Sample records for computer-assisted drill guide

  1. Interactive Computer Lessons for Introductory Economics: Guided Inquiry-From Supply and Demand to Women in the Economy.

    ERIC Educational Resources Information Center

    Miller, John; Weil, Gordon

    1986-01-01

    The interactive feature of computers is used to incorporate a guided inquiry method of learning introductory economics, extending the Computer Assisted Instruction (CAI) method beyond drills. (Author/JDH)

  2. Design and Construction of Computer-Assisted Instructional Material: A Handbook for Reading/Language Arts Teachers.

    ERIC Educational Resources Information Center

    Balajthy, Ernest

    Intended for reading and language arts teachers at all educational levels, this guide presents information to be used by teachers in constructing their own computer assisted educational software using the BASIC programming language and Apple computers. Part 1 provides an overview of the components of traditional tutorial and drill-and-practice…

  3. Testing of a novel pin array guide for accurate three-dimensional glenoid component positioning.

    PubMed

    Lewis, Gregory S; Stevens, Nicole M; Armstrong, April D

    2015-12-01

    A substantial challenge in total shoulder replacement is accurate positioning and alignment of the glenoid component. This challenge arises from limited intraoperative exposure and complex arthritic-driven deformity. We describe a novel pin array guide and method for patient-specific guiding of the glenoid central drill hole. We also experimentally tested the hypothesis that this method would reduce errors in version and inclination compared with 2 traditional methods. Polymer models of glenoids were created from computed tomography scans from 9 arthritic patients. Each 3-dimensional (3D) printed scapula was shrouded to simulate the operative situation. Three different methods for central drill alignment were tested, all with the target orientation of 5° retroversion and 0° inclination: no assistance, assistance by preoperative 3D imaging, and assistance by the pin array guide. Version and inclination errors of the drill line were compared. Version errors using the pin array guide (3° ± 2°) were significantly lower than version errors associated with no assistance (9° ± 7°) and preoperative 3D imaging (8° ± 6°). Inclination errors were also significantly lower using the pin array guide compared with no assistance. The new pin array guide substantially reduced errors in orientation of the central drill line. The guide method is patient specific but does not require rapid prototyping and instead uses adjustments to an array of pins based on automated software calculations. This method may ultimately provide a cost-effective solution enabling surgeons to obtain accurate orientation of the glenoid. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Iliac screw fixation using computer-assisted computer tomographic image guidance: technical note.

    PubMed

    Shin, John H; Hoh, Daniel J; Kalfas, Iain H

    2012-03-01

    Iliac screw fixation is a powerful tool used by spine surgeons to achieve fusion across the lumbosacral junction for a number of indications, including deformity, tumor, and pseudarthrosis. Complications associated with screw placement are related to blind trajectory selection and excessive soft tissue dissection. To describe the technique of iliac screw fixation using computed tomographic (CT)-based image guidance. Intraoperative registration and verification of anatomic landmarks are performed with the use of a preoperatively acquired CT of the lumbosacral spine. With the navigation probe, the ideal starting point for screw placement is selected while visualizing the intended trajectory and target on a computer screen. Once the starting point is selected and marked with a burr, a drill guide is docked within this point and the navigation probe re-inserted, confirming the trajectory. The probe is then removed and the high-speed drill reinserted within the drill guide. Drilling is performed to a depth measured on the computer screen and a screw is placed. Confirmation of accurate placement of iliac screws can be performed with standard radiographs. CT-guided navigation allows for 3-dimensional visualization of the pelvis and minimizes complications associated with soft-tissue dissection and breach of the ilium during screw placement.

  5. Augmented Reality Based Navigation for Computer Assisted Hip Resurfacing: A Proof of Concept Study.

    PubMed

    Liu, He; Auvinet, Edouard; Giles, Joshua; Rodriguez Y Baena, Ferdinando

    2018-05-23

    Implantation accuracy has a great impact on the outcomes of hip resurfacing such as recovery of hip function. Computer assisted orthopedic surgery has demonstrated clear advantages for the patients, with improved placement accuracy and fewer outliers, but the intrusiveness, cost, and added complexity have limited its widespread adoption. To provide seamless computer assistance with improved immersion and a more natural surgical workflow, we propose an augmented-reality (AR) based navigation system for hip resurfacing. The operative femur is registered by processing depth information from the surgical site with a commercial depth camera. By coupling depth data with robotic assistance, obstacles that may obstruct the femur can be tracked and avoided automatically to reduce the chance of disruption to the surgical workflow. Using the registration result and the pre-operative plan, intra-operative surgical guidance is provided through a commercial AR headset so that the user can perform the operation without additional physical guides. To assess the accuracy of the navigation system, experiments of guide hole drilling were performed on femur phantoms. The position and orientation of the drilled holes were compared with the pre-operative plan, and the mean errors were found to be approximately 2 mm and 2°, results which are in line with commercial computer assisted orthopedic systems today.

  6. Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head

    PubMed Central

    Wang, Wei; Hu, Wei; Yang, Pei; Dang, Xiao Qian; Li, Xiao Hui; Wang, Kun Zheng

    2017-01-01

    Introduction Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. Methods Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. Results The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. Conclusions Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis. PMID:28464029

  7. Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head.

    PubMed

    Wang, Wei; Hu, Wei; Yang, Pei; Dang, Xiao Qian; Li, Xiao Hui; Wang, Kun Zheng

    2017-01-01

    Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis.

  8. Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty.

    PubMed

    Levy, Jonathan C; Everding, Nathan G; Frankle, Mark A; Keppler, Louis J

    2014-10-01

    The accuracy of reproducing a surgical plan during shoulder arthroplasty is improved by computer assistance. Intraoperative navigation, however, is challenged by increased surgical time and additional technically difficult steps. Patient-matched instrumentation has the potential to reproduce a similar degree of accuracy without the need for additional surgical steps. The purpose of this study was to examine the accuracy of patient-specific planning and a patient-specific drill guide for glenoid baseplate placement in reverse shoulder arthroplasty. A patient-specific glenoid baseplate drill guide for reverse shoulder arthroplasty was produced for 14 cadaveric shoulders based on a plan developed by a virtual preoperative 3-dimensional planning system using thin-cut computed tomography images. Using this patient-specific guide, high-volume shoulder surgeons exposed the glenoid through a deltopectoral approach and drilled the bicortical pathway defined by the guide. The trajectory of the drill path was compared with the virtual preoperative planned position using similar thin-cut computed tomography images to define accuracy. The drill pathway defined by the patient-matched guide was found to be highly accurate when compared with the preoperative surgical plan. The translational accuracy was 1.2 ± 0.7 mm. The accuracy of inferior tilt was 1.2° ± 1.2°. The accuracy of glenoid version was 2.6° ± 1.7°. The use of patient-specific glenoid baseplate guides is highly accurate in reproducing a virtual 3-dimensional preoperative plan. This technique delivers the accuracy observed using computerized navigation without any additional surgical steps or technical challenges. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Improving the trajectory of transpedicular transdiscal lumbar screw fixation with a computer-assisted 3D-printed custom drill guide

    PubMed Central

    Shao, Zhen-Xuan; Wang, Jian-Shun; Lin, Zhong-Ke; Ni, Wen-Fei; Wang, Xiang-Yang

    2017-01-01

    Transpedicular transdiscal screw fixation is an alternative technique used in lumbar spine fixation; however, it requires an accurate screw trajectory. The aim of this study is to design a novel 3D-printed custom drill guide and investigate its accuracy to guide the trajectory of transpedicular transdiscal (TPTD) lumbar screw fixation. Dicom images of thirty lumbar functional segment units (FSU, two segments) of L1–L4 were acquired from the PACS system in our hospital (patients who underwent a CT scan for other abdomen diseases and had normal spine anatomy) and imported into reverse design software for three-dimensional reconstructions. Images were used to print the 3D lumbar models and were imported into CAD software to design an optimal TPTD screw trajectory and a matched custom drill guide. After both the 3D printed FSU models and 3D-printed custom drill guide were prepared, the TPTD screws will be guided with a 3D-printed custom drill guide and introduced into the 3D printed FSU models. No significant statistical difference in screw trajectory angles was observed between the digital model and the 3D-printed model (P > 0.05). Our present study found that, with the help of CAD software, it is feasible to design a TPTD screw custom drill guide that could guide the accurate TPTD screw trajectory on 3D-printed lumbar models. PMID:28717599

  10. Fluoroscopy-Guided Percutaneous Vertebral Body Biopsy Using a Novel Drill-Powered Device: Technical Case Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Pacheco, Rafael A., E-mail: pachecor@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu

    2016-02-15

    BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reportsmore » were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact.« less

  11. Advancements in Orthopedic Intervention: Retrograde Drilling and Bone Grafting of Osteochondral Lesions of the Knee Using Magnetic Resonance Imaging Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seebauer, Christian J., E-mail: christian.seebauer@charite.d; Bail, Hermann J., E-mail: hermann-josef.bail@klinikum-nuernberg.d; Rump, Jens C., E-mail: jens.rump@charite.de

    Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesionsmore » of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.« less

  12. Precision of computer-assisted core decompression drilling of the knee.

    PubMed

    Beckmann, J; Goetz, J; Bäthis, H; Kalteis, T; Grifka, J; Perlick, L

    2006-06-01

    Core decompression by exact drilling into the ischemic areas is the treatment of choice in early stages of osteonecrosis of the femoral condyle. Computer-aided surgery might enhance the precision of the drilling and lower the radiation exposure time of both staff and patients. The aim of this study was to evaluate the precision of the fluoroscopically based VectorVision-navigation system in an in vitro model. Thirty sawbones were prepared with a defect filled up with a radiopaque gypsum sphere mimicking the osteonecrosis. 20 sawbones were drilled by guidance of an intraoperative navigation system VectorVision (BrainLAB, Munich, Germany). Ten sawbones were drilled by fluoroscopic control only. A statistically significant difference with a mean distance of 0.58 mm in the navigated group and 0.98 mm in the control group regarding the distance to the desired mid-point of the lesion could be stated. Significant difference was further found in the number of drilling corrections as well as radiation time needed. The fluoroscopic-based VectorVision-navigation system shows a high feasibility and precision of computer-guided drilling with simultaneously reduction of radiation time and therefore could be integrated into clinical routine.

  13. Prosthetically directed implant placement using computer software to ensure precise placement and predictable prosthetic outcomes. Part 2: rapid-prototype medical modeling and stereolithographic drilling guides requiring bone exposure.

    PubMed

    Rosenfeld, Alan L; Mandelaris, George A; Tardieu, Philippe B

    2006-08-01

    The purpose of this paper is to expand on part 1 of this series (published in the previous issue) regarding the emerging future of computer-guided implant dentistry. This article will introduce the concept of rapid-prototype medical modeling as well as describe the utilization and fabrication of computer-generated surgical drilling guides used during implant surgery. The placement of dental implants has traditionally been an intuitive process, whereby the surgeon relies on mental navigation to achieve optimal implant positioning. Through rapid-prototype medical modeling and the ste-reolithographic process, surgical drilling guides (eg, SurgiGuide) can be created. These guides are generated from a surgical implant plan created with a computer software system that incorporates all relevant prosthetic information from which the surgical plan is developed. The utilization of computer-generated planning and stereolithographically generated surgical drilling guides embraces the concept of collaborative accountability and supersedes traditional mental navigation on all levels of implant therapy.

  14. [Guided and computer-assisted implant surgery and prosthetic: The continuous digital workflow].

    PubMed

    Pascual, D; Vaysse, J

    2016-02-01

    New continuous digital workflow protocols of guided and computer-assisted implant surgery improve accuracy of implant positioning. The design of the future prosthesis is based on the available prosthetic space, gingival height and occlusal relationship with the opposing and adjacent teeth. The implant position and length depend on volume, density and bone quality, gingival height, tooth-implant and implant-implant distances, implant parallelism, axis and type of the future prosthesis. The crown modeled on the software will therefore serve as a guide to the future implant axis and not the reverse. The guide is made by 3D printing. The software determines surgical protocol with the drilling sequences. The unitary or plural prosthesis, modeled on the software and built before surgery, is loaded directly after implant placing, if needed. These protocols allow for a full continuity of the digital workflow. The software provides the surgeon and the dental technician a total freedom for the prosthetic-surgery guide design and the position of the implants. The prosthetic project, occlusal and aesthetic, taking the bony and surgical constraints into account, is optimized. The implant surgery is simplified and becomes less "stressful" for the patient and the surgeon. Guided and computer-assisted surgery with continuous digital workflow is becoming the technique of choice to improve the accuracy and quality of implant rehabilitation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery.

    PubMed

    Flügge, Tabea Viktoria; Nelson, Katja; Schmelzeisen, Rainer; Metzger, Marc Christian

    2013-08-01

    To present an efficient workflow for the production of implant drilling guides using virtual planning tools. For this purpose, laser surface scanning, cone beam computed tomography, computer-aided design and manufacturing, and 3-dimensional (3D) printing were combined. Intraoral optical impressions (iTero, Align Technologies, Santa Clara, CA) and digital 3D radiographs (cone beam computed tomography) were performed at the first consultation of 1 exemplary patient. With image processing techniques, the intraoral surface data, acquired using an intraoral scanner, and radiologic 3D data were fused. The virtual implant planning process (using virtual library teeth) and the in-office production of the implant drilling guide was performed after only 1 clinical consultation of the patient. Implant surgery with a computer-aided design and manufacturing produced implant drilling guide was performed during the second consultation. The production of a scan prosthesis and multiple preoperative consultations of the patient were unnecessary. The presented procedure offers another step in facilitating the production of drilling guides in dental implantology. Four main advantages are realized with this procedure. First, no additional scan prosthesis is needed. Second, data acquisition can be performed during the first consultation. Third, the virtual planning is directly transferred to the drilling guide without a loss of accuracy. Finally, the treatment cost and time required are reduced with this facilitated production process. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Using a guide template with a handpiece sleeve to locate the abutment screw position of a cement-retained implant restoration.

    PubMed

    Kang, Hye-Won; Lee, Du-Hyeong

    2015-09-01

    The existing techniques for drilling a screw access hole in cement-retained restorations are limited by inaccurate drill guidance and ineffective cooling of the drilling area. An approach for fabricating a guide template to provide screw retrievability using computer-aided design and computer-aided manufacturing (CAD/CAM) is described. A handpiece sleeve was made by 3-dimensional printing and incorporating it into a vacuum-formed template. The handpiece sleeve not only guides the head of the handpiece accurately but also enables the cooling water to reach the area of drilling directly. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Arthroscopic-assisted core decompression of the humeral head.

    PubMed

    Dines, Joshua S; Strauss, Eric J; Fealy, Stephen; Craig, Edward V

    2007-01-01

    Humeral head osteonecrosis is a progressive disease that requires prompt diagnosis and treatment. Core decompression is a viable treatment option for early-stage cases. Most surgeons perform core decompression by arthroscopically visualizing the necrotic area of bone and using a cannulated drill to take a core. Several attempts are frequently needed to reach the proper location. In the hip multiple passes are associated with complications. We describe the use of an anterior cruciate ligament (ACL) tibial drill guide to precisely localize the area of necrotic bone. Diagnostic arthroscopy is performed to assess the areas of osteonecrosis. Core decompression is performed by use of an ACL tibial guide, brought in through the anterior or posterior portal to precisely localize the necrotic area in preparation for drilling. Under image intensification, Steinmann pins are advanced into the area of osteonecrosis. Once positioned, several 4-mm cores are made. We treated 3 patients with this technique, and all had immediate pain relief. The use of the ACL guide allows precise localization of the area of humeral head involvement and avoids multiple drillings into unaffected areas. Initial indications are that arthroscopic-assisted core decompression with an ACL guide is an effective alternative to previously used methods.

  18. Precision of computer-assisted core decompression drilling of the femoral head.

    PubMed

    Beckmann, J; Goetz, J; Baethis, H; Kalteis, T; Grifka, J; Perlick, L

    2006-08-01

    Osteonecrosis of the femoral head is a local destructive disease with progression into devastating stages. Left untreated it mostly leads to severe secondary osteoarthrosis and early endoprosthetic joint replacement. Core decompression by exact drilling into the ischemic areas can be performed in early stages according to Ficat or ARCO. Computer-aided surgery might enhance the precision of the drilling and lower the radiation exposure time of both staff and patients. The aim of this study was to evaluate the precision of the fluoroscopically based VectorVision navigation system in an in vitro model. Thirty sawbones were prepared with a defect filled up with a radiopaque gypsum sphere mimicking the osteonecrosis. Twenty sawbones were drilled by guidance of an intraoperative navigation system VectorVision (BrainLAB, Munich, Germany) and 10 sawbones by fluoroscopic control only. No gypsum sphere was missed. There was a statistically significant difference regarding the three-dimensional deviation (Euclidian norm) as well as maximum deviation in x-, y- or z-direction (maximum norm) to the desired mid-point of the lesion, with a mean of 0.51 and 0.4 mm in the navigated group and 1.1 and 0.88 mm in the control group, respectively. Furthermore, significant difference was found in the number of drilling corrections as well as the radiation time needed: no second drilling or correction of drilling direction was necessary in the navigated group compared to 1.4 in the control group. The radiation time needed was less than 1 s compared to 3.1 s, respectively. The fluoroscopy-based VectorVision navigation system shows a high feasibility of computer-guided drilling with a clear reduction of radiation exposure time and can therefore be integrated into clinical routine. The additional time needed is acceptable regarding the simultaneous reduction of radiation time.

  19. Accurate pre-surgical determination for self-drilling miniscrew implant placement using surgical guides and cone-beam computed tomography.

    PubMed

    Miyazawa, Ken; Kawaguchi, Misuzu; Tabuchi, Masako; Goto, Shigemi

    2010-12-01

    Miniscrew implants have proven to be effective in providing absolute orthodontic anchorage. However, as self-drilling miniscrew implants have become more popular, a problem has emerged, i.e. root contact, which can lead to perforation and other root injuries. To avoid possible root damage, a surgical guide was fabricated and cone-beam computed tomography (CBCT) was used to incorporate guide tubes drilled in accordance with the planned direction of the implants. Eighteen patients (5 males and 13 females; mean age 23.8 years; minimum 10.7, maximum 45.5) were included in the study. Forty-four self-drilling miniscrew implants (diameter 1.6, and length 8 mm) were placed in interradicular bone using a surgical guide procedure, the majority in the maxillary molar area. To determine the success rates, statistical analysis was undertaken using Fisher's exact probability test. CBCT images of post-surgical self-drilling miniscrew implant placement showed no root contact (0/44). However, based on CBCT evaluation, it was necessary to change the location or angle of 52.3 per cent (23/44) of the guide tubes prior to surgery in order to obtain optimal placement. If orthodontic force could be applied to the screw until completion of orthodontic treatment, screw anchorage was recorded as successful. The total success rate of all miniscrews was 90.9 per cent (40/44). Orthodontic self-drilling miniscrew implants must be inserted carefully, particularly in the case of blind placement, since even guide tubes made on casts frequently require repositioning to avoid the roots of the teeth. The use of surgical guides, fabricated using CBCT images, appears to be a promising technique for placement of orthodontic self-drilling miniscrew implants adjacent to the dental roots and maxillary sinuses.

  20. Can a surgeon drill accurately at a specified angle?

    PubMed Central

    Brioschi, Valentina; Cook, Jodie; Arthurs, Gareth I

    2016-01-01

    Objectives To investigate whether a surgeon can drill accurately a specified angle and whether surgeon experience, task repetition, drill bit size and perceived difficulty influence drilling angle accuracy. Methods The sample population consisted of final-year students (n=25), non-specialist veterinarians (n=22) and board-certified orthopaedic surgeons (n=8). Each participant drilled a hole twice in a horizontal oak plank at 30°, 45°, 60°, 80°, 85° and 90° angles with either a 2.5  or a 3.5 mm drill bit. Participants then rated the perceived difficulty to drill each angle. The true angle of each hole was measured using a digital goniometer. Results Greater drilling accuracy was achieved at angles closer to 90°. An error of ≤±4° was achieved by 84.5 per cent of participants drilling a 90° angle compared with approximately 20 per cent of participants drilling a 30–45° angle. There was no effect of surgeon experience, task repetition or drill bit size on the mean error for intended versus achieved angle. Increased perception of difficulty was associated with the more acute angles and decreased accuracy, but not experience level. Clinical significance This study shows that surgeon ability to drill accurately (within ±4° error) is limited, particularly at angles ≤60°. In situations where drill angle is critical, use of computer-assisted navigation or custom-made drill guides may be preferable. PMID:27547423

  1. Computer Assisted Learning in Numeracy.

    ERIC Educational Resources Information Center

    Hollin, Freda

    Computer-assisted learning in numeracy for adults is far less developed than computer-assisted learning in literacy. Although a great many software programs exist, few are suitable for adults and many offer only drill and practice exercises instead of teaching genuine computer skills. One approach instructors can take is to have their students use…

  2. A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system.

    PubMed

    Yoo, Myung Hoon; Lee, Hwan Seo; Yang, Chan Joo; Lee, Seung Hwan; Lim, Hoon; Lee, Seongpung; Yi, Byung-Ju; Chung, Jong Woo

    2017-10-01

    Surgical precision would be better achieved with the development of an anatomical monitoring and controlling robot system than by traditional surgery techniques alone. We evaluated the feasibility of robot-assisted mastoidectomy in terms of duration, precision, and safety. Human cadaveric study. We developed a multi-degree-of-freedom robot system for a surgical drill with a balancing arm. The drill system is manipulated by the surgeon, the motion of the drill burr is monitored by the image-guided system, and the brake is controlled by the robotic system. The system also includes an alarm as well as the brake to help avoid unexpected damage to vital structures. Experimental mastoidectomy was performed in 11 temporal bones of six cadavers. Parameters including duration and safety were assessed, as well as intraoperative damage, which was judged via pre- and post-operative computed tomography. The duration of mastoidectomy in our study was comparable with that required for chronic otitis media patients. Although minor damage, such as dura exposure without tearing, was noted, no critical damage to the facial nerve or other important structures was observed. When the brake system was set to 1 mm from the facial nerve, the postoperative average bone thicknesses of the facial nerve was 1.39, 1.41, 1.22, 1.41, and 1.55 mm in the lateral, posterior pyramidal and anterior, lateral, and posterior mastoid portions, respectively. Mastoidectomy can be successfully performed using our robot-assisted system while maintaining a pre-set limit of 1 mm in most cases. This system may thus be useful for more inexperienced surgeons. NA.

  3. Accuracy of a laboratory-based computer implant guiding system.

    PubMed

    Barnea, Eitan; Alt, Ido; Kolerman, Roni; Nissan, Joseph

    2010-05-01

    Computer-guided implant placement is a growing treatment modality in partially and totally edentulous patients, though data about the accuracy of some systems for computer-guided surgery is limited. The purpose of this study was to evaluate the accuracy of a laboratory computer-guided system. A laboratory-based computer guiding system (M Guide; MIS technologies, Shlomi, Israel) was used to place implants in a fresh sheep mandible. A second computerized tomography (CT) scan was taken after placing the implants . The drill plan figures of the planned implants were positioned using assigned software (Med3D, Heidelberg, Germany) on the second CT scan to compare the implant position with the initial planning. Values representing the implant locations of the original drill plan were compared with that of the placed implants using SPSS software. Six measurements (3 vertical, 3 horizontal) were made on each implant to assess the deviation from the initial implant planning. A repeated-measurement analysis of variance was performed comparing the location of measurement (center, abutment, apex) and type of deviation (vertical vs. horizontal). The vertical deviation (mean -0.168) was significantly smaller than the horizontal deviation (mean 1.148). The laboratory computer-based guiding system may be a viable treatment concept for placing implants. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  4. Accuracy study of computer-assisted drilling: the effect of bone density, drill bit characteristics, and use of a mechanical guide.

    PubMed

    Hüfner, T; Geerling, J; Oldag, G; Richter, M; Kfuri, M; Pohlemann, T; Krettek, C

    2005-01-01

    This study was designed to determine the clinical relevant accuracy of CT-based navigation for drilling. Experimental model. Laboratory. Twelve drills of varying lengths and diameters were tested with 2 different set-ups. Group 1 used free-hand navigated drilling technique with foam blocks equipped with titanium target points. Group 2 (control) used a newly developed 3-dimensional measurement device equipped with titanium target points with a fixed entry for the navigated drill to minimize bending forces. One examiner performed 690 navigated drillings using solely the monitor screen for control in both groups. The difference between the planned and the actual starting and target point (up to 150 mm distance) was measured (mm). Levene test and a nonpaired t test. Significance level was set as P < 0.05. The core accuracy of the navigation system measured with the 3-dimensional device was 0.5 mm. The mean distance from planned to actual entry points in group 1 was 1.3 (range, 0.6-3.4 mm). The mean distance between planned and actual target point was 3.4 (range, 1.7-5.8 mm). Free-hand navigated drilling showed an increased difference with increased length of the drill bits as well as with increased drilling channel for drill bits 2.5 and 3.2 mm and not for 3.5 and 4.5 mm (P < 0.05). The core accuracy of the navigation system is high. Compared with the navigated free-hand technique, the results suggest that drill bit deflection interferes directly with the precision. The precision is decreased when using small diameter and longer drill bits.

  5. A cadaver study of mastoidectomy using an image‐guided human–robot collaborative control system

    PubMed Central

    Yoo, Myung Hoon; Lee, Hwan Seo; Yang, Chan Joo; Lee, Seung Hwan; Lim, Hoon; Lee, Seongpung

    2017-01-01

    Objective Surgical precision would be better achieved with the development of an anatomical monitoring and controlling robot system than by traditional surgery techniques alone. We evaluated the feasibility of robot‐assisted mastoidectomy in terms of duration, precision, and safety. Study Design Human cadaveric study. Materials and Methods We developed a multi‐degree‐of‐freedom robot system for a surgical drill with a balancing arm. The drill system is manipulated by the surgeon, the motion of the drill burr is monitored by the image‐guided system, and the brake is controlled by the robotic system. The system also includes an alarm as well as the brake to help avoid unexpected damage to vital structures. Experimental mastoidectomy was performed in 11 temporal bones of six cadavers. Parameters including duration and safety were assessed, as well as intraoperative damage, which was judged via pre‐ and post‐operative computed tomography. Results The duration of mastoidectomy in our study was comparable with that required for chronic otitis media patients. Although minor damage, such as dura exposure without tearing, was noted, no critical damage to the facial nerve or other important structures was observed. When the brake system was set to 1 mm from the facial nerve, the postoperative average bone thicknesses of the facial nerve was 1.39, 1.41, 1.22, 1.41, and 1.55 mm in the lateral, posterior pyramidal and anterior, lateral, and posterior mastoid portions, respectively. Conclusion Mastoidectomy can be successfully performed using our robot‐assisted system while maintaining a pre‐set limit of 1 mm in most cases. This system may thus be useful for more inexperienced surgeons. Level of Evidence NA. PMID:29094065

  6. Religious Studies as a Test-Case For Computer-Assisted Instruction In The Humanities.

    ERIC Educational Resources Information Center

    Jones, Bruce William

    Experiences with computer-assisted instructional (CAI) programs written for religious studies indicate that CAI has contributions to offer the humanities and social sciences. The usefulness of the computer for presentation, drill and review of factual material and its applicability to quantifiable data is well accepted. There now exist…

  7. Clinical applicability of robot-guided contact-free laser osteotomy in cranio-maxillo-facial surgery: in-vitro simulation and in-vivo surgery in minipig mandibles.

    PubMed

    Baek, K-W; Deibel, W; Marinov, D; Griessen, M; Bruno, A; Zeilhofer, H-F; Cattin, Ph; Juergens, Ph

    2015-12-01

    Laser was being used in medicine soon after its invention. However, it has been possible to excise hard tissue with lasers only recently, and the Er:YAG laser is now established in the treatment of damaged teeth. Recently experimental studies have investigated its use in bone surgery, where its major advantages are freedom of cutting geometry and precision. However, these advantages become apparent only when the system is used with robotic guidance. The main challenge is ergonomic integration of the laser and the robot, otherwise the surgeon's space in the operating theatre is obstructed during the procedure. Here we present our first experiences with an integrated, miniaturised laser system guided by a surgical robot. An Er:YAG laser source and the corresponding optical system were integrated into a composite casing that was mounted on a surgical robotic arm. The robot-guided laser system was connected to a computer-assisted preoperative planning and intraoperative navigation system, and the laser osteotome was used in an operating theatre to create defects of different shapes in the mandibles of 6 minipigs. Similar defects were created on the opposite side with a piezoelectric (PZE) osteotome and a conventional drill guided by a surgeon. The performance was analysed from the points of view of the workflow, ergonomics, ease of use, and safety features. The integrated robot-guided laser osteotome can be ergonomically used in the operating theatre. The computer-assisted and robot-guided laser osteotome is likely to be suitable for clinical use for ostectomies that require considerable accuracy and individual shape. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. The Advantages and Disadvantages of Five Common Computer Assisted Instruction Modes.

    ERIC Educational Resources Information Center

    Davidson, Robert L.; Traylor, Karen

    1987-01-01

    This article reviews five modes of computer-assisted software so that teachers will be more aware of them and use computers more in their classrooms. The five modes are the following: (1) drill and practice; (2) tutorial; (3) simulation; (4) demonstration; and (5) instructional games. Teachers should review softwares and choose those that meet…

  9. Applications of Parsing Theory to Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Markosian, Lawrence Z.; Ager, Tryg A.

    1983-01-01

    Applications of an LR-1 parsing algorithm to intelligent programs for computer assisted instruction in symbolic logic and foreign languages are discussed. The system has been adequately used for diverse instructional applications, including analysis of student input, generation of pattern drills, and modeling the student's understanding of the…

  10. Computer-Assisted Instruction: Stanford's 1965-66 Arithmetic Program.

    ERIC Educational Resources Information Center

    Suppes, Patrick; And Others

    A review of the possibilities and challenges of computer-assisted instruction (CAI), and a brief history of CAI projects at Stanford serve to give the reader the context of the particular program described and analyzed in this book. The 1965-66 arithmetic drill-and-practice program is described, summarizing the curriculum and project operation. An…

  11. Drills vs. Games--Any Differences? A Pilot Study.

    ERIC Educational Resources Information Center

    McMullen, David W.

    This study investigated the effect of informational, drill, and game format computer-assisted instruction (CAI) on the achievement, retention, and attitude toward instruction of sixth-grade science students (N=37). An informational CAI lesson on Halley's Comet was administered to three randomly selected groups of sixth-grade students. A CAI drill…

  12. Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants.

    PubMed

    Peel, Sean; Bhatia, Satyajeet; Eggbeer, Dominic; Morris, Daniel S; Hayhurst, Caroline

    2017-06-01

    Previously published evidence has established major clinical benefits from using computer-aided design, computer-aided manufacturing, and additive manufacturing to produce patient-specific devices. These include cutting guides, drilling guides, positioning guides, and implants. However, custom devices produced using these methods are still not in routine use, particularly by the UK National Health Service. Oft-cited reasons for this slow uptake include the following: a higher up-front cost than conventionally fabricated devices, material-choice uncertainty, and a lack of long-term follow-up due to their relatively recent introduction. This article identifies a further gap in current knowledge - that of design rules, or key specification considerations for complex computer-aided design/computer-aided manufacturing/additive manufacturing devices. This research begins to address the gap by combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial patient case studies. In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual environment. Three cases translated these digital plans into theatre via polymer surgical guides. Four cases utilised additive manufacturing to fabricate titanium implants. One implant was machined from polyether ether ketone. From the literature, articles with relevant abstracts were analysed to extract design considerations. In all, 19 frequently recurring design considerations were extracted from previous publications. Nine new design considerations were extracted from the case studies - on the basis of subjective clinical evaluation. These were synthesised to produce a design considerations framework to assist clinicians with prescribing and design engineers with modelling. Promising avenues for further research are proposed.

  13. Reinforcing the role of the conventional C-arm--a novel method for simplified distal interlocking.

    PubMed

    Windolf, Markus; Schroeder, Josh; Fliri, Ladina; Dicht, Benno; Liebergall, Meir; Richards, R Geoff

    2012-01-25

    The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required.Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests. A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018). In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses.

  14. Computer-aided design/computer-aided manufacturing skull base drill.

    PubMed

    Couldwell, William T; MacDonald, Joel D; Thomas, Charles L; Hansen, Bradley C; Lapalikar, Aniruddha; Thakkar, Bharat; Balaji, Alagar K

    2017-05-01

    The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.

  15. The Effectiveness of a Computer-Assisted Instruction Package in Supplementing Teaching of Selected Concepts in High School Chemistry: Writing Formulas and Balancing Chemical Equations.

    ERIC Educational Resources Information Center

    Wainwright, Camille L.

    Four classes of high school chemistry students (N=108) were randomly assigned to experimental and control groups to investigate the effectiveness of a computer assisted instruction (CAI) package during a unit on writing/naming of chemical formulas and balancing equations. Students in the experimental group received drill, review, and reinforcement…

  16. Computer Assisted Drafting (CNC) Drawings. Drafting Module 6. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This Missouri Vocational Instruction Management System instructor's drafting guide has been keyed to the drafting competency profile developed by state industry and education professionals. This unit contains information on computer-assisted drafting drawings. The guide contains a cross-reference table of instructional materials and 20 worksheets.…

  17. A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine.

    PubMed

    Merc, Matjaz; Drstvensek, Igor; Vogrin, Matjaz; Brajlih, Tomaz; Recnik, Gregor

    2013-07-01

    The method of free-hand pedicle screw placement is generally safe although it carries potential risks. For this reason, several highly accurate computer-assisted systems were developed and are currently on the market. However, these devices have certain disadvantages. We have developed a method of pedicle screw placement in the lumbar and sacral region using a multi-level drill guide template, created with the rapid prototyping technology and have validated it in a clinical study. The aim of the study was to manufacture and evaluate the accuracy of a multi-level drill guide template for lumbar and first sacral pedicle screw placement and to compare it with the free-hand technique under fluoroscopy supervision. In 2011 and 2012, a randomized clinical trial was performed on 20 patients. 54 screws were implanted in the trial group using templates and 54 in the control group using the fluoroscopy-supervised free-hand technique. Furthermore, applicability for the first sacral level was tested. Preoperative CT-scans were taken and templates were designed using the selective laser sintering method. Postoperative evaluation and statistical analysis of pedicle violation, displacement, screw length and deviation were performed for both groups. The incidence of cortex perforation was significantly reduced in the template group; likewise, the deviation and displacement level of screws in the sagittal plane. In both groups there was no significantly important difference in deviation and displacement level in the transversal plane as not in pedicle screw length. The results for the first sacral level resembled the main investigated group. The method significantly lowers the incidence of cortex perforation and is therefore potentially applicable in clinical practice, especially in some selected cases. The applied method, however, carries a potential for errors during manufacturing and practical usage and therefore still requires further improvements.

  18. Development of a laser-guided embedded-computer-controlled air-assisted precision sprayer

    USDA-ARS?s Scientific Manuscript database

    An embedded computer-controlled, laser-guided, air-assisted, variable-rate precision sprayer was developed to automatically adjust spray outputs on both sides of the sprayer to match presence, size, shape, and foliage density of tree crops. The sprayer was the integration of an embedded computer, a ...

  19. Psychology on Computers: Simulations, Experiments and Projects.

    ERIC Educational Resources Information Center

    Belcher, Duane M.; Smith, Stephen D.

    PSYCOM is a unique mixed media package which combines high interest projects on the computer with a written text of expository material. It goes beyond most computer-assisted instruction which emphasizes drill and practice and testing of knowledge. A project might consist of a simulation or an actual experiment, or it might be a demonstration, a…

  20. Stanford Program in Computer-Assisted Instruction for the Period October 1, 1968 to December 31, 1968. Progress Report.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Inst. for Mathematical Studies in Social Science.

    Described in this report is the strand program as used in the teaching of drill-and-practice mathematics in California, Kentucky, and Mississippi schools, at the Tennessee A. and I. University, and in Washington, D.C.; as used in the drill-and-practice reading courses; in logic and algebra; in a second-year Russian program, and in…

  1. Template-guided vs. non-guided drilling in site preparation of dental implants.

    PubMed

    Scherer, Uta; Stoetzer, Marcus; Ruecker, Martin; Gellrich, Nils-Claudius; von See, Constantin

    2015-07-01

    Clinical success of oral implants is related to primary stability and osseointegration. These parameters are associated with delicate surgical techniques. We herein studied whether template-guided drilling has a significant influence on drillholes diameter and accuracy in an in vitro model. Fresh cadaveric porcine mandibles were used for drilling experiments of four experimental groups. Each group consisted of three operators, comparing guide templates for drilling with free-handed procedure. Operators without surgical knowledge were grouped together, contrasting highly experienced oral surgeons in other groups. A total of 180 drilling actions were performed, and diameters were recorded at multiple depth levels, with a precision measuring instrument. Template-guided drilling procedure improved accuracy on a very significant level in comparison with free-handed drilling operation (p ≤ 0.001). Inaccuracy of free-handed drilling became more significant in relation to measurement depth. High homogenic uniformity of template-guided drillholes was significantly stronger than unguided drilling operations by highly experienced oral surgeons (p ≤ 0.001). Template-guided drilling procedure leads to significantly enhanced accuracy. Significant results compared to free-handed drilling actions were achieved, irrespective of the clinical experience level of the operator. Template-guided drilling procedures lead to a more predictable clinical diameter. It shows that any set of instruments has to be carefully chosen to match the specific implant system. The current in vitro study is implicating an improvement of implant bed preparation but needs to be confirmed in clinical studies.

  2. Computer Series, 60: Bits and Pieces, 23.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1985-01-01

    Describes: (1) an interactive computer simulation for a science fair display of chromatography inks; (2) analytical chemistry programs; (3) microcomputer-assisted drills in organic synthesis; (4) programs for conformation analysis of ethane and butane; (5) MOLPIX--a program for generating and displaying molecular structures; and (6) chemical…

  3. State Strategic Planning for Technology. Issuegram 38.

    ERIC Educational Resources Information Center

    McCune, Shirley

    This brief publication provides general background on issues related to using microcomputers for instruction and suggests ways in which computer technologies can be included in state education improvement plans. Specific computer assisted instruction (CAI) uses mentioned are individual drill and practice and developing higher order skills. Three…

  4. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.

    PubMed

    Ortmaier, T; Weiss, H; Döbele, S; Schreiber, U

    2006-12-01

    This article presents experimental results for robot-assisted navigated drilling and milling for pedicle screw placement. The preliminary study was carried out in order to gain first insights into positioning accuracies and machining forces during hands-on robotic spine surgery. Additionally, the results formed the basis for the development of a new robot for surgery. A simplified anatomical model is used to derive the accuracy requirements. The experimental set-up consists of a navigation system and an impedance-controlled light-weight robot holding the surgical instrument. The navigation system is used to position the surgical instrument and to compensate for pose errors during machining. Holes are drilled in artificial bone and bovine spine. A quantitative comparison of the drill-hole diameters was achieved using a computer. The interaction forces and pose errors are discussed with respect to the chosen machining technology and control parameters. Within the technological boundaries of the experimental set-up, it is shown that the accuracy requirements can be met and that milling is superior to drilling. It is expected that robot assisted navigated surgery helps to improve the reliability of surgical procedures. Further experiments are necessary to take the whole workflow into account. Copyright 2006 John Wiley & Sons, Ltd.

  5. The Use of Modular Computer-Based Lessons in a Modification of the Classical Introductory Course in Organic Chemistry.

    ERIC Educational Resources Information Center

    Stotter, Philip L.; Culp, George H.

    An experimental course in organic chemistry utilized computer-assisted instructional (CAI) techniques. The CAI lessons provided tutorial drill and practice and simulated experiments and reactions. The Conversational Language for Instruction and Computing was used, along with a CDC 6400-6600 system; students scheduled and completed the lessons at…

  6. Computers in the Foreign Language Classroom: Not Just Another "Fad or Frill."

    ERIC Educational Resources Information Center

    Cox, Ruth

    Designed to assist foreign language teachers to become more computer literate, this paper discusses five major types of educational software currently on the market: (1) drill and practice; (2) tutorials; (3) simulations; (4) computer games; and (5) problem solvers. Possible uses for each type of program are given; in addition, specific programs…

  7. CATS--Computer Assisted Teaching in Science.

    ERIC Educational Resources Information Center

    Barron, Marcelline A.

    This document contains the listings for 46 computer programs which are designed to teach various concepts in chemistry and physics. Significant time was spent in writing programs in which students would input chemical and physical data from their laboratory experiments. No significant time was spent writing drill and practice programs other than…

  8. Teacher Resistance to CALL.

    ERIC Educational Resources Information Center

    Eastment, David

    Despite the evolution of software for computer-assisted language learning (CALL), teacher resistance remains high. Early software for language instruction was almost exclusively designed for drill and practice. That approach was later replaced by a model in which the computer provided a stimulus for students, most often as a partner in games.…

  9. Cybersonics: Tapping into Technology

    NASA Technical Reports Server (NTRS)

    2001-01-01

    With the assistance of Small Business Innovation Research (SBIR) funding from NASA's Jet Propulsion Laboratory, Cybersonics, Inc., developed an ultrasonic drill with applications ranging from the medical industry to space exploration. The drill, which has the ability to take a core sample of the hardest granite or perform the most delicate diagnostic medical procedure, is a lightweight, ultrasonic device made to fit in the palm of the hand. Piezoelectric actuators, which have only two moving parts and no gears or motors, drive the components of the device, enabling it to operate in a wide range of temperatures. The most remarkable aspect of the drill is its ability to penetrate even the hardest rock with minimal force application. The ultrasonic device requires 20 to 30 times less force than standard rotating drills, allowing it to be safely guided by hand during operation. Also, the drill is operable at a level as low as three watts of power, where conventional drills require more than three times this level. Potential future applications for the ultrasonic drill include rock and soil sampling, medical procedures that involve core sampling or probing, landmine detection, building and construction, and space exploration. Cybersonics, Inc. developed an ultrasonic drill with applications ranging from the medical industry to space exploration.

  10. Reinforcing the role of the conventional C-arm - a novel method for simplified distal interlocking

    PubMed Central

    2012-01-01

    Background The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. Methods The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required. Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests. Results A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018). Conclusions In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses. PMID:22276698

  11. Accuracy of Novel Computed Tomography-Guided Frameless Stereotactic Drilling and Catheter System in Human Cadavers.

    PubMed

    Sankey, Eric W; Butler, Eric; Sampson, John H

    2017-10-01

    To evaluate accuracy of a computed tomography (CT)-guided frameless stereotactic drilling and catheter system. A prospective, single-arm study was performed using human cadaver heads to evaluate placement accuracy of a novel, flexible intracranial catheter and stabilizing bone anchor system and drill kit. There were 20 catheter placements included in the analysis. The primary endpoint was accuracy of catheter tip location on intraoperative CT. Secondary endpoints included target registration error and entry and target point error before and after drilling. Measurements are reported as mean ± SD (median, range). Target registration error was 0.46 mm ± 0.26 (0.50 mm, -1.00 to 1.00 mm). Two (10%) target point trajectories were negatively impacted by drilling. Intracranial catheter depth was 59.8 mm ± 9.4 (60.5 mm, 38.0-80.0 mm). Drilling angle was 22° ± 9 (21°, 7°-45°). Deviation between planned and actual entry point on CT was 1.04 mm ± 0.38 (1.00 mm, 0.40-2.00 mm). Deviation between planned and actual target point on CT was 1.60 mm ± 0.98 (1.40 mm, 0.40-4.00 mm). No correlation was observed between intracranial catheter depth and target point deviation (accuracy) (Pearson coefficient 0.018) or between technician experience and accuracy (Pearson coefficient 0.020). There was no significant difference in accuracy with trajectories performed for different cadaver heads (P = 0.362). Highly accurate catheter placement is achievable using this novel flexible catheter and bone anchor system placed via frameless stereotaxy, with an average deviation between planned and actual target point of 1.60 mm ± 0.98 (1.40 mm, 0.40-4.00 mm). Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Computer-Assisted Instruction Guide.

    ERIC Educational Resources Information Center

    Entelek, Inc., Newburyport, MA.

    Provided is a compilation of abstracts of currently available computer-assisted instructional (CAI) programs. The guide contains the specifications of all operational CAI programs that have come under the surveillance of ENTELEK's CAI Information Exchange since its establishment in 1965. A total of 226 CAI programs by 160 authors at 38 CAI centers…

  13. PLATO and the English Curriculum.

    ERIC Educational Resources Information Center

    Macgregor, William B.

    PLATO differs from other computer assisted instruction in that it is truly a system, employing a powerful mainframe computer and connecting its users to each other and to the people running it. The earliest PLATO materials in English were drill and practice programs, an improvement over written texts, but a small one. Unfortunately, game lessons,…

  14. Intraosseous Heat Generation During Osteotomy Performed Freehand and Through Template With an Integrated Metal Guide Sleeve: An In Vitro Study.

    PubMed

    Barrak, Ibrahim; Joób-Fancsaly, Árpád; Braunitzer, Gábor; Varga, Endre; Boa, Kristóf; Piffkó, József

    2018-06-01

    To investigate drill wear and consequent intraosseous temperature elevation during freehand and guided bone drilling, with attention to the effect of metal-on-metal contact during guided drilling. Osteotomies were performed on bovine ribs, with 2.0 mm diameter stainless steel drill bits of the SMART Guide System, under 3 sterilization protocols, at 800, 1200, 1500, and 2000 rpm. Sterilization was performed after every 3 drilling. Temperature was measured after every 30 drilling. The studied contributing factors had a cumulative effect, and each contributed significantly to temperature elevation. Whether guide use led to a near-necrotic (47°C) temperature increment depended largely on the applied sterilization protocol. The metal sleeve is a significant contributing factor to heat generation during guided osteotomy, but its effect can be offset by keeping the other studied factors under control.

  15. A Guide to Courseware Authoring Options in ESL/FL Instruction.

    ERIC Educational Resources Information Center

    Hampson, S. L.

    A guide to courseware authoring aids for computer-assisted language instruction (CALIS) gives suggestions for the selection and use of programing options and provides an annotated listing of those options. Introductory sections discuss the use of computer-assisted language teaching, the selection of quality courseware, the types of authoring aids…

  16. Computer-assisted versus non-computer-assisted preoperative planning of corrective osteotomy for extra-articular distal radius malunions: a randomized controlled trial.

    PubMed

    Leong, Natalie L; Buijze, Geert A; Fu, Eric C; Stockmans, Filip; Jupiter, Jesse B

    2010-12-14

    Malunion is the most common complication of distal radius fracture. It has previously been demonstrated that there is a correlation between the quality of anatomical correction and overall wrist function. However, surgical correction can be difficult because of the often complex anatomy associated with this condition. Computer assisted surgical planning, combined with patient-specific surgical guides, has the potential to improve pre-operative understanding of patient anatomy as well as intra-operative accuracy. For patients with malunion of the distal radius fracture, this technology could significantly improve clinical outcomes that largely depend on the quality of restoration of normal anatomy. Therefore, the objective of this study is to compare patient outcomes after corrective osteotomy for distal radius malunion with and without preoperative computer-assisted planning and peri-operative patient-specific surgical guides. This study is a multi-center randomized controlled trial of conventional planning versus computer-assisted planning for surgical correction of distal radius malunion. Adult patients with extra-articular malunion of the distal radius will be invited to enroll in our study. After providing informed consent, subjects will be randomized to two groups: one group will receive corrective surgery with conventional preoperative planning, while the other will receive corrective surgery with computer-assisted pre-operative planning and peri-operative patient specific surgical guides. In the computer-assisted planning group, a CT scan of the affected forearm as well as the normal, contralateral forearm will be obtained. The images will be used to construct a 3D anatomical model of the defect and patient-specific surgical guides will be manufactured. Outcome will be measured by DASH and PRWE scores, grip strength, radiographic measurements, and patient satisfaction at 3, 6, and 12 months postoperatively. Computer-assisted surgical planning, combined with patient-specific surgical guides, is a powerful new technology that has the potential to improve the accuracy and consistency of orthopaedic surgery. To date, the role of this technology in upper extremity surgery has not been adequately investigated, and it is unclear whether its use provides any significant clinical benefit over traditional preoperative imaging protocols. Our study will represent the first randomized controlled trial investigating the use of computer assisted surgery in corrective osteotomy for distal radius malunions. NCT01193010.

  17. Hearing Impairments. Tech Use Guide: Using Computer Technology.

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Reston, VA. Center for Special Education Technology.

    One of nine brief guides for special educators on using computer technology, this guide focuses on advances in electronic aids, computers, telecommunications, and videodiscs to assist students with hearing impairments. Electronic aids include hearing aids, telephone devices for the deaf, teletypes, closed captioning systems for television, and…

  18. Percutaneous CT-Guided Treatment of Osteochondritis Dissecans of the Sacroiliac Joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becce, Fabio, E-mail: fabio.becce@chuv.ch; Mouhsine, Elyazid; Mosimann, Pascal John

    2012-08-15

    Osteochondritis dissecans (OCD) is a joint disorder that affects the articular cartilage and subchondral bone, most commonly at the knee. OCD of the sacroiliac joint is extremely rare. Management of OCD remains controversial, and surgery is often needed, especially when conservative treatment fails. We present a rare case of OCD involving the left sacroiliac joint successfully treated by percutaneous computed tomography-guided retrograde drilling and debridement.

  19. Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery.

    PubMed

    Polley, John W; Figueroa, Alvaro A

    2013-05-01

    To introduce the concept and use of an occlusal-based "orthognathic positioning system" (OPS) to be used during orthognathic surgery. The OPS consists of intraoperative occlusal-based devices that transfer virtual surgical planning to the operating field for repositioning of the osteotomized dentoskeletal segments. The system uses detachable guides connected to an occlusal splint. An initial drilling guide is used to establish stable references or landmarks. These are drilled on the bone that will not be repositioned adjacent to the osteotomy line. After mobilization of the skeletal segment, a final positioning guide, referenced to the drilled landmarks, is used to transfer the skeletal segment according to the virtual surgical planning. The OPS is digitally designed using 3-dimensional computer-aided design/computer-aided manufacturing technology and manufactured with stereolithographic techniques. Virtual surgical planning has improved the preoperative assessment and, in conjunction with the OPS, the execution of orthognathic surgery. The OPS has the possibility to eliminate the inaccuracies commonly associated with traditional orthognathic surgery planning and to simplify the execution by eliminating surgical steps such as intraoperative measuring, determining the condylar position, the use of bulky intermediate splints, and the use of intermaxillary wire fixation. The OPS attempts precise translation of the virtual plan to the operating field, bridging the gap between virtual and actual surgery. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Ultrasonically assisted drilling of rocks

    NASA Astrophysics Data System (ADS)

    Mikhailova, N. V.; Onawumi, P. Y.; Roy, A.; Silberschmidt, V. V.

    2018-05-01

    Conventional drilling of rocks can generate significant damage in the drilled material; a material layer is often split off a back surface of a sample during drilling, negatively affecting its strength. To improve finish quality, ultrasonically assisted drilling (UAD) was employed in two rocks - sandstone and marble. Damage areas in both materials were reduced in UAD when compared to conventional drilling. Reductions in a thrust force and a torque reduction were observed only for UAD in marble; ultrasonic assistance in sandstone drilling did not result in improvements in this regard.

  1. Microcomponents manufacturing for precise devices by copper vapor laser

    NASA Astrophysics Data System (ADS)

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  2. Middle School Teachers' Perceptions of Computer-Assisted Reading Intervention Programs

    ERIC Educational Resources Information Center

    Bippert, Kelli; Harmon, Janis

    2017-01-01

    Middle schools often turn to computer-assisted reading intervention programs to improve student reading. The questions guiding this study are (a) in what ways are computer-assisted reading intervention programs utilized, and (b) what are teachers' perceptions about these intervention programs? Nineteen secondary reading teachers were interviewed…

  3. [Navigated drilling for femoral head necrosis. Experimental and clinical results].

