McClelland, Jodie A; Webster, Kate E; Ramteke, Alankar A; Feller, Julian A
2017-06-01
Computer-assisted navigation in total knee arthroplasty (TKA) reduces variability and may improve accuracy in the postoperative static alignment. The effect of navigation on alignment and biomechanics during more dynamic movements has not been investigated. This study compared knee biomechanics during level walking of 121 participants: 39 with conventional TKA, 42 with computer-assisted navigation TKA and 40 unimpaired control participants. Standing lower-limb alignment was significantly closer to ideal in participants with navigation TKA. During gait, when differences in walking speed were accounted for, participants with conventional TKA had less knee flexion during stance and swing than controls (P<0.01), but there were no differences between participants with navigation TKA and controls for the same variables. Both groups of participants with TKA had lower knee adduction moments than controls (P<0.01). In summary, there were fewer differences in the biomechanics of computer-assisted navigation TKA patients compared to controls than for patients with conventional TKA. Computer-assisted navigation TKA may restore biomechanics during walking that are closer to normal than conventional TKA. Copyright © 2017 Elsevier B.V. All rights reserved.
2004-01-01
The Medical Advisory Secretariat undertook a review of the evidence on the effectiveness and cost-effectiveness of computer assisted hip and knee arthroplasty. The two computer assisted arthroplasty systems that are the topics of this review are (1) navigation and (2) robotic-assisted hip and knee arthroplasty. Computer-assisted arthroplasty consists of navigation and robotic systems. Surgical navigation is a visualization system that provides positional information about surgical tools or implants relative to a target bone on a computer display. Most of the navigation-assisted arthroplasty devices that are the subject of this review are licensed by Health Canada. Robotic systems are active robots that mill bone according to information from a computer-assisted navigation system. The robotic-assisted arthroplasty devices that are the subject of this review are not currently licensed by Health Canada. The Cochrane and International Network of Agencies for Health Technology Assessment databases did not identify any health technology assessments on navigation or robotic-assisted hip or knee arthroplasty. The MEDLINE and EMBASE databases were searched for articles published between January 1, 1996 and November 30, 2003. This search produced 367 studies, of which 9 met the inclusion criteria. NAVIGATION-ASSISTED ARTHROPLASTY: Five studies were identified that examined navigation-assisted arthroplasty.A Level 1 evidence study from Germany found a statistically significant difference in alignment and angular deviation between navigation-assisted and free-hand total knee arthroplasty in favour of navigation-assisted surgery. However, the endpoints in this study were short-term. To date, the long-term effects (need for revision, implant longevity, pain, functional performance) are unknown.(1)A Level 2 evidence short-term study found that navigation-assisted total knee arthroplasty was significantly better than a non-navigated procedure for one of five postoperative measured angles.(2)A Level 2 evidence short-term study found no statistically significant difference in the variation of the abduction angle between navigation-assisted and conventional total hip arthroplasty.(3)Level 3 evidence observational studies of navigation-assisted total knee arthroplasty and unicompartmental knee arthroplasty have been conducted. Two studies reported that "the follow-up of the navigated prostheses is currently too short to know if clinical outcome or survival rates are improved. Longer follow-up is required to determine the respective advantages and disadvantages of both techniques."(4;5) ROBOTIC-ASSISTED ARTHROPLASTY: Four studies were identified that examined robotic-assisted arthroplasty.A Level 1 evidence study revealed that there was no statistically significant difference between functional hip scores at 24 months post implantation between patients who underwent robotic-assisted primary hip arthroplasty and those that were treated with manual implantation.(6)Robotic-assisted arthroplasty had advantages in terms of preoperative planning and the accuracy of the intraoperative procedure.(6)Patients who underwent robotic-assisted hip arthroplasty had a higher dislocation rate and more revisions.(6)Robotic-assisted arthroplasty may prove effective with certain prostheses (e.g., anatomic) because their use may result in less muscle detachment.(6)An observational study (Level 3 evidence) found that the incidence of severe embolic events during hip relocation was lower with robotic arthroplasty than with manual surgery.(7)An observational study (Level 3 evidence) found that there was no significant difference in gait analyses of patients who underwent robotic-assisted total hip arthroplasty using robotic surgery compared to patients who were treated with conventional cementless total hip arthroplasty.(8)An observational study (Level 3 evidence) compared outcomes of total knee arthroplasty between patients undergoing robotic surgery and patients who were historical controls. Brief, qualitative results suggested that there was much broader variation of angles after manual total knee arthroplasty compared to the robotic technique and that there was no difference in knee functional scores or implant position at the 3 and 6 month follow-up.(9).
Computer-Assisted Hip and Knee Arthroplasty. Navigation and Active Robotic Systems
2004-01-01
Executive Summary Objective The Medical Advisory Secretariat undertook a review of the evidence on the effectiveness and cost-effectiveness of computer assisted hip and knee arthroplasty. The two computer assisted arthroplasty systems that are the topics of this review are (1) navigation and (2) robotic-assisted hip and knee arthroplasty. The Technology Computer-assisted arthroplasty consists of navigation and robotic systems. Surgical navigation is a visualization system that provides positional information about surgical tools or implants relative to a target bone on a computer display. Most of the navigation-assisted arthroplasty devices that are the subject of this review are licensed by Health Canada. Robotic systems are active robots that mill bone according to information from a computer-assisted navigation system. The robotic-assisted arthroplasty devices that are the subject of this review are not currently licensed by Health Canada. Review Strategy The Cochrane and International Network of Agencies for Health Technology Assessment databases did not identify any health technology assessments on navigation or robotic-assisted hip or knee arthroplasty. The MEDLINE and EMBASE databases were searched for articles published between January 1, 1996 and November 30, 2003. This search produced 367 studies, of which 9 met the inclusion criteria. Summary of Findings Navigation-Assisted Arthroplasty Five studies were identified that examined navigation-assisted arthroplasty. A Level 1 evidence study from Germany found a statistically significant difference in alignment and angular deviation between navigation-assisted and free-hand total knee arthroplasty in favour of navigation-assisted surgery. However, the endpoints in this study were short-term. To date, the long-term effects (need for revision, implant longevity, pain, functional performance) are unknown.(1) A Level 2 evidence short-term study found that navigation-assisted total knee arthroplasty was significantly better than a non-navigated procedure for one of five postoperative measured angles.(2) A Level 2 evidence short-term study found no statistically significant difference in the variation of the abduction angle between navigation-assisted and conventional total hip arthroplasty.(3) Level 3 evidence observational studies of navigation-assisted total knee arthroplasty and unicompartmental knee arthroplasty have been conducted. Two studies reported that “the follow-up of the navigated prostheses is currently too short to know if clinical outcome or survival rates are improved. Longer follow-up is required to determine the respective advantages and disadvantages of both techniques.”(4;5) Robotic-Assisted Arthroplasty Four studies were identified that examined robotic-assisted arthroplasty. A Level 1 evidence study revealed that there was no statistically significant difference between functional hip scores at 24 months post implantation between patients who underwent robotic-assisted primary hip arthroplasty and those that were treated with manual implantation.(6) Robotic-assisted arthroplasty had advantages in terms of preoperative planning and the accuracy of the intraoperative procedure.(6) Patients who underwent robotic-assisted hip arthroplasty had a higher dislocation rate and more revisions.(6) Robotic-assisted arthroplasty may prove effective with certain prostheses (e.g., anatomic) because their use may result in less muscle detachment.(6) An observational study (Level 3 evidence) found that the incidence of severe embolic events during hip relocation was lower with robotic arthroplasty than with manual surgery.(7) An observational study (Level 3 evidence) found that there was no significant difference in gait analyses of patients who underwent robotic-assisted total hip arthroplasty using robotic surgery compared to patients who were treated with conventional cementless total hip arthroplasty.(8) An observational study (Level 3 evidence) compared outcomes of total knee arthroplasty between patients undergoing robotic surgery and patients who were historical controls. Brief, qualitative results suggested that there was much broader variation of angles after manual total knee arthroplasty compared to the robotic technique and that there was no difference in knee functional scores or implant position at the 3 and 6 month follow-up.(9) PMID:23074452
van der List, Jelle P; Chawla, Harshvardhan; Joskowicz, Leo; Pearle, Andrew D
2016-11-01
Recently, there is a growing interest in surgical variables that are intraoperatively controlled by orthopaedic surgeons, including lower leg alignment, component positioning and soft tissues balancing. Since more tight control over these factors is associated with improved outcomes of unicompartmental knee arthroplasty and total knee arthroplasty (TKA), several computer navigation and robotic-assisted systems have been developed. Although mechanical axis accuracy and component positioning have been shown to improve with computer navigation, no superiority in functional outcomes has yet been shown. This could be explained by the fact that many differences exist between the number and type of surgical variables these systems control. Most systems control lower leg alignment and component positioning, while some in addition control soft tissue balancing. Finally, robotic-assisted systems have the additional advantage of improving surgical precision. A systematic search in PubMed, Embase and Cochrane Library resulted in 40 comparative studies and three registries on computer navigation reporting outcomes of 474,197 patients, and 21 basic science and clinical studies on robotic-assisted knee arthroplasty. Twenty-eight of these comparative computer navigation studies reported Knee Society Total scores in 3504 patients. Stratifying by type of surgical variables, no significant differences were noted in outcomes between surgery with computer-navigated TKA controlling for alignment and component positioning versus conventional TKA (p = 0.63). However, significantly better outcomes were noted following computer-navigated TKA that also controlled for soft tissue balancing versus conventional TKA (mean difference 4.84, 95 % Confidence Interval 1.61, 8.07, p = 0.003). A literature review of robotic systems showed that these systems can, similarly to computer navigation, reliably improve lower leg alignment, component positioning and soft tissues balancing. Furthermore, two studies comparing robotic-assisted with computer-navigated surgery reported superiority of robotic-assisted surgery in controlling these factors. Manually controlling all these surgical variables can be difficult for the orthopaedic surgeon. Findings in this study suggest that computer navigation or robotic assistance may help managing these multiple variables and could improve outcomes. Future studies assessing the role of soft tissue balancing in knee arthroplasty and long-term follow-up studies assessing the role of computer-navigated and robotic-assisted knee arthroplasty are needed.
Spencer, Brian A; Mont, Michael A; McGrath, Mike S; Boyd, Bradley; Mitrick, Michael F
2009-12-01
New technology using magnetic resonance imaging (MRI) allows the surgeon to place total knee replacement components into each patient's pre-arthritic natural alignment. This study evaluated the initial intra-operative experience using this technique. Twenty-one patients had a sagittal MRI of their arthritic knee to determine component placement for a total knee replacement. Cutting guides were machined to control all intra-operative cuts. Intra-operative events were recorded and these knees were compared to a matching cohort of the senior surgeon's previous 30 conventional total knee replacements. Post-operative scanograms were obtained from each patient and coronal alignment was compared to previous studies using conventional and computer-assisted techniques. There were no intra-operative or acute post-operative complications. There were no differences in blood loss and there was a mean decrease in operative time of 14% compared to a cohort of patients with conventional knee replacements. The average deviation from the mechanical axis was 1.2 degrees of varus, which was comparable to previously reported conventional and computer-assisted techniques. Custom-fit total knee replacement appeared to be a safe procedure for uncomplicated cases of osteoarthritis.
Shetty, Gautam M; Mullaji, Arun; Bhayde, Sagar
2012-10-01
This prospective study aimed to evaluate radiographically, change in joint line and femoral condylar offset with the optimized gap balancing technique in computer-assisted, primary, cruciate-substituting total knee arthroplasties (TKAs). One hundred and twenty-nine consecutive computer-assisted TKAs were evaluated radiographically using pre- and postoperative full-length standing hip-to-ankle, antero-posterior and lateral radiographs to assess change in knee deformity, joint line height and posterior condylar offset. In 49% of knees, there was a net decrease (mean 2.2mm, range 0.2-8.4mm) in joint line height postoperatively whereas 46.5% of knees had a net increase in joint line height (mean 2.5mm, range 0.2-11.2mm). In 93% of the knees, joint line was restored to within ± 5 mm of preoperative values. In 53% of knees, there was a net increase (mean 2.9 mm, range 0.2-12 mm) in posterior offset postoperatively whereas 40% of knees had a net decrease in posterior offset (mean 4.2mm, range 0.6-20mm). In 82% of knees, the posterior offset was restored within ± 5 mm of preoperative values. Based on radiographic evaluation in extension and at 30° flexion, the current study clearly demonstrates that joint line and posterior femoral condylar offset can be restored in the majority of computer-assisted, cruciate-substituting TKAs to within 5mm of their preoperative value. The optimized gap balancing feature of the computer software allows the surgeon to simulate the effect of simultaneously adjusting femoral component size, position and distal femoral resection level on joint line and posterior femoral offset. Copyright © 2011 Elsevier B.V. All rights reserved.
Alkire, Martha R; Swank, Michael L
2010-01-01
Continuous passive motion (CPM) has shown positive effects on tissue healing, edema, hemarthrosis, and joint function (L. Brosseau et al., 2004). CPM has also been shown to increase short-term early flexion and decrease length of stay (LOS) ( L. Brosseau et al., 2004; C. M. Chiarello, C. M. S. Gundersen, & T. O'Halloran, 2004). The benefits of CPM for the population of patients undergoing computer-assisted total knee arthroplasty (TKA) have not been examined. The primary objective of this study was to determine whether the use of CPM following computer-assisted TKA resulted in differences in range of motion, edema/drainage, functional ability, and pain. This was an experimental, prospective, randomized study of patients undergoing unilateral, computer-assisted TKA. The experimental group received CPM thrice daily and physical therapy (PT) twice daily during their hospitalization. The control group received PT twice daily and no CPM during the hospital stay. Both groups received PT after discharge. Measurement included Knee Society scores, Western Ontario McMaster Osteoarthritis Index values, range of motion, knee circumference, and HemoVac drainage. Data were collected at various intervals from preoperatively through 3 months. Although the control group was found to be higher functioning preoperatively, there was no statistically significant difference in flexion, edema or drainage, function, or pain between groups through the 3-month study period.
Computer Assisted Navigation in Knee Arthroplasty
Bae, Dae Kyung
2011-01-01
Computer assisted surgery (CAS) was used to improve the positioning of implants during total knee arthroplasty (TKA). Most studies have reported that computer assisted navigation reduced the outliers of alignment and component malpositioning. However, additional sophisticated studies are necessary to determine if the improvement of alignment will improve long-term clinical results and increase the survival rate of the implant. Knowledge of CAS-TKA technology and understanding the advantages and limitations of navigation are crucial to the successful application of the CAS technique in TKA. In this article, we review the components of navigation, classification of the system, surgical method, potential error, clinical results, advantages, and disadvantages. PMID:22162787
Cip, Johannes; Widemschek, Mark; Luegmair, Matthias; Sheinkop, Mitchell B; Benesch, Thomas; Martin, Arno
2014-09-01
In the literature, studies of computer-assisted total knee arthroplasty (TKA) after mid-term period are not conclusive and long-term data are rare. In a prospective, randomized, comparative study 100 conventional TKAs (group REG) were compared with 100 computer-assisted TKAs (group NAV). Minimum follow-up was 5years. No difference in implant failure was found with 1.1% in group NAV versus 4.6% in group REG (P=0.368). Group NAV showed a significantly less mean deviation of mechanical limb axis (P=0.015), more TKAs (90% versus 81% in group REG) were within 3° varus/valgus and a higher tibial slope and lateral distal femoral angle (LDFA) accuracy was found (P≤0.034). Clinical investigational parameters showed no differences (P≥0.058). Insall and HSS score total were also higher in group NAV (P≤0.016). Copyright © 2014 Elsevier Inc. All rights reserved.
Computer-assisted revision total knee replacement.
Sikorski, J M
2004-05-01
A technique for performing allograft-augmented revision total knee replacement (TKR) using computer assistance is described, on the basis of the results in 14 patients. Bone deficits were made up with impaction grafting. Femoral grafting was made possible by the construction of a retaining wall or dam which allowed pressurisation and retention of the graft. Tibial grafting used a mixture of corticocancellous and morsellised allograft. The position of the implants was monitored by the computer system and adjusted while the cement was setting. The outcome was determined using a six-parameter, quantitative technique (the Perth CT protocol) which measured the alignment of the prosthesis and provided an objective score. The final outcomes were not perfect with errors being made in femoral rotation and in producing a mismatch between the femoral and tibial components. In spite of the shortcomings the alignments were comparable in accuracy with those after primary TKR. Computer assistance shows considerable promise in producing accurate alignment in revision TKR with bone deficits.
Robotic-Assisted Knee Arthroplasty: An Overview.
van der List, Jelle P; Chawla, Harshvardhan; Pearle, Andrew D
2016-01-01
Unicompartmental knee arthroplasty and total knee arthroplasty are reliable treatment options for osteoarthritis. In order to improve survivorship rates, variables that are intraoperatively controlled by the orthopedic surgeon are being evaluated. These variables include lower leg alignment, soft tissue balance, joint line maintenance, and tibial and femoral component alignment, size, and fixation methods. Since tighter control of these factors is associated with improved outcomes of knee arthroplasty, several computer-assisted surgery systems have been developed. These systems differ in the number and type of variables they control. Robotic-assisted systems control these aforementioned variables and, in addition, aim to improve the surgical precision of the procedure. Robotic-assisted systems are active, semi-active, or passive, depending on how independently the systems perform maneuvers. Reviewing the robotic-assisted knee arthroplasty systems, it becomes clear that these systems can accurately and reliably control the aforementioned variables. Moreover, these systems are more accurate and reliable in controlling these variables when compared to the current gold standard of conventional manual surgery. At present, few studies have assessed the survivorship and functional outcomes of robotic-assisted surgery, and no sufficiently powered studies were identified that compared survivorship or functional outcomes between robotic-assisted and conventional knee arthroplasty. Although preliminary outcomes of robotic-assisted surgery look promising, more studies are necessary to assess if the increased accuracy and reliability in controlling the surgical variables leads to better outcomes of robotic-assisted knee arthroplasty.
Darmanis, Spyridon; Toms, Andrew; Durman, Robert; Moore, Donna; Eyres, Keith
2007-07-01
To reduce the operating time in computer-assisted navigated total knee replacement (TKR), by improving communication between the infrared camera and the trackers placed on the patient. The innovation involves placing a routinely used laser pointer on top of the camera, so that the infrared cameras focus precisely on the trackers located on the knee to be operated on. A prospective randomized study was performed involving 40 patients divided into two groups, A and B. Both groups underwent navigated TKR, but for group B patients a laser pointer was used to improve the targeting capabilities of the cameras. Without the laser pointer, the camera had to move a mean 9.2 times in order to identify the trackers. With the introduction of the laser pointer, this was reduced to 0.9 times. Accordingly, the additional mean time required without the laser pointer was 11.6 minutes. Time delays are a major problem in computer-assisted surgery, and our technical suggestion can contribute towards reducing the delays associated with this particular application.
Gøthesen, Øystein; Slover, James; Havelin, Leif; Askildsen, Jan Erik; Malchau, Henrik; Furnes, Ove
2013-07-06
The use of Computer Assisted Surgery (CAS) for knee replacements is intended to improve the alignment of knee prostheses in order to reduce the number of revision operations. Is the cost effectiveness of computer assisted surgery influenced by patient volume and age? By employing a Markov model, we analysed the cost effectiveness of computer assisted surgery versus conventional arthroplasty with respect to implant survival and operation volume in two theoretical Norwegian age cohorts. We obtained mortality and hospital cost data over a 20-year period from Norwegian registers. We presumed that the cost of an intervention would need to be below NOK 500,000 per QALY (Quality Adjusted Life Year) gained, to be considered cost effective. The added cost of computer assisted surgery, provided this has no impact on implant survival, is NOK 1037 and NOK 1414 respectively for 60 and 75-year-olds per quality-adjusted life year at a volume of 25 prostheses per year, and NOK 128 and NOK 175 respectively at a volume of 250 prostheses per year. Sensitivity analyses showed that the 10-year implant survival in cohort 1 needs to rise from 89.8% to 90.6% at 25 prostheses per year, and from 89.8 to 89.9% at 250 prostheses per year for computer assisted surgery to be considered cost effective. In cohort 2, the required improvement is a rise from 95.1% to 95.4% at 25 prostheses per year, and from 95.10% to 95.14% at 250 prostheses per year. The cost of using computer navigation for total knee replacements may be acceptable for 60-year-old as well as 75-year-old patients if the technique increases the implant survival rate just marginally, and the department has a high operation volume. A low volume department might not achieve cost-effectiveness unless computer navigation has a more significant impact on implant survival, thus may defer the investments until such data are available.
Short-term outcome of 1,465 computer-navigated primary total knee replacements 2005-2008.
Gøthesen, Oystein; Espehaug, Birgitte; Havelin, Leif; Petursson, Gunnar; Furnes, Ove
2011-06-01
and purpose Improvement of positioning and alignment by the use of computer-assisted surgery (CAS) might improve longevity and function in total knee replacements, but there is little evidence. In this study, we evaluated the short-term results of computer-navigated knee replacements based on data from the Norwegian Arthroplasty Register. Primary total knee replacements without patella resurfacing, reported to the Norwegian Arthroplasty Register during the years 2005-2008, were evaluated. The 5 most common implants and the 3 most common navigation systems were selected. Cemented, uncemented, and hybrid knees were included. With the risk of revision for any cause as the primary endpoint and intraoperative complications and operating time as secondary outcomes, 1,465 computer-navigated knee replacements (CAS) and 8,214 conventionally operated knee replacements (CON) were compared. Kaplan-Meier survival analysis and Cox regression analysis with adjustment for age, sex, prosthesis brand, fixation method, previous knee surgery, preoperative diagnosis, and ASA category were used. Kaplan-Meier estimated survival at 2 years was 98% (95% CI: 97.5-98.3) in the CON group and 96% (95% CI: 95.0-97.8) in the CAS group. The adjusted Cox regression analysis showed a higher risk of revision in the CAS group (RR = 1.7, 95% CI: 1.1-2.5; p = 0.02). The LCS Complete knee had a higher risk of revision with CAS than with CON (RR = 2.1, 95% CI: 1.3-3.4; p = 0.004)). The differences were not statistically significant for the other prosthesis brands. Mean operating time was 15 min longer in the CAS group. With the introduction of computer-navigated knee replacement surgery in Norway, the short-term risk of revision has increased for computer-navigated replacement with the LCS Complete. The mechanisms of failure of these implantations should be explored in greater depth, and in this study we have not been able to draw conclusions regarding causation.
Jia, Di; Li, Yanlin; Wang, Guoliang; Gao, Huanyu; Yu, Yang
2016-01-01
To conclude the revision reason of unicompartmental knee arthroplasty (UKA) using computer-assisted technology so as to provide reference for reducing the revision incidence and improving the level of surgical technique and rehabilitation. The relevant literature on analyzing revision reason of UKA using computer-assisted technology in recent years was extensively reviewed. The revision reasons by computer-assisted technology are fracture of the medial tibial plateau, progressive osteoarthritis of reserved compartment, dislocation of mobile bearing, prosthesis loosening, polyethylene wear, and unexplained persistent pain. Computer-assisted technology can be used to analyze the revision reason of UKA and guide the best operating method and rehabilitation scheme by simulating the operative process and knee joint activities.
