life until the age at surgery. To optimize the surgical outcome, careful audiological and radiological evaluation of the patient should be performed preoperatively. Also, postoperative frequent packing and regular follow-up are mandatory to avoid restenosis and infection of the newly created canal. With careful intraoperative dissection and regular follow-up, complications of surgery can be avoided.

  1. Is a computer-assisted design and computer-assisted manufacturing method for mandibular reconstruction economically viable?

    PubMed

    Tarsitano, Achille; Battaglia, Salvatore; Crimi, Salvatore; Ciocca, Leonardo; Scotti, Roberto; Marchetti, Claudio

    2016-07-01

    The design and manufacture of patient-specific mandibular reconstruction plates, particularly in combination with cutting guides, has created many new opportunities for the planning and implementation of mandibular reconstruction. Although this surgical method is being used more widely and the outcomes appear to be improved, the question of the additional cost has to be discussed. To evaluate the cost generated by the management of this technology, we studied a cohort of patients treated for mandibular neoplasms. The population was divided into two groups of 20 patients each who were undergoing a 'traditional' freehand mandibular reconstruction or a computer-aided design/computer-aided manufacturing (CAD-CAM) mandibular reconstruction. Data concerning operation time, complications, and days of hospitalisation were used to evaluate costs related to the management of these patients. The mean operating time for the CAD-CAM group was 435 min, whereas that for the freehand group was 550.5 min. The total difference in terms of average time gain was 115.5 min. No microvascular complication occurred in the CAD-CAM group; two complications (10%) were observed in patients undergoing freehand reconstructions. The mean overall lengths of hospital stay were 13.8 days for the CAD-CAM group and 17 days for the freehand group. Finally, considering that the institutional cost per minute of theatre time is €30, the money saved as a result of the time gained was €3,450. This cost corresponds approximately to the total price of the CAD-CAM surgery. In conclusion, we believe that CAD-CAM technology for mandibular reconstruction will become a widely used reconstructive method and that its cost will be covered by gains in terms of surgical time, quality of reconstruction, and reduced complications. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Clinical evaluation of a confocal microendoscope system for imaging the ovary

    NASA Astrophysics Data System (ADS)

    Tanbakuchi, Anthony A.; Rouse, Andrew R.; Hatch, Kenneth D.; Sampliner, Richard E.; Udovich, Josh A.; Gmitro, Arthur F.

    2008-02-01

    We have developed a mobile confocal microendoscope system that provides live cellular imaging during surgery to aid in diagnosing microscopic abnormalities including cancer. We present initial clinical trial results using the device to image ovaries in-vivo using fluorescein and ex-vivo results using acridine orange. The imaging catheter has improved depth control and localized dye delivery mechanisms than previously presented. A manual control now provides a simple way for the surgeon to adjust and optimize imaging depth during the procedure while a tiny piezo valve in the imaging catheter controls the dye delivery.

  3. Human problem solving performance in a fault diagnosis task

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1978-01-01

    It is proposed that humans in automated systems will be asked to assume the role of troubleshooter or problem solver and that the problems which they will be asked to solve in such systems will not be amenable to rote solution. The design of visual displays for problem solving in such situations is considered, and the results of two experimental investigations of human problem solving performance in the diagnosis of faults in graphically displayed network problems are discussed. The effects of problem size, forced-pacing, computer aiding, and training are considered. Results indicate that human performance deviates from optimality as problem size increases. Forced-pacing appears to cause the human to adopt fairly brute force strategies, as compared to those adopted in self-paced situations. Computer aiding substantially lessens the number of mistaken diagnoses by performing the bookkeeping portions of the task.

  4. DNA-binding specificity prediction with FoldX.

    PubMed

    Nadra, Alejandro D; Serrano, Luis; Alibés, Andreu

    2011-01-01

    With the advent of Synthetic Biology, a field between basic science and applied engineering, new computational tools are needed to help scientists reach their goal, their design, optimizing resources. In this chapter, we present a simple and powerful method to either know the DNA specificity of a wild-type protein or design new specificities by using the protein design algorithm FoldX. The only basic requirement is having a good resolution structure of the complex. Protein-DNA interaction design may aid the development of new parts designed to be orthogonal, decoupled, and precise in its target. Further, it could help to fine-tune the systems in terms of specificity, discrimination, and binding constants. In the age of newly developed devices and invented systems, computer-aided engineering promises to be an invaluable tool. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting.

    PubMed

    Dung, Van Than; Tjahjowidodo, Tegoeh

    2017-01-01

    B-spline functions are widely used in many industrial applications such as computer graphic representations, computer aided design, computer aided manufacturing, computer numerical control, etc. Recently, there exist some demands, e.g. in reverse engineering (RE) area, to employ B-spline curves for non-trivial cases that include curves with discontinuous points, cusps or turning points from the sampled data. The most challenging task in these cases is in the identification of the number of knots and their respective locations in non-uniform space in the most efficient computational cost. This paper presents a new strategy for fitting any forms of curve by B-spline functions via local algorithm. A new two-step method for fast knot calculation is proposed. In the first step, the data is split using a bisecting method with predetermined allowable error to obtain coarse knots. Secondly, the knots are optimized, for both locations and continuity levels, by employing a non-linear least squares technique. The B-spline function is, therefore, obtained by solving the ordinary least squares problem. The performance of the proposed method is validated by using various numerical experimental data, with and without simulated noise, which were generated by a B-spline function and deterministic parametric functions. This paper also discusses the benchmarking of the proposed method to the existing methods in literature. The proposed method is shown to be able to reconstruct B-spline functions from sampled data within acceptable tolerance. It is also shown that, the proposed method can be applied for fitting any types of curves ranging from smooth ones to discontinuous ones. In addition, the method does not require excessive computational cost, which allows it to be used in automatic reverse engineering applications.

  6. Modelling decision-making by pilots

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.

    1993-01-01

    Our scientific goal is to understand the process of human decision-making. Specifically, a model of human decision-making in piloting modern commercial aircraft which prescribes optimal behavior, and against which we can measure human sub-optimality is sought. This model should help us understand such diverse aspects of piloting as strategic decision-making, and the implicit decisions involved in attention allocation. Our engineering goal is to provide design specifications for (1) better computer-based decision-aids, and (2) better training programs for the human pilot (or human decision-maker, DM).

  7. An interactive system for computer-aided diagnosis of breast masses.

    PubMed

    Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin

    2012-10-01

    Although mammography is the only clinically accepted imaging modality for screening the general population to detect breast cancer, interpreting mammograms is difficult with lower sensitivity and specificity. To provide radiologists "a visual aid" in interpreting mammograms, we developed and tested an interactive system for computer-aided detection and diagnosis (CAD) of mass-like cancers. Using this system, an observer can view CAD-cued mass regions depicted on one image and then query any suspicious regions (either cued or not cued by CAD). CAD scheme automatically segments the suspicious region or accepts manually defined region and computes a set of image features. Using content-based image retrieval (CBIR) algorithm, CAD searches for a set of reference images depicting "abnormalities" similar to the queried region. Based on image retrieval results and a decision algorithm, a classification score is assigned to the queried region. In this study, a reference database with 1,800 malignant mass regions and 1,800 benign and CAD-generated false-positive regions was used. A modified CBIR algorithm with a new function of stretching the attributes in the multi-dimensional space and decision scheme was optimized using a genetic algorithm. Using a leave-one-out testing method to classify suspicious mass regions, we compared the classification performance using two CBIR algorithms with either equally weighted or optimally stretched attributes. Using the modified CBIR algorithm, the area under receiver operating characteristic curve was significantly increased from 0.865 ± 0.006 to 0.897 ± 0.005 (p < 0.001). This study demonstrated the feasibility of developing an interactive CAD system with a large reference database and achieving improved performance.

  8. Computer-Aided Drug Discovery Approaches against the Tropical Infectious Diseases Malaria, Tuberculosis, Trypanosomiasis, and Leishmaniasis.

    PubMed

    Njogu, Peter M; Guantai, Eric M; Pavadai, Elumalai; Chibale, Kelly

    2016-01-08

    Despite the tremendous improvement in overall global health heralded by the adoption of the Millennium Declaration in the year 2000, tropical infections remain a major health problem in the developing world. Recent estimates indicate that the major tropical infectious diseases, namely, malaria, tuberculosis, trypanosomiasis, and leishmaniasis, account for more than 2.2 million deaths and a loss of approximately 85 million disability-adjusted life years annually. The crucial role of chemotherapy in curtailing the deleterious health and economic impacts of these infections has invigorated the search for new drugs against tropical infectious diseases. The research efforts have involved increased application of computational technologies in mainstream drug discovery programs at the hit identification, hit-to-lead, and lead optimization stages. This review highlights various computer-aided drug discovery approaches that have been utilized in efforts to identify novel antimalarial, antitubercular, antitrypanosomal, and antileishmanial agents. The focus is largely on developments over the past 5 years (2010-2014).

  9. Scout: high-performance heterogeneous computing made simple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablin, James; Mc Cormick, Patrick; Herlihy, Maurice

    2011-01-26

    Researchers must often write their own simulation and analysis software. During this process they simultaneously confront both computational and scientific problems. Current strategies for aiding the generation of performance-oriented programs do not abstract the software development from the science. Furthermore, the problem is becoming increasingly complex and pressing with the continued development of many-core and heterogeneous (CPU-GPU) architectures. To acbieve high performance, scientists must expertly navigate both software and hardware. Co-design between computer scientists and research scientists can alleviate but not solve this problem. The science community requires better tools for developing, optimizing, and future-proofing codes, allowing scientists to focusmore » on their research while still achieving high computational performance. Scout is a parallel programming language and extensible compiler framework targeting heterogeneous architectures. It provides the abstraction required to buffer scientists from the constantly-shifting details of hardware while still realizing higb-performance by encapsulating software and hardware optimization within a compiler framework.« less

  10. Factors associated with operative treatment of enthesopathy of the extensor carpi radialis brevis origin.

    PubMed

    Kachooei, Amir Reza; Talaei-Khoei, Mojtaba; Faghfouri, Aram; Ring, David

    2016-04-01

    This study investigated the factors associated with variation in the rate of surgery for enthesopathy of the extensor carpi radialis brevis (eECRB). We used a large database from 3 academic hospitals including 5964 patients with the diagnosis of eECRB from 2001 to 2007. Of those, 244 patients (4%) had surgery for eECRB. We used the date of the first encounter as the date of diagnosis. We also recorded the date of the first cortisone injection and surgery for eECRB. We used Cox multivariable regression analysis to find factors associated with surgery. We considered the following explanatory factors: age, sex, race, diabetes, a diagnosis of major depression, a diagnosis of an anxiety disorder, hospital, provider (surgeon vs. nonsurgeon), corticosteroid injection, and the time from diagnosis to the first cortisone injection. The hazard ratio of having surgery was 12-times greater if the initial provider was an orthopedic surgeon rather a nonsurgeon and 1.7-times greater at 1 of the 2 hospitals. The rate of surgery varied substantially, ranging from 0% to 22%. Corticosteroid injection delayed the time to surgery but was ultimately associated with a higher rate of surgery. The majority (86%) of surgeries were done within 1 year of the first documented office visit. It seems likely that an emphasis on the preferences and values of the patient rather than the surgeon would decrease the variation in surgery rates for eECRB observed in this study. Methods for optimizing the influence of patient preferences and values on decision making (eg, decision aids) merit additional study. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. Early Re-Do Surgery for Glioblastoma Is a Feasible and Safe Strategy to Achieve Complete Resection of Enhancing Tumor

    PubMed Central

    Schucht, Philippe; Murek, Michael; Jilch, Astrid; Seidel, Kathleen; Hewer, Ekkehard; Wiest, Roland; Raabe, Andreas; Beck, Jürgen

    2013-01-01

    Background Complete resection of enhancing tumor as assessed by early (<72 hours) postoperative MRI is regarded as the optimal result in glioblastoma surgery. As yet, there is no consensus on standard procedure if post-operative imaging reveals unintended tumor remnants. Objective The current study evaluated the feasibility and safety of an early re-do surgery aimed at completing resections with the aid of 5-ALA fluorescence and neuronavigation after detection of enhancing tumor remnants on post-operative MRI. Methods From October 2008 to October 2012 a single center institutional protocol offered a second surgery within one week to patients with unintentional incomplete glioblastoma resection. We report on the feasibility of the use 5-ALA fluorescence guidance, the extent of resection (EOR) rates and complications of early re-do surgery. Results Nine of 151 patients (6%) with glioblastoma resections had an unintentional tumor remnant with a volume >0.175 cm3. 5-ALA guided re-do surgery completed the resection (CRET) in all patients without causing neurological deficits, infections or other complications. Patients who underwent a re-do surgery remained hospitalized between surgeries, resulting in a mean length of hospital stay of 11 days (range 7-15), compared to 9 days for single surgery (range 3-23; p=0.147). Conclusion Our early re-do protocol led to complete resection of all enhancing tumor in all cases without any new neurological deficits and thus provides a similar oncological result as intraoperative MRI (iMRI). The repeated use of 5-ALA induced fluorescence, used for identification of small remnants, remains highly sensitive and specific in the setting of re-do surgery. Early re-do surgery is a feasible and safe strategy to complete unintended subtotal resections. PMID:24348904

  12. Functional evaluation of a CAD/CAM prosthesis for immediate defect repair after total maxillectomy: a case series of 18 patients with maxillary sinus cancer.

    PubMed

    Jiang, Fei-Fei; Hou, Yan; Lu, Li; Ding, Xiao-Xu; Li, Wei; Yan, Ai-Hui

    2015-01-01

    To evaluate the facial profiles and functional recovery of 18 patients treated by a computer-aided designed/manufactured hollow obturator prosthesis (CAD/CAM prosthesis) after total maxillectomy for malignant maxillary sinus tumor. A retrospective observational study was performed to evaluate the facial profiles and functional recovery of 18 patients with T3-4a N0 M0 maxillary sinus cancer, who were treated by total maxillectomy and simultaneous implantation of a computer-aided designed/manufactured hollow obturator prosthesis (CAD/CAM prosthesis). Follow-ups were performed 1, 3, 6, and 12 months after surgery. Facial measurements, speech intelligibility, and chewing and swallowing functions were examined. Thirteen patients converted to a permanent prosthesis 6 months after surgery. Comparisons were made between patients with and without the CAD/CAM or permanent prosthesis at various times using SPSS13.0 statistical software (SPSS Inc., Chicago, IL, USA). Speech intelligibility, facial depression, and eyeball prolapse results showed improvements with prosthesis use at 1, 3, and 6 months after surgery (p < 0.05). Swallowing function improved from level V to level II-IV with prosthesis use at 1, 3, and 6 months, and reached level I or II with permanent prosthesis use at 12 months after surgery. Simultaneous CAD/CAM prosthesis implantation recovered the facial profile, enhanced the speaking, swallowing, and chewing functions, and improved the quality of life of patients. Tumor recurrence can be detected by direct observation of the postoperative maxillary cavity. Therefore, this operation is recommended for simultaneous excision repair and functional reconstruction after total maxillectomy. This surgical treatment of maxillary sinus cancer is applied rarely in China, but it has a good effect based on our observation. Simultaneous CAD/CAM prosthesis implantation after total maxillectomy can recover the facial profile, enhance the speaking, swallowing, and chewing functions, and improve the quality of life of patients. Tumor recurrence can be detected by direct observation of the postoperative maxillary cavity. This technique avoids the need for dental implants because the bottom part of the prosthesis contains a palatal plate with dentures. © 2014 Wiley Periodicals, Inc.

  13. Use of three-dimensional, CAD/CAM-assisted, virtual surgical simulation and planning in the pediatric craniofacial population.

    PubMed

    Gray, Rachel; Gougoutas, Alexander; Nguyen, Vinh; Taylor, Jesse; Bastidas, Nicholas

    2017-06-01

    Virtual Surgical Planning (VSP) and computer-aided design/computer-aided manufacturing (CAD/CAM) have recently helped improve efficiency and accuracy in many different craniofacial surgeries. Research has mainly focused on the use in the adult population with the exception of the use for mandibular distractions and cranial vault remodeling in the pediatric population. This study aims to elucidate the role of VSP and CAD/CAM in complex pediatric craniofacial cases by exploring its use in the correction of midface hypoplasia, orbital dystopia, mandibular reconstruction, and posterior cranial vault expansion. A retrospective analysis of thirteen patients who underwent 3d, CAD/CAM- assisted preoperative surgical planning between 2012 and 2016 was performed. All CAD/CAM assisted surgical planning was done in conjunction with a third party vendor (either 3D Systems or Materialise). Cutting and positioning guides as well as models were produced based on the virtual plan. Surgeries included free fibula mandible reconstruction (n = 4), lefort I osteotomy and distraction (n = 2), lefort II osteotomy with monobloc distraction (n = 1), expansion of the posterior vault for correction of chiari malformation (n = 3), and secondary orbital and midface reconstruction for facial trauma (n = 3). The patient's age, diagnosis, previous surgeries, length of operating time, complications, and post-surgery satisfaction were determined. In all cases we found presurgical planning was helpful to improve accuracy and significantly decrease intra-operative time. In cases where distraction was used, the planned and actual vectors were found to be accurate with excellent clinical outcomes. There were no complications except for one patient who experienced a wound infection post-operatively which did not alter the ultimate reconstruction. All patients experienced high satisfaction with their outcomes and excellent subjective aesthetic results were achieved. Preoperative planning using CAD/CAM and VSP allows for safe and precise craniofacial reconstruction in complex pediatric cases with a reduction of operative time. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Stereolithographic Surgical Template: A Review

    PubMed Central

    Dandekeri, Shilpa Sudesh; Sowmya, M.K.; Bhandary, Shruthi

    2013-01-01

    Implant placement has become a routine modality of dental care.Improvements in surgical reconstructive methods as well as increased prosthetic demands,require a highly accurate diagnosis, planning and placement. Recently,computer-aided design and manufacturing have made it possible to use data from computerised tomography to not only plan implant rehabilitation,but also transfer this information to the surgery.A review on one of this technique called Stereolithography is presented in this article.It permits graphic and complex 3D implant placement and fabrication of stereolithographic surgical templates. Also offers many significant benefits over traditional procedures. PMID:24179955

  15. Computer-Aided Lead Optimization: Improved Small-Molecule Inhibitor of the Zinc Endopeptidase of Botulinum Neurotoxin Serotype A

    DTIC Science & Technology

    2007-08-01

    doi:10.1371/journal.pone.0000761.s004 (1.33 MB TIF) ACKNOWLEDGMENTS The authors thank Steve Whiting and Seth Swaii for their assistance in preparing...clinical and epidemiologic review. Ann Intern Med 129: 221–228. 2. Kessler KR, Benecke R (1997) Botulinum toxin—from poison to remedy. Neurotoxicology 18

  16. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  17. Effects of viewing an evidence-based video decision aid on patients' treatment preferences for spine surgery.

    PubMed

    Lurie, Jon D; Spratt, Kevin F; Blood, Emily A; Tosteson, Tor D; Tosteson, Anna N A; Weinstein, James N

    2011-08-15

    Secondary analysis within a large clinical trial. To evaluate the changes in treatment preference before and after watching a video decision aid as part of an informed consent process. A randomized trial with a similar decision aid in herniated disc patients had shown decreased rate of surgery in the video group, but the effect of the video on expressed preferences is not known. Subjects enrolling in the Spine Patient Outcomes Research Trial (SPORT) with intervertebral disc herniation, spinal stenosis, or degenerative spondylolisthesis at 13 multidisciplinary spine centers across the United States were given an evidence-based videotape decision aid viewed prior to enrollment as part of informed consent. Of the 2505 patients, 86% (n = 2151) watched the video and 14% (n = 354) did not. Watchers shifted their preference more often than nonwatchers (37.9% vs. 20.8%, P < 0.0001) and more often demonstrated a strengthened preference (26.2% vs. 11.1%, P < 0.0001). Among the 806 patients whose preference shifted after watching the video, 55% shifted toward surgery (P = 0.003). Among the 617 who started with no preference, after the video 27% preferred nonoperative care, 22% preferred surgery, and 51% remained uncertain. After watching the evidence-based patient decision aid (video) used in SPORT, patients with specific lumbar spine disorders formed and/or strengthened their treatment preferences in a balanced way that did not appear biased toward or away from surgery.

  18. Broad-search algorithms for finding triple-and quadruple-satellite-aided captures at Jupiter from 2020 to 2080

    NASA Astrophysics Data System (ADS)

    Lynam, Alfred E.

    2015-04-01

    Multiple-satellite-aided capture is a -efficient technique for capturing a spacecraft into orbit at Jupiter. However, finding the times when the Galilean moons of Jupiter align such that three or four of them can be encountered in a single pass is difficult using standard astrodynamics algorithms such as Lambert's problem. In this paper, we present simple but powerful techniques that simplify the dynamics and geometry of the Galilean satellites so that many of these triple- and quadruple-satellite-aided capture sequences can be found quickly over an extended 60-year time period from 2020 to 2080. The techniques find many low-fidelity trajectories that could be used as initial guesses for future high-fidelity optimization. Results indicate the existence of approximately 3,100 unique triple-satellite-aided capture trajectories and 6 unique quadruple-satellite-aided capture trajectories during the 60-year time period. The entire search takes less than one minute of computational time.

  19. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  20. Design of a prototype flow microreactor for synthetic biology in vitro.

    PubMed

    Boehm, Christian R; Freemont, Paul S; Ces, Oscar

    2013-09-07

    As a reference platform for in vitro synthetic biology, we have developed a prototype flow microreactor for enzymatic biosynthesis. We report the design, implementation, and computer-aided optimisation of a three-step model pathway within a microfluidic reactor. A packed bed format was shown to be optimal for enzyme compartmentalisation after experimental evaluation of several approaches. The specific substrate conversion efficiency could significantly be improved by an optimised parameter set obtained by computational modelling. Our microreactor design provides a platform to explore new in vitro synthetic biology solutions for industrial biosynthesis.

  1. Accuracy of a Computer-Aided Surgical Simulation (CASS) Protocol for Orthognathic Surgery: A Prospective Multicenter Study

    PubMed Central

    Hsu, Sam Sheng-Pin; Gateno, Jaime; Bell, R. Bryan; Hirsch, David L.; Markiewicz, Michael R.; Teichgraeber, John F.; Zhou, Xiaobo; Xia, James J.