    PubMed

    Beckmann, J; Tingart, M; Perlick, L; Lüring, C; Grifka, J; Anders, S

    2007-05-01

    In the early stages of osteonecrosis of the femoral head, core decompression by exact drilling into the ischemic areas can reduce pain and achieve reperfusion. Using computer aided surgery, the precision of the drilling can be improved while simultaneously lowering radiation exposure time for both staff and patients. We describe the experimental and clinical results of drilling under the guidance of the fluoroscopically-based VectorVision navigation system (BrainLAB, Munich, Germany). A total of 70 sawbones were prepared mimicking an osteonecrosis of the femoral head. In two experimental models, bone only and obesity, as well as in a clinical setting involving ten patients with osteonecrosis of the femoral head, the precision and the duration of radiation exposure were compared between the VectorVision system and conventional drilling. No target was missed. For both models, there was a statistically significant difference in terms of the precision, the number of drilling corrections as well as the radiation exposure time. The average distance to the desired midpoint of the lesion of both models was 0.48 mm for navigated drilling and 1.06 mm for conventional drilling, the average drilling corrections were 0.175 and 2.1, and the radiation exposure time less than 1 s and 3.6 s, respectively. In the clinical setting, the reduction of radiation exposure (below 1 s for navigation compared to 56 s for the conventional technique) as well as of drilling corrections (0.2 compared to 3.4) was also significant. Computer guided drilling using the fluoroscopically based VectorVision navigation system shows a clearly improved precision with a enormous simultaneous reduction in radiation exposure. It is therefore recommended for clinical routine.

  4. The Role of the Occupational and Physical Therapist in Assistive Technology. Tech Use Guide: Using Computer Technology.

    ERIC Educational Resources Information Center

    Reed, Penny; Bowser, Gayl

    This guide defines assistive technology as specialized hardware and software equipment used by students with disabilities to increase their ability to participate in tasks of learning and daily living and function as independently as possible. Types of assistive technology are listed, and information resources about assistive technology are noted.…

  5. The 1993-94 Educational Software Preview Guide.

    ERIC Educational Resources Information Center

    Best, Anita, Ed.; Mathis, Judi, Ed.

    This guide lists favorably reviewed, commercially available, microcomputer software for instructional use in preschool through grade 12. The guide is organized by the following curriculum areas: art; business education; computers; health; instructional tools, including authoring systems, computer assisted drafting (CAD), classroom management,…

  6. A Novel Well Drill Assisted with High-Frequency Vibration Using the Bending Mode

    PubMed Central

    Qi, Xinda; Chen, Weishan; Tang, Xintian; Shi, Shengjun

    2018-01-01

    It is important for companies to increase the efficiency of drilling as well as prolong the lifetime of the drilling tool. Since some previous investigations indicated that a superposition of well drilling with an additional vibration increases the drilling efficiency, this paper introduces a novel well drill which is assisted with additional vibrations by means of piezoelectric sandwich bending vibration transducer. The proposed drill uses bending vibrations in two different directions to from an elliptical trajectory movement, which can help the drill to break the surface of hard material more efficiently and clean away the lithic fragments more easily. The proposed well drill with bending vibration transducer is designed to have a resonance frequency of the first bending vibration mode of about 1779 Hz. The motion equation of the particle on the edge of the drill bit is developed and analyzed. The vibration trajectory of the particle on the edge of the drill bit is calculated by using finite element method. A prototype of the proposed drill using bending vibrations is fabricated and tested to verify the aim of drilling efficiency increase. The feed speed of the vibration assisted drilling is tested to be about 0.296 mm/s when the excitation voltage of the transducer is 300 V, while this speed decreases to about 0.195 mm/s when no vibration is added. This comparison shows that the feed speed of the vibration assisted drilling is about 52% higher than that of the normal drilling, which means the proposed drill has a better efficiency and it is important to consider vibration superimposition in well drilling. In addition, the surface of the drill hole gained by the vibration assisted drilling is smoother than that of the normal drilling, which makes the clearance easier. PMID:29641481

  7. Guided Immediate Implant Placement with Wound Closure by Computer-Aided Design/Computer-Assisted Manufacture Sealing Socket Abutment: Case Report.

    PubMed

    Finelle, Gary; Lee, Sang J

    Digital technology has been widely used in the field of implant dentistry. From a surgical standpoint, computer-guided surgery can be utilized to enhance primary implant stability and to improve the precision of implant placement. From a prosthetic standpoint, computer-aided design/computer-assisted manufacture (CAD/CAM) technology has brought about various restorative options, including the fabrication of customized abutments through a virtual design based on computer-guided surgical planning. This case report describes a novel technique combining the use of a three-dimensional (3D) printed surgical template for the immediate placement of an implant, with CAD/CAM technology to optimize hard and soft tissue healing after bone grafting with the use of a socket sealing abutment.

  8. Planning Guide for Instructional Computing.

    ERIC Educational Resources Information Center

    League for Innovation in the Community Coll., Laguna Hills, CA.

    Designed to assist academic administrators at community colleges in developing strategies for the application of computers to teaching and learning, this guide provides background information and recommendations for the design and implementation of an instructional computing plan. Chapter 1 examines computers as a topic of instruction, as a medium…

  9. Intraosseous generation of heat during guided surgical drilling: an ex vivo study of the effect of the temperature of the irrigating fluid.

    PubMed

    Boa, Kristof; Barrak, Ibrahim; Varga, Endre; Joob-Fancsaly, Arpad; Varga, Endre; Piffko, Jozsef

    2016-10-01

    We measured the rise in the intraosseous temperature caused by freehand drilling or drilling through a surgical guide, by comparing different temperatures of irrigation fluid (10°C, 15°C, and 20°C), for every step of the drilling sequence (diameters 2.0, 2.5, 3.0, and 3.5mm) and using a constant drilling speed of 1200rpm. The axial load was controlled at 2.0kg. Bovine ribs were used as test models. In the guided group we used 3-dimensional printed surgical guides and temperature was measured with a thermocouple. The significance of differences was assessed with the Kruskal-Wallis analysis of variance. Guided drilling with 10°C irrigation yielded a significantly lower increment in temperature than the 20°C-guided group. When compared with the 20°C freehand group, the reduction in temperature in the 10°C guided group was significantly more pronounced at all diameters except 3.5mm. Finally, when the 10°C-guided group was compared with the 15°C groups, the temperature rise was significantly less at 2.5 and 3.0mm than with the guided technique, and at 3.0mm compared with the freehand technique. We suggest that the use of 10°C pre-cooled irrigation fluid is superior to warmer fluid for keeping temperature down, and this reduces the difference between guided and freehand drilling. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Decision Analysis Using Spreadsheets.

    ERIC Educational Resources Information Center

    Sounderpandian, Jayavel

    1989-01-01

    Discussion of decision analysis and its importance in a business curriculum focuses on the use of spreadsheets instead of commercial software packages for computer assisted instruction. A hypothetical example is given of a company drilling for oil, and suggestions are provided for classroom exercises using spreadsheets. (seven references) (LRW)

  11. Implant Bed Preparation with an Erbium, Chromium Doped Yttrium Scandium Gallium Garnet (Er,Cr: YSGG) Laser Using Stereolithographic Surgical Guide

    PubMed Central

    Seymen, Gülin; Turgut, Zeynep; Berk, Gizem; Bodur, Ayşen

    2013-01-01

    Background: Implant bed preparation with laser is taken into consideration owing to the increased interest in use of lasers in hard tissue surgery. The purpose of this study is to determine the deviations in the position and inclination between the planned and prepared implant beds with Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser using stereolithographic (SLA) surgical guides. Methods: After 3-dimensional (3D) imaging of six sheep lower jaws, computed tomography (CT) images were transformed into 3D models. Locations of implant beds were determined on these models. Two implant beds in each half jaw were prepared with an Er,Cr:YSGG laser system and a conventional drilling method using a total of 12 SLA surgical guides. A new CT was taken to analyze the deviation values between planned and prepared implant beds. Finally, a software program was used to superimpose the images on 3D models, then the laser and conventional drilling groups were compared. Results: Differences of mean angular deviations between the planned and prepared implant beds were 5.17±4.91° in the laser group and 2.02±1.94° in the conventional drilling group.The mean coronal deviation values were found to be 0.48±0.25 mm and 0.23±0.14 mm in the laser group and conventional drilling group, respectively. While the mean deviation at the apex between the planned and prepared implant beds were 0.70±0.26 mm and 0.26±0.08 ,the mean vertical deviations were 0.06±0.15 mm and 0.02±0.05 mm for the laser group and the conventional drilling group, respectively. Conclusion: It is possible to prepare an implant bed properly with the aid of Er,Cr:YSGGlaser by using SLA surgical guide. PMID:25606303

  12. Competency Reference for Computer Assisted Drafting.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Div. of Vocational Technical Education.

    This guide, developed in Oregon, lists competencies essential for students in computer-assisted drafting (CAD). Competencies are organized in eight categories: computer hardware, file usage and manipulation, basic drafting techniques, mechanical drafting, specialty disciplines, three dimensional drawing/design, plotting/printing, and advanced CAD.…

  13. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography.

    PubMed

    Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas

    2008-02-01

    High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.

  14. Geopressure modeling from petrophysical data: An example from East Kalimantan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herkommer, M.A.

    1994-07-01

    Localized models of abnormal formation pressure (geopressure) are important economic and safety tools frequently used for well planning and drilling operations. Simplified computer-based procedures have been developed that permit these models to be developed more rapidly and with greater accuracy. These techniques are broadly applicable to basins throughout the world where abnormal formation pressures occur. An example from the Attaka field of East Kalimantan, southeast Asia, shows how geopressure models are developed. Using petrophysical and engineering data, empirical correlations between observed pressure and petrophysical logs can be created by computer-assisted data-fitting techniques. These correlations serve as the basis for modelsmore » of the geopressure. By performing repeated analyses on wells at various locations, contour maps on the top of abnormal geopressure can be created. Methods that are simple in their development and application make the task of geopressure estimation less formidable to the geologist and petroleum engineer. Further, more accurate estimates can significantly improve drilling speeds while reducing the incidence of stuck pipe, kicks, and blowouts. In general, geopressure estimates are used in all phases of drilling operations: To develop mud plans and specify equipment ratings, to assist in the recognition of geopressured formations and determination of mud weights, and to improve predictions at offset locations and geologically comparable areas.« less

  15. Computer Utilization in Industrial Arts/Technology Education. Curriculum Guide.

    ERIC Educational Resources Information Center

    Connecticut Industrial Arts Association.

    This guide is intended to assist industrial arts/technology education teachers in helping students in grades K-12 understand the impact of computers and computer technology in the world. Discussed in the introductory sections are the ways in which computers have changed the face of business, industry, and education and training; the scope and…

  16. A HyperCard Program for Business German.

    ERIC Educational Resources Information Center

    Paulsell, Patricia R.

    Although the use of computer-assisted language instruction software has been mainly limited to grammatical/syntactical drills, the increasing number of language professionals with programming skills is leading to the development of more sophisticated language education programs. This report describes the generation of such a program using the…

  17. Are computer numerical control (CNC)-manufactured patient-specific metal templates available for posterior thoracic pedicle screw insertion? Feasibility and accuracy evaluation.

    PubMed

    Kong, Xiangxue; Tang, Lei; Ye, Qiang; Huang, Wenhua; Li, Jianyi

    2017-11-01

    Accurate and safe posterior thoracic pedicle insertion (PTPI) remains a challenge. Patient-specific drill templates (PDTs) created by rapid prototyping (RP) can assist in posterior thoracic pedicle insertion, but pose biocompatibility risks. The aims of this study were to develop alternative PDTs with computer numerical control (CNC) and assess their feasibility and accuracy in assisting PTPI. Preoperative CT images of 31 cadaveric thoracic vertebras were obtained and then the optimal pedicle screw trajectories were planned. The PDTs with optimal screw trajectories were randomly assigned to be designed and manufactured by CNC or RP in each vertebra. With the guide of the CNC- or RP-manufactured PDTs, the appropriate screws were inserted into the pedicles. Postoperative CT scans were performed to analyze any deviations at entry point and midpoint of the pedicles. The CNC group was found to be significant manufacture-time-shortening, and cost-decreasing, when compared with the RP group (P < 0.01). The PDTs fitted the vertebral laminates well while all screws were being inserted into the pedicles. There were no significant differences in absolute deviations at entry point and midpoint of the pedicle on either axial or sagittal planes (P > 0.05). The screw positions were grade 0 in 90.3% and grade 1 in 9.7% of the cases in the CNC group and grade 0 in 93.5% and grade 1 in 6.5% of the cases in the RP group (P = 0.641). CNC-manufactured PDTs are viable for assisting in PTPI with good feasibility and accuracy.

  18. Computer-Based Training Development and Guidance for the Army’s Unmanned Aviation Systems Maintenance Training Division

    DTIC Science & Technology

    2017-08-01

    principles for effective Computer-Based Training (CBT) that can be applied broadly to Army courses to build and evaluate exemplar CBT for Army advanced...individual training courses. To assist cadre who do not have a dedicated instructional design team, the Computer-Based Training Principles Guide was...document is the resulting contents, organization, and presentation style of the Computer- Based Training Principles Guide and its companion User’s Guide

  19. CAPSAS: Computer Assisted Program for the Selection of Appropriate Statistics.

    ERIC Educational Resources Information Center

    Shermis, Mark D.; Albert, Susan L.

    A computer-assisted program has been developed for the selection of statistics or statistical techniques by both students and researchers. Based on Andrews, Klem, Davidson, O'Malley and Rodgers "A Guide for Selecting Statistical Techniques for Analyzing Social Science Data," this FORTRAN-compiled interactive computer program was…

  20. Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography.

    PubMed

    Kim, Seong-Hun; Choi, Yong-Suk; Hwang, Eui-Hwan; Chung, Kyu-Rhim; Kook, Yoon-Ah; Nelson, Gerald

    2007-04-01

    This article illustrates a new surgical guide system that uses cone-beam computed tomography (CBCT) images to replicate dental models; surgical guides for the proper positioning of orthodontic mini-implants were fabricated on the replicas, and the guides were used for precise placement. The indications, efficacy, and possible complications of this method are discussed. Patients who were planning to have orthodontic mini-implant treatment were recruited for this study. A CBCT system (PSR 9000N, Asahi Roentgen, Kyoto, Japan) was used to acquire virtual slices of the posterior maxilla that were 0.1 to 0.15 mm thick. Color 3-dimensional rapid prototyping was used to differentiate teeth, alveolus, and maxillary sinus wall. A surgical guide for the mini-implant was fabricated on the replica model. Proper positioning for mini-implants on the posterior maxilla was determined by viewing the CBCT images. The surgical guide was placed on the clinical site, and it allowed precise pilot drilling and accurate placement of the mini-implant. CBCT imaging allows remarkably lower radiation doses and thinner acquisition slices compared with medical computed tomography. Virtually reproduced replica models enable precise planning for mini-implant positions in anatomically complex sites.

  1. Mechanical Design Technology--Modified. (Computer Assisted Drafting, Computer Aided Design). Curriculum Grant 84/85.

    ERIC Educational Resources Information Center

    Schoolcraft Coll., Livonia, MI.

    This document is a curriculum guide for a program in mechanical design technology (computer-assisted drafting and design developed at Schoolcraft College, Livonia, Michigan). The program helps students to acquire the skills of drafters and to interact with electronic equipment, with the option of becoming efficient in the computer-aided…

  2. 4-6 Computer Awareness. Interim Guide.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg. Computer Services Branch.

    This guide was developed to assist teachers in achieving goals related to the development of computer awareness in students in grades 4-6 in the Canadian province of Manitoba. An overview of the program describes a set of basic concepts, skills, and attitudes relating to computer technology, and provides information on activities that can be used…

  3. Troubleshooting Microcomputers. A Technical Guide for Polk County Schools.

    ERIC Educational Resources Information Center

    Black, B. R.; And Others

    This guide was started in 1986 as an effort to pull together a collection of several computer guides that had been written over the previous several years to assist schools in making simple computer repairs. The first of six sections contains general tips and hints, including sections on tool requirements, strobe disk speed adjustment, static…

  4. Computer-Aided Design/Computer-Assisted Manufacture-Derived Needle Guide for Injection of Botulinum Toxin into the Lateral Pterygoid Muscle in Patients with Oromandibular Dystonia.

    PubMed

    Yoshida, Kazuya

    2018-01-01

    To evaluate the effectiveness and safety of botulinum toxin administration into the inferior head of the lateral pterygoid muscle of patients with jaw opening dystonia by using a computer-aided design/computer-assisted manufacture (CAD/CAM)-derived needle guide. A total of 17 patients with jaw opening dystonia were enrolled. After the patient's computed tomography (CT) scan was imported and fused with a scan of a plaster cast model of the maxilla, the optimal needle insertion site over the lateral pterygoid muscle was determined using the NobelClinician software. A total of 13 patients were injected both with and without the guide, and 4 patients underwent guided injection alone. The therapeutic effects of botulinum toxin injection and its associated complications were statistically compared between the guided and unguided procedures using paired t test. Botulinum toxin therapy was performed 42 and 32 times with and without the guides, respectively. The needle was easily inserted without any complications in all procedures. There was a significant difference (P < .001) between the mean comprehensive improvements observed with (66.3%) and without (54.4%) the guides. The findings suggest that the use of needle guides during the injection of botulinum toxin into the inferior head of the lateral pterygoid muscle is very useful for aiding the accurate and safe administration of botulinum toxin therapy for jaw opening dystonia.

  5. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone.

    PubMed

    Alam, K; Mitrofanov, A V; Silberschmidt, V V

    2011-03-01

    Bone drilling is widely used in orthopaedics and surgery; it is a technically demanding surgical procedure. Recent technological improvements in this area are focused on efforts to reduce forces in bone drilling. This study focuses on forces and a torque required for conventional and ultrasonically-assisted tool penetration into fresh bovine cortical bone. Drilling tests were performed with two drilling techniques, and the influence of drilling speed, feed rate and parameters of ultrasonic vibration on the forces and torque was studied. Ultrasonically-assisted drilling (UAD) was found to reduce a drilling thrust force and torque compared to conventional drilling (CD). The mechanism behind lower levels of forces and torque was explored, using high-speed filming of a drill-bone interaction zone, and was linked to the chip shape and character of its formation. It is expected that UAD will produce holes with minimal effort and avoid unnecessary damage and accompanying pain during the incision. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Precise Electrochemical Drilling of Repeated Deep Holes

    NASA Technical Reports Server (NTRS)

    Kincheloe, J. P.

    1985-01-01

    Tooling enables maintenance of close tolerances. Tooling includes guide that holds electrochemical drilling electrodes in proper relative alinement and guide-positioning fixture clamps directly on reference surfaces of strut. High precision achieved by positioning tooling anew on each strut before drilling: Tolerances of (0.008 mm) maintained in some details.

  7. Computer-Assisted Virtual Planning for Surgical Guide Manufacturing and Internal Distractor Adaptation in the Management of Midface Hypoplasia in Cleft Patients.

    PubMed

    Scolozzi, Paolo; Herzog, Georges

    2017-07-01

    We are reporting the treatment of severe maxillary hypoplasia in two patients with unilateral cleft lip and palate by using a specific approach combining the Le Fort I distraction osteogenesis technique coupled with computer-aided design/computer-aided manufacturing customized surgical guides and internal distractors based on virtual computational planning. This technology allows for the transfer of the virtual planned reconstruction to the operating room by using custom patient-specific implants, surgical splints, surgical cutting guides, and surgical guides to plate or distractor adaptation.

  8. Feasibility study of a hand guided robotic drill for cochleostomy.

    PubMed

    Brett, Peter; Du, Xinli; Zoka-Assadi, Masoud; Coulson, Chris; Reid, Andrew; Proops, David

    2014-01-01

    The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.

  9. Artificial Intelligence and Language Development and Language Usage with the Deaf.

    ERIC Educational Resources Information Center

    Leach, John Mark

    The paper reviews research on the application of artificial intelligence (AI) in language development and/or instruction with the deaf. Contributions of computer assisted instruction are noted, as are the problems resulting from over-dependence on a drill and practice format and from deaf students' difficulties in receiving and understanding new…

  10. The Parents' Guide to the Information Superhighway: Rules and Tools for Families Online.

    ERIC Educational Resources Information Center

    Lazarus, Wendy; Lipper, Laurie

    Computers and online services are becoming a part of children's lives. This guide is designed to introduce parents to the Information Superhighway and to parenting in a world of computers and new forms of media. Prepared by the Children's Partnership, with assistance from the National PTA and the National Urban League, this guide provides tools…

  11. A new adjustable parallel drill guide for internal fixation of femoral neck fracture: a developmental and experimental study.

    PubMed

    Yuenyongviwat, Varah; Tuntarattanapong, Pakjai; Tangtrakulwanich, Boonsin

    2016-01-11

    Internal fixation is one treatment for femoral neck fracture. Some devices and techniques reported improved accuracy and decreased fluoroscopic time. However, these are not widely used nowadays due to the lack of available special instruments and techniques. To improve the surgical procedure, the authors designed a new adjustable drill guide and tested the efficacy of the device. The authors developed a new adjustable drill guide for cannulated screw guide wire insertion for multiple screw fixation. Eight orthopaedic surgeons performed the experimental study to evaluate the efficacy of this device. Each surgeon performed guide wire insertion for multiple screw fixation in six synthetic femurs: three times with the new device and three times with the conventional technique. The fluoroscopic time, operative time and surgeon satisfaction were evaluated. In the operations with the new adjustable drill guide, the fluoroscopic and operative times were significantly lower than the operations with the conventional technique (p < 0.05). The mean score for the level of satisfaction of this device was also statistically significantly better (p = 0.02) than the conventional technique. The fluoroscopic and operative times with the new adjustable drill guide were reduced for multiple screw fixation of femoral neck fracture and the satisfaction of the surgeons was good.

  12. A Neuromonitoring Approach to Facial Nerve Preservation During Image-guided Robotic Cochlear Implantation.

    PubMed

    Ansó, Juan; Dür, Cilgia; Gavaghan, Kate; Rohrbach, Helene; Gerber, Nicolas; Williamson, Tom; Calvo, Enric M; Balmer, Thomas Wyss; Precht, Christina; Ferrario, Damien; Dettmer, Matthias S; Rösler, Kai M; Caversaccio, Marco D; Bell, Brett; Weber, Stefan

    2016-01-01

    A multielectrode probe in combination with an optimized stimulation protocol could provide sufficient sensitivity and specificity to act as an effective safety mechanism for preservation of the facial nerve in case of an unsafe drill distance during image-guided cochlear implantation. A minimally invasive cochlear implantation is enabled by image-guided and robotic-assisted drilling of an access tunnel to the middle ear cavity. The approach requires the drill to pass at distances below 1  mm from the facial nerve and thus safety mechanisms for protecting this critical structure are required. Neuromonitoring is currently used to determine facial nerve proximity in mastoidectomy but lacks sensitivity and specificity necessaries to effectively distinguish the close distance ranges experienced in the minimally invasive approach, possibly because of current shunting of uninsulated stimulating drilling tools in the drill tunnel and because of nonoptimized stimulation parameters. To this end, we propose an advanced neuromonitoring approach using varying levels of stimulation parameters together with an integrated bipolar and monopolar stimulating probe. An in vivo study (sheep model) was conducted in which measurements at specifically planned and navigated lateral distances from the facial nerve were performed to determine if specific sets of stimulation parameters in combination with the proposed neuromonitoring system could reliably detect an imminent collision with the facial nerve. For the accurate positioning of the neuromonitoring probe, a dedicated robotic system for image-guided cochlear implantation was used and drilling accuracy was corrected on postoperative microcomputed tomographic images. From 29 trajectories analyzed in five different subjects, a correlation between stimulus threshold and drill-to-facial nerve distance was found in trajectories colliding with the facial nerve (distance <0.1  mm). The shortest pulse duration that provided the highest linear correlation between stimulation intensity and drill-to-facial nerve distance was 250  μs. Only at low stimulus intensity values (≤0.3  mA) and with the bipolar configurations of the probe did the neuromonitoring system enable sufficient lateral specificity (>95%) at distances to the facial nerve below 0.5  mm. However, reduction in stimulus threshold to 0.3  mA or lower resulted in a decrease of facial nerve distance detection range below 0.1  mm (>95% sensitivity). Subsequent histopathology follow-up of three representative cases where the neuromonitoring system could reliably detect a collision with the facial nerve (distance <0.1  mm) revealed either mild or inexistent damage to the nerve fascicles. Our findings suggest that although no general correlation between facial nerve distance and stimulation threshold existed, possibly because of variances in patient-specific anatomy, correlations at very close distances to the facial nerve and high levels of specificity would enable a binary response warning system to be developed using the proposed probe at low stimulation currents.

  13. Microcomputer Resource Guide for Vocational Administrators.

    ERIC Educational Resources Information Center

    Georgia State Univ., Atlanta. Center for Vocational Leadership.

    This guide is intended to assist vocational supervisors in expanding their knowledge of microcomputers and to provide resources to assist them in working with their faculty. Section I presents competencies deemed necessary for an administrator to use the computer as a tool in the conduct of his/her job. Section II focuses on planning for…

  14. Guide to Microcomputer Courseware for Bilingual Education. Revised and Expanded.

    ERIC Educational Resources Information Center

    Sauve, Deborah, Comp.

    The guide to courseware for computer-assisted instruction and computer-managed instruction in bilingual education, English as a second language, and second language instruction contains entries from the National Clearinghouse for Bilingual Education's database and selected courseware for the related areas of special education, vocational…

  15. High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control.

    PubMed

    Tauscher, Sebastian; Fuchs, Alexander; Baier, Fabian; Kahrs, Lüder A; Ortmaier, Tobias

    2017-10-01

    Assistance of robotic systems in the operating room promises higher accuracy and, hence, demanding surgical interventions become realisable (e.g. the direct cochlear access). Additionally, an intuitive user interface is crucial for the use of robots in surgery. Torque sensors in the joints can be employed for intuitive interaction concepts. Regarding the accuracy, they lead to a lower structural stiffness and, thus, to an additional error source. The aim of this contribution is to examine, if an accuracy needed for demanding interventions can be achieved by such a system or not. Feasible accuracy results of the robot-assisted process depend on each work-flow step. This work focuses on the determination of the tool coordinate frame. A method for drill axis definition is implemented and analysed. Furthermore, a concept of admittance feed control is developed. This allows the user to control feeding along the planned path by applying a force to the robots structure. The accuracy is researched by drilling experiments with a PMMA phantom and artificial bone blocks. The described drill axis estimation process results in a high angular repeatability ([Formula: see text]). In the first set of drilling results, an accuracy of [Formula: see text] at entrance and [Formula: see text] at target point excluding imaging was achieved. With admittance feed control an accuracy of [Formula: see text] at target point was realised. In a third set twelve holes were drilled in artificial temporal bone phantoms including imaging. In this set-up an error of [Formula: see text] and [Formula: see text] was achieved. The results of conducted experiments show that accuracy requirements for demanding procedures such as the direct cochlear access can be fulfilled with compliant systems. Furthermore, it was shown that with the presented admittance feed control an accuracy of less then [Formula: see text] is achievable.

  16. Incorporating target registration error into robotic bone milling

    NASA Astrophysics Data System (ADS)

    Siebold, Michael A.; Dillon, Neal P.; Webster, Robert J.; Fitzpatrick, J. Michael

    2015-03-01

    Robots have been shown to be useful in assisting surgeons in a variety of bone drilling and milling procedures. Examples include commercial systems for joint repair or replacement surgeries, with in vitro feasibility recently shown for mastoidectomy. Typically, the robot is guided along a path planned on a CT image that has been registered to the physical anatomy in the operating room, which is in turn registered to the robot. The registrations often take advantage of the high accuracy of fiducial registration, but, because no real-world registration is perfect, the drill guided by the robot will inevitably deviate from its planned path. The extent of the deviation can vary from point to point along the path because of the spatial variation of target registration error. The allowable deviation can also vary spatially based on the necessary safety margin between the drill tip and various nearby anatomical structures along the path. Knowledge of the expected spatial distribution of registration error can be obtained from theoretical models or experimental measurements and used to modify the planned path. The objective of such modifications is to achieve desired probabilities for sparing specified structures. This approach has previously been studied for drilling straight holes but has not yet been generalized to milling procedures, such as mastoidectomy, in which cavities of more general shapes must be created. In this work, we present a general method for altering any path to achieve specified probabilities for any spatial arrangement of structures to be protected. We validate the method via numerical simulations in the context of mastoidectomy.

  17. Incorporating Target Registration Error Into Robotic Bone Milling

    PubMed Central

    Siebold, Michael A.; Dillon, Neal P.; Webster, Robert J.; Fitzpatrick, J. Michael

    2015-01-01

    Robots have been shown to be useful in assisting surgeons in a variety of bone drilling and milling procedures. Examples include commercial systems for joint repair or replacement surgeries, with in vitro feasibility recently shown for mastoidectomy. Typically, the robot is guided along a path planned on a CT image that has been registered to the physical anatomy in the operating room, which is in turn registered to the robot. The registrations often take advantage of the high accuracy of fiducial registration, but, because no real-world registration is perfect, the drill guided by the robot will inevitably deviate from its planned path. The extent of the deviation can vary from point to point along the path because of the spatial variation of target registration error. The allowable deviation can also vary spatially based on the necessary safety margin between the drill tip and various nearby anatomical structures along the path. Knowledge of the expected spatial distribution of registration error can be obtained from theoretical models or experimental measurements and used to modify the planned path. The objective of such modifications is to achieve desired probabilities for sparing specified structures. This approach has previously been studied for drilling straight holes but has not yet been generalized to milling procedures, such as mastoidectomy, in which cavities of more general shapes must be created. In this work, we present a general method for altering any path to achieve specified probabilities for any spatial arrangement of structures to be protected. We validate the method via numerical simulations in the context of mastoidectomy. PMID:26692630

  18. External cooling efficiently controls intraosseous temperature rise caused by drilling in a drilling guide system: an in vitro study.

    PubMed

    Boa, Kristof; Varga, Endre; Pinter, Gabor; Csonka, Akos; Gargyan, Istvan; Varga, Endre

    2015-12-01

    The purpose of this study was to measure the rise in intraosseous temperature caused by drilling through a drilling guide system. We compared the rise in temperature generated, and the number of increases of more than 10 °C, between drills that had been cooled with saline at room temperature (25 °C) and those that had not been cooled, for every step of the drilling sequence. Cortical layers of bovine ribs were used as specimens, and they were drilled through 3-dimensional printed surgical guides. Heat was measured with an infrared thermometer. The significance of differences was assessed with either a two-sample t test or Welch's test, depending on the variances. The mean rises (number of times that the temperature rose above 10 °C) for each group of measurements were: for the 2mm drill, 4.8 °C (0/48) when cooled and 7.0 °C (8/48) when not cooled; with the 2.5mm drill, 5.2 °C (1/48) when cooled and 8.5 °C (17/48) when not cooled (2 mm canal); with the 3 mm drill, 3.3 °C when cooled (0/48) and 8.5 °C (18/24) when not cooled (2.5 mm canal); and with the 3.5 mm drill, 4.8 °C when cooled (0/24) and 9.4 °C when not cooled (10/23) (3 mm canal). The temperature rose significantly less with cooling at every step of the drilling sequence (p<0.001). We conclude that external cooling can maintain the intraosseous temperature within the safe range while drilling through an implant guide system, whereas drilling without irrigation can lead to temperatures that exceed the acceptable limit. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Pipe Drafting with CAD. Teacher Edition.

    ERIC Educational Resources Information Center

    Smithson, Buddy

    This teacher's guide contains nine units of instruction for a course on computer-assisted pipe drafting. The course covers the following topics: introduction to pipe drafting with CAD (computer-assisted design); flow diagrams; pipe and pipe components; valves; piping plans and elevations; isometrics; equipment fabrication drawings; piping design…

  20. Resource Guide for Persons with Speech or Language Impairments.

    ERIC Educational Resources Information Center

    IBM, Atlanta, GA. National Support Center for Persons with Disabilities.

    The resource guide identifies products which assist speech or language impaired individuals in accessing IBM (International Business Machine) Personal Computers or the IBM Personal System/2 family of products. An introduction provides a general overview of ways computers can help persons with speech or language handicaps. The document then…

  1. Exploring Computer Technology. The Illinois Plan for Industrial Education.

    ERIC Educational Resources Information Center

    Illinois State Univ., Normal.

    This guide, which is one in the "Exploration" series of curriculum guides intended to assist junior high and middle school industrial educators in helping their students explore diverse industrial situations and technologies used in industry, deals with exploring computer technology. The following topics are covered in the individual…

  2. CBT Pilot Program Instructional Guide. Basic Drafting Skills Curriculum Delivered through CAD Workstations and Artificial Intelligence Software.

    ERIC Educational Resources Information Center

    Smith, Richard J.; Sauer, Mardelle A.

    This guide is intended to assist teachers in using computer-aided design (CAD) workstations and artificial intelligence software to teach basic drafting skills. The guide outlines a 7-unit shell program that may also be used as a generic authoring system capable of supporting computer-based training (CBT) in other subject areas. The first section…

  3. Adapting to Student Learning Styles: Engaging Students with Cell Phone Technology in Organic Chemistry Instruction

    ERIC Educational Resources Information Center

    Pursell, David P.

    2009-01-01

    Students of organic chemistry traditionally make 3 x 5 in. flash cards to assist learning nomenclature, structures, and reactions. Advances in educational technology have enabled flash cards to be viewed on computers, offering an endless array of drilling and feedback for students. The current generation of students is less inclined to use…

  4. Ultrasound-guided percutaneous bone drilling for the treatment of lateral epicondylitis.

    PubMed

    Yoo, Sang Ho; Cha, Jang Gyu; Lee, Bo Ra

    2018-01-01

    To determine the clinical efficacy of sonographically-guided percutaneous bone drilling of the lateral epicondyle (LE) for the treatment of patients with LE. We included 24 patients with LE who reported pain in this study. All patients underwent sonographically-guided percutaneous bone drilling of the lateral epicondyle. Follow-up sonography and physical examinations were performed 1, 3 and 6 months after the procedure. The outcome measures included sonographic findings, visual analogue scale (VAS) score, maximum voluntary grip strength (MVGS) and patient-related tennis elbow evaluation (PRTEE) score. None of the patients had immediate complications during the procedure. The area of the extensor carpi radialis brevis (ECRB) tears decreased significantly at 1 month and declined gradually over the remaining 5 months of the study (p < 0.001). The mean pain VAS score was significantly lower at 6 months than preoperatively (respectively; p < 0.001). The mean MVGS increased significantly between pretreatment and 6 months post-treatment (p < 0.001), whereas the PRTEE score decreased significantly during the same period (p < 0.001). Sonographically-guided percutaneous drilling is a quick and safe treatment option for LE that can be performed in an outpatient setting. • Percutaneous drilling of the lateral condyle is effective for the treatment of LE. • The area of ECRB tears can be measured by US-guided saline injection. • US-guided percutaneous drilling is a quick and safe treatment option for LE.

  5. A Modified Personalized Image-Based Drill Guide Template for Atlantoaxial Pedicle Screw Placement: A Clinical Study

    PubMed Central

    Jiang, Lianghai; Dong, Liang; Tan, Mingsheng; Qi, Yingna; Yang, Feng; Yi, Ping; Tang, Xiangsheng

    2017-01-01

    Background Atlantoaxial posterior pedicle screw fixation has been widely used for treatment of atlantoaxial instability (AAI). However, precise and safe insertion of atlantoaxial pedicle screws remains challenging. This study presents a modified drill guide template based on a previous template for atlantoaxial pedicle screw placement. Material/Methods Our study included 54 patients (34 males and 20 females) with AAI. All the patients underwent posterior atlantoaxial pedicle screw fixation: 25 patients underwent surgery with the use of a modified drill guide template (template group) and 29 patients underwent surgery via the conventional method (conventional group). In the template group, a modified drill guide template was designed for each patient. The modified drill guide template and intraoperative fluoroscopy were used for surgery in the template group, while only intraoperative fluoroscopy was used in the conventional group. Results Of the 54 patients, 52 (96.3%) completed the follow-up for more than 12 months. The template group had significantly lower intraoperative fluoroscopy frequency (p<0.001) and higher accuracy of screw insertion (p=0.045) than the conventional group. There were no significant differences in surgical duration, intraoperative blood loss, or improvement of neurological function between the 2 groups (p>0.05). Conclusions Based on the results of this study, it is feasible to use the modified drill guide template for atlantoaxial pedicle screw placement. Using the template can significantly lower the screw malposition rate and the frequency of intraoperative fluoroscopy. PMID:28301445

  6. [APPLICATION OF COMPUTER-ASSISTED TECHNOLOGY IN ANALYSIS OF REVISION REASON OF UNICOMPARTMENTAL KNEE ARTHROPLASTY].

    PubMed

    Jia, Di; Li, Yanlin; Wang, Guoliang; Gao, Huanyu; Yu, Yang

    2016-01-01

    To conclude the revision reason of unicompartmental knee arthroplasty (UKA) using computer-assisted technology so as to provide reference for reducing the revision incidence and improving the level of surgical technique and rehabilitation. The relevant literature on analyzing revision reason of UKA using computer-assisted technology in recent years was extensively reviewed. The revision reasons by computer-assisted technology are fracture of the medial tibial plateau, progressive osteoarthritis of reserved compartment, dislocation of mobile bearing, prosthesis loosening, polyethylene wear, and unexplained persistent pain. Computer-assisted technology can be used to analyze the revision reason of UKA and guide the best operating method and rehabilitation scheme by simulating the operative process and knee joint activities.

  7. Confined compressive strength analysis can improve PDC bit selection. [Polycrystalline Diamond Compact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabain, R.T.

    1994-05-16

    A rock strength analysis program, through intensive log analysis, can quantify rock hardness in terms of confined compressive strength to identify intervals suited for drilling with polycrystalline diamond compact (PDC) bits. Additionally, knowing the confined compressive strength helps determine the optimum PDC bit for the intervals. Computing rock strength as confined compressive strength can more accurately characterize a rock's actual hardness downhole than other methods. the information can be used to improve bit selections and to help adjust drilling parameters to reduce drilling costs. Empirical data compiled from numerous field strength analyses have provided a guide to selecting PDC drillmore » bits. A computer analysis program has been developed to aid in PDC bit selection. The program more accurately defines rock hardness in terms of confined strength, which approximates the in situ rock hardness downhole. Unconfined compressive strength is rock hardness at atmospheric pressure. The program uses sonic and gamma ray logs as well as numerous input data from mud logs. Within the range of lithologies for which the program is valid, rock hardness can be determine with improved accuracy. The program's output is typically graphed in a log format displaying raw data traces from well logs, computer-interpreted lithology, the calculated values of confined compressive strength, and various optional rock mechanic outputs.« less

  8. User's Guide to "MULE"; McGill University Language for Education. A Computer-Assisted Instruction Author Language.

    ERIC Educational Resources Information Center

    Roid, Gale H.

    A computer-assisted instruction (CAI) author language and operating system is available for use by McGill instructors on the university's IBM 360/65 RAX Time-Sharing System. Instructors can use this system to prepare lessons which allow the computer and a student to "converse" in natural language. The instructor prepares a lesson by…

  9. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  10. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  11. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  12. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  13. 30 CFR 56.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 56.7009 Section 56.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7009 Drill helpers. If a drill helper assists the drill operator during movement of a drill...

  14. Comparative study of conventional and ultrasonically-assisted bone drilling.

    PubMed

    Alam, K; Ahmed, Naseer; Silberschmidt, V V

    2014-01-01

    Bone drilling is a well-known surgical procedure in orthopaedics and dentistry for fracture treatment and reconstruction. Advanced understanding of the mechanics of the drill-bone interaction is necessary to overcome challenges associated with the process and related postoperative complications. The aim of this study was to explore the benefits of a novel drilling technique, ultrasonically-assisted drilling (UAD), and its possible utilization in orthopaedic surgeries. The study was performed by conducting experiments to understand the basic mechanics of the drilling process using high speed filming of the drilling zone followed by measurements to quantify thrust force, surface roughness and cracking of the bone near the immediate vicinity of the hole with and without ultrasonic assistance. Compared to the spiral chips produced during conventional drilling (CD), UAD was found to break the chips in small pieces which facilitated their fast evacuation from the cutting region. In UAD, lower drilling force and better surface roughness was measured in drilling in the radial and longitudinal axis of the bone. UAD produced crack-free holes which will enhance postoperative performance of fixative devices anchoring the bone. UAD may be used as a possible substitute for CD in orthopaedic clinics.

  15. Computer-assisted planning and patient-specific guides for the treatment of midshaft clavicle malunions.

    PubMed

    Vlachopoulos, Lazaros; Schweizer, Andreas; Meyer, Dominik C; Gerber, Christian; Fürnstahl, Philipp

    2017-08-01

    The surgical treatment of malunions after midshaft clavicle fractures is associated with a number of potential complications and the surgical procedure is challenging. However, with appropriate and meticulous preoperative surgical planning, the surgical correction yields satisfactory results. The purpose of this study was to provide a guideline and detailed overview for the computer-assisted planning and 3-dimensional (3D) correction of malunions of the clavicle. The 3D bone surface models of the pathologic and contralateral sides were created on the basis of computed tomography data. The computer-assisted assessment of the deformity, the preoperative plan, and the design of patient-specific guides enabling compression plating are described. We demonstrate the benefit and versatility of computer-assisted planning for corrective osteotomies of malunions of the midshaft clavicle. In combination with patient-specific guides and compression plating technique, the correction can be performed in a more standardized fashion. We describe the determination of the contact-optimized osteotomy plane. An osteotomy along this plane facilitates the correction and enlarges the contact between the fragments at once. We further developed a technique of a stepped osteotomy that is based on the calculation of the contact-optimized osteotomy plane. The stepped osteotomy enables the length to be restored without the need of structural bone graft. The application of the stepped osteotomy is presented for malunions of the clavicle with shortening and excessive callus formation. The 3D preoperative planning and patient-specific guides for corrective osteotomies of the clavicle may help reduce the number of potential complications and yield results that are more predictable. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. A Computer-Assisted Nutrition Education Unit for Grades 4-6.

    ERIC Educational Resources Information Center

    Hills, Alvina M.

    1983-01-01

    A computer-assisted instructional unit (written for 32K Commodore PET microcomputer) was developed to identify four food groups outlined in Canada's Food Guide, place specific foods in correct groups, and identify food not belonging to the four groups. Animated color-coded keys are used to represent the food groups. (JN)

  17. Using Computer-Assisted Instruction to Build Math Fact Fluency: An Implementation Guide

    ERIC Educational Resources Information Center

    Hawkins, Renee O.; Collins, Tai; Hernan, Colleen; Flowers, Emily

    2017-01-01

    Research findings support the use of computer-assisted instruction (CAI) as a curriculum supplement for improving math skills, including math fact fluency. There are a number of websites and mobile applications (i.e., apps) designed to build students' math fact fluency, but the options can become overwhelming. This article provides implementation…

  18. A guide to Laboratory practicum on oscillations assisted by a computer

    NASA Astrophysics Data System (ADS)

    Russu, A. S.; Russu, S. S.; Pitac, C.

    2013-12-01

    The booklet contains descriptions of 3 Laboratory works on oscillations (n.9, 10,11) for students of Chisinau Technical University. They represent a modernized versions by a computer assistance of older ones which were first put in 1964. In each case it includes theoretical outlines, the work instruction, control questions.

  19. Development and Use of an Adaptive Learning Environment to Research Online Study Behaviour

    ERIC Educational Resources Information Center

    Jonsdottir, Anna Helga; Jakobsdottir, Audbjorg; Stefansson, Gunnar

    2015-01-01

    This paper describes a system for research on the behaviour of students taking online drills. The system is accessible and free to use for anyone with web access. Based on open source software, the teaching material is licensed under a Creative Commons License. The system has been used for computer-assisted education in statistics, mathematics and…

  20. Bowling Ball Spotting

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Exactatron, an accurate weighing and spotting system in bowling ball manufacture, was developed by Ebonite International engineers with the assistance of a NASA computer search which identified Jet Propulsion Laboratory (JPL) technology. The JPL research concerned a means of determining the center of an object's mass, and an apparatus for measuring liquid viscosity, enabling Ebonite to identify the exact spotting of the drilling point for top weighting.

  1. Differential Effects of Three Computer-Assisted Instruction Programs on the Development of Math Skills among Primary Grade Students

    ERIC Educational Resources Information Center

    Erkfritz-Gay, Karyn N.

    2009-01-01

    Past research has documented that the effectiveness of three different math strategies delivered to students via one-on-one instruction (i.e., cover-copy-compare (CCC); e.g., Skinner, Turco, Beatty, & Rasavage, 1989, traditional drill and practice (TDP); e.g., Cybriwsky & Schuster, 1990, and constant time delay (CTD); Kulik, 1994). This study…

  2. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  3. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  4. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  5. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  6. 30 CFR 57.7009 - Drill helpers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill helpers. 57.7009 Section 57.7009 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface Only § 57.7009 Drill helpers. If a drill helper assists the drill operator during movement...

  7. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures.

    PubMed

    Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus

    2018-06-01

    Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.

  8. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  9. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  10. Computer-Guided Diagnosis of Learning Disabilities: A Prototype.

    ERIC Educational Resources Information Center

    Colbourn, Marlene Jones

    A computer based diagnostic system to assist educators in the assessment of learning disabled children aged 8 to 10 years in the area of reading is described and evaluated. The system is intended to guide the diagnosis of reading problems through step by step analysis of available data and requests for additional data. The system provides a…

  11. Application of a 3-dimensional printed navigation template in Bernese periacetabular osteotomies: A cadaveric study.

    PubMed

    Zhou, You; Kang, Xiaopeng; Li, Chuan; Xu, Xiaoshan; Li, Rong; Wang, Jun; Li, Wei; Luo, Haotian; Lu, Sheng

    2016-12-01

    The aim of the present study was to describe the application of 3D printed templates for intraoperative navigation and simulation of periacetabular osteotomies (PAOs) in a cadaveric model.Five cadaveric specimens (10 sides) underwent thin-slice computed tomographic scans of the ala of ilium downwards to the proximal end of femoral shaft. Bernese PAO was performed. Using Mimics v10.1 software (Materialise, Leuven, Belgium), 3D computed tomographic reconstructions were created and the 4 standard PAO bone cuts-ischial, pubic, anterior, and posterior aspects of the ilium-as well as rotation of the dislocated acetabular bone blocks were simulated for each specimen. Using these data, custom 3D printed bone-drilling templates of the pelvis were manufactured, to guide surgical placement of the PAO bone cuts. An angle fix wedge was designed and printed, to help accurately achieve the predetermined rotation angle of the acetabular bone block. Each specimen underwent a conventional PAO. Preoperative, postsimulation, and postoperative lateral center-edge angles, acetabular indices, extrusion indices, and femoral head coverage were measured and compared; P and t values were calculated for above-mentioned measurements while comparing preoperative and postoperative data, and also in postsimulation and postoperative data comparison.All 10 PAO osteotomies were successfully completed using the 3D printed bone-drilling template and angle fix wedge. No osteotomy entered the hip joint and a single posterior column fracture was observed. Comparison of preoperative and postoperative measurements of the 10 sides showed statistically significant changes, whereas no statistically significant differences between postsimulation and postoperative values were noted, demonstrating the accuracy and utility of the 3D printed templates.The application of patient-specific 3D printed bone-drilling and rotation templates in PAO is feasible and may facilitate improved clinical outcomes, through the use of precise presurgical planning and reduced surgical complications with the precisely guided bone drilling.

  12. A Guide to Laboratory Practicum on Mechanics

    NASA Astrophysics Data System (ADS)

    Rusu, A. S.; Rusu, S. S.; Pirtac, C.

    2012-12-01

    The Guide represent a Laboratory practicum in mechanics for students from the Technical University of Moldova. The works are modernized as compared with older ones put in 1964 by Computer assistance. Each work contains theoretical framework, a work instruction and control questions. The Guide contains 27 figures.

  13. Implementation guide for monitoring work zone safety and mobility impacts

    DOT National Transportation Integrated Search

    2009-01-01

    This implementation guide describes the conceptual framework, data requirements, and computational procedures for determining the safety and mobility impacts of work zones in Texas. Researchers designed the framework and procedures to assist district...

  14. In-vitro analysis of forces in conventional and ultrasonically assisted drilling of bone.

    PubMed

    Alam, K; Hassan, Edris; Imran, Syed Husain; Khan, Mushtaq

    2016-05-12

    Drilling of bone is widely performed in orthopaedics for repair and reconstruction of bone. Current paper is focused on the efforts to minimize force generation during the drilling process. Ultrasonically Assisted Drilling (UAD) is a possible option to replace Conventional Drilling (CD) in bone surgical procedures. The purpose of this study was to investigate and analyze the effect of drilling parameters and ultrasonic parameters on the level of drilling thrust force in the presence of water irrigation. Drilling tests were performed on young bovine femoral bone using different parameters such as spindle speeds, feed rates, coolant flow rates, frequency and amplitudes of vibrations. The drilling force was significantly dropped with increase in drill rotation speed in both types of drilling. Increase in feed rate was more influential in raising the drilling force in CD compared to UAD. The force was significantly dropped when ultrasonic vibrations up to 10 kHz were imposed on the drill. The drill force was found to be unaffected by the range of amplitudes and the amount of water supplied to the drilling region in UAD. Low frequency vibrations with irrigation can be successfully used for safe and efficient drilling in bone.

  15. MECC: A Guiding Light for Statewide Instructional Computing.

    ERIC Educational Resources Information Center

    Rawitseh, Michael A.; Kaiser, Jerry

    1982-01-01

    Describes the Minnesota Educational Computing Consortium (MECC), made up of universities, colleges, and the state department of education, which offers assistance in equipment procurement, courseware development, and inservice training in the use of computers in education. (Author/JM)

  16. Computer & manual accident typing for bicyclist accidents : administrator's guide

    DOT National Transportation Integrated Search

    1983-01-01

    This guide provides guidelines and procedures for classifying and analyzing bicyclist-motor vehicle accidents. The approach described herein is part of a systematic effort by the National Highway Traffic Safety Administration (NHTSA) to assist states...

  17. ACL Roof Impingement Revisited: Does the Independent Femoral Drilling Technique Avoid Roof Impingement With Anteriorly Placed Tibial Tunnels?

    PubMed

    Tanksley, John A; Werner, Brian C; Conte, Evan J; Lustenberger, David P; Burrus, M Tyrrell; Brockmeier, Stephen F; Gwathmey, F Winston; Miller, Mark D

    2017-05-01

    Anatomic femoral tunnel placement for single-bundle anterior cruciate ligament (ACL) reconstruction is now well accepted. The ideal location for the tibial tunnel has not been studied extensively, although some biomechanical and clinical studies suggest that placement of the tibial tunnel in the anterior part of the ACL tibial attachment site may be desirable. However, the concern for intercondylar roof impingement has tempered enthusiasm for anterior tibial tunnel placement. To compare the potential for intercondylar roof impingement of ACL grafts with anteriorly positioned tibial tunnels after either transtibial (TT) or independent femoral (IF) tunnel drilling. Controlled laboratory study. Twelve fresh-frozen cadaver knees were randomized to either a TT or IF drilling technique. Tibial guide pins were drilled in the anterior third of the native ACL tibial attachment site after debridement. All efforts were made to drill the femoral tunnel anatomically in the center of the attachment site, and the surrogate ACL graft was visualized using 3-dimensional computed tomography. Reformatting was used to evaluate for roof impingement. Tunnel dimensions, knee flexion angles, and intra-articular sagittal graft angles were also measured. The Impingement Review Index (IRI) was used to evaluate for graft impingement. Two grafts (2/6, 33.3%) in the TT group impinged upon the intercondylar roof and demonstrated angular deformity (IRI type 1). No grafts in the IF group impinged, although 2 of 6 (66.7%) IF grafts touched the roof without deformation (IRI type 2). The presence or absence of impingement was not statistically significant. The mean sagittal tibial tunnel guide pin position prior to drilling was 27.6% of the sagittal diameter of the tibia (range, 22%-33.9%). However, computed tomography performed postdrilling detected substantial posterior enlargement in 2 TT specimens. A significant difference in the sagittal graft angle was noted between the 2 groups. TT grafts were more vertical, leading to angular convergence with the roof, whereas IF grafts were more horizontal and universally diverged from the roof. The IF technique had no specimens with roof impingement despite an anterior tibial tunnel position, likely due to a more horizontal graft trajectory and anatomic placement of the ACL femoral tunnel. Roof impingement remains a concern after TT ACL reconstruction in the setting of anterior tibial tunnel placement, although statistical significance was not found. Future clinical studies are planned to develop better recommendations for ACL tibial tunnel placement. Graft impingement due to excessively anterior tibial tunnel placement using a TT drilling technique has been previously demonstrated; however, this may not be a concern when using an IF tunnel drilling technique. There may also be biomechanical advantages to a more anterior tibial tunnel in IF tunnel ACL reconstruction.