Li, Xiaohui; Yu, Jianhua; Gong, Yuekun; Ren, Kaijing; Liu, Jun
2015-04-21
To assess the early postoperative clinical and radiographic outcomes after navigation-assisted or standard instrumentation total knee arthroplasty (TKA). From August 2007 to May 2008, 60 KSS-A type patients underwent 67 primary TKA operations by the same surgical team. Twenty-two operations were performed with the Image-free navigation system with an average age of 64.5 years while the remaining 45 underwent conventional manual procedures with an average age of 66 years. Their preoperative demographic and functional data had no statistical differences (P>0.05). The operative duration, blood loss volume and hospitalization days were compared for two groups. And radiographic data included coronal femoral component angle, coronal tibial component angle, sagittal femoral component angle, sagittal tibial component angle and coronal tibiofemoral angle after one month. And functional assessment scores were evaluated at 1, 3 and 6 months postoperatively. Operative duration was significantly longer for computer navigation (P<0.05). The average blood loss volume was 555.26 ml in computer navigation group and 647.56 ml in conventional manual method group (P<0.05). And hospitalization stay was shorter in computer navigation group than that in conventional method group (7.74 vs 8.68 days) (P=0.04). The alignment deviation was better in computer-assisted group than that in conventional manual method group (P<0.05). The percentage of patients with a coronal tibiofemoral angle within ±3 of ideal value was 95.45% for computer-assisted mini-invasive TKA group and 80% for conventional TKA group (P=0.003). The Knee Society Clinical Rating Score was higher in computer-assisted group than that in conventional manual method group at 1 and 3 montha post-operation. However, no statistical inter-group difference existed at 6 months post-operation. Navigation allows a surgeon to precisely implant the components for TKA. And it offers faster functional recovery and shorter hospitalization stay. At 6 months post-operation, there is no statistical inter-group difference in KSS scores.
Cheng, Tao; Zhang, Guoyou; Zhang, Xianlong
2011-12-01
The aim of computer-assisted surgery is to improve accuracy and limit the range of surgical variability. However, a worldwide debate exists regarding the importance and usefulness of computer-assisted navigation for total knee arthroplasty (TKA). The main purpose of this study is to summarize and compare the radiographic outcomes of TKA performed using imageless computer-assisted navigation compared with conventional techniques. An electronic search of PubMed, EMBASE, Web of Science, and Cochrane library databases was made, in addition to manual search of major orthopedic journals. A meta-analysis of 29 quasi-randomized/randomized controlled trials (quasi-RCTs/RCTs) and 11 prospective comparative studies was conducted through a random effects model. Additional a priori sources of clinical heterogeneity were evaluated by subgroup analysis with regard to radiographic methods. When the outlier cut-off value of lower limb axis was defined as ±2° or ±3° from the neutral, the postoperative full-length radiographs demonstrated that the risk ratio was 0.54 or 0.39, respectively, which were in favor of the navigated group. When the cut-off value used for the alignment in the coronal and sagittal plane was 2° or 3°, imageless navigation significantly reduced the outlier rate of the femoral and tibial components compared with the conventional group. Notably, computed tomography scans demonstrated no statistically significant differences between the two groups regarding the outliers in the rotational alignment of the femoral and tibial components; however, there was strong statistical heterogeneity. Our results indicated that imageless computer-assisted navigation systems improve lower limb axis and component orientation in the coronal and sagittal planes, but not the rotational alignment in TKA. Further multiple-center clinical trials with long-term follow-up are needed to determine differences in the clinical and functional outcomes of knee arthroplasties performed using computer-assisted techniques. Copyright © 2011 Elsevier Inc. All rights reserved.
Rosenberger, Ralf E; Hoser, Christian; Quirbach, Sebastian; Attal, Rene; Hennerbichler, Alfred; Fink, Christian
2008-03-01
Accuracy of implant positioning and reconstruction of the mechanical leg axis are major requirements for achieving good long-term results in total knee arthroplasty (TKA). The purpose of the present study was to determine whether image-free computer navigation technology has the potential to improve the accuracy of component alignment in TKA cohorts of experienced surgeons immediately and constantly. One hundred patients with primary arthritis of the knee underwent the unilateral total knee arthroplasty. The cohort of 50 TKAs implanted with conventional instrumentation was directly followed by the cohort of the very first 50 computer-assisted TKAs. All surgeries were performed by two senior surgeons. All patients received the Zimmer NexGen total knee prosthesis (Zimmer Inc., Warsaw, IN, USA). There was no variability regarding surgeons or surgical technique, except for the use of the navigation system (StealthStation) Treon plus Medtronic Inc., Minnesota, MI, USA). Accuracy of implant positioning was measured on postoperative long-leg standing radiographs and standard lateral X-rays with regard to the valgus angle and the coronal and sagittal component angles. In addition, preoperative deformities of the mechanical leg axis, tourniquet time, age, and gender were correlated. Statistical analyses were performed using the SPSS 15.0 (SPSS Inc., Chicago, IL, USA) software package. Independent t-tests were used, with significance set at P < 0.05 (two-tailed) to compare differences in mean angular values and frontal mechanical alignment between the two cohorts. To compute the rate of optimally implanted prostheses between the two groups we used the chi(2) test. The average postoperative radiological frontal mechanical alignment was 1.88 degrees of varus (range 6.1 degrees of valgus-10.1 degrees of varus; SD 3.68 degrees ) in the conventional cohort and 0.28 degrees of varus (range 3.7 degrees -6.0 degrees of varus; SD 1.97 degrees ) in the navigated cohort. Including all criteria for optimal implant alignment, 16 cases (32%) in the conventional cohort and 31 cases (62%) in the navigated cohort have been implanted optimally. The average difference in tourniquet time was modest with additional 12.9 min in the navigated cohort compared to the conventional cohort. Our findings suggest that the experienced knee surgeons can improve immediately and constantly the accuracy of component orientation using an image-free computer-assisted navigation system in TKA. The computer-assisted technology has shown to be easy to use, safe, and efficient in routine knee replacement surgery. We believe that navigation is a key technology for various current and future surgical alignment topics and minimal-invasive lower limb surgery.
Friederich, N; Verdonk, R
2008-06-01
Computer-assisted orthopedic surgery (CAOS) for total knee arthroplasty is an emerging surgical tool, yet little is known about how it is being used in everyday orthopedic centers. We sought to better understand physicians' current practices and beliefs on this topic through performing a Web-based survey. Between December 2006 and January 2007, a 24-question survey was emailed to 3,330 members of the European Society of Sports Traumatology Knee Surgery and Arthroscopy (ESSKA) and the Swiss Orthopedic Society (SGO-SSO), with 389 (11.7%) agreeing to participate. Of this group, 202 (51.9%) reported that their center was equipped with a navigation system, which was an image-free based system for most (83.2%) and was primarily used for total knee arthroplasty (61.4%). In terms of the proportion of use, 50.5% of respondents used their navigation system in less than 25% of cases, 16.3% in 25-50% of cases, 7.4% in 51-75% of cases, and 25.7% in more than 75% of cases. The potential for improving the alignment of prosthesis was the most strongly cited reason for using a navigation system, while the potential for increasing operation times and the risk of infections were the most strongly cited reasons for not using a navigation system. Approximately half of respondents surveyed believed navigation systems were a real innovation contributing to the improvement of total knee implantation. However, heavy usage of computer-assisted navigation (> or =51% of cases) was observed in only 33.1% of respondents, with only a quarter using it at rates that could be considered frequent (>75% of cases). Forty-eight percent of respondents said they will use a navigation system in more cases and 39.1% that their usage will stay the same. These findings indicate that CAOS is being used only moderately in current practices, though respondents generally had a positive opinion of its potential benefits. Physicians may be awaiting more data before adopting the use of these systems, though survey responses also suggest a projected increase in their use in the coming years.
Short-term outcome of 1,465 computer-navigated primary total knee replacements 2005–2008
2011-01-01
Background and purpose Improvement of positioning and alignment by the use of computer-assisted surgery (CAS) might improve longevity and function in total knee replacements, but there is little evidence. In this study, we evaluated the short-term results of computer-navigated knee replacements based on data from the Norwegian Arthroplasty Register. Patients and methods Primary total knee replacements without patella resurfacing, reported to the Norwegian Arthroplasty Register during the years 2005–2008, were evaluated. The 5 most common implants and the 3 most common navigation systems were selected. Cemented, uncemented, and hybrid knees were included. With the risk of revision for any cause as the primary endpoint and intraoperative complications and operating time as secondary outcomes, 1,465 computer-navigated knee replacements (CAS) and 8,214 conventionally operated knee replacements (CON) were compared. Kaplan-Meier survival analysis and Cox regression analysis with adjustment for age, sex, prosthesis brand, fixation method, previous knee surgery, preoperative diagnosis, and ASA category were used. Results Kaplan-Meier estimated survival at 2 years was 98% (95% CI: 97.5–98.3) in the CON group and 96% (95% CI: 95.0–97.8) in the CAS group. The adjusted Cox regression analysis showed a higher risk of revision in the CAS group (RR = 1.7, 95% CI: 1.1–2.5; p = 0.02). The LCS Complete knee had a higher risk of revision with CAS than with CON (RR = 2.1, 95% CI: 1.3–3.4; p = 0.004)). The differences were not statistically significant for the other prosthesis brands. Mean operating time was 15 min longer in the CAS group. Interpretation With the introduction of computer-navigated knee replacement surgery in Norway, the short-term risk of revision has increased for computer-navigated replacement with the LCS Complete. The mechanisms of failure of these implantations should be explored in greater depth, and in this study we have not been able to draw conclusions regarding causation. PMID:21504309
Results of computer assisted mini-incision subvastus approach for total knee arthroplasty.
Turajane, Thana; Larbpaiboonpong, Viroj; Kongtharvonskul, Jatupon; Maungsiri, Samart
2009-12-01
Mini-incision subvastus approach is soft tissue preservation of the knee. Advantages of the mini-incision subvastus approach included reduced blood loss, reduced pain, self rehabilitation and faster recovery. However, the improved visualization, component alignment, and more blood preservation have been debatable to achieve the better outcome and preventing early failure of the Total Knee Arthroplasty (TKA). The computer navigation has been introduced to improve alignment and blood loss. The purpose of this study was to evaluate the short term outcomes of the combination of computer assisted mini-incision subvastus approach for Total Knee Arthroplasty (CMS-TKA). A prospective case series of the initial 80 patients who underwent computer assisted mini-incision subvastus approach for CMS-TKA from January 2007 to October 2008 was carried out. The patients' conditions were classified into 2 groups, the simple OA knee (varus deformity was less than 15 degree, BMI was less than 20%, no associated deformities) and the complex deformity (varus deformity was more than 15 degrees, BMI more was than 20%, associated with flexion contractor). There were 59 patients in group 1 and 21 patients in group 2. Of the 80 knees, 38 were on the left and 42 on the right. The results of CMS-TKA [the mean (range)] in group 1: group 2 were respectively shown as the incision length [10.88 (8-13): 11.92 (10-14], the operation time [118 (111.88-125.12): 131 (119.29-143.71) minutes, lateral releases (0 in both groups), postoperative range of motion in flexion [94.5 (90-100): 95.25 (90-105) degree] and extension [1.75 (0-5): 1.5 (0-5) degree] Blood loss in 24 hours [489.09 (414.7-563.48): 520 (503.46-636.54) ml] and blood transfusion [1 (0-1) unit? in both groups], Tibiofemoral angle preoperative [Varus = 4 (varus 0-10): Varus = 17.14 (varus 15.7-18.5) degree, Tibiofemoral angle postoperative [Valgus = 1.38 (Valgus 0-4): Valgus = 2.85 (valgus 2.1-3.5) degree], Tibiofemoral angle outlier (85% both groups), and Knee society score preoperative and postoperative [64.6 (59.8-69.4) and 93.7 (90.8-96.65)]: 69 (63.6-74.39) 92.36 (88.22-96.5)]. The complications found in both groups were similar. No deep vein thrombosis, no fracture at both femur and tibia, no vascular injury, and no pin tract pain or infection was found in both groups. The computer assisted CMS-TKA) is one of the appropriate procedures for all varus deformity, no limitation with the associated bone loss, flexion contractor, BMI, except the fixed valgus deformity. To ensure the clinical outcomes, multiple key steps were considered as the appropriate techniques for this approach which included the accurate registration, precision bone cut and ligament balances, and the good cement techniques.
Cip, Johannes; Obwegeser, Florian; Benesch, Thomas; Bach, Christian; Ruckenstuhl, Paul; Martin, Arno
2018-05-01
Navigated computer-assisted total knee arthroplasty (TKA) was introduced to expedite long-term survival based on improved postoperative implantation accuracy. However, long-term outcome data after 10 years or more are rare, even available meta-analyses show controversial study results. In a prospective randomized trial, 100 conventional TKAs (group CONV) were compared with 100 computer-assisted TKAs (group NAV) after a mean follow-up of 12 years postoperatively. A long-leg weight-bearing X-ray was performed for measuring mechanical axis of the limb, lateral distal femoral angle, and medial proximal tibial angle. Tibial slope, patella alpha angle, and radiolucent lines were also observed. Clinical investigation included evaluation of 4 different scores: Insall Knee Score, Western Ontario and MacMaster University Index score, Hospital for Special Surgery Knee Score, and visual analog scale. Based on a follow-up rate of at least 75%, no difference in TKA survival was found 12 years postoperatively: 91.5% in group CONV vs 98.2% in group NAV (P = .181). Since 5-year follow-up, no additional TKA revision had been performed in both groups. Group CONV showed a nonsignificant higher inaccuracy of neutral lower limb axis (1.8° ± 1.4°) compared to group NAV (1.6° ± 1.7°, P = .700). All X-ray assessments were not significant different within both study groups (P ≥ .068). Clinical examination showed no differences in evaluations (P ≥ .204). All collected outcome score results were similar (P ≥ .222). Twelve years postoperatively, no differences were found in terms of long-term survival, implantation accuracy, clinical outcome or score results. Copyright © 2017 Elsevier Inc. All rights reserved.
Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping.
Wu, Yixiao; Yang, Ran; Jia, Sen; Li, Zhanjun; Zhou, Zhiyang; Lou, Ting
2014-01-01
This work was aimed at studying the method of computer-aided diagnosis of early knee OA (OA: osteoarthritis). Based on the technique of MRI (MRI: Magnetic Resonance Imaging) T2 Mapping, through computer image processing, feature extraction, calculation and analysis via constructing a classifier, an effective computer-aided diagnosis method for knee OA was created to assist doctors in their accurate, timely and convenient detection of potential risk of OA. In order to evaluate this method, a total of 1380 data from the MRI images of 46 samples of knee joints were collected. These data were then modeled through linear regression on an offline general platform by the use of the ImageJ software, and a map of the physical parameter T2 was reconstructed. After the image processing, the T2 values of ten regions in the WORMS (WORMS: Whole-organ Magnetic Resonance Imaging Score) areas of the articular cartilage were extracted to be used as the eigenvalues in data mining. Then,a RBF (RBF: Radical Basis Function) network classifier was built to classify and identify the collected data. The classifier exhibited a final identification accuracy of 75%, indicating a good result of assisting diagnosis. Since the knee OA classifier constituted by a weights-directly-determined RBF neural network didn't require any iteration, our results demonstrated that the optimal weights, appropriate center and variance could be yielded through simple procedures. Furthermore, the accuracy for both the training samples and the testing samples from the normal group could reach 100%. Finally, the classifier was superior both in time efficiency and classification performance to the frequently used classifiers based on iterative learning. Thus it was suitable to be used as an aid to computer-aided diagnosis of early knee OA.
Kim, Young-Hoo; Park, Jang-Won; Kim, Jun-Shik
2018-01-01
Proponents of computer-assisted TKA suggest that better alignment of the TKAs will lead to improved long-term patient functional outcome and survivorship of the implants. However, there is little evidence about whether the improved position and alignment of the knee components obtained using computer navigation improve patient function and the longevity of the TKA. The purpose of this study was to determine whether (1) clinical results; (2) radiographic and CT scan results; and (3) the survival rate of TKA components would be better in patients having computer-assisted TKA than results of patients having TKA without computer-assisted TKA. In addition, we determined whether (4) complication rates would be less in the patients with computer-assisted TKA than those in patients with conventional TKA. We performed a randomized trial between October 2000 and October 2002 in patients undergoing same-day bilateral TKA; in this trial, one knee was operated on using navigation, and the other knee was operated on without navigation. All 296 patients who underwent same-day bilateral TKA during that period were enrolled. Of those, 282 patients (95%) were accounted for at a mean of 15 years (range, 14-16 years). A total of 79% (223 of 282) were women and the mean age of the patients at the time of index arthroplasty was 59 ± 7 years (range, 48-64 years). Knee Society knee score, WOMAC score, and UCLA activity score were obtained preoperatively and at latest followup. Radiographic measurements were performed including femorotibial angle, position of femoral and tibial components, level of joint line, and posterior condylar offset. Aseptic loosening was defined as a complete radiolucent line > 1 mm in width around any component or migration of any component. Assessors and patients were blind to treatment assignment. The Knee Society knee (92 ± 8 versus 93 ± 7 points; 95% confidence interval [CI], 92-98; p = 0.461) and function scores (80 ± 11 versus 80 ± 11 points; 95% CI, 73-87; p = 1.000), WOMAC score (14 ± 7 versus 15 ± 8 points; 95% CI, 14-18; p = 0.991), range of knee motion (128° ± 9° versus 127° ± 10°; 95% CI, 100-140; p = 0.780), and UCLA patient activity score (6 versus 6 points; 95% CI, 4-8; p = 1.000) were not different between the two groups at 15 years followup. There were no differences in any radiographic parameters of alignment (on radiography or CT scan) between the two groups. The frequency of aseptic loosening was not different between the two groups (p = 0.918). Kaplan-Meier survivorship of the TKA components was 99% in both groups (95% CI, 93-100) at 15 years as the endpoint of revision or aseptic loosening (p = 0.982). Anterior femoral notching was observed in 11 knees (4%) in the computer-assisted TKA group and none in the conventional TKA group (p = 0.046). In this randomized trial, with data presented at a minimum of 14 years of followup, we found no benefit to computer navigation in TKA in terms of pain, function, or survivorship. Unless another study at long-term followup identifies an advantage to survivorship, pain, and function, we do not recommend the widespread use of computer navigation in TKA because of its risks (in this series, we observed femoral notching; others have observed pin site fractures) and attendant costs. Level I, therapeutic study.
Mullaji, Arun; Sharma, Amit; Marawar, Satyajit; Kanna, Raj
2009-08-01
A novel sequence of posteromedial release consistent with surgical technique of total knee arthroplasty was performed in 15 cadaveric knees. Medial and lateral flexion and extension gaps were measured after each step of the release using a computed tomography-free computer navigation system. A spring-loaded distractor and a manual distractor were used to distract the joint. Posterior cruciate ligament release increased flexion more than extension gap; deep medial collateral ligament release had a negligible effect; semimembranosus release increased the flexion gap medially; reduction osteotomy increased medial flexion and extension gaps; superficial medial collateral ligament release increased medial joint gap more in flexion and caused severe instability. This sequence of release led to incremental and differential effects on flexion-extension gaps and has implications in correcting varus deformity.
Yaffe, Mark; Luo, Michael; Goyal, Nitin; Chan, Philip; Patel, Anay; Cayo, Max; Stulberg, S David
2014-09-01
The purpose of this study was to evaluate clinical, functional, and radiographic outcomes following total knee arthroplasty (TKA) performed with patient-specific instrumentation (PSI), computer-assisted surgery (CAS), and manual instruments at short-term follow-up. 122 TKAs were performed by a single surgeon: 42 with PSI, 38 with CAS, and 40 with manual instrumentation. Preoperative, 1-month, and 6-month clinical and functional outcomes were measured using the Knee Society scoring system (knee score, function score, range of motion, and pain score). Improvements in clinical and functional outcomes from the preoperative to postoperative period were analyzed. Preoperative and postoperative radiographs were measured to evaluate limb and component alignment. Preoperative, 1-month postoperative, and 6-month postoperative knee scores, function scores, range of motion, and pain scores were highest in the PSI group compared to CAS and manual instrumentation. At 6-month follow-up, PSI TKA was associated with a statistically significant improvement in functional score when compared to manual TKA. Otherwise, there were no statistically significant differences in improvements among PSI, CAS, and manual TKA groups. The higher preoperative scores in the PSI group limits the ability to draw definitive conclusions from the raw postoperative scores, but analyzing the changes in scores revealed that PSI was associated with a statistically significant improvement in Knee Society Functional score at 6-month post-TKA as compared to CAS or manual TKA. This may be attributable to improvements in component rotation and positioning, improved component size accuracy, or other factors that are not discernible on plain radiograph.
Tibial rotation kinematics subsequent to knee arthroplasty
Collins, Duane J.; Khatib, Yasser H.; Parker, David A.; Jenkin, Deanne E.; Molnar, Robert B.
2015-01-01
Background The use of computer assisted joint replacement has facilitated precise intraoperative measurement of knee kinematics. The changes in “screw home mechanism” (SHM) resulting from Total Knee Arthroplasty (TKA) with different prostheses and constraints has not yet been accurately described. Methods A pilot study was first completed. Intraoperative kinematic data was collected two groups of 15 patients receiving different prostheses. Results On average, patients lost 5.3° of ER (SD = 6.1°). There was no significant difference between the prostheses or different prosthetic constraints. Conclusions There significant loss of SHM after TKA. Further research is required to understand its impact on patient function. PMID:25829754
[The history and development of computer assisted orthopaedic surgery].
Jenny, J-Y
2006-10-01
Computer assisted orthopaedic surgery (CAOS) was developed to improve the accuracy of surgical procedures. It has improved dramatically over the last years, being transformed from an experimental, laboratory procedure into a routine procedure theoretically available to every orthopaedic surgeon. The first field of application of computer assistance was neurosurgery. After the application of computer guided spinal surgery, the navigation of total hip and knee joints became available. Currently, several applications for computer assisted surgery are available. At the beginning of navigation, a preoperative CT-scan or several fluoroscopic images were necessary. The imageless systems allow the surgeon to digitize patient anatomy at the beginning of surgery without any preoperative imaging. The future of CAOS remains unknown, but there is no doubt that its importance will grow in the next 10 years, and that this technology will probably modify the conventional practice of orthopaedic surgery.
Bae, Dae Kyung; Song, Sang Jun; Kim, Kang Il; Hur, Dong; Jeong, Ho Yeon
2016-03-01
The purpose of the present study was to compare the clinical and radiographic results and survival rates between computer-assisted and conventional closing wedge high tibial osteotomies (HTOs). Data from a consecutive cohort comprised of 75 computer-assisted HTOs and 75 conventional HTOs were retrospectively reviewed. The Knee Society knee and function scores, Hospital for Special Surgery (HSS) score and femorotibial angle (FTA) were compared between the two groups. Survival rates were also compared with procedure failure. The knee and function scores at one year postoperatively were slightly better in the computer-assisted group than those in conventional group (90.1 vs. 86.1) (82.0 vs. 76.0). The HSS scores at one year postoperatively were slightly better for the computer-assisted HTOs than those of conventional HTOs (89.5 vs. 81.8). The inlier of the postoperative FTA was wider in the computer-assisted group than that in the conventional HTO group (88.0% vs. 58.7%), and mean postoperative FTA was greater in the computer-assisted group that in the conventional HTO group (valgus 9.0° vs. valgus 7.6°, p<0.001). The five- and 10-year survival rates were 97.1% and 89.6%, respectively. No difference was detected in nine-year survival rates (p=0.369) between the two groups, although the clinical and radiographic results were better in the computer-assisted group that those in the conventional HTO group. Mid-term survival rates did not differ between computer-assisted and conventional HTOs. A comparative analysis of longer-term survival rate is required to demonstrate the long-term benefit of computer-assisted HTO. III. Copyright © 2015 Elsevier B.V. All rights reserved.