    2012-01-01

    Purpose The purpose of this prospective multicenter study was to assess the accuracy of a computer-aided surgical simulation (CASS) protocol for orthognathic surgery. Materials and Methods The accuracy of the CASS protocol was assessed by comparing planned and postoperative outcomes of 65 consecutive patients enrolled from 3 centers. Computer-generated surgical splints were used for all patients. For the genioplasty, one center utilized computer-generated chin templates to reposition the chin segment only for patients with asymmetry. Standard intraoperative measurements were utilized without the chin templates for the remaining patients. The primary outcome measurements were linear and angular differences for the maxilla, mandible and chin when the planned and postoperative models were registered at the cranium. The secondary outcome measurements were: maxillary dental midline difference between the planned and postoperative positions; and linear and angular differences of the chin segment between the groups with and without the use of the template. The latter was measured when the planned and postoperative models were registered at mandibular body. Statistical analyses were performed, and the accuracy was reported using root mean square deviation (RMSD) and Bland and Altman's method for assessing measurement agreement. Results In the primary outcome measurements, there was no statistically significant difference among the 3 centers for the maxilla and mandible. The largest RMSD was 1.0mm and 1.5° for the maxilla, and 1.1mm and 1.8° for the mandible. For the chin, there was a statistically significant difference between the groups with and without the use of the chin template. The chin template group showed excellent accuracy with largest positional RMSD of 1.0mm and the largest orientational RSMD of 2.2°. However, larger variances were observed in the group not using the chin template. This was significant in anteroposterior and superoinferior directions, as in pitch and yaw orientations. In the secondary outcome measurements, the RMSD of maxillary dental midline positions was 0.9mm. When registered at the body of the mandible, the linear and angular differences of the chin segment between the groups with and without the use of the chin template were consistent with the results found in the primary outcome measurements. Conclusion Using the CASS protocol, the computerized plan can be accurately and consistently transferred to the patient to position the maxilla and mandible at the time of surgery. The computer-generated chin template provides more accuracy in repositioning the chin segment than the intraoperative measurements. PMID:22695016

  2. Shape Optimization of the Assisted Bi-directional Glenn surgery for stage-1 single ventricle palliation

    NASA Astrophysics Data System (ADS)

    Verma, Aekaansh; Shang, Jessica; Esmaily-Moghadam, Mahdi; Wong, Kwai; Marsden, Alison

    2016-11-01

    Babies born with a single functional ventricle typically undergo three open-heart surgeries starting as neonates. The first of these stages (BT shunt or Norwood) has the highest mortality rates of the three, approaching 30%. Proceeding directly to a stage-2 Glenn surgery has historically demonstrated inadequate pulmonary flow (PF) & high mortality. Recently, the Assisted Bi-directional Glenn (ABG) was proposed as a promising means to achieve a stable physiology by assisting the PF via an 'ejector pump' from the systemic circulation. We present preliminary parametrization and optimization results for the ABG geometry, with the goal of increasing PF. To limit excessive pressure increases in the Superior Vena Cava (SVC), the SVC pressure is included as a constraint. We use 3-D finite element flow simulations coupled with a single ventricle lumped parameter network to evaluate PF & the pressure constraint. We employ a derivative free optimization method- the Surrogate Management Framework, in conjunction with the OpenDIEL framework to simulate multiple simultaneous evaluations. Results show that nozzle diameter is the most important design parameter affecting ABG performance. The application of these results to patient specific situations will be discussed. This work was supported by an NSF CAREER award (OCI1150184) and by the XSEDE National Computing Resource.

  3. Optimizing computer-aided colonic polyp detection for CT colonography by evolving the Pareto front1

    PubMed Central

    Li, Jiang; Huang, Adam; Yao, Jack; Liu, Jiamin; Van Uitert, Robert L.; Petrick, Nicholas; Summers, Ronald M.

    2009-01-01

    A multiobjective genetic algorithm is designed to optimize a computer-aided detection (CAD) system for identifying colonic polyps. Colonic polyps appear as elliptical protrusions on the inner surface of the colon. Curvature-based features for colonic polyp detection have proved to be successful in several CT colonography (CTC) CAD systems. Our CTC CAD program uses a sequential classifier to form initial polyp detections on the colon surface. The classifier utilizes a set of thresholds on curvature-based features to cluster suspicious colon surface regions into polyp candidates. The thresholds were previously chosen experimentally by using feature histograms. The chosen thresholds were effective for detecting polyps sized 10 mm or larger in diameter. However, many medium-sized polyps, 6–9 mm in diameter, were missed in the initial detection procedure. In this paper, the task of finding optimal thresholds as a multiobjective optimization problem was formulated, and a genetic algorithm to solve it was utilized by evolving the Pareto front of the Pareto optimal set. The new CTC CAD system was tested on 792 patients. The sensitivities of the optimized system improved significantly, from 61.68% to 74.71% with an increase of 13.03% (95% CI [6.57%, 19.5%], p=7.78×10−5) for the size category of 6–9 mm polyps, from 65.02% to 77.4% with an increase of 12.38% (95% CI [6.23%, 18.53%], p=7.95×10−5) for polyps 6 mm or larger, and from 82.2% to 90.58% with an increase of 8.38% (95%CI [0.75%, 16%], p=0.03) for polyps 8 mm or larger at comparable false positive rates. The sensitivities of the optimized system are nearly equivalent to those of expert radiologists. PMID:19235388

  4. [Problems and challenges in the development of corneal refractive surgery].

    PubMed

    Wang, Y; Li, J

    2018-01-11

    Corneal refractive surgery, as one of the common visual correction methods, has been increasingly accepted in China. There are a large number of people in China who undergo the corneal refractive surgery due to the high incidence of myopia in the country. It is essential that the safest and most effective surgery should be used to correct refractive errors in the cases involved with relatively normal eyes and corneas. In recent years, corneal refractive surgery has been rapidly developing with new technologies and techniques emerging all the time, such as SMILE (small incision lenticule extraction) surgery, which has been extensively applied in China since five years ago when it was approved by FDA. However, little known are these new technologies and techniques, and the clinical and basic researches need further investigations by various approaches including histopathology and molecular biology, combined with mathematics, computer science, physics, chemistry and corneal biomechanics. To achieve minimal tissue damage and optimal clinical outcomes on visual quality by corneal refractive surgery requires the multidisciplinary partnerships of medical practitioners and researchers. (Chin J Ophthalmol, 2018, 54: 3-6) .

  5. Computational Intelligence‐Assisted Understanding of Nature‐Inspired Superhydrophobic Behavior

    PubMed Central

    Zhang, Xia; Ding, Bei; Dixon, Sebastian C.

    2017-01-01

    Abstract In recent years, state‐of‐the‐art computational modeling of physical and chemical systems has shown itself to be an invaluable resource in the prediction of the properties and behavior of functional materials. However, construction of a useful computational model for novel systems in both academic and industrial contexts often requires a great depth of physicochemical theory and/or a wealth of empirical data, and a shortage in the availability of either frustrates the modeling process. In this work, computational intelligence is instead used, including artificial neural networks and evolutionary computation, to enhance our understanding of nature‐inspired superhydrophobic behavior. The relationships between experimental parameters (water droplet volume, weight percentage of nanoparticles used in the synthesis of the polymer composite, and distance separating the superhydrophobic surface and the pendant water droplet in adhesive force measurements) and multiple objectives (water droplet contact angle, sliding angle, and adhesive force) are built and weighted. The obtained optimal parameters are consistent with the experimental observations. This new approach to materials modeling has great potential to be applied more generally to aid design, fabrication, and optimization for myriad functional materials. PMID:29375975

  6. Computational Intelligence-Assisted Understanding of Nature-Inspired Superhydrophobic Behavior.

    PubMed

    Zhang, Xia; Ding, Bei; Cheng, Ran; Dixon, Sebastian C; Lu, Yao

    2018-01-01

    In recent years, state-of-the-art computational modeling of physical and chemical systems has shown itself to be an invaluable resource in the prediction of the properties and behavior of functional materials. However, construction of a useful computational model for novel systems in both academic and industrial contexts often requires a great depth of physicochemical theory and/or a wealth of empirical data, and a shortage in the availability of either frustrates the modeling process. In this work, computational intelligence is instead used, including artificial neural networks and evolutionary computation, to enhance our understanding of nature-inspired superhydrophobic behavior. The relationships between experimental parameters (water droplet volume, weight percentage of nanoparticles used in the synthesis of the polymer composite, and distance separating the superhydrophobic surface and the pendant water droplet in adhesive force measurements) and multiple objectives (water droplet contact angle, sliding angle, and adhesive force) are built and weighted. The obtained optimal parameters are consistent with the experimental observations. This new approach to materials modeling has great potential to be applied more generally to aid design, fabrication, and optimization for myriad functional materials.

  7. Interactive orbital proximity operations planning system instruction and training guide

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1994-01-01

    This guide instructs users in the operation of a Proximity Operations Planning System. This system uses an interactive graphical method for planning fuel-efficient rendezvous trajectories in the multi-spacecraft environment of the space station and allows the operator to compose a multi-burn transfer trajectory between orbit initial chaser and target trajectories. The available task time (window) of the mission is predetermined and the maneuver is subject to various operational constraints, such as departure, arrival, spatial, plume impingement, and en route passage constraints. The maneuvers are described in terms of the relative motion experienced in a space station centered coordinate system. Both in-orbital plane as well as out-of-orbital plane maneuvering is considered. A number of visual optimization aids are used for assisting the operator in reaching fuel-efficient solutions. These optimization aids are based on the Primer Vector theory. The visual feedback of trajectory shapes, operational constraints, and optimization functions, provided by user-transparent and continuously active background computations, allows the operator to make fast, iterative design changes that rapidly converge to fuel-efficient solutions. The planning tool is an example of operator-assisted optimization of nonlinear cost functions.

  8. Phased array antenna matching: Simulation and optimization of a planar phased array of circular waveguide elements

    NASA Technical Reports Server (NTRS)

    Dudgeon, J. E.

    1972-01-01

    A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.

  9. Application of Adjoint Methodology in Various Aspects of Sonic Boom Design

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram K.

    2014-01-01

    One of the advances in computational design has been the development of adjoint methods allowing efficient calculation of sensitivities in gradient-based shape optimization. This paper discusses two new applications of adjoint methodology that have been developed to aid in sonic boom mitigation exercises. In the first, equivalent area targets are generated using adjoint sensitivities of selected boom metrics. These targets may then be used to drive the vehicle shape during optimization. The second application is the computation of adjoint sensitivities of boom metrics on the ground with respect to parameters such as flight conditions, propagation sampling rate, and selected inputs to the propagation algorithms. These sensitivities enable the designer to make more informed selections of flight conditions at which the chosen cost functionals are less sensitive.

  10. Information Systems for NASA's Aeronautics and Space Enterprises

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1998-01-01

    The aerospace industry is being challenged to reduce costs and development time as well as utilize new technologies to improve product performance. Information technology (IT) is the key to providing revolutionary solutions to the challenges posed by the increasing complexity of NASA's aeronautics and space missions and the sophisticated nature of the systems that enable them. The NASA Ames vision is to develop technologies enabling the information age, expanding the frontiers of knowledge for aeronautics and space, improving America's competitive position, and inspiring future generations. Ames' missions to accomplish that vision include: 1) performing research to support the American aviation community through the unique integration of computation, experimentation, simulation and flight testing, 2) studying the health of our planet, understanding living systems in space and the origins of the universe, developing technologies for space flight, and 3) to research, develop and deliver information technologies and applications. Information technology may be defined as the use of advance computing systems to generate data, analyze data, transform data into knowledge and to use as an aid in the decision-making process. The knowledge from transformed data can be displayed in visual, virtual and multimedia environments. The decision-making process can be fully autonomous or aided by a cognitive processes, i.e., computational aids designed to leverage human capacities. IT Systems can learn as they go, developing the capability to make decisions or aid the decision making process on the basis of experiences gained using limited data inputs. In the future, information systems will be used to aid space mission synthesis, virtual aerospace system design, aid damaged aircraft during landing, perform robotic surgery, and monitor the health and status of spacecraft and planetary probes. NASA Ames through the Center of Excellence for Information Technology Office is leading the effort in pursuit of revolutionary, IT-based approaches to satisfying NASA's aeronautics and space requirements. The objective of the effort is to incorporate information technologies within each of the Agency's four Enterprises, i.e., Aeronautics and Space Transportation Technology, Earth, Science, Human Exploration and Development of Space and Space Sciences. The end results of these efforts for Enterprise programs and projects should be reduced cost, enhanced mission capability and expedited mission completion.

  11. [Contribution of computer-aided design for the conception of custom-made implants in Pectus Excavatum surgical treatment. Experience of the Nantes plastic surgery unit].

    PubMed

    Tilliet Le Dentu, H; Lancien, U; Sellal, O; Duteille, F; Perrot, P

    2018-02-01

    Pectus excavatum is the most common congenital chest malformation and is a common reason for consultation in plastic surgery. Our attitude is most often a filling of the depression with a custom-made silicone prosthesis. The objective of this work was to evaluate the interest of computer-aided design (CAD) of implants compared to the conventional plaster molds method. We have collected all the cases of custom-made silicone implants to treat funnel chests in our plastic surgery department. The quality of the results was evaluated by the patient, and in a blind manner by the surgical team using photographs and standardized surveys. The pre-operative delays, the operating time and length of hospital stays, the number of surgical recoveries, and the post-operative surgical outcomes were recorded. Between 1990 and 2016, we designed 29 silicone thoracic implants in our department. Before 2012, implants were made from plaster chest molds (n=13). After this date, implants were designed by CAD (n=16). Patients rated their results as "good" or "excellent" in 77% and 86% of cases respectively in the plaster and CAD groups. The surgical team's ratings for CAD implant reconstructions were better than in the plaster group: 8.17 versus 6.96 (P=0.001). CAD implants were significantly less detectable than the plaster group implants. The operating time was reduced in the CAO group: 60.2 compared to 74.7minutes in the plaster group (P=0.04), as was the length of hospitalization: 3.5 versus 5.3 days (P=0.01). There were no significant differences between the two groups in terms of post-operative complications. The management of pectus excavatum by a custom-made silicone implant is a minimally invasive method that provides good cosmetic results. The design of these implants is facilitated and qualitatively improved by CAD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. CONFERENCE Proceedings of the computer Aided System Design and Simulation (50th) Held in Cesme/Ismir, Turkey on 22-25 May 1990 (Systeme de Conception Aide par Ordinateur et Simulation)

    DTIC Science & Technology

    1990-05-01

    vital problem. During flight conditions a sensor, or a combination of sensors might undergo a failure, causing the loss of sensor signals that are...by solving the optimization problem max I k - k I(Z 00 (55) d(zk) e n V~ l where k denotes the nominal sensor gains and I1.11 denotes the weighted I...the Weapon System. Parameters like volume and weight have to be approximately defined at the begining of this phase. It is equally important to obtain

  13. Use of computer-assisted design and manufacturing to localize dural venous sinuses during reconstructive surgery for craniosynostosis.

    PubMed

    Iyer, Rajiv R; Wu, Adela; Macmillan, Alexandra; Musavi, Leila; Cho, Regina; Lopez, Joseph; Jallo, George I; Dorafshar, Amir H; Ahn, Edward S

    2018-01-01

    Cranial vault remodeling surgery for craniosynostosis carries the potential risk of dural venous sinus injury given the extensive bony exposure. Identification of the dural venous sinuses can be challenging in patients with craniosynostosis given the lack of accurate surface-localizing landmarks. Computer-aided design and manufacturing (CAD/CAM) has allowed surgeons to pre-operatively plan these complex procedures in an effort to increase reconstructive efficiency. An added benefit of this technology is the ability to intraoperatively map the dural venous sinuses based on pre-operative imaging. We utilized CAD/CAM technology to intraoperatively map the dural venous sinuses for patients undergoing reconstructive surgery for craniosynostosis in an effort to prevent sinus injury, increase operative efficiency, and enhance patient safety. Here, we describe our experience utilizing this intraoperative technology in pediatric patients with craniosynostosis. We retrospectively reviewed the charts of children undergoing reconstructive surgery for craniosynostosis using CAD/CAM surgical planning guides at our institution between 2012 and 2016. Data collected included the following: age, gender, type of craniosynostosis, estimated blood loss, sagittal sinus deviation from the sagittal suture, peri-operative outcomes, and hospital length of stay. Thirty-two patients underwent reconstructive cranial surgery for craniosynostosis, with a median age of 11 months (range, 7-160). Types of synostosis included metopic (6), unicoronal (6), sagittal (15), lambdoid (1), and multiple suture (4). Sagittal sinus deviation from the sagittal suture was maximal in unicoronal synostosis patients (10.2 ± 0.9 mm). All patients tolerated surgery well, and there were no occurrences of sagittal sinus, transverse sinus, or torcular injury. The use of CAD/CAM technology allows for accurate intraoperative dural venous sinus localization during reconstructive surgery for craniosynostosis and enhances operative efficiency and surgeon confidence while minimizing the risk of patient morbidity.

  14. Efficiencies of joint non-local update moves in Monte Carlo simulations of coarse-grained polymers

    NASA Astrophysics Data System (ADS)

    Austin, Kieran S.; Marenz, Martin; Janke, Wolfhard

    2018-03-01

    In this study four update methods are compared in their performance in a Monte Carlo simulation of polymers in continuum space. The efficiencies of the update methods and combinations thereof are compared with the aid of the autocorrelation time with a fixed (optimal) acceptance ratio. Results are obtained for polymer lengths N = 14, 28 and 42 and temperatures below, at and above the collapse transition. In terms of autocorrelation, the optimal acceptance ratio is approximately 0.4. Furthermore, an overview of the step sizes of the update methods that correspond to this optimal acceptance ratio is given. This shall serve as a guide for future studies that rely on efficient computer simulations.

  15. Computer-aided Classification of Mammographic Masses Using Visually Sensitive Image Features

    PubMed Central

    Wang, Yunzhi; Aghaei, Faranak; Zarafshani, Ali; Qiu, Yuchen; Qian, Wei; Zheng, Bin

    2017-01-01

    Purpose To develop a new computer-aided diagnosis (CAD) scheme that computes visually sensitive image features routinely used by radiologists to develop a machine learning classifier and distinguish between the malignant and benign breast masses detected from digital mammograms. Methods An image dataset including 301 breast masses was retrospectively selected. From each segmented mass region, we computed image features that mimic five categories of visually sensitive features routinely used by radiologists in reading mammograms. We then selected five optimal features in the five feature categories and applied logistic regression models for classification. A new CAD interface was also designed to show lesion segmentation, computed feature values and classification score. Results Areas under ROC curves (AUC) were 0.786±0.026 and 0.758±0.027 when to classify mass regions depicting on two view images, respectively. By fusing classification scores computed from two regions, AUC increased to 0.806±0.025. Conclusion This study demonstrated a new approach to develop CAD scheme based on 5 visually sensitive image features. Combining with a “visual aid” interface, CAD results may be much more easily explainable to the observers and increase their confidence to consider CAD generated classification results than using other conventional CAD approaches, which involve many complicated and visually insensitive texture features. PMID:27911353

  16. The Use of Computer-Aided Design and Manufacturing in Acute Mandibular Trauma Reconstruction.

    PubMed

    Kokosis, George; Davidson, Edward H; Pedreira, Rachel; Macmillan, Alexandra; Dorafshar, Amir H

    2018-05-01

    Virtual surgical planning (VSP) with subsequent computer-aided design and manufacturing have proved efficacious in improving the efficiency and outcomes of a plethora of surgical modalities, including mandibular reconstruction and orthognathic surgery. Five patients underwent complex mandibular reconstruction after traumatic injury using VSP from July 2016 to August 2017 at our institution. The Johns Hopkins University Hospital institutional review board approved the present study. The patient's occlusion was restored virtually, and a milled 2.0-mm plate was created that would bridge the defect with the patient in occlusion. Appropriate occlusion was confirmed using postoperative computed tomography. No patient developed any adverse outcomes, except for a minor dehiscence of the intraoral incision in 1 patient that was treated with local wound care. The average interval from the injury to custom plate availability was approximately 7 days. The utility of this technology in acute complex mandibular trauma can overcome the challenges of traditional treatment. Custom patient-specific prebent and milled plates permit the use of a lower profile and therefore less palpable hardware, can guide reduction, avoid the need for plate bending, and obviate the need for an extraoral incision. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. [Medical computer-aided detection method based on deep learning].

    PubMed

    Tao, Pan; Fu, Zhongliang; Zhu, Kai; Wang, Lili

    2018-03-01

    This paper performs a comprehensive study on the computer-aided detection for the medical diagnosis with deep learning. Based on the region convolution neural network and the prior knowledge of target, this algorithm uses the region proposal network, the region of interest pooling strategy, introduces the multi-task loss function: classification loss, bounding box localization loss and object rotation loss, and optimizes it by end-to-end. For medical image it locates the target automatically, and provides the localization result for the next stage task of segmentation. For the detection of left ventricular in echocardiography, proposed additional landmarks such as mitral annulus, endocardial pad and apical position, were used to estimate the left ventricular posture effectively. In order to verify the robustness and effectiveness of the algorithm, the experimental data of ultrasonic and nuclear magnetic resonance images are selected. Experimental results show that the algorithm is fast, accurate and effective.

  18. Predictors of in-hospital mortality after mitral valve surgery for post-myocardial infarction papillary muscle rupture.

    PubMed

    Bouma, Wobbe; Wijdh-den Hamer, Inez J; Koene, Bart M; Kuijpers, Michiel; Natour, Ehsan; Erasmus, Michiel E; van der Horst, Iwan C C; Gorman, Joseph H; Gorman, Robert C; Mariani, Massimo A

    2014-10-18

    Papillary muscle rupture (PMR) is a rare, but often life-threatening mechanical complication of myocardial infarction (MI). Immediate surgical intervention is considered the optimal and most rational treatment for acute PMR, but carries high risks. At this point it is not entirely clear which patients are at highest risk. In this study we sought to determine in-hospital mortality and its predictors for patients who underwent mitral valve surgery for post-MI PMR. Between January 1990 and December 2012, 48 consecutive patients (mean age 64.9 ± 10.8 years) underwent mitral valve repair (n = 10) or replacement (n = 38) for post-MI PMR. Clinical data, echocardiographic data, catheterization data, and surgical reports were reviewed. Univariate and multivariate logistic regression analyses were performed to identify predictors of in-hospital mortality. Intraoperative mortality was 4.2% and in-hospital mortality was 25.0%. Univariate and multivariate logistic regression analyses revealed the logistic EuroSCORE and EuroSCORE II as independent predictors of in-hospital mortality. Receiver operating characteristics curves showed an optimal cutoff value of 40% for the logistic EuroSCORE (area under the curve 0.85, 95% CI 0.71-1.00, P < 0.001) and of 25% for the EuroSCORE II (area under the curve 0.83, 95% CI 0.68-0.99, P = 0.001). After removal of the EuroSCOREs from the model, complete PMR and intraoperative intra-aortic balloon pump (IABP) requirement were independent predictors of in-hospital mortality. The logistic EuroSCORE (optimal cutoff ≥ 40%), EuroSCORE II (optimal cutoff ≥ 25%), complete PMR, and intraoperative IABP requirement are strong independent predictors of in-hospital mortality in patients undergoing mitral valve surgery for post-MI PMR. These predictors may aid in surgical decision making and they may help improve the quality of informed consent.

  19. The impact of the fabrication method on the three-dimensional accuracy of an implant surgery template.

    PubMed

    Matta, Ragai-Edward; Bergauer, Bastian; Adler, Werner; Wichmann, Manfred; Nickenig, Hans-Joachim

    2017-06-01

    The use of a surgical template is a well-established method in advanced implantology. In addition to conventional fabrication, computer-aided design and computer-aided manufacturing (CAD/CAM) work-flow provides an opportunity to engineer implant drilling templates via a three-dimensional printer. In order to transfer the virtual planning to the oral situation, a highly accurate surgical guide is needed. The aim of this study was to evaluate the impact of the fabrication method on the three-dimensional accuracy. The same virtual planning based on a scanned plaster model was used to fabricate a conventional thermo-formed and a three-dimensional printed surgical guide for each of 13 patients (single tooth implants). Both templates were acquired individually on the respective plaster model using an optical industrial white-light scanner (ATOS II, GOM mbh, Braunschweig, Germany), and the virtual datasets were superimposed. Using the three-dimensional geometry of the implant sleeve, the deviation between both surgical guides was evaluated. The mean discrepancy of the angle was 3.479° (standard deviation, 1.904°) based on data from 13 patients. Concerning the three-dimensional position of the implant sleeve, the highest deviation was in the Z-axis at 0.594 mm. The mean deviation of the Euclidian distance, dxyz, was 0.864 mm. Although the two different fabrication methods delivered statistically significantly different templates, the deviations ranged within a decimillimeter span. Both methods are appropriate for clinical use. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Technological innovations for human outposts on planetary bodies

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.