  18. Method and apparatus of assessing down-hole drilling conditions

    DOEpatents

    Hall, David R [Provo, UT; Pixton, David S [Lehl, UT; Johnson, Monte L [Orem, UT; Bartholomew, David B [Springville, UT; Fox, Joe [Spanish Fork, UT

    2007-04-24

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  19. ARES (Automated Residential Energy Standard) 1.2: User`s guide, in support of proposed interim energy conservation voluntary performance standards for new non-federal residential buildings: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The ARES (Automated Residential Energy Standard) User`s Guide is designed to the user successfully operate the ARES computer program. This guide assumes that the user is familiar with basic PC skills such as using a keyboard and loading a disk drive. The ARES computer program was designed to assist building code officials in creating a residential energy standard based on local climate and costs.

  20. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system.

    PubMed

    Kaneyama, Shuichi; Sugawara, Taku; Sumi, Masatoshi

    2015-03-15

    Clinical trial for midcervical pedicle screw insertion using a novel patient-specific intraoperative screw guiding device. To evaluate the availability of the "Screw Guide Template" (SGT) system for insertion of midcervical pedicle screws. Despite many efforts for accurate midcervical pedicle screw insertion, there still remain unacceptable rate of screw malpositioning that might cause neurovascular injuries. We developed patient-specific SGT system for safe and accurate intraoperative screw navigation tool and have reported its availability for the screw insertion to C2 vertebra and thoracic spine. Preoperatively, the bone image on computed tomography was analyzed and the trajectories of the screws were designed in 3-dimensional format. Three types of templates were created for each lamina: location template, drill guide template, and screw guide template. During the operations, after engaging the templates directly with the laminae, drilling, tapping, and screwing were performed with each template. We placed 80 midcervical pedicle screws for 20 patients. The accuracy and safety of the screw insertion by SGT system were evaluated using postoperative computed tomographic scan by calculation of screw deviation from the preplanned trajectory and evaluation of screw breach of pedicle wall. All templates fitted the laminae and screw navigation procedures proceeded uneventfully. All screws were inserted accurately with the mean screw deviation from planned trajectory of 0.29 ± 0.31 mm and no neurovascular complication was experienced. We demonstrated that our SGT system could support the precise screw insertion in midcervical pedicle. SGT prescribes the safe screw trajectory in a 3-dimensional manner and the templates fit and lock directly to the target laminae, which prevents screwing error along with the change of spinal alignment during the surgery. These advantages of the SGT system guarantee the high accuracy in screw insertion, which allowed surgeons to insert cervical pedicle screws safely. 3.

  1. Classification of Computer-Aided Design-Computer-Aided Manufacturing Applications for the Reconstruction of Cranio-Maxillo-Facial Defects.

    PubMed

    Wauters, Lauri D J; Miguel-Moragas, Joan San; Mommaerts, Maurice Y

    2015-11-01

    To gain insight into the methodology of different computer-aided design-computer-aided manufacturing (CAD-CAM) applications for the reconstruction of cranio-maxillo-facial (CMF) defects. We reviewed and analyzed the available literature pertaining to CAD-CAM for use in CMF reconstruction. We proposed a classification system of the techniques of implant and cutting, drilling, and/or guiding template design and manufacturing. The system consisted of 4 classes (I-IV). These classes combine techniques used for both the implant and template to most accurately describe the methodology used. Our classification system can be widely applied. It should facilitate communication and immediate understanding of the methodology of CAD-CAM applications for the reconstruction of CMF defects.

  2. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    PubMed Central

    Wu, Dung-Sheng

    2018-01-01

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time. PMID:29565303

  3. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision.

    PubMed

    Ho, Chao-Ching; Wu, Dung-Sheng

    2018-03-22

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  4. Laser drilling of thermal barrier coated jet-engine components

    NASA Astrophysics Data System (ADS)

    Sezer, H. K.

    Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical and experimental work.

  5. Studies Related to Computer-Assisted Instruction. Semi-Annual Progress Report on Contract Nonr-624(18) October 1, 1968 through March 31, 1969.

    ERIC Educational Resources Information Center

    Glaser, Robert

    A study of response latency in a drill-and-practice task showed that variability in latency measures could be reduced by the use of self-pacing procedures, but not by the detailed analysis of latency into separate components. Experiments carried out on instructional history variables in teaching a mirror image, oblique line discrimination, showed…

  6. Drill user's manual. [drilling machine automation

    NASA Technical Reports Server (NTRS)

    Pitts, E. A.

    1976-01-01

    Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

  7. Telerobotic-assisted bone-drilling system using bilateral control with feed operation scaling and cutting force scaling

    PubMed Central

    Kasahara, Yusuke; Kawana, Hiromasa; Usuda, Shin; Ohnishi, Kouhei

    2012-01-01

    Background Drilling is used in the medical field, especially in oral surgery and orthopaedics. In recent years, oral surgery involving dental implants has become more common. However, the risky drilling process causes serious accidents. To prevent these accidents, supporting systems such as robotic drilling systems are required. Methods A telerobotic-assisted drilling system is proposed. An acceleration-based four-channel bilateral control system is implemented in linear actuators in a master–slave system for drill feeding. A reaction force observer is used instead of a force sensor for measuring cutting force. Cutting force transmits from a cutting material to a surgeon, who may feel a static cutting resistance force and vigorous cutting vibrations, via the master–slave system. Moreover, position scaling and force scaling are achieved. Scaling functions are used to achieve precise drilling and hazard detection via force sensation. Results Cutting accuracy and reproducibility of the cutting force were evaluated by angular velocity/position error and frequency analysis of the cutting force, respectively, and errors were > 2.0 rpm and > 0.2 mm, respectively. Spectrum peaks of the cutting vibration were at the theoretical vibration frequencies of 30, 60 and 90 Hz. Conclusions The proposed telerobotic-assisted drilling system achieved precise manipulation of the drill feed and vivid feedback from the cutting force. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22271710

  8. Complex Osteotomies of Tibial Plateau Malunions Using Computer-Assisted Planning and Patient-Specific Surgical Guides.

    PubMed

    Fürnstahl, Philipp; Vlachopoulos, Lazaros; Schweizer, Andreas; Fucentese, Sandro F; Koch, Peter P

    2015-08-01

    The accurate reduction of tibial plateau malunions can be challenging without guidance. In this work, we report on a novel technique that combines 3-dimensional computer-assisted planning with patient-specific surgical guides for improving reliability and accuracy of complex intraarticular corrective osteotomies. Preoperative planning based on 3-dimensional bone models was performed to simulate fragment mobilization and reduction in 3 cases. Surgical implementation of the preoperative plan using patient-specific cutting and reduction guides was evaluated; benefits and limitations of the approach were identified and discussed. The preliminary results are encouraging and show that complex, intraarticular corrective osteotomies can be accurately performed with this technique. For selective patients with complex malunions around the tibia plateau, this method might be an attractive option, with the potential to facilitate achieving the most accurate correction possible.

  9. Split-mouth comparison of the accuracy of computer-generated and conventional surgical guides.

    PubMed

    Farley, Nathaniel E; Kennedy, Kelly; McGlumphy, Edwin A; Clelland, Nancy L

    2013-01-01

    Recent clinical studies have shown that implant placement is highly predictable with computer-generated surgical guides; however, the reliability of these guides has not been compared to that of conventional guides clinically. This study aimed to compare the accuracy of reproducing planned implant positions with computer-generated and conventional surgical guides using a split-mouth design. Ten patients received two implants each in symmetric locations. All implants were planned virtually using a software program and information from cone beam computed tomographic scans taken with scan appliances in place. Patients were randomly selected for computer-aided design/computer-assisted manufacture (CAD/CAM)-guided implant placement on their right or left side. Conventional guides were used on the contralateral side. Patients underwent operative cone beam computed tomography postoperatively. Planned and actual implant positions were compared using three-dimensional analyses capable of measuring volume overlap as well as differences in angles and coronal and apical positions. Results were compared using a mixed-model repeated-measures analysis of variance and were further analyzed using a Bartlett test for unequal variance (α = .05). Implants placed with CAD/CAM guides were closer to the planned positions in all eight categories examined. However, statistically significant differences were shown only for coronal horizontal distances. It was also shown that CAD/CAM guides had less variability than conventional guides, which was statistically significant for apical distance. Implants placed using CAD/CAM surgical guides provided greater accuracy in a lateral direction than conventional guides. In addition, CAD/CAM guides were more consistent in their deviation from the planned locations than conventional guides.

  10. Small-scale mechanical characterization of viscoelastic adhesive systems

    NASA Astrophysics Data System (ADS)

    Shean, T. A. V.

    Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical and experimental work.

  11. Thermal Changes During Guided Flapless Implant Site Preparation: A Comparative Study.

    PubMed

    Sannino, Gianpaolo; Gherlone, Enrico F

    To compare intrabony thermal changes induced by two different protocols for guided implant surgery during the whole drilling procedure. Two protocols for guided implant placement were evaluated in vitro using artificial bone cylinders. The control protocol provided traditional metal sleeves and a standard drilling sequence composed of four cylindrical triflute drills (cutting surface length = 16 mm). The test protocol provided a three-slot polyurethane sleeve and two cylindrical drills (second drill cutting surface length = 4 mm). Forty automated intermittent and graduated osteotomies (depth = 14 mm) were performed under external irrigation. Temperatures were measured in real time by three sensors at different depths (2, 8, and 13 mm). The temperature changes generated by the final drill of each protocol during the shearing and withdrawing processes were recorded as experimental results and subjected to the Student t test. Maximum temperature increases were recorded during the process of withdrawing in both protocols. In the control group, the mean thermal changes were 10.18°C, 8.61°C, and 5.78°C at depths of 2, 8, and 13 mm, respectively. In the test group, the mean thermal changes were 1.44°C, 4.46°C, and 3.58°C at depths of 2, 8, and 13 mm, respectively. The control group revealed statistically significantly (P < .0001) higher thermal changes than the test group, both in the superficial and deeper bone areas. An appropriate irrigation system could be crucial for thermal lowering during a guided implant osteotomy mainly in the coronal and middle third of the implant site. Copious irrigation should be provided during the withdrawing process since greater thermal increases could be expected. Lower temperature increases could be achieved, reducing drill-to-bone contact, ie, cutting surface length, due to short frictional force exposure.

  12. Learning Resources and Technology. A Guide to Program Development.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford.

    This guide provides a framework to assist all Connecticut school districts in planning effective learning resources centers and educational technology programs capable of providing: a well developed library media component; shared instructional design responsibilities; reading for enrichment; integration of computers into instruction; distance…

  13. Barriers to the Use of Computer Assistive Technology among Students with Visual Impairment in Ghana: The Case of Akropong School for the Blind

    ERIC Educational Resources Information Center

    Ampratwum, Joseph; Offei, Yaw Nyadu; Ntoaduro, Afua

    2016-01-01

    The study aimed at exploring barriers to the use of computer assistive technology among students with visual impairment at Akropong School for the Blind. A case study design was adopted and the purposive sampling technique used to select 35 participants for the study. The researchers gathered qualitative data using an in-depth interview guide to…

  14. Endoscopically Assisted Drilling, Exposure of the Fundus through a Presigmoid Retrolabyrinthine Approach: A Cadaveric Feasibility Study.

    PubMed

    Muelleman, Thomas; Shew, Matthew; Alvi, Sameer; Shah, Kushal; Staecker, Hinrich; Chamoun, Roukouz; Lin, James

    2018-01-01

    The presigmoid retrolabyrinthine approach to the cerebellopontine angle is traditionally described to not provide access to the internal auditory canal (IAC). We aimed to evaluate the extent of the IAC that could be exposed with endoscopically assisted drilling and to measure the percentage of the IAC that could be visualized with the microscope and various endoscopes after drilling had been completed. Presigmoid retrolabyrinthine approaches were performed bilaterally on 4 fresh cadaveric heads. We performed endoscopically assisted drilling to expose the fundus of the IAC, which resulted in exposure of the entire IAC in 8 of 8 temporal bone specimens. The microscope afforded a mean view of 83% (n = 8) of the IAC. The 0°, 30°, 45°, and 70° endoscope each afforded a view of 100% of the IAC in 8 of 8 temporal bone specimens. In conclusion, endoscopic drilling of the IAC of can provide an extradural means of exposing the entire length of the IAC while preserving the labyrinth.

  15. [Case-control study on accuracy and safety of patient-specific drill-guide templates used in scoliosis cases].

    PubMed

    Zhang, Yu-peng; Shi, Ya-min; Wang, Hua-dong; Hou, Shu-xun

    2015-10-01

    To evaluate the accuracy and safety of pedicle screw insertion with the aid of novel patient-specific drill-guide templates in scoliosis cases. Ten patients with scoliosis were selected to participate in the research (the observation group) from December 2013 to December 2014. The data was obtained from CT scanning, and put into the computer to perform reconstruction of spine, simulation of pedicle screw insertion, and design of patient-specific drill-guide templates with software. The templates were made with rapid prototyping technique. After sterilization, the templates were used to aid the pedicle screw insertion intraoperatively. The blood loss, operation duration, change of creatinine level pre- and post-operation, and complications related to pedicle screw insertion were recorded. The location of pedicle screws were graded so as to evaluate the accuracy. A comparative study was then performed with the data of ten scoliosis cases operated with free-hand method during the same period (control group). There were 5 cases of idiopathic scoliosis and 5 cases of congenital scoliosis in the observation group, including 3 males and 7 females. Their average age was 11.9 years old (ranged, 4 to 18 years old), and the average Cobb angle of main curve was 54.9° (ranged, 42.1° to 78.4°). There were also 5 cases of idiopathic scoliosis and 5 cases of congenital scoliosis in the control group,including 2 males and 8 females. Their average age was 12.6 years old (ranged, 6 to 17 years old), and the average Cobb angle of main curve was 56.6° (ranged, 38.2° to 93.4°). A total of 167 pedicle screws were inserted intraoperatively, with 138 screws (82.6%) in grade I, 26 screws (15.0%) in grade II, 4 screws in grade III (2.4%), but no screws in grade IV according to the CT image. There were 29 (17.4%) screws perforated, and 163 (97.6%) screws could be accepted. In the control group, a total of 165 pedicle screws were inserted intraoperatively, with 98 screws (59.4%) in grade I, 39 screws (23.6%) in grade II, 21 screws in grade III (12.7%), and 7 screws in grade IV (4.2%). There were 67 (40.6%) screws perforated, and 137 (83.0%) screws could be accepted. The grade distribution of screw position, ratio of perforated and accepted screws were significantly different between the two groups respectively (Z=-5.013, P=0.000; χ2=9.347, P=0.002; χ2=20.242, P=0.000). The correction rate of Cobb angle were (74.1±10.0)% vs (69.7±17.6)%; blood loss were (455±447) ml vs (415±389) ml; operation duration were (163.5±53.7) min vs (164.0±48.7) min; and the changes of creatinine level pre- and post-operatively were (-5.3±3.2) μmol/L vs (-3.4±3.1) μmol/L; all above data had no significant differences respectively (t=0.696, P=0.496; t=0.214, P=0.833; t=0.022, P=0.983; t=1.375, P=0.192). There were no complications related to pedicle screw insertion in each group. The novel patient-specific drill guide template can be used to assist the insertion of pedicle screws in scoliosis cases with much higher accuracy than that of freehand method and fair safety.

  16. A new surgical template with a handpiece positioner for use during flapless placement of four dental implants to retain a mandibular overdenture.

    PubMed

    Elsyad, Moustafa Abdou

    2012-10-01

    This article describes the fabrication of a new and inexpensive surgical template from a radiographic template for flapless placement of dental implants to retain a mandibular overdenture. A radiographic template with radiopaque metal plate markers is constructed and used as a guide for achieving three-dimensional evaluation of bone using computed tomography (CT). The potential position and angulation of the implants are measured relative to the metal plates using the CT data. The radiographic template is converted into a surgical template by attaching rigid metal rods that guide the handpiece precisely during subsequent drilling procedures. © 2012 by the American College of Prosthodontists.

  17. Results of medical countermeasure drills among 72 cities readiness initiative metropolitan statistical areas, 2008-2009.

    PubMed

    Jones, Jaime R; Neff, Linda J; Ely, Elizabeth K; Parker, Andrew M

    2012-12-01

    The Cities Readiness Initiative is a federally funded program designed to assist 72 metropolitan statistical areas (MSAs) in preparing to dispense life-saving medical countermeasures within 48 hours of a public health emergency. Beginning in 2008, the 72 MSAs were required to conduct 3 drills related to the distribution and dispensing of emergency medical countermeasures. The report describes the results of the first year of pilot data for medical countermeasure drills conducted by the MSAs. The MSAs were provided templates with key metrics for 5 functional elements critical for a successful dispensing campaign: personnel call down, site activation, facility setup, pick-list generation, and dispensing throughput. Drill submissions were compiled into single data sets for each of the 5 drills. Analyses were conducted to determine whether the measures were comparable across business and non-business hours. Descriptive statistics were computed for each of the key metrics identified in the 5 drills. Most drills were conducted on Mondays and Wednesdays during business hours (8:00 am-5:00 pm). The median completion time for the personnel call-down drill was 1 hour during business hours (n = 287) and 55 minutes during non-business hours (n = 136). Site-activation drills were completed in a median of 30 minutes during business hours and 5 minutes during non-business hours. Facility setup drills were completed more rapidly during business hours (75 minutes) compared with non-business hours (96 minutes). During business hours, pick lists were generated in a median of 3 minutes compared with 5 minutes during non-business hours. Aggregate results from the dispensing throughput drills demonstrated that the median observed throughput during business hours (60 people/h) was higher than that during non-business hours (43 people/h). The results of the analyses from this pilot sample of drill submissions provide a baseline for the determination of a national standard in operational capabilities for local jurisdictions to achieve in their planning efforts for a mass dispensing campaign during an emergency.

  18. Program for Assisting the Replacement of Industrial Solvents PARIS III User’s Guide

    EPA Science Inventory

    PARIS III is a third generation Windows-based computer software to assist the design of less harmful solvent replacements by estimating values of the solvent properties that characterize the static, dynamic, performance, and environmental behavior of the original solvent mixture ...

  19. [The history and development of computer assisted orthopaedic surgery].

    PubMed

    Jenny, J-Y

    2006-10-01

    Computer assisted orthopaedic surgery (CAOS) was developed to improve the accuracy of surgical procedures. It has improved dramatically over the last years, being transformed from an experimental, laboratory procedure into a routine procedure theoretically available to every orthopaedic surgeon. The first field of application of computer assistance was neurosurgery. After the application of computer guided spinal surgery, the navigation of total hip and knee joints became available. Currently, several applications for computer assisted surgery are available. At the beginning of navigation, a preoperative CT-scan or several fluoroscopic images were necessary. The imageless systems allow the surgeon to digitize patient anatomy at the beginning of surgery without any preoperative imaging. The future of CAOS remains unknown, but there is no doubt that its importance will grow in the next 10 years, and that this technology will probably modify the conventional practice of orthopaedic surgery.

  20. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  1. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  2. Computer-Assisted Instruction Case Study: The Introductory Marketing Course.

    ERIC Educational Resources Information Center

    Skinner, Steven J.; Grimm, Jim L.

    1979-01-01

    Briefly reviews research on the effectiveness of CAI in instruction, and describes a study comparing the performance of students using one program for basic marketing--TRMP (Tutorial Review of Marketing Principles)--with or without a study guide, the study guide alone, and a traditional class. (BBM)

  3. Recurrent Education. A Resource Guide.

    ERIC Educational Resources Information Center

    Rochte, Newton C.

    To assist both practitioner and reader to find answers to questions on the theory and practice of recurrent education, this resource guide compiles 715 abstracts of relevant articles, books, and monographs, from many countries. Descriptors and identifiers, used in computer searches to identify the materials, are arranged alphabetically in the…

  4. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography.

    PubMed

    Alam, K; Silberschmidt, Vadim V

    2014-01-01

    Bone drilling is widely used in orthopaedics, dental and neurosurgeries for repair and fixation purposes. One of the major concerns in drilling of bone is thermal necrosis that may seriously affect healing at interfaces with fixtures and implants. Ultrasonically-assisted drilling (UAD) is recently introduced as alternative to conventional drilling (CD) to minimize invasiveness of the procedure. This paper studies temperature rise in bovine cortical bone drilled with CD and UAD techniques and their comparison using infrared thermography. A parametric investigation was carried out to evaluate effects of drilling conditions (drilling speed and feed rate) and parameters of ultrasonic vibration (frequency and amplitude) on the temperature elevation in bone. Higher levels of the drilling speed and feed rate were found responsible for generating temperatures above a thermal threshold level in both types of drilling. UAD with frequency below 20 kHz resulted in lower temperature compared to CD with the same drilling parameters. The temperatures generated in cases with vibration frequency exceeding 20 kHz were significantly higher than those in CD for the range of drilling speeds and feed rates. The amplitude of vibration was found to have no significant effect on bone temperature. UAD may be investigated further to explore its benefits over the existing CD techniques.

  5. Near-infrared dye marking for thoracoscopic resection of small-sized pulmonary nodules: comparison of percutaneous and bronchoscopic injection techniques.

    PubMed

    Anayama, Takashi; Hirohashi, Kentaro; Miyazaki, Ryohei; Okada, Hironobu; Kawamoto, Nobutaka; Yamamoto, Marino; Sato, Takayuki; Orihashi, Kazumasa

    2018-01-12

    Minimally invasive video-assisted thoracoscopic surgery for small-sized pulmonary nodules is challenging, and image-guided preoperative localisation is required. Near-infrared indocyanine green fluorescence is capable of deep tissue penetration and can be distinguished regardless of the background colour of the lung; thus, indocyanine green has great potential for use as a near-infrared fluorescent marker in video-assisted thoracoscopic surgery. Thirty-seven patients with small-sized pulmonary nodules, who were scheduled to undergo video-assisted thoracoscopic wedge resection, were enrolled in this study. A mixture of diluted indocyanine green and iopamidol was injected into the lung parenchyma as a marker, using either computed tomography-guided percutaneous or bronchoscopic injection techniques. Indications and limitations of the percutaneous and bronchoscopic injection techniques for marking nodules with indocyanine green fluorescence were examined and compared. In the computed tomography-guided percutaneous injection group (n = 15), indocyanine green fluorescence was detected in 15/15 (100%) patients by near-infrared thoracoscopy. A small pneumothorax occurred in 3/15 (20.0%) patients, and subsequent marking was unsuccessful after a pneumothorax occurred. In the bronchoscopic injection group (n = 22), indocyanine green fluorescence was detected in 21/22 (95.5%) patients. In 6 patients who underwent injection marking at 2 different lesion sites, 5/6 (83.3%) markers were successfully detected. Either computed tomography-guided percutaneous or bronchoscopic injection techniques can be used to mark pulmonary nodules with indocyanine green fluorescence. Indocyanine green is a safe and easily detectable fluorescent marker for video-assisted thoracoscopic surgery. Furthermore, the bronchoscopic injection approach enables surgeons to mark multiple lesion areas with less risk of causing a pneumothorax. UMIN-CTR R000027833 accepted by ICMJE. Registered 5 January 2013.

  6. Computer-assisted surgery and intraoral welding technique for immediate implant-supported rehabilitation of the edentulous maxilla: case report and technical description.

    PubMed

    Albiero, Alberto Maria; Benato, Renato

    2016-09-01

    Complications are frequently reported when combining computer assisted flapless surgery with an immediate loaded prefabricated prosthesis. The authors have combined computer-assisted surgery with the intraoral welding technique to obtain a precise passive fit of the immediate loading prosthesis. An edentulous maxilla was rehabilitated with four computer assisted implants welded together intraorally and immediately loaded with a provisional restoration. A perfect passive fit of the metal framework was obtained that enabled proper osseointegration of implants. Computer assisted preoperative planning has been shown to be effective in reducing the intraoperative time of the intraoral welding technique. No complications were observed at 1 year follow-up. This guided-welded approach is useful to achieve a passive fit of the provisional prosthesis on the inserted implants the same day as the surgery, reducing intraoperative time with respect to the traditional intraoral welding technique. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. A study of an assisting robot for mandible plastic surgery based on augmented reality.

    PubMed

    Shi, Yunyong; Lin, Li; Zhou, Chaozheng; Zhu, Ming; Xie, Le; Chai, Gang

    2017-02-01

    Mandible plastic surgery plays an important role in conventional plastic surgery. However, its success depends on the experience of the surgeons. In order to improve the effectiveness of the surgery and release the burden of surgeons, a mandible plastic surgery assisting robot, based on an augmented reality technique, was developed. Augmented reality assists surgeons to realize positioning. Fuzzy control theory was used for the control of the motor. During the process of bone drilling, both the drill bit position and the force were measured by a force sensor which was used to estimate the position of the drilling procedure. An animal experiment was performed to verify the effectiveness of the robotic system. The position error was 1.07 ± 0.27 mm and the angle error was 5.59 ± 3.15°. The results show that the system provides a sufficient accuracy with which a precise drilling procedure can be performed. In addition, under the supervision's feedback of the sensor, an adequate safety level can be achieved for the robotic system. The system realizes accurate positioning and automatic drilling to solve the problems encountered in the drilling procedure, providing a method for future plastic surgery.

  8. Video-assisted thoracoscopic surgery for pulmonary nodules after computed tomography-guided marking with a spiral wire.

    PubMed

    Eichfeld, Uwe; Dietrich, Arne; Ott, Rudolph; Kloeppel, Rainer

    2005-01-01

    Peripheral pulmonary nodules are preferably removed by minimally invasive techniques, such as video-assisted thoracoscopic (VATS) surgery. These nodules should be marked preoperatively for better intraoperative detection and removal. Twenty-two cases with a single pulmonary nodule requiring surgical removal for histologic examination were included in a prospective study. Guided by computed tomography, nodules were marked preoperatively using a laser marker system and fixed with a spiral wire. The marked nodules were removed by VATS surgery immediately after the marking. The marking wire was placed in all 22 patients without any complications. The marked nodule was completely removed by VATS surgery in 19 patients. Conversion to thoracotomy was necessary in 3 patients, twice because of thoracoscopy-related problems and once because of a marking failure. The average times for the marking procedure and operation were 24 minutes and 32 minutes, respectively. This new method of computed tomography-guided nodule marking with a spiral wire and subsequent VATS surgery is very efficient in terms of localization and stable fixation of subpleural pulmonary nodules.

  9. Computer-assisted surgery in the lower jaw: double surgical guide for immediately loaded implants in postextractive sites-technical notes and a case report.

    PubMed

    De Santis, Daniele; Canton, Luciano Claudio; Cucchi, Alessandro; Zanotti, Guglielmo; Pistoia, Enrico; Nocini, Pier Francesco

    2010-01-01

    Computer-assisted surgery is based on computerized tomography (CT) scan technology to plan the placement of dental implants and a computer-aided design/computer-aided manufacturing (CAD-CAM) technology to create a custom surgical template. It provides guidance for insertion implants after analysis of existing alveolar bone and planning of implant position, which can be immediately loaded, therefore achieving esthetic and functional results in a surgical stage. The absence of guidelines to treat dentulous areas is often due to a lack of computer-assisted surgery. The authors have attempted to use this surgical methodology to replace residual teeth with an immediate implantoprosthetic restoration. The aim of this case report is to show the possibility of treating a dentulous patient by applying a computer-assisted surgical protocol associated with the use of a double surgical template: one before extraction and a second one after extraction of selected teeth.

  10. A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery

    NASA Astrophysics Data System (ADS)

    Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.

    2007-03-01

    This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.

  11. Design of a Performance-Responsive Drill and Practice Algorithm for Computer-Based Training.

    ERIC Educational Resources Information Center

    Vazquez-Abad, Jesus; LaFleur, Marc

    1990-01-01

    Reviews criticisms of the use of drill and practice programs in educational computing and describes potentials for its use in instruction. Topics discussed include guidelines for developing computer-based drill and practice; scripted training courseware; item format design; item bank design; and a performance-responsive algorithm for item…

  12. Web-based training: a new paradigm in computer-assisted instruction in medicine.

    PubMed

    Haag, M; Maylein, L; Leven, F J; Tönshoff, B; Haux, R

    1999-01-01

    Computer-assisted instruction (CAI) programs based on internet technologies, especially on the world wide web (WWW), provide new opportunities in medical education. The aim of this paper is to examine different aspects of such programs, which we call 'web-based training (WBT) programs', and to differentiate them from conventional CAI programs. First, we will distinguish five different interaction types: presentation; browsing; tutorial dialogue; drill and practice; and simulation. In contrast to conventional CAI, there are four architectural types of WBT programs: client-based; remote data and knowledge; distributed teaching; and server-based. We will discuss the implications of the different architectures for developing WBT software. WBT programs have to meet other requirements than conventional CAI programs. The most important tools and programming languages for developing WBT programs will be listed and assigned to the architecture types. For the future, we expect a trend from conventional CAI towards WBT programs.

  13. First Steps to Success. A Guide to Preparing Students for the Job Market.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY.

    This guide, based on a survey of more than 100 New York City employers, lists the qualifications needed for 20 entry-level positions. The occupations profiled are as follows: bookkeeper, carpenter, child care worker, computer data entry/programmer, food service aide, home attendant, janitor/cleaner, legal assistant/paralegal, licensed practical…

  14. Shade matching assisted by digital photography and computer software.

    PubMed

    Schropp, Lars

    2009-04-01

    To evaluate the efficacy of digital photographs and graphic computer software for color matching compared to conventional visual matching. The shade of a tab from a shade guide (Vita 3D-Master Guide) placed in a phantom head was matched to a second guide of the same type by nine observers. This was done for twelve selected shade tabs (tests). The shade-matching procedure was performed visually in a simulated clinic environment and with digital photographs, and the time spent for both procedures was recorded. An alternative arrangement of the shade tabs was used in the digital photographs. In addition, a graphic software program was used for color analysis. Hue, chroma, and lightness values of the test tab and all tabs of the second guide were derived from the digital photographs. According to the CIE L*C*h* color system, the color differences between the test tab and tabs of the second guide were calculated. The shade guide tab that deviated least from the test tab was determined to be the match. Shade matching performance by means of graphic software was compared with the two visual methods and tested by Chi-square tests (alpha= 0.05). Eight of twelve test tabs (67%) were matched correctly by the computer software method. This was significantly better (p < 0.02) than the performance of the visual shade matching methods conducted in the simulated clinic (32% correct match) and with photographs (28% correct match). No correlation between time consumption for the visual shade matching methods and frequency of correct match was observed. Shade matching assisted by digital photographs and computer software was significantly more reliable than by conventional visual methods.

  15. EPRI Guide to Managing Nuclear Utility Protective Clothing Programs. PCEVAL User`s Manual, A computer code for evaluating the economics of nuclear plant protective clothing programs: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, J.J.; Kelly, D.M.

    1993-10-01

    The Electric Power Research Institute (EPRI) commissioned a radioactive waste related project (RP2414-34) in 1989 to produce a guide for developing and managing nuclear plant protective clothing programs. Every nuclear facility must coordinate some type of protective clothing program for its radiation workers to ensure proper and safe protection for the wearer and to maintain control over the spread of contamination. Yet, every nuclear facility has developed its own unique program for managing such clothing. Accordingly, a need existed for a reference guide to assist with standardizing protective clothing programs and in controlling the potentially escalating economics of such programs.more » The initial Guide to Managing Nuclear Utility Protective Clothing Programs, NP-7309, was published in May 1991. Since that time, a number of utilities have reviewed and/or used the report to enhance their protective clothing programs. Some of these utilities requested that a computer program be developed to assist utilities in evaluating the economics of protective clothing programs consistent with the guidance in NP-7309. The PCEVAL computer code responds to that industry need. This report, the PCEVAL User`s Manual, provides detailed instruction on use of the software.« less

  16. Pruning a decision tree for selecting computer-related assistive devices for people with disabilities.

    PubMed

    Chi, Chia-Fen; Tseng, Li-Kai; Jang, Yuh

    2012-07-01

    Many disabled individuals lack extensive knowledge about assistive technology, which could help them use computers. In 1997, Denis Anson developed a decision tree of 49 evaluative questions designed to evaluate the functional capabilities of the disabled user and choose an appropriate combination of assistive devices, from a selection of 26, that enable the individual to use a computer. In general, occupational therapists guide the disabled users through this process. They often have to go over repetitive questions in order to find an appropriate device. A disabled user may require an alphanumeric entry device, a pointing device, an output device, a performance enhancement device, or some combination of these. Therefore, the current research eliminates redundant questions and divides Anson's decision tree into multiple independent subtrees to meet the actual demand of computer users with disabilities. The modified decision tree was tested by six disabled users to prove it can determine a complete set of assistive devices with a smaller number of evaluative questions. The means to insert new categories of computer-related assistive devices was included to ensure the decision tree can be expanded and updated. The current decision tree can help the disabled users and assistive technology practitioners to find appropriate computer-related assistive devices that meet with clients' individual needs in an efficient manner.

  17. A randomized clinical trial comparing guided implant surgery (bone- or mucosa-supported) with mental navigation or the use of a pilot-drill template.

    PubMed

    Vercruyssen, Marjolein; Cox, Catherine; Coucke, Wim; Naert, Ignace; Jacobs, Reinhilde; Quirynen, Marc

    2014-07-01

    To assess the accuracy of guided surgery (mucosa and bone-supported) compared to mental navigation or the use of a surgical template, in fully edentulous jaws, in a randomized controlled study. Fifty-nine patients (72 jaws), requiring four to six implants (maxilla or mandible), were consecutively recruited and randomly assigned to one of the following treatment groups; guidance via Materialise Universal(®)/mucosa, Materialise Universal(®)/bone, Facilitate™/mucosa, Facilitate™/bone, or mental navigation or a pilot-drill template. The precision was assessed by matching the planning computed tomography (CT) with a post-operative cone beam CT. A significant lower mean deviation at the entry point (1.4 mm, range: 0.3-3.7), at the apex (1.6 mm, range: 0.2-3.7) and angular deviation (3.0°, range: 0.2-16°) was observed for the guiding systems when compared to mental navigation (2.7 mm, range: 0.3-8.3; 2.9 mm, range: 0.5-7.4 and 9.9°, range: 1.5-27.8) and to the surgical template group (3.0 mm, range: 0.6-6.6; 3.4 mm, range: 0.3-7.5 and 8.4°, range: 0.6-21.3°). Differences between bone and mucosa support or type of guidance were negligible. Jaw and implant location (posterior-anterior, left-right), however, had a significant influence on the accuracy when guided. Based on these findings, guided implant placement appears to offer clear accuracy benefits. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The Handbook of Wrestling Drills.

    ERIC Educational Resources Information Center

    Gianakaris, George; Damico, Frank

    Amateur wrestling has had a tremendous growth in the past 10 to 15 years. The authors of this manual accumulated wrestling drills from hundreds of contacts with outstanding wrestlers and coaches throughout the country, in addition to their personal input. The manual can be used as a guide for teaching fundamental and advanced wrestling drills.…

  19. Pedicle screw placement using image guided techniques.

    PubMed

    Merloz, P; Tonetti, J; Pittet, L; Coulomb, M; Lavalleé, S; Sautot, P

    1998-09-01

    Clinical evaluation of a computer assisted spine surgical system is presented. Eighty pedicle screws were inserted using computer assisted technology in thoracic and lumbar vertebrae for treatment of different types of disorders including fractures, spondylolisthesis, and scoliosis. Fifty-two patients with severe fractures, spondylolisthesis, or pseudoarthrosis of T10 to L5 were treated using a computer assisted technique on 1/2 the patients and performing the screw insertion manually for the other 1/2. At the same time, 28 pedicle screws were inserted in T12 to L4 vertebrae for scoliosis with the help of the computer assisted technique. Surgery was followed in all cases (66 vertebrae; 132 pedicle screws) by postoperative radiographs and computed tomographic examination, on which measurements of screw position relative to pedicle position could be done. For fractures, spondylolisthesis, or pseudarthrosis, comparison between the two groups showed that four screws in 52 (8%) vertebrae had incorrect placement with computer assisted technique whereas 22 screws in 52 (42%) vertebrae had incorrect placement with manual insertion. In patients with scoliosis, four screws in 28 (14%) vertebrae had incorrect placement. In all of the patients (132 pedicle screws) there were no neurologic complications. These results show that a computer assisted technique is much more accurate and safe than manual insertion.

  20. SPARCCS - Smartphone-Assisted Readiness, Command and Control System

    DTIC Science & Technology

    2012-06-01

    and database needs. By doing this SPARCCS takes advantage of all the capabilities cloud computing has to offer, especially that of disbursed data...40092829/ Microsoft. (2011). Cloud Computing . Retrieved September 24, 2011, http ://www.microsoft.com/industry/government/guides/cloud_computing/2...Command, and Control System) to address these issues. We use smartphones in conjunction with cloud computing to extend the benefits of collaborative

  1. Guided Endodontic Access in Maxillary Molars Using Cone-beam Computed Tomography and Computer-aided Design/Computer-aided Manufacturing System: A Case Report.

    PubMed

    Lara-Mendes, Sônia T de O; Barbosa, Camila de Freitas M; Santa-Rosa, Caroline C; Machado, Vinícius C

    2018-05-01

    The aim of this study was to describe a guided endodontic technique that facilitates access to root canals of molars presenting with pulp calcifications. A 61-year-old woman presented to our service with pain in the upper left molar region. The second and third left molars showed signs of apical periodontitis confirmed by the cone-beam computed tomographic (CBCT) scans brought to us by the patient at the initial appointment. Conventional endodontic treatment was discontinued given the difficulty in locating the root canals. Intraoral scanning and the CBCT scans were used to plan the access to the calcified canals by means of implant planning software. Guides were fabricated through rapid prototyping and allowed for the correct orientation of a cylindrical drill used to provide access through the calcifications. Second to that, the root canals were prepared with reciprocating endodontic instruments and rested for 2 weeks with intracanal medication. Subsequently, canals were packed with gutta-percha cones using the hydraulic compression technique. Permanent restorations of the access cavities were performed. By comparing the tomographic images, the authors observed a drastic reduction of the periapical lesions as well as the absence of pain symptoms after 3 months. This condition was maintained at the 1-year follow-up. The guided endodontic technique in maxillary molars was shown to be a fast, safe, and predictable therapy and can be regarded as an excellent option for the location of calcified root canals, avoiding failures in complex cases. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Computer Assisted Medical Diagnosis (CAMD) System. Version 1.0. User’s Guide

    DTIC Science & Technology

    1992-10-01

    ULCERA CHOLECYSTITIS SMALL BOWEL OBSTRUCTION PEPTIC ULCER DISEASE MESENTERIC ADENITIS DIVERTICULITIS V <S;e > < View > <Cancel> Computer Assisted Medical...JOHN SSN 123-45-6789 Diseases on File <Complaint > APPENDL1X iT!rS~ A <Sym NONS ECIAICABDOMINAL PAIN sist> -VA RENAL COLIC AGE PERFORATED DUODENAL...elevated unless perforation occurs. <OK> 4.4.4 SF600 Report. This option extracts the encounter data and compiles it into the SF600 report format. The

  3. Bedside Treatment of Chronic Subdural Hematoma: Using Radiographic Characteristics to Revisit the Twist Drill.

    PubMed

    Garber, Sarah; McCaffrey, Jamie; Quigley, Edward P; MacDonald, Joel D

    2016-05-01

    Conventional treatment strategies for the management of symptomatic chronic subdural hematoma (cSDH) in the elderly include observation, operative burr holes or craniotomy, and bedside twist drill drainage. The decision on which technique to use should be determined by weighing the comorbidities and symptoms of the patient with the potential risks and benefits. The goal of this study was to identify radiographic characteristics on computed tomography scan that might be used to guide surgical decision making in terms of operative versus bedside removal of cSDH. We retrospectively reviewed clinical and radiographic features in patients who underwent bedside twist drill evacuation of a cSDH and those for a cohort of patients who underwent operative intervention via burr holes. We did not identify any clinical features or preoperative imaging characteristics to suggest an advantage of one procedure over the other. Additionally, complete radiographic resolution of cSDH on postoperative imaging is not required to relieve patient symptoms. Although bedside twist drill evacuation may avoid operating room costs and anesthetic complications in an elderly patient population and allow earlier resumption of anticoagulation treatment if necessary, there is also a risk of morbidity if uncontrolled bleeding is encountered or the patient is unable to tolerate the bedside procedure. However, bedside twist drill craniostomy is a reasonable and effective option for the treatment of subacute/chronic SDH in patients who may not be optimal surgical candidates. Georg Thieme Verlag KG Stuttgart · New York.

  4. Computer-Assisted Learning in Elementary Reading: A Randomized Control Trial

    ERIC Educational Resources Information Center

    Shannon, Lisa Cassidy; Styers, Mary Koenig; Wilkerson, Stephanie Baird; Peery, Elizabeth

    2015-01-01

    This study evaluated the efficacy of Accelerated Reader, a computer-based learning program, at improving student reading. Accelerated Reader is a progress-monitoring, assessment, and practice tool that supports classroom instruction and guides independent reading. Researchers used a randomized controlled trial to evaluate the program with 344…

  5. OUR's: Optimum Utilization of Resources; A Guide to Instructional Resources in Occupational Education. Research Pub. 77-1.

    ERIC Educational Resources Information Center

    Beamish, Eric; And Others

    This resource guide contains over 300 entries which are available through the Optimum Utilization of Resources (OUR's) exchange system. The entries describe learning materials, such as slides, video tapes, audio tapes, films, print material, and computer assisted instructional programs, which have been developed primarily by faculty of the…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tranter, P.

    Tender-assisted drilling (TAD) involves the use of tender support vessel (TSV) during the drilling phase of platform development to provide drilling utilities to the platform-mounted drilling package. The TSV provides facilities such as mud mixing, storage, pumping, bulk storage, hotel accommodations, and power. Thus, the platform topsides and jacket weight and size can be smaller and less expensive. The paper discusses the advantages and disadvantages of TAD, then describes the TAD vessel, semisubmersible, platform cost savings, accommodations, drilling and workovers, and field experience.

  7. Design of Intelligent Robot as A Tool for Teaching Media Based on Computer Interactive Learning and Computer Assisted Learning to Improve the Skill of University Student

    NASA Astrophysics Data System (ADS)

    Zuhrie, M. S.; Basuki, I.; Asto B, I. G. P.; Anifah, L.

    2018-01-01

    The focus of the research is the teaching module which incorporates manufacturing, planning mechanical designing, controlling system through microprocessor technology and maneuverability of the robot. Computer interactive and computer-assisted learning is strategies that emphasize the use of computers and learning aids (computer assisted learning) in teaching and learning activity. This research applied the 4-D model research and development. The model is suggested by Thiagarajan, et.al (1974). 4-D Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with an objective to produce a tool of learning in the form of intelligent robot modules and kit based on Computer Interactive Learning and Computer Assisted Learning. From the data of the Indonesia Robot Contest during the period of 2009-2015, it can be seen that the modules that have been developed confirm the fourth stage of the research methods of development; disseminate method. The modules which have been developed for students guide students to produce Intelligent Robot Tool for Teaching Based on Computer Interactive Learning and Computer Assisted Learning. Results of students’ responses also showed a positive feedback to relate to the module of robotics and computer-based interactive learning.

  8. DORMAN computer program (study 2.5). Volume 2: User's guide and programmer's guide. [development of data bank for computerized information storage of NASA programs

    NASA Technical Reports Server (NTRS)

    Wray, S. T., Jr.

    1973-01-01

    The DORMAN program was developed to create and modify a data bank containing data decks which serve as input to the DORCA Computer Program. Via a remote terminal a user can access the bank, extract any data deck, modify that deck, output the modified deck to be input to the DORCA program, and save the modified deck in the data bank. This computer program is an assist in the utilization of the DORCA program. The program is dimensionless and operates almost entirely in integer mode. The program was developed on the CDC 6400/7600 complex for implementation on a UNIVAC 1108 computer.

  9. Cable median barrier maintenance manual.

    DOT National Transportation Integrated Search

    2008-08-01

    This implementation guide describes the conceptual framework, data requirements, and computational procedures for determining the safety and mobility impacts of work zones in Texas. Researchers designed the framework and procedures to assist district...

  10. Design of a multifiber light delivery system for photoacoustic-guided surgery.

    PubMed

    Eddins, Blackberrie; Bell, Muyinatu A Lediju

    2017-04-01

    This work explores light delivery optimization for photoacoustic-guided minimally invasive surgeries, such as the endonasal transsphenoidal approach. Monte Carlo simulations were employed to study three-dimensional light propagation in tissue, comprising one or two 4-mm diameter arteries located 3 mm below bone, an absorbing metallic drill contacting the bone surface, and a single light source placed next to the 2.4-mm diameter drill shaft with a 2.9-mm diameter spherical drill tip. The optimal fiber distance from the drill shaft was determined from the maximum normalized fluence to the underlying artery. Using this optimal fiber-to-drill shaft distance, Zemax simulations were employed to propagate Gaussian beams through one or more 600 micron-core diameter optical fibers for detection on the bone surface. When the number of equally spaced fibers surrounding the drill increased, a single merged optical profile formed with seven or more fibers, determined by thresholding the resulting light profile images at 1 / e times the maximum intensity. We used these simulations to inform design requirements, build a one to seven multifiber light delivery prototype to surround a surgical drill, and demonstrate its ability to simultaneously visualize the tool tip and blood vessel targets in the absence and presence of bone. The results and methodology are generalizable to multiple interventional photoacoustic applications.

  11. Design of a multifiber light delivery system for photoacoustic-guided surgery

    NASA Astrophysics Data System (ADS)

    Eddins, Blackberrie; Bell, Muyinatu A. Lediju

    2017-04-01

    This work explores light delivery optimization for photoacoustic-guided minimally invasive surgeries, such as the endonasal transsphenoidal approach. Monte Carlo simulations were employed to study three-dimensional light propagation in tissue, comprising one or two 4-mm diameter arteries located 3 mm below bone, an absorbing metallic drill contacting the bone surface, and a single light source placed next to the 2.4-mm diameter drill shaft with a 2.9-mm diameter spherical drill tip. The optimal fiber distance from the drill shaft was determined from the maximum normalized fluence to the underlying artery. Using this optimal fiber-to-drill shaft distance, Zemax simulations were employed to propagate Gaussian beams through one or more 600 micron-core diameter optical fibers for detection on the bone surface. When the number of equally spaced fibers surrounding the drill increased, a single merged optical profile formed with seven or more fibers, determined by thresholding the resulting light profile images at 1/e times the maximum intensity. We used these simulations to inform design requirements, build a one to seven multifiber light delivery prototype to surround a surgical drill, and demonstrate its ability to simultaneously visualize the tool tip and blood vessel targets in the absence and presence of bone. The results and methodology are generalizable to multiple interventional photoacoustic applications.

  12. Optical coherence tomography guided dental drill

    DOEpatents

    DaSilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

  13. The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery.

    PubMed

    Merema, B J; Kraeima, J; Ten Duis, K; Wendt, K W; Warta, R; Vos, E; Schepers, R H; Witjes, M J H; IJpma, F F A

    2017-11-01

    An innovative procedure for the development of 3D patient-specific implants with drilling guides for acetabular fracture surgery is presented. By using CT data and 3D surgical planning software, a virtual model of the fractured pelvis was created. During this process the fracture was virtually reduced. Based on the reduced fracture model, patient-specific titanium plates including polyamide drilling guides were designed, 3D printed and milled for intra-operative use. One of the advantages of this procedure is that the personalised plates could be tailored to both the shape of the pelvis and the type of fracture. The optimal screw directions and sizes were predetermined in the 3D model. The virtual plan was translated towards the surgical procedure by using the surgical guides and patient-specific osteosynthesis. Besides the description of the newly developed multi-disciplinary workflow, a clinical case example is presented to demonstrate that this technique is feasible and promising for the operative treatment of complex acetabular fractures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Innovations and techniques for balloon-enteroscope-assisted endoscopic retrograde cholangiopancreatography in patients with altered gastrointestinal anatomy

    PubMed Central

    Yamauchi, Hiroshi; Kida, Mitsuhiro; Imaizumi, Hiroshi; Okuwaki, Kosuke; Miyazawa, Shiro; Iwai, Tomohisa; Koizumi, Wasaburo

    2015-01-01

    Endoscopic retrograde cholangiopancreatography (ERCP) remains challenging in patients who have undergone surgical reconstruction of the intestine. Recently, many studies have reported that balloon-enteroscope-assisted ERCP (BEA-ERCP) is a safe and effective procedure. However, further improvements in outcomes and the development of simplified procedures are required. Percutaneous treatment, Laparoscopy-assisted ERCP, endoscopic ultrasound-guided anterograde intervention, and open surgery are effective treatments. However, treatment should be noninvasive, effective, and safe. We believe that these procedures should be performed only in difficult-to-treat patients because of many potential complications. BEA-ERCP still requires high expertise-level techniques and is far from a routinely performed procedure. Various techniques have been proposed to facilitate scope insertion (insertion with percutaneous transhepatic biliary drainage (PTBD) rendezvous technique, Short type single-balloon enteroscopes with passive bending section, Intraluminal injection of indigo carmine, CO2 inflation guidance), cannulation (PTBD or percutaneous transgallbladder drainage rendezvous technique, Dilation using screw drill, Rendezvous technique combining DBE with a cholangioscope, endoscopic ultrasound-guided rendezvous technique), and treatment (overtube-assisted technique, Short type balloon enteroscopes) during BEA-ERCP. The use of these techniques may allow treatment to be performed by BEA-ERCP in many patients. A standard procedure for ERCP yet to be established for patients with a reconstructed intestine. At present, BEA-ERCP is considered the safest and most effective procedure and is therefore likely to be recommended as first-line treatment. In this article, we discuss the current status of BEA-ERCP in patients with surgically altered gastrointestinal anatomy. PMID:26074685

  15. Accurate guide wire of lag screw placement in the intertrochanteric fractures: a technical note.

    PubMed

    Li, Jiang; Wang, Liao; Li, Xiaodong; Feng, Kai; Tang, Jian; Wang, Xiaoqing

    2017-09-01

    Cephalomedullary fixations are commonly used in the treatment of intertrochanteric fractures. In clinical practice, one of the difficulties is when we exit the guide wire in a wrong position of femoral neck and insert near the hole again, the guide wire often flow into the previous track. This study develops a surgical technique to direct the guide wire to slip away the previous track and slip into a right position. When guide wire is exited to the cortex of femoral, we let the wire in and out at the cortical layer for several times to enlarge the entry hole. After that, electric drill is inverted, rubbed and entered slowly at a right angle. When guide wire encountered new resistance, the electric drill is turned back instantly. This technique can help trauma and orthopedic surgeons to obtain precision placement of the lag screw after the first try is failed.

  16. Alternative Delivery Systems for the Computer-Aided Instruction Study Management System (CAISMS).

    ERIC Educational Resources Information Center

    Nievergelt, Jurg; And Others

    The Computer-Assisted Instruction Study Management System (CAISMS) was developed and implemented on the PLATO system to monitor and guide student study of text materials. It administers assignments, gives quizzes, and automatically keeps track of a student's progress. This report describes CAISMS and several hypothetical implementations of CAISMS…

  17. Minimally-Invasive, Image-Guided Cochlear Implantation Surgery: First report of clinical implementation

    PubMed Central

    Labadie, Robert F; Balachandran, Ramya; Noble, Jack H; Blachon, Grégoire S; Mitchell, Jason E; Reda, Fitsum A; Dawant, Benoit M; Fitzpatrick, J Michael

    2015-01-01

    OBJECTIVE Minimally-invasive image-guided approach to cochlear implantation (CI) involves drilling a narrow, linear tunnel to the cochlea. Reported herein is the first clinical implementation of this approach. STUDY DESIGN Prospective, cohort study. METHODS On preoperative CT, a safe linear trajectory through the facial recess targeting the scala tympani was planned. Intraoperatively, fiducial markers were bone-implanted, a second CT was acquired, and the trajectory was transferred from preoperative to intraoperative CT. A customized microstereotactic frame was rapidly designed and constructed to constrain a surgical drill along the desired trajectory. Following sterilization, the frame was employed to drill the tunnel to the middle ear. After lifting a tympanomeatal flap and performing a cochleostomy, the electrode array was threaded through the drilled tunnel and into the cochlea. RESULTS Eight of nine patients were successfully implanted using the proposed approach with six insertions completely within scala tympani. Traditional mastoidectomy was performed on one patient following difficulty threading the electrode array via the narrow tunnel. Other difficulties encountered included use of the back-up implant when an electrode was dislodged during threading via the tunnel, tip fold-over, and facial nerve paresis (House-Brackmann II/VII at 12 months) secondary to heat during drilling. Average time of intervention was 182±36 minutes. CONCLUSION Minimally-invasive, image-guided CI is clinically achievable. Further clinical study is necessary to address technological difficulties during drilling and insertion and to assess potential benefits including decreased time of intervention, standardization of surgical intervention, and decreased tissue dissection potentially leading to shorter recovery and earlier implant activation. PMID:24272427

  18. Fixture For Drilling And Tapping A Curved Workpiece

    NASA Technical Reports Server (NTRS)

    Espinosa, P. S.; Lockyer, R. T.