Shemesh, Shai S; Bronson, Michael J; Moucha, Calin S
2016-10-01
The internet is increasingly being used as a resource for health-related information by the general public. We sought to establish the authorship, content and accuracy of the information available online regarding computer-assisted total knee arthroplasty (CA-TKA). One hundred fifty search results from three leading search engines available online (Google, Yahoo!, Bing) from ten different countries worldwide were reviewed. While private physicians/groups authored 50.7 % of the websites, only 17.3 % were authored by a hospital/university. As compared to traditional TKA, 59.3 % of the websites claimed that navigated TKA offers better longevity, 46.6 % claimed accelerated recovery and 26 % claimed fewer complications. Only 11.3 % mentioned the prolonged operating room time required, and only 15.3 % noted the current lack of long-term evidence in support of this technology. Patients seeking information regarding CA-TKA through the major search engines are likely to encounter websites presenting a narrow, unscientific, viewpoint of the present technology, putting emphasis on unsubstantiated benefits while disregarding potential drawbacks. Survey of Materials-Internet.
Wilson, W T; Deakin, A H; Wearing, S C; Payne, A P; Clarke, J V; Picard, F
2013-01-01
The relationship between coronal knee laxity and the restraining properties of the collateral ligaments remains unknown. This study investigated correlations between the structural properties of the collateral ligaments and stress angles used in computer-assisted total knee arthroplasty (TKA), measured with an optically based navigation system. Ten fresh-frozen cadaveric knees (mean age: 81 ± 11 years) were dissected to leave the menisci, cruciate ligaments, posterior joint capsule and collateral ligaments. The resected femur and tibia were rigidly secured within a test system which permitted kinematic registration of the knee using a commercially available image-free navigation system. Frontal plane knee alignment and varus-valgus stress angles were acquired. The force applied during varus-valgus testing was quantified. Medial and lateral bone-collateral ligament-bone specimens were then prepared, mounted within a uni-axial materials testing machine, and extended to failure. Force and displacement data were used to calculate the principal structural properties of the ligaments. The mean varus laxity was 4 ± 1° and the mean valgus laxity was 4 ± 2°. The corresponding mean manual force applied was 10 ± 3 N and 11 ± 4 N, respectively. While measures of knee laxity were independent of the ultimate tensile strength and stiffness of the collateral ligaments, there was a significant correlation between the force applied during stress testing and the instantaneous stiffness of the medial (r = 0.91, p = 0.001) and lateral (r = 0.68, p = 0.04) collateral ligaments. These findings suggest that clinicians may perceive a rate of change of ligament stiffness as the end-point during assessment of collateral knee laxity.
Stanley, Jeremy C; Robinson, Kerian G; Devitt, Brian M; Richmond, Anneka K; Webster, Kate E; Whitehead, Timothy S; Feller, Julian A
2016-03-01
There are numerous methods available to assist surgeons in the accurate correction of varus alignment during medial opening wedge high tibial osteotomy (MOWHTO). Preoperative planning performed with radiographs or more recently intraoperative computer navigation software has been used. The aim of the study was to compare the accuracy of computer navigated versus non-navigated techniques to correct varus alignment of the knee. The preoperative and postoperative radiographs of 117 knees that underwent MOWHTO were investigated to assess radiographic limb alignment 12-months postoperatively. The desired correction was defined as a weight bearing line (Mikulicz point {MP}) 58% of the width of the tibial plateau from the medial tibial margin. Sixty-five knees were corrected using a conventional technique and 52 knees were corrected using computer navigation. The mean MP percentage was 59% in the navigated group, compared with 56% in the fluoroscopic group (p=0.183). 51.9% of the navigation knees were corrected to within five percent of the desired correction, in contrast to 38.5% of the fluoroscopically corrected knees (p=0.15). 71.2% of the navigated knees were corrected to within 10% of the desired correction, compared with 63.1% of the fluoroscopically corrected knees (p=0.36). Large preoperative deformities were more accurately corrected with navigation assistance (57% vs 49%, p=0.049). No statistically significant difference was found in the radiographic correction of varus alignment twelve months postoperatively between navigated and fluoroscopic techniques of MOWHTO. However, a subgroup analysis demonstrated that larger preoperative varus deformities may be more accurately corrected using computer navigation. Copyright © 2016 Elsevier B.V. All rights reserved.
[Cost analysis for navigation in knee endoprosthetics].
Cerha, O; Kirschner, S; Günther, K-P; Lützner, J
2009-12-01
Total knee arthroplasty (TKA) is one of the most frequent procedures in orthopaedic surgery. The outcome depends on a range of factors including alignment of the leg and the positioning of the implant in addition to patient-associated factors. Computer-assisted navigation systems can improve the restoration of a neutral leg alignment. This procedure has been established especially in Europe and North America. The additional expenses are not reimbursed in the German DRG system (Diagnosis Related Groups). In the present study a cost analysis of computer-assisted TKA compared to the conventional technique was performed. The acquisition expenses of various navigation systems (5 and 10 year depreciation), annual costs for maintenance and software updates as well as the accompanying costs per operation (consumables, additional operating time) were considered. The additional operating time was determined on the basis of a meta-analysis according to the current literature. Situations with 25, 50, 100, 200 and 500 computer-assisted TKAs per year were simulated. The amount of the incremental costs of the computer-assisted TKA depends mainly on the annual volume and the additional operating time. A relevant decrease of the incremental costs was detected between 50 and 100 procedures per year. In a model with 100 computer-assisted TKAs per year an additional operating time of 14 mins and a 10 year depreciation of the investment costs, the incremental expenses amount to
Dong, Hengjin; Buxton, Martin
2006-01-01
The objective of this study is to apply a Markov model to compare cost-effectiveness of total knee replacement (TKR) using computer-assisted surgery (CAS) with that of TKR using a conventional manual method in the absence of formal clinical trial evidence. A structured search was carried out to identify evidence relating to the clinical outcome, cost, and effectiveness of TKR. Nine Markov states were identified based on the progress of the disease after TKR. Effectiveness was expressed by quality-adjusted life years (QALYs). The simulation was carried out initially for 120 cycles of a month each, starting with 1,000 TKRs. A discount rate of 3.5 percent was used for both cost and effectiveness in the incremental cost-effectiveness analysis. Then, a probabilistic sensitivity analysis was carried out using a Monte Carlo approach with 10,000 iterations. Computer-assisted TKR was a long-term cost-effective technology, but the QALYs gained were small. After the first 2 years, the incremental cost per QALY of computer-assisted TKR was dominant because of cheaper and more QALYs. The incremental cost-effectiveness ratio (ICER) was sensitive to the "effect of CAS," to the CAS extra cost, and to the utility of the state "Normal health after primary TKR," but it was not sensitive to utilities of other Markov states. Both probabilistic and deterministic analyses produced similar cumulative serious or minor complication rates and complex or simple revision rates. They also produced similar ICERs. Compared with conventional TKR, computer-assisted TKR is a cost-saving technology in the long-term and may offer small additional QALYs. The "effect of CAS" is to reduce revision rates and complications through more accurate and precise alignment, and although the conclusions from the model, even when allowing for a full probabilistic analysis of uncertainty, are clear, the "effect of CAS" on the rate of revisions awaits long-term clinical evidence.
Evaluation of 3D printed anatomically scalable transfemoral prosthetic knee.
Ramakrishnan, Tyagi; Schlafly, Millicent; Reed, Kyle B
2017-07-01
This case study compares a transfemoral amputee's gait while using the existing Ossur Total Knee 2000 and our novel 3D printed anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee is 3D printed out of a carbon-fiber and nylon composite that has a gear-mesh coupling with a hard-stop weight-actuated locking mechanism aided by a cross-linked four-bar spring mechanism. This design can be scaled using anatomical dimensions of a human femur and tibia to have a unique fit for each user. The transfemoral amputee who was tested is high functioning and walked on the Computer Assisted Rehabilitation Environment (CAREN) at a self-selected pace. The motion capture and force data that was collected showed that there were distinct differences in the gait dynamics. The data was used to perform the Combined Gait Asymmetry Metric (CGAM), where the scores revealed that the overall asymmetry of the gait on the Ossur Total Knee was more asymmetric than the anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee had higher peak knee flexion that caused a large step time asymmetry. This made walking on the anatomically scalable transfemoral prosthetic knee more strenuous due to the compensatory movements in adapting to the different dynamics. This can be overcome by tuning the cross-linked spring mechanism to emulate the dynamics of the subject better. The subject stated that the knee would be good for daily use and has the potential to be adapted as a running knee.
Eachempati, K K; Gurava Reddy, A V; Apsingi, S; Sankineani, S R; Shaheed, J; Dannana, C
2017-12-01
Blood loss in total knee arthroplasty (TKA) is an area of significant concern as it has an effect on patient morbidity and hospital stay. Among many different modalities to reduce blood loss, the use of Tranexamic acid has become a standard procedure nowadays. The aim of our study was to determine if Tranexamic acid alone decreases blood loss as an independent variable irrespective of other blood loss preserving measures. This prospective non-randomized study included patients undergoing unilateral TKA by conventional method (Group 1) and computer-assisted TKA (Group 2). All the patients in both groups received Tranexamic acid in a dose of 10 mg/kg body weight prior to inflation of tourniquet. Blood loss in both the groups was calculated using Nadler's formula, and haemoglobin (Hb) level was calculated on day one and day three after surgery. The mean drop of Hb in Group 1 was 1.608 and 1.56 g/dl in Group 2 which was statistically significant (p < 0.001); however, none of the patients in either of the groups actually required any blood transfusion postoperatively. Although there was a significant drop in haemoglobin and haematocrit in both the groups, on comparison, there was no significant difference in blood loss and fall in Hb levels between the groups (p > 0.001). Tranexamic acid decreases blood loss in patients undergoing TKA independent of all the other blood conserving procedures.
Tabatabaee, Reza M; Rasouli, Mohammad R; Maltenfort, Mitchell G; Fuino, Robert; Restrepo, Camilo; Oliashirazi, Ali
2018-04-01
Image-based and imageless computer-assisted total knee arthroplasty (CATKA) has become increasingly popular. This study aims to compare outcomes, including perioperative complications and transfusion rate, between CATKA and conventional total knee arthroplasty (TKA), as well as between image-based and imageless CATKA. Using the 9th revision of the International Classification of Diseases codes, we queried the Nationwide Inpatient Sample database from 2005 to 2011 to identify unilateral conventional TKA, image-based, and imageless CATKAs as well as in-hospital complications and transfusion rates. A total of 787,809 conventional TKAs and 13,246 CATKAs (1055 image-based and 12,191 imageless) were identified. The rate of CATKA increased 23.13% per year from 2005 to 2011. Transfusion rates in conventional TKA and CATKA cases were 11.73% and 8.20% respectively (P < .001) and 6.92% in image-based vs 8.27% in imageless (P = .023). Perioperative complications occurred in 4.50%, 3.47%, and 3.41% of cases after conventional, imageless, and imaged-based CATKAs, respectively. Using multivariate analysis, perioperative complications were significantly higher in conventional TKA compared to CATKA (odds ratio = 1.17, 95% confidence interval 1.03-1.33, P = .01). There was no significant difference between imageless and image-based CATKA (P = .34). Length of hospital stay and hospital charges were not significantly different between groups (P > .05). CATKA has low complication rates and may improve patient outcomes after TKA. CATKA, especially the image-based technique, may reduce in-hospital complications and transfusion without increasing hospital charges and length of hospital stay significantly. Large prospective studies with long follow-up are required to verify potential benefits of CATKA. Copyright © 2017 Elsevier Inc. All rights reserved.
Patient-specific instruments: advantages and pitfalls
Hafez, Mahmoud A.; Moholkar, Kirti
2017-01-01
Patient-specific instruments (PSI) aim to improve the accuracy of total knee replacement (TKR) based on computer-assisted preoperative planning. In this work, the authors describe the advantages and pitfalls of PSI based on their clinical experience. The main conclusion of this work is that PSI has direct impact on the logistical and technical features of TKR with some advantages and pitfalls. PMID:29227785
Study of Wearable Knee Assistive Instruments for Walk Rehabilitation
NASA Astrophysics Data System (ADS)
Zhu, Yong; Nakamura, Masahiro; Ito, Noritaka; Fujimoto, Hiroshi; Horikuchi, Kenichi; Wakabayashi, Shojiro; Takahashi, Rei; Terada, Hidetsugu; Haro, Hirotaka
A wearable Knee Assistive Instrument for the walk rehabilitation was newly developed. Especially, this system aimed at supporting the rehabilitation for the post-TKA (Total Knee Arthroplasty) which is a popular surgery for aging people. This system consisted of an assisting mechanism for the knee joint, a hip joint support system and a foot pressure sensor system. The driving system of this robot consisted of a CPU board which generated the walking pattern, a Li-ion battery, DC motors with motor drivers, contact sensors to detect the state of foot and potentiometers to detect the hip joint angle. The control method was proposed to reproduce complex motion of knee joint as much as possible, and to increase hip or knee flexion angle. Especially, this method used the timing that heel left from the floor. This method included that the lower limb was raised to prevent a subject's fall. Also, the prototype of knee assisting system was tested. It was confirmed that the assisting system is useful.
Navigated versus conventional total knee arthroplasty: A prospective study at three years follow-up.
Martín-Hernández, C; Sanz-Sainz, M; Revenga-Giertych, C; Hernández-Vaquero, D; Fernández-Carreira, J M; Albareda-Albareda, J; Castillo-Palacios, A; Ranera-Garcia, M
2018-03-28
Computer-assisted surgery application in total knee arthroplasty (TKA) has shown more accurate implant alignment compared with conventional instrumentation and is associated with more homogeneous alignment results. Although longer implant survival and superior clinical outcomes should be expected from navigated TKA, currently available evidence does not support this hypothesis. The aim of this study was to compare navigated TKA with conventional TKA regarding clinical and radiological outcomes after a 3-year follow-up under the hypothesis that navigated TKA would provide better outcomes than conventional TKA. In a prospective multicentre study, 119 patients underwent navigated TKA and 80 patients received conventional instrumentation. Patients were evaluated at the baseline and at postoperative months 3, 12, 24, and 36. Analysis included the American Knee Society Score (KSS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Short Form-12 (SF12) Health Survey, and radiographic assessment. All clinical scores improved significantly for all patients during the follow-up but were significantly better in the navigation group. The percentage of patients showing a mechanical axis between 3° of varus and 3° of valgus was significantly higher in the ATR group (93%) than in the conventional TKA group (71%) (P<.01). The use of computer-assisted surgery in TKA provides more accurate mechanical alignment and superior short-term functional outcomes compared to conventional TKA. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Current concepts and future perspectives in computer-assisted navigated total knee replacement.
Matsumoto, Tomoyuki; Nakano, Naoki; Lawrence, John E; Khanduja, Vikas
2018-05-12
Total knee replacements (TKR) aim to restore stability of the tibiofemoral and patella-femoral joints and provide relief of pain and improved quality of life for the patient. In recent years, computer-assisted navigation systems have been developed with the aim of reducing human error in joint alignment and improving patient outcomes. We examined the current body of evidence surrounding the use of navigation systems and discussed their current and future role in TKR. The current body of evidence shows that the use of computer navigation systems for TKR significantly reduces outliers in the mechanical axis and coronal prosthetic position. Also, navigation systems offer an objective assessment of soft tissue balancing that had previously not been available. Although these benefits represent a technical superiority to conventional TKR techniques, there is limited evidence to show long-term clinical benefit with the use of navigation systems, with only a small number of studies showing improvement in outcome scores at short-term follow-up. Because of the increased costs and operative time associated with their use as well as the emergence of more affordable and patient-specific technologies, it is unlikely for navigation systems to become more widely used in the near future. Whilst this technology helps surgeons to achieve improved component positioning, it is important to consider the clinical and functional implications, as well as the added costs and potential learning curve associated with adopting new technology.
Pearle, Andrew D; van der List, Jelle P; Lee, Lily; Coon, Thomas M; Borus, Todd A; Roche, Martin W
2017-03-01
Successful clinical outcomes following unicompartmental knee arthroplasty (UKA) depend on lower limb alignment, soft tissue balance and component positioning, which can be difficult to control using manual instrumentation. Although robotic-assisted surgery more reliably controls these surgical factors, studies assessing outcomes of robotic-assisted UKA are lacking. Therefore, a prospective multicenter study was performed to assess outcomes of robotic-assisted UKA. A total of 1007 consecutive patients (1135 knees) underwent robotic-assisted medial UKA surgery from six surgeons at separate institutions between March 2009 and December 2011. All patients received a fixed-bearing metal-backed onlay implant as tibial component. Each patient was contacted at minimum two-year follow-up and asked a series of five questions to determine survivorship and patient satisfaction. Worst-case scenario analysis was performed whereby all patients were considered as revision when they declined participation in the study. Data was collected for 797 patients (909 knees) with average follow-up of 29.6months (range: 22-52months). At 2.5-years of follow-up, 11 knees were reported as revised, which resulted in a survivorship of 98.8%. Thirty-five patients declined participation in the study yielding a worst-case survivorship of 96.0%. Of all patients without revision, 92% was either very satisfied or satisfied with their knee function. In this multicenter study, robotic-assisted UKA was found to have high survivorship and satisfaction rate at short-term follow-up. Prospective comparison studies with longer follow-up are necessary in order to compare survivorship and satisfaction rates of robotic-assisted UKA to conventional UKA and total knee arthroplasty. Copyright © 2016 Elsevier B.V. All rights reserved.
Computer Assisted Surgery and Current Trends in Orthopaedics Research and Total Joint Replacements
NASA Astrophysics Data System (ADS)
Amirouche, Farid
2008-06-01
Musculoskeletal research has brought about revolutionary changes in our ability to perform high precision surgery in joint replacement procedures. Recent advances in computer assisted surgery as well better materials have lead to reduced wear and greatly enhanced the quality of life of patients. The new surgical techniques to reduce the size of the incision and damage to underlying structures have been the primary advance toward this goal. These new techniques are known as MIS or Minimally Invasive Surgery. Total hip and knee Arthoplasties are at all time high reaching 1.2 million surgeries per year in the USA. Primary joint failures are usually due to osteoarthristis, rheumatoid arthritis, osteocronis and other inflammatory arthritis conditions. The methods for THR and TKA are critical to initial stability and longevity of the prostheses. This research aims at understanding the fundamental mechanics of the joint Arthoplasty and providing an insight into current challenges in patient specific fitting, fixing, and stability. Both experimental and analytical work will be presented. We will examine Cementless total hip arthroplasty success in the last 10 years and how computer assisted navigation is playing in the follow up studies. Cementless total hip arthroplasty attains permanent fixation by the ingrowth of bone into a porous coated surface. Loosening of an ingrown total hip arthroplasty occurs as a result of osteolysis of the periprosthetic bone and degradation of the bone prosthetic interface. The osteolytic process occurs as a result of polyethylene wear particles produced by the metal polyethylene articulation of the prosthesis. The total hip arthroplasty is a congruent joint and the submicron wear particles produced are phagocytized by macrophages initiating an inflammatory cascade. This cascade produces cytokines ultimately implicated in osteolysis. Resulting bone loss both on the acetabular and femoral sides eventually leads to component instability. As patients are living longer and total hip arthroplasty is performed in younger patients the risks of osteolysis associated with cumulative wear is increased. Computer-assisted surgery is based on sensing feedback; vision and imaging that help surgeons align the patient's joints during total knee or hip replacement with a degree of accuracy not possible with the naked eye. For the first time, the computer feedback is essential for ligament balancing and longevity of the implants. The computers navigation systems also help surgeons to use smaller incisions instead of the traditional larger openings. Small-incision surgery offers the potential for faster recovery, less bleeding and less pain for patients. The development of SESCAN imaging technique to create a patient based model of a 3D joint will be presented to show the effective solution of complex geometry of joints.
An Intelligent Remote Monitoring System for Total Knee Arthroplasty Patients.
Msayib, Yunus; Gaydecki, Patrick; Callaghan, Michael; Dale, Nicola; Ismail, Sheheera
2017-06-01
For the first six weeks following total knee arthroplasty (TKA), a patient will attend an outpatient clinic typically seen twice weekly. Here, an exercise regime is performed and improvement assessed using a hand held goniometer that measures the maximum angle of knee flexion, an important metric of progress. Additionally a series of daily exercises is performed at home, recorded in a diary. This protocol has problems. Patients must attend the hospital with assistance since they are not permitted to drive for six weeks following the procedure; appointments are sometimes missed; there are occasionally not enough physiotherapy appointment available; furthermore, it is difficult to be sure that patients are compliant with their exercises at home. The economic and social costs are therefore significant both to the patient and the health service. We describe here an automatic system that performs the monitoring of knee flexion within a domestic environment rather than in a hospital setting. It comprises a master and slave sensor unit that attach using Velcro straps to the thigh and shin above and below the operation wound. The patient performs the prescribed knee exercises whilst wearing the device, during which time it measures and records the angles of knee flexion. The device utilises the Global System for Mobile Communications (GSM) infrastructure to transmit data through the Internet to a secure hospital-based server using an on-board GSM modem. The clinician is then able to view and interpret the information from any computer with internet access and the software. The system does not require the patient to possess a mobile telephone, a computer, or have internet access; the necessary communications technology is completely integrated into the device.
In vivo kinematics of a robot-assisted uni- and multi-compartmental knee arthroplasty.
Watanabe, Toshifumi; Abbasi, Ali Z; Conditt, Michael A; Christopher, Jennifer; Kreuzer, Stefan; Otto, Jason K; Banks, Scott A
2014-07-01
There is great interest in providing reliable and durable treatments for one- and two-compartment arthritic degeneration of the cruciate-ligament intact knee. One approach is to resurface only the diseased compartments with discrete unicompartmental components, retaining the undamaged compartment(s). However, placing multiple small implants into the knee presents a greater surgical challenge than total knee arthroplasty, so it is not certain that the natural knee mechanics can be maintained or restored. The goal of this study was to determine whether near-normal knee kinematics can be obtained with a robot-assisted multi-compartmental knee arthroplasty. Thirteen patients with 15 multi-compartmental knee arthroplasties using haptic robotic-assisted bone preparation were involved in this study. Nine subjects received a medial unicompartmental knee arthroplasty (UKA), three subjects received a medial UKA and patellofemoral (PF) arthroplasty, and three subjects received medial and lateral bi-unicondylar arthroplasty. Knee motions were recorded using video-fluoroscopy an average of 13 months (6-29 months) after surgery during stair and kneeling activities. The three-dimensional position and orientation of the implant components were determined using model-image registration techniques. Knee kinematics during maximum flexion kneeling showed femoral external rotation and posterior lateral condylar translation. All knees showed femoral external rotation and posterior condylar translation with flexion during the step activity. Knees with medial UKA and PF arthroplasty showed the most femoral external rotation and posterior translation, and knees with bicondylar UKA showed the least. Knees with accurately placed uni- or bi-compartmental arthroplasty exhibited stable knee kinematics consistent with intact and functioning cruciate ligaments. The patterns of tibiofemoral motion were more similar to natural knees than commonly has been observed in knees with total knee arthroplasty. Larger series are required to confirm these as general observations, but the present results demonstrate the potential to restore or maintain closer-to-normal knee kinematics by retaining intact structures and compartments.