    1988-01-01

    Technology developments which have applications for establishing man-tended outposts on the moon and Mars are reviewed. The development of pressurized rovers and computer-aided control, repair, and manufacturing is discussed. The possibility of utilizing aerodynamic drag by optimizing dynamic pressure to accomplish the necessary spacecraft velocity reduction for planetary orbital capture is considered and research in the development of artificial gravity is examined.

  1. Drug Design Workshop: A Web-Based Educational Tool to Introduce Computer-Aided Drug Design to the General Public

    ERIC Educational Resources Information Center

    Daina, Antoine; Blatter, Marie-Claude; Gerritsen, Vivienne Baillie; Palagi, Patricia M.; Marek, Diana; Xenarios, Ioannis; Schwede, Torsten; Michielin, Olivier; Zoete, Vincent

    2017-01-01

    Due to its impact on society, the design of new drugs has the potential to interest a wide audience, and provides a rare opportunity to introduce several concepts in chemistry and biochemistry. Drug design can be seen as a multiobjective cyclic optimization process. Indeed, it is important to develop the understanding not only that a drug is…

  2. Flume Computer-Aided Design (CAD): Integrated CAD for Microflume Components and Systems

    DTIC Science & Technology

    2002-04-01

    31 3.3: Matching the Mix Ratio (Part B...sizes) will be optimized based on the required flow rates and mixing ratios of the different species. The influence of etch depth is investigated on a...Inhibition Study In this network, the target protein is mixed with protease (i.e. enzyme that cleaves the target protein) and the protease inhibitor (the

  3. Registration of MRI to Intraoperative Radiographs for Target Localization in Spinal Interventions

    PubMed Central

    De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Goerres, J; Jacobson, M W; Vogt, S; Kleinszig, G; Khanna, A J; Wolinsky, J-P; Siewerdsen, J H

    2017-01-01

    Purpose Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Methods Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (Covariance-Matrix-Adaptation Evolutionary-Strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. Results The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median ± iqr) = 4.3 ± 2.6 mm (median ± iqr) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded Dice coefficient = 88.1 ± 5.2, Accuracy = 90.6 ± 5.7, RMSE = 1.8 ± 0.6 mm, and contour affinity ratio (CAR) = 0.82 ± 0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE < 3 mm and CAR > 0.50. Conclusion The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness. PMID:28050972

  4. Pelvic laparoscopy (image)

    MedlinePlus

    ... invasive surgery is desired. It is also called Band-Aid surgery because only small incisions need to be made to accommodate the small surgical instruments that are used to view the abdominal contents and perform the surgery.

  5. Interactive planning of miniplates

    NASA Astrophysics Data System (ADS)

    Gall, Markus; Reinbacher, Knut; Wallner, Jürgen; Stanzel, Jan; Chen, Xiaojun; Schwenzer-Zimmerer, Katja; Schmalstieg, Dieter; Egger, Jan

    2017-03-01

    In this contribution, a novel method for computer aided surgery planning of facial defects by using models of purchasable MedArtis Modus 2.0 miniplates is proposed. Implants of this kind, which belong to the osteosynthetic material, are commonly used for treating defects in the facial area. By placing them perpendicular on the defect, the miniplates are fixed on the healthy bone, bent with respect to the surface, to stabilize the defective area. Our software is able to fit a selection of the most common implant models to the surgeon's desired position in a 3D computer model. The fitting respects the local surface curvature and adjusts direction and position in any desired way. Conventional methods use Computed Tomography (CT) scans to generate STereoLithic (STL) models serving as bending template for the implants or use a bending tool during the surgery for readjusting the implant several times. Both approaches lead to undesirable expenses in time. With our visual planning tool, surgeons are able to pre-plan the final implant within just a few minutes. The resulting model can be stored in STL format, which is the commonly used format for 3D printing. With this technology, surgeons are able to print the implant just in time or use it for generating a bending tool, both leading to an exactly bent miniplate.

  6. Economic viability of stapes surgery in Germany.

    PubMed

    Savvas, E; Maurer, J

    2009-04-01

    The purpose of this study was to determine the economic viability of stapes surgery in Germany. We compared the cost of the operation to the retail value and average cost of a lifelong supply of hearing aids. Retrospective study. Tertiary referral centre. One hundred and sixty-four consecutive cases of primary stapedotomy performed on patients with otosclerosis at our institution served as the representative group for the calculation. The post-operative air-bone gap average at the frequencies 500, 1000, 2000 and 4000 Hz was less than 10 dB for 62 per cent of the patients, and less than 20 dB for 92 per cent of the patients. There was a post-operative sensorineural hearing loss in 1.2 per cent of the patients. Analysis showed that, even for an elderly patient aged 65 years with a life expectancy of 15 years, the cost of a lifelong supply of hearing aids was greater than that of a stapedotomy procedure. Based on our group of patients, the stapedotomy procedure proved to be euro 800,000 K cheaper than treatment with an averagely priced hearing aid. The economic benefit was still present when taking into account possible revision surgery in 5-10 per cent of cases, and also when, in addition to the surgery, a post-operative hearing aid was required, in for example 20 per cent of cases. Stapes surgery is economically beneficial for the individual patient as well as for the general patient cohort, irrespective of age. The stapedotomy procedure also prevents the known disadvantages of conventional hearing aids, thus improving the patient's quality of life.

  7. Effects of Viewing an Evidence-Based Video Decision Aid on Patients’ Treatment Preferences for Spine Surgery

    PubMed Central

    Lurie, Jon D.; Spratt, Kevin F.; Blood, Emily A.; Tosteson, Tor D.; Tosteson, Anna N. A.; Weinstein, James N.

    2011-01-01

    Study Design Secondary analysis within a large clinical trial Objective To evaluate the changes in treatment preference before and after watching a video decision aid as part of an informed consent process. Summary of Background Data A randomized trial with a similar decision aid in herniated disc patients had shown decreased rate of surgery in the video group, but the effect of the video on expressed preferences is not known. Methods Subjects enrolling in the Spine Patient Outcomes Research Trial (SPORT) with intervertebral disc herniation (IDH), spinal stenosis (SPS), or degenerative spondylolisthesis (DS) at thirteen multidisciplinary spine centers across the US were given an evidence-based videotape decision aid viewed prior to enrollment as part of informed consent. Results Of the 2505 patients, 86% (n=2151) watched the video and 14% (n=354) did not. Watchers shifted their preference more often than non-watchers(37.9% vs. 20.8%, p < 0.0001) and more often demonstrated a strengthened preference (26.2% vs. 11.1%, p < 0.0001). Among the 806 patients whose preference shifted after watching the video, 55% shifted toward surgery (p=0.003). Among the 617 who started with no preference, after the video 27% preferred non-operative care, 22% preferred surgery, and 51% remained uncertain. Conclusion After watching the evidence-based patient decision aid (video) used in SPORT, patients with specific lumbar spine disorders formed and/or strengthened their treatment preferences in a balanced way that did not appear biased toward or away from surgery. PMID:21358485

  8. Annular dilatation and loss of sino-tubular junction in aneurysmatic aorta: implications on leaflet quality at the time of surgery. A finite element study†

    PubMed Central

    Weltert, Luca; de Tullio, Marco D.; Afferrante, Luciano; Salica, Andrea; Scaffa, Raffaele; Maselli, Daniele; Verzicco, Roberto; De Paulis, Ruggero

    2013-01-01

    OBJECTIVES In the belief that stress is the main determinant of leaflet quality deterioration, we sought to evaluate the effect of annular and/or sino-tubular junction dilatation on leaflet stress. A finite element computer-assisted stress analysis was used to model four different anatomic conditions and analyse the consequent stress pattern on the aortic valve. METHODS Theoretical models of four aortic root configurations (normal, with dilated annulus, with loss of sino-tubular junction and with both dilatation simultaneously) were created with computer-aided design technique. The pattern of stress and strain was then analysed by means of finite elements analysis, when a uniform pressure of 100 mmHg was applied to the model. Analysis produced von Mises charts (colour-coded, computational, three-dimensional stress-pattern graphics) and bidimensional plots of compared stress on arc-linear line, which allowed direct comparison of stress in the four different conditions. RESULTS Stresses both on the free margin and on the ‘belly’ of the leaflet rose from 0.28 MPa (normal conditions) to 0.32 MPa (+14%) in case of isolated dilatation of the sino-tubular junction, while increased to 0.42 MPa (+67%) in case of isolated annular dilatation, with no substantial difference whether sino-tubular junction dilatation was present or not. CONCLUSIONS Annular dilatation is the key element determining an increased stress on aortic leaflets independently from an associated sino-tubular junction dilatation. The presence of annular dilatation associated with root aneurysm greatly decreases the chance of performing a valve sparing procedure without the need for additional manoeuvres on leaflet tissue. This information may lead to a refinement in the optimal surgical strategy. PMID:23536020

  9. Structural Performance’s Optimally Analysing and Implementing Based on ANSYS Technology

    NASA Astrophysics Data System (ADS)

    Han, Na; Wang, Xuquan; Yue, Haifang; Sun, Jiandong; Wu, Yongchun

    2017-06-01

    Computer-aided Engineering (CAE) is a hotspot both in academic field and in modern engineering practice. Analysis System(ANSYS) simulation software for its excellent performance become outstanding one in CAE family, it is committed to the innovation of engineering simulation to help users to shorten the design process, improve product innovation and performance. Aimed to explore a structural performance’s optimally analyzing model for engineering enterprises, this paper introduced CAE and its development, analyzed the necessity for structural optimal analysis as well as the framework of structural optimal analysis on ANSYS Technology, used ANSYS to implement a reinforced concrete slab structural performance’s optimal analysis, which was display the chart of displacement vector and the chart of stress intensity. Finally, this paper compared ANSYS software simulation results with the measured results,expounded that ANSYS is indispensable engineering calculation tools.

  10. Total mandibular subapical osteotomy and Le Fort I osteotomy using piezosurgery and computer-aided designed and manufactured surgical splints: a favorable combination of three techniques in the management of severe mouth asymmetry in Parry-Romberg syndrome.

    PubMed

    Scolozzi, Paolo; Herzog, Georges

    2014-05-01

    Although its pathogenesis remains obscure, Parry-Romberg syndrome (PRS) has been associated with the linear scleroderma en coup de sabre. PRS is characterized by unilateral facial atrophy of the skin, subcutaneous tissue, muscles, and bones with at least 1 dermatome supplied by the trigeminal nerve. Facial asymmetry represents the most common sequela and can involve the soft tissues, craniomaxillofacial skeleton, dentoalveolar area, and temporomandibular joint. Although orthognathic procedures have been reported for skeletal reconstruction, treatment of facial asymmetry has been directed to augmentation of the soft tissue volume on the atrophic side using different recontouring or volumetric augmentation techniques. Total mandibular subapical osteotomy has been used in the management of dentofacial deformities, such as open bite and mandibular dentoalveolar retrusion or protrusion associated with an imbalance between the lower lip and the chin. Management of orthognathic procedures has been improved by the recent introduction of stereolithographic surgical splints using computer-aided design (CAD) and computer-aided manufacturing (CAM) technology and piezosurgery. Piezosurgery has increased security during surgery, especially for delicate procedures associated with a high risk of nerve injury. The present report describes a combined total mandibular subapical osteotomy and Le Fort I osteotomy using piezosurgery and surgical splints fabricated using CAD and CAM for the correction of severe mouth asymmetry related to vertical dentoalveolar disharmony in a patient with PRS. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Voice tuning with new instruments for type II thyroplasty in the treatment of adductor spasmodic dysphonia.

    PubMed

    Sanuki, Tetsuji; Yumoto, Eiji; Toya, Yutaka; Kumai, Yoshihiko

    2016-10-01

    Adductor spasmodic dysphonia is a rare voice disorder characterized by strained and strangled voice quality with intermittent phonatory breaks and adductory vocal fold spasms. Type II thyroplasty differs from previous treatments in that this surgery does not involve any surgical intervention into the laryngeal muscle, nerve or vocal folds. Type II thyroplasty intervenes in the thyroid cartilage, which is unrelated to the lesion. This procedure, conducted with the aim of achieving lateralization of the vocal folds, requires utmost surgical caution due to the extreme delicacy of the surgical site, critically sensitive adjustment, and difficult procedures to maintain the incised cartilages at a correct position. During surgery, the correct separation of the incised cartilage edges with voice monitoring is the most important factor determining surgical success and patient satisfaction. We designed new surgical instruments: a thyroid cartilage elevator for undermining the thyroid cartilage, and spacer devices to gauge width while performing voice monitoring. These devices were designed to prevent surgical complications, and to aid in selecting the optimal size of titanium bridges while temporally maintaining a separation during voice monitoring. We designed new surgical instruments, including a thyroid cartilage elevator and spacer devices. Precise surgical procedures and performing voice tuning during surgery with the optimal separation width of the thyroid cartilage are key points for surgical success. We introduce the technique of voice tuning using these surgical tools in order to achieve a better outcome with minimal surgical complications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. A six-degree-of-freedom passive arm with dynamic constraints (PADyC) for cardiac surgery application: preliminary experiments.

    PubMed

    Schneider, O; Troccaz, J

    2001-01-01

    The purpose of Computer-Assisted Surgery (CAS) is to help physicians and surgeons plan and execute optimal strategies from multimodal image data. The execution of such planned strategies may be assisted by guidance systems. Some of these systems, called synergistic systems, are based on the cooperation of a robotic device with a human operator. We have developed such a synergistic device: PADyC (Passive Arm with Dynamic Constraints). The basic principle of PADyC is to have a manually actuated arm that dynamically constrains the authorized motions of the surgical tool held by the human operator during a planned task. Dynamic constraints are computed from the task definition, and are implemented by a patented mechanical system. In this paper, we first introduce synergistic systems and then focus on modeling and algorithmic issues related to the dynamic constraints. Finally, we describe a 6-degree-of-freedom prototype robot designed for a clinical application (cardiac surgery) and report on preliminary experiments to date. The experimental results are then discussed, and future work is proposed. Copyright 2002 Wiley-Liss, Inc.

  13. Optimization process in helicopter design

    NASA Technical Reports Server (NTRS)

    Logan, A. H.; Banerjee, D.

    1984-01-01

    In optimizing a helicopter configuration, Hughes Helicopters uses a program called Computer Aided Sizing of Helicopters (CASH), written and updated over the past ten years, and used as an important part of the preliminary design process of the AH-64. First, measures of effectiveness must be supplied to define the mission characteristics of the helicopter to be designed. Then CASH allows the designer to rapidly and automatically develop the basic size of the helicopter (or other rotorcraft) for the given mission. This enables the designer and management to assess the various tradeoffs and to quickly determine the optimum configuration.

  14. Damage Control Orthopedics Management as Vital Procedure in Elderly Patients with Femoral Neck Fractures Complicated with Chronic Renal Failure: A Retrospective Cohort Study

    PubMed Central

    Dong, Chenhui; Wang, Yunjiao; Wang, Ziming; Wang, Yu; Wu, Siyu; Du, Quanyin; Wang, Aimin

    2016-01-01

    Background Chronic renal failure (CRF) predisposes to hip fractures in elderly patients, with high subsequent mortality. Selection and timing of the surgical procedure of such patients is a serious challenge. Many clinicians believe in earlier surgery as preferable and providing better outcomes. Damage control orthopedics (DCO) aids to adjust and optimize the overall condition of patients. Methods In 32 patients with femoral neck fractures complicated with CRF, we evaluated how the timing of the surgery determines the mortality rates if the DCO approach is applied. Preoperative ASA grading, POSSUM score, P-POSSUM score and DCO were carried out. Based on the assessment, timing of the surgery was ascertained. Results Of a total of 32 patients, twenty-nine patients were accepted for either early (< 48 hours; n = 18) or delayed (3–10 days; n = 10) surgery. Hip arthroplasty (total hip arthroplasty and hemiarthroplasty) was the principal surgery option. All patients survived operation and were followed up postoperatively with the average time of 30 days. Postoperative complications tended to occur at higher rates in the early vs. delayed surgery group (7/18 vs. 5/10). During follow up, a total of 3 patients died in both groups (2/18 in the early surgery and 1/10 in the delayed surgery group), mostly from multi-organ failures and acute respiratory distress syndrome. There was no significant difference in complication rates and Harris hip score between both groups. Conclusion In patients with femoral neck fracture complicated with CRF, delaying the surgery for several days does not increase the incidence of postoperative adverse events. PMID:27149117

  15. Minnesota multiphasic personality inventory-2 restructured form (MMPI-2-RF) scale score differences in bariatric surgery candidates diagnosed with binge eating disorder versus BMI-matched controls.

    PubMed

    Marek, Ryan J; Ben-Porath, Yossef S; Ashton, Kathleen; Heinberg, Leslie J

    2014-04-01

    Binge Eating Disorder (BED) is among the most common psychiatric disorders in bariatric surgery candidates. The Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) is a broadband, psychological test that includes measures of emotional and behavioral dysfunction, which have been associated with BED behaviors in bariatric surgery candidates; however these studies have lacked appropriate controls. In the current study, we compared MMPI-2-RF scale scores of bariatric surgery patients diagnosed with BED (BED+) with BMI-matched controls without BED (BED-). Three-hundred and seven BED+ participants (72.64% female and 67.87% Caucasian; mean BMI of 51.36 kg/m(2) [SD = 11.94]) were drawn from a large, database (N = 1304). Three-hundred and seven BED- participants were matched on BMI and demographics (72.64% female, 68.63% Caucasian, and mean BMI of 51.30 kg/m(2) [SD = 11.70]). The BED+ group scored significantly higher on measures of Demoralization, Low Positive Emotions, and Dysfunctional Negative Emotions and scored lower on measures of Antisocial Behaviors, reflecting behavioral constraint. Optimal T-Score cutoffs were below the traditional 65 T score for several MMPI-2-RF scales. MMPI-2-RF externalizing measures also added incrementally to differentiating between the groups beyond the Binge Eating Scale (BES). BED+ individuals produced greater elevations on a number of MMPI-2-RF internalizing scales and externalizing scales. Use of the test in conjunction with a clinical interview and other self-report data can further aid the clinician in guiding patients to appropriate treatment to optimize outcome. Copyright © 2013 Wiley Periodicals, Inc.

  16. Pinnaplasty: reshaping ears to improve hearing aid retention.

    PubMed

    Gault, David; Grob, Marion; Odili, Joy

    2007-01-01

    The hearing aid is extremely important to the deaf. A small number have difficulty in retaining the device because the ear is prominent or cup-shaped. This report describes 11 children whose ear shape was modified to improve hearing aid retention and one adult in whom an over set back ear was released to allow fitment of a postaural device. In eight of the 11 children treated, conservative measures such as double-sided tape and retention bands (Huggies) had been tried previously without success. The creation of an antihelical fold in a misshapen ear lacking such a fold provides a reinforcing strut which is useful to support a hearing aid. In patients whose ear had been excessively tethered by previous surgery, projection was restored by inserting a cartilage block behind the ear. In one child with ears tethered by previous surgery, costal cartilage was used not only to release both ears, but also to reconstruct a new helical rim on one side. Surgery enabled a normal postaural hearing aid to be worn in 17 of the 19 ears treated. The two failures deserve special mention. In one patient with a unilateral deformity and severe mental retardation, the dressings were pulled off immediately after surgery. In another patient with a bilateral problem, the appearance and hearing aid retention was improved, but there was not enough room in the postauricular sulcus on one side for the battery component to fit comfortably and an in-the-ear device is now used on that side. Pinnaplasty is a helpful strategy to improve hearing aid retention. Care must be taken not to overdo the set back so that enough room is left to retain the hearing device.

  17. Optimizing product life cycle processes in design phase

    NASA Astrophysics Data System (ADS)

    Faneye, Ola. B.; Anderl, Reiner

    2002-02-01

    Life cycle concepts do not only serve as basis in assisting product developers understand the dependencies between products and their life cycles, they also help in identifying potential opportunities for improvement in products. Common traditional concepts focus mainly on energy and material flow across life phases, necessitating the availability of metrics derived from a reference product. Knowledge of life cycle processes won from an existing product is directly reused in its redesign. Depending on sales volume nevertheless, the environmental impact before product optimization can be substantial. With modern information technologies today, computer-aided life cycle methodologies can be applied well before product use. On the basis of a virtual prototype, life cycle processes are analyzed and optimized, using simulation techniques. This preventive approach does not only help in minimizing (or even eliminating) environmental burdens caused by product, costs incurred due to changes in real product can also be avoided. The paper highlights the relationship between product and life cycle and presents a computer-based methodology for optimizing the product life cycle during design, as presented by SFB 392: Design for Environment - Methods and Tools at Technical University, Darmstadt.

  18. Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure.

    PubMed

    Schumann, Marcel; Armen, Roger S

    2013-05-30

    Molecular docking of small-molecules is an important procedure for computer-aided drug design. Modeling receptor side chain flexibility is often important or even crucial, as it allows the receptor to adopt new conformations as induced by ligand binding. However, the accurate and efficient incorporation of receptor side chain flexibility has proven to be a challenge due to the huge computational complexity required to adequately address this problem. Here we describe a new docking approach with a very fast, graph-based optimization algorithm for assignment of the near-optimal set of residue rotamers. We extensively validate our approach using the 40 DUD target benchmarks commonly used to assess virtual screening performance and demonstrate a large improvement using the developed side chain optimization over rigid receptor docking (average ROC AUC of 0.693 vs. 0.623). Compared to numerous benchmarks, the overall performance is better than nearly all other commonly used procedures. Furthermore, we provide a detailed analysis of the level of receptor flexibility observed in docking results for different classes of residues and elucidate potential avenues for further improvement. Copyright © 2013 Wiley Periodicals, Inc.

  19. The Role of Energy Reservoirs in Distributed Computing: Manufacturing, Implementing, and Optimizing Energy Storage in Energy-Autonomous Sensor Nodes

    NASA Astrophysics Data System (ADS)

    Cowell, Martin Andrew

    The world already hosts more internet connected devices than people, and that ratio is only increasing. These devices seamlessly integrate with peoples lives to collect rich data and give immediate feedback about complex systems from business, health care, transportation, and security. As every aspect of global economies integrate distributed computing into their industrial systems and these systems benefit from rich datasets. Managing the power demands of these distributed computers will be paramount to ensure the continued operation of these networks, and is elegantly addressed by including local energy harvesting and storage on a per-node basis. By replacing non-rechargeable batteries with energy harvesting, wireless sensor nodes will increase their lifetimes by an order of magnitude. This work investigates the coupling of high power energy storage with energy harvesting technologies to power wireless sensor nodes; with sections covering device manufacturing, system integration, and mathematical modeling. First we consider the energy storage mechanism of supercapacitors and batteries, and identify favorable characteristics in both reservoir types. We then discuss experimental methods used to manufacture high power supercapacitors in our labs. We go on to detail the integration of our fabricated devices with collaborating labs to create functional sensor node demonstrations. With the practical knowledge gained through in-lab manufacturing and system integration, we build mathematical models to aid in device and system design. First, we model the mechanism of energy storage in porous graphene supercapacitors to aid in component architecture optimization. We then model the operation of entire sensor nodes for the purpose of optimally sizing the energy harvesting and energy reservoir components. In consideration of deploying these sensor nodes in real-world environments, we model the operation of our energy harvesting and power management systems subject to spatially and temporally varying energy availability in order to understand sensor node reliability. Looking to the future, we see an opportunity for further research to implement machine learning algorithms to control the energy resources of distributed computing networks.