    1992-01-01

    Simple fixture guides drilling and tapping of holes in prescribed locations and orientations on workpiece having curved surface. Tool conceived for use in reworking complexly curved helicopter blades made of composite materials. Fixture is block of rigid foam with epoxy filler, custom-fitted to surface contour, containing bushings and sleeves at drilling and tapping sites. Bushings changed, so taps and drills of various sizes accommodated. In use, fixture secured to surface by hold-down bolts extending through sleeves and into threads in substrate.

  19. Can a Drill Guide Improve the Coracoid Graft Placement During the Latarjet Procedure? A Prospective Comparative Study With the Freehand Technique.

    PubMed

    Barth, Johannes; Boutsiadis, Achilleas; Neyton, Lionel; Lafosse, Laurent; Walch, Gilles

    2017-10-01

    One of the factors that can affect the success of the Latarjet procedure is accurate coracoid graft (CG) placement. The use of a guide can improve placement of the CG and screw positioning in the sagittal and axial planes as compared with the classic open ("freehand") technique. Cohort study; Level of evidence, 2. A total of 49 patients who underwent a Latarjet procedure for the treatment of recurrent anterior shoulder instability were prospectively included; the procedure was performed with the freehand technique in 22 patients (group 1) and with use of a parallel drill guide during screw placement in 27 patients (group 2). All patients underwent a postoperative computed tomography scan with the same established protocol. The scans were used to evaluate and compare the position of the CG in the sagittal and axial planes, the direction of the screws (α angle), and overall contact of the graft with the anterior surface of the glenoid after the 2 surgical techniques. The CG was placed >60% below the native glenoid equator in 23 patients (85.2%) in group 2, compared with 14 patients (63.6%) in group 1 ( P = .004). In the axial plane, the position of the CG in group 2 patients was more accurate (85.2% and 88.9% flush) at the inferior and middle quartiles of the glenoid surface ( P = .012 and .009), respectively. Moreover, with the freehand technique (group 1), the graft was in a more lateral position in the inferior and middle quartiles ( P = .012 and .009, respectively). No differences were found between groups 1 and 2 regarding the mean α angle of the superior (9° ± 4.14° vs 11° ± 6.3°, P = .232) and inferior (9.5° ± 6° vs 10° ± 7.5°, P = .629) screws. However, the mean contact angle (angle between the posterior coracoid and the anterior glenoid surface) with the freehand technique (3.8° ± 6.8°) was better than that of the guide (8.55° ± 8°) ( P = .05). Compared with the classic freehand operative technique, the parallel drill guide can ensure more accurate placement of the CG in the axial and sagittal planes, although with inferior bone contact.

  20. Feasibility study of patient-specific surgical templates for the fixation of pedicle screws.

    PubMed

    Salako, F; Aubin, C-E; Fortin, C; Labelle, H

    2002-01-01

    Surgery for scoliosis, as well as other posterior spinal surgeries, frequently uses pedicle screws to fix an instrumentation on the spine. Misplacement of a screw can lead to intra- and post-operative complications. The objective of this study is to design patient-specific surgical templates to guide the drilling operation. From the CT-scan of a vertebra, the optimal drilling direction and limit angles are computed from an inverse projection of the pedicle limits. The first template design uses a surface-to-surface registration method and was constructed in a CAD system by subtracting the vertebra from a rectangular prism and a cylinder with the optimal orientation. This template and the vertebra were built using rapid prototyping. The second design uses a point-to-surface registration method and has 6 adjustable screws to adjust the orientation and length of the drilling support device. A mechanism was designed to hold it in place on the spinal process. A virtual prototype was build with CATIA software. During the operation, the surgeon places either template on patient's vertebra until a perfect match is obtained before drilling. The second design seems better than the first one because it can be reused on different vertebra and is less sensible to registration errors. The next step is to build the second design and make experimental and simulations tests to evaluate the benefits of this template during a scoliosis operation.

  1. Clinical application of fully digital Cerec surgical guides made in-house.

    PubMed

    Bindl, A

    2015-01-01

    It is now possible to produce full-digital drilling templates with Cerec Guide 2 (Sirona) in the dental practice relatively quickly, efficiently, and economically. Here, a patient case example is used to present an exemplary description of the procedure and method to do this. The solution described herein shows the advantageous efficiency, compared with other systems presently on the market, of a procedure that does not require the external production of the drilling template in the laboratory or a manufacturing center.

  2. A Hybrid Reality Radiation-free Simulator for Teaching Wire Navigation Skills

    PubMed Central

    Kho, Jenniefer Y.; Johns, Brian D.; Thomas, Geb. W.; Karam, Matthew D.; Marsh, J. Lawrence; Anderson, Donald D.

    2016-01-01

    Objectives Surgical simulation is an increasingly important method to facilitate the acquiring of surgical skills. Simulation can be helpful in developing hip fracture fixation skills because it is a common procedure for which performance can be objectively assessed (i.e., the tip-apex distance). The procedure requires fluoroscopic guidance to drill a wire along an osseous trajectory to a precise position within bone. The objective of this study was to assess the construct validity for a novel radiation-free simulator designed to teach wire navigation skills in hip fracture fixation. Methods Novices (N=30) with limited to no surgical experience in hip fracture fixation and experienced surgeons (N=10) participated. Participants drilled a guide wire in the center-center position of a synthetic femoral head in a hip fracture simulator, using electromagnetic sensors to track the guide wire position. Sensor data were gathered to generate fluoroscopic-like images of the hip and guide wire. Simulator performance of novice and experienced participants was compared to measure construct validity. Results The simulator was able to discriminate the accuracy in guide wire position between novices and experienced surgeons. Experienced surgeons achieved a more accurate tip-apex distance than novices (13 vs 23 mm, respectively, p=0.009). The magnitude of improvement on successive simulator attempts was dependent on level of expertise; tip-apex distance improved significantly in the novice group, while it was unchanged in the experienced group. Conclusions This hybrid reality, radiation-free hip fracture simulator, which combines real-world objects with computer-generated imagery demonstrates construct validity by distinguishing the performance of novices and experienced surgeons. There is a differential effect depending on level of experience, and it could be used as an effective training tool in novice surgeons. PMID:26165262

  3. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study.

    PubMed

    Devito, Dennis P; Kaplan, Leon; Dietl, Rupert; Pfeiffer, Michael; Horne, Dale; Silberstein, Boris; Hardenbrook, Mitchell; Kiriyanthan, George; Barzilay, Yair; Bruskin, Alexander; Sackerer, Dieter; Alexandrovsky, Vitali; Stüer, Carsten; Burger, Ralf; Maeurer, Johannes; Donald, Gordon D; Gordon, Donald G; Schoenmayr, Robert; Friedlander, Alon; Knoller, Nachshon; Schmieder, Kirsten; Pechlivanis, Ioannis; Kim, In-Se; Meyer, Bernhard; Shoham, Moshe

    2010-11-15

    Retrospective, multicenter study of robotically-guided spinal implant insertions. Clinical acceptance of the implants was assessed by intraoperative radiograph, and when available, postoperative computed tomography (CT) scans were used to determine placement accuracy. To verify the clinical acceptance and accuracy of robotically-guided spinal implants and compare to those of unguided free-hand procedures. SpineAssist surgical robot has been used to guide implants and guide-wires to predefined locations in the spine. SpineAssist which, to the best of the authors' knowledge, is currently the sole robot providing surgical assistance in positioning tools in the spine, guided over 840 cases in 14 hospitals, between June 2005 and June 2009. Clinical acceptance of 3271 pedicle screws and guide-wires inserted in 635 reported cases was assessed by intraoperative fluoroscopy, where placement accuracy of 646 pedicle screws inserted in 139 patients was measured using postoperative CT scans. Screw placements were found to be clinically acceptable in 98% of the cases when intraoperatively assessed by fluoroscopic images. Measurements derived from postoperative CT scans demonstrated that 98.3% of the screws fell within the safe zone, where 89.3% were completely within the pedicle and 9% breached the pedicle by up to 2 mm. The remaining 1.4% of the screws breached between 2 and 4 mm, while only 2 screws (0.3%) deviated by more than 4 mm from the pedicle wall. Neurologic deficits were observed in 4 cases yet, following revisions, no permanent nerve damage was encountered, in contrast to the 0.6% to 5% of neurologic damage reported in the literature. SpineAssist offers enhanced performance in spinal surgery when compared to free-hand surgeries, by increasing placement accuracy and reducing neurologic risks. In addition, 49% of the cases reported herein used a percutaneous approach, highlighting the contribution of SpineAssist in procedures without anatomic landmarks.

  4. A novel drill design for photoacoustic guided surgeries

    NASA Astrophysics Data System (ADS)

    Shubert, Joshua; Lediju Bell, Muyinatu A.

    2018-02-01

    Fluoroscopy is currently the standard approach for image guidance of surgical drilling procedures. In addition to the harmful radiation dose to the patient and surgeon, fluoroscopy fails to visualize critical structures such as blood vessels and nerves within the drill path. Photoacoustic imaging is a well-suited imaging method to visualize these structures and it does not require harmful ionizing radiation. However, there is currently no clinical system available to deliver light to occluded drill bit tips. To address this challenge, a prototype drill was designed, built, and tested using an internal light delivery system that allows laser energy to be transferred from a stationary laser source to the tip of a spinning drill bit. Photoacoustic images were successfully obtained with the drill bit submerged in water and with the drill tip inserted into a thoracic vertebra from a human cadaver.

  5. Enhanced cephalomedullary nail lag screw placement and intraoperative tip-apex distance measurement with a novel computer assisted surgery system.

    PubMed

    Kuhl, Mitchell; Beimel, Claudia

    2016-10-01

    The goal of this study was to evaluate the ability of a novel computer assisted surgery system to guide ideal placement of a lag screw during cephalomedullary nailing and then accurately measure the tip-apex distance (TAD) measurement intraoperatively. Retrospective case review. Level II trauma hospital. The initial 98 consecutive clinical cases treated with a cephalomedullary nail in conjunction with a novel computer assisted surgery system were retrospectively reviewed. A novel computer assisted surgery system was utilized to enhance lag screw placement during cephalomedullary nailing procedures. The computer assisted surgery system calculates the TAD intraoperatively after final lag screw placement. The ideal TAD was considered to be within a range of 5mm-20mm. The ability of the computer assisted surgery system (CASS) to assist in placement of a lag screw within the ideal TAD was evaluated. Intraoperative TAD measurements provided by the computer assisted surgery system were then compared to standard postoperative TAD measurements on PACS (picture archiving and communication system) images to determine whether these measurements are equivalent. 79 cases (80.6%) were available with complete information for a retrospective review. All cases had CASS TAD and PACS TAD measurements >5mm and<20mm. In addition, no significant difference could be detected between the intraoperative CASS TAD and the postoperative PACS TAD (p=0.374, Wilcoxon Test; p=0.174, paired T-Test). A cut-out rate of 0% was observed in all patients who were treated with CASS in this case series (95% CI: 0 - 3.01%). The novel computer assisted surgery system tested here is an effective and reliable adjunct that can be utilized for optimal lag screw placement in cephalomedullary nailing procedures. The computer assisted surgery system provides an accurate intraoperative TAD measurement that is equivalent to the standard postoperative measurement utilizing PACS images. Therapeutic Level IV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. HOLEGAGE 1.0 - Strain-Gauge Drilling Analysis Program

    NASA Technical Reports Server (NTRS)

    Hampton, Roy V.

    1992-01-01

    Interior stresses inferred from changes in surface strains as hole is drilled. Computes stresses using strain data from each drilled-hole depth layer. Planar stresses computed in three ways: least-squares fit for linear variation with depth, integral method to give incremental stress data for each layer, and/or linear fit to integral data. Written in FORTRAN 77.

  7. Phantom-based evaluation method for surgical assistance devices in minimally invasive cochlear implantation

    NASA Astrophysics Data System (ADS)

    Lexow, G. Jakob; Kluge, Marcel; Majdani, Omid; Lenarz, Thomas; Rau, Thomas S.

    2017-03-01

    Several research groups have proposed individual solutions for surgical assistance devices to perform minimally invasive cochlear implantation. The main challenge is the drilling of a small bore hole from the surface of the skull to the inner ear at submillimetric accuracy. Each group tested the accuracy of their device in their respective test bench or in a small number of temporal bone specimens. This complicates the comparison of the different approaches. Thus, a simple and inexpensive phantom based evaluation method is proposed which resembles clinical conditions. The method is based on half-skull phantoms made of bone-substitute material - optionally equipped with an artificial skin replica to include skin incision within the evaluation procedure. Anatomical structures of the temporal bone derived from segmentations using clinical imaging data are registered into a computer tomographic scan of the skull phantom and used for the planning of the drill trajectory. Drilling is performed with the respective device under conditions close to the intraoperative setting. Evaluation of accuracy can either be performed through postoperative imaging or by means of added targets on the inside of the skull model. Two different targets are proposed: simple reference marks only for measuring the accuracy of the device and a target containing a scala tympani model for evaluation of the complete workflow including the insertion of the electrode carrier. Experiments using the presented method take place under reproducible conditions thus allowing the comparison of the different approaches. In addition, artificial phantoms are easier to obtain and handle than human specimens.

  8. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Appendix B: ROBSIM programmer's guide

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelly, J. H.; Depkovich, T. M.; Wolfe, W. J.; Nguyen, T.

    1986-01-01

    The purpose of the Robotic Simulation (ROBSIM) program is to provide a broad range of computer capabilities to assist in the design, verification, simulation, and study of robotic systems. ROBSIM is programmed in FORTRAM 77 and implemented on a VAX 11/750 computer using the VMS operating system. The programmer's guide describes the ROBSIM implementation and program logic flow, and the functions and structures of the different subroutines. With the manual and the in-code documentation, an experienced programmer can incorporate additional routines and modify existing ones to add desired capabilities.

  9. A comparison of petrophysical data inputs for establishing time-depth relationships: a guide for future drilling expeditions

    NASA Astrophysics Data System (ADS)

    Boaga, J.; Sauermilch, I.; Mateo, Z. R. P.

    2017-12-01

    Time-depth relationships (TDR) are crucial in correlating drillhole and core information to seismic reflection profiles, for accurate resource estimation, scientific interpretation and to guide drilling operations. Conventional seismic time-depth domain conversion utilizes downhole sonic logs (DSI), calibrated using available checkshot data, which are local travel times from the surface to a particular depth. Scientific drilling programs (ODP and IODP) also measure P-wave velocity (PWL or C) on recovered core samples. Only three percent of all ODP and IODP sites record all three velocity measurements, however this information can be instructive as sometimes these data input show dissimilar TDR. These representative sites provide us with an opportunity to perform a comparative analysis highlighting the differences and similarities of TDRs derived from checkshot, downhole, and laboratory measurements. We then discuss the impact of lithology, stratigraphy, water column and other petrophysical properties in the predictive accuracy of TDR calculations, in an effort to provide guidance for future drilling and coring expeditions.

  10. Development of a theory-guided pan-European computer-assisted safer sex intervention.

    PubMed

    Nöstlinger, Christiana; Borms, Ruth; Dec-Pietrowska, Joanna; Dias, Sonia; Rojas, Daniela; Platteau, Tom; Vanden Berghe, Wim; Kok, Gerjo

    2016-12-01

    HIV is a growing public health problem in Europe, with men-having-sex-with-men and migrants from endemic regions as the most affected key populations. More evidence on effective behavioral interventions to reduce sexual risk is needed. This article describes the systematic development of a theory-guided computer-assisted safer sex intervention, aiming at supporting people living with HIV in sexual risk reduction. We applied the Intervention Mapping (IM) protocol to develop this counseling intervention in the framework of a European multicenter study. We conducted a needs assessment guided by the information-motivation-behavioral (IMB) skills model, formulated change objectives and selected theory-based methods and practical strategies, i.e. interactive computer-assisted modules as supporting tools for provider-delivered counseling. Theoretical foundations were the IMB skills model, social cognitive theory and the transtheoretical model, complemented by dual process models of affective decision making to account for the specifics of sexual behavior. The counseling approach for delivering three individual sessions was tailored to participants' needs and contexts, adopting elements of motivational interviewing and cognitive-behavioral therapy. We implemented and evaluated the intervention using a randomized controlled trial combined with a process evaluation. IM provided a useful framework for developing a coherent intervention for heterogeneous target groups, which was feasible and effective across the culturally diverse settings. This article responds to the need for transparent descriptions of the development and content of evidence-based behavior change interventions as potential pillars of effective combination prevention strategies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Model-based segmentation of the facial nerve and chorda tympani in pediatric CT scans

    NASA Astrophysics Data System (ADS)

    Reda, Fitsum A.; Noble, Jack H.; Rivas, Alejandro; Labadie, Robert F.; Dawant, Benoit M.

    2011-03-01

    In image-guided cochlear implant surgery an electrode array is implanted in the cochlea to treat hearing loss. Access to the cochlea is achieved by drilling from the outer skull to the cochlea through the facial recess, a region bounded by the facial nerve and the chorda tympani. To exploit existing methods for computing automatically safe drilling trajectories, the facial nerve and chorda tympani need to be segmented. The effectiveness of traditional segmentation approaches to achieve this is severely limited because the facial nerve and chorda are small structures (~1 mm and ~0.3 mm in diameter, respectively) and exhibit poor image contrast. We have recently proposed a technique to achieve this task in adult patients, which relies on statistical models of the structures. These models contain intensity and shape information along the central axes of both structures. In this work we use the same method to segment pediatric scans. We show that substantial differences exist between the anatomy of children and the anatomy of adults, which lead to poor segmentation results when an adult model is used to segment a pediatric volume. We have built a new model for pediatric cases and we have applied it to ten scans. A leave-one-out validation experiment was conducted in which manually segmented structures were compared to automatically segmented structures. The maximum segmentation error was 1 mm. This result indicates that accurate segmentation of the facial nerve and chorda in pediatric scans is achievable, thus suggesting that safe drilling trajectories can also be computed automatically.

  12. Program management model study

    NASA Technical Reports Server (NTRS)

    Connelly, J. J.; Russell, J. E.; Seline, J. R.; Sumner, N. R., Jr.

    1972-01-01

    Two models, a system performance model and a program assessment model, have been developed to assist NASA management in the evaluation of development alternatives for the Earth Observations Program. Two computer models were developed and demonstrated on the Goddard Space Flight Center Computer Facility. Procedures have been outlined to guide the user of the models through specific evaluation processes, and the preparation of inputs describing earth observation needs and earth observation technology. These models are intended to assist NASA in increasing the effectiveness of the overall Earth Observation Program by providing a broader view of system and program development alternatives.

  13. Swahili 12 Weeks Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This 12-weeks course in basic Swahili comprises 55 lesson units in five volumes. The general course format consists of (1) perception drills for comprehension, oral production, and association using "situational picture" illustrations; (2) dialogs in English and Swahili, with cartoon guides; (3) sequenced pattern and recombination drills, and (4)…

  14. INDIVIDUALIZING UNIVERSITY INSTRUCTION, EXPLORING COMPUTER POTENTIAL TO AID COLLEGE TEACHERS BY DIRECTING THE LEARNING PROCESS. INTER-UNIVERSITY PROJECT ONE, PUBLICATIONS SERIES.

    ERIC Educational Resources Information Center

    FALL, CHARLES R.

    THIS DOCUMENT CONCLUDES THAT INSTRUCTION BY COMPUTER-BASED RESOURCE UNITS CAN FACILITATE LEARNING AND PROVIDE THE INSTRUCTOR WITH VALUABLE ASSISTANCE. BY PRE-PLANNING THE TEACHING-LEARNING SITUATION, RESOURCE UNITS CAN FREE THE INSTRUCTOR FOR DECISION-MAKING TASKS. RESOURCE UNITS CAN ALSO PROVIDE APPROPRIATE LEARNING GOALS AND STUDY GUIDES TO EACH…

  15. The Effectiveness of Interactive Computer Assisted Modeling in Teaching Study Strategies and Concept Mapping of College Textbook Material.

    ERIC Educational Resources Information Center

    Mikulecky, Larry

    A study evaluated the effectiveness of a series of print materials and interactive computer-guided study programs designed to lead undergraduate students to apply basic textbook reading and concept mapping strategies to the study of science and social science textbooks. Following field testing with 25 learning skills students, 50 freshman biology…

  16. A novel passive/active hybrid robot for orthopaedic trauma surgery.

    PubMed

    Kuang, Shaolong; Leung, Kwok-sui; Wang, Tianmiao; Hu, Lei; Chui, Elvis; Liu, Wenyong; Wang, Yu

    2012-12-01

    Image guided navigation systems (IGNS) have been implemented successfully in orthopaedic trauma surgery procedures because of their ability to help surgeons position and orient hand-held drills at optimal entry points. However, current IGNS cannot prevent drilling tools or instruments from slipping or deviating from the planned trajectory during the drilling process. A method is therefore needed to overcome such problems. A novel passive/active hybrid robot (the HybriDot) for positioning and supporting surgical tools and instruments while drilling and/or cutting in orthopaedic trauma surgery is presented in this paper. This new robot, consisting of a circular prismatic joint and five passive/active back-drivable joints, is designed to fulfill clinical needs. In this paper, a system configuration and three operational modes are introduced and analyzed. Workspace and layout in the operating theatre (OT) are also analyzed in order to validate the structure design. Finally, experiments to evaluate the feasibility of the robot system are described. Analysis, simulation, and experimental results show that the novel structure of the robot can provide an appropriate workspace without risk of collision within OT environments during operation. The back-drivable joint mechanism can provide surgeons with more safety and flexibility in operational modes. The mean square value of the positional accuracy of this robot is 0.811 mm, with a standard deviation (SD) of 0.361 mm; the orientation is accurate to within 2.186º, with a SD of 0.932º. Trials on actual patients undergoing surgery for distal locking of intramedullary nails were successfully conducted in one pass using the robot. This robot has the advantages of having an appropriate workspace, being well designed for human-robot cooperation, and having high accuracy, sufficient rigidity, and easy deployability within the OT for use in common orthopaedic trauma surgery tasks such as screw fixation and drilling assistance. Copyright © 2012 John Wiley & Sons, Ltd.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevallier, J.J.; Quetier, F.P.; Marshall, D.W.

    Sedco Forex has developed an integrated computer system to enhance the technical performance of the company at various operational levels and to increase the understanding and knowledge of the drill crews. This paper describes the system and how it is used for recording and processing drilling data at the rig site, for associated technical analyses, and for well design, planning, and drilling performance studies at the operational centers. Some capabilities related to the statistical analysis of the company's operational records are also described, and future development of rig computing systems for drilling applications and management tasks is discussed.

  18. Users Guide for the National Transonic Facility Research Data System

    NASA Technical Reports Server (NTRS)

    Foster, Jean M.; Adcock, Jerry B.

    1996-01-01

    The National Transonic Facility is a complex cryogenic wind tunnel facility. This report briefly describes the facility, the data systems, and the instrumentation used to acquire research data. The computational methods and equations are discussed in detail and many references are listed for those who need additional technical information. This report is intended to be a user's guide, not a programmer's guide; therefore, the data reduction code itself is not documented. The purpose of this report is to assist personnel involved in conducting a test in the National Transonic Facility.

  19. Drilling Machines: Vocational Machine Shop.

    ERIC Educational Resources Information Center

    Thomas, John C.

    The lessons and supportive information in this field tested instructional block provide a guide for teachers in developing a machine shop course of study in drilling. The document is comprised of operation sheets, information sheets, and transparency masters for 23 lessons. Each lesson plan includes a performance objective, material and tools,…

  20. Adjusting an electron beam for drilling

    NASA Technical Reports Server (NTRS)

    Childress, C. L.

    1980-01-01

    Reticle contains two concentric circles: inner circle insures beam circularity and outer circle is guide to prevent beam from cutting workpiece clamp. Precise measurement of beam and clamp are required with old reticle. New reticle speeds up electron-beam drilling process by eliminating need to rotate eyepiece to make measurements against reticle scale.

  1. MEDLEARN: a computer-assisted instruction (CAI) program for MEDLARS.

    PubMed Central

    Eisenberg, L J; Standing, R A; Tidball, C S; Leiter, J

    1978-01-01

    *MEDLEARN*, a second-generation computer-assisted instruction (CAI) program available (nationally) since October 1976, provides on-line training for MEDLINE, one of the National Library of Medicine's (NLM) Medical Literature Analysis and Retrieval System (MEDLARS) data base. *MEDLEARN* was developed as a joint effort between NLM and The George Washington University Medical Center. Using MEDLINE formats throughout, *MEDLEARN* combines tutorial dialogue, drill and practice, testing, and simulation. The program was designed in three tracks oriented to basic methods, advanced techniques, and new developments. Each topic is presented on two levels, permitting an alternate explanation for users encountering difficulty. *MEDLEARN*, coded in the computer language PILOT, was developed with a modular structure which promotes ease of writing and revision. A versatile control structure maximizes student control. Frequent interactions check immediate recall, general comprehension, and integration of knowledge. Two MEDLINE simulations are included, providing the student an opportunity to formulate and execute a search, have it evaluated, and then perform the search in MEDLINE. Commenting, news broadcasting, and monitoring (with permission only) capabilities are also available. Subjective field appraisals have been positive and NLM plans to expand *MEDLEARN* and produce similar programs for other data bases. PMID:342015

  2. Applications of Computer-Assisted Navigation for the Minimally Invasive Reduction of Isolated Zygomatic Arch Fractures.

    PubMed

    Li, Zhi; Yang, Rong-Tao; Li, Zu-Bing

    2015-09-01

    Computer-assisted navigation has been widely used in oral and maxillofacial surgery. The purpose of this study was to describe the applications of computer-assisted navigation for the minimally invasive reduction of isolated zygomatic arch fractures. All patients identified as having isolated zygomatic arch fractures presenting to the authors' department from April 2013 through November 2014 were included in this prospective study. Minimally invasive reductions of isolated zygomatic arch fractures were performed on these patients under the guidance of computer-assisted navigation. The reduction status was evaluated by postoperative computed tomography (CT) 1 week after the operation. Postoperative complications and facial contours were evaluated during follow-up. Functional recovery was evaluated by the difference between the preoperative maximum interincisal mouth opening and that at the final follow-up. Twenty-three patients were included in this case series. The operation proceeded well in all patients. Postoperatively, all patients displayed uneventful healing without postoperative complication. Postoperative CT showed exact reduction in all cases. Satisfactory facial contour and functional recovery were observed in all patients. The preoperative maximal mouth opening ranged from 8 to 25 mm, and the maximal mouth opening at the final follow-up ranged from 36 to 42 mm. Computer-assisted navigation can be used not only for guiding zygomatic arch fracture reduction, but also for assessing reduction. Computer-assisted navigation is an effective and minimally invasive technique that can be applied in the reduction of isolated zygomatic arch fractures. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, makingmore » them an effective way to access the U.S. energy resources currently locked under hard rock formations.« less

  4. A Craniomaxillofacial Surgical Assistance Workstation for Enhanced Single-Stage Reconstruction Using Patient-Specific Implants.

    PubMed

    Murphy, Ryan J; Liacouras, Peter C; Grant, Gerald T; Wolfe, Kevin C; Armand, Mehran; Gordon, Chad R

    2016-11-01

    Craniomaxillofacial reconstruction with patient-specific, customized craniofacial implants (CCIs) is ideal for skeletal defects involving areas of aesthetic concern-the non-weight-bearing facial skeleton, temporal skull, and/or frontal-forehead region. Results to date are superior to a variety of "off-the-shelf" materials, but require a protocol computed tomography scan and preexisting defect for computer-assisted design/computer-assisted manufacturing of the CCI. The authors developed a craniomaxillofacial surgical assistance workstation to address these challenges and intraoperatively guide CCI modification for an unknown defect size/shape. First, the surgeon designed an oversized CCI based on his/her surgical plan. Intraoperatively, the surgeon resected the bone and digitized the resection using a navigation pointer. Next, a projector displayed the limits of the craniofacial bone defect onto the prefabricated, oversized CCI for the size modification process; the surgeon followed the projected trace to modify the implant. A cadaveric study compared the standard technique (n = 1) to the experimental technique (n = 5) using surgical time and implant fit. The technology reduced the time and effort needed to resize the oversized CCI by an order of magnitude as compared with the standard manual resizing process. Implant fit was consistently better for the computer-assisted case compared with the control by at least 30%, requiring only 5.17 minutes in the computer-assisted cases compared with 35 minutes for the control. This approach demonstrated improvement in surgical time and accuracy of CCI-based craniomaxillofacial reconstruction compared with previously reported methods. The craniomaxillofacial surgical assistance workstation will provide craniofacial surgeons a computer-assisted technology for effective and efficient single-stage reconstruction when exact craniofacial bone defect sizes are unknown.

  5. Carnotite resources of the Spud Patch area, San Miguel County, Colorado

    USGS Publications Warehouse

    Bell, Henry

    1953-01-01

    The Spud Patch area comprises about 8 square in T. 43 M., R. 18 and 19 W., San Miguel County, Colo., and is about 4 miles northeast of Egnar, Colo. Claims of the United States Vanadium Co. and the Vanadium Corp. of America cover about half the area. Claims of other owners, public land, and patented agricultural land, comprise the remainder of the area. The area is about 38 miles from the Government mill at Montecello, Utah, and 55 miles from the Vanadium Corp. of America mill at Naturita, Colo.Between 1940 and 1951, the Spud Patch area yielded about 24,000 short tons of carnotite ore that probably averaged 0.21 percent U3O8 and 2.2 percent V2O5.The deposits are in a broad sandstone lens near the top of the Salt Wash member of the Jurassic Morrison formation. Although the deposits mined have been mainly impregnations of sandstone by carnotite and gray vanadium-bearing clay minerals, some of the richer deposits found by Geological Survey drilling have a finely disseminated black uranium mineral but no carnotite. The deposits commonly are thin irregular tabular layers, which locally thicken to form elongate masses called "rolls". These rolls have a dominant northeasterly trend. Geologic features found to be most useful as guides to ore are listed.From November 1949 to May 1952, the U.S. Geological Survey drilled 415 diamond-drill holes totaling 67,215 feet in the Spud Patch area. The purpose of this drilling was to find deposits that would make new mines and to appraise the reserves in the unexplored area.As a result of Geological Survey drilling, indicated and inferred reserves computed at the cutoff of 1 foot or more thick and 0.10 percent U3O8 or 1.0 percent V2O5 total 20,500 short tons, averaging 0.28 percent U3O8 and 2.1 percent V2O5. These reserves and those computed at a lower grade cutoff of 0.05 percent U3O8 or 0.50 percent V2O5 and the pounds of contained metal are summarized in table 1.Potential reserves, whose existence is based on geologic evidence alone, are predicted to total about 42,000 short tons, averaging 0.25 percent U3O8 and 2.0 percent V2O5.No additional exploratory-type drilling by the Geological Survey is planned in the Spud Patch area. Recommendations are offered for additional development-type drilling, preferably by claim owners or lessees in specific areas in the vicinity of deposits discovered by Geological Survey drilling.

  6. Accuracy of a cone beam computed tomography-guided surgical stent for orthodontic mini-implant placement.

    PubMed

    Yu, Jae-Jung; Kim, Gyu-Tae; Choi, Yong-Suk; Hwang, Eui-Hwan; Paek, Janghyun; Kim, Seong-Hun; Huang, John C

    2012-03-01

    To validate the accuracy of a cone-beam computed tomography (CBCT)-guided surgical stent for orthodontic mini-implant (OMI) placement by quantitatively evaluating the difference between CBCT-prescribed and actual position of mini-implants in preoperative and postoperative CBCT images. A surgical stent was fabricated using Teflon-Perfluoroalkoxy, which has appropriate biological x-ray attenuation properties. Polyvinylsiloxane impression material was used to secure the custom-made surgical stent onto swine mandibles. CBCT scanning was done with the stent in place to virtually plan mini-implants using a three-dimensional (3D) software program. An appropriate insertion point was determined using 3D reconstruction data, and the vertical and horizontal angulations were determined using four prescribed angles. A custom-designed surveyor was used to drill a guide hole within the surgical stent as prescribed on the CBCT images for insertion of 32 OMIs. The mandibles with a surgical stent in place were rescanned with CBCT to measure the deviations between the virtual planning data and surgical results. The difference between the prescribed and actual vertical angle was 1.01 ± 7.25, and the horizontal difference was 1.16 ± 6.08. The correlation coefficient confirms that there was no intrarater variability in either the horizontal (R  =  .97) or vertical (R  =  .74) vectors. The surgical stent in this study guides mini-implants to the prescribed position as planned in CBCT. Since the statistical difference was not significant, the surgical stent can be considered to be an accurate guide tool for mini-implant placement in clinical use.

  7. Depth and lateral deviations in guided implant surgery: an RCT comparing guided surgery with mental navigation or the use of a pilot-drill template.

    PubMed

    Vercruyssen, M; Coucke, W; Naert, I; Jacobs, R; Teughels, W; Quirynen, M

    2015-11-01

    To assess the accuracy of guided surgery compared with mental navigation or the use of a pilot-drill template in fully edentulous patients. Sixty consecutive patients (72 jaws), requiring four to six implants (maxilla or mandible), were randomly assigned to one of the following treatment modalities: Materialise Universal(®) mucosa, Materialise Universal(®) bone, Facilitate(™) mucosa, Facilitate(™) bone, mental navigation, or a pilot-drill template. Accuracy was assessed by matching the planning CT with a postoperative CBCT. Deviations were registered in a vertical (depth) and horizontal (lateral) plane. The latter further subdivided into BL (bucco-lingual) and MD (mesio-distal) deviations. The overall mean vertical deviation for the guided surgery groups was 0.9 mm ± 0.8 (range: 0.0-3.7) and 0.9 mm ± 0.6 (range: 0.0-2.9) in a horizontal direction. For the non-guided groups, this was 1.7 mm ± 1.3 (range: 0.0-6.4) and 2.1 mm ± 1.4 (range 0.0-8.5), respectively (P < 0.05). The overall mean deviation for the guided surgery groups in MD direction was 0.6 mm ± 0.5 (range: 0.0-2.5) and 0.5 mm ± 0.5 (range: 0.0-2.9) in BL direction. For the non-guided groups, this was 1.8 mm ± 1.4 (range: 0.0-8.3) and 0.7 mm ± 0.6 (range 0.0-2.9), respectively. The deviation in MD direction was significantly higher in the non-guided groups (P = 0.0002). The most important inaccuracy with guided surgery is in vertical direction (depth). The inaccuracy in MD or BL direction is clearly less. For non-guided surgery, the inaccuracy is significantly higher. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Computational Electromagnetics (CEM) Laboratory: Simulation Planning Guide

    NASA Technical Reports Server (NTRS)

    Khayat, Michael A.

    2011-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the CEM Laboratory. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  9. Development of a new technique for pedicle screw and Magerl screw insertion using a 3-dimensional image guide.

    PubMed

    Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Kimura, Tomoatsu

    2012-11-01

    We developed a new technique for cervical pedicle screw and Magerl screw insertion using a 3-dimensional image guide. In posterior cervical spinal fusion surgery, instrumentation with screws is virtually routine. However, malpositioning of screws is not rare. To avoid complications during cervical pedicle screw and Magerl screw insertion, the authors developed a new technique which is a mold shaped to fit the lamina. Cervical pedicle screw fixation and Magerl screw fixation provide good correction of cervical alignment, rigid fixation, and a high fusion rate. However, malpositioning of screws is not a rare occurrence, and thus the insertion of screws has a potential risk of neurovascular injury. It is necessary to determine a safe insertion procedure for these screws. Preoperative computed tomographic (CT) scans of 1-mm slice thickness were obtained of the whole surgical area. The CT data were imported into a computer navigation system. We developed a 3-dimensional full-scale model of the patient's spine using a rapid prototyping technique from the CT data. Molds of the left and right sides at each vertebra were also constructed. One hole (2.0 mm in diameter and 2.0 cm in length) was made in each mold for the insertion of a screw guide. We performed a simulated surgery using the bone model and the mold before operation in all patients. The mold was firmly attached to the surface of the lamina and the guide wire was inserted using the intraoperative image of lateral vertebra. The proper insertion point, direction, and length of the guide were also confirmed both with the model bone and the image intensifier in the operative field. Then, drilling using a cannulated drill and tapping using a cannulated tapping device were carried out. Eleven consecutive patients who underwent posterior spinal fusion surgery using this technique since 2009 are included. The screw positions in the sagittal and axial planes were evaluated by postoperative CT scan to check for malpositioning. The screw insertion was done in the same manner as the simulated surgery. With the aid of this guide the pedicle screws and Magerl screws could be easily inserted even at the level where the pedicle seemed to be very thin and sclerotic on the CT scan. Postoperative CT scan showed that there were no critical breaches of the screws. This method employing the device using a 3-dimensional image guide seems to be easy and safe to use. The technique may improve the safety of pedicle screw and Magerl screw insertion even in difficult cases with narrow sclerotic pedicles.

  10. Reliability of a CAD/CAM Surgical Guide for Implant Placement: An In Vitro Comparison of Surgeons' Experience Levels and Implant Sites.

    PubMed

    Park, Su-Jung; Leesungbok, Richard; Cui, Taixing; Lee, Suk Won; Ahn, Su-Jin

    This in vitro study evaluated the reliability of a surgical guide with regard to different levels of operator surgical experience and implant site. A stereolithographic surgical guide for epoxy resin mandibles with three edentulous molar sites was produced using a computer-aided design/computer-assisted manufacture (CAD/CAM) system. Two surgeons with and two surgeons without implant surgery experience placed implants in a model either using or not using the CAD/CAM surgical guide. Four groups were created: inexperienced surgeon without the guide (group 1); experienced surgeon without the guide (group 2); inexperienced surgeon with the guide (group 3); and experienced surgeon with the guide (group 4). Planned implants and placed implants were superimposed using digital software, and deviation parameters were calculated. There were no significant differences in any of the deviation parameters between the groups when using the surgical guide. With respect to the implant sites, there were no significant differences among the groups in any parameter. Use of the CAD/CAM surgical guide reduced discrepancies among operators performing implant surgery regardless of their level of experience. Whether or not the guide was used, differences in the anterior-posterior implant site in the molar area did not affect the accuracy of implant placement.

  11. Image-guided techniques in renal and hepatic interventions.

    PubMed

    Najmaei, Nima; Mostafavi, Kamal; Shahbazi, Sahar; Azizian, Mahdi

    2013-12-01

    Development of new imaging technologies and advances in computing power have enabled the physicians to perform medical interventions on the basis of high-quality 3D and/or 4D visualization of the patient's organs. Preoperative imaging has been used for planning the surgery, whereas intraoperative imaging has been widely employed to provide visual feedback to a clinician when he or she is performing the procedure. In the past decade, such systems demonstrated great potential in image-guided minimally invasive procedures on different organs, such as brain, heart, liver and kidneys. This article focuses on image-guided interventions and surgery in renal and hepatic surgeries. A comprehensive search of existing electronic databases was completed for the period of 2000-2011. Each contribution was assessed by the authors for relevance and inclusion. The contributions were categorized on the basis of the type of operation/intervention, imaging modality and specific techniques such as image fusion and augmented reality, and organ motion tracking. As a result, detailed classification and comparative study of various contributions in image-guided renal and hepatic interventions are provided. In addition, the potential future directions have been sketched. With a detailed review of the literature, potential future trends in development of image-guided abdominal interventions are identified, namely, growing use of image fusion and augmented reality, computer-assisted and/or robot-assisted interventions, development of more accurate registration and navigation techniques, and growing applications of intraoperative magnetic resonance imaging. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Appendix G - Spill Prevention, Control, and Countermeasure (SPCC) Inspection Checklists - Offshore Oil Production, Drilling, and Workover

    EPA Pesticide Factsheets

    For offshore drilling/production facilities - This checklist assists EPA inspectors in conducting a thorough and consistent inspection of a facility’s compliance with the Spill Prevention, Control, and Countermeasure (SPCC) rule at 40 CFR part 112.

  13. Semi-manual mastoidectomy assisted by human-robot collaborative control - A temporal bone replica study.

    PubMed

    Lim, Hoon; Matsumoto, Nozomu; Cho, Byunghyun; Hong, Jaesung; Yamashita, Makoto; Hashizume, Makoto; Yi, Byung-Ju

    2016-04-01

    To develop an otological robot that can protect important organs from being injured. We developed a five degree-of-freedom robot for otological surgery. Unlike the other robots that were reported previously, our robot does not replace surgeon's procedures, but instead utilizes human-robot collaborative control. The robot basically releases all of the actuators so that the surgeon can manipulate the drill within the robot's working area with minimal restriction. When the drill reaches a forbidden area, the surgeon feels as if the drill hits a wall. When an engineer performed mastoidectomy using the robot for assistance, the facial nerve in the segmented region was always protected with a more than 2.5mm margin, which was almost the same as the pre-set safety margin of 3mm. Semi-manual drilling using human-robot collaborative control was feasible, and may hold a realistic prospect of clinical use in the near future. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Population Education Accessions Lists, July-December 1986.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.

    Part I of this resource guide contains listings of instructional materials, computer-assisted instructions, classroom activities and teaching methods. Part II deals with the knowledge base of population education. These publications are divided into 11 topics including: (1) demography; (2) documentation; (3) education (including environmental,…

  15. Interface between a printed circuit board computer aided design tool (Tektronix 4051 based) and a numerical paper tape controlled drill press (Slo-Syn 530: 100 w/ Dumore Automatic Head Number 8391)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, B.K.; Chinn, V.K.

    1981-01-01

    The development and use of computer programs written to produce the paper tape needed for the automation, or numeric control, of drill presses employed to fabricate computed-designed printed circuit boards are described. (LCL)

  16. A Guide to IRUS-II Application Development

    DTIC Science & Technology

    1989-09-01

    Stallard (editors). Research and Develo; nent in Natural Language b’nderstan,;ng as Part of t/i Strategic Computing Program . chapter 3, pages 27-34...Development in Natural Language Processing in the Strategic Computing Program . Compi-nrional Linguistics 12(2):132-136. April-June, 1986. [24] Sidner. C.L...assist developers interested in adapting IRUS-11 to new application domains Chapter 2 provides a general introduction and overviev ,. Chapter 3 describes

  17. ORA User’s Guide 2013

    DTIC Science & Technology

    2013-06-03

    and a C++ computational backend . The most current version of ORA (3.0.8.5) software is available on the casos website: http://casos.cs.cmu.edu...optimizing a network’s design structure. ORA uses a Java interface for ease of use, and a C++ computational backend . The most current version of ORA...Eigenvector Centrality : Node most connected to other highly connected nodes. Assists in identifying those who can mobilize others Entity Class

  18. Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation

    PubMed Central

    Kim, Terrence T.; Johnson, J. Patrick; Pashman, Robert; Drazin, Doniel

    2016-01-01

    We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy. PMID:27213152

  19. One Small Step for Manuals: Computer-Assisted Training in Twelve-Step Facilitation*

    PubMed Central

    Sholomskas, Diane E.; Carroll, Kathleen M.

    2008-01-01

    Objective The burgeoning number of empirically validated therapies has not been met with systematic evaluation of practical, inexpensive means of teaching large numbers of clinicians to use these treatments effectively. An interactive, computer-assisted training program that sought to impart skills associated with the Project MATCH (Matching Alcoholism Treatments to Client Heterogeneity) Twelve-Step Facilitation (TSF) manual was developed to address this need. Method Twenty-five community-based substance use-treatment clinicians were randomized to one of two training conditions: (1) access to the computer-assisted training program plus the TSF manual or (2) access to the manual only. The primary outcome measure was change from pre- to posttraining in the clinicians' ability to demonstrate key TSF skills. Results The data suggested that the clinicians' ability to implement TSF, as assessed by independent ratings of adherence and skill for the key TSF interventions, was significantly higher after training for those who had access to the computerized training condition than those who were assigned to the manual-only condition. Those assigned to the computer-assisted training condition also demonstrated greater gains in a knowledge test assessing familiarity with concepts presented in the TSF manual. Conclusions Computer-based training may be a feasible and effective means of training larger numbers of clinicians in empirically supported, manual-guided therapies. PMID:17061013

  20. One small step for manuals: Computer-assisted training in twelve-step facilitation.

    PubMed

    Sholomskas, Diane E; Carroll, Kathleen M

    2006-11-01

    The burgeoning number of empirically validated therapies has not been met with systematic evaluation of practical, inexpensive means of teaching large numbers of clinicians to use these treatments effectively. An interactive, computer-assisted training program that sought to impart skills associated with the Project MATCH (Matching Alcoholism Treatments to Client Heterogeneity) Twelve-Step Facilitation (TSF) manual was developed to address this need. Twenty-five community-based substance use-treatment clinicians were randomized to one of two training conditions: (1) access to the computer- assisted training program plus the TSF manual or (2) access to the manual only. The primary outcome measure was change from preto posttraining in the clinicians' ability to demonstrate key TSF skills. The data suggested that the clinicians' ability to implement TSF, as assessed by independent ratings of adherence and skill for the key TSF interventions, was significantly higher after training for those who had access to the computerized training condition than those who were assigned to the manual-only condition. Those assigned to the computer-assisted training condition also demonstrated greater gains in a knowledge test assessing familiarity with concepts presented in the TSF manual. Computer-based training may be a feasible and effective means of training larger numbers of clinicians in empirically supported, manual-guided therapies.

  1. [Guided maxillofacial surgery: Simulation and surgery aided by stereolithographic guides and custom-made miniplates.

    PubMed

    Philippe, B

    2013-08-05

    We present a new model of guided surgery, exclusively using computer assistance, from the preoperative planning of osteotomies to the actual surgery with the aid of stereolithographic cutting guides and osteosynthetic miniplates designed and made preoperatively, using custom-made titanium miniplates thanks to direct metal laser sintering. We describe the principles that guide the designing and industrial manufacturing of this new type of osteosynthesis miniplates. The surgical procedure is described step-by-step using several representative cases of dento-maxillofacial dysmorphosis. The encouraging short-term results demonstrate the wide range of application of this new technology for cranio-maxillofacial surgery, whatever the type of osteotomy performed, and for plastic reconstructive surgery. Copyright © 2013. Published by Elsevier Masson SAS.

  2. Rotary Drill Operator. Open Pit Mining Job Training Series.

    ERIC Educational Resources Information Center

    Savilow, Bill

    This training outline for rotary drill operators, one in a series of eight outlines, is designed primarily for company training foremen or supervisors and for trainers to use as an industry-wide guideline for heavy equipment operator training in open pit mining in British Columbia. Intended as a guide for preparation of lesson plans both for…

  3. Machine Shop. Module 3: Bench Work and Material Science. Instructor's Guide.

    ERIC Educational Resources Information Center

    Walden, Charles H.; Nobles, Jack

    This document consists of materials for an 11-unit course on the following topics: (1) hacksawing; (2) filing and deburring; (3) locating centers for drilling; (4) cutting threads with tap and die; (5) using a hand reamer; (6) pedestal/bench grinder operation; (7) whetting, polishing, and lapping; (8) screw, drill, and tap extraction; (9) arbor…

  4. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  5. Markerless laser registration in image-guided oral and maxillofacial surgery.

    PubMed

    Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan

    2004-07-01

    The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.

  6. Getting Started with Microcomputers--A Practical Beginner's Guide.

    ERIC Educational Resources Information Center

    Davies, Norman F.

    1985-01-01

    Discusses the results of a questionnaire sent to experts in the field of computer assisted language learning. Covers such topics as: 1) points to consider before buying a microcomputer; 2) recommended brands and peripheral equipment; 3) software; 4) utilizing programming languages; and 5) literature and contact organizations. (SED)

  7. User's Guide for the Nihongo Tutorial System.

    ERIC Educational Resources Information Center

    Leung, Kei Wai; Maciejewski, Anthony A.

    The Nihongo tutorial system is an intelligent tutorial system designed to use a computer to assist scientists and engineers in developing reading competence in technical Japanese. It consists of three applications: the Nihongo Tutor, which provides useful information about an article (translation, syntax, pronunciation) to help understand the text…

  8. Education and Work in the Future.

    ERIC Educational Resources Information Center

    Korim, Andrew S.

    Community colleges are at a point in history when they must be adept in coping with change in social institutions, economic pressures, and the body of knowledge. Over the last century, education has become more personalized; behavioral objectives now guide competency-based instruction; computer-assisted instruction has shown success; educational…

  9. The Collins Center Update. Volume 6, Issue 3, April-June 2004

    DTIC Science & Technology

    2004-06-01

    fought campaign plans with students from the other Senior Level Colleges in a free - play computer-assisted war game. INSIDE THIS ISSUE • Unified...phase, where the students came together to execute their plans in a dynamic free - play environment. The exercise, guided by the participants’ own

  10. Uses of Technology in Community Colleges: A Resource Book for Community College Teachers and Administrators.

    ERIC Educational Resources Information Center

    Gooler, Dennis D., Ed.

    This resource guide for community college teachers and administrators focuses on hardware and software. The following are discussed: (1) individual technologies--computer-assisted instruction, audio tape, films, filmstrips/slides, dial access, programmed instruction, learning activity packages, video cassettes, cable TV, independent learning labs,…

  11. Computer-assisted template-guided custom-designed 3D-printed implant placement with custom-designed 3D-printed surgical tooling: an in-vitro proof of a novel concept.

    PubMed

    Anssari Moin, David; Derksen, Wiebe; Waars, Hugo; Hassan, Bassam; Wismeijer, Daniel

    2017-05-01

    The aim of this study was to introduce a new concept for computer-assisted template-guided placement of a custom 3D-designed/3D-printed implant with congruent custom 3D-designed/3D-printed surgical tooling and to test the feasibility and accuracy of this method in-vitro. One partially edentulous human mandibular cadaver was scanned with a cone-beam computed tomography (CBCT) system and intra-oral scan system. The 3D data of this cadaver were imported in specialized software and used to analyse the region of a missing tooth. Based on the functional and anatomical parameters, an individual implant with congruent surgical tooling and surgical guided template was designed and 3D-printed. The guided osteotomy was performed, and the custom implant inserted. To evaluate the planned implant position in comparison with the placed implant position, the mandible with implant was scanned again with the CBCT system and software matching was applied to measure the accuracy of the procedure. The angular deflection with the planned implant position was 0.40°. When comparing the 3D positions of the shoulder, there is a deviation of 0.72 mm resulting in an apical deviation of 0.72 mm. With the use of currently available technology, it is very well feasible to create in a virtual simulation a custom implant with congruent custom surgical tooling and to transfer this to a clinical setting. However, further research on multiple levels is needed to explore this novel approach. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Desiderata for a Computer-Assisted Audit Tool for Clinical Data Source Verification Audits

    PubMed Central

    Duda, Stephany N.; Wehbe, Firas H.; Gadd, Cynthia S.

    2013-01-01

    Clinical data auditing often requires validating the contents of clinical research databases against source documents available in health care settings. Currently available data audit software, however, does not provide features necessary to compare the contents of such databases to source data in paper medical records. This work enumerates the primary weaknesses of using paper forms for clinical data audits and identifies the shortcomings of existing data audit software, as informed by the experiences of an audit team evaluating data quality for an international research consortium. The authors propose a set of attributes to guide the development of a computer-assisted clinical data audit tool to simplify and standardize the audit process. PMID:20841814

  13. Virtual surgical planning and 3D printing in repeat calvarial vault reconstruction for craniosynostosis: technical note.