Dyrhovden, Gro S; Fenstad, Anne M; Furnes, Ove; Gøthesen, Øystein
2016-12-01
Background and purpose - The long-term effects of computer-assisted surgery in total knee replacement (CAS) compared to conventionally operated knee replacement (CON) are still not clear. We compared survivorship and relative risk of revision in CAS and CON based on data from the Norwegian Arthroplasty Register. Patients and methods - We assessed primary total knee replacements without patellar resurfacing reported to the Norwegian Arthroplasty Register from 2005 through 2014. The 5 most used implants and the 3 most common navigation systems were included. The groups (CAS, n = 3,665; CON, n = 20,019) were compared using a Cox regression analysis adjusted for age, sex, ASA category, prosthesis brand, fixation method, previous surgery, and diagnosis with the risk of revision for any reason as endpoint. Secondary outcomes were reasons for revision and effects of prosthesis brand, fixation method, age (± 65 years), and hospital volume. Results - Prosthesis survival and risk of revision were similar for CAS and CON. CAS had significantly fewer revisions due to malalignment. Otherwise, no statistically significant difference was found between the groups in analyses of secondary outcomes. Mean operating time was 13 minutes longer in CAS. Interpretation - At 8 years of follow-up, CAS and CON had similar rates of overall revision, but CAS had fewer revisions due to malalignment. According to our findings, the benefits of CAS at medium-term follow-up are limited. Further research may identify subgroups that benefit from CAS, and it should also emphasize patient-reported outcomes.
Dyrhovden, Gro S; Fenstad, Anne M; Furnes, Ove; Gøthesen, Øystein
2016-01-01
Background and purpose The long-term effects of computer-assisted surgery in total knee replacement (CAS) compared to conventionally operated knee replacement (CON) are still not clear. We compared survivorship and relative risk of revision in CAS and CON based on data from the Norwegian Arthroplasty Register. Patients and methods We assessed primary total knee replacements without patellar resurfacing reported to the Norwegian Arthroplasty Register from 2005 through 2014. The 5 most used implants and the 3 most common navigation systems were included. The groups (CAS, n = 3,665; CON, n = 20,019) were compared using a Cox regression analysis adjusted for age, sex, ASA category, prosthesis brand, fixation method, previous surgery, and diagnosis with the risk of revision for any reason as endpoint. Secondary outcomes were reasons for revision and effects of prosthesis brand, fixation method, age (± 65 years), and hospital volume. Results Prosthesis survival and risk of revision were similar for CAS and CON. CAS had significantly fewer revisions due to malalignment. Otherwise, no statistically significant difference was found between the groups in analyses of secondary outcomes. Mean operating time was 13 minutes longer in CAS. Interpretation At 8 years of follow-up, CAS and CON had similar rates of overall revision, but CAS had fewer revisions due to malalignment. According to our findings, the benefits of CAS at medium-term follow-up are limited. Further research may identify subgroups that benefit from CAS, and it should also emphasize patient-reported outcomes. PMID:27775460
Kinematic analysis of anterior cruciate ligament reconstruction in total knee arthroplasty
Liu, Hua-Wei; Ni, Ming; Zhang, Guo-Qiang; Li, Xiang; Chen, Hui; Zhang, Qiang; Chai, Wei; Zhou, Yong-Gang; Chen, Ji-Ying; Liu, Yu-Liang; Cheng, Cheng-Kung; Wang, Yan
2016-01-01
Background: This study aims to retain normal knee kinematics after knee replacement surgeries by reconstructing anterior cruciate ligament during total knee arthroplasty. Method: We use computational simulation tools to establish four dynamic knee models, including normal knee model, posterior cruciate ligament retaining knee model, posterior cruciate ligament substituting knee model, and anterior cruciate ligament reconstructing knee model. Our proposed method utilizes magnetic resonance images to reconstruct solid bones and attachments of ligaments, and assemble femoral and tibial components according representative literatures and operational specifications. Dynamic data of axial tibial rotation and femoral translation from full-extension to 135 were measured for analyzing the motion of knee models. Findings: The computational simulation results show that comparing with the posterior cruciate ligament retained knee model and the posterior cruciate ligament substituted knee model, reconstructing anterior cruciate ligament improves the posterior movement of the lateral condyle, medial condyle and tibial internal rotation through a full range of flexion. The maximum posterior translations of the lateral condyle, medial condyle and tibial internal rotation of the anterior cruciate ligament reconstructed knee are 15.3 mm, 4.6 mm and 20.6 at 135 of flexion. Interpretation: Reconstructing anterior cruciate ligament in total knee arthroplasty has been approved to be an more efficient way of maintaining normal knee kinematics comparing to posterior cruciate ligament retained and posterior cruciate ligament substituted total knee arthroplasty. PMID:27347334
A novel mechatronic tool for computer-assisted arthroscopy.
Dario, P; Carrozza, M C; Marcacci, M; D'Attanasio, S; Magnami, B; Tonet, O; Megali, G
2000-03-01
This paper describes a novel mechatronic tool for arthroscopy, which is at the same time a smart tool for traditional arthroscopy and the main component of a system for computer-assisted arthroscopy. The mechatronic arthroscope has a cable-actuated servomotor-driven multi-joint mechanical structure, is equipped with a position sensor measuring the orientation of the tip and with a force sensor detecting possible contact with delicate tissues in the knee, and incorporates an embedded microcontroller for sensor signal processing, motor driving and interfacing with the surgeon and/or the system control unit. When used manually, the mechatronic arthroscope enhances the surgeon's capabilities by enabling him/her to easily control tip motion and to prevent undesired contacts. When the tool is integrated in a complete system for computer-assisted arthroscopy, the trajectory of the arthroscope is reconstructed in real time by an optical tracking system using infrared emitters located in the handle, providing advantages in terms of improved intervention accuracy. The computer-assisted arthroscopy system comprises an image processing module for segmentation and three-dimensional reconstruction of preoperative computer tomography or magnetic resonance images, a registration module for measuring the position of the knee joint, tracking the trajectory of the operating tools, and matching preoperative and intra-operative images, and a human-machine interface that displays the enhanced reality scenario and data from the mechatronic arthroscope in a friendly and intuitive manner. By integrating preoperative and intra-operative images and information provided by the mechatronic arthroscope, the system allows virtual navigation in the knee joint during the planning phase and computer guidance by augmented reality during the intervention. This paper describes in detail the characteristics of the mechatronic arthroscope and of the system for computer-assisted arthroscopy and discusses experimental results obtained with a preliminary version of the tool and of the system.
Park, Sang Eun; Lee, Chun Taek
2007-10-01
This study was aimed to compare robotic-assisted implantation of a total knee arthroplasty with conventional manual implantation. We controlled, randomized, and reviewed 72 patients for total knee arthroplasty assigned to undergo either conventional manual implantation (excluding navigation-assisted implantation cases) of a Zimmer LPS prosthesis (Zimmer, Warsaw, Ind) (30 patients: group 1) or robotic-assisted implantation of such a prosthesis (32 patients: group 2). The femoral flexion angle (gamma angle) and tibial angle (delta angle) in the lateral x-ray of group 1 were 4.19 +/- 3.28 degrees and 89.7 +/- 1.7 degrees, and those of group 2 were 0.17 +/- 0.65 degrees and 85.5 +/- 0.92 degrees. The major complications were from improper small skin incision during a constraint attempt of minimally invasive surgery and during bulk fixation frame pins insertion. Robotic-assisted technology had definite advantages in terms of preoperative planning, accuracy of the intraoperative procedure, and postoperative follow-up, especially in the femoral flexion angle (gamma angle) and tibial flexion angle (delta angle) in the lateral x-ray, and in the femoral flexion angle (alpha angle) in the anteroposterior x-ray. But a disadvantage was the high complication rate in early stage.
Calliess, T; Ettinger, M; Stukenborg-Colsmann, C; Windhagen, H
2016-04-01
The story of ShapeMatch® custom-fit cutting guides for primary total knee arthroplasty (TKA) is special compared to other available techniques. First, it was the first such patient-specific instrument (PSI) on the market. Second, the underlying philosophy of kinematic alignment is unique compared to other competitors. Finally, it is the only PSI technique that has been withdrawn from the market. The objective of this paper is to summarize the history of the ShapeMatch® technology and to review the current literature regarding clinical evidence for kinematically aligned TKA. In the recent literature, faster rehabilitation, better knee function and higher patient satisfaction are described for kinematically aligned TKA compared to conventional alignment. However, there is also evidence for inaccuracies by using the PSI technology as a possible cause of treatment failures. Due to those problems, this technology was recalled from the market. As an alternative method to achieve kinematic alignment in TKA, manual as well as computer-assisted techniques are currently under development and are discussed here.
Myden, C A; Anglin, C; Kopp, G D; Hutchison, C R
2012-01-01
Orthopaedic residents typically learn to perform total knee arthroplasty (TKA) through an apprenticeship-type model, which is a necessarily slow process. Surgical skills courses, using artificial bones, have been shown to improve technical and cognitive skills significantly within a couple of days. The addition of computer-assisted surgery (CAS) simulations challenges the participants to consider the same task in a different context, promoting cognitive flexibility. We designed a hands-on educational intervention for junior residents with a conventional tibiofemoral TKA station, two different tibiofemoral CAS stations, and a CAS and conventional patellar resection station, including both qualitative and quantitative analyses. Qualitatively, structured interviews before and after the course were analyzed for recurring themes. Quantitatively, subjects were evaluated on their technical skills before and after the course, and on a multiple-choice knowledge test and error detection test after the course, in comparison to senior residents who performed only the testing. Four themes emerged: confidence, awareness, deepening knowledge and changed perspectives. The residents' attitudes to CAS changed from negative before the course to neutral or positive afterwards. The junior resident group completed 23% of tasks in the pre-course skills test and 75% of tasks on the post-test (p<0.01), compared to 45% of tasks completed by the senior resident group. High-impact educational interventions, promoting cognitive flexibility, would benefit trainees, attending surgeons, the healthcare system and patients.
Inui, Hiroshi; Taketomi, Shuji; Nakamura, Kensuke; Sanada, Takaki; Tanaka, Sakae; Nakagawa, Takumi
2013-05-01
Few studies have demonstrated improvement in accuracy of rotational alignment using image-free navigation systems mainly due to the inconsistent registration of anatomical landmarks. We have used an image-free navigation for total knee arthroplasty, which adopts the average algorithm between two reference axes (transepicondylar axis and axis perpendicular to the Whiteside axis) for femoral component rotation control. We hypothesized that addition of another axis (condylar twisting axis measured on a preoperative radiograph) would improve the accuracy. One group using the average algorithm (double-axis group) was compared with the other group using another axis to confirm the accuracy of the average algorithm (triple-axis group). Femoral components were more accurately implanted for rotational alignment in the triple-axis group (ideal: triple-axis group 100%, double-axis group 82%, P<0.05). Copyright © 2013 Elsevier Inc. All rights reserved.
Accuracy of Patient Specific Cutting Blocks in Total Knee Arthroplasty
Helmy, Naeder; Kühnel, Stefanie P.
2014-01-01
Background. Long-term survival of total knee arthroplasty (TKA) is mainly determined by optimal positioning of the components and prosthesis alignment. Implant positioning can be optimized by computer assisted surgery (CAS). Patient specific cutting blocks (PSCB) seem to have the potential to improve component alignment compared to the conventional technique and to be comparable to CAS. Methods. 113 knees were selected for PSI and included in this study. Pre- and postoperative mechanical axis, represented by the hip-knee-angle (HKA), the proximal tibial angle (PTA), the distal femoral angle (DFA), and the tibial slope (TS) were measured and the deviation from expected ideal values was calculated. Results. With a margin of error of ±3°, success rates were 81.4% for HKA, 92.0% for TPA, and 94.7% for DFA. With the margin of error for alignments extended to ±4°, we obtained a success rate of 92.9% for the HKA, 98.2% for the PTA, and 99.1% for the DFA. The TS showed postoperative results of 2.86 ± 2.02° (mean change 1.76 ± 2.85°). Conclusion. PSCBs for TKA seem to restore the overall leg alignment. Our data suggest that each individual component can be implanted accurately and the results are comparable to the ones in CAS. PMID:25254210
Mizu-Uchi, Hideki; Colwell, Clifford W; Fukagawa, Shingo; Matsuda, Shuichi; Iwamoto, Yukihide; D'Lima, Darryl D
2012-10-01
We constructed patient-specific models from computed tomography data after total knee arthroplasty to predict knee flexion based on implant-bone impingement. The maximum flexion before impingement between the femur and the tibial insert was computed using a musculoskeletal modeling program (KneeSIM; LifeModeler, Inc, San Clemente, California) during a weight-bearing deep knee bend. Postoperative flexion was measured in a clinical cohort of 21 knees (low-flex group: 6 knees with <100° of flexion and high-flex group: 15 size-matched knees with >125° of flexion at 2 years). Average predicted flexion angles were within 2° of clinical measurements for the high-flex group. In the low-flex group, 4 cases had impingement involving the bone cut at the posterior condyle, and the average predicted knee flexion was 102° compared with 93° measured clinically. These results indicate that the level of the distal femoral resection should be carefully planned and that exposed bone proximal to the tips of the posterior condyles of the femoral component should be removed if there is risk of impingement. Copyright © 2012 Elsevier Inc. All rights reserved.
Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan
2015-01-01
The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the three-dimensional (3D) joint surface model has been reported in the literature. In this study, we constructed a SSM database using 152 human computed tomography (CT) knee joint models, including the femur, tibia and patella and analysed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 s using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus, it may have a broad application in computer-assisted knee surgeries that require 3D surface models of the knee.
Navigation-Assisted Total Knee Arthroplasty for Patients with Extra-Articular Deformity
Rhee, Seung Joon; Seo, Chang Hyo
2013-01-01
Purpose Since the existence of an extra-articular deformity seriously alters the normal geometry and kinetics around the knee joint, difficulties are often encountered in total knee arthroplasty (TKA) using a standard surgical technique. The purpose of this study was to evaluate the usefulness of surgical navigation system as a treatment option for osteoarthritic knees with extra-articular deformity. Materials and Methods The authors retrospectively reviewed medical records of the patients who underwent primary TKA between 2007 and 2012. Knees with preoperative radiography showing an angular deformity within the region from the middle third of the femur to the middle third of the tibia in the ipsilateral limb of the arthritic knees were considered as cases having extra-articular deformity. Thirteen knees of the 13 patients were found to have undergone TKA using a navigation system for osteoarthritis with ipsilateral extra-articular deformity. The hip-knee-ankle angle, Knee Society score (KSS), and range of motion were measured before and after the operation to evaluate the improvement. Results The mean hip-knee-ankle angle in the coronal plane was improved to 0.2°±4.5° in valgus alignment postoperatively. The KSS was improved to 89.6±4.6 points postoperatively at the last follow-up, with over 90% of good and excellent results. The range of motion was improved to 118.5°±10.5° postoperatively. Conclusions Navigation-assisted TKA is a good treatment option of osteoarthritic knees with extra-articular deformity. PMID:24368997
Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan
2013-01-01
The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the 3D joint surface model has been reported in literature. In this study, we constructed a SSM database using 152 human CT knee joint models, including the femur, tibia and patella and analyzed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 seconds using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus it may have a broad application in computer assisted knee surgeries that require 3D surface models of the knee. PMID:24156375
Chow, James C; Breslauer, Leigh
2017-07-01
Albeit multifactorial, patient satisfaction is predominantly driven by postoperative pain and function. Unfortunately, approximately 20% of total knee arthroplasty (TKA) recipients are dissatisfied with the outcome of their surgery. Objective balancing of the soft tissue envelope may contribute to significant decrease in pain and increase in function when compared with traditional subjective methods. In an effort to confirm this, a cohort of manual TKA patient outcomes was compared with sensor-assisted TKA outcomes. One hundred fourteen patients (57 manual, 57 sensor assisted) received primary TKA. Both cohorts were matched for confounding variables. The dependent variables in this study were 6-month patient-reported outcome measures, including Knee Society Score and Oxford Knee Score. The range of motion and incidence of arthrofibrosis were also captured for both cohorts. The rate of improvement of all patient-reported outcome scores and subscores and range of motion was significantly higher in the sensor-assisted cohort. The rate of arthrofibrosis was lower in the sensor-assisted cohort but not statistically significant. The authors rejected the null hypothesis and concluded that the rate of improvement in objective, patient-reported outcome measures was higher in the sensor-assisted cohort than the manual cohort from preoperatively to 6 months postoperatively. [Orthopedics. 2017; 40(4):e648-e651.]. Copyright 2017, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Risto, S.; Kallergi, M.
2015-09-01
The purpose of this project was to model and simulate the knee joint. A computer model of the knee joint was first created, which was controlled by Microsoft's Kinect for Windows. Kinect created a depth map of the knee and lower leg motion independent of lighting conditions through an infrared sensor. A combination of open source software such as Blender, Python, Kinect SDK and NI_Mate were implemented for the creation and control of the simulated knee based on movements of a live physical model. A physical size model of the knee and lower leg was also created, the movement of which was controlled remotely by the computer model and Kinect. The real time communication of the model and the robotic knee was achieved through programming in Python and Arduino language. The result of this study showed that Kinect in the modelling of human kinematics and can play a significant role in the development of prosthetics and other assistive technologies.
KNEE-JOINT LOADING IN KNEE OSTEOARTHRITIS: INFLUENCE OF ABDOMINAL AND THIGH FAT
Messier, Stephen P.; Beavers, Daniel P.; Loeser, Richard F.; Carr, J. Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J.; Hunter, David J.; DeVita, Paul
2014-01-01
Purpose Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee-joint loads in older overweight and obese adults with knee osteoarthritis (OA). Methods Fat depots were quantified using computed tomography and total lean and fat mass determined with dual energy x-ray absorptiometry in 176 adults (age = 66.3 yr., BMI = 33.5 kg·m−2) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Results Higher total body mass was significantly associated (p ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (p < 0.0001), patellofemoral forces (p< 0.006), and knee extensor moments (p = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (p = 0.0001), shear (p < 0.001), and patellofemoral forces (p = 0.01) and knee extension moment (p = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (p = 0.002). A regression model that included total thigh and total abdominal fat found both were significantly associated with knee compressive and shear forces (p ≤ 0.04). Thigh fat was associated with the knee abduction (p = 0.03) and knee extension moment (p = 0.02). Conclusions Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA. PMID:25133996
Knee joint loading in knee osteoarthritis: influence of abdominal and thigh fat.
Messier, Stephen P; Beavers, Daniel P; Loeser, Richard F; Carr, J Jeffery; Khajanchi, Shubham; Legault, Claudine; Nicklas, Barbara J; Hunter, David J; Devita, Paul
2014-09-01
Using three separate models that included total body mass, total lean and total fat mass, and abdominal and thigh fat as independent measures, we determined their association with knee joint loads in older overweight and obese adults with knee osteoarthritis (OA). Fat depots were quantified using computed tomography, and total lean and fat mass were determined with dual energy x-ray absorptiometry in 176 adults (age, 66.3 yr; body mass index, 33.5 kg·m) with radiographic knee OA. Knee moments and joint bone-on-bone forces were calculated using gait analysis and musculoskeletal modeling. Higher total body mass was significantly associated (P ≤ 0.0001) with greater knee compressive and shear forces, compressive and shear impulses (P < 0.0001), patellofemoral forces (P < 0.006), and knee extensor moments (P = 0.003). Regression analysis with total lean and total fat mass as independent variables revealed significant positive associations of total fat mass with knee compressive (P = 0.0001), shear (P < 0.001), and patellofemoral forces (P = 0.01) and knee extension moment (P = 0.008). Gastrocnemius and quadriceps forces were positively associated with total fat mass. Total lean mass was associated with knee compressive force (P = 0.002). A regression model that included total thigh and total abdominal fat found that both were significantly associated with knee compressive and shear forces (P ≤ 0.04). Thigh fat was associated with knee abduction (P = 0.03) and knee extension moment (P = 0.02). Thigh fat, consisting predominately of subcutaneous fat, had similar significant associations with knee joint forces as abdominal fat despite its much smaller volume and could be an important therapeutic target for people with knee OA.
Shalhoub, Sami; Moschetti, Wayne E; Dabuzhsky, Leonid; Jevsevar, David S; Keggi, John M; Plaskos, Christopher
2018-05-14
The traditional goal of the gap-balancing method in total knee arthroplasty is to create equal and symmetric knee laxity throughout the arc of flexion. The purpose of this study was to (1) quantify the laxity in the native and the replaced knee throughout the range of flexion in gap-balancing total knee arthroplasty (TKA) and (2) quantify the precision in achieving a targeted gap profile throughout flexion using a robotic-assisted technique with active ligament tensioning. Robotic-assisted, gap-balancing TKA was performed in 14 cadaver specimens. The proximal tibia was resected, and the native tibiofemoral gaps were measured using a robotic tensioner that dynamically tensioned the soft-tissue envelope throughout the arc of flexion. The femoral implant was then aligned to balance the gaps at 0° and 90° of flexion. The postoperative gaps were then measured during final trialing with the robotic tensioner and compared with the planned gaps. The native gaps increased by 3.4 ± 1.7 mm medially and 3.7 ± 2.1 mm laterally from full extension to 20° of flexion (P < .001) and then remained consistent through the remaining arc of flexion. Gap balancing after TKA produced equal gaps at 0° and 90° of flexion, but the gap laxity in midflexion was 2-4 mm greater than at 0° and 90° (P < .001). The root mean square error between the planned gaps and actual measured postoperative gaps was 1.6 mm medially and 1.7 mm laterally throughout the range of motion. Aiming for equal gaps at 0° and 90° of flexion produced equal gaps in extension and flexion with larger gaps in midflexion. Consistent soft-tissue balance to a planned gap profile could be achieved by using controlled ligament tensioning in robotic-assisted TKA. Copyright © 2018 Elsevier Inc. All rights reserved.
The use of synthetic ligaments in the design of an enhanced stability total knee joint replacement.
Stokes, Michael D; Greene, Brendan C; Pietrykowski, Luke W; Gambon, Taylor M; Bales, Caroline E; DesJardins, John D
2018-03-01
Current total knee replacement designs work to address clinically desired knee stability and range of motion through a balance of retained anatomy and added implant geometry. However, simplified implant geometries such as bearing surfaces, posts, and cams are often used to replace complex ligamentous constraints that are sacrificed during most total knee replacement procedures. This article evaluates a novel total knee replacement design that incorporates synthetic ligaments to enhance the stability of the total knee replacement system. It was hypothesized that by incorporating artificial cruciate ligaments into a total knee replacement design at specific locations and lengths, the stability of the total knee replacement could be significantly altered while maintaining active ranges of motion. The ligament attachment mechanisms used in the design were evaluated using a tensile test, and determined to have a safety factor of three with respect to expected ligamentous loading in vivo. Following initial computational modeling of possible ligament orientations, a physical prototype was constructed to verify the function of the design by performing anterior/posterior drawer tests under physiologic load. Synthetic ligament configurations were found to increase total knee replacement stability up to 94% compared to the no-ligament case, while maintaining total knee replacement flexion range of motion between 0° and 120°, indicating that a total knee replacement that incorporates synthetic ligaments with calibrated location and lengths should be able to significantly enhance and control the kinematic performance of a total knee replacement system.
Chiang, Chih-Yen; Chen, Kun-Hui; Liu, Kai-Chun; Hsu, Steen Jun-Ping; Chan, Chia-Tai
2017-01-01
Total knee arthroplasty (TKA) is the most common treatment for degenerative osteoarthritis of that articulation. However, either in rehabilitation clinics or in hospital wards, the knee range of motion (ROM) can currently only be assessed using a goniometer. In order to provide continuous and objective measurements of knee ROM, we propose the use of wearable inertial sensors to record the knee ROM during the recovery progress. Digitalized and objective data can assist the surgeons to control the recovery status and flexibly adjust rehabilitation programs during the early acute inpatient stage. The more knee flexion ROM regained during the early inpatient period, the better the long-term knee recovery will be and the sooner early discharge can be achieved. The results of this work show that the proposed wearable sensor approach can provide an alternative for continuous monitoring and objective assessment of knee ROM recovery progress for TKA patients compared to the traditional goniometer measurements. PMID:28241434
Estimating patient-specific soft-tissue properties in a TKA knee.