  20. Identifying the optimal segmentors for mass classification in mammograms

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Tomuro, Noriko; Furst, Jacob; Raicu, Daniela S.

    2015-03-01

    In this paper, we present the results of our investigation on identifying the optimal segmentor(s) from an ensemble of weak segmentors, used in a Computer-Aided Diagnosis (CADx) system which classifies suspicious masses in mammograms as benign or malignant. This is an extension of our previous work, where we used various parameter settings of image enhancement techniques to each suspicious mass (region of interest (ROI)) to obtain several enhanced images, then applied segmentation to each image to obtain several contours of a given mass. Each segmentation in this ensemble is essentially a "weak segmentor" because no single segmentation can produce the optimal result for all images. Then after shape features are computed from the segmented contours, the final classification model was built using logistic regression. The work in this paper focuses on identifying the optimal segmentor(s) from an ensemble mix of weak segmentors. For our purpose, optimal segmentors are those in the ensemble mix which contribute the most to the overall classification rather than the ones that produced high precision segmentation. To measure the segmentors' contribution, we examined weights on the features in the derived logistic regression model and computed the average feature weight for each segmentor. The result showed that, while in general the segmentors with higher segmentation success rates had higher feature weights, some segmentors with lower segmentation rates had high classification feature weights as well.

  1. Optimal control of HIV/AIDS dynamic: Education and treatment

    NASA Astrophysics Data System (ADS)

    Sule, Amiru; Abdullah, Farah Aini

    2014-07-01

    A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.

  2. Computational Tools and Algorithms for Designing Customized Synthetic Genes

    PubMed Central

    Gould, Nathan; Hendy, Oliver; Papamichail, Dimitris

    2014-01-01

    Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations. PMID:25340050

  3. Virtual Surgical Planning: The Pearls and Pitfalls

    PubMed Central

    Efanov, Johnny I.; Roy, Andrée-Anne; Huang, Ke N.

    2018-01-01

    Objective: Over the past few years, virtual surgical planning (VSP) has evolved into a useful tool for the craniofacial surgeon. Virtual planning and computer-aided design and manufacturing (CAD/CAM) may assist in orthognathic, cranio-orbital, traumatic, and microsurgery of the craniofacial skeleton. Despite its increasing popularity, little emphasis has been placed on the learning curve. Methods: A retrospective analysis of consecutive virtual surgeries was done from July 2012 to October 2016 at the University of Montreal Teaching Hospitals. Orthognathic surgeries and free vascularized bone flap surgeries were included in the analysis. Results: Fifty-four virtual surgeries were done in the time period analyzed. Forty-six orthognathic surgeries and 8 free bone transfers were done. An analysis of errors was done. Eighty-five percentage of the orthognathic virtual plans were adhered to completely, 4% of the plans were abandoned, and 11% were partially adhered to. Seventy-five percentage of the virtual surgeries for free tissue transfers were adhered to, whereas 25% were partially adhered to. The reasons for abandoning the plans were (1) poor communication between surgeon and engineer, (2) poor appreciation for condyle placement on preoperative scans, (3) soft-tissue impedance to bony movement, (4) rapid tumor progression, (5) poor preoperative assessment of anatomy. Conclusion: Virtual surgical planning is a useful tool for craniofacial surgery but has inherent issues that the surgeon must be aware of. With time and experience, these surgical plans can be used as powerful adjuvants to good clinical judgement. PMID:29464146

  4. A web-based procedure for liver segmentation in CT images

    NASA Astrophysics Data System (ADS)

    Yuan, Rong; Luo, Ming; Wang, Luyao; Xie, Qingguo

    2015-03-01

    Liver segmentation in CT images has been acknowledged as a basic and indispensable part in systems of computer aided liver surgery for operation design and risk evaluation. In this paper, we will introduce and implement a web-based procedure for liver segmentation to help radiologists and surgeons get an accurate result efficiently and expediently. Several clinical datasets are used to evaluate the accessibility and the accuracy. This procedure seems a promising approach for extraction of liver volumetry of various shapes. Moreover, it is possible for user to access the segmentation wherever the Internet is available without any specific machine.

  5. [Automated identification, interpretation and classification of focal changes in the lungs on the images obtained at computed tomography for lung cancer screening].

    PubMed

    Barchuk, A A; Podolsky, M D; Tarakanov, S A; Kotsyuba, I Yu; Gaidukov, V S; Kuznetsov, V I; Merabishvili, V M; Barchuk, A S; Levchenko, E V; Filochkina, A V; Arseniev, A I

    2015-01-01

    This review article analyzes data of literature devoted to the description, interpretation and classification of focal (nodal) changes in the lungs detected by computed tomography of the chest cavity. There are discussed possible criteria for determining the most likely of their character--primary and metastatic tumor processes, inflammation, scarring, and autoimmune changes, tuberculosis and others. Identification of the most characteristic, reliable and statistically significant evidences of a variety of pathological processes in the lungs including the use of modern computer-aided detection and diagnosis of sites will optimize the diagnostic measures and ensure processing of a large volume of medical data in a short time.

  6. Computer-Aided Facilities Management Systems (CAFM).

    ERIC Educational Resources Information Center

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  7. Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM

    PubMed Central

    2015-01-01

    With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. PMID:26161878

  8. The effect of feature selection methods on computer-aided detection of masses in mammograms

    NASA Astrophysics Data System (ADS)

    Hupse, Rianne; Karssemeijer, Nico

    2010-05-01

    In computer-aided diagnosis (CAD) research, feature selection methods are often used to improve generalization performance of classifiers and shorten computation times. In an application that detects malignant masses in mammograms, we investigated the effect of using a selection criterion that is similar to the final performance measure we are optimizing, namely the mean sensitivity of the system in a predefined range of the free-response receiver operating characteristics (FROC). To obtain the generalization performance of the selected feature subsets, a cross validation procedure was performed on a dataset containing 351 abnormal and 7879 normal regions, each region providing a set of 71 mass features. The same number of noise features, not containing any information, were added to investigate the ability of the feature selection algorithms to distinguish between useful and non-useful features. It was found that significantly higher performances were obtained using feature sets selected by the general test statistic Wilks' lambda than using feature sets selected by the more specific FROC measure. Feature selection leads to better performance when compared to a system in which all features were used.

  9. Computer-Aided Drug Design Methods.

    PubMed

    Yu, Wenbo; MacKerell, Alexander D

    2017-01-01

    Computational approaches are useful tools to interpret and guide experiments to expedite the antibiotic drug design process. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) are the two general types of computer-aided drug design (CADD) approaches in existence. SBDD methods analyze macromolecular target 3-dimensional structural information, typically of proteins or RNA, to identify key sites and interactions that are important for their respective biological functions. Such information can then be utilized to design antibiotic drugs that can compete with essential interactions involving the target and thus interrupt the biological pathways essential for survival of the microorganism(s). LBDD methods focus on known antibiotic ligands for a target to establish a relationship between their physiochemical properties and antibiotic activities, referred to as a structure-activity relationship (SAR), information that can be used for optimization of known drugs or guide the design of new drugs with improved activity. In this chapter, standard CADD protocols for both SBDD and LBDD will be presented with a special focus on methodologies and targets routinely studied in our laboratory for antibiotic drug discoveries.

  10. Civil and mechanical engineering applications of sensitivity analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komkov, V.

    1985-07-01

    In this largely tutorial presentation, the historical development of optimization theories has been outlined as they applied to mechanical and civil engineering designs and the development of modern sensitivity techniques during the last 20 years has been traced. Some of the difficulties and the progress made in overcoming them have been outlined. Some of the recently developed theoretical methods have been stressed to indicate their importance to computer-aided design technology.

  11. The Improvement and Individualization of Computer-Assisted Instruction

    DTIC Science & Technology

    1975-09-15

    Spanish experiments had studied at least one Romance language and con- sequently were able to learn some of +he Spanish wordo by using cognates...Involved the acquisition of foreign- language vocabulary Items. The first (using Geraan vocabulary) concerned Itself with optimizing the selection of...method. Experiments with Spanish and Russian items showed that the method could be a powerful aid in building and retaining a large vocabulary of

  12. Vibrational Spectral Studies of Gemfibrozil

    NASA Astrophysics Data System (ADS)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  13. Optimized positioning of autonomous surgical lamps

    NASA Astrophysics Data System (ADS)

    Teuber, Jörn; Weller, Rene; Kikinis, Ron; Oldhafer, Karl-Jürgen; Lipp, Michael J.; Zachmann, Gabriel

    2017-03-01

    We consider the problem of finding automatically optimal positions of surgical lamps throughout the whole surgical procedure, where we assume that future lamps could be robotized. We propose a two-tiered optimization technique for the real-time autonomous positioning of those robotized surgical lamps. Typically, finding optimal positions for surgical lamps is a multi-dimensional problem with several, in part conflicting, objectives, such as optimal lighting conditions at every point in time while minimizing the movement of the lamps in order to avoid distractions of the surgeon. Consequently, we use multi-objective optimization (MOO) to find optimal positions in real-time during the entire surgery. Due to the conflicting objectives, there is usually not a single optimal solution for such kinds of problems, but a set of solutions that realizes a Pareto-front. When our algorithm selects a solution from this set it additionally has to consider the individual preferences of the surgeon. This is a highly non-trivial task because the relationship between the solution and the parameters is not obvious. We have developed a novel meta-optimization that considers exactly this challenge. It delivers an easy to understand set of presets for the parameters and allows a balance between the lamp movement and lamp obstruction. This metaoptimization can be pre-computed for different kinds of operations and it then used by our online optimization for the selection of the appropriate Pareto solution. Both optimization approaches use data obtained by a depth camera that captures the surgical site but also the environment around the operating table. We have evaluated our algorithms with data recorded during a real open abdominal surgery. It is available for use for scientific purposes. The results show that our meta-optimization produces viable parameter sets for different parts of an intervention even when trained on a small portion of it.

  14. Unskilled unawareness and the learning curve in robotic spine surgery.

    PubMed

    Schatlo, Bawarjan; Martinez, Ramon; Alaid, Awad; von Eckardstein, Kajetan; Akhavan-Sigari, Reza; Hahn, Anina; Stockhammer, Florian; Rohde, Veit

    2015-10-01

    Robotic assistance for the placement of pedicle screws has been established as a safe technique. Nonetheless rare instances of screw misplacement have been reported.The aim of the present retrospective study is to assess whether experience and time affect the accuracy of screws placed with the help of the SpineAssist™ robot system. Postoperative computed tomography (CT) scans of 258 patients requiring thoracolumbar pedicle screw instrumentation from 2008 to 2013 were reviewed. Overall, 13 surgeons performed the surgeries. A pedicle breach of >3 mm was graded as a misplacement. Surgeons were dichotomised into an early and experienced period in increments of five surgeries. In 258 surgeries, 1,265 pedicle screws were placed with the aid of the robot system. Overall, 1,217 screws (96.2 %) were graded as acceptable. When displayed by surgeon, the development of percent misplacement rates peaked between 5 and 25 surgeries in 12 of 13 surgeons. The overall misplacement rate in the first five surgeries was 2.4 % (6/245). The misplacement rate rose to 6.3 % between 11 and 15 surgeries (10/158; p = 0.20), and reached a significant peak between 16 and 20 surgeries with a rate of 7.1 % (8/112; p = 0.03). Afterwards, misplacement rates declined. A major peak in screw inaccuracies occurred between cases 10 and 20, and a second, smaller one at about 40 surgeries. One potential explanation could be a transition from decreased supervision (unskilled but aware) to increased confidence of a surgeon (unskilled but unaware) who adopts this new technique prior to mastering it (skilled). We therefore advocate ensuring competent supervision for new surgeons at least during the first 25 procedures of robotic spine surgery to optimise the accuracy of robot-assisted pedicle screws.

  15. Assessing internet-based information used to aid patient decision-making about surgery for perianal Crohn's fistula.

    PubMed

    Marshall, J H; Baker, D M; Lee, M J; Jones, G L; Lobo, A J; Brown, S R

    2017-06-01

    Decision-making in perianal Crohn's fistula (pCD) is preference sensitive. Patients use the internet to access healthcare information. The aim of this study was to assess the online information and patient decision aids relating to surgery for pCD. A search of Google™ and the Decision Aids Library Inventory (DALI) was performed using a predefined search strategy. Patient-focussed sources providing information about pCD surgery were included in the analysis. Written health information was assessed using the International Patient Decision Aids Standards (IPDAS) and DISCERN criteria. The readability of the source content was assessed using the Flesch-Kincaid score. Of the 201 sources found, 187 were excluded, leaving 14 sources for analysis. Three sources were dedicated to pCD, and six sources mentioned pCD-specific outcomes. The most common surgical intervention reported was seton insertion (n = 13). The least common surgical intervention reported was proctectomy (n = 1). The mean IPDAS and DISCERN scores were 4.43 ± 1.65 out of 12 (range = 2-8) and 2.93 ± 0.73 out of 5 (range = 1-5), respectively. The mean reading ease was US college standard. We found no patient decision aids relating to surgery for pCD. The online sources relating to surgery for pCD are few, and their quality is poor, as seen in the low IPDAS and DISCERN scores. Less than half of the sources mentioned pCD-specific outcomes, and three sources were solely dedicated to providing information on pCD. Healthcare professionals should look to create a patient tool to assist decision-making in pCD.

  16. On the Value of Computer-aided Instruction: Thoughts after Teaching Sales Writing in a Computer Classroom.

    ERIC Educational Resources Information Center

    Hagge, John

    1986-01-01

    Focuses on problems encountered with computer-aided writing instruction. Discusses conflicts caused by the computer classroom concept, some general paradoxes and ethical implications of computer-aided instruction. (EL)

  17. Short-term outcomes of mandibular reconstruction in oncological patients using a CAD/CAM prosthesis including a condyle supporting a fibular free flap.

    PubMed

    Tarsitano, Achille; Battaglia, Salvatore; Ramieri, Valerio; Cascone, Piero; Ciocca, Leonardo; Scotti, Roberto; Marchetti, Claudio

    2017-02-01

    Condylar reconstruction and replacement using alloplastic materials currently attracts much surgical interest. The major challenge is to functionally reconstruct the anatomical region; this is crucial in terms of correct mandibular function. The goal of the present study was to evaluate the clinical outcomes of and complications experienced by a series of oncological patients who underwent computer-aided design/computer-aided manufacturing (CAD/CAM) condylar reconstruction following resection-disarticulation of the mandible. We included nine patients who underwent disarticulation resection surgery to treat benign and malignant mandibular tumors involving the condylar region. All resections preserved the articular meniscus and featured placement of a CAD/CAM reconstructive plate supporting a fibular, microvascular free flap. The head of the prosthetic condyle reproduced the anatomical morphology of the native condyle. Patients were clinically evaluated in terms of occlusion stability, mandibular functional recovery, static and dynamic pain, and preservation of the normal mandibular contour. Planning and postoperative computed tomography (CT) scans were superimposed to assess the accuracy of reconstruction. No patient experienced plate exposure and, on direct clinical examination, no patient complained of joint pain. No patient developed plate loosening. No resorption of the glenoid fossa was evident when pre- and postoperative bone thicknesses were compared by CT. Preoperative occlusion was preserved in all dentate patients. One patient exhibited condylar displacement. In terms of reconstructive accuracy, the average postoperative deviation of the condyle from the preoperative position was 3.8 mm (range: 1.3-6.7 mm). The clinical outcomes of our series of oncological patients who underwent reconstruction using CAD/CAM plates including condyles were encouraging. The utility of our protocol needs to be confirmed in larger patient series. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Hearing AIDS and music.

    PubMed

    Chasin, Marshall; Russo, Frank A

    2004-01-01

    Historically, the primary concern for hearing aid design and fitting is optimization for speech inputs. However, increasingly other types of inputs are being investigated and this is certainly the case for music. Whether the hearing aid wearer is a musician or merely someone who likes to listen to music, the electronic and electro-acoustic parameters described can be optimized for music as well as for speech. That is, a hearing aid optimally set for music can be optimally set for speech, even though the converse is not necessarily true. Similarities and differences between speech and music as inputs to a hearing aid are described. Many of these lead to the specification of a set of optimal electro-acoustic characteristics. Parameters such as the peak input-limiting level, compression issues-both compression ratio and knee-points-and number of channels all can deleteriously affect music perception through hearing aids. In other cases, it is not clear how to set other parameters such as noise reduction and feedback control mechanisms. Regardless of the existence of a "music program,'' unless the various electro-acoustic parameters are available in a hearing aid, music fidelity will almost always be less than optimal. There are many unanswered questions and hypotheses in this area. Future research by engineers, researchers, clinicians, and musicians will aid in the clarification of these questions and their ultimate solutions.

  19. Project-Based Teaching-Learning Computer-Aided Engineering Tools

    ERIC Educational Resources Information Center

    Simoes, J. A.; Relvas, C.; Moreira, R.

    2004-01-01

    Computer-aided design, computer-aided manufacturing, computer-aided analysis, reverse engineering and rapid prototyping are tools that play an important key role within product design. These are areas of technical knowledge that must be part of engineering and industrial design courses' curricula. This paper describes our teaching experience of…

  20. Integrated optimisation technique based on computer-aided capacity and safety evaluation for managing downstream lane-drop merging area of signalised junctions

    NASA Astrophysics Data System (ADS)

    Chen, CHAI; Yiik Diew, WONG

    2017-02-01

    This study provides an integrated strategy, encompassing microscopic simulation, safety assessment, and multi-attribute decision-making, to optimize traffic performance at downstream merging area of signalized intersections. A Fuzzy Cellular Automata (FCA) model is developed to replicate microscopic movement and merging behavior. Based on simulation experiment, the proposed FCA approach is able to provide capacity and safety evaluation of different traffic scenarios. The results are then evaluated through data envelopment analysis (DEA) and analytic hierarchy process (AHP). Optimized geometric layout and control strategies are then suggested for various traffic conditions. An optimal lane-drop distance that is dependent on traffic volume and speed limit can thus be established at the downstream merging area.

  1. Future of operating rooms.

    PubMed

    Reijnen, Michel M P J; Zeebregts, Clark J; Meijerink, Wilhelmus J H J

    2005-01-01

    Operating-room design has not changed significantly since the modern era of surgery began. Minimal invasive, endoscopic, procedures, and evolution of technology will affect operating-room design in the near future. Poor ergonomics has always been one of the major drawbacks of endoscopic surgery. Use of retractable arms and monitors will improve ergonomics of the operating team. Developments in telecommunication will allow surgeons to communicate with colleagues and experts during the procedure in virtually any location around the world, which increases teaching possibilities and procedural safety. Introduction and further development of intraoperative imaging, including real-time, three-dimensional (3-D) reconstructions of patient, and computer-aided surgery offer surgeons the opportunity to train the planned surgical procedure. Moreover, they will improve control and supervision of the procedure in learning situations. The last decade's robotics have made their introduction into the operating rooms. They improve control over the operating-room environment and will facilitate the performance of more complex procedures. However, high costs and lack of force feedback remain its major drawbacks. Improvements of robotic techniques and its implementation into the operating rooms will further guide their design into highly specialized operating units.

  2. Anesthesia and ventilation strategies in children with asthma: part I - preoperative assessment.

    PubMed

    Regli, Adrian; von Ungern-Sternberg, Britta S

    2014-06-01

    Asthma is a common disease in the pediatric population, and anesthetists are increasingly confronted with asthmatic children undergoing elective surgery. This first of this two-part review provides a brief overview of the current knowledge on the underlying physiology and pathophysiology of asthma and focuses on the preoperative assessment and management in children with asthma. This also includes preoperative strategies to optimize lung function of asthmatic children undergoing surgery. The second part of this review focuses on the immediate perioperative anesthetic management including ventilation strategies. Multiple observational trials assessing perioperative respiratory adverse events in healthy and asthmatic children provide the basis for identifying risk factors in the patient's (family) history that aid the preoperative identification of at-risk children. Asthma treatment outside anesthesia is well founded on a large body of evidence. Optimization and to some extent intensifying asthma treatment can optimize lung function, reduce bronchial hyperreactivity, and minimize the risk of perioperative respiratory adverse events. To minimize the considerable risk of perioperative respiratory adverse events in asthmatic children, a good understanding of the underlying physiology is vital. Furthermore, a thorough preoperative assessment to identify children who may benefit of an intensified medical treatment thereby minimizing airflow obstruction and bronchial hyperreactivity is the first pillar of a preventive perioperative management of asthmatic children. The second pillar, an individually adjusted anesthesia management aiming to reduce perioperative adverse events, is discussed in the second part of this review.

  3. Model surgery with a passive robot arm for orthognathic surgery planning.

    PubMed

    Theodossy, Tamer; Bamber, Mohammad Anwar

    2003-11-01

    The aims of the study were to assess the degree of accuracy of model surgery performed manually using the Eastman technique and to compare it with model surgery performed with the aid of a robot arm. Twenty-one patients undergoing orthognathic surgery gave consent for this study. They were divided into 2 groups based on the model surgery technique used. Group A (52%) had model surgery performed manually, whereas group B (48%) had their model surgery performed using the robot arm. Patients' maxillary casts were measured before and after model surgery, and results were compared with those for the original treatment plan in horizontal (x-axis), vertical (y-axis), and transverse (z-axis) planes. Statistical analysis using Mann-Whitney U test for x- and y-axis and independent sample t test for z-axis have shown significant differences between both groups in x-axis (P =.024) and y-axis (P =.01) but not in z-axis (P =.776). Model surgery performed with the aid of a robot arm is significantly more accurate in anteroposterior and vertical planes than is manual model surgery. Robot arm has an important role to play in orthognathic surgery planning and in determining the biometrics of orthognathic surgical change at the model surgery stage.

  4. Optimization study on the primary mirror lightweighting of a remote sensing instrument

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; Huang, Bo-Kai; You, Zhen-Ting; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-07-01

    Remote sensing instrument (RSI) is used to take images for ground surface observation, which will be exposed to high vacuum, high temperature difference, gravity, 15 g-force and random vibration conditions and other harsh environments during operation. While designing a RSI optical system, not only the optical quality but also the strength of mechanical structure we should be considered. As a result, an optimization method is adopted to solve this engineering problem. In the study, a ZERODUR® mirror with a diameter of 466 mm has been chosen as the model and the optimization has been executed by combining the computer-aided design, finite element analysis, and parameter optimization software. The optimization is aimed to obtain the most lightweight mirror with maintaining structural rigidity and good optical quality. Finally, the optimum optical mirror with a lightweight ratio of 0.55 is attained successfully.

  5. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    PubMed Central

    2011-01-01

    Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology. PMID:21338504

  6. Pediatric medial subperiosteal orbital abscess: medical management where possible.

    PubMed

    Brown, Christopher L; Graham, Scott M; Griffin, Mark C; Smith, Richard J H; Carter, Keith D; Nerad, Jeffrey A; Bauman, Nancy M

    2004-01-01

    Controversy exists about the optimal management of subperiosteal orbital abscesses (SPOAs) in pediatric patients. Some otolaryngologists advocate immediate surgical drainage while others recommend medical management initially and reserve surgery for nonresponders. We hypothesized that patients who can be managed without surgery have identifiable features on presentation that may aid in predicting their response to medical therapy. A retrospective chart review was performed on all patients < or =18 years of age who were admitted to the University of Iowa between 1984 and 2001 with findings consistent with an SPOA on computed tomography imaging. Patients were divided into two groups: group I received medical treatment only while group II underwent surgical drainage of the abscess. Presenting features were compared between the two groups. Forty-two patients were identified with 17 group I patients and 25 group II patients. All patients had resolution of their SPOA and favorable outcomes. The following variables attained significance: group I patients were younger than group II patients (5.1 years versus 11 years; p < 0.0001), had less restriction of ocular motility (-1.0 versus -2.3), and were hospitalized for fewer days (6.5 days versus 9.6 days; p = 0.011). The following clinical variables did not vary significantly between the groups: gender, side of abscess, temperature, total white blood cell count, neutrophil count, chemosis, visual acuity, and proptosis. Culture results predominantly showed growth of anaerobic organisms (7/23). With increasing age, there was an increase in the number of organisms cultured (p = 0.005). A subset of patients with SPOAs can be managed medically. These patients tend to be younger and present with minimal restriction of ocular motility.