    PubMed

    LoPresti, Melissa; Daniels, Bradley; Buchanan, Edward P; Monson, Laura; Lam, Sandi

    2017-04-01

    Repeat surgery for restenosis after initial nonsyndromic craniosynostosis intervention is sometimes needed. Calvarial vault reconstruction through a healed surgical bed adds a level of intraoperative complexity and may benefit from preoperative and intraoperative definitions of biometric and aesthetic norms. Computer-assisted design and manufacturing using 3D imaging allows the precise formulation of operative plans in anticipation of surgical intervention. 3D printing turns virtual plans into anatomical replicas, templates, or customized implants by using a variety of materials. The authors present a technical note illustrating the use of this technology: a repeat calvarial vault reconstruction that was planned and executed using computer-assisted design and 3D printed intraoperative guides.

  14. Immediate provisionalization with a CAD/CAM interim abutment and crown: a guided soft tissue healing technique.

    PubMed

    Proussaefs, Periklis

    2015-02-01

    A technique is described in which a single interim abutment and crown were fabricated in advance and placed the day of dental implant surgery. The contours of the interim crown were identical to the contours of a tentatively designed definitive prosthesis and allowed the tissue to heal and obtain contours that accommodated the contours of the definitive prosthesis. After osseointegration was established, a definitive impression was made with a custom computer-assisted design and computer-assisted manufacturing impression coping. The definitive prosthesis then was fabricated. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Heat accumulation during sequential cortical bone drilling.

    PubMed

    Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R

    2016-03-01

    Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from <0.5 °C to nearly 13 °C. The difference between drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. The Use of Laser Guidance Reduces Fluoroscopy Time for C-Arm Cone-Beam Computed Tomography-Guided Biopsies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroes, Maarten W., E-mail: Maarten.Kroes@radboudumc.nl; Strijen, Marco J. L. van, E-mail: m.van.strijen@antoniusziekenhuis.nl; Braak, Sicco J., E-mail: sjbraak@gmail.com

    2016-09-15

    PurposeWhen using laser guidance for cone-beam computed tomography (CBCT)-guided needle interventions, planned needle paths are visualized to the operator without the need to switch between entry- and progress-view during needle placement. The current study assesses the effect of laser guidance during CBCT-guided biopsies on fluoroscopy and procedure times.Materials and MethodsProspective data from 15 CBCT-guided biopsies of 8–65 mm thoracic and abdominal lesions assisted by a ceiling-mounted laser guidance technique were compared to retrospective data of 36 performed CBCT-guided biopsies of lesions >20 mm using the freehand technique. Fluoroscopy time, procedure time, and number of CBCT-scans were recorded. All data are presented asmore » median (ranges).ResultsFor biopsies using the freehand technique, more fluoroscopy time was necessary to guide the needle onto the target, 165 s (83–333 s) compared to 87 s (44–190 s) for laser guidance (p < 0.001). Procedure times were shorter for freehand-guided biopsies, 24 min versus 30 min for laser guidance (p < 0.001).ConclusionThe use of laser guidance during CBCT-guided biopsies significantly reduces fluoroscopy time.« less

  17. Physarum machines: encapsulating reaction-diffusion to compute spanning tree

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2007-12-01

    The Physarum machine is a biological computing device, which employs plasmodium of Physarum polycephalum as an unconventional computing substrate. A reaction-diffusion computer is a chemical computing device that computes by propagating diffusive or excitation wave fronts. Reaction-diffusion computers, despite being computationally universal machines, are unable to construct certain classes of proximity graphs without the assistance of an external computing device. I demonstrate that the problem can be solved if the reaction-diffusion system is enclosed in a membrane with few ‘growth points’, sites guiding the pattern propagation. Experimental approximation of spanning trees by P. polycephalum slime mold demonstrates the feasibility of the approach. Findings provided advance theory of reaction-diffusion computation by enriching it with ideas of slime mold computation.

  18. Computer tomography urography assisted real-time ultrasound-guided percutaneous nephrolithotomy on renal calculus.

    PubMed

    Fang, You-Qiang; Wu, Jie-Ying; Li, Teng-Cheng; Zheng, Hao-Feng; Liang, Guan-Can; Chen, Yan-Xiong; Hong, Xiao-Bin; Cai, Wei-Zhong; Zang, Zhi-Jun; Di, Jin-Ming

    2017-06-01

    This study aimed to assess the role of pre-designed route on computer tomography urography (CTU) in the ultrasound-guided percutaneous nephrolithotomy (PCNL) for renal calculus.From August 2013 to May 2016, a total of 100 patients diagnosed with complex renal calculus in our hospital were randomly divided into CTU group and control group (without CTU assistance). CTU was used to design a rational route for puncturing in CTU group. Ultrasound was used in both groups to establish a working trace in the operation areas. Patients' perioperative parameters and postoperative complications were recorded.All operations were successfully performed, without transferring to open surgery. Time of channel establishment in CTU group (6.5 ± 4.3 minutes) was shorter than the control group (10.0 ± 6.7 minutes) (P = .002). In addition, there was shorter operation time, lower rates of blood transfusion, secondary operation, and less establishing channels. The incidence of postoperative complications including residual stones, sepsis, severe hemorrhage, and perirenal hematoma was lower in CTU group than in control group.Pre-designing puncture route on CTU images would improve the puncturing accuracy, lessen establishing channels as well as improve the security in the ultrasound-guided PCNL for complex renal calculus, but at the cost of increased radiation exposure.

  19. Creation of a 3-dimensional virtual dental patient for computer-guided surgery and CAD-CAM interim complete removable and fixed dental prostheses: A clinical report.

    PubMed

    Harris, Bryan T; Montero, Daniel; Grant, Gerald T; Morton, Dean; Llop, Daniel R; Lin, Wei-Shao

    2017-02-01

    This clinical report proposes a digital workflow using 2-dimensional (2D) digital photographs, a 3D extraoral facial scan, and cone beam computed tomography (CBCT) volumetric data to create a 3D virtual patient with craniofacial hard tissue, remaining dentition (including surrounding intraoral soft tissue), and the realistic appearance of facial soft tissue at an exaggerated smile under static conditions. The 3D virtual patient was used to assist the virtual diagnostic tooth arrangement process, providing patient with a pleasing preoperative virtual smile design that harmonized with facial features. The 3D virtual patient was also used to gain patient's pretreatment approval (as a communication tool), design a prosthetically driven surgical plan for computer-guided implant surgery, and fabricate the computer-aided design and computer-aided manufacturing (CAD-CAM) interim prostheses. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Rotary engine performance computer program (RCEMAP and RCEMAPPC): User's guide

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1993-01-01

    This report is a user's guide for a computer code that simulates the performance of several rotary combustion engine configurations. It is intended to assist prospective users in getting started with RCEMAP and/or RCEMAPPC. RCEMAP (Rotary Combustion Engine performance MAP generating code) is the mainframe version, while RCEMAPPC is a simplified subset designed for the personal computer, or PC, environment. Both versions are based on an open, zero-dimensional combustion system model for the prediction of instantaneous pressures, temperature, chemical composition and other in-chamber thermodynamic properties. Both versions predict overall engine performance and thermal characteristics, including bmep, bsfc, exhaust gas temperature, average material temperatures, and turbocharger operating conditions. Required inputs include engine geometry, materials, constants for use in the combustion heat release model, and turbomachinery maps. Illustrative examples and sample input files for both versions are included.

  1. Neurosurgical robotic arm drilling navigation system.

    PubMed

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Computed tomography-based evaluation of template (NobelGuide™)-guided implant positions: a prospective radiological study.

    PubMed

    Vasak, Christoph; Watzak, Georg; Gahleitner, André; Strbac, Georg; Schemper, Michael; Zechner, Werner

    2011-10-01

    This prospective study was intended to evaluate the overall deviation in a clinical treatment setting to provide for quantification of the potential impairment of treatment safety and reliability with computer-assisted, template-guided transgingival implantation. The patient population enrolled (male/female=10/8) presented with partially dentate and edentulous maxillae and mandibles. Overall, 86 implants were placed by two experienced dental surgeons strictly following the NobelGuide™ protocol for template-guided implantation. All patients had a postoperative computed tomography (CT) with identical settings to the preoperative examination. Using the triple scan technique, pre- and postoperative CT data were merged in the Procera planning software, a newly developed procedure - initially presented in 2007 allowing measurement of the deviations at implant shoulder and apex. The deviations measured were an average of 0.43 mm (bucco-lingual), 0.46 mm (mesio-distal) and 0.53 mm (depth) at the level of the implant shoulder and slightly higher at the implant apex with an average of 0.7 mm (bucco-lingual), 0.63 mm (mesio-distal) and 0.52 mm (depth). The maximum deviation of 2.02 mm was encountered in the corono-apical direction. Significantly lower deviations were seen for implants in the anterior region vs. the posterior tooth region (P<0.01, 0.31 vs. 0.5 mm), and deviations were also significantly lower in the mandible than in the maxilla (P=0.04, 0.36 vs. 0.45 mm) in the mesio-distal direction. Moreover, a significant correlation between deviation and mucosal thickness was seen and a learning effect was found over the time period of performance of the surgical procedures. Template-guided implantation will ensure reliable transfer of preoperative computer-assisted planning into surgical practice. With regard to the required verification of treatment reliability of an implantation system with flapless access, all maximum deviations measured in this clinical study were within the safety margins recommended by the planning software. © 2011 John Wiley & Sons A/S.

  3. Immediate loading of four implants (BTLock®) in the maxilla and provisional restoration with guide-surgery (SimPlant, Materialise®): case report

    PubMed Central

    SPINELLI, D.; DE VICO, G.; SCHIAVETTI, R.; BONINO, M.; POZZI, A.; BOLLERO, P.; BARLATTANI, A.

    2010-01-01

    SUMMARY The severe atrophy of the jaws are a challenging therapeutic problem, since the increase in bone is necessary to allow the placement of a sufficient number of implants. Combining immediate functionalization with the concept of guided surgery they combine the advantages offered by the innovative surgical and prosthetic implant technique (All-on-Four®) with those of computer-assisted planning in cases of severe bone atrophy. The method used in this case report, combines these two concepts in a surgical and prosthetic protocol safe and effective for the immediate function of 4 implants to support a fixed prosthesis in completely edentulous subjects. The integration of technology with immediate function with the concept of computer-guided surgery for implant placement and rehabilitation of completely edentulous jaws is now a predictable treatment modality with implant survival comparable to the traditional protocols. PMID:23285381

  4. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    PubMed

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  5. The Subsurface Geology of Río Tinto: Material Examined During a Simulated Mars Drilling Mission for the Mars Astrobiology Research and Technology Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  6. Geothermal well drilling manual at Cerro Prieto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez P., A.; Flores S., M.

    The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimizemore » hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.« less

  7. Preoperative computed tomography-guided percutaneous hookwire localization of metallic marker clips in the breast with a radial approach: initial experience.

    PubMed

    Uematsu, T; Kasami, M; Uchida, Y; Sanuki, J; Kimura, K; Tanaka, K; Takahashi, K

    2007-06-01

    Hookwire localization is the current standard technique for radiological marking of nonpalpable breast lesions. Stereotactic directional vacuum-assisted breast biopsy (SVAB) is of sufficient sensitivity and specificity to replace surgical biopsy. Wire localization for metallic marker clips placed after SVAB is needed. To describe a method for performing computed tomography (CT)-guided hookwire localization using a radial approach for metallic marker clips placed percutaneously after SVAB. Nineteen women scheduled for SVAB with marker-clip placement, CT-guided wire localization of marker clips, and, eventually, surgical excision were prospectively entered into the study. CT-guided wire localization was performed with a radial approach, followed by placement of a localizing marker-clip surgical excision. Feasibility and reliability of the procedure and the incidence of complications were examined. CT-guided wire localization surgical excision was successfully performed in all 19 women without any complications. The mean total procedure time was 15 min. The median distance on CT image from marker clip to hookwire was 2 mm (range 0-3 mm). CT-guided preoperative hookwire localization with a radial approach for marker clips after SVAB is technically feasible.

  8. Pulmonary function and high-resolution computed tomography examinations among offshore drill floor workers.

    PubMed

    Kirkhus, Niels E; Skare, Øivind; Ulvestad, Bente; Aaløkken, Trond Mogens; Günther, Anne; Olsen, Raymond; Thomassen, Yngvar; Lund, May Brit; Ellingsen, Dag G

    2018-04-01

    The aim of this study was to assess short-term changes in pulmonary function in drill floor workers currently exposed to airborne contaminants generated as a result of drilling offshore. We also aimed to study the prevalence of pulmonary fibrosis using high-resolution computed tomography (HRCT) scans of another group of previously exposed drill floor workers. Pulmonary function was measured before and after a 14-day work period in a follow-up study of 65 drill floor workers and 65 referents. Additionally, 57 other drill floor workers exposed to drilling fluids during the 1980s were examined with HRCT of the lungs in a cross-sectional study. The drill floor workers had a statistically significant decline in forced expiratory volume in 1 s (FEV 1 ) across the 14-day work period after adjustment for diurnal variations in pulmonary function (mean 90 mL, range 30-140 mL), while the small decline among the referents (mean 20 mL, range - 30 to 70 mL) was not of statistical significance. Larger declines in FEV 1 among drill workers were associated with the fewer number of days of active drilling. There were no signs of pulmonary fibrosis related to oil mist exposure among the other previously exposed drill floor workers. After 14 days offshore, a statistically significant decline in FEV 1 was observed in the drill floor workers, which may not be related to oil mist exposure. No pulmonary fibrosis related to oil mist exposure was observed.

  9. A multiplanar complex resection of a low-grade chondrosarcoma of the distal femur guided by K-wires previously inserted under CT-guide: a case report.

    PubMed

    Zoccali, Carmine; Rossi, Barbara; Ferraresi, Virginia; Anelli, Vincenzo; Rita, Alessandro

    2014-08-13

    In muscular skeletal oncology aiming to achieve wide surgical margin is one of the main factors influencing patient prognosis. In cases where lesions are either meta or epiphyseal, surgery most often compromises joint integrity and stability because muscles, tendons and ligaments are involved in wide resection. When lesions are well circumscribed they can be completely resected by performing multi-planar osteotomies guided by computer-assisted navigation. We describe a case of low-grade chondrosarcoma of the distal femur where a simple but effective technique was useful to perform complex multiplanar osteotomies. No similar techniques are reported in the literature. A 57 year-old Caucasian female was referred to our department for the presence of a distal femur chondrosarcoma. A resection with the presenting technique was scheduled. The first step consists of inserting several K-wires under CT-scan control to delimitate the tumor; the second step consists of tumor removal: in operative theatre, following surgical access, k-wires are used as guide positioning; scalpels are externally placed to k-wires to perform a safe osteotomy. Computed assisted resections can be considered the most advantageous method to reach the best surgical outcome; unfortunately navigation systems are only available in specialized centres. The present technique allows for a multiplanar complex resection when navigation systems are not available. This technique can be applied in low-grade tumours where a minimal wide margin can be considered sufficient.

  10. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, M.J.; Kramer, S.R.; Pittard, G.T.

    Jason Consultants International, Inc., under the sponsorship of the Gas Research Institute (GRI), has developed guidelines, procedures and software, which are described in this paper, for the installation of polyethylene gas pipe using guided horizontal drilling. Jason was aided in this development by two key subcontractors; Maurer Engineering who wrote the software and NICOR Technologies who reviewed the software and guidelines from a utility perspective. This program resulted in the development of commerically viable software for utilities, contractors, engineering firms, and others involved with the installation of pipes using guided horizontal drilling. The software is an interactive design tool thatmore » allows the user to enter ground elevation data, alignment information and pipe data. The software aides the engineer in designing a drill path and provides plan and profile views along with tabular data for pipe depth and surface profile. Finally, the software calculates installation loads and pipe stresses, compares these values against pipe manufacturer`s recommendations, and provides this information graphically and in tabular form. 5 refs., 18 figs., 2 tabs.« less

  12. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.

    2013-12-01

    In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.

  13. Drill/borescope System for the Mars Polar Pathfinder

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Wood, S. E.; Vasavada, A. R.

    1993-01-01

    The primary goals of the Mars Polar Pathfinder (MPP) Discovery Mission are to characterize the composition and structure of Mars' north polar ice cap, and to determine whether a climate record may be preserved in layers of ice and dust. The MPP would land as close as possible to the geographic north pole of Mars and use a set of instruments similar to those used by glaciologists to study polar ice caps on Earth: a radar sounder, a drill/borescope system, and a thermal probe. The drill/borescope system will drill approximately 50 cm into the surface and image the sides of the hole at 10 micron resolution for compositional and stratigraphic analysis. Several uncertainties have guided the development of this instrument, and they are discussed.

  14. Unified Quest 2004 Revisits Future War, Volume 6, Issue 3, April-June 2004

    DTIC Science & Technology

    2004-06-01

    fought campaign plans with students from the other Senior Level Colleges in a free - play computer-assisted war game. INSIDE THIS ISSUE • Unified...dynamic free - play environment. The exercise, guided by the participants’ own goals and objectives, and not by scripts or the Master Scenario Event

  15. A Computer-Based Simulation for Teaching Heat Transfer across a Woody Stem

    ERIC Educational Resources Information Center

    Maixner, Michael R.; Noyd, Robert K.; Krueger, Jerome A.

    2010-01-01

    To assist student understanding of heat transfer through woody stems, we developed an instructional package that included an Excel-based, one-dimensional simulation model and a companion instructional worksheet. Guiding undergraduate botany students to applying principles of thermodynamics to plants in nature is fraught with two main obstacles:…

  16. Lessons Learned in Starting and Running a Neighborhood Networks Center.

    ERIC Educational Resources Information Center

    Department of Housing and Urban Development, Washington, DC.

    This guide shares information about setting up and operating Neighborhood Networks centers. (These centers operate in Department of Housing and Urban Development-assisted or -insured housing nationwide to help low-income people boost their basic skills and find good jobs, learn to use computers and the Internet, run businesses, improve their…

  17. Ocean Prospects: A High School Teacher's Guide to Ocean-Related Topics.

    ERIC Educational Resources Information Center

    Plummer, C. M.

    Provided in this guide are resources for these 11 topics: the physical/geological ocean; the chemical/biological ocean; the ocean's coasts; fishing and aquaculture; tourism, recreation, and development; mining and drilling; research and exploration; maritime and military; ocean technology; pollution; and resource management. These resources…

  18. Clinical application of stereolithographic surgical guide with a handpiece guidance apparatus: a case report.

    PubMed

    Ozan, Oguz; Seker, Emre; Kurtulmus-Yilmaz, Sevcan; Ersoy, Ahmet Ersan

    2012-10-01

    The success of implant-supported restorations depends on the treatment planning and the transfer of planning through the surgical field. Recently, new computer-aided design and manufacturing (CAD/CAM) techniques, such as stereolithographic (SLA) rapid prototyping, have been developed to fabricate surgical guides to improve the precision of implant placement. The objective of the present case is to introduce a recently developed SLA surgical guide system into the rehabilitation of a 62-year-old male patient with mandibular edentulism. After obtaining a cone-beam computerized tomography (CBCT) scan of the mandible with a radiographic template, the images were transferred into a 3-dimensional (3D) image-based software for implant planning. The StentCad Beyond SLA surgical guide system, which is a combination of a currently used surgical template with pilot hollows and a surgical handpiece guidance apparatus, was designed to transfer a preoperatively defined implant position onto the surgical site without any drill-surgical guide contact. For the fabrication of this system, a surgical handpiece was scanned by a laser optical scanner and a mucosa-supported surgical guide was designed according to the patient's 3D model, which was attained from the CBCT images. Four dental implants were inserted through the SLA surgical guide system by a torque-controlled surgical handpiece to the interforaminal region via a flapless surgical procedure. Implants were assessed 3 months after surgery, and an implant-retained mandibular overdenture was fabricated. The present case emphasizes that CAD/CAM SLA surgical guides, along with CBCT images and scanning data, may help clinicians plan and place dental implants.

  19. Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display

    ERIC Educational Resources Information Center

    Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami

    2016-01-01

    Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…

  20. Mars Analog Rio Tinto Experiment (MARTE): 2003 Drilling Campaign to Search for a Subsurface Biosphere at Rio Tinto Spain

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Dunagan, Stephen; Stevens, Todd; Amils, Ricardo; Gomez-Elvira, Javier; Fernandez, David; Hall, James; Lynch, Kennda; Cannon, Howard; Zavaleta, Jhony

    2004-01-01

    The MARTE (Mars Astrobiology Research and Technology Experiment) project, an ASTEP field experiment, is exploring for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River- or Rio Tinto- in southwestern Spain. It is also demonstrating technology needed to search for a subsurface biosphere on Mars. The project has three primary objectives: (1) search for and characterize subsurface life at Rio Tinto along with the physical and chemical properties and sustaining energy sources of its environment, (2) perform a high fidelity simulation of a robotic Mars drilling mission to search for life, and (3) demonstrate the drilling, sample handling, and instrument technologies relevant to searching for life on Mars. The simulation of the robotic drilling mission is guided by the results of the aseptic drilling campaign to search for life at Rio Tinto. This paper describes results of the first phase of the aseptic drilling campaign.

  1. Using an In-House Approach to Computer-Assisted Design and Computer-Aided Manufacturing Reconstruction of the Maxilla.

    PubMed

    Numajiri, Toshiaki; Morita, Daiki; Nakamura, Hiroko; Tsujiko, Shoko; Yamochi, Ryo; Sowa, Yoshihiro; Toyoda, Kenichiro; Tsujikawa, Takahiro; Arai, Akihito; Yasuda, Makoto; Hirano, Shigeru

    2018-06-01

    Computer-assisted design (CAD) and computer-aided manufacturing (CAM) techniques are in widespread use for maxillofacial reconstruction. However, CAD/CAM surgical guides are commercially available only in limited areas. To use this technology in areas where these commercial guides are not available, the authors developed a CAD/CAM technique in which all processes are performed by the surgeon (in-house approach). The authors describe their experience and the characteristics of their in-house CAD/CAM reconstruction of the maxilla. This was a retrospective study of maxillary reconstruction with a free osteocutaneous flap. Free CAD software was used for virtual surgery and to design the cutting guides (maxilla and fibula), which were printed by a 3-dimensional printer. After the model surgery and pre-bending of the titanium plates, the actual reconstructions were performed. The authors compared the clinical information, preoperative plan, and postoperative reconstruction data. The reconstruction was judged as accurate if more than 80% of the reconstructed points were within a deviation of 2 mm. Although on-site adjustment was necessary in particular cases, all 4 reconstructions were judged as accurate. In total, 3 days were needed before the surgery for planning, printing, and pre-bending of plates. The average ischemic time was 134 minutes (flap suturing and bone fixation, 70 minutes; vascular anastomoses, 64 minutes). The mean deviation after reconstruction was 0.44 mm (standard deviation, 0.97). The deviations were 67.8% for 1 mm, 93.8% for 2 mm, and 98.6% for 3 mm. The disadvantages of the regular use of CAD/CAM reconstruction are the intraoperative changes in defect size and local tissue scarring. Good accuracy was obtained for CAD/CAM-guided reconstructions based on an in-house approach. The theoretical advantage of computer simulation contributes to the accuracy. An in-house approach could be an option for maxillary reconstruction. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Method and apparatus for jet-assisted drilling or cutting

    DOEpatents

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2012-09-04

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  3. Method and apparatus for jet-assisted drilling or cutting

    DOEpatents

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2013-07-02

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  4. Launching the Next Generation IODP Site Survey Data Bank

    NASA Astrophysics Data System (ADS)

    Miller, S. P.; Helly, J.; Clark, D.; Eakins, B.; Sutton, D.; Weatherford, J.; Thatch, G.; Miville, B.; Zelt, B.

    2005-12-01

    The next generation all-digital Site Survey Data Bank (SSDB) became operational on August 15, 2005 as an online resource for Integrated Ocean Drilling Program (IODP) proponents, reviewers, panels and operations, worldwide. There are currently 123 active proposals for drilling at sites distributed across the globe, involving nearly 1000 proponents from more than 40 countries. The goal is to provide an authoritative, persistent, secure, password-controlled and easily-used home for contributed data objects, as proposals evolve through their life cycle from preliminary phases to planned drilling expeditions. Proposal status can be monitored graphically by proposal number, data type or date. A Java SSDBviewer allows discovery of all proposal data objects, displayed over a basemap of global topography, crustal age or other custom maps. Data can be viewed or downloaded under password control. Webform interfaces assist with the uploading of data and metadata. Thirty four different standard data types are currently supported. The system was designed as a fully functioning digital library, not just a database or a web archive, drawing upon the resources of the SIOExplorer Digital Library project. Blocks of metadata are organized to support discovery and use, as appropriate for each data type. The SSDB has been developed by a UCSD team of researchers and computer scientists at the Scripps Institution of Oceanography and the San Diego Supercomputer Center, under contract with IODP Management International Inc., supported by NSF OCE 0432224.

  5. Rowan Gorilla I rigged up, heads for eastern Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-03-01

    Designed to operate in very hostile offshore environments, the first of the Rowan Gorilla class of self-elevating drilling rigs has been towed to its drilling assignment offshore Nova Scotia. About 40% larger than other jackups, these rigs can operate in 300 ft of water, drilling holes as deep as 30,000 ft. They also feature unique high-pressure and solids control systems that are expected to improve drilling procedures and efficiencies. A quantitative formation pressure evaluation program for the Hewlett-Packard HP-41 handheld calculator computes formation pressures by three independent methods - the corrected d exponent, Bourgoyne and Young, and normalized penetration ratemore » techniques for abnormal pressure detection and computation. Based on empirically derived drilling rate equations, each of the methods can be calculated separately, without being dependent on or influenced by the results or stored data from the other two subprograms. The quantitative interpretation procedure involves establishing a normal drilling rate trend and calculating the pore pressure from the magnitude of the drilling rate trend or plotting parameter increases above the trend line. Mobil's quick, accurate program could aid drilling operators in selecting the casing point, minimizing differential sticking, maintaining the proper mud weights to avoid kicks and lost circulation, and maximizing penetration rates.« less

  6. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing.

    PubMed

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-04-27

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  7. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    PubMed Central

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-01-01

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445

  8. Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery.

    PubMed

    Clement, Hans; Zopf, Christoph; Brandner, Markus; Tesch, Norbert P; Vallant, Rudolf; Puchwein, Paul

    2015-12-01

    Drilling of bones in orthopaedic and trauma surgery is a common procedure. There are yet no recommendations about which drill bits/coating should be preferred and when to change a used drill bit. In preliminary studies typical "drilling patterns" of surgeons concerning used spindle speed and feeding force were recorded. Different feeding forces were tested and abrasion was analysed using magnification and a scanning electron microscope (SEM). Acquired data were used for programming a friction stir welding machine (FSWM). Four drill bits (a default AISI 440A, a HSS, an AISI 440B and a Zirconium-oxide drill bit) were analysed for abrasive wear after 20/40/60 machine-guided and hand-driven drilled holes. Additionally different drill coatings [diamond-like carbon/grafitic (DLC), titanium nitride/carbide (Ti-N)] were tested. The mean applied feeding force by surgeons was 45 ± 15.6 Newton (N). HSS bits were still usable after 51 drill holes. Both coated AISI 440A bits showed considerable breakouts of the main cutting edge after 20 hand-driven drilled holes. The coated HSS bit showed very low abrasive wear. The non-coated AISI 440B bit had a similar durability to the HSS bits. The ZrO2 dental drill bit excelled its competitors (no considerable abrasive wear at >100 holes). If the default AISI 440A drill bit cannot be checked by 20-30× magnification after surgery, it should be replaced after 20 hand-driven drilled holes. Low price coated HSS bits could be a powerful alternative.

  9. Mandibular reconstruction after cancer: an in-house approach to manufacturing cutting guides.

    PubMed

    Bosc, R; Hersant, B; Carloni, R; Niddam, J; Bouhassira, J; De Kermadec, H; Bequignon, E; Wojcik, T; Julieron, M; Meningaud, J-P

    2017-01-01

    The restoration of mandibular bone defects after cancer can be facilitated by computer-assisted preoperative planning. The aim of this study was to assess an in-house manufacturing approach to customized cutting guides for use in the reconstruction of the mandible with osteocutaneous free flaps. A retrospective cohort study was performed, involving 18 patients who underwent mandibular reconstruction with a fibula free flap at three institutions during the period July 2012 to March 2015. A single surgeon designed and manufactured fibula and mandible cutting guides using a computer-aided design process and three-dimensional (3D) printing technology. The oncological outcomes, production parameters, and quality of the reconstructions performed for each patient were recorded. Computed tomography scans were acquired after surgery, and these were compared with the preoperative 3D models. Eighteen consecutive patients with squamous cell carcinoma underwent surgery and then reconstruction using this customized in-house surgical approach. The lengths of the fibula bone segments and the angle measurements in the simulations were similar to those of the postoperative volume rendering (P=0.61). The ease of access to 3D printing technology has enabled the computer-aided design and manufacturing of customized cutting guides for oral cancer treatment without the need for input from external laboratories. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Radiation- and reference base-free navigation procedure for placement of instruments and implants: application to retrograde drilling of osteochondral lesions of the knee joint.

    PubMed

    Müller, Matthias; Gras, Florian; Marintschev, Ivan; Mückley, Thomas; Hofmann, Gunter O

    2009-01-01

    A novel, radiation- and reference base-free procedure for placement of navigated instruments and implants was developed and its practicability and precision in retrograde drillings evaluated in an experimental setting. Two different guidance techniques were used: One experimental group was operated on using the radiation- and reference base-free navigation technique (Fluoro Free), and the control group was operated on using standard fluoroscopy for guidance. For each group, 12 core decompressions were simulated by retrograde drillings in different artificial femurs following arthroscopic determination of the osteochondral lesions. The final guide-wire position was evaluated by postoperative CT analysis using vector calculation. High precision was achieved in both groups, but operating time was significantly reduced in the navigated group as compared to the control group. This was due to a 100% first-pass accuracy of drilling in the navigated group; in the control group a mean of 2.5 correction maneuvers per drilling were necessary. Additionally, the procedure was free of radiation in the navigated group, whereas 17.2 seconds of radiation exposure time were measured in the fluoroscopy-guided group. The developed Fluoro Free procedure is a promising and simplified approach to navigating different instruments as well as implants in relation to visually or tactilely placed pointers or objects without the need for radiation exposure or invasive fixation of a dynamic reference base in the bone.

  11. Pre-operative Screening and Manual Drilling Strategies to Reduce the Risk of Thermal Injury During Minimally Invasive Cochlear Implantation Surgery.

    PubMed

    Dillon, Neal P; Fichera, Loris; Kesler, Kyle; Zuniga, M Geraldine; Mitchell, Jason E; Webster, Robert J; Labadie, Robert F

    2017-09-01

    This article presents the development and experimental validation of a methodology to reduce the risk of thermal injury to the facial nerve during minimally invasive cochlear implantation surgery. The first step in this methodology is a pre-operative screening process, in which medical imaging is used to identify those patients that present a significant risk of developing high temperatures at the facial nerve during the drilling phase of the procedure. Such a risk is calculated based on the density of the bone along the drilling path and the thermal conductance between the drilling path and the nerve, and provides a criterion to exclude high-risk patients from receiving the minimally invasive procedure. The second component of the methodology is a drilling strategy for manually-guided drilling near the facial nerve. The strategy utilizes interval drilling and mechanical constraints to enable better control over the procedure and the resulting generation of heat. The approach is tested in fresh cadaver temporal bones using a thermal camera to monitor temperature near the facial nerve. Results indicate that pre-operative screening may successfully exclude high-risk patients and that the proposed drilling strategy enables safe drilling for low-to-moderate risk patients.

  12. Bridging worlds/charting new courses

    NASA Astrophysics Data System (ADS)

    This report describes the work being done within Sandia's renewable energy program. This work touches on four major disciplines. (1) Photovoltaics. The goal of this project is to develop costeffective, reliable energy system technologies for energy supplies worldwide produced by U.S. industry. It encompasses cell research and development, collector development, technology evaluation, systems engineering, domestic and international applications, and design assistance. (2) Solar Thermal. This project endeavors to develop and increase acceptance of solar thermal electric and industrial technologies as cost-competitive candidates for power generation and to promote their commercialization. Its' major activities are with dish/Stirling systems, the Solar Two power tower, design assistance to industry and users, technology development and research activities. (3) Wind. The wind project impacts domestic and international markets with commercially feasible systems for utility-scale and other applications of wind energy. The project conducts applied research in aerodynamics, structural dynamics, fatigue, materials and controls, and engineering systems, and develops cooperative work with industry. (4) Geothermal. This project is developing technology to increase proven geothermal reserves and is assisting industry in expanding geothermal power on-line. Development work is in stemhole drilling, drilling techniques, instrumentation for geothermal wells, acoustic telemetry, and drilling exploratory wells.

  13. Implementing Monitored Natural Attenuation and Expediting Closure at Fuel-Release Sites

    DTIC Science & Technology

    2004-08-01

    Center for Environmental Excellence AFCEE/ERS Air Force Center for Environmental Excellence/Science and Engineering Division AFRPA Air Force Real...auger, air - or mud- rotary , cable-tool) was and is dependent on the target drilling depths and the types of subsurface materials expected to be...95(2000) ASTM. 1995c. Guide for the use of direct air - rotary drilling for geoenvironmental exploration and installation of subsurface water quality

  14. Small County: Development of a Virtual Environment for Instruction in Geological Characterization of Petroleum Reservoirs

    NASA Astrophysics Data System (ADS)

    Banz, B.; Bohling, G.; Doveton, J.

    2008-12-01

    Traditional programs of geological education continue to be focused primarily on the evaluation of surface or near-surface geology accessed at outcrops and shallow boreholes. However, most students who graduate to careers in geology work almost entirely on subsurface problems, interpreting drilling records and petrophysical logs from exploration and production wells. Thus, college graduates commonly find themselves ill-prepared when they enter the petroleum industry and require specialized training in drilling and petrophysical log interpretation. To aid in this training process, we are developing an environment for interactive instruction in the geological aspects of petroleum reservoir characterization employing a virtual subsurface closely reflecting the geology of the US mid-continent, in the fictional setting of Small County, Kansas. Stochastic simulation techniques are used to generate the subsurface characteristics, including the overall geological structure, distributions of facies, porosity, and fluid saturations, and petrophysical logs. The student then explores this subsurface by siting exploratory wells and examining drilling and petrophysical log records obtained from those wells. We are developing the application using the Eclipse Rich Client Platform, which allows for the rapid development of a platform-agnostic application while providing an immersive graphical interface. The application provides an array of views to enable relevant data display and student interaction. One such view is an interactive map of the county allowing the student to view the locations of existing well bores and select pertinent data overlays such as a contour map of the elevation of an interesting interval. Additionally, from this view a student may choose the site of a new well. Another view emulates a drilling log, complete with drilling rate plot and iconic representation of examined drill cuttings. From here, students are directed to stipulate subsurface lithology and interval tops as they progress through the drilling operation. Once the interpretation process is complete, the student is guided through an exercise emulating a drill stem test and then is prompted to decide on perforation intervals. The application provides a graphical framework by which the student is guided through well site selection, drilling data interpretation, and well completion or dry-hole abandonment, creating a tight feedback loop by which the student gains an over-arching view of drilling logistics and the subsurface data evaluation process.

  15. Preliminary development of a workstation for craniomaxillofacial surgical procedures: introducing a computer-assisted planning and execution system.

    PubMed

    Gordon, Chad R; Murphy, Ryan J; Coon, Devin; Basafa, Ehsan; Otake, Yoshito; Al Rakan, Mohammed; Rada, Erin; Susarla, Srinivas; Susarla, Sriniras; Swanson, Edward; Fishman, Elliot; Santiago, Gabriel; Brandacher, Gerald; Liacouras, Peter; Grant, Gerald; Armand, Mehran

    2014-01-01

    Facial transplantation represents one of the most complicated scenarios in craniofacial surgery because of skeletal, aesthetic, and dental discrepancies between donor and recipient. However, standard off-the-shelf vendor computer-assisted surgery systems may not provide custom features to mitigate the increased complexity of this particular procedure. We propose to develop a computer-assisted surgery solution customized for preoperative planning, intraoperative navigation including cutting guides, and dynamic, instantaneous feedback of cephalometric measurements/angles as needed for facial transplantation and other related craniomaxillofacial procedures. We developed the Computer-Assisted Planning and Execution (CAPE) workstation to assist with planning and execution of facial transplantation. Preoperative maxillofacial computed tomography (CT) scans were obtained on 4 size-mismatched miniature swine encompassing 2 live face-jaw-teeth transplants. The system was tested in a laboratory setting using plastic models of mismatched swine, after which the system was used in 2 live swine transplants. Postoperative CT imaging was obtained and compared with the preoperative plan and intraoperative measures from the CAPE workstation for both transplants. Plastic model tests familiarized the team with the CAPE workstation and identified several defects in the workflow. Live swine surgeries demonstrated utility of the CAPE system in the operating room, showing submillimeter registration error of 0.6 ± 0.24 mm and promising qualitative comparisons between intraoperative data and postoperative CT imaging. The initial development of the CAPE workstation demonstrated that integration of computer planning and intraoperative navigation for facial transplantation are possible with submillimeter accuracy. This approach can potentially improve preoperative planning, allowing ideal donor-recipient matching despite significant size mismatch, and accurate surgical execution for numerous types of craniofacial and orthognathic surgical procedures.

  16. A critical review of existing innovative science and drilling proposals within IODP

    NASA Astrophysics Data System (ADS)

    Behrmann, J. H.

    2009-04-01

    In the present phase of the Integrated Ocean Drilling Program (IODP) activities are guided by the Initial Science Plan that identified three major themes: The Deep Biosphere and the Subseafloor Ocean; Environmental Change, Processes and Effects; and Solid Earth Cycles and Geodynamics. New initiatives and complex drilling proposals were developed that required major advances in drilling platforms and technologies, and expansion of the drilling community into new areas of specialization. The guiding themes in the Initial Science Plan are instrumental for the proposal development and evaluation, and will continue to represent the goals of IODP until 2013. A number of innovative and highly ranked individual proposals and coordinated sets of proposals ready to be drilled has been forwarded by the Science Planning Committee (SPC) to the IODP Operations Task Force (OTF) for scoping, planning and scheduling. For the Deep Biosphere theme these include proposals to drill targets in the Central Atlantic, the Okinawa Trough, and the Southern Pacific. The Environmental Change, Processes and Effects theme is proposed to - among others - be studied by a coordinated approach regarding the Southeast Asian Monsoon, but also by proposals addressing sdimentation, facies evolution and the paleoclimate record in the Atlantic and Indian Oceans. The Solid Earth Cycles and Geodynamics theme is represented by several proposals addressing subduction processes, seismogenesis, and oceanic crust formation mainly in the Pacific. Some of these have shaped drilling programs that are already in the process of being carried out, such as drilling in the Nankai Trough off Japan (the NantroSEIZE project), or drilling in oceanic crust created in a superfast spreading environment in the Eastern Pacific. There are many remaining issues to be addressed, and drilling programs to be completed before the end of the present phase of IODP in 2013. Planning of expeditions needs to be done in such a way that a balance between risk, cost, and scientific impact is achieved. At least part of the dilling also is required to be a necessary precursor for future investigations in coming phases of Ocean Drilling. Presently IODP faces the challenges of tight budgetary constraints, increasing operating costs of their platforms, and the need to develop drilling schedules that allow off-contract work of the R/V Chikyu and R/V Joides Resolution drilling vessels. Chikyu will operate within IODP for an average of 7 months per year over a 5-year period with the goals of achieving major milestones in NantroSEIZE, maximizing the use of the vessel for riser drilling, and start a new IODP project that requires riser drilling. Joides Resolution will also operate an average of 7 months per year with the goal of optimizing operating days within the restrictions imposed by the prioritized science. Mission Specific Platform expeditions will be carried out once every two years on average, with the goal of pioneering drilling in new, challenging environments. For the first time in IODP history, operations of Chikyu, Joides Resolution and Mission Specific Platform expeditions will be conducted simultaneously in 2009. This new phase of operations provides an unprecedented chance of progress in scientific ocean drilling.

  17. Emergency Planning Guide for South Dakota School Administrators.

    ERIC Educational Resources Information Center

    South Dakota State Dept. of Military and Veterans Affairs, Pierre. Div. of Emergency and Disaster Service.

    This guidebook is designed to help principals, teachers, staff, parents, and students develop an emergency guide for their school. Besides preparing a response plan, emergency planners must identify hazards, conduct drills, and involve the school community in planning to provide care and shelter for students until they can be reunited with their…

  18. Teaching English as a Second Language in the Elementary School. No. 63.

    ERIC Educational Resources Information Center

    Folkes, Florence; And Others

    In addition to discussions on language structure, lesson structure, sentence patterns, and oral pattern drills, this curriculum guide presents specific lesson plans for various subject areas--social studies, mathematics, science, music, and culture--for English as a Second Language (ESL) in elementary schools. The guide begins with a section on…

  19. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method.

    PubMed

    Singh, Gurmeet; Jain, Vivek; Gupta, Dheeraj; Ghai, Aman

    2016-09-01

    Orthopaedic surgery involves drilling of bones to get them fixed at their original position. The drilling process used in orthopaedic surgery is most likely to the mechanical drilling process and there is all likelihood that it may harm the already damaged bone, the surrounding bone tissue and nerves, and the peril is not limited at that. It is very much feared that the recovery of that part may be impeded so that it may not be able to sustain life long. To achieve sustainable orthopaedic surgery, a surgeon must try to control the drilling damage at the time of bone drilling. The area around the holes decides the life of bone joint and so, the contiguous area of drilled hole must be intact and retain its properties even after drilling. This study mainly focuses on optimization of drilling parameters like rotational speed, feed rate and the type of tool at three levels each used by Taguchi optimization for surface roughness and material removal rate. The confirmation experiments were also carried out and results found with the confidence interval. Scanning electrode microscopy (SEM) images assisted in getting the micro level information of bone damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The use of computer assisted technology to enhance student psychiatric nurses learning during a practice placement.

    PubMed

    Denny, Margaret; Higgins, Agnes

    2003-06-01

    Despite the available literature that identifies the value of integrating computer-assisted learning into the curriculum, psychiatric nurse education lags behind in this area of curriculum development. The purpose of this paper is to report on a pilot project involving the use of a computer assisted learning (CAL) interactive multimedia (IMM) package called 'Admissions,' as a self-directed learning tool with two-second year psychiatric nursing students. The students were on a practice placement in an Irish mental health service. The aim of using the multimedia resource was to augment the students' learning during their practice placement and enable them to re-examine the issue of psychosis from a multiplicity of perspectives. This paper provides a brief description of the interactive multimedia package, together with a discussion on the support offered to the students during its use. experiential taxonomy is used as a framework to guide the discussion on the learning and evaluation process used. Feedback from the students suggests that the CAL package is easy to use, informative and promoted independence and self-directed study.

  1. CALLing All Foreign Language Teachers: Computer-Assisted Language Learning in the Classroom

    ERIC Educational Resources Information Center

    Erben, Tony, Ed.; Sarieva, Iona, Ed.

    2008-01-01

    This book is a comprehensive guide to help foreign language teachers use technology in their classrooms. It offers the best ways to integrate technology into teaching for student-centered learning. CALL Activities include: Email; Building a Web site; Using search engines; Powerpoint; Desktop publishing; Creating sound files; iMovie; Internet chat;…

  2. A Triangular Approach to Motivation in Computer Assisted Autonomous Language Learning (CAALL)

    ERIC Educational Resources Information Center

    Raby, Francoise

    2007-01-01

    This study was carried out in a language centre, in French higher education. Teachers and researchers had contrived a pedagogical system labeled guided autonomy which combined class attendance in groups and self-study in the self-study room. This kind of autonomous and technologically enhanced learning system will be referred to as CAALL (Computer…

  3. Preparing for High Technology: CAD/CAM Programs. Research & Development Series No. 234.

    ERIC Educational Resources Information Center

    Abram, Robert; And Others

    This guide is one of three developed to provide information and resources to assist in planning and developing postsecondary technican training programs in high technology areas. It is specifically intended for vocational-technical educators and planners in the initial stages of planning a specialized training option in computer-aided design (CAD)…

  4. Handbook of Data Processing for Libraries.

    ERIC Educational Resources Information Center

    Hayes, Robert M.; Becker, Joseph

    The purpose of this book is to assist libraries and librarians in resolving some of the problems faced in utilizing the new computer technology. The intent is to provide a concrete, factual guide to the principles and methods available for the application of modern data processing to library operations. For the librarian it is a handbook to guide…

  5. Choosing a Microcomputer for Use as a Teaching Aid.

    ERIC Educational Resources Information Center

    Visniesky, Cheryl; Hocking, Joan

    A step-by-step guide to the selection of a microcomputer system is provided for educators having made the decision to implement computer-assisted instruction. The first step is to clarify reasons for using a microcomputer rather than conventional instructional materials. Next, the degree of use (e.g., types of courses and number of departments…

  6. Fostering First Graders' Fluency with Basic Subtraction and Larger Addition Combinations via Computer-Assisted Instruction

    ERIC Educational Resources Information Center

    Baroody, Arthur J.; Purpura, David J.; Eiland, Michael D.; Reid, Erin E.

    2014-01-01

    Achieving fluency with basic subtraction and add-with-8 or -9 combinations is difficult for primary grade children. A 9-month training experiment entailed evaluating the efficacy of software designed to promote such fluency via guided learning of reasoning strategies. Seventy-five eligible first graders were randomly assigned to one of three…

  7. Using Technology to Address Barriers in Rural Special Education for Students with Autism: A Do-It-Yourself Guide

    ERIC Educational Resources Information Center

    McKissick, Bethany R.; Diegelmann, Karen M.; Parker, Sarah

    2017-01-01

    Providing high-quality special education services in rural settings has a variety of challenges such as geographic isolation and a lack of resources. One particularly challenging aspect of rural special education is providing general curriculum access. Computer-assisted instruction is one way to provide high-quality specialized instruction that…

  8. Improved Dental Implant Drill Durability and Performance Using Heat and Wear Resistant Protective Coatings.

    PubMed

    Er, Nilay; Alkan, Alper; Ilday, Serim; Bengu, Erman

    2018-06-01

    The dental implant drilling procedure is an essential step for implant surgery, and frictional heat in bone during drilling is a key factor affecting the success of an implant. The aim of this study was to increase the dental implant drill lifetime and performance by using heat- and wear-resistant protective coatings to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling was performed on bovine femoral cortical bone under the conditions mimicking clinical practice. Tests were performed under water-assisted cooling and under the conditions when no cooling was applied. Coated drill performances and durabilities were compared with those of three commonly used commercial drills with surfaces made from zirconia, black diamond. and stainless steel. Protective coatings with boron nitride, titanium boron nitride, and diamond-like carbon have significantly improved drill performance and durability. In particular, boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even when no cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat- and wear-resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can improve the surgical procedure and the postsurgical healing period. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  9. [Georg Schlöndorff-the father of computer-assisted surgery].

    PubMed

    Mösges, R

    2016-09-01

    Georg Schlöndorff (1931-2011) developed the idea of computer-assisted surgery (CAS) during his time as professor and chairman of the Department of Otorhinolaryngology at the Medical Faculty of the University of Aachen, Germany. In close cooperation with engineers and physicists, he succeeded in translating this concept into a functional prototype that was applied in live surgery in the operating theatre. The first intervention performed with this image-guided navigation system was a skull base surgical procedure 1987. During the following years, this concept was extended to orbital surgery, neurosurgery, mid-facial traumatology, and brachytherapy of solid tumors in the head and neck region. Further technical developments of this first prototype included touchless optical positioning and the computer vision concept with three orthogonal images, which is still common in contemporary navigation systems. During his time as emeritus professor from 1996, Georg Schlöndorff further pursued his concept of CAS by developing technical innovations such as computational fluid dynamics (CFD).

  10. A multiplanar complex resection of a low-grade chondrosarcoma of the distal femur guided by K-wires previously inserted under CT-guide: a case report

    PubMed Central

    2014-01-01

    Background In muscular skeletal oncology aiming to achieve wide surgical margin is one of the main factors influencing patient prognosis. In cases where lesions are either meta or epiphyseal, surgery most often compromises joint integrity and stability because muscles, tendons and ligaments are involved in wide resection. When lesions are well circumscribed they can be completely resected by performing multi-planar osteotomies guided by computer-assisted navigation. We describe a case of low-grade chondrosarcoma of the distal femur where a simple but effective technique was useful to perform complex multiplanar osteotomies. No similar techniques are reported in the literature. Case presentation A 57 year-old Caucasian female was referred to our department for the presence of a distal femur chondrosarcoma. A resection with the presenting technique was scheduled. The first step consists of inserting several K-wires under CT-scan control to delimitate the tumor; the second step consists of tumor removal: in operative theatre, following surgical access, k-wires are used as guide positioning; scalpels are externally placed to k-wires to perform a safe osteotomy. Conclusions Computed assisted resections can be considered the most advantageous method to reach the best surgical outcome; unfortunately navigation systems are only available in specialized centres. The present technique allows for a multiplanar complex resection when navigation systems are not available. This technique can be applied in low-grade tumours where a minimal wide margin can be considered sufficient. PMID:25123066

  11. [Basic concept in computer assisted surgery].

    PubMed

    Merloz, Philippe; Wu, Hao

    2006-03-01

    To investigate application of medical digital imaging systems and computer technologies in orthopedics. The main computer-assisted surgery systems comprise the four following subcategories. (1) A collection and recording process for digital data on each patient, including preoperative images (CT scans, MRI, standard X-rays), intraoperative visualization (fluoroscopy, ultrasound), and intraoperative position and orientation of surgical instruments or bone sections (using 3D localises). Data merging based on the matching of preoperative imaging (CT scans, MRI, standard X-rays) and intraoperative visualization (anatomical landmarks, or bone surfaces digitized intraoperatively via 3D localiser; intraoperative ultrasound images processed for delineation of bone contours). (2) In cases where only intraoperative images are used for computer-assisted surgical navigation, the calibration of the intraoperative imaging system replaces the merged data system, which is then no longer necessary. (3) A system that provides aid in decision-making, so that the surgical approach is planned on basis of multimodal information: the interactive positioning of surgical instruments or bone sections transmitted via pre- or intraoperative images, display of elements to guide surgical navigation (direction, axis, orientation, length and diameter of a surgical instrument, impingement, etc. ). And (4) A system that monitors the surgical procedure, thereby ensuring that the optimal strategy defined at the preoperative stage is taken into account. It is possible that computer-assisted orthopedic surgery systems will enable surgeons to better assess the accuracy and reliability of the various operative techniques, an indispensable stage in the optimization of surgery.

  12. Estimating Hardness from the USDC Tool-Bit Temperature Rise

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2008-01-01

    A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.

  13. Guided Endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology.

    PubMed

    Krastl, Gabriel; Zehnder, Marc S; Connert, Thomas; Weiger, Roland; Kühl, Sebastian

    2016-06-01

    To present a new treatment approach for teeth with pulp canal calcification (PCC) which require root canal treatment. A 15-year-old male patient presented with pain of his upper right central incisor. The tooth showed signs of apical periodontitis. Due to PCC, location of the root canal was judged to be difficult and associated with a high risk of perforation. A cone beam computed tomography (CBCT) and an intra-oral surface scan were performed and matched using software for virtual implant planning. After planning the position of the drill for root canal location, a virtual template was designed, and the data were exported as an STL file and sent to a 3D printer for template fabrication. The template was positioned on the anterior maxillary teeth. A specific drill was used to penetrate through the obliterated part of the root canal and obtain minimally invasive access to the apical part. The root canal was accessible at 9 mm distance from the apex. Further root canal preparation was carried out using an endodontic rotary instrumentation system. After an interappointment dressing for 4 weeks, the root canal was filled with vertically condensed gutta-percha using an epoxy sealer. The access cavity was restored with a composite material. After 15 months, the patient was clinically asymptomatic with no pain on percussion. The radiograph showed no apical pathology. The presented guided endodontic approach seems to be a safe, clinically feasible method to locate root canals and prevent root perforation in teeth with PCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Socioeconomic Impact of Infill Drilling Recovery from Carbonate Reservoirs in the Permian Basin, West Texas

    DTIC Science & Technology

    1994-05-01

    called corporate income tax . The aforementioned taxes are computed from the infill drilling recovery revenue calculated using an oil price ranging...production is not used in these computations. However, oil and gas production is used to compute the federal corporate income tax . 6.2 Advalorem Tax Revenue...billion of the corporate income tax collected in 1992. This is a humbling fact because one can see how much effort it takes to generate 0.17% of the

  15. A composite lithology log while drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, E.; Sutcliffe, B.; Franks, A.