Ewing, Joseph A; Kaufman, Michelle K; Hutter, Erin E; Granger, Jeffrey F; Beal, Matthew D; Piazza, Stephen J; Siston, Robert A
2016-03-01
Surgical technique is one factor that has been identified as critical to success of total knee arthroplasty. Researchers have shown that computer simulations can aid in determining how decisions in the operating room generally affect post-operative outcomes. However, to use simulations to make clinically relevant predictions about knee forces and motions for a specific total knee patient, patient-specific models are needed. This study introduces a methodology for estimating knee soft-tissue properties of an individual total knee patient. A custom surgical navigation system and stability device were used to measure the force-displacement relationship of the knee. Soft-tissue properties were estimated using a parameter optimization that matched simulated tibiofemoral kinematics with experimental tibiofemoral kinematics. Simulations using optimized ligament properties had an average root mean square error of 3.5° across all tests while simulations using generic ligament properties taken from literature had an average root mean square error of 8.4°. Specimens showed large variability among ligament properties regardless of similarities in prosthetic component alignment and measured knee laxity. These results demonstrate the importance of soft-tissue properties in determining knee stability, and suggest that to make clinically relevant predictions of post-operative knee motions and forces using computer simulations, patient-specific soft-tissue properties are needed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Kim, Seong Hwan; Lim, Jung-Won; Ko, Young-Bong; Song, Min-Gu; Lee, Han-Jun
2016-11-01
The purpose of this study was to compare the midterm outcomes between fixed and mobile ultra-congruent (UC) bearings in total knee arthroplasty (TKA). This is a retrospective matched-pairs case-control study of patients who underwent primary navigation-assisted TKA with a minimum 5-year follow-up. A total of 182 cases involved the fixed UC bearing system as Group 1 and 101 cases involved mobile UC bearing system group as Group 2. After 1:1 matching, 73 knees in each group were enrolled. Clinical and radiographic outcomes were evaluated. The overall survival was 143 of 146 cases (97.9 %) at final follow-up, and 72 of 73 cases (96.3 %) in Group 1 and 71 of 73 cases (95.8 %) in Group 2 at final follow-up based on an endpoint of revision surgery. The reasons of revision TKA were periprosthetic fracture in Group 1, infection and bearing dislocation in Group 2. There was no statistical difference in Hospital for Special Surgery (HSS) scores, Knee Society Scores (KSS), WOMAC index score evaluations between groups. This study demonstrated that the fixed-bearing UC prosthesis could provide satisfactory performance compared with that of the mobile-bearing UC prosthesis with minimum 5-year follow-up. The fixed-bearing UC prosthesis could be considered in navigation-assisted TKA with theoretical advantages of UC design. IV.
Scholes, Corey; Sahni, Varun; Lustig, Sebastien; Parker, David A; Coolican, Myles R J
2014-03-01
The introduction of patient-specific instruments (PSI) for guiding bone cuts could increase the incidence of malalignment in primary total knee arthroplasty. The purpose of this study was to assess the agreement between one type of patient-specific instrumentation (Zimmer PSI) and the pre-operative plan with respect to bone cuts and component alignment during TKR using imageless computer navigation. A consecutive series of 30 femoral and tibial guides were assessed in-theatre by the same surgeon using computer navigation. Following surgical exposure, the PSI cutting guides were placed on the joint surface and alignment assessed using the navigation tracker. The difference between in-theatre data and the pre-operative plan was recorded and analysed. The error between in-theatre measurements and pre-operative plan for the femoral and tibial components exceeded 3° for 3 and 17% of the sample, respectively, while the error for total coronal alignment exceeded 3° for 27% of the sample. The present results indicate that alignment with Zimmer PSI cutting blocks, assessed by imageless navigation, does not match the pre-operative plan in a proportion of cases. To prevent unnecessary increases in the incidence of malalignment in primary TKR, it is recommended that these devices should not be used without objective verification of alignment, either in real-time or with post-operative imaging. Further work is required to identify the source of discrepancies and validate these devices prior to routine use. II.
Reduced opiate use after total knee arthroplasty using computer-assisted cryotherapy.
Thijs, Elke; Schotanus, Martijn G M; Bemelmans, Yoeri F L; Kort, Nanne P
2018-05-03
Despite multimodal pain management and advances in anesthetic techniques, total knee arthroplasty (TKA) remains painful during the early postoperative phase. This trial investigated whether computer-assisted cryotherapy (CAC) is effective in reduction of pain and consumption of opioids in patients operated for TKA following an outpatient surgery pathway. Sixty patients scheduled for primary TKA were included in this prospective, double-blind, randomized controlled trial receiving CAC at 10-12 °C (Cold-group, n = 30) or at 21 °C (Warm-group, n = 30) during the first 7 days after TKA according to a fixed schedule. All patients received the same pre-, peri- and postoperative care with a multimodal pain protocol. Pain was assessed before and after every session of cryotherapy using the numerical rating scale for pain (NRS-pain). The consumption of opioids was strictly noted during the first 4 postoperative days. Secondary outcomes were knee swelling, visual hematoma and patient reported outcome measures (PROMs). These parameters were measured pre-, 1, 2 and 6 weeks postoperatively. In both study groups, a reduction in NRS-pain after every CAC session were seen during the postoperative period of 7 days. A mean reduction of 0.9 and 0.7 on the NRS-pain was seen for respectively the Cold- (P = 0.008) and Warm-group (n.s.). A significant (P = 0.001) lower number of opioids were used by the Cold-group during the acute postoperative phase of 4 days, 47 and 83 tablets for respectively the Cold and Warm-group. No difference could be observed for secondary outcomes and adverse effects between both study groups. Postoperative CAC can be in added value in patients following an outpatient surgery pathway for TKA, resulting in reduced experienced pain and consumption of opioids during the first postoperative days.
Okamoto, Shigetoshi; Mizu-uchi, Hideki; Okazaki, Ken; Hamai, Satoshi; Nakahara, Hiroyuki; Iwamoto, Yukihide
2015-08-01
We used a musculoskeletal model validated with in vivo data to evaluate the effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. The maximum quadriceps force and patellofemoral contact force decreased with increasing posterior slope. Anterior sliding of the tibial component and anterior impingement of the anterior aspect of the tibial post were observed with tibial posterior slopes of at least 5° and 10°, respectively. Increased tibial posterior slope contributes to improved exercise efficiency during knee extension, however excessive tibial posterior slope should be avoided to prevent knee instability. Based on our computer simulation we recommend tibial posterior slopes of less than 5° in posterior-stabilized total knee arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.
Arthroscopic-assisted Arthrodesis of the Knee Joint With the Ilizarov Technique
Waszczykowski, Michal; Niedzielski, Kryspin; Radek, Maciej; Fabis, Jaroslaw
2016-01-01
Abstract Arthrodesis of the knee joint is a mainly a salvage surgical procedure performed in cases of infected total knee arthroplasty, tumor, failed knee arthroplasty or posttraumatic complication. The authors report the case of 18-year-old male with posttraumatic complication of left knee because of motorbike accident 1 year before. He was treated immediately after the injury in the local Department of Orthopaedics and Traumatology. The examination in the day of admission to our department revealed deformation of the left knee, massive scar tissue adhesions to the proximal tibial bone and multidirectional instability of the knee. The plain radiographs showed complete lack of lateral compartment of the knee joint and patella. The patient complained of severe instability and pain of the knee and a consecutive loss of supporting function of his left limb. The authors decided to perform an arthroscopic-assisted fusion of the knee with Ilizarov external fixator because of massive scar tissue in the knee region and the prior knee infection. In the final follow-up after 54 months a complete bone fusion, good functional and clinical outcome were obtained. This case provides a significant contribution to the development and application of low-invasive techniques in large and extensive surgical procedures in orthopedics and traumatology. Moreover, in this case fixation of knee joint was crucial for providing good conditions for the regeneration of damaged peroneal nerve. PMID:26817899
Waszczykowski, Michal; Niedzielski, Kryspin; Radek, Maciej; Fabis, Jaroslaw
2016-01-01
Arthrodesis of the knee joint is a mainly a salvage surgical procedure performed in cases of infected total knee arthroplasty, tumor, failed knee arthroplasty or posttraumatic complication.The authors report the case of 18-year-old male with posttraumatic complication of left knee because of motorbike accident 1 year before. He was treated immediately after the injury in the local Department of Orthopaedics and Traumatology. The examination in the day of admission to our department revealed deformation of the left knee, massive scar tissue adhesions to the proximal tibial bone and multidirectional instability of the knee. The plain radiographs showed complete lack of lateral compartment of the knee joint and patella. The patient complained of severe instability and pain of the knee and a consecutive loss of supporting function of his left limb. The authors decided to perform an arthroscopic-assisted fusion of the knee with Ilizarov external fixator because of massive scar tissue in the knee region and the prior knee infection.In the final follow-up after 54 months a complete bone fusion, good functional and clinical outcome were obtained.This case provides a significant contribution to the development and application of low-invasive techniques in large and extensive surgical procedures in orthopedics and traumatology. Moreover, in this case fixation of knee joint was crucial for providing good conditions for the regeneration of damaged peroneal nerve.
Konopka, Joseph F.; Gomoll, Andreas H.; Thornhill, Thomas S.; Katz, Jeffrey N.; Losina, Elena
2015-01-01
Background: Surgical options for the management of medial compartment osteoarthritis of the varus knee include high tibial osteotomy, unicompartmental knee arthroplasty, and total knee arthroplasty. We sought to determine the cost-effectiveness of high tibial osteotomy and unicompartmental knee arthroplasty as alternatives to total knee arthroplasty for patients fifty to sixty years of age. Methods: We built a probabilistic state-transition computer model with health states defined by pain, postoperative complications, and subsequent surgical procedures. We estimated transition probabilities from published literature. Costs were determined from Medicare reimbursement schedules. Health outcomes were measured in quality-adjusted life-years (QALYs). We conducted analyses over patients’ lifetimes from the societal perspective, with health and cost outcomes discounted by 3% annually. We used probabilistic sensitivity analyses to account for uncertainty in data inputs. Results: The estimated discounted QALYs were 14.62, 14.63, and 14.64 for high tibial osteotomy, unicompartmental knee arthroplasty, and total knee arthroplasty, respectively. Discounted total direct medical costs were $20,436 for high tibial osteotomy, $24,637 for unicompartmental knee arthroplasty, and $24,761 for total knee arthroplasty (in 2012 U.S. dollars). The incremental cost-effectiveness ratio (ICER) was $231,900 per QALY for total knee arthroplasty and $420,100 per QALY for unicompartmental knee arthroplasty. Probabilistic sensitivity analyses showed that, at a willingness-to-pay (WTP) threshold of $50,000 per QALY, high tibial osteotomy was cost-effective 57% of the time; total knee arthroplasty, 24%; and unicompartmental knee arthroplasty, 19%. At a WTP threshold of $100,000 per QALY, high tibial osteotomy was cost-effective 43% of time; total knee arthroplasty, 31%; and unicompartmental knee arthroplasty, 26%. Conclusions: In fifty to sixty-year-old patients with medial unicompartmental knee osteoarthritis, high tibial osteotomy is an attractive option compared with unicompartmental knee arthroplasty and total knee arthroplasty. This finding supports greater utilization of high tibial osteotomy for these patients. The cost-effectiveness of high tibial osteotomy and of unicompartmental knee arthroplasty depend on rates of conversion to total knee arthroplasty and the clinical outcomes of the conversions. Level of Evidence: Economic Level II. See Instructions for Authors for a complete description of levels of evidence. PMID:25995491
Custom-fit total knee arthroplasty: our initial experience in 32 knees.
Bali, Kamal; Walker, Peter; Bruce, Warwick
2012-06-01
We share our initial experience of total knee arthroplasty (TKA) using customized cutting block technology in 32 TKAs from May 2010 to March 2011. Ten of these patients had prior TKA done on the other side using conventional or navigation-assisted TKA. Customized cutting blocks were generated for each of the knee using preoperative magnetic resonance imaging of knee and long-leg weight-bearing radiographs. At 6 weeks, long-leg radiographs were obtained to evaluate the coronal alignment. There were no adverse intraoperative events. Twenty-nine of the 32 knees had a mechanical axis restored to within 3°° of neutral. Of 10 patients with prior TKA without custom-fit technology, the mean blood loss and the mean skin-to-skin time was found to be lower in knees that had undergone custom-fit TKA. We conclude that this technology can be safely used in most of the cases of osteoarthritis. Copyright © 2012 Elsevier Inc. All rights reserved.
Rose, Jessica; Cahill-Rowley, Katelyn; Butler, Erin E
2017-11-01
Cerebral palsy (CP) is the most common childhood motor disability and often results in debilitating walking abnormalities, such as flexed-knee and stiff-knee gait. Current medical and surgical treatments are only partially effective in improving gait abnormalities and may cause significant muscle weakness. However, emerging artificial walking technologies, such as step-initiated, multichannel neuromuscular electrical stimulation (NMES), can substantially improve gait patterns and promote muscle strength in children with spastic CP. NMES may also be applied to specific lumbar-sacral sensory roots to reduce spasticity. Development of tablet computer-based multichannel NMES can leverage lightweight, wearable wireless stimulators, advanced control design, and surface electrodes to activate lower-limb muscles. Musculoskeletal models have been used to characterize muscle contributions to unimpaired gait and identify high muscle demands, which can help guide multichannel NMES-assisted gait protocols. In addition, patient-specific NMES-assisted gait protocols based on 3D gait analysis can facilitate the appropriate activation of lower-limb muscles to achieve a more functional gait: stance-phase hip and knee extension and swing-phase sequence of hip and knee flexion followed by rapid knee extension. NMES-assisted gait treatment can be conducted as either clinic-based or home-based programs. Rigorous testing of multichannel NMES-assisted gait training protocols will determine optimal treatment dosage for future clinical trials. Evidence-based outcome evaluation using 3D kinematics or temporal-spatial gait parameters will help determine immediate neuroprosthetic effects and longer term neurotherapeutic effects of step-initiated, multichannel NMES-assisted gait in children with spastic CP. Multichannel NMES is a promising assistive technology to help children with spastic CP achieve a more upright, functional gait. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Springorum, H-R; Baier, C; Craiovan, B; Maderbacher, G; Renkawitz, T; Grifka, J; Keshmiri, A
2016-07-01
Patellofemoral maltracking is a relevant problem after total knee arthroplasty (TKA). Patella navigation is a tool that allows real time monitoring of patella tracking. This video contribution demonstrates the technique of patellofemoral navigation and a possible consequence of intraoperative monitoring. A higher postoperative lateral tilt is addressed with a widening of the lateral retinaculum in a particular manner. In selected cases of patellofemoral problems, patella navigation is a helpful tool to evaluate patellofemoral tracking intraoperatively. Modifications of implant position and soft tissue measurements can then prevent postoperative patellofemoral maltracking.
Schache, Margaret B; McClelland, Jodie A; Webster, Kate E
2016-06-13
Total knee arthroplasty (TKA) is effective in reducing pain and improving function for end-stage knee osteoarthritis. However, muscle weakness and functional limitations persist despite assistance from post-operative rehabilitation programs that traditionally focus on quadriceps strengthening and range of movement exercises. Hip abductor muscle weakness is evident in knee osteoarthritis and hip muscle strengthening reduces knee pain in this group. Following TKA, people with weak hip abductor strength perform more poorly on measures of physical function. However, very little is known of the effectiveness of including hip abductor strengthening exercises in post-operative rehabilitation. The aim of this trial is to compare the effects of targeted hip abductor strengthening to those of traditional care in a TKA rehabilitation program on muscle strength, patient reported outcomes and functional performance measures. This protocol describes a single-blinded randomized controlled trial, where 104 participants referred for inpatient rehabilitation following TKA will be recruited. Participants will be randomized using computer-generated numbers to one of two groups: usual care or usual care with additional hip strengthening exercises. Participants will attend physiotherapy daily during their inpatient length of stay, and will then attend between six and eight physiotherapy sessions as an outpatient. Primary outcomes are isometric hip abductor strength and the Knee Injury and Osteoarthritis Outcome Score (KOOS). Secondary outcomes are stair climb test, 6 min walk test, timed up and go, 40 m fast-paced walk test, 30 second chair stand test, isometric quadriceps strength, Lower Extremity Functional Scale (LEFS) and SF-12. Outcome measures will be recorded at baseline (admission to inpatient rehabilitation), and then 3 weeks, 6 weeks and 6 months post admission to rehabilitation. The findings of this study will determine whether the addition of targeted hip strengthening to usual care rehabilitation improves physical performance and patient reported outcomes following TKA when compared to usual care rehabilitation. This will then determine whether targeted hip strengthening exercises should be included in traditional rehabilitation programs to improve the outcomes following total knee arthroplasty. The trial protocol was registered with the Australian Clinical Trial Registry ( ACTRN12615000863538 ) on 18 August 2015.
Larsen, Bethany; Jacofsky, Marc C; Jacofsky, David J
2015-06-01
Gait of single-radius (SR, n=16) and multi-radius (MR, n=16) posterior stabilized total knee arthroplasties was compared, along with controls (n=16), pre-op and 1 year post-op. Computer navigation and standard order sets controlled confounding variables. Post-operatively, SR knees did not differ from controls while MR knees continued to differ in important knee kinetic and kinematic properties. MR knees remained more extended (P=0.019) and had decreased power absorption (P=0.0001) during weight acceptance compared to the SR knees. Both surgical groups had similar KSS for Knee Scores (P=0.22) and Function Scores (P=0.58). The significant biomechanical differences are likely influenced by patella-femoral moment arm geometry and changing ligament laxity throughout the active range of motion. Copyright © 2015 Elsevier Inc. All rights reserved.
Damiano, Diane L.; Bulea, Thomas C.
2016-01-01
Individuals with cerebral palsy frequently exhibit crouch gait, a pathological walking pattern characterized by excessive knee flexion. Knowledge of the knee joint moment during crouch gait is necessary for the design and control of assistive devices used for treatment. Our goal was to 1) develop statistical models to estimate knee joint moment extrema and dynamic stiffness during crouch gait, and 2) use the models to estimate the instantaneous joint moment during weight-acceptance. We retrospectively computed knee moments from 10 children with crouch gait and used stepwise linear regression to develop statistical models describing the knee moment features. The models explained at least 90% of the response value variability: peak moment in early (99%) and late (90%) stance, and dynamic stiffness of weight-acceptance flexion (94%) and extension (98%). We estimated knee extensor moment profiles from the predicted dynamic stiffness and instantaneous knee angle. This approach captured the timing and shape of the computed moment (root-mean-squared error: 2.64 Nm); including the predicted early-stance peak moment as a correction factor improved model performance (root-mean-squared error: 1.37 Nm). Our strategy provides a practical, accurate method to estimate the knee moment during crouch gait, and could be used for real-time, adaptive control of robotic orthoses. PMID:27101612
Abdelgaied, A; Fisher, J; Jennings, L M
2018-02-01
A more robust pre-clinical wear simulation framework is required in order to simulate wider and higher ranges of activities, observed in different patient populations such as younger more active patients. Such a framework will help to understand and address the reported higher failure rates for younger and more active patients (National_Joint_Registry, 2016). The current study has developed and validated a comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements (TKR). The input mechanical (elastic modulus and Poisson's ratio) and wear parameters of the moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE) bearing material were independently measured from experimental studies under realistic test conditions, similar to the loading conditions found in the total knee replacements. The wear predictions from the computational wear simulation were validated against the direct experimental wear measurements for size 3 Sigma curved total knee replacements (DePuy, UK) in an independent experimental wear simulation study under three different daily activities; walking, deep squat, and stairs ascending kinematic conditions. The measured compressive mechanical properties of the moderately cross-linked UHMWPE material were more than 20% lower than that reported in the literature under tensile test conditions. The pin-on-plate wear coefficient of moderately cross-linked UHMWPE was significantly dependant of the contact stress and the degree of cross-shear at the articulating surfaces. The computational wear predictions for the TKR from the current framework were consistent and in a good agreement with the independent full TKR experimental wear simulation measurements, with 0.94 coefficient of determination of the framework. In addition, the comprehensive combined experimental and computational framework was able to explain the complex experimental wear trends from the three different daily activities investigated. Therefore, such a framework can be adopted as a pre-clinical simulation approach to optimise different designs, materials, as well as patient's specific total knee replacements for a range of activities. Copyright © 2017. Published by Elsevier Ltd.
Franceschi, J-P; Sbihi, A
2014-10-01
The precision of bone cuts and the positioning of components influence the functionality and longevity of total knee arthroplasty (TKA). The objective of this study was to evaluate the results of TKA, performed after 3D preoperative templating, with the prosthesis implanted using custom cutting guides (Knee-Plan system, Symbios Orthopédie SA). This prospective study investigated 107 TKAs. Three-dimensional preoperative templating was carried out on the surface views and CT views to analyze the deformation of the lower limb and plan the implantation. The components were positioned in an individualized manner to realign the lower limb and provide ligament balance based on bone landmarks. Final component positioning was analyzed in the three planes with a postoperative CT scan. The preoperative and 1 year follow-up IKS and WOMAC scores were collected and compared. All the cutting guides were stable and functional. Femoral component planning was reproduced with 0 ± 2 precision in the frontal plane (94%± 3), 2 ± 3 in the sagittal plane, and 0 ± 2 in the transverse plane. The precision of the tibial component was reproduced with 0 ± 2 precision in the frontal plane (93%± 3) and 0 ± 4 in the sagittal plane. The HKA angle increased from 177 ± 7 preoperatively to 180 ± 3 at 1 year of follow-up. The IKS and WOMAC scores were significantly improved at 1 year (P<0.0001). The Knee-Plan system can be a realistic, simple, and reliable alternative to conventional cutting guides and to computer-assisted surgery for TKA implantation. IV; prospective cohort study. Copyright © 2014. Published by Elsevier Masson SAS.
Harvie, Paul; Larkin, James; Scaddan, Matt; Longstaff, Lee M; Sloan, Karen; Beaver, Richard J
2013-01-01
This study aims to evaluate component alignment in a large cohort of total knee arthroplasties (TKAs) and ascertain whether alignment in TKAs undergoing postoperative manipulation under anesthetic is significantly different from those achieving good function. A retrospective review of 281 consecutive primary TKAs was performed. All TKAs underwent computed tomographic scanning (Perth computed tomography knee protocol). Of 281 TKAs, 21 (7.4%) underwent manipulation, performed at a mean of 8.1 weeks (range, 3-14 weeks) after surgery. No statistically significant difference was seen between groups for any of 12 parameters of alignment. Postoperative stiffness with the need for manipulation under anesthetic is multifactorial in origin. This study found insufficient evidence to support the theory that component alignment contributes significantly to the etiology of this difficult problem. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Expectations in patients with total knee arthroplasty.