  7. The current status and future prospects of computer-assisted hip surgery.

    PubMed

    Inaba, Yutaka; Kobayashi, Naomi; Ike, Hiroyuki; Kubota, So; Saito, Tomoyuki

    2016-03-01

    The advances in computer assistance technology have allowed detailed three-dimensional preoperative planning and simulation of preoperative plans. The use of a navigation system as an intraoperative assistance tool allows more accurate execution of the preoperative plan, compared to manual operation without assistance of the navigation system. In total hip arthroplasty using CT-based navigation, three-dimensional preoperative planning with computer software allows the surgeon to determine the optimal angle of implant placement at which implant impingement is unlikely to occur in the range of hip joint motion necessary for daily activities of living, and to determine the amount of three-dimensional correction for leg length and offset. With the use of computer navigation for intraoperative assistance, the preoperative plan can be precisely executed. In hip osteotomy using CT-based navigation, the navigation allows three-dimensional preoperative planning, intraoperative confirmation of osteotomy sites, safe performance of osteotomy even under poor visual conditions, and a reduction in exposure doses from intraoperative fluoroscopy. Positions of the tips of chisels can be displayed on the computer monitor during surgery in real time, and staff other than the operator can also be aware of the progress of surgery. Thus, computer navigation also has an educational value. On the other hand, its limitations include the need for placement of trackers, increased radiation exposure from preoperative CT scans, and prolonged operative time. Moreover, because the position of a bone fragment cannot be traced after osteotomy, methods to find its precise position after its movement need to be developed. Despite the need to develop methods for the postoperative evaluation of accuracy for osteotomy, further application and development of these systems are expected in the future. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  8. Speech recognition for embedded automatic positioner for laparoscope

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin

    2014-07-01

    In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.

  9. Design of Bioprosthetic Aortic Valves using biaxial test data.

    PubMed

    Dabiri, Y; Paulson, K; Tyberg, J; Ronsky, J; Ali, I; Di Martino, E; Narine, K

    2015-01-01

    Bioprosthetic Aortic Valves (BAVs) do not have the serious limitations of mechanical aortic valves in terms of thrombosis. However, the lifetime of BAVs is too short, often requiring repeated surgeries. The lifetime of BAVs might be improved by using computer simulations of the structural behavior of the leaflets. The goal of this study was to develop a numerical model applicable to the optimization of durability of BAVs. The constitutive equations were derived using biaxial tensile tests. Using a Fung model, stress and strain data were computed from biaxial test data. SolidWorks was used to develop the geometry of the leaflets, and ABAQUS finite element software package was used for finite element calculations. Results showed the model is consistent with experimental observations. Reaction forces computed by the model corresponded with experimental measurements when the biaxial test was simulated. As well, the location of maximum stresses corresponded to the locations of frequent tearing of BAV leaflets. Results suggest that BAV design can be optimized with respect to durability.

  10. An environmental scan of advance care planning decision AIDS for patients undergoing major surgery: a study protocol.

    PubMed

    Aslakson, Rebecca A; Schuster, Anne L R; Miller, Judith; Weiss, Matthew; Volandes, Angelo E; Bridges, John F P

    2014-01-01

    Patients who undergo major surgery are at risk for perioperative morbidity and mortality. It would be appropriate to initiate advance care planning with patients prior to surgery, but surgeons may experience difficulty initiating such conversations. Rather than focus on changing clinician behavior, advance care planning decision aids can be an innovative vehicle to motivate advance care planning among surgical patients and their families. The purpose of this paper is to describe a study protocol for conducting an environmental scan concerning advance care planning decision aids that may be relevant to patients undergoing high-risk surgery. This study will gather information from written or verbal data sources that incorporate professional and lay perspectives: a systematic review, a grey literature review, key informant interviews, and patient and family engagement. It is envisioned that this study will generate three outcomes: a synthesis of current evidence, a summary of gaps in knowledge, and a taxonomy of existing advance care planning decision aids. This environmental scan will demonstrate principles of patient-centered outcomes research, and it will exemplify a pioneering approach for reviewing complex interventions. Anticipated limitations are that information will be gathered from a small sample of patients and families, and that potentially relevant information could also be missing from the environmental scan due to the inclusion/exclusion criteria. Outcomes from the environmental scan will inform future patient-centered research to develop and evaluate a new decision aid.

  11. A method for brain 3D surface reconstruction from MR images

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin

    2014-09-01

    Due to the encephalic tissues are highly irregular, three-dimensional (3D) modeling of brain always leads to complicated computing. In this paper, we explore an efficient method for brain surface reconstruction from magnetic resonance (MR) images of head, which is helpful to surgery planning and tumor localization. A heuristic algorithm is proposed for surface triangle mesh generation with preserved features, and the diagonal length is regarded as the heuristic information to optimize the shape of triangle. The experimental results show that our approach not only reduces the computational complexity, but also completes 3D visualization with good quality.

  12. Reliability of computer designed surgical guides in six implant rehabilitations with two years follow-up.

    PubMed

    Giordano, Mauro; Ausiello, Pietro; Martorelli, Massimo; Sorrentino, Roberto

    2012-09-01

    To evaluate the reliability and accuracy of computer-designed surgical guides in osseointegrated oral implant rehabilitation. Six implant rehabilitations, with a total of 17 implants, were completed with computer-designed surgical guides, performed with the master model developed by muco-compressive and muco-static impressions. In the first case, the surgical guide had exclusively mucosal support, in the second case exclusively dental support. For all six cases computer-aided surgical planning was performed by virtual analyses with 3D models obtained by dental scan DICOM data. The accuracy and stability of implant osseointegration over two years post surgery was then evaluated with clinical and radiographic examinations. Radiographic examination, performed with digital acquisitions (RVG - Radio Video graph) and parallel techniques, allowed two-dimensional feedback with a margin of linear error of 10%. Implant osseointegration was recorded for all the examined rehabilitations. During the clinical and radiographic post-surgical assessments, over the following two years, the peri-implant bone level was found to be stable and without appearance of any complications. The margin of error recorded between pre-operative positions assigned by virtual analysis and the post-surgical digital radiographic observations was as low as 0.2mm. Computer-guided implant surgery can be very effective in oral rehabilitations, providing an opportunity for the surgeon: (a) to avoid the necessity of muco-periosteal detachments and then (b) to perform minimally invasive interventions, whenever appropriate, with a flapless approach. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Ant Lion Optimization algorithm for kidney exchanges.

    PubMed

    Hamouda, Eslam; El-Metwally, Sara; Tarek, Mayada

    2018-01-01

    The kidney exchange programs bring new insights in the field of organ transplantation. They make the previously not allowed surgery of incompatible patient-donor pairs easier to be performed on a large scale. Mathematically, the kidney exchange is an optimization problem for the number of possible exchanges among the incompatible pairs in a given pool. Also, the optimization modeling should consider the expected quality-adjusted life of transplant candidates and the shortage of computational and operational hospital resources. In this article, we introduce a bio-inspired stochastic-based Ant Lion Optimization, ALO, algorithm to the kidney exchange space to maximize the number of feasible cycles and chains among the pool pairs. Ant Lion Optimizer-based program achieves comparable kidney exchange results to the deterministic-based approaches like integer programming. Also, ALO outperforms other stochastic-based methods such as Genetic Algorithm in terms of the efficient usage of computational resources and the quantity of resulting exchanges. Ant Lion Optimization algorithm can be adopted easily for on-line exchanges and the integration of weights for hard-to-match patients, which will improve the future decisions of kidney exchange programs. A reference implementation for ALO algorithm for kidney exchanges is written in MATLAB and is GPL licensed. It is available as free open-source software from: https://github.com/SaraEl-Metwally/ALO_algorithm_for_Kidney_Exchanges.

  14. Role of Multi Detector Computed Tomography (MDCT) in Preoperative Staging of Pancreatic Carcinoma.

    PubMed

    Singhal, Soumil; Prabhu, Nirmal Kumar; Sethi, Pulkit; Moorthy, Srikanth

    2017-05-01

    Pancreatic carcinoma is one of the leading causes of cancer related death in advanced countries and has shown rising trends in developing countries like India. Increase in the incidence has been linked to risk factors like lifestyle modification associated with increased alcohol consumption and rapid urbanization. Most patients at the time of diagnosis present with an advanced condition. Surgical resection offers the only chance for cure in them and imaging plays a crucial role in the early diagnosis of the condition. To compare the staging of pancreatic carcinoma by MDCT (Multi Detector Computed Tomography) with surgery in a preoperative setting in a tertiary referral centre in Kerala. A cross-sectional observational study was performed between November 2014 and October 2016, 25 patients (12 men, 13 women), with a mean age of 54.2 years, were evaluated. MDCT was performed using 16 slice, 64 slice and 256 slice multi detector CT machines. The gold standard for diagnosis was histopathology and operative data. All statistical analysis was done using IBM SPSS version 20.0. Validity parameters like sensitivity, specificity, accuracy and Positive Predictive Value (PPV) / Negative Predictive Value (NPV) were computed for MDCT with respect to surgery. Of the 25 patients who were evaluated for surgery, 15 (60%) cases were classified as resectable tumours, 3 (12%) as borderline resectable and 7 (28%) as unresectable tumours. CT showed a sensitivity of 82.3% with a specificity of 87.5%. However, for assessing vascular invasion, CT showed sensitivity and specificity of 100% and 93.3% respectively. Three (12%) patients in the study who were classified as borderline resectable pancreatic tumours underwent surgery. Contrast-enhanced multiphase pancreatic imaging using MDCT plays a pivotal role in diagnosing and assessing resectability and vascular invasion of pancreatic tumours. It is very useful for determining borderline resectable tumours pre-operatively, which aids for better treatment planning.

  15. Management of intra-abdominal abscesses in children with Crohn's disease: a 12-year, retrospective single-center review.

    PubMed

    Dotson, Jennifer L; Bashaw, Hillary; Nwomeh, Benedict; Crandall, Wallace V

    2015-05-01

    Intra-abdominal abscesses (IAA) are complications of Crohn's disease, which often result in hospitalization, surgery, and increased cost. Initial management may include medical therapy, percutaneous drainage (PD), or surgery, although the optimal management of IAA in children is unclear. Retrospective review of all pediatric patients with Crohn's disease who developed an IAA from January 1, 2000 to April 30, 2012. Three groups, based on initial IAA treatment modality (medical, PD, and surgery), were compared. Thirty cases of IAA were identified (mean age at IAA diagnosis, 15.4 ± 2.6 yr, 67% female, median Crohn's disease duration, 2.6 mo). Computed tomography was the most common initial (93%) and follow-up (47%) imaging. The average time to follow-up imaging was 8.5 days. For initial management, 18 received medical therapy, 10 PD, and 2 had surgery. The medical therapy group received more computed tomography scans for follow-up imaging than the PD group (12 [67%] versus 2 [20%], P = 0.046). There were no significant differences in abscess characteristics or management of posttreatment course between these 2 groups. Surgical resection occurred in 3 patients (17%) in the medical group and 2 (20%) in the PD group during index hospitalization. No significant differences were identified among treatment groups for readmissions, complications, or abscess recurrence. By 1 year, 12 of the 18 medically managed patients (67%) had surgery, and 6 of the 10 patients (60%) treated with initial PD ultimately had surgery. The majority of patients with IAA require definitive surgical treatment, and there were no clear predictors of those who did not.

  16. A method for visualizing high-density porous polyethylene (medpor, porex) with computed tomographic scanning.

    PubMed

    Vendemia, Nicholas; Chao, Jerry; Ivanidze, Jana; Sanelli, Pina; Spinelli, Henry M

    2011-01-01

    Medpor (Porex Surgical, Inc, Newnan, GA) is composed of porous polyethylene and is commonly used in craniofacial reconstruction. When complications such as seroma or abscess formation arise, diagnostic modalities are limited because Medpor is radiolucent on conventional radiologic studies. This poses a problem in situations where imaging is necessary to distinguish the implant from surrounding tissues. To present a clinically useful method for imaging Medpor with conventional computed tomographic (CT) scanning. Eleven patients (12 total implants) who have undergone reconstructive surgery with Medpor were included in the study. A retrospective review of CT scans done between 1 and 16 months postoperatively was performed using 3 distinct CT window settings. Measurements of implant dimensions and Hounsfield units were recorded and qualitatively assessed. Of the 3 distinct window settings studied, namely, "bone" (W1100/L450), "soft tissue"; (W500/L50), and "implant" (W800/L200), the implant window proved the most ideal, allowing the investigators to visualize and evaluate Medpor in all cases. Qualitative analysis revealed that Medpor implants were able to be distinguished from surrounding tissue in both the implant and soft tissue windows, with a density falling between that of fat and fluid. In 1 case, Medpor could not be visualized in the soft tissue window, although it could be visualized in the implant window. Quantitative analysis demonstrated a mean (SD) density of -38.7 (7.4) Hounsfield units. Medpor may be optimally visualized on conventional CT scans using the implant window settings W800/L200, which can aid in imaging Medpor and diagnosing implant-related complications.

  17. Trellis coding techniques for mobile communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.; Jedrey, T.

    1988-01-01

    A criterion for designing optimum trellis codes to be used over fading channels is given. A technique is shown for reducing certain multiple trellis codes, optimally designed for the fading channel, to conventional (i.e., multiplicity one) trellis codes. The computational cutoff rate R0 is evaluated for MPSK transmitted over fading channels. Examples of trellis codes optimally designed for the Rayleigh fading channel are given and compared with respect to R0. Two types of modulation/demodulation techniques are considered, namely coherent (using pilot tone-aided carrier recovery) and differentially coherent with Doppler frequency correction. Simulation results are given for end-to-end performance of two trellis-coded systems.

  18. Two-dimensional designed fabrication of subwavelength grating HCG mirror on silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Hong, Kuo-Bin; Lu, Tien-Chang; He, Sailing

    2016-03-01

    We designed and fabricated a two dimensional high contrast subwavelength grating (HCG) mirrors. The computer-aided software was employed to verify the structural parameters including grating periods and filling factors. From the optimized simulation results, the designed HCG structure has a wide reflection stopband (reflectivity (R) >90%) of over 200 nm, which centered at telecommunication wavelength. The optimized HCG mirrors were fabricated by electron beam lithography and inductively coupled plasma process technique. The experimental result was almost consistent with calculated data. This achievement should have an impact on numerous photonic devices helpful attribution to the integrated HCG VCSELs in the future.

  19. Barriers and facilitators to orthopaedic surgeons’ uptake of decision aids for total knee arthroplasty: a qualitative study

    PubMed Central

    Nelson, Elizabeth; Scott, Anthony; French, Simon; Choong, Peter; Dowsey, Michelle

    2017-01-01

    Objectives The demand for total knee arthroplasty (TKA) is increasing. Differentiating who will derive a clinically meaningful improvement from TKA from others is a key challenge for orthopaedic surgeons. Decision aids can help surgeons select appropriate candidates for surgery, but their uptake has been low. The aim of this study was to explore the barriers and facilitators to decision aid uptake among orthopaedic surgeons. Design A qualitative study involving face-to-face interviews. Questions were constructed on the Theoretical Domains Framework to systematically explore barriers and facilitators. Setting One tertiary hospital in Australia. Participants Twenty orthopaedic surgeons performing TKA. Outcome measures Beliefs underlying similar interview responses were identified and grouped together as themes describing relevant barriers and facilitators to uptake of decision aids. Results While prioritising their clinical acumen, surgeons believed a decision aid could enhance communication and patient informed consent. Barriers identified included the perception that one’s patient outcomes were already optimal; a perceived lack of non-operative alternatives for the management of end-stage osteoarthritis, concerns about mandatory cut-offs for patient-centred care and concerns about the medicolegal implications of using a decision aid. Conclusions Multifaceted implementation interventions are required to ensure that orthopaedic surgeons are ready, willing and able to use a TKA decision aid. Audit/feedback to address current decision-making biases such as overconfidence may enhance readiness to uptake. Policy changes and/or incentives may enhance willingness to uptake. Finally, the design/implementation of effective non-operative treatments may enhance ability to uptake by ensuring that surgeons have the resources they need to carry out decisions. PMID:29133333

  20. Accelerating orthodontic tooth movement: A new, minimally-invasive corticotomy technique using a 3D-printed surgical template.

    PubMed

    Cassetta, M; Giansanti, M

    2016-07-01

    A reduction in orthodontic treatment time can be attained using corticotomies. The aggressive nature of corticotomy due to the elevation of muco-periosteal flaps and to the duration of the surgery raised reluctance for its employ among patients and dental community. This study aims to provide detailed information on the design and manufacture of a 3D-printed CAD-CAM (computer-aided design and computer-aided manufacturing) surgical guide which can aid the clinician in achieving a minimally-invasive, flapless corticotomy. An impression of dental arches was created; the models were digitally-acquired using a 3D scanner and saved as STereoLithography ( STL ) files. The patient underwent cone beam computed tomography (CBCT): images of jaws and teeth were transformed into 3D models and saved as an STL file. An acrylic template with the design of a surgical guide was manufactured and scanned. The STLs of jaws, scanned casts, and acrylic templates were matched. 3D modeling software allowed the view of the 3D models from different perspectives and planes with perfect rendering. The 3D model of the acrylic template was transformed into a surgical guide with slots designed to guide, at first, a scalpel blade and then a piezoelectric cutting insert. The 3D STL model of the surgical guide was printed. This procedure allowed the manufacturing of a 3D-printed CAD/CAM surgical guide, which overcomes the disadvantages of the corticotomy, removing the need for flap elevation. No discomfort, early surgical complications or unexpected events were observed. The effectiveness of this minimally-invasive surgical technique can offer the clinician a valid alternative to other methods currently in use.

  1. Computer-aided auscultation of murmurs in children: evaluation of commercially available software.

    PubMed

    Lee, Cecilia; Rankin, Kathryn N; Zuo, Kevin J; Mackie, Andrew S

    2016-10-01

    Heart murmurs are common in children and may represent congenital or acquired cardiac pathology. Auscultation is challenging and many primary-care physicians lack the skill to differentiate innocent from pathologic murmurs. We sought to determine whether computer-aided auscultation (CardioscanTM) identifies which children require referral to a cardiologist. We consecutively enrolled children aged between 0 and 17 years with a murmur, innocent or pathologic, being evaluated in a tertiary-care cardiology clinic. Children being evaluated for the first time and patients with known cardiac pathology were eligible. We excluded children who had undergone cardiac surgery previously or were unable to sit still for auscultation. CardioscanTM auscultation was performed in a quiet room with the subject in the supine position. The sensitivity and specificity of a potentially pathologic murmur designation by CardioscanTM - that is, requiring referral - was determined using echocardiography as the reference standard. We enrolled 126 subjects (44% female) with a median age of 1.7 years, with 93 (74%) having cardiac pathology. The sensitivity and specificity of a potentially pathologic murmur determination by CardioscanTM for identification of cardiac pathology were 83.9 and 30.3%, respectively, versus 75.0 and 71.4%, respectively, when limited to subjects with a heart rate of 50-120 beats per minute. The combination of a CardioscanTM potentially pathologic murmur designation or an abnormal electrocardiogram improved sensitivity to 93.5%, with no haemodynamically significant lesions missed. Sensitivity of CardioscanTM when interpreted in conjunction with an abnormal electrocardiogram was high, although specificity was poor. Re-evaluation of computer-aided auscultation will remain necessary as advances in this technology become available.

  2. A bicriteria heuristic for an elective surgery scheduling problem.

    PubMed

    Marques, Inês; Captivo, M Eugénia; Vaz Pato, Margarida

    2015-09-01

    Resource rationalization and reduction of waiting lists for surgery are two main guidelines for hospital units outlined in the Portuguese National Health Plan. This work is dedicated to an elective surgery scheduling problem arising in a Lisbon public hospital. In order to increase the surgical suite's efficiency and to reduce the waiting lists for surgery, two objectives are considered: maximize surgical suite occupation and maximize the number of surgeries scheduled. This elective surgery scheduling problem consists of assigning an intervention date, an operating room and a starting time for elective surgeries selected from the hospital waiting list. Accordingly, a bicriteria surgery scheduling problem arising in the hospital under study is presented. To search for efficient solutions of the bicriteria optimization problem, the minimization of a weighted Chebyshev distance to a reference point is used. A constructive and improvement heuristic procedure specially designed to address the objectives of the problem is developed and results of computational experiments obtained with empirical data from the hospital are presented. This study shows that by using the bicriteria approach presented here it is possible to build surgical plans with very good performance levels. This method can be used within an interactive approach with the decision maker. It can also be easily adapted to other hospitals with similar scheduling conditions.

  3. Engineering Technology Programs Courses Guide for Computer Aided Design and Computer Aided Manufacturing.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Div. of Vocational Education.

    This guide describes the requirements for courses in computer-aided design and computer-aided manufacturing (CAD/CAM) that are part of engineering technology programs conducted in vocational-technical schools in Georgia. The guide is organized in five sections. The first section provides a rationale for occupations in design and in production,…

  4. Employment Opportunities for the Handicapped in Programmable Automation.

    ERIC Educational Resources Information Center

    Swift, Richard; Leneway, Robert

    A Computer Integrated Manufacturing System may make it possible for severely disabled people to custom design, machine, and manufacture either wood or metal parts. Programmable automation merges computer aided design, computer aided manufacturing, computer aided engineering, and computer integrated manufacturing systems with automated production…

  5. Hearing Aids and Music

    PubMed Central

    Chasin, Marshall; Russo, Frank A.