    A new method for producing a computerized composite lithology log (CLL) while drilling by integrating MWD (measurement while drilling) and surface data is described. The CLL integrates three types of data (MWD mechanical, MWD geophysical, and surface cuttings) acquired during drilling, in three time stages: (1) Real Time. MWD drilling mechanical data including the rate of penetration and the downhole torque. This stage would provide bed boundaries and some inferred lithology. This would assist the driller with immediate drilling decisions and determine formation tops for coring, casing point, and correlation. (2) MWD Time. Recomputation of the above by adding MWDmore » geophysical data (gamma-ray, resistivity, neutron-density). This stage would upgrade the lithology inference, and give higher resolution of bed boundaries. (3) Lag Time. Detailed analysis of surface cuttings to confirm the inferred lithologies. This last input will result in a high-quality CLL with accurate lithologies and bed boundaries. The log will serve the geologist as well as the driller, petrophysicist, and reservoir engineer. It will form the basis for more comprehensive formation evaluation while drilling by adding hydrocarbon and MWD log data.« less

  16. Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans.

    PubMed

    Reda, Fitsum A; Noble, Jack H; Rivas, Alejandro; McRackan, Theodore R; Labadie, Robert F; Dawant, Benoit M

    2011-10-01

    Cochlear implant surgery is used to implant an electrode array in the cochlea to treat hearing loss. The authors recently introduced a minimally invasive image-guided technique termed percutaneous cochlear implantation. This approach achieves access to the cochlea by drilling a single linear channel from the outer skull into the cochlea via the facial recess, a region bounded by the facial nerve and chorda tympani. To exploit existing methods for computing automatically safe drilling trajectories, the facial nerve and chorda tympani need to be segmented. The goal of this work is to automatically segment the facial nerve and chorda tympani in pediatric CT scans. The authors have proposed an automatic technique to achieve the segmentation task in adult patients that relies on statistical models of the structures. These models contain intensity and shape information along the central axes of both structures. In this work, the authors attempted to use the same method to segment the structures in pediatric scans. However, the authors learned that substantial differences exist between the anatomy of children and that of adults, which led to poor segmentation results when an adult model is used to segment a pediatric volume. Therefore, the authors built a new model for pediatric cases and used it to segment pediatric scans. Once this new model was built, the authors employed the same segmentation method used for adults with algorithm parameters that were optimized for pediatric anatomy. A validation experiment was conducted on 10 CT scans in which manually segmented structures were compared to automatically segmented structures. The mean, standard deviation, median, and maximum segmentation errors were 0.23, 0.17, 0.18, and 1.27 mm, respectively. The results indicate that accurate segmentation of the facial nerve and chorda tympani in pediatric scans is achievable, thus suggesting that safe drilling trajectories can also be computed automatically.

  17. Three-dimensional printing and computer navigation assisted hemipelvectomy for en bloc resection of osteochondroma

    PubMed Central

    Zhang, Yaqing; Wen, Lianjiang; Zhang, Jun; Yan, Guoliang; Zhou, Yue; Huang, Bo

    2017-01-01

    Abstract Rationale: Three-dimensional (3D) printed templates can be designed to match an individual's anatomy, allowing surgeons to refine preoperative planning. In addition, the use of computer navigation (NAV) is gaining popularity to improve surgical accuracy in the resection of pelvic tumors. However, its use in combination with 3D printing to assist complex pelvic tumor resection has not been reported. Patient concerns: A 36-year-old man presented with left-sided pelvic pain and a fast-growing mass. He also complained of a 3-month history of radiating pain and numbness in the lower left extremity. Diagnoses: A biopsy revealed an osteochondroma with malignant potential. This osteochondroma arises from the ilium and involves the sacrum and lower lumbar vertebrae. Interventions: Here, we describe a novel combined application of 3D printing and intraoperative NAV systems to guide hemipelvectomy for en-bloc resection of the osteochondroma. The 3D printed template is analyzed during surgical planning and guides the initial intraoperative bone work to improve surgical accuracy and efficiency, while a computer NAV system provides real-time imaging during the tumor removal to achieve adequate resection margins and minimize the likelihood of injury to adjacent critical structures. Outcomes: The tumor mass and the invaded spinal structures were removed en bloc. Lessons: The combined application of 3D printing and computer NAV may be useful for tumor targeting and safe osteotomies in pelvic tumor surgery. PMID:28328842

  18. Wellbore stability analysis and its application in the Fergana basin, central Asia

    NASA Astrophysics Data System (ADS)

    Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han

    2014-02-01

    Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.

  19. V-TECS Guide for Health Care Assistant.

    ERIC Educational Resources Information Center

    Connell, Shirley

    This health care assistant guide addresses the psychomotor, cognitive, and affective learning domains. Thirteen units in the guide cover the following subjects: (1) introducing health care workers and facilities; (2) assisting with examinations; (3) assisting with diagnostic tests; (4) providing health information and performing outreach…

  20. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  1. Infrared needle mapping to assist biopsy procedures and training.

    PubMed

    Shar, Bruce; Leis, John; Coucher, John

    2018-04-01

    A computed tomography (CT) biopsy is a radiological procedure which involves using a needle to withdraw tissue or a fluid specimen from a lesion of interest inside a patient's body. The needle is progressively advanced into the patient's body, guided by the most recent CT scan. CT guided biopsies invariably expose patients to high dosages of radiation, due to the number of scans required whilst the needle is advanced. This study details the design of a novel method to aid biopsy procedures using infrared cameras. Two cameras are used to image the biopsy needle area, from which the proposed algorithm computes an estimate of the needle endpoint, which is projected onto the CT image space. This estimated position may be used to guide the needle between scans, and results in a reduction in the number of CT scans that need to be performed during the biopsy procedure. The authors formulate a 2D augmentation system which compensates for camera pose, and show that multiple low-cost infrared imaging devices provide a promising approach.

  2. Evaluation of generic types of drilling fluid using a risk-based analytic hierarchy process.

    PubMed

    Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil

    2003-12-01

    The composition of drilling muds is based on a mixture of clays and additives in a base fluid. There are three generic categories of base fluid--water, oil, and synthetic. Water-based fluids (WBFs) are relatively environmentally benign, but drilling performance is better with oil-based fluids (OBFs). The oil and gas industry developed synthetic-based fluids (SBFs), such as vegetable esters, olefins, ethers, and others, which provide drilling performance comparable to OBFs, but with lower environmental and occupational health effects. The primary objective of this paper is to present a methodology to guide decision-making in the selection and evaluation of three generic types of drilling fluids using a risk-based analytic hierarchy process (AHP). In this paper a comparison of drilling fluids is made considering various activities involved in the life cycle of drilling fluids. This paper evaluates OBFs, WBFs, and SBFs based on four major impacts--operations, resources, economics, and liabilities. Four major activities--drilling, discharging offshore, loading and transporting, and disposing onshore--cause the operational impacts. Each activity involves risks related to occupational injuries (safety), general public health, environmental impact, and energy use. A multicriteria analysis strategy was used for the selection and evaluation of drilling fluids using a risk-based AHP. A four-level hierarchical structure is developed to determine the final relative scores, and the SBFs are found to be the best option.

  3. Guided earth boring tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mc Donald, W.J.; Pittard, G.T.; Maurer, W.C.

    A controllable tool for drilling holes in the earth is described comprising a hollow elongated rigid supporting drill pipe having a forward end for entering the earth, means supporting the drill pipe for earth boring or piercing movement, including means for moving the drill pipe longitudinally for penetrating the earth, the drill pipe moving means being constructed to permit addition and removal of supporting drill pipe during earth penetrating operation, a boring mole supported on the forward end of the hollow low drill pipe comprising a cylindrical housing supported on and open to the forward end of the drill pipe,more » a first means on the front end for applying a boring force to the soil comprising an anvil having a striking surface inside the housing and a boring surface outside the housing, a second means comprising a reciprocally movable hammer positioned in the housing to apply a percussive force to the anvil striking surface for transmitting a percussive force to the boring force applying means, and means permitting introduction of air pressure supplied through the hollow pipe into the housing for operating the hammer and for discharging spent air from the housing to the hole being bored, and the tool being operable to penetrate the earth upon longitudinal movement of the drill rod by the longitudinal rod moving means and operation of the mole by reciprocal movement of the hammer.« less

  4. Tennis-Badminton-Squash Guide. June 1974-June 1976.

    ERIC Educational Resources Information Center

    Sherman, Patricia, Ed.; And Others

    This guide is a collection of essays by various authors on tennis, badminton, and squash. The document is divided into three sections, one for each sport. The topics covered include general teaching methods, methods to employ for teaching specific skills such as the lob or the backhand, the use of visual aids, conditioning drills, study questions,…

  5. Mi Ambiente y Yo (My Environment and Me). An Aural-Oral Activity Guide.

    ERIC Educational Resources Information Center

    Canales, Estella; And Others

    This project-developed and tested aural-oral guide is designed especially for use at the preschool and kindergarten levels. It is designed for the teacher of Spanish-speaking children as a series of lesson plans or scripts around such topics as school, the family and pets. Vocabulary enrichment, syntactical drill patterns, and pronunciation and…

  6. (Parenting Curriculum for Language Minority Parents: Bilingual Guide English-Khmer).

    ERIC Educational Resources Information Center

    Holt, Grace D.

    This bilingual guide for Khmer-speaking parents presents parenting information to supplement a course in English as a Second Language. It focuses on topics parents must deal with in meeting the needs of their children. Vocabulary and practice drills are presented for activities in the following areas: (1) education and dealing with the school…

  7. [Design and clinical application of the drilling guide in the treatment of acromioclavicular joint dislocation with closed reduction and Kirschner fixation].

    PubMed

    Zhou, Song; Hao, Yong-qiang; Shi, Xiao-lin; Zhao, Huan-li; Gao, Kai-tuo; Sun, Jin-xu

    2011-03-01

    To investigate a drilling guide in the treatment of acromioclavicular joint dislocation with closed reduction and Kirschner fixation and explore the therapeutic effect. From June 2008 to December 2009, 36 patients with acromioclavicular joint dislocation (Tossy III) were treated with closed reduction and Kirschner fixation using a self-designed drilling guide as well as percutaneous repair of acromioclavicular joint. Among the patients, 24 patients were male and 12 patients were female,ranging in age from 20 to 61 years, averaged 38.6 years. The duration from injury to operation ranged from 3.5 to 72 h,with a mean of 15.2 h. No clavicle fracture was found in all cases. The operative time, intra-operative bleeding and therapeutic effects were observed. There were no complications including neurovascular problems. The mean operating time were 20 min,mean blood loss were about 10 ml. According to the observation of postoperative X-ray examination, all Kirschners in acromioclavicular joint were in place. All Kirschners were removed in 6 postoperative weeks. All the patients were followed up ranging from 2 to 26 months (averaged 14.3 months). According to the Karlsson standard,22 patients got an excellent result, 13 good and 1 poor. This method has following advantages: easy operation and fixation; minimum injuries to articular surface; and which would be widely used in clinical practice.

  8. Guided Inquiry with Cognitive Conflict Strategy: Drilling Indonesian High School Students’ Creative Thinking Skills

    NASA Astrophysics Data System (ADS)

    Syadzili, A. F.; Soetjipto; Tukiran

    2018-01-01

    This research aims to produce physics learning materials in Indonesian high school using guided inquiry with cognitive conflict strategy to drill students’ creative thinking skills in a static fluid learning. This development research used 4D model with one group pre-test and post-test design implemented in the eleventh grade students in the second semester of 2016/2017 academic year. The data were collected by validation sheets, questionnaires, tests and observations, while data analysis techniques is descriptive quantitative analysis. This research obtained several findings, they are : the learning material developed had an average validity score with very valid category. The lesson plan can be implemented very well. The students’ responses toward the learning process were very possitive with the students’ interest to follow the learning. Creative thinking skills of student before the implementation of product was inadequate, then it is very creative after product was implemented. The impacts of the research suggest that guided inquiry may stimulate the students to think creatifly.

  9. A pilot comparison of laser-assisted vs piezo drill ICSI for the in vitro production of horse embryos.

    PubMed

    Smits, K; Govaere, J; Hoogewijs, M; Piepers, S; Van Soom, A

    2012-02-01

    Intracytoplasmic sperm injection (ICSI) is the method of choice for the in vitro production (IVP) of equine embryos. However, conventional ICSI has been associated with mechanical damage to the oocyte caused by the deformation of the zona pellucida (ZP) and exposure of the oolemma to negative pressure during injection. Introduction of the less traumatic and more efficient piezo drill-assisted ICSI (PDAI) yielded higher cleavage rates and more consistent results. Nevertheless, PDAI is also associated with disadvantages such as the use of mercury and possible DNA damage. This led us to explore an alternative method avoiding oocyte trauma, namely laser-assisted ICSI (LAI), which involves creating a hole in the ZP prior to ICSI. In this pilot study, PDAI and LAI were compared for ICSI in the horse. No significant influences on subsequent embryonic development were observed. © 2011 Blackwell Verlag GmbH.

  10. Signal Processing and Imaging with Ultrasonic Guided Waves: Goals, Challenges and Recent Progress (Preprint)

    DTIC Science & Technology

    2012-07-01

    SHM). 3 Approved for public release; distribution unlimited. The transducers, which are Lead Zirconate Titanate ( PZT ) discs, are permanently... fatigued . Data were recorded as a function of load before the hole was drilled, after the hole was drilled, and at intervals thereafter as a function...of fatigue life. Figure 7 illustrates the effects of matched loads on a fatigue crack about 5 mm in length. Figures 7(a), (b) and (c) correspond

  11. The use of drilling by the U.S. Antarctic program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, M.C.; Webb, J.W.; Hedberg, W.H.

    1994-08-01

    This report on drilling in the Antarctic has been prepared by the U.S. National Science Foundation (NSF) to assist principal investigators and others in complying with the National Environmental Policy Act (NEPA) and the Antarctic Treaty of 1961. Implementing regulations for NEPA are spelled out in 40 CFR 1500-1508. Environmental protection under the Antarctic Treaty is addressed in the Protocol on Environmental Protection to the Antarctic Treaty (hereafter referred to as the Protocol), which was adopted by 26 countries in 1991. In the United States, responsibility for compliance with these requirements rests with the NSF Office of Polar Programs (OPP),more » which manages the U.S. Antarctic Program (USAP). The USAP recognizes the potentially profound impacts that its presence and activities can have on the antarctic environment. In its extensive support of operations and research in Antarctica, the USAP uses all practical means to foster and maintain natural conditions while supporting scientific endeavors in a safe and healthful manner. Reducing human impacts on the antarctic environment is a major goal of the USAP. The USAP`s operating philosophy is based on broad yet reasonable and practical assumptions concerning environmental protection. The USAP maintains three year-round stations on the continent to support scientific research. Research and associated support operations at these stations and camps sometimes involve drilling into ice, soil, or ocean sediments. In order to comply with NEPA and the Protocol, it is necessary for principal investigators and others to assess the environmental effects of drilling. This report has been prepared to assist in this process by describing various drilling technologies currently available for use in Antarctica, generally characterizing the potential environmental impacts associated with these drilling techniques, and identifying possible mitigation measures to reduce impacts.« less

  12. Accuracy of computer-guided surgery for dental implant placement in fully edentulous patients: A systematic review

    PubMed Central

    Marlière, Daniel Amaral Alves; Demétrio, Maurício Silva; Picinini, Leonardo Santos; De Oliveira, Rodrigo Guerra; Chaves Netto, Henrique Duque De Miranda

    2018-01-01

    Assess clinical studies regarding accuracy between virtual planning of computer-guided surgery and actual outcomes of dental implant placements in total edentulous alveolar ridges. A PubMed search was performed to identify only clinical studies published between 2011 and 2016, searching the following combinations of keywords: “Accuracy AND Computer-Assisted Surgery AND Dental Implants.” Study designs were identified using the terms: Case Reports, Clinical study, Randomized Controlled Trial, Systematic Reviews, Meta-Analysis, humans. Level of agreement between the authors in the study selection process was substantial (k = 0.767), and the study eligibility was considered excellent (k = 0.863). Seven articles were included in this review. They describe the use of bone and muco-supported guides, demonstrating angular deviations cervically and apically ranging from (minimum and maximum means), respectively, 1.85–8.4 (°), 0.17–2.17 (mm), and 0.77–2.86 (mm). Angular deviations obtained most inaccuracy in maxila. For cervical and apical deviations, accuracy was preponderantly lower in maxilla. Despite the similar deviations measurement approaches described, clinical relevance of this study may be useful to warn the surgeon that safety margins in clinical situations. PMID:29657542

  13. The FORTRAN static source code analyzer program (SAP) user's guide, revision 1

    NASA Technical Reports Server (NTRS)

    Decker, W.; Taylor, W.; Eslinger, S.

    1982-01-01

    The FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 1) is presented. SAP is a software tool designed to assist Software Engineering Laboratory (SEL) personnel in conducting studies of FORTRAN programs. SAP scans FORTRAN source code and produces reports that present statistics and measures of statements and structures that make up a module. This document is a revision of the previous SAP user's guide, Computer Sciences Corporation document CSC/TM-78/6045. SAP Revision 1 is the result of program modifications to provide several new reports, additional complexity analysis, and recognition of all statements described in the FORTRAN 77 standard. This document provides instructions for operating SAP and contains information useful in interpreting SAP output.

  14. [Using the CAS (computer-assisted surgery) system in arthroscopic cruciate ligament surgery--adaptation and application in clinical practice].

    PubMed

    Bernsmann, K; Rosenthal, A; Sati, M; Ansari, B; Wiese, M

    2001-01-01

    The anterior cruciate ligament (ACL) is of great importance for the knee joint function. In the case of a complete ligament injury there is hardly any chance for complete recovery. The clear advantages of an operative reconstruction by replacing the ACL has been shown in many trails. The accurate placement of the graft's insertions has a significant effect on the mid- and probably long-term outcome of this procedure. Reviewing the literature, there are poor long-term results of ACL replacement in 5 to 52% of all cases, depending on the score system. One of the main reasons for unacceptable results is graft misplacement. This led to the construction of a CAS system for ACL replacement. The system assists this surgical procedure by navigating the exact position of the drilling holes. The Potential deformation quantity of the transplant can be controlled by this system in real time. 40 computer-assisted ACL replacements have been performed under active use of the CAS system. The short-term results are encouraging, no special complications have been seen so far. Prospective long-term follow-up studies are ongoing. ACL reconstruction by manual devices has many sources of error. The CAS system is able to give the surgeon reasonable views that are unachieveable by conventional surgery. He is therefore able to control a source of error and to optimise the results. The feasibility of this device in clinical routine use has been proven.

  15. The impact of the fabrication method on the three-dimensional accuracy of an implant surgery template.

    PubMed

    Matta, Ragai-Edward; Bergauer, Bastian; Adler, Werner; Wichmann, Manfred; Nickenig, Hans-Joachim

    2017-06-01

    The use of a surgical template is a well-established method in advanced implantology. In addition to conventional fabrication, computer-aided design and computer-aided manufacturing (CAD/CAM) work-flow provides an opportunity to engineer implant drilling templates via a three-dimensional printer. In order to transfer the virtual planning to the oral situation, a highly accurate surgical guide is needed. The aim of this study was to evaluate the impact of the fabrication method on the three-dimensional accuracy. The same virtual planning based on a scanned plaster model was used to fabricate a conventional thermo-formed and a three-dimensional printed surgical guide for each of 13 patients (single tooth implants). Both templates were acquired individually on the respective plaster model using an optical industrial white-light scanner (ATOS II, GOM mbh, Braunschweig, Germany), and the virtual datasets were superimposed. Using the three-dimensional geometry of the implant sleeve, the deviation between both surgical guides was evaluated. The mean discrepancy of the angle was 3.479° (standard deviation, 1.904°) based on data from 13 patients. Concerning the three-dimensional position of the implant sleeve, the highest deviation was in the Z-axis at 0.594 mm. The mean deviation of the Euclidian distance, dxyz, was 0.864 mm. Although the two different fabrication methods delivered statistically significantly different templates, the deviations ranged within a decimillimeter span. Both methods are appropriate for clinical use. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. IDSE Version 1 User's Manual

    NASA Technical Reports Server (NTRS)

    Mayer, Richard

    1988-01-01

    The integrated development support environment (IDSE) is a suite of integrated software tools that provide intelligent support for information modelling. These tools assist in function, information, and process modeling. Additional tools exist to assist in gathering and analyzing information to be modeled. This is a user's guide to application of the IDSE. Sections covering the requirements and design of each of the tools are presented. There are currently three integrated computer aided manufacturing definition (IDEF) modeling methodologies: IDEF0, IDEF1, and IDEF2. Also, four appendices exist to describe hardware and software requirements, installation procedures, and basic hardware usage.

  17. Incorporating electronic-based and computer-based strategies: graduate nursing courses in administration.

    PubMed

    Graveley, E; Fullerton, J T

    1998-04-01

    The use of electronic technology allows faculty to improve their course offerings. Four graduate courses in nursing administration were contemporized to incorporate fundamental computer-based skills that would be expected of graduates in the work setting. Principles of adult learning offered a philosophical foundation that guided course development and revision. Course delivery strategies included computer-assisted instructional modules, e-mail interactive discussion groups, and use of the electronic classroom. Classroom seminar discussions and two-way interactive video conferencing focused on group resolution of problems derived from employment settings and assigned readings. Using these electronic technologies, a variety of courses can be revised to accommodate the learners' needs.

  18. Design and Implementation of Context-Aware Musuem Guide Agents

    NASA Astrophysics Data System (ADS)

    Satoh, Ichiro

    This paper presents an agent-based system for building and operating context-aware services in public spaces, including museums. The system provides users with agents and detects the locations of users and deploys location-aware user-assistant agents at computers near the their current locations by using active RFID-tags. When a visitor moves between exhibits in a museum, this dynamically deploys his/her agent at the computers close to the exhibits by using mobile agent technology. It annotates the exhibits in his/her personalized form and navigate him/her user to the next exhibits along his/her routes. It also introduces user movement as a natural approach to interacting between users and agents. To demonstrate the utility and effectiveness of the system, we constructed location/user-aware visitor-guide services and experimented them for two weeks in a public museum.

  19. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Appendix A: ROBSIM user's guide

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelley, J. H.; Depkovich, T. M.; Wolfe, W. J.; Nguyen, T.

    1986-01-01

    The purpose of the Robotics Simulation Program is to provide a broad range of computer capabilities to assist in the design, verification, simulation, and study of robotics systems. ROBSIM is program in FORTRAN 77 for use on a VAX 11/750 computer under the VMS operating system. This user's guide describes the capabilities of the ROBSIM programs, including the system definition function, the analysis tools function and the postprocessor function. The options a user may encounter with each of these executables are explained in detail and the different program prompts appearing to the user are included. Some useful suggestions concerning the appropriate answers to be given by the user are provided. An example user interactive run in enclosed for each of the main program services, and some of the capabilities are illustrated.

  20. A Physical Education Guide with English Language Practice Drills for Teachers of Navajo Kindergarten and Primary School Children.

    ERIC Educational Resources Information Center

    Tefft, Virginia J.

    Cultural and language barriers, particularly among Indian and Spanish American students, face 40% of New Mexico's school age children. This often forces them to become disadvantaged as they progress through the public schools. The present 1968-69 study has devised guides for teaching physical education while giving second language practice in…

  1. Hydrodynamics of material removal by melt expulsion: Perspectives of laser cutting and drilling

    NASA Astrophysics Data System (ADS)

    Poprawe, Reinhart; Schulz, Wolfgang; Schmitt, Robert

    With the introduction of fiber-guided radiation at 1 μ wavelength emitting in the milti-kW range at better beam quality than CO2-lasers the most established application in laser processing, namely laser fusion cutting, came back into the industrial and scientific focus. Laser sources with extraordinary optical and economical properties - disk and fiber lasers - in a stormy way enter the market of cutting machines so far reserved for the 10 μ radiation source and led to a volatile situation. The new laser sources can already address a market-relevant class of applications, namely, fusion cutting of steel up to a sheet thickness of 2 mm with pronounced advantages in productivity. However, there is a significant lack of cut quality for larger sheet thickness. The main reason for the drawback and its physical background are given. With the availability of cutting machines with 1 μ fiber-guided radiation the race for the worldwide market regarding the larger sheet thickness is opened and the priority issues to improve the cut quality are related to the three levels: wavelength, beam delivery and the application stage of the machine. The stability model called QuCut is presented which for the first time allows to analyze stability of cutting with fiber-guided radiation. Experimental ripple patterns and ripple spectra resolved with respect to the cutting depth are well reproduced by the new stability model. A number of different experimental methods towards an improved understanding of the dynamics in laser drilling are developed, however, there are gaps related to in-situ observation which is obscured by the hole walls. There are four novel experimental methods resolving the dynamics from a μms-down to a ns-time scale having a spatial resolution with respect to transient drilling depth on the μm scale. As result, the different mechanisms contributing to recast formation and dynamical features of drilling are revealed in more detail. In particular, the action of double pulses and its changes depending on the evolving drill are investigated.

  2. Overview of microseismic monitoring of hydraulic fracturing for unconventional oil and gas plays

    NASA Astrophysics Data System (ADS)

    Shemeta, J. E.

    2011-12-01

    The exponential growth of unconventional resources for oil and gas production has been driven by the use of horizontal drilling and hydraulic fracturing. These drilling and completion methods increase the contact area of the low permeability and porosity hydrocarbon bearing formations and allow for economic production in what was previously considered uncommercial rock. These new resource plays have sparked an enormous interest in microseismic monitoring of hydraulic fracture treatments. As a hydraulic fracture is pumped, microseismic events are emitted in a volume of rock surrounding the stimulated fracture. The goal of the monitoring is to identify and locate the microseismic events to a high degree of precision and to map the position of the induced hydraulic fracture in time and space. The microseismic events are very small, typically having a moment-magnitude range of -4 to 0. The microseismic data are collected using a variety of seismic array designs and instrumentation, including borehole, shallow borehole, near-surface and surface arrays, using either of three-component clamped 15 Hz borehole sondes to simple vertical 10 Hz geophones for surface monitoring. The collection and processing of these data is currently under rapid technical development. Each monitoring method has technical challenges which include accurate velocity modeling, correct seismic phase identification and signal to noise issues. The microseismic locations are used to guide hydrocarbon exploration and production companies in crucial reservoir development decisions such as the direction to drill the horizontal well bores and the appropriate inter-well spacing between horizontal wells to optimally drain the resource. The fracture mapping is also used to guide fracture and reservoir engineers in designing and calibrating the fluid volumes and types, injection rates and pressures for the hydraulic fracture treatments. The microseismic data can be located and mapped in near real-time during an injection and used to assist the operators in the avoidance of geohazards (such as a karst feature or fault) or fracture height growth into undesirable formations such as water-bearing zones (that could ruin the well). An important objective for hydraulic fracture mapping is to map the effective fracture geometry: the specific volume of rock that is contributing to hydrocarbon flow in to the well. This, however, still remains an elusive goal that has yet to be completely understood with the current mapping technology.

  3. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, W. C.; Wang, R.; Xu, Z. J.

    2014-05-28

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scalemore » array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.« less

  4. Has Technology Been Considered? A Guide for IEP Teams. CASE/TAM Assistive Technology Policy and Practice Series.

    ERIC Educational Resources Information Center

    Chambers, A. C.

    This guide compiles information essential to a working knowledge of assistive technology for children with disabilities. It addresses the definition of assistive technology and provides information on laws which direct the provision of assistive technology. The manual provides a framework to guide the Individualized Education Program (IEP) team as…

  5. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.

    PubMed

    Downey, John E; Weiss, Jeffrey M; Muelling, Katharina; Venkatraman, Arun; Valois, Jean-Sebastien; Hebert, Martial; Bagnell, J Andrew; Schwartz, Andrew B; Collinger, Jennifer L

    2016-03-18

    Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object. Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps. Both subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control. Integration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users. NCT01364480 and NCT01894802 .

  6. Advanced Metallic Air Vehicle Structure Program

    DTIC Science & Technology

    1974-06-01

    soapstone line around the periphery of the lower plate from XFO.00 to the outboard edge using edge of MSLO X7224175 as guide. Remove MSLO X7224175. D...hole in the lug reinforcement plates). Make soapstone line to edge of MSLO to denote periphery of cutouts. E. Relocate MSLO X7224175 on opposite end of...of plate). G. Drill .50 diameter holes (10) using the Bux- Magnetic drill unit. See MAP-I-3 for approximate locations of these start and stop holes. A 1

  7. Comparison of static and dynamic computer-assisted guidance methods in implantology.

    PubMed

    Mischkowski, R A; Zinser, M J; Neugebauer, J; Kübler, A C; Zöller, J E

    2006-01-01

    The planning of dental implant position and its transfer to the operation site can be considered as one of the most important factors for the long-term success of implant-supported prosthetic and epithetic restorations. This study compares computer-assisted fabricated surgical templates as the static method with intro-operative image guided navigation as the dynamic method for transfer of three-dimensional pre-operative planning. For the static method, the systems Med3D, coDiagnostix/ gonyX, and SimPlant were used. For the dynamic method, the systems RoboDent und VectorVision2 were applied. A total of 746 implants were inserted between August 1999 and December 2005 in 206 patients. The static approach was used most frequently, accounting for 611 fixtures in 168 patients. The failure ratios within the first 6 months were 1.31% in the statically controlled insertion group compared to 2.96% in the dynamically controlled insertion group. Complications related to an incorrect position of the implants have not been observed so far in either group. All computer-assisted methods included in this study were successfully applied in a clinical setting after a certain start-up period. The indications for application of computer-assisted methods in implantology are currently given in difficult anatomical situations. Due to uncomplicated handling and low resource demands, the static template technique can be recommended as the method of choice for the majority of all cases falling into this category.

  8. THE USE OF CHEMICALS TO CONTROL FIELD RODENTS AND OTHER PREDATORS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 5.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    THE PURPOSE OF THIS GUIDE IS TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS. IT IS ONE OF A SERIES OF MODULES DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS ARE (1) USE OF CHEMICALS FOR RODENT CONTROL AND ERADICATION, (2) TERMINOLOGY AND COMPUTATIONS, (3) RODENT…

  9. Reviewing Some Crucial Concepts of Gibbs Energy in Chemical Equilibrium Using a Computer-Assisted, Guided-Problem-Solving Approach

    ERIC Educational Resources Information Center

    Borge, Javier

    2015-01-01

    G, G°, [delta][subscript r]G, [delta][subscript r]G°, [delta]G, and [delta]G° are essential quantities to master the chemical equilibrium. Although the number of publications devoted to explaining these items is extremely high, it seems that they do not produce the desired effect because some articles and textbooks are still being written with…

  10. A drilling tool design and in situ identification of planetary regolith mechanical parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei

    2018-05-01

    The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.

  11. Strategies of Computer-Based Instructional Design: A Review of Guidelines and Empirical Research

    DTIC Science & Technology

    1990-05-01

    tutorial or information-oriented lesson, a flashcard -type drill, or a simulation or game. 6 Guidelines. Instructional designers must decide whether...amount of inter- activity and feedback. An information-only program presented textual material without any questions. A flashcard -type drill program...educational game program was identical to the flashcard -type drill, except feedback was provided for responses. Results showed no differences in posttest

  12. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation

    PubMed Central

    Balachandran, Ramya; Labadie, Robert F.

    2015-01-01

    Purpose A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. Methods An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. Results The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of 45° and higher as well as longer cantilevered drill lengths. Conclusion The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure. PMID:26183149

  13. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    PubMed

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  14. A novel concept for smart trepanation.

    PubMed

    Follmann, Axel; Korff, Alexander; Fuertjes, Tobias; Kunze, Sandra C; Schmieder, Kirsten; Radermacher, Klaus

    2012-01-01

    Trepanation of the skull is a common procedure in craniofacial and neurosurgical interventions, allowing access to the innermost cranial structures. Despite a careful advancement, injury of the dura mater represents a frequent complication during these cranial openings. The technology of computer-assisted surgery offers different support systems such as navigated tools and surgical robots. This article presents a novel technical approach toward an image- and sensor-based synergistic control of the cutting depth of a manually guided soft-tissue-preserving saw. Feasibility studies in a laboratory setup modeling relevant skull tissue parameters demonstrate that errors due to computed tomography or magnetic resonance image segmentation and registration, optical tracking, and mechanical tolerances of up to 2.5 mm, imminent to many computer-assisted surgery systems, can be compensated for by the cutting tool characteristics without damaging the dura. In conclusion, the feasibility of a computer-controlled trepanation system providing a safer and efficient trepanation has been demonstrated. Injuries of the dura mater can be avoided, and the bone cutting gap can be reduced to 0.5 mm with potential benefits for the reintegration of the bone flap.

  15. Application of an enhanced discrete element method to oil and gas drilling processes

    NASA Astrophysics Data System (ADS)

    Ubach, Pere Andreu; Arrufat, Ferran; Ring, Lev; Gandikota, Raju; Zárate, Francisco; Oñate, Eugenio

    2016-03-01

    The authors present results on the use of the discrete element method (DEM) for the simulation of drilling processes typical in the oil and gas exploration industry. The numerical method uses advanced DEM techniques using a local definition of the DEM parameters and combined FEM-DEM procedures. This paper presents a step-by-step procedure to build a DEM model for analysis of the soil region coupled to a FEM model for discretizing the drilling tool that reproduces the drilling mechanics of a particular drill bit. A parametric study has been performed to determine the model parameters in order to maintain accurate solutions with reduced computational cost.

  16. Mathematical model of bone drilling for virtual surgery system

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    The bone drilling is an essential part of surgeries in ENT and Dentistry. A proper training of drilling machine handling skills is impossible without proper modelling of the drilling process. Utilization of high precision methods like FEM is limited due to the requirement of 1000 Hz update rate for haptic feedback. The study presents a mathematical model of the drilling process that accounts the properties of materials, the geometry and the rotation rate of a burr to compute the removed material volume. The simplicity of the model allows for integrating it in the high-frequency haptic thread. The precision of the model is enough for a virtual surgery system targeted on the training of the basic surgery skills.

  17. Hole Quality Assessment in Drilling of Glass Microballoon/Epoxy Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Ashrith, H. S.; Doddamani, Mrityunjay; Gaitonde, Vinayak; Gupta, Nikhil

    2018-05-01

    Syntactic foams reinforced with glass microballoons are used as alternatives for conventional materials in structural application of aircrafts and automobiles due to their unique properties such as light weight, high compressive strength, and low moisture absorption. Drilling is the most commonly used process of making holes for assembling structural components. In the present investigation, grey relation analysis (GRA) is used to optimize cutting speed, feed, drill diameter, and filler content to minimize cylindricity, circularity error, and damage factor. Experiments based on full factorial design are conducted using a vertical computer numerical control machine and tungsten carbide twist drills. GRA reveals that a combination of lower cutting speed, filler content, and drill diameter produces a good quality hole at optimum intermediate feed in drilling syntactic foams composites. GRA also shows that the drill diameter has a significant effect on the hole quality. Furthermore, damage on the hole exit side is analyzed using a scanning electron microscope.

  18. Giao-Trinh Huan-Luyen Phu-Huynk Goc Ngon-Ngu Thieu-So: Ban Viet-Ngu (Parenting Curriculum for Language Minority Parents: Vietnamese Guide).

    ERIC Educational Resources Information Center

    Holt, Grace D.

    This guide for minority language parents whose primary language is Vietnamese presents parenting information to supplement a course in English as a Second Language. It focuses on topics parents must deal with in meeting the needs of their children. Vocabulary and practice drills are presented for activities in the following areas: (1) education…

  19. Continuing German in Grade Five: MLA Teacher's Guide. A Course of Study Including Methods, Materials, and Aids for Teaching German to Fifth-Grade Pupils.

    ERIC Educational Resources Information Center

    Memming, Agnes K.; And Others

    This teacher's guide, for use in a fifth-grade German course, contains 12 units of instructional materials which concentrate on the development of basic audiolingual skills. Each of the units consists of conversational skits, dialogue adaptation, directed dialogue review, and classroom drills. Units include: (1) Das Aufstehen und das Fruhstuck,…

  20. This School Works for Me: Creating Choices to Boost Achievement. A Guide for Data Analysts

    ERIC Educational Resources Information Center

    Bill & Melinda Gates Foundation, 2010

    2010-01-01

    This document is part of a series of guides designed to help school district leaders address one of the toughest challenges in American education: dropout rates of 30 percent nationwide, 50 percent in many big cities, and 60 percent or more in the lowest-performing schools. It includes tools for data analysts to drill down into the data and use…

  1. Computer vision and augmented reality in gastrointestinal endoscopy

    PubMed Central

    Mahmud, Nadim; Cohen, Jonah; Tsourides, Kleovoulos; Berzin, Tyler M.

    2015-01-01

    Augmented reality (AR) is an environment-enhancing technology, widely applied in the computer sciences, which has only recently begun to permeate the medical field. Gastrointestinal endoscopy—which relies on the integration of high-definition video data with pathologic correlates—requires endoscopists to assimilate and process a tremendous amount of data in real time. We believe that AR is well positioned to provide computer-guided assistance with a wide variety of endoscopic applications, beginning with polyp detection. In this article, we review the principles of AR, describe its potential integration into an endoscopy set-up, and envisage a series of novel uses. With close collaboration between physicians and computer scientists, AR promises to contribute significant improvements to the field of endoscopy. PMID:26133175

  2. The Auto-Gopher Deep Drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  3. Computer assisted CT-guided stereotactic transplantation of foetal ventral mesencephalon to the caudate nucleus and putamen in Parkinson's disease.

    PubMed

    Molina, H; Quiñones, R; Ortega, I; Alvarez, L; Muñoz, J; Gonzalez, C; Suárez, C

    1993-01-01

    We report our preliminary results related to CT-guided stereotactic transplantation of foetal ventral mesencephalic cell suspension into the striatum of five patients with idiopathic Parkinson's disease. The mean age was 51 years, the evolution time of the disease ranged from 7 to 14 years, and all of them had motor complications associated with chronic L-dopa therapy. The patients were evaluated according to the Core Assessment Program for Intracerebral Transplantations (CAPIT) for one year before and three months after surgery. The postoperative clinical assessment demonstrated significant improvement of neurological symptoms and reduction of daily L-dopa dosage.

  4. A Flexure-Guided Piezo Drill for Penetrating the Zona Pellucida of Mammalian Oocytes.

    PubMed

    Johnson, Wesley; Dai, Changsheng; Liu, Jun; Wang, Xian; Luu, Devin K; Zhang, Zhuoran; Ru, Changhai; Zhou, Chao; Tan, Min; Pu, Huayan; Xie, Shaorong; Peng, Yan; Luo, Jun; Sun, Yu

    2018-03-01

    Mammalian oocytes such as mouse oocytes have a highly elastic outer membrane, zona pellucida (ZP) that cannot be penetrated without significantly deforming the oocyte, even with a sharp micropipette. Piezo drill devices leverage lateral and axial vibration of the micropipette to accomplish ZP penetration with greatly reduced oocyte deformation. However, existing piezo drills all rely on a large lateral micropipette vibration amplitude ( 20 ) and a small axial vibration amplitude (0.1 ). The very large lateral vibration amplitude has been deemed to be necessary for ZP penetration although it also induces larger oocyte deformation and more oocyte damage. This paper reports on a new piezo drill device that uses a flexure guidance mechanism and a systematically designed pulse train with an appropriate base frequency. Both simulation and experimental results demonstrate that a small lateral vibration amplitude (e.g., 2 ) and an axial vibration amplitude as large as 1.2 were achieved. Besides achieving 100% effectiveness in the penetration of mouse oocytes (n = 45), the new piezo device during ZP penetration induced a small oocyte deformation of 3.4 versus larger than 10 using existing piezo drill devices.

  5. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamrick, Todd

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to computemore » the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.« less

  6. Guides emerge for cementing horizontal strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parcevaux, P.

    1987-10-19

    This article recommends the following guidelines for cementing of horizontal strings: turbulent flow displacement technique for ensuring vest casing centralization and a cement slurry with a density as close as possible to that of the drilling mud.

  7. Medical Assisting Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This guide presents the standard curriculum for technical institutes in Georgia. The curriculum addresses the minimum competencies for a medical assisting program. The program guide is designed to relate primarily to the development of those skills needed by individuals in the medical assisting field, such as medical law and ethics, typing,…

  8. HOLEGAGE 1.0 - STRAIN GAGE HOLE DRILLING ANALYSIS PROGRAM

    NASA Technical Reports Server (NTRS)

    Hampton, R. W.

    1994-01-01

    There is no simple and perfect way to measure residual stresses in metal parts that have been welded or deformed to make complex structures such as pressure vessels and aircraft, yet these locked-in stresses can contribute to structural failure by fatigue and fracture. However, one proven and tested technique for determining the internal stress of a metal part is to drill a test hole while measuring the relieved strains around the hole, such as the hole-drilling strain gage method described in ASTM E 837. The program HOLEGAGE processes strain gage data and provides additional calculations of internal stress variations that are not obtained with standard E 837 analysis methods. The typical application of the technique uses a three gage rosette with a special hole-drilling fixture for drilling a hole through the center of the rosette to produce a hole with very small gage pattern eccentricity error. Another device is used to control the drilling and halt the drill at controlled depth steps. At each step, strains from all three strain gages are recorded. The influence coefficients used by HOLEGAGE to compute stresses from relieved hole strains were developed by published finite element method studies of thick plates for specific hole sizes and depths. The program uses a parabolic fit and an interpolating scheme to project the coefficients to other hole sizes and depths. Additionally, published experimental data are used to extend the coefficients to relatively thin plates. These influence coefficients are used to compute the stresses in the original part from the strain data. HOLEGAGE will compute interior planar stresses using strain data from each drilled hole depth layer. Planar stresses may be computed in three ways including: a least squares fit for a linear variation with depth, an integral method to give incremental stress data for each layer, or by a linear fit to the integral data (with some surface data points omitted) to predict surface stresses before strain gage sanding preparations introduced additional residual stresses. Options are included for estimating the effect of hole eccentricity on calculations, smoothing noise from the strain data, and inputting the program data either interactively or from a data file. HOLEGAGE was written in FORTRAN 77 for DEC VAX computers under VMS, and is transportable except for system-unique TIME and DATE system calls. The program requires 54K of main memory and was developed in 1990. The program is available on a 9-track 1600 BPI VAX BACKUP format magnetic tape (standard media) or a TK50 tape cartridge. The documentation is included on the tape. DEC VAX and VMS are trademarks of Digital Equipment Corporation.

  9. Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrave, J.A.; Goff, F.; Shevenell, L.

    1989-02-01

    This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.

  10. Distributed downhole drilling network

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  11. Precision drilling of fused silica with 157-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian; Meyer, Klaus

    2003-07-01

    μFor drilling fused silica, mechanical techniques like with diamond drills, ultrasonic machining, sand blasting or water jet machining are used. Also chemical techniques like laser assisted wet etching or thermal drilling with CO2-lasers are established. As an extension of these technologies, the drilling of micro-holes in fused silica with VUV laser radiation is presented here. The high absorption of the 157 nm radiation emitted by the F2 excimer laser and the short pulse duration lead to a material ablation with minimised impact on the surrounding material. Contrary to CO2-laser drilling, a molten and solidified phase around the bore can thus be avoided. The high photon energy of 7.9 eV requires either high purity nitrogen flushing or operation in vacuum, which also effects the processing results. Depending on the required precision, the laser can be used for percussion drilling as well as for excimer laser trepanning, by applying rotating masks. Rotating masks are especially used for high aspect ratio drilling with well defined edges and minimised debris. The technology is suitable particularly for holes with a diameter below 200 μm down to some microns in substrates with less than 200 μm thickness, that can not be achieved with mechanical methods. Drilling times in 200 μm fused silica substrates are in the range of ten seconds, which is sufficient to compete with conventional methods while providing similar or even better accuracy.

  12. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, appendix B

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelly, J. H.; Depkovich, T. M.

    1984-01-01

    The purpose of the Robotics Simulation (ROBSIM) program is to provide a broad range of computer capabilities to assist in the design, verification, simulation, and study of robotic systems. ROBSIM is programmed in FORTRAN 77 and implemented on a VAX 11/750 computer using the VMS operating system. This programmer's guide describes the ROBSIM implementation and program logic flow, and the functions and structures of the different subroutines. With this manual and the in-code documentation, and experienced programmer can incorporate additional routines and modify existing ones to add desired capabilities.

  13. Robust Computer-Assisted Laser Treatment Using Real-Time Retinal Tracking

    DTIC Science & Technology

    2001-10-25

    Abstract- We propose a new computerized system to accurately guide laser shots to the diseased areas within the retina based on predetermined...image registration I. INTRODUCTION Diabetic retinopathy resulting from long term diabetes mellitus is one of the common diseases that lead to choroidal...have a strong impact on the effectiveness of such procedures. In this work, we propose a new computerized treatment planning system for laser treatment

  14. The Collins Center Update. Volume 7, Issue 3, April-June 2005

    DTIC Science & Technology

    2005-06-01

    paced dynamic, free play environment. The exercise, guided by the participants’ own goals and objectives challenged the students to increase...of theater-level campaign planning. In JLASS, USAWC students developed and fought campaign plans with students from the other SLCs in a free ... play computer-assisted wargame. The objective of JLASS is to promote joint professional military education of all participants by addressing key issues

  15. Treatment of Brodie's Syndrome using parasymphyseal distraction through virtual surgical planning and RP assisted customized surgical osteotomy guide-A mock surgery report

    NASA Astrophysics Data System (ADS)

    Dahake, Sandeep; Kuthe, Abhaykumar; Mawale, Mahesh

    2017-10-01

    This paper aims to describe virtual surgical planning (VSP), computer aided design (CAD) and rapid prototyping (RP) systems for the preoperative planning of accurate treatment of the Brodie's Syndrome. 3D models of the patient's maxilla and mandible were separately generated based on computed tomography (CT) image data and fabricated using RP. During the customized surgical osteotmy guide (CSOG) design process, the correct position was identified and the geometry of the CSOG was generated based on affected mandible of the patient and fabricated by a RP technique. Surgical approach such as preoperative planning and simulation of surgical procedures was performed using advanced software. The VSP and RP assisted CSOG was used to avoid the damage of the adjacent teeth and neighboring healthy tissues. Finally the mock surgery was performed on the biomodel (i.e. diseased RP model) of mandible with reference to the normal maxilla using osteotomy bur with the help of CSOG. Using this CSOG the exact osteotomy of the mandible and the accurate placement of the distractor were obtained. It ultimately improved the accuracy of the surgery in context of the osteotomy and distraction. The time required in cutting the mandible and placement of the distractor was found comparatively less than the regular free hand surgery.

  16. Report on drilling activities in the Thar Desert, Sindh Province, Pakistan

    USGS Publications Warehouse

    Thomas, Roger E.; Fassett, James E.; Warwick, Peter D.; Wardlaw, Bruce R.; Shah, Abas A.; Khan, Shafique Ahmed; Tagar, Mohammad A.; Memon, Abdul R.; Lashari, Ghulam S.; Khan, Zameer M.; Khan, Muhammad D.; Chandio, Altaf H.; Anwar, Mohammad; Nizamani, Mohammad A.; Ahmad, Mujeeb; Ur-Raman, Mehtab-

    1994-01-01

    Coal test drilling in the Thar Desert of southeast Pakistan was conducted as part of the Coal Exploration and Assessment Program (COALREAP) involving the United States Agency for International Development (USAID), the Geological Survey of Pakistan (GSP), and the U.S. Geological Survey. Drilling was performed in the Thar Desert, or Great Indian Desert, approximately 175 km northeast of Karachi. Twenty five exploration holes were drilled between January 1992 and May 1994. Drill core was described by geologists of the Pakistan Geological Survey and coal samples were analyzed in both the United States and Pakistan. U.S. Geological Survey geologists offered technical assistance, trained GSP personnel, and managed the drilling program according to an agreement with USAID under the Energy Planning and Development Project.Drilling was performed by the Geological Survey of Pakistan. During drilling, the first 50 m was rotary drilled and cuttings collected every 2 m for examination. Average depth for all coal beds is 214 m with a total average thickness of 10 m of coal per drill hole. Core was described, boxed, and stored at the Geological Survey of Pakistan core library at Sonda, near Hyderabad. Approximately 6,412 m of Paleocene to Eocene rock was drilled of which 3,990 m was cored and 1,113 m was rotary drilled.There was 1,309 m of core loss. Geophysical logging of each drill hole permitted detailed thicknesses of coal to be determined. Analysis of the coal indicated a rank of lignite B with an as-received heating value over 5,000 Btu.This report presents data collected at the drill sites and should be used inconjunction with the published interpretive report (Fassett and Durrani, 1994) and the USGS Open-File Report 94-167, which contains analysis of the coal samples. Tables provide quick reference to numeric data and results. Detailed index maps and specific data, for each drill hole are included. This report covers drill holes TP-5 to TP-31. Drill holes TP-16, 17, 21, 26, 27, and 29 were planned but not drilled due to time restraints and (or) a determination that those drill sites were not needed to effectively delineate the coal deposit. The basic data for drill holes TP-1 through TP-4 are included in SanFilipo and others, 1994 however, some data for these drill holes are included for consistency.

  17. Computer-Supplemented Structural Drill Practice Versus Computer-Supplemented Semantic Drill Practice by Beginning College German Students: A Comparative Experiment

    DTIC Science & Technology

    1979-01-01

    language education in recent years can be seen in the movement from a teacher- to a learner -centered approach. The best evidence of a teacher-centered...most dramatic effect on how the learner is viewed. The learner now is recognized as an active participant in the learning process rather than as a... best , is optional. Cognitive psychologists, such as Ausubel, and many foreign language educators (Rivers, 1976; Grittner, 1977) believe that practice

  18. Simple Smartphone-Based Guiding System for Visually Impaired People

    PubMed Central

    Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying

    2017-01-01

    Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them. PMID:28608811

  19. Simple Smartphone-Based Guiding System for Visually Impaired People.

    PubMed

    Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying

    2017-06-13

    Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them.

  20. Reviews.

    ERIC Educational Resources Information Center

    Science Teacher, 1989

    1989-01-01

    Reviews seven software programs: (1) "Science Baseball: Biology" (testing a variety of topics); (2) "Wildways: Understanding Wildlife Conservation"; (3) "Earth Science Computer Test Bank"; (4) "Biology Computer Test Bank"; (5) "Computer Play & Learn Series" (a series of drill and test…

  1. Assisting Handlers Following Attacks on Dog Guides: Implications for Dog Guide Teams

    ERIC Educational Resources Information Center

    Godley, Cheryl A.; Gillard, Marc A.

    2011-01-01

    Attacks by dogs on dog guides are traumatic for dog guide teams. One variable that affects a team's recovery is how handlers cope with emotional responses to the attack. This article presents a three-stage model for assisting handlers that is useful for handlers and dog guide instructors.

  2. Real Time Navigation-Assisted Orbital Wall Reconstruction in Blowout Fractures.

    PubMed

    Shin, Ho Seong; Kim, Se Young; Cha, Han Gyu; Han, Ba Leun; Nam, Seung Min

    2016-03-01

    Limitation in performing restoration of orbital structures is the narrow, deep, and dark surgical field, which makes it difficult to view the operative site directly. To avoid perioperative complications from this limitation, the authors have evaluated the usefulness of computer-assisted navigation techniques in surgical treatment of blowout fracture. Total 37 patients (14 medial orbital wall fractures and 23 inferior orbital wall fractures) with facial deformities had surgical treatment under the guide of navigation system between September 2012 and January 2015. All 37 patients were treated successfully and safely with navigation-assisted surgery without any complications, including diplopia, retrobulbar hematoma, globe injury, implant migration, and blindness. Blowout fracture can be treated safely under guidance of a surgical navigation system. In orbital surgery, navigation-assisted technology could give rise to improvements in the functional and aesthetic outcome and checking the position of the instruments on the surgical site in real time, without injuring important anatomic structures.