Tekin, Burcu; Unver, Bayram; Karatosun, Vasfi
2012-01-01
The primary objective of total knee arthroplasty (TKA) is to decrease pain and restore functional knee joint. Current hypotheses indicate higher knee flexion is required in terms of life style, culture and expectations in Eastern communities. Therefore, society-specific features related to life style and cultural habits are needed. The objective of this study was to investigate the expectations of patients undergoing TKA. The study included 131 patients (18 male, 113 female; mean age: 66.2 ± 8.3 years) who underwent cemented TKA due to knee osteoarthritis. All patients were operated by the same surgeon using the same implant and surgical technique. Patients were evaluated using the Hospital for Special Surgery (HSS) knee score, a 15-item clinical knee assessment questionnaire and the HSS knee arthroplasty expectation questionnaire. Mean HSS score for the right knee was 89.2 ± 10.5 and for the left knee was 89.6 ± 9.4. The two most expected outcomes were improvements in pain (99.2%) and gait (96.2%) and the two least expected outcomes were improvements in psychological well-being (22.9%) and communicative skills (35.1%). Expectations were not affected by education and working conditions. Patients' most expected outcomes were improvement in pain and restoration of function (gait, climbing stairs and no need of assistive devices), similar to Western and American communities.
Development of Total Knee Replacement Digital Templating Software
NASA Astrophysics Data System (ADS)
Yusof, Siti Fairuz; Sulaiman, Riza; Thian Seng, Lee; Mohd. Kassim, Abdul Yazid; Abdullah, Suhail; Yusof, Shahril; Omar, Masbah; Abdul Hamid, Hamzaini
In this study, by taking full advantage of digital X-ray and computer technology, we have developed a semi-automated procedure to template knee implants, by making use of digital templating method. Using this approach, a software system called OrthoKneeTMhas been designed and developed. The system is to be utilities as a study in the Department of Orthopaedic and Traumatology in medical faculty, UKM (FPUKM). OrthoKneeTMtemplating process employs uses a technique similar to those used by many surgeons, using acetate templates over X-ray films. Using template technique makes it easy to template various implant from every Implant manufacturers who have with a comprehensive database of templates. The templating functionality includes, template (knee) and manufactures templates (Smith & Nephew; and Zimmer). From an image of patient x-ray OrthoKneeTMtemplates help in quickly and easily reads to the approximate template size needed. The visual templating features then allow us quickly review multiple template sizes against the X-ray and thus obtain the nearly precise view of the implant size required. The system can assist by templating on one patient image and will generate reports that can accompany patient notes. The software system was implemented in Visual basic 6.0 Pro using the object-oriented techniques to manage the graphics and objects. The approaches for image scaling will be discussed. Several of measurement in orthopedic diagnosis process have been studied and added in this software as measurement tools features using mathematic theorem and equations. The study compared the results of the semi-automated (using digital templating) method to the conventional method to demonstrate the accuracy of the system.
Robot-Assisted Medial Compartment Arthroplasty Following Remote Patellectomy: A Case Report
Kouk, Shalen; Kalbian, Irene; Wolfe, Elizabeth; Strickland, Sabrina M
2018-01-01
Introduction: Total patellectomies are uncommon procedures that are reserved as salvage treatment for severely comminuted fractures of the patella. Due to the alteration of normal joint mechanics, these patients present later on in life with degenerative cartilage damage to the femorotibial joint and altered extensor mechanism. There are very few reports of unicondylar knee arthroplasties following previous patellectomy and none that specifically address robot-assisted unicompartmental knee arthroplasty. A recent case report by Pang et al. described the use of minimally invasive fixed-bearing unicondylar knee arthroplasty in a patellectomized patient with moderate medial compartment osteoarthritis. Our report details a case with more significant chondral loss along with patellar tendon subluxation. Case Report: This is a case report of a patient with severe medial compartment osteoarthritis after a patellectomy following a motor vehicle collision. After failing conservative treatment, the patient underwent a medial MAKOplasty with complete resolution of arthritic pain. Conclusion: Significant pain relief and improved knee function can be achieved with MAKOPlasty partial knee resurfacing system in a previously patellectomized patient with severe medial compartment osteoarthritis. PMID:29854684
Nielsen, Flemming K; Egund, Niels; Jørgensen, Anette; Peters, David A; Jurik, Anne Grethe
2016-11-16
Bone marrow lesions (BMLs) in knee osteoarthritis (OA) can be assessed using fluid sensitive and contrast enhanced sequences. The association between BMLs and symptoms has been investigated in several studies but only using fluid sensitive sequences. Our aims were to assess BMLs by contrast enhanced MRI sequences in comparison with a fluid sensitive STIR sequence using two different segmentation methods and to analyze the association between the MR findings and disability and pain. Twenty-two patients (mean age 61 years, range 41-79 years) with medial femoro-tibial knee OA obtained MRI and filled out a WOMAC questionnaire at baseline and follow-up (median interval of 334 days). STIR, dynamic contrast enhanced-MRI (DCE-MRI) and fat saturated T1 post-contrast (T1 CE FS) MRI sequences were obtained. All STIR and T1 CE FS sequences were assessed independently by two readers for STIR-BMLs and contrast enhancing areas of BMLs (CEA-BMLs) using manual segmentation and computer assisted segmentation, and the measurements were compared. DCE-MRIs were assessed for the relative distribution of voxels with an inflammatory enhancement pattern, N voxel , in the bone marrow. All findings were compared to WOMAC scores, including pain and overall symptoms, and changes from baseline to follow-up were analyzed. The average volume of CEA-BML was smaller than the STIR-BML volume by manual segmentation. The opposite was found for computer assisted segmentation where the average CEA-BML volume was larger than the STIR-BML volume. The contradictory finding by computer assisted segmentation was partly caused by a number of outliers with an apparent generally increased signal intensity in the anterior parts of the femoral condyle and tibial plateau causing an overestimation of the CEA-BML volume. Both CEA-BML, STIR-BML and N voxel were significantly correlated with symptoms and to a similar degree. A significant reduction in total WOMAC score was seen at follow-up, but no significant changes were observed for either CEA-BML, STIR-BML or N voxel . Neither the degree nor the volume of contrast enhancement in BMLs seems to add any clinical information compared to BMLs visualized by fluid sensitive sequences. Manual segmentation may be needed to obtain valid CEA-BML measurements.
Evaluation of total knee mechanics using a crouching simulator with a synthetic knee substitute.
Lowry, Michael; Rosenbaum, Heather; Walker, Peter S
2016-05-01
Mechanical evaluation of total knees is frequently required for aspects such as wear, strength, kinematics, contact areas, and force transmission. In order to carry out such tests, we developed a crouching simulator, based on the Oxford-type machine, with novel features including a synthetic knee including ligaments. The instrumentation and data processing methods enabled the determination of contact area locations and interface forces and moments, for a full flexion-extension cycle. To demonstrate the use of the simulator, we carried out a comparison of two different total knee designs, cruciate retaining and substituting. The first part of the study describes the simulator design and the methodology for testing the knees without requiring cadaveric knee specimens. The degrees of freedom of the anatomic hip and ankle joints were reproduced. Flexion-extension was obtained by changing quadriceps length, while variable hamstring forces were applied using springs. The knee joint was represented by three-dimensional printed blocks on to which the total knee components were fixed. Pretensioned elastomeric bands of realistic stiffnesses passed through holes in the block at anatomical locations to represent ligaments. Motion capture of the knees during flexion, together with laser scanning and computer modeling, was used to reconstruct contact areas on the bearing surfaces. A method was also developed for measuring tibial component interface forces and moments as a comparative assessment of fixation. The method involved interposing Tekscan pads at locations on the interface. Overall, the crouching machine and the methodology could be used for many different mechanical measurements of total knee designs, adapted especially for comparative or parametric studies. © IMechE 2016.
Yoon, Jung-Ro; Yang, Jae-Hyuk
2018-03-01
The use of highly conforming ultracongruent (UC) polyethylene insert is bone-preserving and became a relatively common alternative to the conventional posterior stabilized total knee arthroplasty (TKA) design. The purpose of this study was to analyze the short-term clinical and radiologic results of UC insert TKA using the navigation-assisted gap-balancing technique. Two hundred thirty-three knees were operated with a mean follow-up period of 8.1 years (minimum of 5 years). Radiologic and clinical outcomes were assessed before operation and at latest follow-up using the Knee Society Score and Western Ontario and McMaster Universities Osteoarthritis Index score. For statistical analysis, paired sample t-test and analysis of variance were used. Significance was considered as P < .05. According to the preoperative deformities (valgus, mild varus, and moderate varus), there were 23 cases (9.9%) of valgus deformity, 180 cases (77.3%) of mild varus deformity, and 30 cases (12.9%) of moderate varus deformity. Overall, the results at mean 8.1 years revealed an improvement in mean Knee Society Score (54 ± 12 to 92 ± 3) and mean Western Ontario and McMaster Universities Osteoarthritis Index scores (62 ± 14 to 17 ± 3). Overall, 220 of 233 cases (94.4%) were in neutral alignment (between -3° and +3°) at latest follow-up. There were no migrating or shifting prosthesis that should be considered as possible failure. There was 0% component revision rate. Navigation-assisted gap-balancing technique using UC insert TKA had satisfactory short-term outcome. Strict gap-balancing technique using the offset-type-force-controlled-spreader-system aided in the satisfactory results. Copyright © 2017 Elsevier Inc. All rights reserved.
Lee, Sung-Sahn; Lee, Yong-In; Kim, Dong-Uk; Lee, Dae-Hee; Moon, Young-Wan
2018-01-01
Achieving proper rotational alignment of the femoral component in total knee arthroplasty (TKA) for valgus knee is challenging because of lateral condylar hypoplasia and lateral cartilage erosion. Gap-based navigation-assisted TKA enables surgeons to determine the angle of femoral component rotation (FCR) based on the posterior condylar axis. This study evaluated the possible factors that affect the rotational alignment of the femoral component based on the posterior condylar axis. Between 2008 and 2016, 28 knees were enrolled. The dependent variable for this study was FCR based on the posterior condylar axis, which was obtained from the navigation system archives. Multiple regression analysis was conducted to identify factors that might predict FCR, including body mass index (BMI), Kellgren-Lawrence grade (K-L grade), lateral distal femoral angles obtained from the navigation system and radiographs (NaviLDFA, XrayLDFA), hip-knee-ankle (HKA) axis, lateral gap under varus stress (LGVS), medial gap under valgus stress (MGVS), and side-to-side difference (STSD, MGVS - LGVS). The mean FCR was 6.1° ± 2.0°. Of all the potentially predictive factors evaluated in this study, only NaviLDFA (β = -0.668) and XrayLDFA (β = -0.714) predicted significantly FCR. The LDFAs, as determined using radiographs and the navigation system, were both predictive of the rotational alignment of the femoral component based on the posterior condylar axis in gap-based TKA for valgus knee. A 1° increment with NaviLDFA led to a 0.668° decrement in FCR, and a 1° increment with XrayLDFA led to a 0.714° decrement. This suggests that symmetrical lateral condylar hypoplasia of the posterior and distal side occurs in lateral compartment end-stage osteoarthritis with valgus deformity.
An evidence-based review of enhanced recovery interventions in knee replacement surgery
Alazzawi, S; Nizam, I; Haddad, FS
2013-01-01
Introduction Total knee replacement (TKR) is a very common surgical procedure. Improved pain management techniques, surgical practices and the introduction of novel interventions have enhanced the patient’s postoperative experience after TKR. Safe, efficient pathways are needed to address the increasing need for knee arthroplasty in the UK. Enhanced recovery programmes can help to reduce hospital stays following knee replacements while maintaining patient safety and satisfaction. This review outlines common evidence-based pre, intra and postoperative interventions in use in enhanced recovery protocols following TKR. Methods A thorough literature search of the electronic healthcare databases (MEDLINE®, Embase™ and the Cochrane Library) was conducted to identify articles and studies concerned with enhanced recovery and fast track pathways for TKR. Results A literature review revealed several non-operative and operative interventions that are effective in enhanced recovery following TKR including preoperative patient education, pre-emptive and local infiltration analgesia, preoperative nutrition, neuromuscular electrical stimulation, pulsed electromagnetic fields, perioperative rehabilitation, modern wound dressings, different standard surgical techniques, minimally invasive surgery and computer assisted surgery. Conclusions Enhanced recovery programmes require a multidisciplinary team of dedicated professionals, principally involving preoperative education, multimodal pain control and accelerated rehabilitation; this will be boosted if combined with minimally invasive surgery. The current economic climate and restricted healthcare budget further necessitate brief hospitalisation while minimising costs. These non-operative interventions are the way forward to achieve such requirements. PMID:24025284
An evidence-based review of enhanced recovery interventions in knee replacement surgery.
Ibrahim, M S; Alazzawi, S; Nizam, I; Haddad, F S
2013-09-01
Total knee replacement (TKR) is a very common surgical procedure. Improved pain management techniques, surgical practices and the introduction of novel interventions have enhanced the patient's postoperative experience after TKR. Safe, efficient pathways are needed to address the increasing need for knee arthroplasty in the UK. Enhanced recovery programmes can help to reduce hospital stays following knee replacements while maintaining patient safety and satisfaction. This review outlines common evidence-based pre, intra and postoperative interventions in use in enhanced recovery protocols following TKR. A thorough literature search of the electronic healthcare databases (MEDLINE(®), Embase™ and the Cochrane Library) was conducted to identify articles and studies concerned with enhanced recovery and fast track pathways for TKR. A literature review revealed several non-operative and operative interventions that are effective in enhanced recovery following TKR including preoperative patient education, pre-emptive and local infiltration analgesia, preoperative nutrition, neuromuscular electrical stimulation, pulsed electromagnetic fields, perioperative rehabilitation, modern wound dressings, different standard surgical techniques, minimally invasive surgery and computer assisted surgery. Enhanced recovery programmes require a multidisciplinary team of dedicated professionals, principally involving preoperative education, multimodal pain control and accelerated rehabilitation; this will be boosted if combined with minimally invasive surgery. The current economic climate and restricted healthcare budget further necessitate brief hospitalisation while minimising costs. These non-operative interventions are the way forward to achieve such requirements.
Nishiwaki, Yuji; Michikawa, Takehiro; Yamada, Mutsuko; Eto, Norihito; Takebayashi, Toru
2011-01-01
Although knee pain is common in older persons and can cause ambulatory limitation, its impact on self-reliance has rarely been examined in Japan, particularly in a community setting. The aim of this 3-year cohort study was to investigate the association of knee pain with dependence in activities of daily living (ADL) and mortality in community-dwelling older Japanese adults. In 2005, presence of knee pain was assessed by a home visit survey of 1391 older adults aged 65 years or older (participation proportion = 97.3%). A total of 1265 participants who were ADL-independent at baseline were followed for 3 years, and information on outcomes, namely death and dependence in ADL, was collected. Participants who always had knee pain were more likely to become dependent in ADL than those who reported no knee pain (multivariate-adjusted OR, 1.98; 95% CI, 1.03-3.83); however, always having knee pain was not associated with mortality or a composite outcome of ADL dependence and death. Further analyses of each component of ADL dependence revealed that knee pain was associated with a need for assistance at home (long-term care eligibility, bathing, dressing, and transferring), but not with institutionalization. The participants were highly representative of the target population and the rate of follow-up was almost perfect (99.4%). The results suggest that knee pain is associated with future dependence in ADL, particularly a need for assistance at home.
Omoumi, P; Babel, H; Jolles, B M; Favre, J
2017-11-01
This study aimed to compare subchondral bone mineral density (sBMD) between non-radiographic osteoarthritic (OA) and medial femorotibial OA knees, using computed tomography (CT). CT exams from 16 non-radiographic OA (KL grade < 2) and 16 severe medial OA (KL grade ≥ 3) knees (average age of 61.7 ± 3 and 62.2 ± 5 years old respectively, 50% male in each group), were retrospectively analyzed. CT exams were segmented and 3D maps of sBMD based on the CT number in the most superficial 3 mm of femoral and tibial subchondral bone were computed. Average sBMD and medial-to-lateral sBMD ratios were calculated for total load-bearing regions and for sub-regions of interest in the femur and tibia. The analysis of total load-bearing regions did not reveal any significant difference between groups, except for the lateral tibia, where OA knees had lower sBMD. Sub-regional analysis unveiled differences with some sub-regions of the femur and tibia presenting significantly lower (in the lateral compartment) or higher (in the medial compartment) sBMD in OA knees compared to non-OA knees. The M/L sBMD ratios were significantly higher for OA knees compared to non-OA knees for all regions and sub-regions, except for the internal sub-regions. sBMD locally differs between non-OA and OA knees, in agreement with prior knowledge on biomechanics. CT proved to be a valuable tool for 3D analysis of femoral and tibial sBMD, which can be used in future studies to describe the chronology of sBMD alterations and improve our understanding of the role of subchondral bone in knee OA. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Hu, Jiayu; Chen, Zhenxian; Xin, Hua; Zhang, Qida; Jin, Zhongmin
2018-05-01
Detailed knowledge of the in vivo loading and kinematics in the knee joint is essential to understand its normal functions and the aetiology of osteoarthritis. Computer models provide a viable non-invasive solution for estimating joint loading and kinematics during different physiological activities. However, the joint loading and kinematics of the tibiofemoral and patellofemoral joints during a gait cycle were not typically investigated concurrently in previous computational simulations. In this study, a natural knee architecture was incorporated into a lower extremity musculoskeletal multibody dynamics model based on a force-dependent kinematics approach to investigate the contact mechanics and kinematics of a natural knee joint during a walking cycle. Specifically, the contact forces between the femoral/tibial articular cartilages and menisci and between the femoral and tibial/patellar articular cartilages were quantified. The contact forces and kinematics of the tibiofemoral and patellofemoral joints and the muscle activations and ligament forces were predicted simultaneously with a reasonable level of accuracy. The developed musculoskeletal multibody dynamics model with a natural knee architecture can serve as a potential platform for assisting clinical decision-making and postoperative rehabilitation planning.
Koh, Y-G.; Son, J.; Kwon, S-K.; Kim, H-J.; Kang, K-T.
2017-01-01
Objectives Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1. PMID:28947604
Is distal femoral torsion the same in both of a patient's legs? Morphometric CT study.
Beranger, J-S; Dujardin, D; Taburet, J-F; Boisrenoult, P; Steltzlen, C; Beaufils, P; Pujol, N
2018-04-18
The rotational position of the femoral component is a primary driver of success in total knee arthroplasty. However, distal femoral torsion (DFT) varies greatly between individuals. Measuring DFT preoperatively by CT in combination with computer-assisted surgery can significantly improve the rotational positioning of the femoral component. However, a preoperative CT scan is costly and exposes the patient to radiation. These are doubled when the patient is undergoing bilateral arthroplasty. The aim of this study was to determine the DFT in both knees of a patient undergoing bilateral arthroplasty. We hypothesized that DFT was symmetric between a patient's two knees and was independent of frontal alignment. In this retrospective study of TKA cases performed between December 2008 and March 2015, 82 patients (mean age 73years) who underwent two-stage bilateral TKA (164 knees) were included. A preoperative CT scan of each knee was performed to measure the DFT using the surgical posterior condylar angle (PCA) described by Yoshioka. Two observers performed the measurements twice each, to allow calculation of the intraclass and interclass correlation coefficients. The mean PCA was 5.4° (±1.48) in the right knee and 5.4° (±1.45) in the left knee, with a left/right difference ranging from 0 to 2.2° (p=0.8). In the entire cohort, 84.6% of patients had a left/right difference of less than 1°. We found no significant differences in DFT in knees with large or small frontal deformity (deformity<10°, p=0.7; deformity>10°, p=0.5) or the presence of varus or valgus (p=0.9). The intraclass correlation coefficient was excellent (94%) and the interclass correlation coefficient was moderate to good (60% for left knees, 53% for right knees). Based on CT scan measurements, the DFT in both knees of an arthritic patient is comparable and this measurement is reproducible. This means that a single, unilateral preoperative CT scan is sufficient for planning purposes. IV (retrospective cohort study). Copyright © 2018. Published by Elsevier Masson SAS.
Hampp, Emily L; Chughtai, Morad; Scholl, Laura Y; Sodhi, Nipun; Bhowmik-Stoker, Manoshi; Jacofsky, David J; Mont, Michael A
2018-05-01
This study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements ( p ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements ( p ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Lerner, Zachary F; Damiano, Diane L; Park, Hyung-Soon; Gravunder, Andrew J; Bulea, Thomas C
2017-06-01
Crouch gait, a pathological pattern of walking characterized by excessive knee flexion, is one of the most common gait disorders observed in children with cerebral palsy (CP). Effective treatment of crouch during childhood is critical to maintain mobility into adulthood, yet current interventions do not adequately alleviate crouch in most individuals. Powered exoskeletons provide an untapped opportunity for intervention. The multiple contributors to crouch, including spasticity, contracture, muscle weakness, and poor motor control make design and control of such devices challenging in this population. To our knowledge, no evidence exists regarding the feasibility or efficacy of utilizing motorized assistance to alleviate knee flexion in crouch gait. Here, we present the design of and first results from a powered exoskeleton for extension assistance as a treatment for crouch gait in children with CP. Our exoskeleton, based on the architecture of a knee-ankle-foot orthosis, is lightweight (3.2 kg) and modular. On board sensors enable knee extension assistance to be provided during distinct phases of the gait cycle. We tested our device on one six-year-old male participant with spastic diplegia from CP. Our results show that the powered exoskeleton improved knee extension during stance by 18.1° while total knee range of motion improved 21.0°. Importantly, we observed no significant decrease in knee extensor muscle activity, indicating the user did not rely solely on the exoskeleton to extend the limb. These results establish the initial feasibility of robotic exoskeletons for treatment of crouch and provide impetus for continued investigation of these devices with the aim of deployment for long term gait training in this population.
A self-aligning knee joint for walking assistance devices.
Byungjune Choi; Younbaek Lee; Jeonghun Kim; Minhyung Lee; Jongwon Lee; Se-Gon Roh; Hyundo Choi; Yong-Jae Kim; Jung-Yun Choi
2016-08-01
This paper presents a novel self-aligning knee mechanism for walking assistance devices for the elderly to provide physical gait assistance. Self-aligning knee joints can assist in flexion/extension motions of the knee joint and compensate the knee's transitional movements in the sagittal plane. In order to compensate the center of rotation, which moves with the flexion/extension motion of the human knee joint, a self-aligning knee joint is proposed that adds redundant degrees of freedom (i.e., 2-DoF) to the 1-DoF revolute joint. The key idea of the proposed mechanism is to decouple joint rotations and translations for use in lower-extremity wearable devices. This paper describes the mechanical design of this self-aligning knee mechanism and its implementation on a wearable robot and in preliminary experiments. The performance of the proposed mechanism is verified by simulations and experiments.
Open-wedge high tibial osteotomy: comparison between manual and computer-assisted techniques.
Iorio, R; Pagnottelli, M; Vadalà, A; Giannetti, S; Di Sette, P; Papandrea, P; Conteduca, F; Ferretti, A
2013-01-01
The purpose of our study was to compare clinical and radiological results of two groups of patients treated for medial compartment osteoarthritis of the knee with either conventional or computer-assisted open-wedge high tibial osteotomy (HTO). Goals of surgical treatment were a correction of the mechanical axis between 2° and 6° of valgus and a modification of posterior tibial slope between -2° and +2°. Twenty-four patients (27 knees) affected by varus knee deformity and operated with HTO were prospectively followed-up. They were randomly divided in two groups, A (11 patients, conventional treatment) and B (13 patients, navigated treatment). The American Knee Society Score and the Modified Cincinnati Rating System Questionnaire were used for clinical assessment. All patients were radiologically evaluated with a comparative lower limb weight-bearing digital radiograph, a standard digital anteroposterior, a latero-lateral radiograph of the knee, and a Rosenberg view. Patients were followed-up at a mean of 39 months. Clinical evaluation showed no statistical difference (n.s.) between the two groups. Radiological results showed an 86% reproducibility in achieving a mechanical axis of 182°-186° in group B compared to a 23% in group A (p = 0.0392); furthermore, in group B, we achieved a modification of posterior tibial slope between -2° and +2° in 100% of patients, while in group A, this goal was achieved only in 24% of cases (p = 0.0021). High tibial osteotomy with navigator is more accurate and reproducible in the correction of the deformity compared to standard technique. Therapeutic study, Level II.