    2004-01-01

    Historically, the primary concern for hearing aid design and fitting is optimization for speech inputs. However, increasingly other types of inputs are being investigated and this is certainly the case for music. Whether the hearing aid wearer is a musician or merely someone who likes to listen to music, the electronic and electro-acoustic parameters described can be optimized for music as well as for speech. That is, a hearing aid optimally set for music can be optimally set for speech, even though the converse is not necessarily true. Similarities and differences between speech and music as inputs to a hearing aid are described. Many of these lead to the specification of a set of optimal electro-acoustic characteristics. Parameters such as the peak input-limiting level, compression issues—both compression ratio and knee-points—and number of channels all can deleteriously affect music perception through hearing aids. In other cases, it is not clear how to set other parameters such as noise reduction and feedback control mechanisms. Regardless of the existence of a “music program,” unless the various electro-acoustic parameters are available in a hearing aid, music fidelity will almost always be less than optimal. There are many unanswered questions and hypotheses in this area. Future research by engineers, researchers, clinicians, and musicians will aid in the clarification of these questions and their ultimate solutions. PMID:15497032

  6. Elliptically Framed Tip-Tilt Mirror Optimized for Stellar Tracking

    DTIC Science & Technology

    2015-01-01

    a rotating frame. We used the same materials as the existing tracker; however, light-weighted both the aluminum frame and Zerodur ® mirror . We...as the existing tracker; however, light-weighted both the aluminum frame and Zerodur mirror . We generated a computer-aided design model, converted it...components include an aluminum yoke and ring, glass Zerodur ®4 mirror , piezoelectric (PZT) actuators and stainless steel flexure pivot bearings5. Fig. 1

  7. A Response Evaluation Approach: An Aid for Computer Assisted Instruction Lesson Writing.

    DTIC Science & Technology

    1980-09-01

    Arnheim, Rudolph, Visual Thinking, Berkeley and Los Angeles, California: UniversiEy of California Press, 1969. Bruner , Jerome S., Goodnow, Jacqueline J...describing a further path for each student, which would optimize his learning experience, must be at the machine’s disposal. In the student-directed...approach, the sequence of the material presented is altered only at the request of the student. The approach uses the aspect of learning by dis

  8. A computational fluid dynamics simulation framework for ventricular catheter design optimization.

    PubMed

    Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A

    2017-11-10

    OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using the standard catheter hole configuration as a baseline. While the standard ventricular catheter design featuring uniform inlet hole diameters and hole spacing has a standard deviation of 14.27% for the inlet flow rates, the optimized design has a standard deviation of 0.30%. CONCLUSIONS This customizable framework, paired with high-performance computing, provides a rapid method of design testing to solve complex flow problems. While a relatively simplified ventricular catheter model was used to demonstrate the framework, the computational approach is applicable to any baseline catheter model, and it is easily adapted to optimize catheters for the unique needs of different patients as well as for other fluid-based medical devices.

  9. Three years of biomedical FEL use in medicine and surgery How far have we come?

    NASA Astrophysics Data System (ADS)

    Jean, Benedikt

    1997-02-01

    Since the FEL has been made available for biophysical research in the IR, it has revolutionized the optimization strategies of laser-tissue interaction and the minimizing of adverse effects, in particular for photoablative use in surgery. Its tunability together with the free combination of wavelength and energy made it an efficient research tool, allowing the reduction of risks and costs of preclinical biomedical research. New computer-assisted surgical techniques evolved and the broader data basis of IR photothermal ablation allows more accurate predictive modelling of the efficiency and the adverse effects of photoablation. New applications for diagnostic imaging as well as the first clinical applications in neurosurgery lay ahead.

  10. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.

    1976-01-01

    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.

  11. A novel computer system for the evaluation of nasolabial morphology, symmetry and aesthetics after cleft lip and palate treatment. Part 2: Comparative anthropometric analysis of patients with repaired unilateral complete cleft lip and palate and healthy individuals.

    PubMed

    Pietruski, Piotr; Majak, Marcin; Pawlowska, Elzbieta; Skiba, Adam; Antoszewski, Boguslaw

    2017-04-01

    The aim of this study was to use a novel system, 'Analyse It Doc' (A.I.D.) for a complex anthropometric analysis of the nasolabial region in patients with repaired unilateral complete cleft lip and palate and in healthy individuals. A set of standardized facial photographs in frontal, lateral and submental view have been taken in 50 non-cleft controls (mean age 20.6 years) and 42 patients with repaired unilateral complete cleft and palate (mean age 19.57 years). Then, based on linear, angular and area measurements taken from the digital photographs with the aid of the A.I.D. system, a photogrammetric analysis of intergroup differences in nasolabial morphology and symmetry was conducted. Patients with cleft lip and palate differed from the controls in terms of more than half of analysed angular measurements and proportion indices derived from linear and area measurements of the nasolabial region. The findings presented herein imply that despite primary surgical repair, patients with unilateral complete cleft lip and palate still show some degree of nasolabial dysmorphology. Furthermore, the study demonstrated that the novel computer system is suitable for a reliable, simple and time-efficient anthropometric analysis in a clinical setting. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. CAD/CAM (Computer Aided Design/Computer Aided Manufacture). A Brief Guide to Materials in the Library of Congress.

    ERIC Educational Resources Information Center

    Havas, George D.

    This brief guide to materials in the Library of Congress (LC) on computer aided design and/or computer aided manufacturing lists reference materials and other information sources under 13 headings: (1) brief introductions; (2) LC subject headings used for such materials; (3) textbooks; (4) additional titles; (5) glossaries and handbooks; (6)…

  13. The Future Medical Science and Colorectal Surgeons

    PubMed Central

    2017-01-01

    Future medical technology breakthroughs will build from the incredible progress made in computers, biotechnology, and nanotechnology and from the information learned from the human genome. With such technology and information, computer-aided diagnoses, organ replacement, gene therapy, personalized drugs, and even age reversal will become possible. True 3-dimensional system technology will enable surgeons to envision key clinical features and will help them in planning complex surgery. Surgeons will enter surgical instructions in a virtual space from a remote medical center, order a medical robot to perform the operation, and review the operation in real time on a monitor. Surgeons will be better than artificial intelligence or automated robots when surgeons (or we) love patients and ask questions for a better future. The purpose of this paper is looking at the future medical science and the changes of colorectal surgeons. PMID:29354602

  14. Diagnosis and management of solitary pulmonary nodules.

    PubMed

    Jeong, Yeon Joo; Lee, Kyung Soo; Kwon, O Jung

    2008-12-01

    The advent of computed tomography (CT) screening with or without the help of computer-aided detection systems has increased the detection rate of solitary pulmonary nodules (SPNs), including that of early peripheral lung cancer. Helical dynamic (HD)CT, providing the information on morphologic and hemodynamic characteristics with high specificity and reasonably high accuracy, can be used for the initial assessment of SPNs. (18)F-fluorodeoxyglucose PET/CT is more sensitive at detecting malignancy than HDCT. Therefore, PET/CT may be selectively performed to characterize SPNs when HDCT gives an inconclusive diagnosis. Serial volume measurements are currently the most reliable methods for the tissue characterization of subcentimeter nodules. When malignant nodule is highly suspected for subcentimeter nodules, video-assisted thoracoscopic surgery nodule removal after nodule localization using the pulmonary nodule-marker system may be performed for diagnosis and treatment.

  15. 3D-printed guiding templates for improved osteosarcoma resection

    NASA Astrophysics Data System (ADS)

    Ma, Limin; Zhou, Ye; Zhu, Ye; Lin, Zefeng; Wang, Yingjun; Zhang, Yu; Xia, Hong; Mao, Chuanbin

    2016-03-01

    Osteosarcoma resection is challenging due to the variable location of tumors and their proximity with surrounding tissues. It also carries a high risk of postoperative complications. To overcome the challenge in precise osteosarcoma resection, computer-aided design (CAD) was used to design patient-specific guiding templates for osteosarcoma resection on the basis of the computer tomography (CT) scan and magnetic resonance imaging (MRI) of the osteosarcoma of human patients. Then 3D printing technique was used to fabricate the guiding templates. The guiding templates were used to guide the osteosarcoma surgery, leading to more precise resection of the tumorous bone and the implantation of the bone implants, less blood loss, shorter operation time and reduced radiation exposure during the operation. Follow-up studies show that the patients recovered well to reach a mean Musculoskeletal Tumor Society score of 27.125.

  16. The Future Medical Science and Colorectal Surgeons.

    PubMed

    Kim, Young Jin

    2017-12-01

    Future medical technology breakthroughs will build from the incredible progress made in computers, biotechnology, and nanotechnology and from the information learned from the human genome. With such technology and information, computer-aided diagnoses, organ replacement, gene therapy, personalized drugs, and even age reversal will become possible. True 3-dimensional system technology will enable surgeons to envision key clinical features and will help them in planning complex surgery. Surgeons will enter surgical instructions in a virtual space from a remote medical center, order a medical robot to perform the operation, and review the operation in real time on a monitor. Surgeons will be better than artificial intelligence or automated robots when surgeons (or we) love patients and ask questions for a better future. The purpose of this paper is looking at the future medical science and the changes of colorectal surgeons.

  17. Proceedings of the NATO-Advanced Study Institute on Computer Aided Analysis of Rigid and Flexible Mechanical Systems. Volume 1: Main lectures

    NASA Astrophysics Data System (ADS)

    Pereira, Manuel S.; Ambrosio, Jorge A. C.

    1993-07-01

    During the last few years, major scientific progress has been achieved in fields related to computer aided analysis of multibody systems. In view of this progress and recent developments of computer hardware and general purpose software, there is a need to access the current state of art and results from different schools of thought, with the objective of focussing trends in future research. Going back to 1983 when an important NATO-NSF-ARO Advanced Study Institute on Computer Aided Analysis and Optimization of Mechanical Systems was held at the University of Iowa, one may notice that less then 10 years ago the state of art was mainly dwelling on rigid body dynamics. The interest in the dynamic simulation of mechanical systems has steadily increased in recent years coming mainly from the aerospace and automative industries. The development of multibody system analysis formulations have been more recently motivated with the need to include several features such as: real-time simulation capabilities, highly non-linear control devices, work space path planing, active control of machine flexibilities and reliability and accuracy in the analysis results. The need for accurate and efficient analysis tools for design of large and lightweight mechanical systems has driven many research groups in the challenging problem of flexible systems with an increasing interaction with finite element methodologies. Basic approaches to mechanical systems dynamic analysis have recently been presented in several new text books. These publications demonstrate that both recursive and absolute methods still have their proponents to resolve the redundancy encountered in most mechanical systems.

  18. Computer aiding for low-altitude helicopter flight

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    1991-01-01

    A computer-aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generated algorithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB) simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.

  19. Viability of Bioprinted Cellular Constructs Using a Three Dispenser Cartesian Printer.

    PubMed

    Dennis, Sarah Grace; Trusk, Thomas; Richards, Dylan; Jia, Jia; Tan, Yu; Mei, Ying; Fann, Stephen; Markwald, Roger; Yost, Michael

    2015-09-22

    Tissue engineering has centralized its focus on the construction of replacements for non-functional or damaged tissue. The utilization of three-dimensional bioprinting in tissue engineering has generated new methods for the printing of cells and matrix to fabricate biomimetic tissue constructs. The solid freeform fabrication (SFF) method developed for three-dimensional bioprinting uses an additive manufacturing approach by depositing droplets of cells and hydrogels in a layer-by-layer fashion. Bioprinting fabrication is dependent on the specific placement of biological materials into three-dimensional architectures, and the printed constructs should closely mimic the complex organization of cells and extracellular matrices in native tissue. This paper highlights the use of the Palmetto Printer, a Cartesian bioprinter, as well as the process of producing spatially organized, viable constructs while simultaneously allowing control of environmental factors. This methodology utilizes computer-aided design and computer-aided manufacturing to produce these specific and complex geometries. Finally, this approach allows for the reproducible production of fabricated constructs optimized by controllable printing parameters.

  20. Zygomatico-maxillary Reconstruction with Computer-aided Manufacturing of a Free DCIA Osseous Flap and Intraoral Anastomoses.

    PubMed

    Roy, Andrée-Anne; Efanov, Johnny I; Mercier-Couture, Geneviève; Chollet, André; Borsuk, Daniel E

    2017-02-01

    Craniomaxillofacial reconstruction using virtual surgical planning, computer-aided manufacturing, and new microsurgical techniques optimizes patient-specific and defect-directed reconstruction. A 3D customized free deep circumflex iliac artery (DCIA) flap with intraoral anastomoses was performed on a 23-year-old man with a posttraumatic right zygomatico-maxillary defect with failure of alloplastic implant reconstruction. An osseous iliac crest flap was sculpted based on a customized 3D model of the mirror image of the patient's unaffected side to allow for perfect fit to the zygomatico-maxillary defect. An intraoral dissection of the facial artery and vein was performed within the right cheek mucosa and allowed for end-to-end microvascular anastomoses. 3D preoperative planning and customized free DCIA osseous flap combined with an intraoral microsurgical technique provided restoration of facial esthetics and function without visible scars. In cases where zygomatico-malar reconstruction by alloplastic material fails, a customized free DCIA osseous flap can be designed by virtual surgical planning to restore facial appearance and function.

  1. Student Achievement in Computer Programming: Lecture vs Computer-Aided Instruction

    ERIC Educational Resources Information Center

    Tsai, San-Yun W.; Pohl, Norval F.

    1978-01-01

    This paper discusses a study of the differences in student learning achievement, as measured by four different types of common performance evaluation techniques, in a college-level computer programming course under three teaching/learning environments: lecture, computer-aided instruction, and lecture supplemented with computer-aided instruction.…

  2. Orthognathic surgery in the office setting.

    PubMed

    Farrell, Brian B; Tucker, Myron R

    2014-11-01

    The delivery of care by oral and maxillofacial surgeons is becoming more challenging because of escalating health care costs and limited reimbursement from insurance providers. The changing health care landscape forces surgical practices to be flexible and adaptive to change in order to remain viable. The delivery of surgical services continues to evolve as care traditionally performed in a hospital environment is now routinely achieved in an outpatient setting. Outpatient facilities can aid in controlling the perioperative costs associated with orthognathic surgery. Safe and efficient orthognathic surgery completed in the office can aid in controlling the escalation of health care costs. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Computer-Aided Breast Cancer Diagnosis with Optimal Feature Sets: Reduction Rules and Optimization Techniques.

    PubMed

    Mathieson, Luke; Mendes, Alexandre; Marsden, John; Pond, Jeffrey; Moscato, Pablo

    2017-01-01

    This chapter introduces a new method for knowledge extraction from databases for the purpose of finding a discriminative set of features that is also a robust set for within-class classification. Our method is generic and we introduce it here in the field of breast cancer diagnosis from digital mammography data. The mathematical formalism is based on a generalization of the k-Feature Set problem called (α, β)-k-Feature Set problem, introduced by Cotta and Moscato (J Comput Syst Sci 67(4):686-690, 2003). This method proceeds in two steps: first, an optimal (α, β)-k-feature set of minimum cardinality is identified and then, a set of classification rules using these features is obtained. We obtain the (α, β)-k-feature set in two phases; first a series of extremely powerful reduction techniques, which do not lose the optimal solution, are employed; and second, a metaheuristic search to identify the remaining features to be considered or disregarded. Two algorithms were tested with a public domain digital mammography dataset composed of 71 malignant and 75 benign cases. Based on the results provided by the algorithms, we obtain classification rules that employ only a subset of these features.

  4. A fast rigid-registration method of inferior limb X-ray image and 3D CT images for TKA surgery

    NASA Astrophysics Data System (ADS)

    Ito, Fumihito; O. D. A, Prima; Uwano, Ikuko; Ito, Kenzo

    2010-03-01

    In this paper, we propose a fast rigid-registration method of inferior limb X-ray films (two-dimensional Computed Radiography (CR) images) and three-dimensional Computed Tomography (CT) images for Total Knee Arthroplasty (TKA) surgery planning. The position of the each bone, such as femur and tibia (shin bone), in X-ray film and 3D CT images is slightly different, and we must pay attention how to use the two different images, since X-ray film image is captured in the standing position, and 3D CT is captured in decubitus (face up) position, respectively. Though the conventional registration mainly uses cross-correlation function between two images,and utilizes optimization techniques, it takes enormous calculation time and it is difficult to use it in interactive operations. In order to solve these problems, we calculate the center line (bone axis) of femur and tibia (shin bone) automatically, and we use them as initial positions for the registration. We evaluate our registration method by using three patient's image data, and we compare our proposed method and a conventional registration, which uses down-hill simplex algorithm. The down-hill simplex method is an optimization algorithm that requires only function evaluations, and doesn't need the calculation of derivatives. Our registration method is more effective than the downhill simplex method in computational time and the stable convergence. We have developed the implant simulation system on a personal computer, in order to support the surgeon in a preoperative planning of TKA. Our registration method is implemented in the simulation system, and user can manipulate 2D/3D translucent templates of implant components on X-ray film and 3D CT images.

  5. A new approach of splint-less orthognathic surgery using a personalized orthognathic surgical guide system: A preliminary study

    PubMed Central

    Li, B.; Shen, S.; Jiang, W.; Li, J.; Jiang, T.; Xia, J. J.; Shen, S. G.; Wang, X.

    2017-01-01

    The purpose of this study was to evaluate a personalized orthognathic surgical guide (POSG) system for bimaxillary surgery without the use of surgical splint. Ten patients with dentofacial deformities were enrolled. Surgeries were planned with the computer-aided surgical simulation method. The POSG system was designed for both maxillary and mandibular surgery. Each consisted of cutting guides and three-dimensionally (3D) printed custom titanium plates to guide the osteotomy and repositioning the bony segments without the use of the surgical splints. Finally, the outcome evaluation was completed by comparing planned outcomes with postoperative outcomes. All operations were successfully completed using the POSG system. The largest root-mean-square deviations were 0.74 mm and 1.93° for the maxillary dental arch, 1.10 mm and 2.82° for the mandibular arch, 0.83 mm and 2.59° for the mandibular body, and 0.98 mm and 2.45° for the proximal segments. The results of the study indicated that our POSG system is capable of accurately and effectively transferring the surgical plan without the use of surgical splint. A significant advantage is that the repositioning of the bony segments is independent to the mandibular autorotation, thus eliminates the potential problems associated with the surgical splint. PMID:28552440

  6. Patient specific pointer tool for corrective osteotomy: Quality of symmetry based planning and case study of ulnar reconstruction surgery.

    PubMed

    Mueller, Samuel; Kahrs, Lueder A; Gaa, Johannes; Ortmaier, Tobias; Clausen, Jan-Dierk; Krettek, Christian

    2017-07-01

    Malunion after forearm fractures are described to appear in 2% to 10% of cases. Reconstructive surgeries ensure adequate anatomical repositioning. Their importance derives from the fact that malunion can often lead to severe pain as well as deformities causing loss of function and aesthetic issues not only in the forearm, but also the wrist and elbow joint. In this paper a clinical case will be presented using a Patient Specific Instrument (PSI) as navigational aid for reconstructive surgery after malunion of a proximal ulnar fracture combined with allograft surgery of the radial head and radial condyle due to chronic traumatic radial head luxation (Monteggia fracture). A planning method based on symmetry is described and evaluated on twelve Computed Tomographic (CT) data sets of intact forearms. The absolute point to point deviation at distal end of the ulnar styloid process was used as a characteristic value for accuracy evaluation. It is 7.9±4.9mm when using only the proximal end of the ulna for registration. The simulated change of ulnar variance is -1.4±1.9mm. Design and concept of the PSI are proven in a clinical trial. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Adaptive parametric model order reduction technique for optimization of vibro-acoustic models: Application to hearing aid design

    NASA Astrophysics Data System (ADS)

    Creixell-Mediante, Ester; Jensen, Jakob S.; Naets, Frank; Brunskog, Jonas; Larsen, Martin

    2018-06-01

    Finite Element (FE) models of complex structural-acoustic coupled systems can require a large number of degrees of freedom in order to capture their physical behaviour. This is the case in the hearing aid field, where acoustic-mechanical feedback paths are a key factor in the overall system performance and modelling them accurately requires a precise description of the strong interaction between the light-weight parts and the internal and surrounding air over a wide frequency range. Parametric optimization of the FE model can be used to reduce the vibroacoustic feedback in a device during the design phase; however, it requires solving the model iteratively for multiple frequencies at different parameter values, which becomes highly time consuming when the system is large. Parametric Model Order Reduction (pMOR) techniques aim at reducing the computational cost associated with each analysis by projecting the full system into a reduced space. A drawback of most of the existing techniques is that the vector basis of the reduced space is built at an offline phase where the full system must be solved for a large sample of parameter values, which can also become highly time consuming. In this work, we present an adaptive pMOR technique where the construction of the projection basis is embedded in the optimization process and requires fewer full system analyses, while the accuracy of the reduced system is monitored by a cheap error indicator. The performance of the proposed method is evaluated for a 4-parameter optimization of a frequency response for a hearing aid model, evaluated at 300 frequencies, where the objective function evaluations become more than one order of magnitude faster than for the full system.

  8. Shuttle cryogenics supply system. Optimization study. Volume 5 B-4: Programmers manual for space shuttle orbit injection analysis (SOPSA)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A computer program for space shuttle orbit injection propulsion system analysis (SOPSA) is described to show the operational characteristics and the computer system requirements. The program was developed as an analytical tool to aid in the preliminary design of propellant feed systems for the space shuttle orbiter main engines. The primary purpose of the program is to evaluate the propellant tank ullage pressure requirements imposed by the need to accelerate propellants rapidly during the engine start sequence. The SOPSA program will generate parametric feed system pressure histories and weight data for a range of nominal feedline sizes.

  9. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  10. CAD of control systems: Application of nonlinear programming to a linear quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1983-01-01

    The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.

  11. Shape optimization and CAD

    NASA Technical Reports Server (NTRS)

    Rasmussen, John

    1990-01-01

    Structural optimization has attracted the attention since the days of Galileo. Olhoff and Taylor have produced an excellent overview of the classical research within this field. However, the interest in structural optimization has increased greatly during the last decade due to the advent of reliable general numerical analysis methods and the computer power necessary to use them efficiently. This has created the possibility of developing general numerical systems for shape optimization. Several authors, eg., Esping; Braibant & Fleury; Bennet & Botkin; Botkin, Yang, and Bennet; and Stanton have published practical and successful applications of general optimization systems. Ding and Homlein have produced extensive overviews of available systems. Furthermore, a number of commercial optimization systems based on well-established finite element codes have been introduced. Systems like ANSYS, IDEAS, OASIS, and NISAOPT are widely known examples. In parallel to this development, the technology of computer aided design (CAD) has gained a large influence on the design process of mechanical engineering. The CAD technology has already lived through a rapid development driven by the drastically growing capabilities of digital computers. However, the systems of today are still considered as being only the first generation of a long row of computer integrated manufacturing (CIM) systems. These systems to come will offer an integrated environment for design, analysis, and fabrication of products of almost any character. Thus, the CAD system could be regarded as simply a database for geometrical information equipped with a number of tools with the purpose of helping the user in the design process. Among these tools are facilities for structural analysis and optimization as well as present standard CAD features like drawing, modeling, and visualization tools. The state of the art of structural optimization is that a large amount of mathematical and mechanical techniques are available for the solution of single problems. By implementing collections of the available techniques into general software systems, operational environments for structural optimization have been created. The forthcoming years must bring solutions to the problem of integrating such systems into more general design environments. The result of this work should be CAD systems for rational design in which structural optimization is one important design tool among many others.

  12. Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.

    1974-01-01

    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.

  13. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 2: three-dimensional cephalometry

    PubMed Central

    Xia, J. J.; Gateno, J.; Teichgraeber, J. F.; Yuan, P.; Li, J.; Chen, K.-C.; Jajoo, A.; Nicol, M.; Alfi, D. M.

    2015-01-01

    Three-dimensional (3D) cephalometry is not as simple as just adding a ‘third’ dimension to a traditional two-dimensional cephalometric analysis. There are more complex issues in 3D analysis. These include how reference frames are created, how size, position, orientation and shape are measured, and how symmetry is assessed. The main purpose of this article is to present the geometric principles of 3D cephalometry. In addition, the Gateno–Xia cephalometric analysis is presented; this is the first 3D cephalometric analysis to observe these principles. PMID:26573563

  14. Silicon Wafer Advanced Packaging (SWAP). Multichip Module (MCM) Foundry Study. Version 2

    DTIC Science & Technology

    1991-04-08

    Next Layer Dielectric Spacing - Additional Metal Thickness Impact on Dielectric Uniformity/Adhiesion. The first step in .!Ie EPerimental design would be... design CAM - computer aided manufacturing CAE - computer aided engineering CALCE - computer aided life cycle engineering center CARMA - computer aided...expansion 5 j- CVD - chemical vapor deposition J . ..- j DA - design automation J , DEC - Digital Equipment Corporation --- DFT - design for testability

  15. The application of computer-aided technologies in automotive styling design

    NASA Astrophysics Data System (ADS)

    Zheng, Ze-feng; Zhang, Ji; Zheng, Ying

    2012-04-01

    In automotive industry, outline design is its life and creative design is its soul indeed. Computer-aided technology has been widely used in the automotive industry and more and more attention has been paid. This paper chiefly introduce the application of computer-aided technologies including CAD, CAM and CAE, analyses the process of automotive structural design and describe the development tendency of computer-aided design.