  3. Field guide to Laramide basin evolution and drilling activity in North Park and Middle Park, Colorado

    USGS Publications Warehouse

    Dechesne, Marieke; Cole, James Channing; Martin, Christopher B.

    2016-01-01

    Overview of the geologic history of the North Park–Middle Park area and its past and recent drilling activity. Field trip stops highlight basin formation and the consequences of geologic configuration on oil and gas plays and development. The starting point is the west flank of the Denver Basin to compare and contrast the latest Cretaceous through Eocene basin fill on both flanks of the Front Range, before exploring sediments of the same age in the North Park – Middle Park intermontane basin.

  4. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  5. Computer Series, 13: Bits and Pieces, 11.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1982-01-01

    Describes computer programs (with ordering information) on various topics including, among others, modeling of thermodynamics and economics of solar energy, radioactive decay simulation, stoichiometry drill/tutorial (in Spanish), computer-generated safety quiz, medical chemistry computer game, medical biochemistry question bank, generation of…

  6. A novel technique for ventriculoperitoneal shunting by flat panel detector CT-guided real-time fluoroscopy

    PubMed Central

    Kobayashi, Shinya; Ishikawa, Tatsuya; Mutoh, Tatsushi; Hikichi, Kentaro; Suzuki, Akifumi

    2012-01-01

    Background: Surgical placement of a ventriculoperitoneal shunt (VPS) is the main strategy to manage hydrocephalus. However, the failure rate associated with placement of ventricular catheters remains high. Methods: A hybrid operating room, equipped with a flat-panel detector digital subtraction angiography system containing C-arm cone-beam computed tomography (CB-CT) imaging, has recently been developed and utilized to assist neurosurgical procedures. We have developed a novel technique using intraoperative fluoroscopy and a C-arm CB-CT system to facilitate accurate placement of a VPS. Results: Using this novel technique, 39 consecutive ventricular catheters were placed accurately, and no ventricular catheter failures were experienced during the follow-up period. Only two patients experienced obstruction of the VPS, both of which occurred in the extracranial portion of the shunt system. Conclusion: Surgical placement of a VPS assisted by flat panel detector CT-guided real-time fluoroscopy enabled accurate placement of ventricular catheters and was associated with a decreased need for shunt revision. PMID:23226605

  7. Dental Assisting Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program guide contains the standard dental assisting curriculum for technical institutes in Georgia. The curriculum encompasses the minimum competencies required for entry-level dental assistants, and includes job skills in the technical areas of preventive dentistry; four-handed dentistry; chairside assisting with emphasis in diagnostics,…

  8. CT-guided robotically-assisted infiltration of foot and ankle joints.

    PubMed

    Wiewiorski, Martin; Valderrabano, Victor; Kretzschmar, Martin; Rasch, Helmut; Markus, Tanja; Dziergwa, Severine; Kos, Sebastian; Bilecen, Deniz; Jacob, Augustinus Ludwig

    2009-01-01

    It was our aim to describe a CT-guided robotically-assisted infiltration technique for diagnostic injections in foot and ankle orthopaedics. CT-guided mechatronically-assisted joint infiltration was performed on 16 patients referred to the orthopaedic department for diagnostic foot and ankle assessment. All interventions were performed using an INNOMOTION-assistance device on a multislice CT scanner in an image-guided therapy suite. Successful infiltration was defined as CT localization of contrast media in the target joint. Additionally, pre- and post-interventional VAS pain scores were assessed. All injections (16/16 joints) were technically successful. Contrast media deposit was documented in all targeted joints. Significant relief of pain was noted by all 16 patients (p<0.01). CT-guided robotically-assisted intervention is an exact, reliable and safe application method for diagnostic infiltration of midfoot and hindfoot joints. The high accuracy and feasibility in a clinical environment make it a viable alternative to the commonly used fluoroscopic-guided procedures.

  9. Risk-benefit analysis of navigation techniques for vertebral transpedicular instrumentation: a prospective study.

    PubMed

    Noriega, David C; Hernández-Ramajo, Rubén; Rodríguez-Monsalve Milano, Fiona; Sanchez-Lite, Israel; Toribio, Borja; Ardura, Francisco; Torres, Ricardo; Corredera, Raul; Kruger, Antonio

    2017-01-01

    Pedicle screws in spinal surgery have allowed greater biomechanical stability and higher fusion rates. However, malposition is very common and may cause neurologic, vascular, and visceral injuries and compromise mechanical stability. The purpose of this study was to compare the malposition rate between intraoperative computed tomography (CT) scan assisted-navigation and free-hand fluoroscopy-guided techniques for placement of pedicle screw instrumentation. This is a prospective, randomized, observational study. A total of 114 patients were included: 58 in the assisted surgery group and 56 in the free-hand fluoroscopy-guided surgery group. Analysis of screw position was assessed using the Heary classification. Breach severity was defined according to the Gertzbein classification. Radiation doses were evaluated using thermoluminescent dosimeters, and estimates of effective and organ doses were made based on scan technical parameters. Consecutive patients with degenerative disease, who underwent surgical procedures using the free-hand, or intraoperative navigation technique for placement of transpedicular instrumentation, were included in the study. Forty-four out of 625 implanted screws were malpositioned: 11 (3.6%) in the navigated surgery group and 33 (10.3%) in the free-hand group (p<.001). Screw position according to the Heary scale was Grade II (4 navigated surgery, 6 fluoroscopy guided), Grade III (3 navigated surgery, 11 fluoroscopy guided), Grade IV (4 navigated surgery, 16 fluoroscopy guided), and Grade V (1 fluoroscopy guided). There was only one symptomatic case in the conventional surgery group. Breach severity was seven Grade A and four Grade B in the navigated surgery group, and eight Grade A, 24 Grade B, and one Grade C in free-hand fluoroscopy-guided surgery group. Radiation received per patient was 5.8 mSv (4.8-7.3). The median dose received in the free-hand fluoroscopy group was 1 mGy (0.8-1.1). There was no detectable radiation level in the navigation-assisted surgery group, whereas the effective dose was 10 µGy in the free-hand fluoroscopy-guided surgery group. Malposition rate, both symptomatic and asymptomatic, in spinal surgery is reduced when using CT-guided placement of transpedicular instrumentation compared with placement under fluoroscopic guidance, with radiation values within the safety limits for health. Larger studies are needed to determine risk-benefit in these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Health Occupations Education: Suggested Curriculum Guide for Nursing Assistant. Curriculum Guide-3.

    ERIC Educational Resources Information Center

    Virginia Polytechnic Inst. and State Univ., Blacksburg. Div. of Vocational-Technical Education.

    The curriculum guide, developed to serve as a statewide model for nursing assistant programs, offers teaching suggestions for nursing assistant courses in the public schools. It is designed for 270 hours of theory and 200 hours of clinical instruction. There are 11 units of instruction: orientation; human behavior; medical communication skills;…

  11. Influence of plasma shock wave on the morphology of laser drilling in different environments

    NASA Astrophysics Data System (ADS)

    Zhai, Zhaoyang; Wang, Wenjun; Mei, Xuesong; Wang, Kedian; Yang, Huizhu

    2017-05-01

    Nanosecond pulse laser was used to study nickel-based alloy drilling and compare processing results of microholes in air environment and water environment. Through analysis and comparison, it's found that environmental medium had obvious influence on morphology of laser drilling. High-speed camera was used to shoot plasma morphology during laser drilling process, theoretical formula was used to calculate boundary dimension of plasma and shock wave velocity, and finally parameters were substituted into computational fluid dynamics simulation software to obtain solutions. Obtained analysis results could intuitively explain different morphological features and forming reasons between laser drilling in air environment and water environment in the experiment from angle of plasma shock waves. By comparing simulation results and experimental results, it could help to get an understanding of formation mechanism of microhole morphology, thus providing basis for further improving process optimization of laser drilling quality.

  12. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    NASA Astrophysics Data System (ADS)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  13. Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report

    PubMed Central

    Huang, Yu-Hui; Seelaus, Rosemary; Zhao, Linping; Patel, Pravin K; Cohen, Mimis

    2016-01-01

    Osseointegrated titanium implants to the cranial skeleton for retention of facial prostheses have proven to be a reliable replacement for adhesive systems. However, improper placement of the implants can jeopardize prosthetic outcomes, and long-term success of an implant-retained prosthesis. Three-dimensional (3D) computer imaging, virtual planning, and 3D printing have become accepted components of the preoperative planning and design phase of treatment. Computer-aided design and computer-assisted manufacture that employ cone-beam computed tomography data offer benefits to patient treatment by contributing to greater predictability and improved treatment efficiencies with more reliable outcomes in surgical and prosthetic reconstruction. 3D printing enables transfer of the virtual surgical plan to the operating room by fabrication of surgical guides. Previous studies have shown that accuracy improves considerably with guided implantation when compared to conventional template or freehand implant placement. This clinical case report demonstrates the use of a 3D technological pathway for preoperative virtual planning through prosthesis fabrication, utilizing 3D printing, for a patient with an acquired orbital defect that was restored with an implant-retained silicone orbital prosthesis. PMID:27843356

  14. Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report.

    PubMed

    Huang, Yu-Hui; Seelaus, Rosemary; Zhao, Linping; Patel, Pravin K; Cohen, Mimis

    2016-01-01

    Osseointegrated titanium implants to the cranial skeleton for retention of facial prostheses have proven to be a reliable replacement for adhesive systems. However, improper placement of the implants can jeopardize prosthetic outcomes, and long-term success of an implant-retained prosthesis. Three-dimensional (3D) computer imaging, virtual planning, and 3D printing have become accepted components of the preoperative planning and design phase of treatment. Computer-aided design and computer-assisted manufacture that employ cone-beam computed tomography data offer benefits to patient treatment by contributing to greater predictability and improved treatment efficiencies with more reliable outcomes in surgical and prosthetic reconstruction. 3D printing enables transfer of the virtual surgical plan to the operating room by fabrication of surgical guides. Previous studies have shown that accuracy improves considerably with guided implantation when compared to conventional template or freehand implant placement. This clinical case report demonstrates the use of a 3D technological pathway for preoperative virtual planning through prosthesis fabrication, utilizing 3D printing, for a patient with an acquired orbital defect that was restored with an implant-retained silicone orbital prosthesis.

  15. Establishing cephalometric landmarks for the translational study of Le Fort-based facial transplantation in Swine: enhanced applications using computer-assisted surgery and custom cutting guides.

    PubMed

    Santiago, Gabriel F; Susarla, Srinivas M; Al Rakan, Mohammed; Coon, Devin; Rada, Erin M; Sarhane, Karim A; Shores, Jamie T; Bonawitz, Steven C; Cooney, Damon; Sacks, Justin; Murphy, Ryan J; Fishman, Elliot K; Brandacher, Gerald; Lee, W P Andrew; Liacouras, Peter; Grant, Gerald; Armand, Mehran; Gordon, Chad R

    2014-05-01

    Le Fort-based, maxillofacial allotransplantation is a reconstructive alternative gaining clinical acceptance. However, the vast majority of single-jaw transplant recipients demonstrate less-than-ideal skeletal and dental relationships, with suboptimal aesthetic harmony. The purpose of this study was to investigate reproducible cephalometric landmarks in a large-animal model, where refinement of computer-assisted planning, intraoperative navigational guidance, translational bone osteotomies, and comparative surgical techniques could be performed. Cephalometric landmarks that could be translated into the human craniomaxillofacial skeleton, and that would remain reliable following maxillofacial osteotomies with midfacial alloflap inset, were sought on six miniature swine. Le Fort I- and Le Fort III-based alloflaps were harvested in swine with osteotomies, and all alloflaps were either autoreplanted or transplanted. Cephalometric analyses were performed on lateral cephalograms preoperatively and postoperatively. Critical cephalometric data sets were identified with the assistance of surgical planning and virtual prediction software and evaluated for reliability and translational predictability. Several pertinent landmarks and human analogues were identified, including pronasale, zygion, parietale, gonion, gnathion, lower incisor base, and alveolare. Parietale-pronasale-alveolare and parietale-pronasale-lower incisor base were found to be reliable correlates of sellion-nasion-A point angle and sellion-nasion-B point angle measurements in humans, respectively. There is a set of reliable cephalometric landmarks and measurement angles pertinent for use within a translational large-animal model. These craniomaxillofacial landmarks will enable development of novel navigational software technology, improve cutting guide designs, and facilitate exploration of new avenues for investigation and collaboration.

  16. Fashion Production and Management Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Div. of Vocational Education.

    This program guide presents the standard fashion production and management curriculum for technical institutes in Georgia. It is designed to relate primarily to the development of those skills needed to become a qualified alterationist, clothing design assistant, home textiles assistant, fashion management assistant, or tailoring assistant. A…

  17. Computer-assisted surgery of the paranasal sinuses: technical and clinical experience with 368 patients, using the Vector Vision Compact system.

    PubMed

    Stelter, K; Andratschke, M; Leunig, A; Hagedorn, H

    2006-12-01

    This paper presents our experience with a navigation system for functional endoscopic sinus surgery. In this study, we took particular note of the surgical indications and risks and the measurement precision and preparation time required, and we present one brief case report as an example. Between 2000 and 2004, we performed functional endoscopic sinus surgery on 368 patients at the Ludwig Maximilians University, Munich, Germany. We used the Vector Vision Compact system (BrainLAB) with laser registration. The indications for surgery ranged from severe nasal polyps and chronic sinusitis to malignant tumours of the paranasal sinuses and skull base. The time needed for data preparation was less than five minutes. The time required for preparation and patient registration depended on the method used and the experience of the user. In the later cases, it took 11 minutes on average, using Z-Touch registration. The clinical plausibility test produced an average deviation of 1.3 mm. The complications of system use comprised one intra-operative re-registration (18 per cent) and one complete failure (5 per cent). Despite the assistance of an accurate working computer, the anterior ethmoidal artery was incised in one case. However, in all 368 cases, we experienced no cerebrospinal fluid leaks, optic nerve lesions, retrobulbar haematomas or intracerebral bleeding. There were no deaths. From our experience with computer-guided surgical procedures, we conclude that computer-guided navigational systems are so accurate that the risk of misleading the surgeon is minimal. In the future, their use in certain specialized procedures will be not only sensible but mandatory. We recommend their use not only in difficult surgical situations but also in routine procedures and for surgical training.

  18. The LARSYS Educational Package: Instructor's Notes for Use with the Data 100

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Russell, J. D.

    1977-01-01

    The LARSYS Educational Package is a set of instructional materials developed to train people to analyze remotely sensed multispectral data using LARSYS, a computer software system. The materials included in this volume have been designed to assist LARSYS instructors as they guide students through the LARSYS Educational Package. All of the materials have been updated from the previous version to reflect the use of a Data 100 Remote Terminal.

  19. CLINICAL APPLICATION OF A DRILL GUIDE TEMPLATE FOR PEDICLE SCREW PLACEMENT IN SEVERE SCOLIOSIS.

    PubMed

    Li, Xin; Zhang, Yaoshen; Zhang, Qiang; Zhao, Changsong; Liu, Kun

    2017-01-01

    To evaluate the accuracy and the effect of drill guide template for pedicle screw placement in severe scoliosis. Eight patients with rigid scoliosis were enrolled, five males and three females, ranging from nine to 23 years old. A three-dimensional CT scan of the spine was performed and saved as a DICOM file type. The multi-level template was designed by Mimics software and manufactured according to the part of the most severe deformity. The drill template was placed on the corresponding vertebral surface. Pedicle screws were carefully inserted across the trajectory of the template. Postoperatively, the positions of the pedicle screws were evaluated by CT scan and graded for validation. No spinal cord injury or nerve damage occurred. All patients had satisfactory outcomes. The abnormalities and the measures observed during operation were the same as those found in the preoperative period. The position of the pedicle screws was accurate, according to the postoperative X-ray and CT scan. The rate of scoliosis correction was 60%. Compared with controls, surgery time, blood loss and radiation were significantly lower. With the application of multi-level template, the placement of pedicle screws shows high accuracy in scoliosis with shorter surgical time, less blood loss and less radiation exposure. Level of Evidence III, Retrospective Comparative Study.

  20. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone.

    PubMed

    Gupta, Vishal; Pandey, Pulak M; Gupta, Ravi K; Mridha, Asit R

    2017-03-01

    Bone drilling is common in orthopedic procedures and the heat produced during conventional experimental drilling often exceeds critical temperature of 47 °C and induces thermal osteonecrosis. The osteonecrosis may be the reason for impaired healing, early loosening and implant failure. This study was undertaken to control the temperature rise by interrupted cutting and reduced friction effects at the interface of drill tool and the bone surface. In this work, rotary ultrasonic drilling technique with diamond abrasive particles coated on the hollow drill tool without any internal or external cooling assistance was used. Experiments were performed at room temperature on the mid-diaphysis sections of fresh pig bones, which were harvested immediately after sacrifice of the animal. Both rotary ultrasonic drilling on bone and conventional surgical drilling on bone were performed in a five set of experiments on each process using identical constant process parameters. The maximum temperature of each trial was recorded by K-type thermocouple device. Ethylenediaminetetraacetic acid decalcification was done for microscopic examination of bone. In this comparative procedure, rotary ultrasonic drilling on bone produced much lower temperature, that is, 40.2 °C ± 0.4 °C and 40.3 °C ± 0.2 °C as compared to that of conventional surgical drilling on bone, that is, 74.9 °C ± 0.8 °C and 74.9 °C ± 0.6 °C with respect to thermocouples fixed at first and second position, respectively. The conventional surgical drilling on bone specimens revealed gross tissue burn, microscopic evidence of thermal osteonecrosis and tissue injury in the form of cracks due to the generated force during drilling. But our novel technique showed no such features. Rotary ultrasonic drilling on bone technique is robust and superior to other methods for drilling as it induces no thermal osteonecrosis and does not damage the bone by generating undue forces during drilling.

  1. Assess to Public Meetings [and] Assistive Listening Devices (ALD'S) [and] Access to Printed Information by Visually-Impaired Persons. Technical Assistance Guides.

    ERIC Educational Resources Information Center

    Department of Justice, Washington, DC. Civil Rights Div.

    This item consists of three separate "Technical Assistance Guides" combined into one document because they all are concerned with improving access to information for handicapped people. Specifically, the three guides provide: (1) information to enable hearing impaired, visually impaired, and mobility impaired persons to have access to public…

  2. The smiling scan technique: Facially driven guided surgery and prosthetics.

    PubMed

    Pozzi, Alessandro; Arcuri, Lorenzo; Moy, Peter K

    2018-04-11

    To introduce a proof of concept technique and new integrated workflow to optimize the functional and esthetic outcome of the implant-supported restorations by means of a 3-dimensional (3D) facially-driven, digital assisted treatment plan. The Smiling Scan technique permits the creation of a virtual dental patient (VDP) showing a broad smile under static conditions. The patient is exposed to a cone beam computed tomography scan (CBCT), displaying a broad smile for the duration of the examination. Intraoral optical surface scanning (IOS) of the dental and soft tissue anatomy or extraoral optical surface scanning (EOS) of the study casts are achieved. The superimposition of the digital imaging and communications in medicine (DICOM) files with standard tessellation language (STL) files is performed using the virtual planning software program permitting the creation of a VDP. The smiling scan is an effective, easy to use, and low-cost technique to develop a more comprehensive and simplified facially driven computer-assisted treatment plan, allowing a prosthetically driven implant placement and the delivery of an immediate computer aided design (CAD) computer aided manufacturing (CAM) temporary fixed dental prostheses (CAD/CAM technology). Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Assistive technology for ultrasound-guided central venous catheter placement.

    PubMed

    Ikhsan, Mohammad; Tan, Kok Kiong; Putra, Andi Sudjana

    2018-01-01

    This study evaluated the existing technology used to improve the safety and ease of ultrasound-guided central venous catheterization. Electronic database searches were conducted in Scopus, IEEE, Google Patents, and relevant conference databases (SPIE, MICCAI, and IEEE conferences) for related articles on assistive technology for ultrasound-guided central venous catheterization. A total of 89 articles were examined and pointed to several fields that are currently the focus of improvements to ultrasound-guided procedures. These include improving needle visualization, needle guides and localization technology, image processing algorithms to enhance and segment important features within the ultrasound image, robotic assistance using probe-mounted manipulators, and improving procedure ergonomics through in situ projections of important information. Probe-mounted robotic manipulators provide a promising avenue for assistive technology developed for freehand ultrasound-guided percutaneous procedures. However, there is currently a lack of clinical trials to validate the effectiveness of these devices.

  4. Comparison of Ultrasound-Guided and Fluoroscopy-Assisted Antegrade Common Femoral Artery Puncture Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slattery, Michael M.; Goh, Gerard S.; Power, Sarah

    PurposeTo prospectively compare the procedural time and complication rates of ultrasound-guided and fluoroscopy-assisted antegrade common femoral artery (CFA) puncture techniques.Materials and MethodsHundred consecutive patients, undergoing a vascular procedure for which an antegrade approach was deemed necessary/desirable, were randomly assigned to undergo either ultrasound-guided or fluoroscopy-assisted CFA puncture. Time taken from administration of local anaesthetic to vascular sheath insertion in the superficial femoral artery (SFA), patients’ age, body mass index (BMI), fluoroscopy radiation dose, haemostasis method and immediate complications were recorded. Mean and median values were calculated and statistically analysed with unpaired t tests.ResultsSixty-nine male and 31 female patients underwent antegrademore » puncture (mean age 66.7 years). The mean BMI was 25.7 for the ultrasound-guided (n = 53) and 25.3 for the fluoroscopy-assisted (n = 47) groups. The mean time taken for the ultrasound-guided puncture was 7 min 46 s and for the fluoroscopy-assisted technique was 9 min 41 s (p = 0.021). Mean fluoroscopy dose area product in the fluoroscopy group was 199 cGy cm{sup 2}. Complications included two groin haematomas in the ultrasound-guided group and two retroperitoneal haematomas and one direct SFA puncture in the fluoroscopy-assisted group.ConclusionUltrasound-guided technique is faster and safer for antegrade CFA puncture when compared to the fluoroscopic-assisted technique alone.« less

  5. System for assisted mobility using eye movements based on electrooculography.

    PubMed

    Barea, Rafael; Boquete, Luciano; Mazo, Manuel; López, Elena

    2002-12-01

    This paper describes an eye-control method based on electrooculography (EOG) to develop a system for assisted mobility. One of its most important features is its modularity, making it adaptable to the particular needs of each user according to the type and degree of handicap involved. An eye model based on electroculographic signal is proposed and its validity is studied. Several human-machine interfaces (HMI) based on EOG are commented, focusing our study on guiding and controlling a wheelchair for disabled people, where the control is actually effected by eye movements within the socket. Different techniques and guidance strategies are then shown with comments on the advantages and disadvantages of each one. The system consists of a standard electric wheelchair with an on-board computer, sensors and a graphic user interface run by the computer. On the other hand, this eye-control method can be applied to handle graphical interfaces, where the eye is used as a mouse computer. Results obtained show that this control technique could be useful in multiple applications, such as mobility and communication aid for handicapped persons.

  6. Using Real-time Event Tracking Sensitivity Analysis to Overcome Sensor Measurement Uncertainties of Geo-Information Management in Drilling Disasters

    NASA Astrophysics Data System (ADS)

    Tavakoli, S.; Poslad, S.; Fruhwirth, R.; Winter, M.

    2012-04-01

    This paper introduces an application of a novel EventTracker platform for instantaneous Sensitivity Analysis (SA) of large scale real-time geo-information. Earth disaster management systems demand high quality information to aid a quick and timely response to their evolving environments. The idea behind the proposed EventTracker platform is the assumption that modern information management systems are able to capture data in real-time and have the technological flexibility to adjust their services to work with specific sources of data/information. However, to assure this adaptation in real time, the online data should be collected, interpreted, and translated into corrective actions in a concise and timely manner. This can hardly be handled by existing sensitivity analysis methods because they rely on historical data and lazy processing algorithms. In event-driven systems, the effect of system inputs on its state is of value, as events could cause this state to change. This 'event triggering' situation underpins the logic of the proposed approach. Event tracking sensitivity analysis method describes the system variables and states as a collection of events. The higher the occurrence of an input variable during the trigger of event, the greater its potential impact will be on the final analysis of the system state. Experiments were designed to compare the proposed event tracking sensitivity analysis with existing Entropy-based sensitivity analysis methods. The results have shown a 10% improvement in a computational efficiency with no compromise for accuracy. It has also shown that the computational time to perform the sensitivity analysis is 0.5% of the time required compared to using the Entropy-based method. The proposed method has been applied to real world data in the context of preventing emerging crises at drilling rigs. One of the major purposes of such rigs is to drill boreholes to explore oil or gas reservoirs with the final scope of recovering the content of such reservoirs; both in onshore regions as well as in offshore regions. Drilling a well is always guided by technical, economic and security constraints to prevent crew, equipment and environment from injury, damage and pollution. Although risk assessment and local practice provides a high degree of security, uncertainty is given by the behaviour of the formation which may cause crucial situations at the rig. To overcome such uncertainties real-time sensor measurements form a base to predict and thus prevent such crises, the proposed method supports the identification of the data necessary for that.

  7. Digital Game-Based Learning: A Supplement for Medication Calculation Drills in Nurse Education

    ERIC Educational Resources Information Center

    Foss, Brynjar; Lokken, Atle; Leland, Arne; Stordalen, Jorn; Mordt, Petter; Oftedal, Bjorg F.

    2014-01-01

    Student nurses, globally, appear to struggle with medication calculations. In order to improve these skills among student nurses, the authors developed The Medication Game--an online computer game that aims to provide simple mathematical and medical calculation drills, and help students practise standard medical units and expressions. The aim of…

  8. Nociones de la programacion de lenguas extranjeras: ensayo metodologico (Notions on the Programming of Foreign Languages: Methodological Experiment)

    ERIC Educational Resources Information Center

    Feldman, David

    1975-01-01

    Presents a computerized program for foreign language learning giving drills for all the major language skills. The drills are followed by an extensive bibliography of documents in some way dealing with computer based instruction, particularly foreign language instruction. (Text is in Spanish.) (TL)

  9. Optimization of Computerized Drills: An Instructional Approach.

    ERIC Educational Resources Information Center

    Siegel, Martin A.; DiBello, Louis V.

    This report describes a computer drill called the Corrective Feedback Paradigm (CFP) and summarizes a research study which examines the effects of the CFP on posttest and time to mastery achievement. The CFP, which embodies the use of such principles as mastery learning, increasing ratio review, and discrimination training, is capable of being…

  10. V-TECS Guide for Medical Assistant.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This V-TECS (Vocational-Technical Consortium of States) Guide is an extension or continuation of the V-TECS catalog for the occupation of medical assistant. The guide is designed to help South Carolina teachers to promote the art of learning while teaching subject matter. The guide addresses the three domains of learning: psychomotor, cognitive,…

  11. Medical Secretary and Medical Office Assistant Curriculum Guide.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This curriculum guide consists of materials for use in teaching a competency-based course to prepare students for employment as medical secretaries or medical office assistants. The first part of the guide contains introductory information, including a description of the development of the guide, an equipment list, a list of criteria for…

  12. A Third Arm for the Surgeon

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In laparoscopic surgery, tiny incisions are made in the patient's body and a laparoscope (an optical tube with a camera at the end) is inserted. The camera's image is projected onto two video screens, whose views guide the surgeon through the procedure. AESOP, a medical robot developed by Computer Motion, Inc. with NASA assistance, eliminates the need for a human assistant to operate the camera. The surgeon uses a foot pedal control to move the device, allowing him to use both hands during the surgery. Miscommunication is avoided; AESOP's movement is smooth and steady, and the memory vision is invaluable. Operations can be completed more quickly, and the patient spends less time under anesthesia. AESOP has been approved by the FDA.

  13. Evaluation of the clinical benefit of an electromagnetic navigation system for CT-guided interventional radiology procedures in the thoraco-abdominal region compared with conventional CT guidance (CTNAV II): study protocol for a randomised controlled trial.

    PubMed

    Rouchy, R C; Moreau-Gaudry, A; Chipon, E; Aubry, S; Pazart, L; Lapuyade, B; Durand, M; Hajjam, M; Pottier, S; Renard, B; Logier, R; Orry, X; Cherifi, A; Quehen, E; Kervio, G; Favelle, O; Patat, F; De Kerviler, E; Hughes, C; Medici, M; Ghelfi, J; Mounier, A; Bricault, I

    2017-07-06

    Interventional radiology includes a range of minimally invasive image-guided diagnostic and therapeutic procedures that have become routine clinical practice. Each procedure involves a percutaneous needle insertion, often guided using computed tomography (CT) because of its availability and usability. However, procedures remain complicated, in particular when an obstacle must be avoided, meaning that an oblique trajectory is required. Navigation systems track the operator's instruments, meaning the position and progression of the instruments are visualised in real time on the patient's images. A novel electromagnetic navigation system for CT-guided interventional procedures (IMACTIS-CT®) has been developed, and a previous clinical trial demonstrated improved needle placement accuracy in navigation-assisted procedures. In the present trial, we are evaluating the clinical benefit of the navigation system during the needle insertion step of CT-guided procedures in the thoraco-abdominal region. This study is designed as an open, multicentre, prospective, randomised, controlled interventional clinical trial and is structured as a standard two-arm, parallel-design, individually randomised trial. A maximum of 500 patients will be enrolled. In the experimental arm (navigation system), the procedures are carried out using navigation assistance, and in the active comparator arm (CT), the procedures are carried out with conventional CT guidance. The randomisation is stratified by centre and by the expected difficulty of the procedure. The primary outcome of the trial is a combined criterion to assess the safety (number of serious adverse events), efficacy (number of targets reached) and performance (number of control scans acquired) of navigation-assisted, CT-guided procedures as evaluated by a blinded radiologist and confirmed by an expert committee in case of discordance. The secondary outcomes are (1) the duration of the procedure, (2) the satisfaction of the operator and (3) the irradiation dose delivered, with (4) subgroup analysis according to the expected difficulty of the procedure, as well as an evaluation of (5) the usability of the device. This trial addresses the lack of published high-level evidence studies in which navigation-assisted CT-guided interventional procedures are evaluated. This trial is important because it addresses the problems associated with conventional CT guidance and is particularly relevant because the number of interventional radiology procedures carried out in routine clinical practice is increasing. ClinicalTrials.gov identifier: NCT01896219 . Registered on 5 July 2013.

  14. Development of a thermally-assisted piercing (TAP) process for introducing holes into thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas W. A.

    Composite parts can be manufactured to near-net shape with minimum wastage of material; however, there is almost always a need for further machining. The most common post-manufacture machining operations for composite materials are to create holes for assembly. This thesis presents and discusses a thermally-assisted piercing process that can be used as a technique for introducing holes into thermoplastic composites. The thermally-assisted piercing process heats up, and locally melts, thermoplastic composites to allow material to be displaced around a hole, rather than cutting them out from the structure. This investigation was concerned with how the variation of piercing process parameters (such as the size of the heated area, the temperature of the laminate prior to piercing and the geometry of the piercing spike) changed the material microstructure within carbon fibre/Polyetheretherketone (PEEK) laminates. The variation of process parameters was found to significantly affect the formation of resin rich regions, voids and the fibre volume fraction in the material surrounding the hole. Mechanical testing (using open-hole tension, open-hole compression, plain-pin bearing and bolted bearing tests) showed that the microstructural features created during piercing were having significant influence over the resulting mechanical performance of specimens. By optimising the process parameters strength improvements of up to 11% and 21% were found for pierced specimens when compared with drilled specimens for open-hole tension and compression loading, respectively. For plain-pin and bolted bearing tests, maximum strengths of 77% and 85%, respectively, were achieved when compared with drilled holes. Improvements in first failure force (by 10%) and the stress at 4% hole elongation (by 18%), however, were measured for the bolted bearing tests when compared to drilled specimens. The overall performance of pierced specimens in an industrially relevant application ultimately depends on the properties required for that specific scenario. The results within this thesis show that the piercing technique could be used as a direct replacement to drilling depending on this application.

  15. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules.

    PubMed

    Maluendes, S A; McLean, A D

    1992-12-18

    We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.

  16. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules

    NASA Technical Reports Server (NTRS)

    Maluendes, S. A.; McLean, A. D.; Loew, G. H. (Principal Investigator)

    1992-01-01

    We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.

  17. Basic JCL for the CRAY-1 operating system (COS) with emphasis on making the transition from CDC 7600/SCOPE

    NASA Technical Reports Server (NTRS)

    Howe, G.; Saunders, D.

    1983-01-01

    Users of the CDC 7600 at Ames are assisted in making the transition to the CRAY-1. Similarities and differences in the basic JCL are summarized, and a dozen or so examples of typical batch jobs for the two systems are shown in parallel. Some changes to look for in FORTRAN programs and in the use of UPDATE are also indicated. No attempt is made to cover magnetic tape handling. The material here should not be considered a substitute for reading the more conventional manuals or the User's Guide for the Advanced Computational Facility, available from the Computer Information Center.

  18. A study on directional resistivity logging-while-drilling based on self-adaptive hp-FEM

    NASA Astrophysics Data System (ADS)

    Liu, Dejun; Li, Hui; Zhang, Yingying; Zhu, Gengxue; Ai, Qinghui

    2014-12-01

    Numerical simulation of resistivity logging-while-drilling (LWD) tool response provides guidance for designing novel logging instruments and interpreting real-time logging data. In this paper, based on self-adaptive hp-finite element method (hp-FEM) algorithm, we analyze LWD tool response against model parameters and briefly illustrate geosteering capabilities of directional resistivity LWD. Numerical simulation results indicate that the change of source spacing is of obvious influence on the investigation depth and detecting precision of resistivity LWD tool; the change of frequency can improve the resolution of low-resistivity formation and high-resistivity formation. The simulation results also indicate that the self-adaptive hp-FEM algorithm has good convergence speed and calculation accuracy to guide the geologic steering drilling and it is suitable to simulate the response of resistivity LWD tools.

  19. Magnetic Resonance Imaging-Guided Osseous Biopsy in Children With Chronic Recurrent Multifocal Osteomyelitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Jan, E-mail: jfritz9@jhmi.edu; Tzaribachev, Nikolay; Thomas, Christoph

    2012-02-15

    Purpose: To report the safety and diagnostic performance of magnetic resonance (MRI)-guided core biopsy of osseous lesions in children with chronic recurrent multifocal osteomyelitis (CRMO) that were visible on MRI but were occult on radiography and computed tomography (CT). Materials and Methods: A retrospective analysis of MRI-guided osseous biopsy performed in seven children (four girls and three boys; mean age 13 years (range 11 to 14) with CRMO was performed. Indication for using MRI guidance was visibility of lesions by MRI only. MRI-guided procedures were performed with 0.2-Tesla (Magnetom Concerto; Siemens, Erlangen, Germany; n = 5) or 1.5-T (Magnetom Espree;more » Siemens; n = 2) open MRI systems. Core needle biopsy was obtained using an MRI-compatible 4-mm drill system. Conscious sedation or general anesthesia was used. Parameters evaluated were lesion visibility, technical success, procedure time, complications and microbiology, cytology, and histopathology findings. Results: Seven of seven (100%) targeted lesions were successfully visualized and sampled. All obtained specimens were sufficient for histopathological analysis. Length of time of the procedures was 77 min (range 64 to 107). No complications occurred. Histopathology showed no evidence of malignancy, which was confirmed at mean follow-up of 50 months (range 28 to 78). Chronic nonspecific inflammation characteristic for CRMO was present in four of seven (58%) patients, and edema with no inflammatory cells was found in three of seven (42%) patients. There was no evidence of infection in any patient. Conclusion: MRI-guided osseous biopsy is a safe and accurate technique for the diagnosis of pediatric CRMO lesions that are visible on MRI only.« less

  20. Image-guided sphenoid wing meningioma resection and simultaneous computer-assisted cranio-orbital reconstruction: technical case report.

    PubMed

    Westendorff, Carsten; Kaminsky, Jan; Ernemann, Ulrike; Reinert, Siegmar; Hoffmann, Jürgen

    2007-02-01

    Resection of large intraosseous sphenoid wing meningiomas is traditionally associated with significant morbidity. Rapid prototyping techniques have become widely used for treatment planning. Yet, the transfer of a treatment plan into the intraoperative situs strongly depends on the experience of the individual surgeon. Extensive resection with orbital decompression was planned and performed on the basis of rapid prototyping and surgical navigation techniques in a 44-year-old woman presenting with a large sphenoid wing meningioma on the right infiltrating the orbit. Tumor resection was simulated on a stereolithography model of the patient's head. The stereolithography model was scanned using computed tomography (CT) and the defect geometry was used to create a custom-made titanium implant. The implant consisted of a solid titanium core and a spot-welded titanium mesh surrounding the core, allowing for minor intraoperative adjustments of the implant size by reducing the mesh size. The stereolithography model with the incorporated implant was CT scanned again and the CT data were fused with the patient's original CT data. The implant borders indicating the resection borders were marked within the patient's CT data set. This treatment plan was transferred to an optical navigation system. Intraoperatively, tumor resection was performed using surgical navigation. In the presented case report, the combination of computer-assisted planning using rapid prototyping techniques and image-guided surgery allowed for an extensive tumor resection precisely according to a preoperative treatment plan in a patient presenting with a large intraosseous sphenoid wing meningioma. A larger clinical series with a long-term follow-up period will be needed to determine the reproducibility.

  1. Rural Resources Guide: A Directory of Public and Private Assistance for Small Communities.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    Designed to help rural officials, including tribal governments and community leaders, quickly identify sources of assistance for rural development, this guide catalogs approximately 440 sources of public and private national level technical and financial resource assistance. The sources of assistance listed generally focus on local governments and…

  2. Sub-Ocean Drilling

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.

  3. The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser.

    PubMed

    Sotsuka, Yohei; Nishimoto, Soh; Tsumano, Tomoko; Kawai, Kenichiro; Ishise, Hisako; Kakibuchi, Masao; Shimokita, Ryo; Yamauchi, Taisuke; Okihara, Shin-ichiro

    2014-05-01

    Currently, laser radiation is used routinely in medical applications. For infrared lasers, bone ablation and the healing process have been reported, but no laser systems are established and applied in clinical bone surgery. Furthermore, industrial laser applications utilize computer and robot assistance; medical laser radiations are still mostly conducted manually nowadays. The purpose of this study was to compare the histological appearance of bone ablation and healing response in rabbit radial bone osteotomy created by surgical saw and ytterbium-doped fiber laser controlled by a computer with use of nitrogen surface cooling spray. An Ytterbium (Yb)-doped fiber laser at a wavelength of 1,070 nm was guided by a computer-aided robotic system, with a spot size of 100 μm at a distance of approximately 80 mm from the surface. The output power of the laser was 60 W at the scanning speed of 20 mm/s scan using continuous wave system with nitrogen spray level 0.5 MPa (energy density, 3.8 × 10(4) W/cm(2)). Rabbits radial bone osteotomy was performed by an Yb-doped fiber laser and a surgical saw. Additionally, histological analyses of the osteotomy site were performed on day 0 and day 21. Yb-doped fiber laser osteotomy revealed a remarkable cutting efficiency. There were little signs of tissue damage to the muscle. Lased specimens have shown no delayed healing compared with the saw osteotomies. Computer-assisted robotic osteotomy with Yb-doped fiber laser was able to perform. In rabbit model, laser-induced osteotomy defects, compared to those by surgical saw, exhibited no delayed healing response.

  4. Percutaneous Sacroiliac Screw Placement: A Prospective Randomized Comparison of Robot-assisted Navigation Procedures with a Conventional Technique

    PubMed Central

    Wang, Jun-Qiang; Wang, Yu; Feng, Yun; Han, Wei; Su, Yong-Gang; Liu, Wen-Yong; Zhang, Wei-Jun; Wu, Xin-Bao; Wang, Man-Yi; Fan, Yu-Bo

    2017-01-01

    Background: Sacroiliac (SI) screw fixation is a demanding technique, with a high rate of screw malposition due to the complex pelvic anatomy. TiRobot™ is an orthopedic surgery robot which can be used for SI screw fixation. This study aimed to evaluate the accuracy of robot-assisted placement of SI screws compared with a freehand technique. Methods: Thirty patients requiring posterior pelvic ring stabilization were randomized to receive freehand or robot-assisted SI screw fixation, between January 2016 and June 2016 at Beijing Jishuitan Hospital. Forty-five screws were placed at levels S1 and S2. In both methods, the primary end point screw position was assessed and classified using postoperative computed tomography. Fisher's exact probability test was used to analyze the screws’ positions. Secondary end points, such as duration of trajectory planning, surgical time after reduction of the pelvis, insertion time for guide wire, number of guide wire attempts, and radiation exposure without pelvic reduction, were also assessed. Results: Twenty-three screws were placed in the robot-assisted group and 22 screws in the freehand group; no postoperative complications or revisions were reported. The excellent and good rate of screw placement was 100% in the robot-assisted group and 95% in the freehand group. The P value (0.009) showed the same superiority in screw distribution. The fluoroscopy time after pelvic reduction in the robot-assisted group was significantly shorter than that in the freehand group (median [Q1, Q3]: 6.0 [6.0, 9.0] s vs. median [Q1, Q3]: 36.0 [21.5, 48.0] s; χ2 = 13.590, respectively, P < 0.001); no difference in operation time after reduction of the pelvis was noted (χ2 = 1.990, P = 0.158). Time for guide wire insertion was significantly shorter for the robot-assisted group than that for the freehand group (median [Q1, Q3]: 2.0 [2.0, 2.7] min vs. median [Q1, Q3]: 19.0 [15.5, 45.0] min; χ2 = 20.952, respectively, P < 0.001). The number of guide wire attempts in the robot-assisted group was significantly less than that in the freehand group (median [Q1, Q3]: 1.0 [1.0,1.0] time vs. median [Q1, Q3]: 7.0 [1.0, 9.0] times; χ2 = 15.771, respectively, P < 0.001). The instrumented SI levels did not differ between both groups (from S1 to S2, χ2 = 4.760, P = 0.093). Conclusions: Accuracy of the robot-assisted technique was superior to that of the freehand technique. Robot-assisted navigation is safe for unstable posterior pelvic ring stabilization, especially in S1, but also in S2. SI screw insertion with robot-assisted navigation is clinically feasible. PMID:29067950

  5. Percutaneous Sacroiliac Screw Placement: A Prospective Randomized Comparison of Robot-assisted Navigation Procedures with a Conventional Technique.

    PubMed

    Wang, Jun-Qiang; Wang, Yu; Feng, Yun; Han, Wei; Su, Yong-Gang; Liu, Wen-Yong; Zhang, Wei-Jun; Wu, Xin-Bao; Wang, Man-Yi; Fan, Yu-Bo

    2017-11-05

    Sacroiliac (SI) screw fixation is a demanding technique, with a high rate of screw malposition due to the complex pelvic anatomy. TiRobot™ is an orthopedic surgery robot which can be used for SI screw fixation. This study aimed to evaluate the accuracy of robot-assisted placement of SI screws compared with a freehand technique. Thirty patients requiring posterior pelvic ring stabilization were randomized to receive freehand or robot-assisted SI screw fixation, between January 2016 and June 2016 at Beijing Jishuitan Hospital. Forty-five screws were placed at levels S1 and S2. In both methods, the primary end point screw position was assessed and classified using postoperative computed tomography. Fisher's exact probability test was used to analyze the screws' positions. Secondary end points, such as duration of trajectory planning, surgical time after reduction of the pelvis, insertion time for guide wire, number of guide wire attempts, and radiation exposure without pelvic reduction, were also assessed. Twenty-three screws were placed in the robot-assisted group and 22 screws in the freehand group; no postoperative complications or revisions were reported. The excellent and good rate of screw placement was 100% in the robot-assisted group and 95% in the freehand group. The P value (0.009) showed the same superiority in screw distribution. The fluoroscopy time after pelvic reduction in the robot-assisted group was significantly shorter than that in the freehand group (median [Q1, Q3]: 6.0 [6.0, 9.0] s vs. median [Q1, Q3]: 36.0 [21.5, 48.0] s; χ2 = 13.590, respectively, P < 0.001); no difference in operation time after reduction of the pelvis was noted (χ2 = 1.990, P = 0.158). Time for guide wire insertion was significantly shorter for the robot-assisted group than that for the freehand group (median [Q1, Q3]: 2.0 [2.0, 2.7] min vs. median [Q1, Q3]: 19.0 [15.5, 45.0] min; χ2 = 20.952, respectively, P < 0.001). The number of guide wire attempts in the robot-assisted group was significantly less than that in the freehand group (median [Q1, Q3]: 1.0 [1.0,1.0] time vs. median [Q1, Q3]: 7.0 [1.0, 9.0] times; χ2 = 15.771, respectively, P < 0.001). The instrumented SI levels did not differ between both groups (from S1 to S2, χ2 = 4.760, P = 0.093). Accuracy of the robot-assisted technique was superior to that of the freehand technique. Robot-assisted navigation is safe for unstable posterior pelvic ring stabilization, especially in S1, but also in S2. SI screw insertion with robot-assisted navigation is clinically feasible.

  6. Swahili Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This basic audiolingual course in standard Swahili appears in six volumes, Lesson Units 1-56. Units consist of a "blueprint" prefatory page outlining the phonological, morphological, and syntactic structures and new vocabulary to be presented; perception drills; Swahili dialog with cartoon guides and English translation; pattern and recombination…

  7. Interlake production established using quantitative hydrocarbon well-log analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, J.; Atkinson, A.

    1988-07-01

    Production was established in a new pay zone of the basal Interlake Formation adjacent to production in Midway field in Williams County, North Dakota. Hydrocarbon saturation, which was computed using hydrocarbon well-log (mud-log) data, and computed permeability encouraged the operator to run casing and test this zone. By use of drilling rig parameters, drilling mud properties, hydrocarbon-show data from the mud log, drilled rock and porosity descriptions, and wireline log porosity, this new technique computes oil saturation (percent of porosity) and permeability to the invading filtrate, using the Darcy equation. The Leonardo Fee well was drilled to test the Devonianmore » Duperow, the Silurian upper Interlake, and the Ordovician Red River. The upper two objectives were penetrated downdip from Midway production and there were no hydrocarbon shows. It was determined that the Red River was tight, based on sample examination by well site personnel. The basal Interlake, however, liberated hydrocarbon shows that were analyzed by this new technology. The results of this evaluation accurately predicted this well would be a commercial success when placed in production. Where geophysical log analysis might be questionable, this new evaluation technique may provide answers to anticipated oil saturation and producibility. The encouraging results of hydrocarbon saturation and permeability, produced by this technique, may be largely responsible for the well being in production today.« less

  8. Computed Tomography-Assisted Thoracoscopic Surgery: A Novel, Innovative Approach in Patients With Deep Intrapulmonary Lesions of Unknown Malignant Status.

    PubMed

    Kostrzewa, Michael; Kara, Kerim; Rathmann, Nils; Tsagogiorgas, Charalambos; Henzler, Thomas; Schoenberg, Stefan O; Hohenberger, Peter; Diehl, Steffen J; Roessner, Eric D

    2017-06-01

    Minimally invasive resection of small, deep intrapulmonary lesions can be challenging due to the difficulty of localizing them during video-assisted thoracoscopic surgery (VATS). We report our preliminary results evaluating the feasibility of an image-guided, minimally invasive, 1-stop-shop approach for the resection of small, deep intrapulmonary lesions in a hybrid operating room (OR). Fifteen patients (5 men, 10 women; mean age, 63 years) with a total of 16 solitary, deep intrapulmonary nodules of unknown malignant status were identified for intraoperative wire marking. Patients were placed on the operating table for resection by VATS. A marking wire was placed within the lesion under 3D laser and fluoroscopic guidance using a cone beam computed tomography system. Then, wedge resection by VATS was performed in the same setting without repositioning the patient. Complete resection with adequate safety margins was confirmed for all lesions. Marking wire placement facilitated resection in 15 of 16 lesions. Eleven lesions proved to be malignant, either primary or secondary; 5 were benign. Mean lesion size was 7.7 mm; mean distance to the pleural surface was 15.1 mm (mean lesion depth-diameter ratio, 2.2). Mean procedural time for marking wire placement was 35 minutes; mean VATS duration was 36 minutes. Computed tomography-assisted thoracoscopic surgery is a new, safe, and effective procedure for minimally invasive resection of small, deeply localized intrapulmonary lesions. The benefits of computed tomography-assisted thoracoscopic surgery are 1. One-stop-shop procedure, 2. Lower risk for the patient (no patient relocation, no marking wire loss), and 3. No need to coordinate scheduling between the CT room and OR.

  9. Iterations of computer- and template assisted mandibular or maxillary reconstruction with free flaps containing the lateral scapular border--Evolution of a biplanar plug-on cutting guide.

    PubMed

    Cornelius, Carl-Peter; Giessler, Goetz Andreas; Wilde, Frank; Metzger, Marc Christian; Mast, Gerson; Probst, Florian Andreas

    2016-03-01

    Computer-assisted planning and intraoperative implementation using templates have become appreciated modalities in craniofacial reconstruction with fibula and DCIA flaps due to saving in operation time, improved accuracy of osteotomies and easy insetting. Up to now, a similar development for flaps from the subscapular vascular system, namely the lateral scapular border and tip, has not been addressed in the literature. A cohort of 12 patients who underwent mandibular (n = 10) or maxillary (n = 2) reconstruction with free flaps containing the lateral scapular border and tip using computer-assisted planning, stereolithography (STL) models and selective laser sintered (SLS) templates for bone contouring and sub-segmentation osteotomies was reviewed focussing on iterations in the design of computer generated tools and templates. The technical evolution migrated from hybrid STL models over SLS templates for cut out as well as sub-segmentation with a uniplanar framework to plug-on tandem template assemblies providing a biplanar access for the in toto cut out from the posterior aspect in succession with contouring into sub-segments from the medial side. The latest design version is the proof of concept that virtual planning of bone flaps from the lateral scapular border can be successfully transferred into surgery by appropriate templates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Assisting At-Risk Populations. Secondary Learning Guide 11. Project Connect. Linking Self-Family-Work.

    ERIC Educational Resources Information Center

    Emily Hall Tremaine Foundation, Inc., Hartford, CT.

    This competency-based secondary learning guide on assisting at-risk populations (dropouts and homeless people) is part of a series that are adaptations of guides developed for adult consumer and homemaking education programs. The guides provide students with experiences that help them learn to do the following: make decisions; use creative…

  11. ICAM (Integrated Computer-Aided Manufacturing) Manufacturing Cost/Design Guide. Volume 7. Technology Transfer Summary.

    DTIC Science & Technology

    1984-09-01

    Application Cited Deere and Company e Assist in design of electronic systems for tractors, crawlers, graders, scrapers, etc. Defense Contract Audit Agency . Aid...in developing and enhancing operational audits . DoD, Cameron Station e Conduct affordability analyses; evalu- ate new start systems. DoD, Defense...document productivity gains. e Promotes better inLustry and customer re~latons by providing a common baseline or starting polut for cost vs. perfor- vanz

  12. Geology of the Marble exploration hole 4, Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    McKeown, Francis Alexander; Wilmarth, Verl Richard

    1959-01-01

    This report summarizes the information obtained during preparation of the lithologic log of the core and presents results of chemical analyses of marble samples collected from surface near the drill hole. The report was prepared by the U.S. Geological Survey on behalf of the Albuquerque Operations Office, U.S. Atomic Energy Commission. The writers acknowledge the assistance of Mr. John Foster, drilling foreman for Minerals Engineering Company and Mr. Walter A. Johnson, field engineer for Holmes and Narver, Inc., the engineering-contracting firm.

  13. Design of a Bottom Impermeable Barrier in Conjunction with A contaminated Site Containment Structure.

    DTIC Science & Technology

    1994-05-01

    utilizes drill bits and tubing to cut through the soil. Unlike the auger method, a slurry mixture is used to keep the drill bit clean and assist in...is applied. In the sleeve pipe method, or also called tube -a-manchette, the sleeve pipe is installed in the grout hole, and sealed in place with a...acts as a one-way valve. allowing grout out of the pipe, but not back into the sleeve. A grouting tube with double packer is used to inject the grout

  14. A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone

    PubMed Central

    Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof

    2013-01-01

    The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone. PMID:28788390

  15. A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone.

    PubMed

    Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof

    2013-11-19

    The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant's location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map ( n = 10) with conventional surgery without assistance ( n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient's safety during BAP surgery in the temporal bone.