Kinematic analysis of total knee prosthesis designed for Asian population.
Low, F H; Khoo, L P; Chua, C K; Lo, N N
2000-01-01
In designing a total knee replacement (TKR) prosthesis catering for the Asian population, 62 sets of femur were harvested and analyzed. The morphometrical data obtained were found to be in good agreement with dimensions typical of the Asian knee and has reaffirmed the fact that Caucasian knees are generally larger than Asian knees. Subsequently, these data when treated using a multivariate statistical technique resulted in the establishment of major design parameters for six different sizes of femoral implants. An extra-small implant size with established dimensions and geometrical shape has surfaced from the study. The differences between the Asian knees and the Caucasian knees are discussed. Employing the established femoral dimensions and motion path of the knee joint, the articulating tibia profile was generated. All the sizes of implants were modeled using a computer-aided software package. Thereupon, these models that accurately fits the local Asian knee were transported into a dynamic and kinematic analysis software package. The tibiofemoral joint was modeled successfully as a slide curve joint to study intuitively the motion of the femur when articulating on the tibia surface. An optimal tibia profile could be synthesized to mimic the natural knee path motion. Details of the analysis are presented and discussed.
Tibial stress fracture after computer-navigated total knee arthroplasty.
Massai, F; Conteduca, F; Vadalà, A; Iorio, R; Basiglini, L; Ferretti, A
2010-06-01
A correct alignment of the tibial and femoral component is one of the most important factors determining favourable long-term results of a total knee arthroplasty (TKA). The accuracy provided by the use of the computer navigation systems has been widely described in the literature so that their use has become increasingly popular in recent years; however, unpredictable complications, such as displaced or stress femoral or tibial fractures, have been reported to occur a few weeks after the operation. We present a case of a stress tibial fracture that occurred after a TKA performed with the use of a computer navigation system. The stress fracture, which eventually healed without further complications, occurred at one of the pinhole sites used for the placement of the tibial trackers.
Nishiwaki, Yuji; Michikawa, Takehiro; Yamada, Mutsuko; Eto, Norihito; Takebayashi, Toru
2011-01-01
Background Although knee pain is common in older persons and can cause ambulatory limitation, its impact on self-reliance has rarely been examined in Japan, particularly in a community setting. The aim of this 3-year cohort study was to investigate the association of knee pain with dependence in activities of daily living (ADL) and mortality in community-dwelling older Japanese adults. Methods In 2005, presence of knee pain was assessed by a home visit survey of 1391 older adults aged 65 years or older (participation proportion = 97.3%). A total of 1265 participants who were ADL-independent at baseline were followed for 3 years, and information on outcomes, namely death and dependence in ADL, was collected. Results Participants who always had knee pain were more likely to become dependent in ADL than those who reported no knee pain (multivariate-adjusted OR, 1.98; 95% CI, 1.03–3.83); however, always having knee pain was not associated with mortality or a composite outcome of ADL dependence and death. Further analyses of each component of ADL dependence revealed that knee pain was associated with a need for assistance at home (long-term care eligibility, bathing, dressing, and transferring), but not with institutionalization. Conclusions The participants were highly representative of the target population and the rate of follow-up was almost perfect (99.4%). The results suggest that knee pain is associated with future dependence in ADL, particularly a need for assistance at home. PMID:21422701
The female knee: anatomic variations.
Conley, Sheryl; Rosenberg, Aaron; Crowninshield, Roy
2007-01-01
Traditional knee implants have been designed "down the middle,"based on the combined average size and shape of male and female knee anatomy.Sex-based research in the field of orthopaedics has led to new understanding of the anatomic differences between the sexes and the associated implications for women undergoing total knee arthroplasty. Through the use of a comprehensive bone morphology atlas that utilizes novel three-dimensional computed tomography analysis technology, significant anatomic differences have been documented in the shape and size of female knees compared with male knees. This research identifies three notable anatomic differences in the female population: a less prominent anterior condyle, an increased Q angle, and a reduced medial-lateral:anterior-posterior aspect ratio.
Jenny, J Y; Boeri, C
2001-01-01
A navigation system should improve the quality of a total knee prosthesis implantation in comparison to the classical, surgeon-controlled operative technique. The authors have implanted 40 knee total prostheses with an optical infrared navigation system (Orthopilot AESCULAP, Tuttlingen--group A). The quality of implantation was studied on postoperative long leg AP and lateral X-rays, and compared to a control group of 40 computer-paired total knee prostheses o the same model (Search Prosthesis, AESCULAP, Tuttlingen) implanted with a classical, surgeon-controlled technique (group B). An optimal mechanical femorotibial angle (3 degrees valgus to 3 degrees varus) was obtained by 33 cases in group A and 31 cases in group B (p > 0.05). Better results were seen for the coronal and sagittal orientation of both tibial and femoral components in group A. Globally, 26 cases of the group A and 12 cases of the group B were implanted in an optimal manner for all studied criteria (p < 0.01). The used navigation system allows a significant improvement of the quality of implantation of a knee total prosthesis in comparison to a classical, surgeon-controlled instrumentation. Long-term outcome could be consequently improved.
Onodera, Tomohiro; Majima, Tokifumi; Iwasaki, Norimasa; Kamishima, Tamotsu; Kasahara, Yasuhiko; Minami, Akio
2012-09-01
The stress distribution of an ankle under various physiological conditions is important for long-term survival of total ankle arthroplasty. The aim of this study was to measure subchondral bone density across the distal tibial joint surface in patients with malalignment/instability of the lower limb. We evaluated subchondral bone density across the distal tibial joint in patients with malalignment/instability of the knee by computed tomography (CT) osteoabsorptiometry from ten ankles as controls and from 27 ankles with varus deformity/instability of the knee. The quantitative analysis focused on the location of the high-density area at the articular surface, to determine the resultant long-term stress on the ankle joint. The area of maximum density of subchondral bone was located in the medial part in all subjects. The pattern of maximum density in the anterolateral area showed stepwise increases with the development of varus deformity/instability of the knee. Our results should prove helpful for designing new prostheses and determining clinical indications for total ankle arthroplasty.
Does patella position influence ligament balancing in total knee arthroplasty?
Yoon, Jung-Ro; Oh, Kwang-Jun; Wang, Joon Ho; Yang, Jae-Hyuk
2015-07-01
In vivo comparative gap measurements were performed in three different patella positions (reduced, subluxated and everted) using offset-type-force-controlled-spreader-system. Prospectively, 50 knees were operated by total knee arthroplasty using a navigation-assisted gap-balancing technique. The offset-type-force-controlled-spreader-system was used for gap measurements. This commercially available instrument allows controllable tension in patella-reduced position. The mediolateral gaps of knee extension (0°) and flexion (90°) angle were recorded in three different patella positions; reduced, subluxated and everted. Any gap differences of more than 3 mm were considered as a meaningful difference. Correlation between the difference with the demographic data, preoperative radiologic alignment and intraoperative data was analysed. For statistical analysis, ANOVA and Pearson's correlation test were used. The gaps in patella eversion demonstrated smaller gaps both in knee extension and flexion position compared to the gaps of patella reduction position. The amount of decreased gaps was more definite in knee flexion position. Statistically significant difference was observed for the lateral gap of patella eversion compared to gap of patella reduction in knee flexion position (p < 0.05). There were notable cases of variability in knee flexion position. Significant portion of 12 (24 %) knees of patella subluxation and 33 (66 %) knees of patella evertion demonstrated either increased or decreased gaps in knee flexion position compared to the gaps of patella reduction position. The gaps in patella eversion demonstrated smaller gaps both in knee extension and flexion position compared to the gaps of patella reduction position. The amount of decreased gaps was more definite in knee flexion position. Therefore, the intraoperative patellar positioning has influence on the measurement of the joint gap. Keeping the patella in reduced position is important during gap balancing. I.
Finite element analysis of constrained total Condylar Knee Prosthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-07-13
Exactech, Inc., is a prosthetic joint manufacturer based in Gainesville, FL. The company set the goal of developing a highly effective prosthetic articulation, based on scientific principles, not trial and error. They developed an evolutionary design for a total knee arthroplasty system that promised improved performance. They performed static load tests in the laboratory with similar previous designs, but dynamic laboratory testing was both difficult to perform and prohibitively expensive for a small business to undertake. Laboratory testing also cannot measure stress levels in the interior of the prosthesis where failures are known to initiate. To fully optimize their designsmore » for knee arthroplasty revisions, they needed range-of-motion stress/strain data at interior as well as exterior locations within the prosthesis. LLNL developed computer software (especially NIKE3D) specifically designed to perform stress/strain computations (finite element analysis) for complex geometries in large displacement/large deformation conditions. Additionally, LLNL had developed a high fidelity knee model for other analytical purposes. The analysis desired by Exactech could readily be performed using NIKE3D and a modified version of the high fidelity knee that contained the geometry of the condylar knee components. The LLNL high fidelity knee model was a finite element computer model which would not be transferred to Exactech during the course of this CRADA effort. The previously performed laboratory studies by Exactech were beneficial to LLNL in verifying the analytical capabilities of NIKE3D for human anatomical modeling. This, in turn, gave LLNL further entree to perform work-for-others in the prosthetics field. There were two purposes to the CRADA (1) To modify the LLNL High Fidelity Knee Model to accept the geometry of the Exactech Total Knee; and (2) To perform parametric studies of the possible design options in appropriate ranges of motion so that an optimum design could be selected for production. Because of unanticipated delays in the CRADA funding, the knee design had to be finalized before the analysis could be accomplished. Thus, the scope of work was modified by the industrial partner. It was decided that it would be most beneficial to perform FEA that would closely replicate the lab tests that had been done as the basis of the design. Exactech was responsible for transmitting the component geometries to Livermore, as well as providing complete data from the quasi-static laboratory loading tests that were performed on various designs. LLNL was responsible for defining the basic finite element mesh and carrying out the analysis. We performed the initial computer simulation and verified model integrity, using the laboratory data. After performing the parametric studies, the results were reviewed with Exactech. Also, the results were presented at the Orthopedic Research Society meeting in a poster session.« less
Utilization of robotic-arm assisted total knee arthroplasty for soft tissue protection.
Sultan, Assem A; Piuzzi, Nicolas; Khlopas, Anton; Chughtai, Morad; Sodhi, Nipun; Mont, Michael A
2017-12-01
Despite the well-established success of total knee arthroplasty (TKA), iatrogenic ligamentous and soft tissue injuries are infrequent, but potential complications that can have devastating impact on clinical outcomes. These injuries are often related to technical errors and excessive soft tissue manipulation, particularly during bony resections. Recently, robotic-arm assisted TKA was introduced and demonstrated promising results with potential technical advantages over manual surgery in implant positioning and mechanical accuracy. Furthermore, soft tissue protection is an additional potential advantage offered by these systems that can reduce inadvertent human technical errors encountered during standard manual resections. Therefore, due to the relative paucity of literature, we attempted to answer the following questions: 1) does robotic-arm assisted TKA offer a technical advantage that allows enhanced soft tissue protection? 2) What is the available evidence about soft tissue protection? Recently introduced models of robotic-arm assisted TKA systems with advanced technology showed promising clinical outcomes and soft tissue protection in the short- and mid-term follow-up with results comparable or superior to manual TKA. In this review, we attempted to explore this dimension of robotics in TKA and investigate the soft tissue related complications currently reported in the literature.
Van Duren, B H; Pandit, H; Beard, D J; Murray, D W; Gill, H S
2009-04-01
The recent development in Oxford lateral unicompartmental knee arthroplasty (UKA) design requires a valid method of assessing its kinematics. In particular, the use of single plane fluoroscopy to reconstruct the 3D kinematics of the implanted knee. The method has been used previously to investigate the kinematics of UKA, but mostly it has been used in conjunction with total knee arthroplasty (TKA). However, no accuracy assessment of the method when used for UKA has previously been reported. In this study we performed computer simulation tests to investigate the effect of the different geometry of the unicompartmental implant has on the accuracy of the method in comparison to the total knee implants. A phantom was built to perform in vitro tests to determine the accuracy of the method for UKA. The computer simulations suggested that the use of the method for UKA would prove less accurate than for TKA's. The rotational degrees of freedom for the femur showed greatest disparity between the UKA and TKA. The phantom tests showed that the in-plane translations were accurate to <0.5mm RMS and the out-of-plane translations were less accurate with 4.1mm RMS. The rotational accuracies were between 0.6 degrees and 2.3 degrees which are less accurate than those reported in the literature for TKA, however, the method is sufficient for studying overall knee kinematics.
Kang, K-T.; Koh, Y-G.; Son, J.; Kwon, O-R.; Baek, C.; Jung, S. H.
2016-01-01
Objectives Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1. PMID:28094763
Davis, Edward T; Pagkalos, Joseph; Gallie, Price A M; Macgroarty, Kelly; Waddell, James P; Schemitsch, Emil H
2015-01-01
Optimal component alignment in total knee arthroplasty has been associated with better functional outcome as well as improved implant longevity. The ability to align components optimally during minimally invasive (MIS) total knee replacement (TKR) has been a cause of concern. Computer navigation is a useful aid in achieving the desired alignment although it is limited by the error during the manual registration of landmarks. Our study aims to compare the registration process error between a standard and a MIS surgical approach. We hypothesized that performing the registration error via an MIS approach would increase the registration process error. Five fresh frozen lower limbs were routinely prepared and draped. The registration process was performed through an MIS approach. This was then extended to the standard approach and the registration was performed again. Two surgeons performed the registration process five times with each approach. Performing the registration process through the MIS approach was not associated with higher error compared to the standard approach in the alignment parameters of interest. This rejects our hypothesis. Image-free navigated MIS TKR does not appear to carry higher risk of component malalignment due to the registration process error. Navigation can be used during MIS TKR to improve alignment without reduced accuracy due to the approach.
Development of a Wearable Assist Robot for Walk Rehabilitation After Knee Arthroplasty Surgery
NASA Astrophysics Data System (ADS)
Terada, H.; Zhu, Y.; Horiguchi, K.; Nakamura, M.; Takahashi, R.
In Japan, it is popular that the disease knee joints will be replaced to artificial joints by surgery. And we have to assist so many patients for walk rehabilitation. So, the wearable assist robot has been developed. This robot includes the knee motion assist mechanism and the hip joint support mechanism. Especially, the knee motion assist mechanism consists of a non-circular gear and grooved cams. This mechanism rotates and slides simultaneously, which has two degree-of-freedom. Also, the hip joint support mechanism consists of a hip brace and a ball-joint. This mechanism can avoid motion constraints which are the internal or external rotation and the adduction or abduction. Then, the control algorithm, which considers an assisting timing for the walk rehabilitation, has been proposed. A sensing system of a walk state for this control system uses a heel contacts sensor and knee and hip joint rotation angle sensors. Also, the prototype robot has been tested. And it is confirmed that the assisting system is useful.
NASA Astrophysics Data System (ADS)
Wannaphan, Patsiri; Chanthasopeephan, Teeranoot
2016-11-01
Knee rehabilitation after total knee replacement arthroplasty is essential for patients during their post-surgery recovery period. This study is about designing one degree of freedom knee rehabilitation equipment to assist patients for their post-surgery exercise. The equipment is designed to be used in sitting position with flexion/extension of knee in sagittal plane. The range of knee joint motion is starting from 0 to 90 degrees angle for knee rehabilitation motion. The feature includes adjustable link for different human proportions and the torque feedback control at knee joint during rehabilitation and the control of flexion/extension speed. The motion of the rehabilitation equipment was set to move at low speed (18 degrees/sec) for knee rehabilitation. The rehabilitation link without additional load took one second to move from vertical hanging up to 90° while the corresponding torque increased from 0 Nm to 2 Nm at 90°. When extra load is added, the link took 1.5 seconds to move to 90° The torque is then increased from 0 Nm to 4 Nm. After a period of time, the speed of the motion can be varied. User can adjust the motion to 40 degrees/sec during recovery activity of the knee and users can increase the level of exercise or motion up to 60 degrees/sec to strengthen the muscles during throughout their rehabilitation program depends on each patient. Torque control is included to prevent injury. Patients can use the equipment for home exercise to help reduce the number of hospital visit while the patients can receive an appropriate therapy for their knee recovery program.
Current Role of Computer Navigation in Total Knee Arthroplasty.
Jones, Christopher W; Jerabek, Seth A
2018-01-31
Computer-assisted surgical (CAS) navigation has been developed with the aim of improving the accuracy and precision of total knee arthroplasty (TKA) component positioning and therefore overall limb alignment. The historical goal of knee arthroplasty has been to restore the mechanical alignment of the lower limb by aligning the femoral and tibial components perpendicular to the mechanical axis of the femur and tibia. Despite over 4 decades of TKA component development and nearly 2 decades of interest in CAS, the fundamental question remains; does the alignment goal and/or the method of achieving that goal affect the outcome of the TKA in terms of patient-reported outcome measures and/or overall survivorship? The quest for reliable and reproducible achievement of the intraoperative alignment goal has been the primary motivator for the introduction, development, and refinement of CAS navigation. Numerous proprietary systems now exist, and rapid technological advancements in computer processing power are stimulating further development of robotic surgical systems. Three categories of CAS can be defined: image-based large-console navigation; imageless large-console navigation, and more recently, accelerometer-based handheld navigation systems have been developed. A review of the current literature demonstrates that there are enough well-designed studies to conclude that both large-console CAS and handheld navigation systems improve the accuracy and precision of component alignment in TKA. However, missing from the evidence base, other than the subgroup analysis provided by the Australian Orthopaedic Association National Joint Replacement Registry, are any conclusive demonstrations of a clinical superiority in terms of improved patient-reported outcome measures and/or decreased cumulative revision rates in the long term. Few authors would argue that accuracy of alignment is a goal to ignore; therefore, in the absence of clinical evidence, many of the arguments against the use of large-console CAS navigation center on the prohibitive cost of the systems. The utilization of low-cost, handheld CAS navigation systems may therefore bridge this important gap, and over time, further clinical evidence may emerge. Copyright © 2018 Elsevier Inc. All rights reserved.
Reliable Alignment in Total Knee Arthroplasty by the Use of an iPod-Based Navigation System
Koenen, Paola; Schneider, Marco M.; Fröhlich, Matthias; Driessen, Arne; Bouillon, Bertil; Bäthis, Holger
2016-01-01
Axial alignment is one of the main objectives in total knee arthroplasty (TKA). Computer-assisted surgery (CAS) is more accurate regarding limb alignment reconstruction compared to the conventional technique. The aim of this study was to analyse the precision of the innovative navigation system DASH® by Brainlab and to evaluate the reliability of intraoperatively acquired data. A retrospective analysis of 40 patients was performed, who underwent CAS TKA using the iPod-based navigation system DASH. Pre- and postoperative axial alignment were measured on standardized radiographs by two independent observers. These data were compared with the navigation data. Furthermore, interobserver reliability was measured. The duration of surgery was monitored. The mean difference between the preoperative mechanical axis by X-ray and the first intraoperatively measured limb axis by the navigation system was 2.4°. The postoperative X-rays showed a mean difference of 1.3° compared to the final navigation measurement. According to radiographic measurements, 88% of arthroplasties had a postoperative limb axis within ±3°. The mean additional time needed for navigation was 5 minutes. We could prove very good precision for the DASH system, which is comparable to established navigation devices with only negligible expenditure of time compared to conventional TKA. PMID:27313898
Kocher, Benjamin K; Chalupa, Robyn L; Lopez, Donna M; Kirk, Kevin L
2016-11-01
Functional limitations after lower extremity surgery often require the use of an assistive device for ambulation during rehabilitation and recovery. There are no known objective data evaluating the wheeled knee walker as an assistive device for protected ambulation. The purpose of this study was to compare assisted ambulation and perceived exertion with the wheeled knee walker and the axillary crutches in healthy participants. A prospective, randomized crossover study was performed using 24 healthy volunteers. Each participant performed a 6-minute walk test (6MWT) using each assistive device in a crossover manner. Preactivity and postactivity heart rates were recorded. The self-selected walking velocity (SSWV) was calculated and the participant's rating of perceived exertion was recorded using the OMNI Rating of Perceived Exertion (OMNI-RPE). Participant's preference for assistive device was identified. The 6MWT, SSWV, and the Omni-RPE were evaluated using paired t tests and determined to be statistically significant for the wheeled knee walker compared with axillary crutches. Evaluation of the preactivity and postactivity heart rates demonstrated a statistically significant difference for the wheeled knee walker compared with axillary crutches. The wheeled knee walker was preferred by 88% of participants. The wheeled knee walker provided increased assisted ambulation and had a lower rating of perceived exertion than axillary crutches on level surfaces in healthy participants. Level III, comparative study. © The Author(s) 2016.
Brockett, Claire L; Abdelgaied, Abdellatif; Haythornthwaite, Tony; Hardaker, Catherine; Fisher, John; Jennings, Louise M
2016-01-01
Advancements in knee replacement design, material and sterilisation processes have provided improved clinical results. However, surface wear of the polyethylene leading to osteolysis is still considered the longer-term risk factor. Experimental wear simulation is an established method for evaluating the wear performance of total joint replacements. The aim of this study was to investigate the influence of simulation input conditions, specifically input kinematic magnitudes, waveforms and directions of motion and position of the femoral centre of rotation, on the wear performance of a fixed-bearing total knee replacement through a combined experimental and computational approach. Studies were completed using conventional and moderately cross-linked polyethylene to determine whether the influence of these simulation input conditions varied with material. The position of the femoral centre of rotation and the input kinematics were shown to have a significant influence on the wear rates. Similar trends were shown for both the conventional and moderately cross-linked polyethylene materials, although lower wear rates were found for the moderately cross-linked polyethylene due to the higher level of cross-linking. The most important factor influencing the wear was the position of the relative contact point at the femoral component and tibial insert interface. This was dependent on the combination of input displacement magnitudes, waveforms, direction of motion and femoral centre of rotation. This study provides further evidence that in order to study variables such as design and material in total knee replacement, it is important to carefully control knee simulation conditions. This can be more effectively achieved through the use of displacement control simulation. PMID:27160561
Shepherd, Max K; Rouse, Elliott J
2016-08-01
Individuals with post-stroke hemiparesis often have difficulty standing out of a chair. One way to potentially improve sit-to-stand is to provide knee extension assistance using a powered knee exoskeleton. An exoskeleton providing unilateral, partial assistance during sit-to-stand would need to be torque-controllable. There are no knee exoskeletons on the market suitable for conducting experiments assisting stroke patients with sit-to-stand, so to enable such experiments a research device was developed. The purpose of this report is to present the design of a novel knee exoskeleton actuator that uses a fiberglass leaf spring in series to improve torque-controllability, and present a characterization of the actuator performance. The actuator is capable of the required torque and speed for sit-to-stand, has high bandwidth (25 Hz), low output impedance at low frequencies (<;0.5 Nm), and excellent torque tracking. An orthotic brace built upon this actuator will enable an in-depth study on the biomechanical effects of providing stroke subjects with knee extension assistance during sit-to-stand.