  16. Comparison of digital intraoral scanners by single-image capture system and full-color movie system.

    PubMed

    Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi

    2017-01-01

    The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.

  17. Automated Surgical Approach Planning for Complex Skull Base Targets: Development and Validation of a Cost Function and Semantic At-las.

    PubMed

    Aghdasi, Nava; Whipple, Mark; Humphreys, Ian M; Moe, Kris S; Hannaford, Blake; Bly, Randall A

    2018-06-01

    Successful multidisciplinary treatment of skull base pathology requires precise preoperative planning. Current surgical approach (pathway) selection for these complex procedures depends on an individual surgeon's experiences and background training. Because of anatomical variation in both normal tissue and pathology (eg, tumor), a successful surgical pathway used on one patient is not necessarily the best approach on another patient. The question is how to define and obtain optimized patient-specific surgical approach pathways? In this article, we demonstrate that the surgeon's knowledge and decision making in preoperative planning can be modeled by a multiobjective cost function in a retrospective analysis of actual complex skull base cases. Two different approaches- weighted-sum approach and Pareto optimality-were used with a defined cost function to derive optimized surgical pathways based on preoperative computed tomography (CT) scans and manually designated pathology. With the first method, surgeon's preferences were input as a set of weights for each objective before the search. In the second approach, the surgeon's preferences were used to select a surgical pathway from the computed Pareto optimal set. Using preoperative CT and magnetic resonance imaging, the patient-specific surgical pathways derived by these methods were similar (85% agreement) to the actual approaches performed on patients. In one case where the actual surgical approach was different, revision surgery was required and was performed utilizing the computationally derived approach pathway.

  18. Investigational Clinical Trial of a Prototype Optoelectronic Computer-Aided Navigation Device for Dental Implant Surgery.

    PubMed

    Jokstad, Asbjørn; Winnett, Brenton; Fava, Joseph; Powell, David; Somogyi-Ganss, Eszter

    New digital technologies enable real-time computer-aided (CA) three-dimensional (3D) guidance during dental implant surgery. The aim of this investigational clinical trial was to demonstrate the safety and effectiveness of a prototype optoelectronic CA-navigation device in comparison with the conventional approach for planning and effecting dental implant surgery. Study participants with up to four missing teeth were recruited from the pool of patients referred to the University of Toronto Graduate Prosthodontics clinic. The first 10 participants were allocated to either a conventional or a prototype device study arm in a randomized trial. The next 10 participants received implants using the prototype device. All study participants were restored with fixed dental prostheses after 3 (mandible) or 6 (maxilla) months healing, and monitored over 12 months. The primary outcome was the incidence of any surgical, biologic, or prosthetic adverse events or device-related complications. Secondary outcomes were the incidence of positioning of implants not considered suitable for straightforward prosthetic restoration (yes/no); the perception of the ease of use of the prototype device by the two oral surgeons, recorded by use of a Likert-type questionnaire; and the clinical performance of the implant and superstructure after 1 year in function. Positioning of the implants was appraised on periapical radiographs and clinical photographs by four independent blinded examiners. Peri-implant bone loss was measured on periapical radiographs by a blinded examiner. No adverse events occurred related to placing any implants. Four device-related complications led to a switch from using the prototype device to the conventional method. All implants placed by use of the prototype device were in a position considered suitable for straightforward prosthetic restoration (n = 21). The qualitative evaluation by the surgeons was generally positive, although ergonomic challenges were identified. All study participants were present for the 1-year examination (n = 20 patients, 41 implants, 32 superstructures), and no complications or failures with any implants or superstructures were revealed. The peri-implant bone loss was less than 1 mm for all implants. Within the limitations of this trial, the prototype device provided placement of dental implants without adverse events.

  19. Geometric modeling of space-optimal unit-cell-based tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Lu, Lichun; Yaszemski, Michael J.; Robb, Richard A.

    2005-04-01

    Tissue engineering involves regenerating damaged or malfunctioning organs using cells, biomolecules, and synthetic or natural scaffolds. Based on their intended roles, scaffolds can be injected as space-fillers or be preformed and implanted to provide mechanical support. Preformed scaffolds are biomimetic "trellis-like" structures which, on implantation and integration, act as tissue/organ surrogates. Customized, computer controlled, and reproducible preformed scaffolds can be fabricated using Computer Aided Design (CAD) techniques and rapid prototyping devices. A curved, monolithic construct with minimal surface area constitutes an efficient substrate geometry that promotes cell attachment, migration and proliferation. However, current CAD approaches do not provide such a biomorphic construct. We address this critical issue by presenting one of the very first physical realizations of minimal surfaces towards the construction of efficient unit-cell based tissue engineering scaffolds. Mask programmability, and optimal packing density of triply periodic minimal surfaces are used to construct the optimal pore geometry. Budgeted polygonization, and progressive minimal surface refinement facilitate the machinability of these surfaces. The efficient stress distributions, as deduced from the Finite Element simulations, favor the use of these scaffolds for orthopedic applications.

  20. Biologically driven neural platform invoking parallel electrophoretic separation and urinary metabolite screening.

    PubMed

    Page, Tessa; Nguyen, Huong Thi Huynh; Hilts, Lindsey; Ramos, Lorena; Hanrahan, Grady

    2012-06-01

    This work reveals a computational framework for parallel electrophoretic separation of complex biological macromolecules and model urinary metabolites. More specifically, the implementation of a particle swarm optimization (PSO) algorithm on a neural network platform for multiparameter optimization of multiplexed 24-capillary electrophoresis technology with UV detection is highlighted. Two experimental systems were examined: (1) separation of purified rabbit metallothioneins and (2) separation of model toluene urinary metabolites and selected organic acids. Results proved superior to the use of neural networks employing standard back propagation when examining training error, fitting response, and predictive abilities. Simulation runs were obtained as a result of metaheuristic examination of the global search space with experimental responses in good agreement with predicted values. Full separation of selected analytes was realized after employing optimal model conditions. This framework provides guidance for the application of metaheuristic computational tools to aid in future studies involving parallel chemical separation and screening. Adaptable pseudo-code is provided to enable users of varied software packages and modeling framework to implement the PSO algorithm for their desired use.

  1. On processing development for fabrication of fiber reinforced composite, part 2

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Hou, Gene J. W.; Sheen, Jeen S.

    1989-01-01

    Fiber-reinforced composite laminates are used in many aerospace and automobile applications. The magnitudes and durations of the cure temperature and the cure pressure applied during the curing process have significant consequences for the performance of the finished product. The objective of this study is to exploit the potential of applying the optimization technique to the cure cycle design. Using the compression molding of a filled polyester sheet molding compound (SMC) as an example, a unified Computer Aided Design (CAD) methodology, consisting of three uncoupled modules, (i.e., optimization, analysis and sensitivity calculations), is developed to systematically generate optimal cure cycle designs. Various optimization formulations for the cure cycle design are investigated. The uniformities in the distributions of the temperature and the degree with those resulting from conventional isothermal processing conditions with pre-warmed platens. Recommendations with regards to further research in the computerization of the cure cycle design are also addressed.

  2. Surgery scheduling optimization considering real life constraints and comprehensive operation cost of operating room.

    PubMed

    Xiang, Wei; Li, Chong

    2015-01-01

    Operating Room (OR) is the core sector in hospital expenditure, the operation management of which involves a complete three-stage surgery flow, multiple resources, prioritization of the various surgeries, and several real-life OR constraints. As such reasonable surgery scheduling is crucial to OR management. To optimize OR management and reduce operation cost, a short-term surgery scheduling problem is proposed and defined based on the survey of the OR operation in a typical hospital in China. The comprehensive operation cost is clearly defined considering both under-utilization and overutilization. A nested Ant Colony Optimization (nested-ACO) incorporated with several real-life OR constraints is proposed to solve such a combinatorial optimization problem. The 10-day manual surgery schedules from a hospital in China are compared with the optimized schedules solved by the nested-ACO. Comparison results show the advantage using the nested-ACO in several measurements: OR-related time, nurse-related time, variation in resources' working time, and the end time. The nested-ACO considering real-life operation constraints such as the difference between first and following case, surgeries priority, and fixed nurses in pre/post-operative stage is proposed to solve the surgery scheduling optimization problem. The results clearly show the benefit of using the nested-ACO in enhancing the OR management efficiency and minimizing the comprehensive overall operation cost.

  3. Removal of a foreign body from the skull base using a customized computer-designed guide bar.

    PubMed

    Wei, Ran; Xiang-Zhen, Liu; Bing, Guo; Da-Long, Shu; Ze-Ming, Tan

    2010-06-01

    Foreign bodies located at the base of the skull pose a surgical challenge. Here, a customized computer-designed surgical guide bar was designed to facilitate removal of a skull base foreign body. Within 24h of the patient's presentation, a guide bar and mounting platform were designed to remove a foreign body located adjacent to the transverse process of the atlas and pressing against the internal carotid artery. The foreign body was successfully located and removed using the custom designed guide bar and computer operative planning. Ten months postoperatively the patient was free of complaints and lacked any complications such as restricted opening of the mouth or false aneurysm. The inferior alveolar nerve damage noted immediately postoperatively (a consequence of mandibular osteotomy) was slightly reduced at follow-up, but labial numbness persisted. The navigation tools described herein were successfully employed to aid foreign body removal from the skull base. Copyright (c) 2009 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Harnessing the power of emerging petascale platforms

    NASA Astrophysics Data System (ADS)

    Mellor-Crummey, John

    2007-07-01

    As part of the US Department of Energy's Scientific Discovery through Advanced Computing (SciDAC-2) program, science teams are tackling problems that require computational simulation and modeling at the petascale. A grand challenge for computer science is to develop software technology that makes it easier to harness the power of these systems to aid scientific discovery. As part of its activities, the SciDAC-2 Center for Scalable Application Development Software (CScADS) is building open source software tools to support efficient scientific computing on the emerging leadership-class platforms. In this paper, we describe two tools for performance analysis and tuning that are being developed as part of CScADS: a tool for analyzing scalability and performance, and a tool for optimizing loop nests for better node performance. We motivate these tools by showing how they apply to S3D, a turbulent combustion code under development at Sandia National Laboratory. For S3D, our node performance analysis tool helped uncover several performance bottlenecks. Using our loop nest optimization tool, we transformed S3D's most costly loop nest to reduce execution time by a factor of 2.94 for a processor working on a 503 domain.

  5. Biomechanics of the soft-palate in sleep apnea patients with polycystic ovarian syndrome.

    PubMed

    Subramaniam, Dhananjay Radhakrishnan; Arens, Raanan; Wagshul, Mark E; Sin, Sanghun; Wootton, David M; Gutmark, Ephraim J

    2018-05-17

    Highly compliant tissue supporting the pharynx and low muscle tone enhance the possibility of upper airway occlusion in children with obstructive sleep apnea (OSA). The present study describes subject-specific computational modeling of flow-induced velopharyngeal narrowing in a female child with polycystic ovarian syndrome (PCOS) with OSA and a non-OSA control. Anatomically accurate three-dimensional geometries of the upper airway and soft-palate were reconstructed for both subjects using magnetic resonance (MR) images. A fluid-structure interaction (FSI) shape registration analysis was performed using subject-specific values of flow rate to iteratively compute the biomechanical properties of the soft-palate. The optimized shear modulus for the control was 38 percent higher than the corresponding value for the OSA patient. The proposed computational FSI model was then employed for planning surgical treatment for the apneic subject. A virtual surgery comprising of a combined adenoidectomy, palatoplasty and genioglossus advancement was performed to estimate the resulting post-operative patterns of airflow and tissue displacement. Maximum flow velocity and velopharyngeal resistance decreased by 80 percent and 66 percent respectively following surgery. Post-operative flow-induced forces on the anterior and posterior faces of the soft-palate were equilibrated and the resulting magnitude of tissue displacement was 63 percent lower compared to the pre-operative case. Results from this pilot study indicate that FSI computational modeling can be employed to characterize the mechanical properties of pharyngeal tissue and evaluate the effectiveness of various upper airway surgeries prior to their application. Copyright © 2018. Published by Elsevier Ltd.

  6. An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information

    NASA Astrophysics Data System (ADS)

    Melendez, Jaime; Sánchez, Clara I.; Philipsen, Rick H. H. M.; Maduskar, Pragnya; Dawson, Rodney; Theron, Grant; Dheda, Keertan; van Ginneken, Bram

    2016-04-01

    Lack of human resources and radiological interpretation expertise impair tuberculosis (TB) screening programmes in TB-endemic countries. Computer-aided detection (CAD) constitutes a viable alternative for chest radiograph (CXR) reading. However, no automated techniques that exploit the additional clinical information typically available during screening exist. To address this issue and optimally exploit this information, a machine learning-based combination framework is introduced. We have evaluated this framework on a database containing 392 patient records from suspected TB subjects prospectively recruited in Cape Town, South Africa. Each record comprised a CAD score, automatically computed from a CXR, and 12 clinical features. Comparisons with strategies relying on either CAD scores or clinical information alone were performed. Our results indicate that the combination framework outperforms the individual strategies in terms of the area under the receiving operating characteristic curve (0.84 versus 0.78 and 0.72), specificity at 95% sensitivity (49% versus 24% and 31%) and negative predictive value (98% versus 95% and 96%). Thus, it is believed that combining CAD and clinical information to estimate the risk of active disease is a promising tool for TB screening.

  7. Enhancing an appointment diary on a pocket computer for use by people after brain injury.

    PubMed

    Wright, P; Rogers, N; Hall, C; Wilson, B; Evans, J; Emslie, H

    2001-12-01

    People with memory loss resulting from brain injury benefit from purpose-designed memory aids such as appointment diaries on pocket computers. The present study explores the effects of extending the range of memory aids and including games. For 2 months, 12 people who had sustained brain injury were loaned a pocket computer containing three purpose-designed memory aids: diary, notebook and to-do list. A month later they were given another computer with the same memory aids but a different method of text entry (physical keyboard or touch-screen keyboard). Machine order was counterbalanced across participants. Assessment was by interviews during the loan periods, rating scales, performance tests and computer log files. All participants could use the memory aids and ten people (83%) found them very useful. Correlations among the three memory aids were not significant, suggesting individual variation in how they were used. Games did not increase use of the memory aids, nor did loan of the preferred pocket computer (with physical keyboard). Significantly more diary entries were made by people who had previously used other memory aids, suggesting that a better understanding of how to use a range of memory aids could benefit some people with brain injury.

  8. The neglected topic: presentation of cost information in patient decision AIDS.

    PubMed

    Blumenthal-Barby, J S; Robinson, Emily; Cantor, Scott B; Naik, Aanand D; Russell, Heidi Voelker; Volk, Robert J

    2015-05-01

    Costs are an important component of patients' decision making, but a comparatively underemphasized aspect of formal shared decision making. We hypothesized that decision aids also avoid discussion of costs, despite their being tools designed to facilitate shared decision making about patient-centered outcomes. We sought to define the frequency of cost-related information and identify the common modes of presenting cost and cost-related information in the 290 decision aids catalogued in the Ottawa Hospital Research Institute's Decision Aid Library Inventory (DALI) system. We found that 56% (n = 161) of the decision aids mentioned cost in some way, but only 13% (n = 37) gave a specific price or range of prices. We identified 9 different ways in which cost was mentioned. The most common approach was as a "pro" of one of the treatment options (e.g., "you avoid the cost of medication"). Of the 37 decision aids that gave specific prices or ranges of prices for treatment options, only 2 were about surgery decisions despite the fact that surgery decision aids were the most common. Our findings suggest that presentation of cost information in decision aids is highly variable. Evidence-based guidelines should be developed by the International Patient Decision Aid Standards (IPDAS) Collaboration. © The Author(s) 2015.

  9. A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints.

    PubMed

    Xiang, Wei; Yin, Jiao; Lim, Gino

    2015-02-01

    Operating room (OR) surgery scheduling determines the individual surgery's operation start time and assigns the required resources to each surgery over a schedule period, considering several constraints related to a complete surgery flow and the multiple resources involved. This task plays a decisive role in providing timely treatments for the patients while balancing hospital resource utilization. The originality of the present study is to integrate the surgery scheduling problem with real-life nurse roster constraints such as their role, specialty, qualification and availability. This article proposes a mathematical model and an ant colony optimization (ACO) approach to efficiently solve such surgery scheduling problems. A modified ACO algorithm with a two-level ant graph model is developed to solve such combinatorial optimization problems because of its computational complexity. The outer ant graph represents surgeries, while the inner graph is a dynamic resource graph. Three types of pheromones, i.e. sequence-related, surgery-related, and resource-related pheromone, fitting for a two-level model are defined. The iteration-best and feasible update strategy and local pheromone update rules are adopted to emphasize the information related to the good solution in makespan, and the balanced utilization of resources as well. The performance of the proposed ACO algorithm is then evaluated using the test cases from (1) the published literature data with complete nurse roster constraints, and 2) the real data collected from a hospital in China. The scheduling results using the proposed ACO approach are compared with the test case from both the literature and the real life hospital scheduling. Comparison results with the literature shows that the proposed ACO approach has (1) an 1.5-h reduction in end time; (2) a reduction in variation of resources' working time, i.e. 25% for ORs, 50% for nurses in shift 1 and 86% for nurses in shift 2; (3) an 0.25h reduction in individual maximum overtime (OT); and (4) an 42% reduction in the total OT of nurses. Comparison results with the real 10-workday hospital scheduling further show the advantage of the ACO in several measurements. Instead of assigning all surgeries by a surgeon to only one OR and the same nurses by traditional manual approach in hospital, ACO realizes a more balanced surgery arrangement by assigning the surgeries to different ORs and nurses. It eventually leads to shortening the end time within the confidential interval of [7.4%, 24.6%] with 95% confidence level. The ACO approach proposed in this paper efficiently solves the surgery scheduling problem with daily nurse roster while providing a shortened end time and relatively balanced resource allocations. It also supports the advantage of integrating the surgery scheduling with the nurse scheduling and the efficiency of systematic optimization considering a complete three-stage surgery flow and resources involved. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Improved accuracy of component alignment with the implementation of image-free navigation in total knee arthroplasty.

    PubMed

    Rosenberger, Ralf E; Hoser, Christian; Quirbach, Sebastian; Attal, Rene; Hennerbichler, Alfred; Fink, Christian

    2008-03-01

    Accuracy of implant positioning and reconstruction of the mechanical leg axis are major requirements for achieving good long-term results in total knee arthroplasty (TKA). The purpose of the present study was to determine whether image-free computer navigation technology has the potential to improve the accuracy of component alignment in TKA cohorts of experienced surgeons immediately and constantly. One hundred patients with primary arthritis of the knee underwent the unilateral total knee arthroplasty. The cohort of 50 TKAs implanted with conventional instrumentation was directly followed by the cohort of the very first 50 computer-assisted TKAs. All surgeries were performed by two senior surgeons. All patients received the Zimmer NexGen total knee prosthesis (Zimmer Inc., Warsaw, IN, USA). There was no variability regarding surgeons or surgical technique, except for the use of the navigation system (StealthStation) Treon plus Medtronic Inc., Minnesota, MI, USA). Accuracy of implant positioning was measured on postoperative long-leg standing radiographs and standard lateral X-rays with regard to the valgus angle and the coronal and sagittal component angles. In addition, preoperative deformities of the mechanical leg axis, tourniquet time, age, and gender were correlated. Statistical analyses were performed using the SPSS 15.0 (SPSS Inc., Chicago, IL, USA) software package. Independent t-tests were used, with significance set at P < 0.05 (two-tailed) to compare differences in mean angular values and frontal mechanical alignment between the two cohorts. To compute the rate of optimally implanted prostheses between the two groups we used the chi(2) test. The average postoperative radiological frontal mechanical alignment was 1.88 degrees of varus (range 6.1 degrees of valgus-10.1 degrees of varus; SD 3.68 degrees ) in the conventional cohort and 0.28 degrees of varus (range 3.7 degrees -6.0 degrees of varus; SD 1.97 degrees ) in the navigated cohort. Including all criteria for optimal implant alignment, 16 cases (32%) in the conventional cohort and 31 cases (62%) in the navigated cohort have been implanted optimally. The average difference in tourniquet time was modest with additional 12.9 min in the navigated cohort compared to the conventional cohort. Our findings suggest that the experienced knee surgeons can improve immediately and constantly the accuracy of component orientation using an image-free computer-assisted navigation system in TKA. The computer-assisted technology has shown to be easy to use, safe, and efficient in routine knee replacement surgery. We believe that navigation is a key technology for various current and future surgical alignment topics and minimal-invasive lower limb surgery.

  11. Computer-aided design and computer science technology

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  12. A framework for the computer-aided planning and optimisation of manufacturing processes for components with functional graded properties

    NASA Astrophysics Data System (ADS)

    Biermann, D.; Gausemeier, J.; Heim, H.-P.; Hess, S.; Petersen, M.; Ries, A.; Wagner, T.

    2014-05-01

    In this contribution a framework for the computer-aided planning and optimisation of functional graded components is presented. The framework is divided into three modules - the "Component Description", the "Expert System" for the synthetisation of several process chains and the "Modelling and Process Chain Optimisation". The Component Description module enhances a standard computer-aided design (CAD) model by a voxel-based representation of the graded properties. The Expert System synthesises process steps stored in the knowledge base to generate several alternative process chains. Each process chain is capable of producing components according to the enhanced CAD model and usually consists of a sequence of heating-, cooling-, and forming processes. The dependencies between the component and the applied manufacturing processes as well as between the processes themselves need to be considered. The Expert System utilises an ontology for that purpose. The ontology represents all dependencies in a structured way and connects the information of the knowledge base via relations. The third module performs the evaluation of the generated process chains. To accomplish this, the parameters of each process are optimised with respect to the component specification, whereby the result of the best parameterisation is used as representative value. Finally, the process chain which is capable of manufacturing a functionally graded component in an optimal way regarding to the property distributions of the component description is presented by means of a dedicated specification technique.

  13. Computer Instructional Aids for Undergraduate Control Education.

    ERIC Educational Resources Information Center

    Volz, Richard A.; And Others

    Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…

  14. Optimising the measurement of bruises in children across conventional and cross polarized images using segmentation analysis techniques in Image J, Photoshop and circle diameter measurements.