  16. Integration of Ion Implantation with Scanning ProbeAlignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Rangelow, I.W.; Schenkel, T.

    We describe a scanning probe instrument which integrates ion beams with imaging and alignment functions of a piezo resistive scanning probe in high vacuum. Energetic ions (1 to a few hundred keV) are transported through holes in scanning probe tips [1]. Holes and imaging tips are formed by Focused Ion Beam (FIB) drilling and ion beam assisted thin film deposition. Transport of single ions can be monitored through detection of secondary electrons from highly charged dopant ions (e. g., Bi{sup 45+}) enabling single atom device formation. Fig. 1 shows SEM images of a scanning probe tip formed by ion beammore » assisted Pt deposition in a dual beam FIB. Ion beam collimating apertures are drilled through the silicon cantilever with a thickness of 5 {micro}m. Aspect ratio limitations preclude the direct drilling of holes with diameters well below 1 {micro}m, and smaller hole diameters are achieved through local thin film deposition [2]. The hole in Fig. 1 was reduced from 2 {micro}m to a residual opening of about 300 nm. Fig. 2 shows an in situ scanning probe image of an alignment dot pattern taken with the tip from Fig. 1. Transport of energetic ions through the aperture in the scanning probe tip allows formation of arbitrary implant patterns. In the example shown in Fig. 2 (right), a 30 nm thick PMMA resist layer on silicon was exposed to 7 keV Ar{sup 2+} ions with an equivalent dose of 10{sup 14} ions/cm{sup 2} to form the LBL logo. An exciting goal of this approach is the placement of single dopant ions into precise locations for integration of single atom devices, such as donor spin based quantum computers [3, 4]. In Fig. 3, we show a section of a micron size dot area exposed to a low dose (10{sup 11}/cm{sup 2}) of high charge state dopant ions. The Bi{sup 45+} ions (200 keV) were extracted from a low emittance highly charged ions source [5]. The potential energy of B{sup 45+}, i. e., the sum of the binding energies required to remove the electrons, amounts to 36 keV. This energy is deposited within {approx}10 fs when an ion impinges on a target. The highly localized energy deposition results in efficient resist exposure, and is associated with strongly enhanced secondary electron emission, which allows monitoring of single ion impacts [4]. The ex situ scanning probe image with line scan in Fig. 3 shows a single ion impact site in PMMA (after standard development). In our presentation, we will discuss resolution requirements for ion placement in prototype quantum computer structures [3] with respect to resolution limiting factors in ion implantation with scanning probe alignment.« less

  17. Making Training a Rewarding Experience for Offshore Drilling Personnel at Diamond M Company.

    ERIC Educational Resources Information Center

    Zambon, Franco

    The problems of the training departments of offshore drilling companies are to determine novel rewards for trainees and to use these rewards correctly. Rewards are motivators and real or apparent satisfiers of needs. For some instructional goals, computer-based training satisfies many needs and applies many motivators to hold the trainee's…

  18. Learning Rates and Known-to-Unknown Flash-Card Ratios: Comparing Effectiveness While Holding Instructional Time Constant

    ERIC Educational Resources Information Center

    Forbes, Bethany E.; Skinner, Christopher H.; Black, Michelle P.; Yaw, Jared; Booher, Joshua; Delisle, Jean

    2013-01-01

    Using alternating treatments designs, we compared learning rates across 2 computer-based flash-card interventions (3?min each): a traditional drill intervention with 15 unknown words and an interspersal intervention with 12 known words and 3 unknown words. Each student acquired more words under the traditional drill intervention. Discussion…

  19. Well-planning programs give students field-like experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sifferman, T.R.; Chapman, L.

    1983-01-01

    The University of Tulsa recently was given a package of computer well planning and drilling programs that will enable petroleum engineering students to gain valuable experience in designing well programs while still in school. Comprehensive homework assignments are now given in areas of drilling fluids programing, hydraulics, directional wells and surveying. Additional programs are scheduled for next semester.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Chemical Hazard Response Information System (CHRIS) is designed to provide timely information essential for proper decision-making by responsible Coast Guard personnel and others during emergencies involving the water transport of hazardous chemicals. A secondary purpose is the provision of certain basic non-emergency-related information to support the Coast Guard in its efforts to achieve improved levels of safety in the bulk shipment of hazardous chemicals. CHRIS consists of four reference guides or manuals, a regional contingency plan, a hazard-assessment computer system (HACS), and an organizational entity located at Coast Guard headquarters. The four manuals contain chemical data, hazard-assessment methods, andmore » response guides. Regional data for the entire coastline are included in the Coastal Regional Contingency Plans. The headquarters staff operates the hazard-assessment computer system and provides technical assistance on request by field personnel during emergencies. In addition, it is responsible for periodic update and maintenance of CHRIS. A brief description of each component of CHRIS and its relation to this manual - the Hazard-Assessment Handbook - is provided.« less

  1. Lunar robotic maintenance module

    NASA Technical Reports Server (NTRS)

    Ayres, Michael L.

    1988-01-01

    A design for a robotic maintenance module that will assist a mobile 100-meter lunar drill is introduced. The design considers the following areas of interest: the atmospheric conditions, actuator systems, power supply, material selection, weight, cooling system and operation.

  2. Computer Augmented Video Education.

    ERIC Educational Resources Information Center

    Sousa, M. B.

    1979-01-01

    Describes project CAVE (Computer Augmented Video Education), an ongoing effort at the U.S. Naval Academy to present lecture material on videocassette tape, reinforced by drill and practice through an interactive computer system supported by a 12 channel closed circuit television distribution and production facility. (RAO)

  3. Computer Center: It's Time to Take Inventory.

    ERIC Educational Resources Information Center

    Spain, James D.

    1984-01-01

    Describes typical instructional applications of computers. Areas considered include: (1) instructional simulations and animations; (2) data analysis; (3) drill and practice; (4) student evaluation; (5) development of computer models and simulations; (6) biometrics or biostatistics; and (7) direct data acquisition and analysis. (JN)

  4. Medical Assisting. A Learning Guide.

    ERIC Educational Resources Information Center

    Meyer, Rosemarie

    This competency-based, individualized learning package, consisting of 50 learning guides, is designed for use by students who are studying to become medical assistants. Included among the topics addressed in the individual learning guides are the following: using and caring for microscopes, understanding medical ethics and law, developing…

  5. Computational methods for a three-dimensional model of the petroleum-discovery process

    USGS Publications Warehouse

    Schuenemeyer, J.H.; Bawiec, W.J.; Drew, L.J.

    1980-01-01

    A discovery-process model devised by Drew, Schuenemeyer, and Root can be used to predict the amount of petroleum to be discovered in a basin from some future level of exploratory effort: the predictions are based on historical drilling and discovery data. Because marginal costs of discovery and production are a function of field size, the model can be used to make estimates of future discoveries within deposit size classes. The modeling approach is a geometric one in which the area searched is a function of the size and shape of the targets being sought. A high correlation is assumed between the surface-projection area of the fields and the volume of petroleum. To predict how much oil remains to be found, the area searched must be computed, and the basin size and discovery efficiency must be estimated. The basin is assumed to be explored randomly rather than by pattern drilling. The model may be used to compute independent estimates of future oil at different depth intervals for a play involving multiple producing horizons. We have written FORTRAN computer programs that are used with Drew, Schuenemeyer, and Root's model to merge the discovery and drilling information and perform the necessary computations to estimate undiscovered petroleum. These program may be modified easily for the estimation of remaining quantities of commodities other than petroleum. ?? 1980.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating whichmore » minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.« less

  7. Research on Computers in Mathematics Education, IV. The Use of Computers in Mathematics Education Resource Series.

    ERIC Educational Resources Information Center

    Kieren, Thomas E.

    This last paper in a set of four reviews research on a wide variety of computer applications in the mathematics classroom. It covers computer-based instruction, especially drill-and-practice and tutorial modes; computer-managed instruction; and computer-augmented problem-solving. Analytical comments on the findings and status of the research are…

  8. Improving Coolant Effectiveness through Drill Design Optimization in Gundrilling

    NASA Astrophysics Data System (ADS)

    Woon, K. S.; Tnay, G. L.; Rahman, M.

    2018-05-01

    Effective coolant application is essential to prevent thermo-mechanical failures of gun drills. This paper presents a novel study that enhances coolant effectiveness in evacuating chips from the cutting zone using a computational fluid dynamic (CFD) method. Drag coefficients and transport behaviour over a wide range of Reynold numbers were first established through a series of vertical drop tests. With these, a CFD model was then developed and calibrated with a set of horizontal drilling tests. Using this CFD model, critical drill geometries that lead to poor chip evacuation including the nose grind contour, coolant hole configuration and shoulder dub-off angle in commercial gun drills are identified. From this study, a new design that consists a 20° inner edge, 15° outer edge, 0° shoulder dub-off and kidney-shaped coolant channel is proposed and experimentally proven to be more superior than all other commercial designs.

  9. Computational fluid dynamic modeling of a medium-sized surface mine blasthole drill shroud

    PubMed Central

    Zheng, Y.; Reed, W.R.; Zhou, L.; Rider, J.P.

    2016-01-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) recently developed a series of models using computational fluid dynamics (CFD) to study airflows and respirable dust distribution associated with a medium-sized surface blasthole drill shroud with a dry dust collector system. Previously run experiments conducted in NIOSH’s full-scale drill shroud laboratory were used to validate the models. The setup values in the CFD models were calculated from experimental data obtained from the drill shroud laboratory and measurements of test material particle size. Subsequent simulation results were compared with the experimental data for several test scenarios, including 0.14 m3/s (300 cfm) and 0.24 m3/s (500 cfm) bailing airflow with 2:1, 3:1 and 4:1 dust collector-to-bailing airflow ratios. For the 2:1 and 3:1 ratios, the calculated dust concentrations from the CFD models were within the 95 percent confidence intervals of the experimental data. This paper describes the methodology used to develop the CFD models, to calculate the model input and to validate the models based on the experimental data. Problem regions were identified and revealed by the study. The simulation results could be used for future development of dust control methods for a surface mine blasthole drill shroud. PMID:27932851

  10. A composite lithology log while drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, E.; Sutcliffe, B.; Franks, A.

    A new method for producing a computerized composite lithology log (CLL) while drilling by integrating MWD (measurement while drilling) and surface data is described. At present, lithology logs are produced at the well site by mud loggers. They provide basic description and relative amounts of lithologies. Major difficulties are encountered in relating the cuttings to their original formations due to mixing in the drilling mud while transporting to the surface, sloughing shales, flawed sampling, etc. This results in a poor control on the stratigraphic sequence and on the depth of formation boundaries. A composite log can be produced after drillingmore » this additional inputs such as wireline, petrography, and paleontology. This process is labor intensive and expensive. The CLL integrates three types of data (MWD mechanical, MWD geophysical, and surface cuttings) acquired during drilling, in three time stages: (1) Real Time. MWD drilling mechanical data including the rate of penetration and the downhole torque. This stage would provide bed boundaries and some inferred lithology. This would assist the driller with immediate drilling decisions and determine formation tops for coring, casing point, and correlation. (2) MWD Time. Recomputation of the above by adding MWD geophysical data (gamma-ray, resistivity, neutron-density). This stage would upgrade the lithology inference, and give higher resolution to bed boundaries, (3) Lag Time. Detailed analysis of surface cuttings to confirm the inferred lithologies. This last input results in a high-quality CLL with accurate lithologies and bed boundaries.« less

  11. Medical Assisting Learning Guides.

    ERIC Educational Resources Information Center

    Meyer, Rose

    Eight student learning guides are provided for a medical assisting program at the secondary, postsecondary, or adult level. Each learning guide is composed of these component parts: a title page that states the task, purpose, program and task numbers, estimated time, and prerequisites; an optional learning contract that includes terminal…

  12. Microsurgical and Endoscopic Anatomy for Intradural Temporal Bone Drilling and Applications of the Electromagnetic Navigation System: Various Extensions of the Retrosigmoid Approach.

    PubMed

    Matsushima, Ken; Komune, Noritaka; Matsuo, Satoshi; Kohno, Michihiro

    2017-07-01

    The use of the retrosigmoid approach has recently been expanded by several modifications, including the suprameatal, transmeatal, suprajugular, and inframeatal extensions. Intradural temporal bone drilling without damaging vital structures inside or beside the bone, such as the internal carotid artery and jugular bulb, is a key step for these extensions. This study aimed to examine the microsurgical and endoscopic anatomy of the extensions of the retrosigmoid approach and to evaluate the clinical feasibility of an electromagnetic navigation system during intradural temporal bone drilling. Five temporal bones and 8 cadaveric cerebellopontine angles were examined to clarify the anatomy of retrosigmoid intradural temporal bone drilling. Twenty additional cerebellopontine angles were dissected in a clinical setting with an electromagnetic navigation system while measuring the target registration errors at 8 surgical landmarks on and inside the temporal bone. Retrosigmoid intradural temporal bone drilling expanded the surgical exposure to allow access to the petroclival and parasellar regions (suprameatal), internal acoustic meatus (transmeatal), upper jugular foramen (suprajugular), and petrous apex (inframeatal). The electromagnetic navigation continuously guided the drilling without line of sight limitation, and its small devices were easily manipulated in the deep and narrow surgical field in the posterior fossa. Mean target registration error was less than 0.50 mm during these procedures. The combination of endoscopic and microsurgical techniques aids in achieving optimal exposure for retrosigmoid intradural temporal bone drilling. The electromagnetic navigation system had clear advantages with acceptable accuracy including the usability of small devices without line of sight limitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. High-resolution Modeling Assisted Design of Customized and Individualized Transcranial Direct Current Stimulation Protocols

    PubMed Central

    Bikson, Marom; Rahman, Asif; Datta, Abhishek; Fregni, Felipe; Merabet, Lotfi

    2012-01-01

    Objectives Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity currents facilitating or inhibiting spontaneous neuronal activity. tDCS is attractive since dose is readily adjustable by simply changing electrode number, position, size, shape, and current. In the recent past, computational models have been developed with increased precision with the goal to help customize tDCS dose. The aim of this review is to discuss the incorporation of high-resolution patient-specific computer modeling to guide and optimize tDCS. Methods In this review, we discuss the following topics: (i) The clinical motivation and rationale for models of transcranial stimulation is considered pivotal in order to leverage the flexibility of neuromodulation; (ii) The protocols and the workflow for developing high-resolution models; (iii) The technical challenges and limitations of interpreting modeling predictions, and (iv) Real cases merging modeling and clinical data illustrating the impact of computational models on the rational design of rehabilitative electrotherapy. Conclusions Though modeling for non-invasive brain stimulation is still in its development phase, it is predicted that with increased validation, dissemination, simplification and democratization of modeling tools, computational forward models of neuromodulation will become useful tools to guide the optimization of clinical electrotherapy. PMID:22780230

  14. Skills for Health Care Assistants Vol. II. Supplemental Units for Health Care and Nurse Assistants Programs. Student Guide. Instructor Key. Revised.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This student guide for courses for health care assistants and nurse assistants contains 16 self-paced units with simplified line drawings, controlled text, vocabulary development, and mathematics practice exercises. Units consist of the following: objectives, introduction to the unit, content outline, steps of the procedure, skill sheets, written…

  15. 49 CFR 39.89 - What requirements apply to on-board safety briefings, information, and drills?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accessible to passengers with impaired hearing (e.g., through use of captioning or placement of a sign language interpreter in the video). (d) You must provide whatever assistance is necessary to enable...

  16. 75 FR 68811 - Recovery Publication, P-395, Fire Management Assistance Grant Program (FMAGP) Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2010-0066] Recovery Publication, P-395, Fire Management Assistance Grant Program (FMAGP) Guide AGENCY: Federal... Emergency Management Agency (FEMA) is accepting comments on the Fire Management Assistance Grant Program...

  17. Adaptive guidance for an aero-assisted boost vehicle

    NASA Astrophysics Data System (ADS)

    Pamadi, Bandu N.; Taylor, Lawrence W., Jr.; Price, Douglas B.

    An adaptive guidance system incorporating dynamic pressure constraint is studied for a single stage to low earth orbit (LEO) aero-assist booster with thrust gimbal angle as the control variable. To derive an adaptive guidance law, cubic spline functions are used to represent the ascent profile. The booster flight to LEO is divided into initial and terminal phases. In the initial phase, the ascent profile is continuously updated to maximize the performance of the boost vehicle enroute. A linear feedback control is used in the terminal phase to guide the aero-assisted booster onto the desired LEO. The computer simulation of the vehicle dynamics considers a rotating spherical earth, inverse square (Newtonian) gravity field and an exponential model for the earth's atmospheric density. This adaptive guidance algorithm is capable of handling large deviations in both atmospheric conditions and modeling uncertainties, while ensuring maximum booster performance.

  18. Fast MRI-guided vacuum-assisted breast biopsy: initial experience.

    PubMed

    Liberman, Laura; Morris, Elizabeth A; Dershaw, D David; Thornton, Cynthia M; Van Zee, Kimberly J; Tan, Lee K

    2003-11-01

    The purpose of this study was to evaluate a new method for performing MRI-guided vacuum-assisted breast biopsy in a study of lesions that had subsequent surgical excision. SUBJECTS AND METHODS. Twenty women scheduled for MRI-guided needle localization and surgical biopsy were prospectively entered in the study. MRI-guided biopsy was performed with a vacuum-assisted probe, followed by placement of a localizing clip, and then needle localization for surgical excision. Vacuum-assisted biopsy and surgical histology were correlated. Vacuum-assisted biopsy was successfully performed in 19 (95%) of the 20 women. The median size of 27 MRI-detected lesions that had biopsy was 1.0 cm (range, 0.4-6.4 cm). Cancer was present in eight (30%) of 27 lesions and in six (32%) of 19 women; among these eight cancers, five were infiltrating and three were ductal carcinoma in situ (DCIS). Among these 27 lesions, histology was benign at vacuum-assisted biopsy and at surgery in 19 (70%), cancer at vacuum-assisted biopsy in six (22%), atypical ductal hyperplasia at vacuum-assisted biopsy and DCIS at surgery in one (4%), and benign at vacuum-assisted biopsy with surgery showing microscopic DCIS that was occult at MRI in one (4%). The median time to perform vacuum-assisted biopsy of a single lesion was 35 min (mean, 35 min; range, 24-48 min). Placement of a localizing clip, attempted in 26 lesions, was successful in 25 (96%) of 26, and the clip was retrieved on specimen radiography in 22 (96%) of 23. One complication occurred: a hematoma that resolved with compression. MRI-guided vacuum-assisted biopsy is a fast, safe, and accurate alternative to surgical biopsy for breast lesions detected on MRI.

  19. An Analysis of Physician Assistant LibGuides: A Tool for Collection Development.

    PubMed

    Johnson, Catherine V; Johnson, Scott Y

    2017-01-01

    The Physician Assistant (PA) specialty encompasses many subject areas and requires many types of library resources. An analysis of PA LibGuides was performed to determine most frequently recommended resources. A sample of LibGuides from U.S. institutions accredited by the Accreditation Review Commission on Education for the Physician Assistant (ARC-PA) was included in this study. Resources presented on guides were tabulated and organized by resource type. Databases and point-of-care tools were the types of resources listed by the most LibGuides. There were over 1,000 books listed on the 45 guides, including over 600 unique books listed. There were fewer journals listed, only 163. Overall, while the 45 LibGuides evaluated list many unique resources in each category, a librarian can create an accepted list of the most frequently listed resources from the data gathered.

  20. Maryland Public Charter Schools Model Policy and Resource Guide

    ERIC Educational Resources Information Center

    Maryland State Department of Education, 2005

    2005-01-01

    This document is designed to guide local boards of education and school systems in Maryland in assisting individuals and organizations interested in establishing public charter schools. This guide is organized into the following parts: (1) Maryland Public Charter Schools Act; (2) Organizing to Assist Public Charter School Development; (3)…

  1. A 26-year-old man with dyspnea and chest pain.

    PubMed

    Mittal, Saurabh; Jain, Akanksha; Arava, Sudheer; Hadda, Vijay; Mohan, Anant; Guleria, Randeep; Madan, Karan

    2017-01-01

    A 26-year-old smoker male presented with a history of sudden onset dyspnea and right-sided chest pain. Chest radiograph revealed large right-sided pneumothorax which was managed with tube thoracostomy. High-resolution computed tomography thorax revealed multiple lung cysts, and for a definite diagnosis, a video-assisted thoracoscopic surgery-guided lung biopsy was performed followed by pleurodesis. This clinicopathologic conference discusses the clinical and radiological differential diagnoses, utility of lung biopsy, and management options for patients with such a clinical presentation.

  2. A 26-year-old man with dyspnea and chest pain

    PubMed Central

    Mittal, Saurabh; Jain, Akanksha; Arava, Sudheer; Hadda, Vijay; Mohan, Anant; Guleria, Randeep; Madan, Karan

    2017-01-01

    A 26-year-old smoker male presented with a history of sudden onset dyspnea and right-sided chest pain. Chest radiograph revealed large right-sided pneumothorax which was managed with tube thoracostomy. High-resolution computed tomography thorax revealed multiple lung cysts, and for a definite diagnosis, a video-assisted thoracoscopic surgery-guided lung biopsy was performed followed by pleurodesis. This clinicopathologic conference discusses the clinical and radiological differential diagnoses, utility of lung biopsy, and management options for patients with such a clinical presentation. PMID:29099006

  3. Exploring Symmetry to Assist Alzheimer's Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.

  4. HYDROGEOLOGIC CHARACTERIZATION OF FRACTURED ROCK FORMATIONS: A GUIDE FOR GROUNDWATER REMEDIATORS

    EPA Science Inventory

    A field site was developed in the foothills of the Sierra Nevada, California, to develop and test a multidisciplinary approach to the characterization of groundwater flow and transport in fractured rocks. Nine boreholes were drilled into the granite bedrock, and a wide variety of...

  5. Using Incremental Rehearsal to Increase Fluency of Single-Digit Multiplication Facts with Children Identified as Learning Disabled in Mathematics Computation

    ERIC Educational Resources Information Center

    Burns, Matthew K.

    2005-01-01

    Previous research suggested that Incremental Rehearsal (IR; Tucker, 1989) led to better retention than other drill practices models. However, little research exists in the literature regarding drill models for mathematics and no studies were found that used IR to practice multiplication facts. Therefore, the current study used IR as an…

  6. Monitoring Walker Assistive Devices: A Novel Approach Based on Load Cells and Optical Distance Measurements †

    PubMed Central

    Viegas, Vítor; Dias Pereira, J. M.; Postolache, Octavian; Girão, Pedro Silva

    2018-01-01

    This paper presents a measurement system intended to monitor the usage of walker assistive devices. The goal is to guide the user in the correct use of the device in order to prevent risky situations and maximize comfort. Two risk indicators are defined: one related to force unbalance and the other related to motor incoordination. Force unbalance is measured by load cells attached to the walker legs, while motor incoordination is estimated by synchronizing force measurements with distance data provided by an optical sensor. The measurement system is equipped with a Bluetooth link that enables local supervision on a computer or tablet. Calibration and experimental results are included in the paper. PMID:29439428

  7. The Ventilator-Assisted Child: A Practical Resource Guide.

    ERIC Educational Resources Information Center

    Driver, Lynn E.; Nelson, Virginia Simson; Warschausky, Seth A.

    The 16 chapters comprising this manual are intended to provide a practical guide for meeting the needs of ventilator-assisted children. Chapters have the following titles and authors: (1)"Spectrum of Care" (Virginia Simson Nelson and Lynn E. Driver); (2) "Long-Term Airway Management for the Ventilator-Assisted Child" (Ann Marie…

  8. Funding for Assistive Technology: A Guide and Directory for Utah.

    ERIC Educational Resources Information Center

    Hammond, Marilyn; And Others

    This guide identifies sources of funding for purchasing assistive technology for people with disabilities. It outlines eligibility requirements, specifies which devices can be obtained from which sources of funding, and discusses how to effectively approach the funding process. It begins by defining assistive technology categories, describing the…

  9. Housekeeping Management Assistant. [Teacher's Copy]. Revised.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin. Dept. of Occupational Education and Technology.

    The curriculum guide, one of a series prepared to assist teacher-coordinators in promoting and teaching home economics cooperative education programs, provides a course of study for the housekeeping management assistant occupation. In addition to a brief overview, job description, and job analysis of the occupation, the guide's four main sections…

  10. Is retrograde drilling really useful for osteochondral lesion of talus with subchondral cyst?: A case report.

    PubMed

    Jeong, Seong-Yup; Kim, Jong-Kil; Lee, Kwang-Bok

    2016-12-01

    Retrograde drilling is a well accepted procedure for osteochondral lesion of the talus and subchondral cyst with intact overlying cartilage. It has good results in most reports. Compared to anterograde drilling, retrograde drilling can protect the integrity of the articular cartilage. The purpose of this study was to evaluate the suitability of using retrograde drilling for osteochondral lesion with subchondral cyst and discuss the mechanism involved in the development of subchondral cyst. We report a 53-year-old man who had complained left ankle pain that lasted over 6 months which was exacerbated by walking. We diagnosed it as osteochondral lesion of the talus with subchondral cyst. Plain X-ray, computed tomography, and magnetic resonance imaging (MRI) of the ankle. He undertook retrograde drilling without debridement of cartilage. After the surgery, the pain had been subsided for 1 year, although arthritic change had progressed. However, after 5 years of retrograde drilling, he revisited our hospital due to severe ankle pain. Plain X-ray and MRI showed arthritic change of the ankle and multiple cystic formation of talus. Retrograde drilling has some problem because this procedure is not theoretically correct when the development of a subchondral cyst in osteochondral lesion of the talus is considered. In addition, retrograde drilling may impair uninjured bone marrow of the talus, resulting in the development of multiple cystic formations.

  11. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    2015-03-11

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  12. Spring assisted cranioplasty: A patient specific computational model.

    PubMed

    Borghi, Alessandro; Rodriguez-Florez, Naiara; Rodgers, Will; James, Gregory; Hayward, Richard; Dunaway, David; Jeelani, Owase; Schievano, Silvia

    2018-03-01

    Implantation of spring-like distractors in the treatment of sagittal craniosynostosis is a novel technique that has proven functionally and aesthetically effective in correcting skull deformities; however, final shape outcomes remain moderately unpredictable due to an incomplete understanding of the skull-distractor interaction. The aim of this study was to create a patient specific computational model of spring assisted cranioplasty (SAC) that can help predict the individual overall final head shape. Pre-operative computed tomography images of a SAC patient were processed to extract a 3D model of the infant skull anatomy and simulate spring implantation. The distractors were modeled based on mechanical experimental data. Viscoelastic bone properties from the literature were tuned using the specific patient procedural information recorded during surgery and from x-ray measurements at follow-up. The model accurately captured spring expansion on-table (within 9% of the measured values), as well as at first and second follow-ups (within 8% of the measured values). Comparison between immediate post-operative 3D head scanning and numerical results for this patient proved that the model could successfully predict the final overall head shape. This preliminary work showed the potential application of computational modeling to study SAC, to support pre-operative planning and guide novel distractor design. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series

    USGS Publications Warehouse

    Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory

    2018-03-07

    This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.

  14. Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite

    PubMed Central

    Díaz-Álvarez, José; Olmedo, Alvaro; Santiuste, Carlos; Miguélez, María Henar

    2014-01-01

    Carbon Fiber Reinforced Polymer (CFRPs) composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained. PMID:28788685

  15. Computer guided restoration of joint line and femoral offset in cruciate substituting total knee arthroplasty.

    PubMed

    Shetty, Gautam M; Mullaji, Arun; Bhayde, Sagar

    2012-10-01

    This prospective study aimed to evaluate radiographically, change in joint line and femoral condylar offset with the optimized gap balancing technique in computer-assisted, primary, cruciate-substituting total knee arthroplasties (TKAs). One hundred and twenty-nine consecutive computer-assisted TKAs were evaluated radiographically using pre- and postoperative full-length standing hip-to-ankle, antero-posterior and lateral radiographs to assess change in knee deformity, joint line height and posterior condylar offset. In 49% of knees, there was a net decrease (mean 2.2mm, range 0.2-8.4mm) in joint line height postoperatively whereas 46.5% of knees had a net increase in joint line height (mean 2.5mm, range 0.2-11.2mm). In 93% of the knees, joint line was restored to within ± 5 mm of preoperative values. In 53% of knees, there was a net increase (mean 2.9 mm, range 0.2-12 mm) in posterior offset postoperatively whereas 40% of knees had a net decrease in posterior offset (mean 4.2mm, range 0.6-20mm). In 82% of knees, the posterior offset was restored within ± 5 mm of preoperative values. Based on radiographic evaluation in extension and at 30° flexion, the current study clearly demonstrates that joint line and posterior femoral condylar offset can be restored in the majority of computer-assisted, cruciate-substituting TKAs to within 5mm of their preoperative value. The optimized gap balancing feature of the computer software allows the surgeon to simulate the effect of simultaneously adjusting femoral component size, position and distal femoral resection level on joint line and posterior femoral offset. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A Parametric Study for the Design of an Optimized Ultrasonic Percussive Planetary Drill Tool.

    PubMed

    Li, Xuan; Harkness, Patrick; Worrall, Kevin; Timoney, Ryan; Lucas, Margaret

    2017-03-01

    Traditional rotary drilling for planetary rock sampling, in situ analysis, and sample return are challenging because the axial force and holding torque requirements are not necessarily compatible with lightweight spacecraft architectures in low-gravity environments. This paper seeks to optimize an ultrasonic percussive drill tool to achieve rock penetration with lower reacted force requirements, with a strategic view toward building an ultrasonic planetary core drill (UPCD) device. The UPCD is a descendant of the ultrasonic/sonic driller/corer technique. In these concepts, a transducer and horn (typically resonant at around 20 kHz) are used to excite a toroidal free mass that oscillates chaotically between the horn tip and drill base at lower frequencies (generally between 10 Hz and 1 kHz). This creates a series of stress pulses that is transferred through the drill bit to the rock surface, and while the stress at the drill-bit tip/rock interface exceeds the compressive strength of the rock, it causes fractures that result in fragmentation of the rock. This facilitates augering and downward progress. In order to ensure that the drill-bit tip delivers the greatest effective impulse (the time integral of the drill-bit tip/rock pressure curve exceeding the strength of the rock), parameters such as the spring rates and the mass of the free mass, the drill bit and transducer have been varied and compared in both computer simulation and practical experiment. The most interesting findings and those of particular relevance to deep drilling indicate that increasing the mass of the drill bit has a limited (or even positive) influence on the rate of effective impulse delivered.

  17. Computer Series, 13.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1981-01-01

    Provides short descriptions of chemists' applications of computers in instruction: an interactive instructional program for Instrumental-Qualitative Organic Analysis; question-and-answer exercises in organic chemistry; computerized organic nomenclature drills; integration of theoretical and descriptive materials; acid-base titration simulation;…

  18. Medical Office Assistant. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Simpson, Bruce; And Others

    This curriculum guide provides a model for a postsecondary medical office assistant program. It is divided into 10 sections. Section 1 overviews the philosophy, purpose, and goals for vocational education in Georgia. Contents of section 2 include a definition of the guide's purpose and program objective. Section 3 describes the occupational field,…

  19. Ewe Pronunciation.

    ERIC Educational Resources Information Center

    Schneeberg, Nan; Kpotufe, Prosper

    This volume consists of a guide to Ewe pronunciation and an Ewe textbook designed for students who are native speakers of English. Consonants, vowels and tones are introduced in the first section, and exercises that drill the contrasts between the segments are provided. The volume is divided into five units, each unit including a dialogue,…

  20. Machine Shop Projects. Instructor Guide. General Information.

    ERIC Educational Resources Information Center

    Westbrook, Raymond E.

    Developed in Georgia, this manual contains 101 projects for use in machine shop courses, arranged according to a suggested machine shop curriculum. Each project, included in a student workbook, contains complete drawings and instructions for implementation. Tasks are listed under the broad headings of measuring, layout, bench work, saws, drilling,…

  1. Using a Computer Game to Reinforce Skills in Addition Basic Facts in Second Grade.

    ERIC Educational Resources Information Center

    Kraus, William H.

    1981-01-01

    A computer-generated game called Fish Chase was developed to present drill-and-practice exercises on addition facts. The subjects of the study were 19 second-grade pupils. The results indicate a computer game can be used effectively to increase proficiency with basic facts. (MP)

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhleman, T.; Dempsey, P.

    Although reduced activity has left its mark on engineering budgets and many projects have been delayed, industry remains committed to research and development. This year's emphasis is offshore where new-generation semi-submersibles are under construction for Arctic waters and where equipment technology is reaching maturity. Improved tubulars such as new process-forged drill pipe, special alloy, corrosion-resistant pipe and new tool joint designs are finding eager markets both on and offshore. And back in the office, microcomputers, a curiosity a few years ago, are making significant advances in improving drilling and production operations. Specific examples of this new technology include: Two high-tech,more » high-risk floaters Hard rock sidewall coring tool New torque-resistant tool joint Two improved riser connection systems Breakthrough in drill pipe manufacturing Power-packed portable drilling computer.« less

  3. The role of the US in the geopolitics of climate policy and stranded oil reserves

    NASA Astrophysics Data System (ADS)

    Jaffe, Amy Myers

    2016-10-01

    Computer-assisted technological innovation and breakthroughs in drilling are revolutionizing the energy landscape, creating greater uncertainty about the future trends for oil use. These new dynamics are prompting major oil producers to reconsider the commercial value of their assets, potentially changing the long-term outlook for oil prices. A shift in investment and production strategy by major oil-producing countries and large multinational companies to pre-empt the risk of stranded assets would have significant implications on energy markets. This Perspective surveys the competitive forces at play that are able to shift the dynamics of the global oil market and discusses their implications for US climate and energy policy. A declining long-term oil price might imply that energy and climate scientists and policymakers should revisit the road map of the optimum policies to promote the transition to lower carbon energy and to defend technology gains already achieved.

  4. Development and testing of a computer assisted remote-control system for the compact loader-trammer. Report of Investigations/1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruff, T.M.

    1992-01-01

    A prototype mucking machine designed to operate in narrow vein stopes was developed by Foster-Miller, Inc., Waltham, MA, under contract with the U.S. Bureau of Mines. The machine, called a compact loader/trammer, or minimucker, was designed to replace slusher muckers in narrow-vein underground mines. The minimucker is a six-wheel-drive, skid-steered, load-haul-dump machine that loads muck at the front with a novel slide-bucket system and ejects it out the rear so that the machine does not have to be turned around. To correct deficiencies of the tether remote control system, a computer-based, radio remote control was retrofitted to the minimucker. Initialmore » tests indicated a need to assist the operator in guiding the machine in narrow stopes and an automatic guidance system that used ultrasonic ranging sensors and a wall-following algorithm was installed. Additional tests in a simulated test stope showed that these changes improved the operation of the minimucker. The design and functions of the minimucker and its computer-based, remote control system are reviewed, and an ultrasonic, sensor-based guidance system is described.« less

  5. An experimental investigation on thermal exposure during bone drilling.

    PubMed

    Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed

    2012-12-01

    This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Content analysis to locate assistive technology in Queensland's motor injury insurance rehabilitation legislation and guidelines.

    PubMed

    Steel, Emily J

    2018-06-08

    Reforms to Australia's disability and rehabilitation sectors have espoused the potential of assistive technology as an enabler. As new insurance systems are being developed it is timely to examine the structure of existing systems. This exploratory study examined the policies guiding assistive technology provision in the motor accident insurance sector of one Australian state. Policy documents were analyzed iteratively with set of qualitative questions to understand the intent and interpretation of policies guiding assistive technology provision. Content analysis identified relevant sections and meaningful terminology, and context analysis explored the dominant perspectives informing policy. The concepts and language of assistive technology are not part of the policy frameworks guiding rehabilitation practice in Queensland's motor accident insurance sector. The definition of rehabilitation in the legislation is consistent contemporary international interpretations that focus on optimizing functioning in interaction with the environment. However, the supporting documents are focused on recovery from injuries where decisions are guided by clinical need and affordability. The policies frame rehabilitation in a medical model that assistive technology provision from the rehabilitation plan. The legislative framework provides opportunities to develop and improve assistive technology provision as part of an integrated approach to rehabilitation.

  7. Patient-specific instrumentation for total knee arthroplasty does not match the pre-operative plan as assessed by intra-operative computer-assisted navigation.

    PubMed

    Scholes, Corey; Sahni, Varun; Lustig, Sebastien; Parker, David A; Coolican, Myles R J

    2014-03-01

    The introduction of patient-specific instruments (PSI) for guiding bone cuts could increase the incidence of malalignment in primary total knee arthroplasty. The purpose of this study was to assess the agreement between one type of patient-specific instrumentation (Zimmer PSI) and the pre-operative plan with respect to bone cuts and component alignment during TKR using imageless computer navigation. A consecutive series of 30 femoral and tibial guides were assessed in-theatre by the same surgeon using computer navigation. Following surgical exposure, the PSI cutting guides were placed on the joint surface and alignment assessed using the navigation tracker. The difference between in-theatre data and the pre-operative plan was recorded and analysed. The error between in-theatre measurements and pre-operative plan for the femoral and tibial components exceeded 3° for 3 and 17% of the sample, respectively, while the error for total coronal alignment exceeded 3° for 27% of the sample. The present results indicate that alignment with Zimmer PSI cutting blocks, assessed by imageless navigation, does not match the pre-operative plan in a proportion of cases. To prevent unnecessary increases in the incidence of malalignment in primary TKR, it is recommended that these devices should not be used without objective verification of alignment, either in real-time or with post-operative imaging. Further work is required to identify the source of discrepancies and validate these devices prior to routine use. II.

  8. The Accuracy of Computer Image-Guided Template for Mandibular Angle Ostectomy.

    PubMed

    Ye, Niansong; Long, Hu; Zhu, Songsong; Yang, Yunqiang; Lai, Wenli; Hu, Jing

    2015-02-01

    Mandibular angle ostectomy (MAO) is commonly used to correct prominent mandibular angles through an intraoral approach. However, limited vision in the operative site may lead to difficulties or complications during surgery. Therefore, it is necessary to develop an effective method for helping surgeons to perform MAO more precisely and safely. In this study, we report a novel method of a computer image-guided surgical template for navigation of MAO, and evaluate its accuracy and clinical outcomes. Nine patients with a prominent mandibular angle were enrolled in this study. A pair of stereolithographic templates was fabricated by computer-aided image design and 3D printing. In all cases, bilateral MAO was performed under the guide of these templates. Post-operative effects were evaluated by 3D curve functions and maximal shell-to-shell deviations. All patients were satisfied with their cosmetic outcomes. The mean and SD of ICC between R-Sim and R-Post were 0.958 ± 0.011; between L-Sim and L-Post, 0.965 ± 0.014; and between R-Post and L-Post, 0.964 ± 0.013. The maximal shell-to-shell deviations between the simulated mandibular contour and post-operative mandibular contour on the right and left sides were 2.02 ± 0.32 and 1.97 ± 0.41 mm, respectively. The results of this study suggest that this new technique could assist surgeons in making better pre-surgical plans and ensure more accurate and safer manipulation for completion of this procedure.

  9. Small subchondral drill holes improve marrow stimulation of articular cartilage defects.

    PubMed

    Eldracher, Mona; Orth, Patrick; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2014-11-01

    Subchondral drilling is an established marrow stimulation technique. Osteochondral repair is improved when the subchondral bone is perforated with small drill holes, reflecting the physiological subchondral trabecular distance. Controlled laboratory study. A rectangular full-thickness chondral defect was created in the trochlea of adult sheep (n = 13) and treated with 6 subchondral drillings of either 1.0 mm (reflective of the trabecular distance) or 1.8 mm in diameter. Osteochondral repair was assessed after 6 months in vivo by macroscopic, histological, and immunohistochemical analyses and by micro-computed tomography. The application of 1.0-mm subchondral drill holes led to significantly improved histological matrix staining, cellular morphological characteristics, subchondral bone reconstitution, and average total histological score as well as significantly higher immunoreactivity to type II collagen and reduced immunoreactivity to type I collagen in the repair tissue compared with 1.8-mm drill holes. Analysis of osteoarthritic changes in the cartilage adjacent to the defects revealed no significant differences between treatment groups. Restoration of the microstructure of the subchondral bone plate below the chondral defects was significantly improved after 1.0-mm compared to 1.8-mm drilling, as shown by higher bone volume and reduced thickening of the subchondral bone plate. Likewise, the microarchitecture of the drilled subarticular spongiosa was better restored after 1.0-mm drilling, indicated by significantly higher bone volume and more and thinner trabeculae. Moreover, the bone mineral density of the subchondral bone in 1.0-mm drill holes was similar to the adjacent subchondral bone, whereas it was significantly reduced in 1.8-mm drill holes. No significant correlations existed between cartilage and subchondral bone repair. Small subchondral drill holes that reflect the physiological trabecular distance improve osteochondral repair in a translational model more effectively than larger drill holes. These results have important implications for the use of subchondral drilling for marrow stimulation, as they support the use of small-diameter bone-cutting devices. © 2014 The Author(s).

  10. Panorama imaging for image-to-physical registration of narrow drill holes inside spongy bones

    NASA Astrophysics Data System (ADS)

    Bergmeier, Jan; Fast, Jacob Friedemann; Ortmaier, Tobias; Kahrs, Lüder Alexander

    2017-03-01

    Image-to-physical registration based on volumetric data like computed tomography on the one side and intraoperative endoscopic images on the other side is an important method for various surgical applications. In this contribution, we present methods to generate panoramic views from endoscopic recordings for image-to-physical registration of narrow drill holes inside spongy bone. One core application is the registration of drill poses inside the mastoid during minimally invasive cochlear implantations. Besides the development of image processing software for registration, investigations are performed on a miniaturized optical system, achieving 360° radial imaging with one shot by extending a conventional, small, rigid, rod lens endoscope. A reflective cone geometry is used to deflect radially incoming light rays into the endoscope optics. Therefore, a cone mirror is mounted in front of a conventional 0° endoscope. Furthermore, panoramic images of inner drill hole surfaces in artificial bone material are created. Prior to drilling, cone beam computed tomography data is acquired from this artificial bone and simulated endoscopic views are generated from this data. A qualitative and quantitative image comparison of resulting views in terms of image-to-image registration is performed. First results show that downsizing of panoramic optics to a diameter of 3mm is possible. Conventional rigid rod lens endoscopes can be extended to produce suitable panoramic one-shot image data. Using unrolling and stitching methods, images of the inner drill hole surface similar to computed tomography image data of the same surface were created. Registration is performed on ten perturbations of the search space and results in target registration errors of (0:487 +/- 0:438)mm at the entry point and (0:957 +/- 0:948)mm at the exit as well as an angular error of (1:763 +/- 1:536)°. The results show suitability of this image data for image-to-image registration. Analysis of the error components in different directions reveals a strong influence of the pattern structure, meaning higher diversity results into smaller errors.

  11. Percutaneous Biopsy and Radiofrequency Ablation of Osteoid Osteoma with Excess Reactive New Bone Formation and Cortical Thickening Using a Battery-Powered Drill for Access: A Technical Note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippiadis, D., E-mail: dfilippiadis@yahoo.gr; Gkizas, C., E-mail: chgkizas@gmail.com; Kostantos, C., E-mail: drkarpen@yahoo.gr

    PurposeTo report our experience with the use of a battery-powered drill in biopsy and radiofrequency ablation of osteoid osteoma with excess reactive new bone formation. The battery-powered drill enables obtaining the sample while drilling.Materials and MethodsDuring the last 18 months, 14 patients suffering from painful osteoid osteoma with excess reactive new bone formation underwent CT-guided biopsy and radiofrequency ablation. In order to assess and sample the nidus of the osteoid osteoma, a battery-powered drill was used. Biopsy was performed in all cases. Then, coaxially, a radiofrequency electrode was inserted and ablation was performed with osteoid osteoma protocol. Procedure time (i.e., drillingmore » including local anesthesia), amount of scans, technical and clinical success, and the results of biopsy are reported.ResultsAccess to the nidus through the excess reactive new bone formation was feasible in all cases. Median procedure time was 50.5 min. Histologic verification of osteoid osteoma was performed in all cases. Radiofrequency electrode was coaxially inserted within the nidus and ablation was successfully performed in all lesions. Median amount CT scans, performed to control correct positioning of the drill and precise electrode placement within the nidus was 11. There were no complications or material failure reported in our study.ConclusionsThe use of battery-powered drill facilitates access to the osteoid osteoma nidus in cases where excess reactive new bone formation is present. Biopsy needle can be used for channel creation during the access offering at the same time the possibility to extract bone samples.« less

  12. 76 FR 40400 - Notice of Determinations Regarding Eligibility To Apply for Worker Adjustment Assistance and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... withdrawn. TA-W-80,042; Capstar Drilling, Wooster, OH. TA-W-80,131; Invensys Operations Management, Irvine...., Libertyville, IL: March 26, 2010. TA-W-80,110; Callaway Golf Ball Operations, Inc., Chicopee, MA: July 1, 2011...

  13. Bone augmentation in dental implantology using press-fit bone cylinders and twin-principle diamond hollow drills: a case series.

    PubMed

    Draenert, Florian Guy; Huetzen, Dominic; Kämmerer, Peer; Wagner, Wilfried

    2011-09-01

    Bone transplants are mostly prepared with cutting drills, chisels, and rasps. These techniques are difficult for unexperienced surgeons, and the implant interface is less precise due to unstandardized preparation. Cylindrical bone transplants are a known alternative. Current techniques include fixation methods with osteosynthesis screws or the dental implant. A new bone cylinder transplant technique is presented using a twin-drill principle resulting in a customized pressfit of the transplant without fixation devices and combining this with the superior grinding properties of a diamond coating. New cylindrical diamond hollow drills are used for customized press fit bone transplants in a case series of five patients for socket reconstruction in the front and molar region of maxilla and mandibula with and without simultaneous implant placement. The technical approach was successful without intra or postoperative complications during the acute healing phase. The customized press fit completes a technological trias of bone cylinder transplant techniques adding to the assisted press fit with either osteosynthesis screws or the dental implant itself. © 2009 Wiley Periodicals, Inc.

  14. Partnerships for College Access and Success: Using Partnerships as a Strategy. A Technical Assistance, Toolkit, and Resource Guide

    ERIC Educational Resources Information Center

    Academy for Educational Development, 2008

    2008-01-01

    "Partnerships for College Access and Success: A Technical Assistance Guide, Toolkit and Resource Guide" reflects lessons learned from four years of planning, implementation and evaluation work through the Partnerships for College Access and Success (PCAS) initiative. It is the result of the collaboration between AED (Academy for Educational…

  15. FPCAS3D User's guide: A three dimensional full potential aeroelastic program, version 1

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1995-01-01

    The FPCAS3D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady three-dimensional full potential equation which is solved for a blade row. The structural analysis is based on a finite-element model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS3D code. A complete description of the input data is provided in this report. In addition, six examples, including inputs and outputs, are provided.

  16. FPCAS2D user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.

    1994-01-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  17. Assessment of two thermally treated drill mud wastes for landfill containment applications.

    PubMed

    Carignan, Marie-Pierre; Lake, Craig B; Menzies, Todd

    2007-10-01

    Offshore oil and gas drilling operations generate significant amounts of drill mud waste, some of which is transported onshore for subsequent thermal treatment (i.e. via thermal remediation). This treatment process results in a mineral waste by-product (referred to as thermally treated drill mud waste; TTDMW). Bentonites are originally present in many of the drill mud products and it is hypothesized that TTDMW can be utilized in landfill containment applications (i.e. cover or base liner). The objective of this paper is to examine the feasibility of this application by performing various physical and chemical tests on two TTDMW samples. It is shown that the two TTDMW samples contained relatively small amounts of clay-sized minerals although hydraulic conductivity values are found to be less than 10(-8) m/s. Organic carbon contents of the samples were approximately 2%. Mineralogy characterization of the samples confirmed varying amounts of smectite, however, peak friction angles for a TTDMW sample was greater than 36 degrees. Chemical characterization of the TTDMW samples show potential leaching of barium and small amounts of other heavy metals. Discussion is provided in the paper on suggestions to assist in overcoming regulatory issues associated with utilization of TTDMW in landfill containment applications.

  18. Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal.

    PubMed

    Feldmann, Arne; Gavaghan, Kate; Stebinger, Manuel; Williamson, Tom; Weber, Stefan; Zysset, Philippe

    2017-09-01

    Bone drilling is a surgical procedure commonly required in many surgical fields, particularly orthopedics, dentistry and head and neck surgeries. While the long-term effects of thermal bone necrosis are unknown, the thermal damage to nerves in spinal or otolaryngological surgeries might lead to partial paralysis. Previous models to predict the temperature elevation have been suggested, but were not validated or have the disadvantages of computation time and complexity which does not allow real time predictions. Within this study, an analytical temperature prediction model is proposed which uses the torque signal of the drilling process to model the heat production of the drill bit. A simple Green's disk source function is used to solve the three dimensional heat equation along the drilling axis. Additionally, an extensive experimental study was carried out to validate the model. A custom CNC-setup with a load cell and a thermal camera was used to measure the axial drilling torque and force as well as temperature elevations. Bones with different sets of bone volume fraction were drilled with two drill bits ([Formula: see text]1.8 mm and [Formula: see text]2.5 mm) and repeated eight times. The model was calibrated with 5 of 40 measurements and successfully validated with the rest of the data ([Formula: see text]C). It was also found that the temperature elevation can be predicted using only the torque signal of the drilling process. In the future, the model could be used to monitor and control the drilling process of surgeries close to vulnerable structures.

  19. Optimal parameters to avoid thermal necrosis during bone drilling: A finite element analysis.

    PubMed

    Mediouni, Mohamed; Schlatterer, Daniel R; Khoury, Amal; Von Bergen, Tobias; Shetty, Sunil H; Arora, Manit; Dhond, Amit; Vaughan, Neil; Volosnikov, Alexander

    2017-11-01

    The drilling bone may potentially cause excessive frictional heat, which can lead to local bone necrosis. This heat generation and local necrosis has been suggested to contribute to the resorption of bone around the placed screws, ending in loss of screw purchase in the bone and inadvertent loosening and/or the bone-implant construct. In vivo studies on this subject have inherent obstacles not the least of which is controlling the variables and real time bone temperature data acquisition. Theoretical models can be generated using computer software and the inclusion of known constants for the mechanical properties of metal and bone. These known Data points for the variables (drill bit and bone) enables finite element analysis of various bone drilling scenarios. An elastic-plastic three-dimensional (3D) acetabular bone mode was developed and finite element model analysis (FEA) was applied to various simulated drilling procedures. The FEA results clearly indicate that the depth of drilling and the drill speed both have a significant effect on the temperature during drilling procedures. The reduction of the feeding speed leads to a reduction in bone temperature. Our data suggests that reducing the feeding speed regardless of RPMs and pressure applied could be a simple useful and effective way to reduce drilling temperatures. This study is the first step in helping any surgeon who drills bone and places screws to better understand the ideal pressure to apply and drill speed to employ and advance rate to avoid osteonecrosis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2386-2391, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. CFD modelling of liquid-solid transport in the horizontal eccentric annuli

    NASA Astrophysics Data System (ADS)

    Sayindla, Sneha; Challabotla, Niranjan Reddy

    2017-11-01

    In oil and gas drilling operations, different types of drilling fluids are used to transport the solid cuttings in an annulus between drill pipe and well casing. The inner pipe is often eccentric and flow inside the annulus can be laminar or turbulent regime. In the present work, Eulerian-Eulerian granular multiphase CFD model is developed to systematically investigate the effect of the rheology of the drilling fluid type (Newtonian and non-Newtonian), drill pipe eccentricity and inner pipe rotation on the efficiency of cuttings transport. Both laminar and turbulent flow regimes were considered. Frictional pressure drop is computed and compared with the flow loop experimental results reported in the literature. The results confirm that the annular frictional pressure loss in a fully eccentric annulus are significantly lesser than the concentric annulus. Inner pipe rotation improve the efficiency of the cuttings transport in laminar flow regime. Cuttings transport velocity and concentration distribution were analysed to predict the different flow patterns such as stationary bed, moving bed, heterogeneous and homogeneous bed formation.

Top