    PubMed

    Harris, C; Alcock, A; Trefan, L; Nuttall, D; Evans, S T; Maguire, S; Kemp, A M

    2018-02-01

    Bruising is a common abusive injury in children, and it is standard practice to image and measure them, yet there is no current standard for measuring bruise size consistently. We aim to identify the optimal method of measuring photographic images of bruises, including computerised measurement techniques. 24 children aged <11 years (mean age of 6.9, range 2.5-10 years) with a bruise were recruited from the community. Demographics and bruise details were recorded. Each bruise was measured in vivo using a paper measuring tape. Standardised conventional and cross polarized digital images were obtained. The diameter of bruise images were measured by three computer aided measurement techniques: Image J (segmentation with Simple Interactive Object Extraction (maximum Feret diameter), 'Circular Selection Tool' (Circle diameter), & the Photoshop 'ruler' software (Photoshop diameter)). Inter and intra-observer effects were determined by two individuals repeating 11 electronic measurements, and relevant Intraclass Correlation Coefficient's (ICC's) were used to establish reliability. Spearman's rank correlation was used to compare in vivo with computerised measurements; a comparison of measurement techniques across imaging modalities was conducted using Kolmogorov-Smirnov tests. Significance was set at p < 0.05 for all tests. Images were available for 38 bruises in vivo, with 48 bruises visible on cross polarized imaging and 46 on conventional imaging (some bruises interpreted as being single in vivo appeared to be multiple in digital images). Correlation coefficients were >0.5 for all techniques, with maximum Feret diameter and maximum Photoshop diameter on conventional images having the strongest correlation with in vivo measurements. There were significant differences between in vivo and computer-aided measurements, but none between different computer-aided measurement techniques. Overall, computer aided measurements appeared larger than in vivo. Inter- and intra-observer agreement was high for all maximum diameter measurements (ICC's > 0.7). Whilst there are minimal differences between measurements of images obtained, the most consistent results were obtained when conventional images, segmented by Image J Software, were measured with a Feret diameter. This is therefore proposed as a standard for future research, and forensic practice, with the proviso that all computer aided measurements appear larger than in vivo. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Multivariate statistics of the Jacobian matrices in tensor based morphometry and their application to HIV/AIDS.

    PubMed

    Lepore, Natasha; Brun, Caroline A; Chiang, Ming-Chang; Chou, Yi-Yu; Dutton, Rebecca A; Hayashi, Kiralee M; Lopez, Oscar L; Aizenstein, Howard J; Toga, Arthur W; Becker, James T; Thompson, Paul M

    2006-01-01

    Tensor-based morphometry (TBM) is widely used in computational anatomy as a means to understand shape variation between structural brain images. A 3D nonlinear registration technique is typically used to align all brain images to a common neuroanatomical template, and the deformation fields are analyzed statistically to identify group differences in anatomy. However, the differences are usually computed solely from the determinants of the Jacobian matrices that are associated with the deformation fields computed by the registration procedure. Thus, much of the information contained within those matrices gets thrown out in the process. Only the magnitude of the expansions or contractions is examined, while the anisotropy and directional components of the changes are ignored. Here we remedy this problem by computing multivariate shape change statistics using the strain matrices. As the latter do not form a vector space, means and covariances are computed on the manifold of positive-definite matrices to which they belong. We study the brain morphology of 26 HIV/AIDS patients and 14 matched healthy control subjects using our method. The images are registered using a high-dimensional 3D fluid registration algorithm, which optimizes the Jensen-Rényi divergence, an information-theoretic measure of image correspondence. The anisotropy of the deformation is then computed. We apply a manifold version of Hotelling's T2 test to the strain matrices. Our results complement those found from the determinants of the Jacobians alone and provide greater power in detecting group differences in brain structure.

  16. Weight Loss Surgery (Bariatric Surgery) (For Parents)

    MedlinePlus

    ... Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family Life First Aid & Safety Doctors & ... it takes to make it a success: the motivation to make lifelong changes and the support of ...

  17. Evaluation of Microcomputer-Based Operation and Maintenance Management Systems for Army Water/Wastewater Treatment Plant Operation.

    DTIC Science & Technology

    1986-07-01

    COMPUTER-AIDED OPERATION MANAGEMENT SYSTEM ................. 29 Functions of an Off-Line Computer-Aided Operation Management System Applications of...System Comparisons 85 DISTRIBUTION 5V J. • 0. FIGURES Number Page 1 Hardware Components 21 2 Basic Functions of a Computer-Aided Operation Management System...Plant Visits 26 4 Computer-Aided Operation Management Systems Reviewed for Analysis of Basic Functions 29 5 Progress of Software System Installation and

  18. Towards automatic computer-aided knee surgery by innovative methods for processing the femur surface model.

    PubMed

    Cerveri, Pietro; Marchente, Mario; Bartels, Ward; Corten, Kristoff; Simon, Jean-Pierre; Manzotti, Alfonso

    2010-09-01

    The femoral shaft (FDA) and transepicondylar (TA), anterior-posterior (WL) and posterior condylar (PCL) axes are fundamental quantities in planning knee arthroplasty surgery. As an alternative to the TA, we introduce the anatomical flexion axis (AFA). Obtaining such axes from image data without any manual supervision remains a practical objective. We propose a novel method that automatically computes the axes of the distal femur by processing the femur mesh surface. Surface data were processed by exploiting specific geometric, anatomical and functional properties. Robust ellipse fitting of the two-dimensional (2D) condylar profiles was utilized to determine the AFA alternative to the TA. The repeatability of the method was tested upon 20 femur surfaces reconstructed from CT scans taken on cadavers. At the highest surface resolutions, the relative median error in the direction of the FDA, AFA, PCL, WL and TA was < 0.50 degrees, 1.20 degrees, 1.0 degrees, 1.30 degrees and 1.50 degrees, respectively. As expected, at the lowest surface resolution, the repeatability decreased to 1.20 degrees, 2.70 degrees, 3.30 degrees, 3.0 degrees and 4.70 degrees, respectively. The computed directions of the FDA, PCL, WL and TA were in agreement (0.60 degrees, 1.55 degrees, 1.90 degrees, 2.40 degrees) with the corresponding reference parameters manually identified in the original CT images by medical experts and with the literature. The proposed method proved that: (a) the AFA can be robustly computed by a geometrical analysis of the posterior profiles of the two condyles and can be considered a useful alternative to the TA; (b) higher surface resolutions leads to higher repeatability of all computed quantities; (c) the TA is less repeatable than the other axes. Copyright 2010 John Wiley & Sons, Ltd.

  19. Role of histopathology as an aid to prognosis in rhino-orbito-cerebral zygomycosis.

    PubMed

    Goel, Ashina; Kini, Usha; Shetty, Subhaschandra

    2010-01-01

    Rhino-orbito-cerebral zygomycosis is a rapidly progressive opportunistic fungal infection characterized by a set of clinical and radiological findings that help in prognostication. The present study is aimed to evaluate its histopathologic features as an aid to prognosis in order to guide the physician at the stage of tissue diagnosis to optimize surgery, chemotherapy and immunosuppression. The study comprises of a microscopic analysis of specific histopathologic variables on 33 cases of zygomycosis that were diagnosed and treated in a seven-year period. Fungal load in the tissue (graded as mild, moderate and marked), mean diameter of fungus, degree of neutrophilic and granulomatous response, tissue invasion and necrosis were graded and assessed for their prognostic significance. Seasonal variation, signs and symptoms, extent of involvement and laboratory parameters were also analyzed to examine the trend of occurrence of the disease and to associate these with patient's outcome, which was categorized as either survived or expired. The follow-up ranged from 1 month to 7 years. Of all the histological variables, angioinvasion was directly related to the mortality rate. Diameter of the fungal hyphae and its intraorbital or intracranial invasion also proved to be significant indicators of poor prognosis. (P = 0.04 and 0.0037, respectively) though angioinvasion was directly related to the mortality rate. Thus, histopathology could assist the clinician in assessing patient's progress and thus optimize the treatment in such patients.

  20. Optimization Design of Bipolar Plate Flow Field in PEM Stack

    NASA Astrophysics Data System (ADS)

    Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong

    2017-12-01

    A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.

  1. Computer assisted surgery in preoperative planning of acetabular fracture surgery: state of the art.

    PubMed

    Boudissa, Mehdi; Courvoisier, Aurélien; Chabanas, Matthieu; Tonetti, Jérôme

    2018-01-01

    The development of imaging modalities and computer technology provides a new approach in acetabular surgery. Areas covered: This review describes the role of computer-assisted surgery (CAS) in understanding of the fracture patterns, in the virtual preoperative planning of the surgery and in the use of custom-made plates in acetabular fractures with or without 3D printing technologies. A Pubmed internet research of the English literature of the last 20 years was carried out about studies concerning computer-assisted surgery in acetabular fractures. The several steps for CAS in acetabular fracture surgery are presented and commented by the main author regarding to his personal experience. Expert commentary: Computer-assisted surgery in acetabular fractures is still initial experiences with promising results. Patient-specific biomechanical models considering soft tissues should be developed to allow a more realistic planning.

  2. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images.

    PubMed

    Rajaraman, Sivaramakrishnan; Antani, Sameer K; Poostchi, Mahdieh; Silamut, Kamolrat; Hossain, Md A; Maude, Richard J; Jaeger, Stefan; Thoma, George R

    2018-01-01

    Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.

  3. The Feasibility of Classifying Breast Masses Using a Computer-Assisted Diagnosis (CAD) System Based on Ultrasound Elastography and BI-RADS Lexicon.

    PubMed

    Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar

    2018-01-01

    To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.

  4. Global surgery: current evidence for improving surgical care.

    PubMed

    Fuller, Jennifer C; Shaye, David A

    2017-08-01

    The field of global surgery is undergoing rapid transformation, owing to several recent prominent reports positioning it as a cost-effective means of relieving global disease burden. The purpose of this article is to review the recent advances in the field of global surgery. Efforts to grow the global surgical workforce and procedural capacity have focused on innovative methods to increase surgeon training, enhance international collaboration, leverage technology, optimize existing health systems, and safely implement task-sharing. Computer modeling offers a novel means of informing policy to optimize timely access to care, equitably promote health and financial protection, and efficiently grow infrastructure. Tools and checklists have recently been developed to enhance data collection and ensure methodologically rigorous publications to inform planning, benchmark surgical systems, promote accurate modeling, track key health indicators, and promote safety. Creation of institutional partnerships and trainee exchanges can enrich training, stimulate commitment to humanitarian work, and promote the equal exchange of ideas and expertise. The recent body of work creates a strong foundation upon which work toward the goal of universal access to safe, affordable surgical care can be built; however, further collection and analysis of country-specific data is necessary for accurate modeling and outcomes research into the efficacy of policies such as task-sharing is greatly needed.

  5. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orimoto, Yuuichi, E-mail: orimoto.yuuichi.888@m.kyushu-u.ac.jp; Aoki, Yuriko; Japan Science and Technology Agency, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method,more » and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between “choose-maximum” (choose a base pair giving the maximum β for each step) and “choose-minimum” (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.« less

  6. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA.

    PubMed

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-07-14

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.

  7. Through the HoloLens™ looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels.

    PubMed

    Pratt, Philip; Ives, Matthew; Lawton, Graham; Simmons, Jonathan; Radev, Nasko; Spyropoulou, Liana; Amiras, Dimitri

    2018-01-01

    Precision and planning are key to reconstructive surgery. Augmented reality (AR) can bring the information within preoperative computed tomography angiography (CTA) imaging to life, allowing the surgeon to 'see through' the patient's skin and appreciate the underlying anatomy without making a single incision. This work has demonstrated that AR can assist the accurate identification, dissection and execution of vascular pedunculated flaps during reconstructive surgery. Separate volumes of osseous, vascular, skin, soft tissue structures and relevant vascular perforators were delineated from preoperative CTA scans to generate three-dimensional images using two complementary segmentation software packages. These were converted to polygonal models and rendered by means of a custom application within the HoloLens™ stereo head-mounted display. Intraoperatively, the models were registered manually to their respective subjects by the operating surgeon using a combination of tracked hand gestures and voice commands; AR was used to aid navigation and accurate dissection. Identification of the subsurface location of vascular perforators through AR overlay was compared to the positions obtained by audible Doppler ultrasound. Through a preliminary HoloLens-assisted case series, the operating surgeon was able to demonstrate precise and efficient localisation of perforating vessels.

  8. Usefulness of computed tomography in pre-surgical evaluation of maxillo-facial pathology with rapid prototyping and surgical pre-planning by virtual reality.

    PubMed

    Toso, Francesco; Zuiani, Chiara; Vergendo, Maurizio; Salvo, Iolanda; Robiony, Massimo; Politi, Massimo; Bazzocchi, Massimo

    2005-01-01

    To validate a protocol for creating virtual models to be used in the construction of solid prototypes useful for the planning-simulation of maxillo-facial surgery, in particular for very complex anatomic and pathologic problems. To optimize communications between the radiology, engineering and surgical laboratories. We studied 16 patients with different clinical problems of the maxillo-facial district. Exams were performed with multidetector computed tomography (MDCT) and single slice computed tomography (SDCT) with axial scans and collimation of 0.5-2 mm, and reconstruction interval of 1 mm. Subsequently we performed 2D multiplanar reconstructions and 3D volume-rendering reconstructions. We exported the DICOM images to the engineering laboratory, to recognize and isolate the bony structures by software. With these data the solid prototypes were generated using stereolitography. To date, surgery has been preformed on 12 patients after simulation of the procedure on the stereolithographyc model. The solid prototypes constructed in the difficult cases were sufficiently detailed despite problems related to the artefacts generated by dental fillings an d prostheses. In the remaining cases the MPR/3D images were sufficiently detailed for surgical planning. The surgical results were excellent in all patients who underwent surgery, and the surgeons were satisfied with the improvement in quality and the reduction in time required for the procedure. MDCT enables rapid prototyping using solid replication, which was very helpful in maxillo-facial surgery, despite problems related to artifacts due to dental fillings and prosthesis within the acquisition field; solutions for this problem are work in progress. The protocol used for communication between the different laboratories was valid and reproducible.

  9. Modified optimal control pilot model for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1992-01-01

    This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.

  10. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.

    PubMed

    Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas

    2011-06-24

    This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Strategies for the Optimization of Natural Leads to Anticancer Drugs or Drug Candidates

    PubMed Central

    Xiao, Zhiyan; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung

    2015-01-01

    Natural products have made significant contribution to cancer chemotherapy over the past decades and remain an indispensable source of molecular and mechanistic diversity for anticancer drug discovery. More often than not, natural products may serve as leads for further drug development rather than as effective anticancer drugs by themselves. Generally, optimization of natural leads into anticancer drugs or drug candidates should not only address drug efficacy, but also improve ADMET profiles and chemical accessibility associated with the natural leads. Optimization strategies involve direct chemical manipulation of functional groups, structure-activity relationship-directed optimization and pharmacophore-oriented molecular design based on the natural templates. Both fundamental medicinal chemistry principles (e.g., bio-isosterism) and state-of-the-art computer-aided drug design techniques (e.g., structure-based design) can be applied to facilitate optimization efforts. In this review, the strategies to optimize natural leads to anticancer drugs or drug candidates are illustrated with examples and described according to their purposes. Furthermore, successful case studies on lead optimization of bioactive compounds performed in the Natural Products Research Laboratories at UNC are highlighted. PMID:26359649

  12. Automation of a suturing device for minimally invasive surgery.

    PubMed

    Göpel, Tobias; Härtl, Felix; Schneider, Armin; Buss, Martin; Feussner, Hubertus

    2011-07-01

    In minimally invasive surgery, hand suturing is categorized as a challenge in technique as well as in its duration. This calls for an easily manageable tool, permitting an all-purpose, cost-efficient, and secure viscerosynthesis. Such a tool for this field already exists: the Autosuture EndoStitch(®). In a series of studies the potential for the EndoStitch to accelerate suturing has been proven. However, its ergonomics still limits its applicability. The goal of this study was twofold: propose an optimized and partially automated EndoStitch and compare the conventional EndoStitch to the optimized and partially automated EndoStitch with respect to the speed and precision of suturing. Based on the EndoStitch, a partially automated suturing tool has been developed. With the aid of a DC motor, triggered by a button, one can suture by one-fingered handling. Using the partially automated suturing manipulator, 20 surgeons with different levels of laparoscopic experience successfully completed a continuous suture with 10 stitches using the conventional and the partially automated suture manipulator. Before that, each participant was given 1 min of instruction and 1 min for training. Absolute suturing time and stitch accuracy were measured. The quality of the automated EndoStitch with respect to manipulation was tested with the aid of a standardized questionnaire. To compare the two instruments, t tests were used for suturing accuracy and time. Of the 20 surgeons with laparoscopic experience (fewer than 5 laparoscopic interventions, n=9; fewer than 20 laparoscopic interventions, n=7; more than 20 laparoscopic interventions, n=4), there was no significant difference between the two tested systems with respect to stitching accuracy. However, the suturing time was significantly shorter with the Autostitch (P=0.01). The difference in accuracy and speed was not statistically significant considering the laparoscopic experience of the surgeons. The weight and size of the Autostitch have been criticized as well as its cable. However, the comfortable handhold, automatic needle change, and ergonomic manipulation have been rated positive. Partially automated suturing in minimally invasive surgery offers advantages with respect to the speed of operation and ergonomics. Ongoing work in this field has to concentrate on minimization, implementation in robotic systems, and development of new operation methods (NOTES).

  13. Modeling of power transmission and stress grading for corona protection

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.; Abali, B. E.

    2017-11-01

    Electrical high voltage (HV) machines are prone to corona discharges leading to power losses as well as damage of the insulating layer. Many different techniques are applied as corona protection and computational methods aid to select the best design. In this paper we develop a reduced-order model in 1D estimating electric field and temperature distribution of a conductor wrapped with different layers, as usual for HV-machines. Many assumptions and simplifications are undertaken for this 1D model, therefore, we compare its results to a direct numerical simulation in 3D quantitatively. Both models are transient and nonlinear, giving a possibility to quickly estimate in 1D or fully compute in 3D by a computational cost. Such tools enable understanding, evaluation, and optimization of corona shielding systems for multilayered coils.

  14. Perm State University HPC-hardware and software services: capabilities for aircraft engine aeroacoustics problems solving

    NASA Astrophysics Data System (ADS)

    Demenev, A. G.

    2018-02-01

    The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.

  15. A survey of the satisfaction of patients who have undergone implant surgery with and without employing a computer-guided implant surgical template

    PubMed Central

    Youk, Shin-Young; Lee, Jee-Ho; Heo, Seong-Joo; Roh, Hyun-Ki; Park, Eun-Jin; Shin, Im Hee

    2014-01-01

    PURPOSE This study aims to investigate the degree of subjective pain and the satisfaction of patients who have undergone an implant treatment using a computer-guided template. MATERIALS AND METHODS A survey was conducted for 135 patients who have undergone implant surgery with and without the use of the computer-guided template during the period of 2012 and 2013 in university hospitals, dental hospitals and dental clinics that practiced implant surgery using the computer-guided template. Likert scale and VAS score were used in the survey questions, and the independent t-test and One-Way ANOVA were performed (α=.05). RESULTS The route that the subjects were introduced to the computer-guided implant surgery using a surgical template was mostly advices by dentists, and the most common reason for which they chose to undergo such surgery was that it was accurate and safe. Most of them gave an answer that they were willing to recommend it to others. The patients who have undergone the computer-guided implant surgery felt less pain during the operation and showed higher satisfaction than those who have undergone conventional implant surgery. Among the patients who have undergone computer-guided implant surgery, those who also had prior experience of surgery without a computer-guided template expressed higher satisfaction with the former (P<.05). CONCLUSION In this study, it could be seen that the patients who have undergone computer-guided implant surgery employing a surgical template felt less pain and had higher satisfaction than those with the conventional one, and the dentist's description could provide the confidence about the safety of surgery. PMID:25352962

  16. Computer Aided Design: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Cheng, Wan-Lee

    This instructional manual contains 12 learning activity packets for use in a workshop in computer-aided design and drafting (CADD). The lessons cover the following topics: introduction to computer graphics and computer-aided design/drafting; coordinate systems; advance space graphics hardware configuration and basic features of the IBM PC…

  17. RASCAL: A Rudimentary Adaptive System for Computer-Aided Learning.

    ERIC Educational Resources Information Center

    Stewart, John Christopher

    Both the background of computer-assisted instruction (CAI) systems in general and the requirements of a computer-aided learning system which would be a reasonable assistant to a teacher are discussed. RASCAL (Rudimentary Adaptive System for Computer-Aided Learning) is a first attempt at defining a CAI system which would individualize the learning…

  18. A systematic review of online resources to support patient decision-making for full-thickness rectal prolapse surgery.

    PubMed

    Fowler, G E; Baker, D M; Lee, M J; Brown, S R

    2017-11-01

    The internet is becoming an increasingly popular resource to support patient decision-making outside of the clinical encounter. The quality of online health information is variable and largely unregulated. The aim of this study was to assess the quality of online resources to support patient decision-making for full-thickness rectal prolapse surgery. This systematic review was registered on the PROSPERO database (CRD42017058319). Searches were performed on Google and specialist decision aid repositories using a pre-defined search strategy. Sources were analysed according to three measures: (1) their readability using the Flesch-Kincaid Reading Ease score, (2) DISCERN score and (3) International Patient Decision Aids Standards (IPDAS) minimum standards criteria score (IPDASi, v4.0). Overall, 95 sources were from Google and the specialist decision aid repositories. There were 53 duplicates removed, and 18 sources did not meet the pre-defined eligibility criteria, leaving 24 sources included in the full-text analysis. The mean Flesch-Kincaid Reading Ease score was higher than recommended for patient education materials (48.8 ± 15.6, range 25.2-85.3). Overall quality of sources supporting patient decision-making for full-thickness rectal prolapse surgery was poor (median DISCERN score 1/5 ± 1.18, range 1-5). No sources met minimum decision-making standards (median IPDASi score 5/12 ± 2.01, range 1-8). Currently, easily accessible online health information to support patient decision-making for rectal surgery is of poor quality, difficult to read and does not support shared decision-making. It is recommended that professional bodies and medical professionals seek to develop decision aids to support decision-making for full-thickness rectal prolapse surgery.

  19. Autotransplantation of immature third molars using a computer-aided rapid prototyping model: a report of 4 cases.

    PubMed

    Jang, Ji-Hyun; Lee, Seung-Jong; Kim, Euiseong

    2013-11-01

    Autotransplantation of immature teeth can be an option for premature tooth loss in young patients as an alternative to immediately replacing teeth with fixed or implant-supported prostheses. The present case series reports 4 successful autotransplantation cases using computer-aided rapid prototyping (CARP) models with immature third molars. The compromised upper and lower molars (n = 4) of patients aged 15-21 years old were transplanted with third molars using CARP models. Postoperatively, the pulp vitality and the development of the roots were examined clinically and radiographically. The patient follow-up period was 2-7.5 years after surgery. The long-term follow-up showed that all of the transplants were asymptomatic and functional. Radiographic examination indicated that the apices developed continuously and the root length and thickness increased. The final follow-up examination revealed that all of the transplants kept the vitality, and the apices were fully developed with normal periodontal ligaments and trabecular bony patterns. Based on long-term follow-up observations, our 4 cases of autotransplantation of immature teeth using CARP models resulted in favorable prognoses. The CARP model assisted in minimizing the extraoral time and the possible Hertwig epithelial root sheath injury of the transplanted tooth. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Optimism, coping and long-term recovery from coronary artery surgery in women.

    PubMed

    King, K B; Rowe, M A; Kimble, L P; Zerwic, J J

    1998-02-01

    Optimism, coping strategies, and psychological and functional outcomes were measured in 55 women undergoing coronary artery surgery. Data were collected in-hospital and at 1, 6, and 12 months after surgery. Optimism was related to positive moods and life satisfaction, and inversely related to negative moods. Few relationships were found between optimism and functional ability. Cognitive coping strategies accounted for a mediating effect between optimism and negative mood. Optimists were more likely to accept their situation, and less likely to use escapism. In turn, these coping strategies were inversely related to negative mood and mediated the relationship between optimism and this outcome. Optimism was not related to problem-focused coping strategies; this, these coping strategies cannot explain the relationship between optimism and outcomes.

Top