Yoon, Jung-Ro; Yang, Jae-Hyuk
2018-03-20
The purpose of this retrospective study was to analyze and compare the clinical and radiologic outcomes of fixed bearing ultracongruent (UC) insert total knee arthroplasty (TKA) and mobile bearing (MB) floating platform TKA using the navigation-assisted gap balancing technique with a minimum follow-up of five years. The study retrospectively enrolled 105 patients who received the UC type fixed bearing insert (group 1) and 95 patients who received the floating platform MB insert (group 2) during the period from August 2009 to June 2012. All surgery was performed using the navigation-assisted gap balancing technique. For strict assessment of gap measurements, the offset-type-force-controlled-spreader-system was used. Radiologic and clinical outcomes were assessed before operation and at the most recent follow-up using the Knee Society Score (KSS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score. For statistical analysis, paired sample t tests were used. A p value less than 0.05 was considered significant. Although the radiologic alignments were satisfactory for both groups (99/105 [94%] cases were neutral for group 1 and 90/95 [94%] for group 2), the functional and total WOMAC scores were inferior in group 2 (p < 0.05). There were two cases of insert breakage in group 2 that required bearing exchange. The Kaplan-Meier survivorship rates for groups 1 and 2 at 77 months were 100.0 and 97.9%, respectively. Second-generation MB floating platform TKA cases did not have satisfactory outcomes. There were two cases of insert breakage, which required bearing exchange. Other patients who underwent surgery with second-generation MB floating platform were encouraged to avoid high knee flexion activities, resulting in lower clinical performance.
Jenny, J-Y; Lefèbvre, Y; Vernizeau, M; Lavaste, F; Skalli, W
2002-12-01
In vitro experiments are particularly useful for studying kinematic changes from the normal knee to experimental conditions simulating different disease states. We developed an experimental protocol allowing a kinematic analysis of the femorotibial and femoropatellar joints in the healthy knee and after implantation of a knee prosthesis, according to the central pivot during simulated active loaded movement from the standing to sitting position. An experimental device was designed to apply force to the femur of a cadaveric specimen including the femur, the patella and the tibia. The tibia was angled in the sagittal plane and the femur was free to move in space in response to the geometric movement of the knee joint, the capsuloligamentary structures, the quadriceps tendon and gravity. Variation in the length of the quadriceps tendon controlled the flexion-extension movement. The experimental setup included computer-controlled activation allowing continuous coordinated movement of the femur relative to the tibia and of the tibia relative to the ground. Standard activations simulated movement from the standing to the sitting position. Five pairs of fresh-frozen cadaver specimens including the entire femur, patella, tibia and fibula, the capsuloligamentary and intra-articular structures of the knee, the superior and inferior tibiofibular ligaments and the quadriceps tendon were studied. The quadriceps tendon was connected to the computer-guided activation device. Reflectors were fixed onto the anterior aspect of the femur, the superior tibial epiphysis and the center of the patella. Anatomic landmarks on the femur, the tibia, and the patella were identified to determine the plane of movement of each bone in the three rotation axes and the three translation directions. Three infrared cameras recorded movements of the reflectors fixed on the bony segments and, by mathematical transformation, the movement of the corresponding bony segment, displayed in time-course curves. The patella moved in continuous fashion over the femur, directly following the angle of knee flexion with a ratio of about 60%, which was constant for all knees studied and for all configurations. The patella of healthy knees and knees implanted with a unicompartmental prosthesis exhibited medial rotation during the first 30 degrees of flexion, with a movement of about of 10 degrees, then a lateral rotation of about 10 degrees to 20 degrees when the flexion reached 90 degrees; implantation of a total knee prosthesis led to a medial rotation which was continuous from 5 degrees to 15 degrees. There was a trend towards continuous abduction of about 10 degrees. The patella exhibited a continuous anterior translation of 10 to 20 mm from the tibia with increasing knee flexion, in both normal and prosthetic knees (unicompartmental prosthesis); knees implanted with a total knee prosthesis exhibited 5 to 10 mm anterior translation from 0 degrees to 50 degrees flexion, then an equivalent posterior translation for 50 degrees to 90 degrees flexion. The patella made a continuous 5 to 10 mm medial translation movement over the tibia in both normal and prosthetic (unicompartmental) knees; knees implanted with a total knee prosthesis exhibited 0 to 5 mm lateral translation starting after 50 degrees flexion. The patella also exhibited a continuous distal translation over the tibia of about 20 to 30 mm, for all configurations. The experimental set up enables a comparison of the kinetics of a normal knee with the kinetics observed after implantation of a prosthesis on the same knee. Implantation of a unicompartmental medial prosthesis, leaving the posterior cruciate ligament intact and irrespective of the status of the anterior cruciate ligament, did not, in these experimental conditions, exhibit any significant difference in the femorotibial or femoropatellar kinetics compared with the same normal knee. Implantation of a total knee prosthesis had a significant effect on the femoropatellar kinematics, compared with the same knee before implantation. The main anomalies were related to the medial-lateral rotation of the patella which exhibited an abnormal lateral rotation, possibly favorable for subluxation; these changes were directly related to femorotibial rotation after implantation of the total prosthesis and appeared to be related to the symmetry of the femoral condyles of the prosthesis model studied, perturbing the normal automatic rotation of the knee. There is thus a strong relationship between femorotibial and femoropatellar kinetics in the total knee prosthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seebauer, Christian J., E-mail: christian.seebauer@charite.d; Bail, Hermann J., E-mail: hermann-josef.bail@klinikum-nuernberg.d; Rump, Jens C., E-mail: jens.rump@charite.de
Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesionsmore » of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.« less
Barker, Tyler; Rogers, Victoria E; Brown, Kimberly B; Henriksen, Vanessa T; Rasmussen, G Lynn
2017-09-01
The purpose of our study was to identify the influence of tourniquet use during total knee arthroplasty (TKA) on the neutrophil-to-lymphocyte ratio (NLR) shortly after surgery and patient-reported outcomes (pain and physical activity) from outpatient physical therapy. This retrospective study consisted of 104 subjects who underwent primary unilateral TKA (51 subjects with and 53 subjects without tourniquet assistance) between 2010 and 2012. The NLR was calculated from the absolute neutrophil and lymphocyte counts obtained immediately before and after (1 and 2 days) knee arthroplasty. The Knee Outcome Survey (KOS) of Activities of Daily Living and numeric pain scores collected at the first [33.0 (34.2) days after surgery] and last [85.5 (40.7) days after surgery] outpatient physical therapy visits were extracted from an electronic database. The NLR, pain, and KOS score were not significantly (all p > 0.05) different with tourniquet use. Based on these findings, we conclude that tourniquet use during TKA neither increases systemic inflammation shortly after surgery nor impairs patient-reported outcomes obtained during outpatient physical therapy. IV.
Quilez, María Paz; Seral, Belen; Pérez, María Angeles
2017-01-01
The best methods to manage tibial bone defects following total knee arthroplasty remain under debate. Different fixation systems exist to help surgeons reconstruct knee osseous bone loss (such as tantalum cones, cement, modular metal augments, autografts, allografts and porous metaphyseal sleeves) However, the effects of the various solutions on the long-term outcome remain unknown. In the present work, a bone remodeling mathematical model was used to predict bone remodeling after total knee arthroplasty (TKA) revision. Five different types of prostheses were analyzed: one with a straight stem; two with offset stems, with and without supplements; and two with sleeves, with and without stems. Alterations in tibia bone density distribution and implant Von Mises stresses were quantified. In all cases, the bone density decreased in the proximal epiphysis and medullary channels, and an increase in bone density was predicted in the diaphysis and around stem tips. The highest bone resorption was predicted for the offset prosthesis without the supplement, and the highest bone formation was computed for the straight stem. The highest Von Mises stress was obtained for the straight tibial stem, and the lowest was observed for the stemless metaphyseal sleeves prosthesis. The computational model predicted different behaviors among the five systems. We were able to demonstrate the importance of choosing an adequate revision system and that in silico models may help surgeons choose patient-specific treatments. PMID:28886100
Levinger, Pazit; Zeina, Daniel; Teshome, Assefa K; Skinner, Elizabeth; Begg, Rezaul; Abbott, John Haxby
2016-01-01
This study aimed to develop a low-cost real-time biofeedback system to assist with rehabilitation for patients following total knee replacement (TKR) and to assess its feasibility of use in a post-TKR patient case study design with a comparison group. The biofeedback system consisted of Microsoft Kinect(TM) and Nintendo Wii balance board with a dedicated software. A six-week inpatient rehabilitation program was augmented by biofeedback and tested in a single patient following TKR. Three patients underwent a six weeks standard rehabilitation with no biofeedback and served as a control group. Gait, function and pain were assessed and compared before and after the rehabilitation. The biofeedback software incorporated real time visual feedback to correct limb alignment, movement pattern and weight distribution. Improvements in pain, function and quality of life were observed in both groups. The strong improvement in the knee moment pattern demonstrated in the case study indicates feasibility of the biofeedback-augmented intervention. This novel biofeedback software has used simple commercially accessible equipment that can be feasibly incorporated to augment a post-TKR rehabilitation program. Our preliminary results indicate the potential of this biofeedback-assisted rehabilitation to improve knee function during gait. Research is required to test this hypothesis. Implications for Rehabilitation The real-time biofeedback system developed integrated custom-made software and simple low-cost commercially accessible equipment such as Kinect and Wii board to provide augmented information during rehabilitation following TKR. The software incorporated key rehabilitation principles and visual feedback to correct alignment of the lower legs, pelvic and trunk as well as providing feedback on limbs weight distribution. The case study patient demonstrated greater improvement in their knee function where a more normal biphasic knee moment was achieved following the six-week biofeedback intervention.
Almaawi, Abdulaziz M; Hutt, Jonathan R B; Masse, Vincent; Lavigne, Martin; Vendittoli, Pascal-Andre
2017-07-01
Total knee arthroplasty (TKA), aiming at neutral mechanical alignment (MA), inevitably modifies the patient's native knee anatomy. Another option is kinematic alignment (KA), which aims to restore the original anatomy of the knee. The aim of this study was to evaluate the variations in lower limb anatomy of a patient population scheduled for TKA, and to assess the use of a restricted KA TKA protocol and compare the resulting anatomic modifications with the standard MA technique. A total of 4884 knee computed tomography scans were analyzed from a database of patients undergoing TKA with patient-specific instrumentation. The lateral distal femoral angle (LDFA), medial proximal tibial angle (MPTA), and hip-knee-ankle angle (HKA) were measured. Bone resections were compared using a standard MA and a restricted KA aiming for independent tibial and femoral cuts of maximum ±5° deviation from the coronal mechanical axis and a resulting overall coronal HKA within ±3° of neutral. The mean preoperative MPTA was 2.9° varus, LDFA was 2.7° valgus, and overall HKA was 0.1° varus. Using our protocol, 2475 knees (51%) could have undergone KA without adjustment. To include 4062 cases (83%), mean corrections of 0.5° for MPTA and 0.3° for LDFA were needed, significantly less than with MA (3.3° for MPTA and 3.2° for LDFA; P < .001). The range of knee anatomy in patients scheduled for TKA is wide. MA leads to greater modifications of knee joint anatomy. To avoid reproducing extreme anatomy, the proposed restricted KA protocol provides an interesting hybrid option between MA and true KA. Copyright © 2017 Elsevier Inc. All rights reserved.
Jain, Sunil
2008-01-01
Our objective was to assess and validate low-dose computed tomography (CT) scanogram as a post-operative imaging modality to measure the mechanical axis after navigated total knee replacement. A prospective study was performed to compare intra-operative and post-operative mechanical axis after navigated total knee replacements. All consecutive patients who underwent navigated total knee replacement between May and December 2006 were included. The intra-operative final axis was recorded, and post-operatively a CT scanogram of lower limbs was performed. The mechanical axis was measured and compared against the intra-operative measurement. There were 15 patients ranging in age from 57 to 80 (average 70) years. The average final intra-operative axis was 0.56° varus (4° varus to 1.5° valgus) and post-operative CT scanogram axis was 0.52° varus (3.1° varus to 1.8° valgus). The average deviation from final axes to CT scanogram axes was 0.12° valgus with a correlation coefficient of 0.9. Our study suggests that CT scanogram is an imaging modality with reasonable accuracy for measuring mechanical axis despite significantly low radiation. It also confirms a high level of correlation between intra-operative and post-operative mechanical axis after navigated total knee replacement. PMID:18696064
Amiri, Shahram; Wilson, David R.
2012-01-01
Bicruciate retaining knee arthroplasty, although has shown improved functions and patient satisfaction compared to other designs of total knee replacement, remains a technically demanding option for treating severe cases of arthritic knees. One of the main challenges in bicruciate retaining arthroplasty is proper balancing of the soft tissue during the surgery. In this study biomechanics of soft tissue balancing was investigated using a validated computational model of the knee joint with high fidelity definitions of the soft tissue structures along with a Taguchi method for design of experiments. The model was used to simulate intraoperative balancing of soft tissue structures following the combinations suggested by an orthogonal array design. The results were used to quantify the corresponding effects on the laxity of the joint under anterior-posterior, internal-external, and varus-valgus loads. These effects were ranked for each ligament bundle to identify the components of laxity which were most sensitive to the corresponding surgical modifications. The resulting map of sensitivity for all the ligament bundles determined the components of laxity most suitable for examination during intraoperative balancing of the soft tissue. Ultimately, a sequence for intraoperative soft tissue balancing was suggested for a bicruciate retaining knee arthroplasty. PMID:23082090
Recent advances in computational mechanics of the human knee joint.
Kazemi, M; Dabiri, Y; Li, L P
2013-01-01
Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling.
Recent Advances in Computational Mechanics of the Human Knee Joint
Kazemi, M.; Dabiri, Y.; Li, L. P.
2013-01-01
Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling. PMID:23509602
Kayani, Babar; Konan, Sujith; Pietrzak, Jurek R T; Haddad, Fares S
2018-03-27
The objective of this study was to compare macroscopic bone and soft tissue injury between robotic-arm assisted total knee arthroplasty (RA-TKA) and conventional jig-based total knee arthroplasty (CJ-TKA) and create a validated classification system for reporting iatrogenic bone and periarticular soft tissue injury after TKA. This study included 30 consecutive CJ-TKAs followed by 30 consecutive RA-TKAs performed by a single surgeon. Intraoperative photographs of the femur, tibia, and periarticular soft tissues were taken before implantation of prostheses. Using these outcomes, the macroscopic soft tissue injury (MASTI) classification system was developed to grade iatrogenic bone and soft tissue injuries. Interobserver and Intraobserver validity of the proposed classification system was assessed. Patients undergoing RA-TKA had reduced medial soft tissue injury in both passively correctible (P < .05) and noncorrectible varus deformities (P < .05); more pristine femoral (P < .05) and tibial (P < .05) bone resection cuts; and improved MASTI scores compared to CJ-TKA (P < .05). There was high interobserver (intraclass correlation coefficient 0.92 [95% confidence interval: 0.88-0.96], P < .05) and intraobserver agreement (intraclass correlation coefficient 0.94 [95% confidence interval: 0.92-0.97], P < .05) of the proposed MASTI classification system. There is reduced bone and periarticular soft tissue injury in patients undergoing RA-TKA compared to CJ-TKA. The proposed MASTI classification system is a reproducible grading scheme for describing iatrogenic bone and soft tissue injury in TKA. RA-TKA is associated with reduced bone and soft tissue injury compared with conventional jig-based TKA. The proposed MASTI classification may facilitate further research correlating macroscopic soft tissue injury during TKA to long-term clinical and functional outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.
Loghmani, M Terry; Warden, Stuart J
2013-09-28
Ligament injuries are common clinical problems for which there are few established interventions. Instrument-assisted cross fiber massage (IACFM) was recently shown to accelerate the restoration of biomechanical properties in injured rodent knee medial collateral ligaments (MCL). The current study aimed to investigate the influence of IACFM on regional perfusion and vascularity in the vicinity of healing rodent knee MCL injuries. Bilateral knee MCL injuries were induced in female Sprague-Dawley rats. Commencing 1 week post-injury, 1 minute of IACFM was introduced unilaterally 3 times/week for 3 weeks. The contralateral injured MCL served as an internal control. Regional tissue perfusion was assessed in vivo throughout healing using laser Doppler imaging, whereas regional microvascular morphology was assessed ex vivo via micro-computed tomography of vessels filled with contrast. IACFM had no effect on tissue perfusion when assessed immediately, or at 5, 10, 15 or 20 min following intervention (all p > 0.05). However, IACFM-treated hindlimbs had enhanced tissue perfusion when assessed 1 day following the 4th and 9th (last) treatment sessions (all p < 0.05). IACFM-treated hindlimbs also had greater perfusion when assessed 1 wk following the final treatment session (32 days post-injury) (p < 0.05). Subsequent investigation of microvascular morphology found IACFM to increase the proportion of arteriole-sized blood vessels (5.9 to <41.2 μm) in the tibial third of the ligament (p < 0.05). These findings suggest IACFM alters regional perfusion and vascularity in the vicinity of healing rodent knee MCL injuries. This effect may contribute to the beneficial effect of IACFM observed on the recovery of knee ligament biomechanical properties following injury.
2013-01-01
Background Ligament injuries are common clinical problems for which there are few established interventions. Instrument-assisted cross fiber massage (IACFM) was recently shown to accelerate the restoration of biomechanical properties in injured rodent knee medial collateral ligaments (MCL). The current study aimed to investigate the influence of IACFM on regional perfusion and vascularity in the vicinity of healing rodent knee MCL injuries. Methods Bilateral knee MCL injuries were induced in female Sprague–Dawley rats. Commencing 1 week post-injury, 1 minute of IACFM was introduced unilaterally 3 times/week for 3 weeks. The contralateral injured MCL served as an internal control. Regional tissue perfusion was assessed in vivo throughout healing using laser Doppler imaging, whereas regional microvascular morphology was assessed ex vivo via micro-computed tomography of vessels filled with contrast. Results IACFM had no effect on tissue perfusion when assessed immediately, or at 5, 10, 15 or 20 min following intervention (all p > 0.05). However, IACFM-treated hindlimbs had enhanced tissue perfusion when assessed 1 day following the 4th and 9th (last) treatment sessions (all p < 0.05). IACFM-treated hindlimbs also had greater perfusion when assessed 1 wk following the final treatment session (32 days post-injury) (p < 0.05). Subsequent investigation of microvascular morphology found IACFM to increase the proportion of arteriole-sized blood vessels (5.9 to <41.2 μm) in the tibial third of the ligament (p < 0.05). Conclusions These findings suggest IACFM alters regional perfusion and vascularity in the vicinity of healing rodent knee MCL injuries. This effect may contribute to the beneficial effect of IACFM observed on the recovery of knee ligament biomechanical properties following injury. PMID:24073942
Singisetti, Kiran; Muthumayandi, Karthikeyan; Abual-Rub, Zaid; Weir, David
2015-11-01
Navigation technique for total knee replacement has been shown to improve accuracy of prosthesis alignment in several studies. The purpose was to compare the patient-reported outcome measures in primary total knee replacement (TKR) using navigation versus conventional surgical technique at 1- and 2-year follow-up. A retrospective review of prospectively collected patient-reported outcome data for 351 consecutively performed primary TKR was included in the study. The study group (N = 113) included patients who had Triathlon TKR using articular surface mounted (ASM Stryker) navigation technique and control group (N = 238) included patients who had Triathlon TKR using conventional jig. In addition to the WOMAC (Western Ontario and McMaster University Osteoarthritis Index) and SF-36 (Medical Outcomes Trust Short Form-36), a short self-report questionnaire evaluating the level of satisfaction, quality of life and whether patients would undergo knee replacement again. WOMAC: no significant difference between the groups was noted in mean WOMAC pain, function and stiffness scores at 1- and 2-year follow-up. SF-36: no significant difference between the groups was seen except in the physical function component of score at 1 year (p = 0.019). Navigation group mean 56.78 (CI 51.06-62.5) versus conventional group mean 48.34 (44.68-52.01) but this difference was not observed at 2-year follow-up. The overall patient-reported outcome scores improved after total knee replacement but appear to be comparable in both groups at 1- and 2-year follow-up.
Ishida, Kazunari; Shibanuma, Nao; Matsumoto, Tomoyuki; Sasaki, Hiroshi; Takayama, Koji; Hiroshima, Yuji; Kuroda, Ryosuke; Kurosaka, Masahiro
2016-08-01
In clinical practice, people with better femorotibial rotation in the flexed position often achieve a favourable postoperative maximum flexion angle (MFA). However, no objective data have been reported to support this clinical observation. In the present study, we aimed to investigate the correlation between the amount of intraoperative rotation and the pre- and postoperative flexion angles. Fifty-five patients with varus osteoarthritis undergoing computer-assisted posterior-stabilized total knee arthroplasty (TKA) were enrolled. After registration, rotational stress was applied towards the knee joint, and the rotational angles were recorded by using a navigation system at maximum extension and 90° of flexion. After implantation, rotational stress was applied for a second time, and the angles were recorded once more. The MFA was measured before surgery and 1 month after surgery, and the correlation between the amount of femorotibial rotation during surgery and the MFA was statistically evaluated. Although the amount of tibial rotation at maximum extension was not correlated with the MFA, the amount of tibial rotation at 90° of flexion after registration was positively correlated with the pre- and postoperative MFA (both p < 0.005). However, no significant relationship was observed between the amount of tibial rotation after implantation and the postoperative MFA (n.s.). The results showed that better femorotibial rotation at 90° of flexion is associated with a favourable postoperative MFA, suggesting that the flexibility of the surrounding soft tissues is an important factor for obtaining a better MFA, which has important clinical relevance. Hence, further evaluation of navigation-based kinematics during TKA may provide useful information on MFA. Diagnostic studies, development of diagnostic criteria in a consecutive series of patients, and a universally applied "gold" standard, Level II.
Zhang, Yuan Z; Lu, Sheng; Zhang, Hui Q; Jin, Zhong M; Zhao, Jian M; Huang, Jian; Zhang, Zhi F
2016-10-01
The success of total knee arthroplasty (TKA) depends on many factors. The position of a prosthesis is vitally important. The purpose of the present study was to evaluate the value of a computer-aided establishing lower extremity mechanical axis in TKA using digital technology. A total of 36 cases of patients with TKA were randomly divided into the computer-aided design of navigation template group (NT) and conventional intramedullary positioning group (CIP). Three-dimensional (3D) CT scanning images of the hip, knee, and ankle were obtained in NT group. X-ray images and CT scans were transferred into the 3D reconstruction software. A 3D bone model of the hip, knee, ankle, as well as the modified loading, was reconstructed and saved in a stereolithographic format. In the 3D reconstruction model, the mechanical axis of the lower limb was determined, and the navigational templates produced an accurate model using a rapid prototyping technique. The THA in CIP group was performed according to a routine operation. CT scans were performed postoperatively to evaluate the accuracy of the two TKA methods. The averaged operative time of the NT group procedures was [Formula: see text] min shorter than those of the conventional procedures ([Formula: see text] min). The coronal femoral angle, coronal tibial angle, posterior tibial slope were [Formula: see text], [Formula: see text], [Formula: see text] in NT group and [Formula: see text], [Formula: see text], [Formula: see text] in CIP group, respectively. Statistically significant group differences were found. The navigation template produced through mechanical axis of lower extremity may provide a relative accurate and simple method for TKA.
Can computer assistance improve the clinical and functional scores in total knee arthroplasty?
Hernández-Vaquero, Daniel; Suarez-Vazquez, Abelardo; Iglesias-Fernandez, Susana
2011-12-01
Surgical navigation in TKA facilitates better alignment; however, it is unclear whether improved alignment alters clinical evolution and midterm and long-term complication rates. We determined the alignment differences between patients with standard, manual, jig-based TKAs and patients with navigation-based TKAs, and whether any differences would modify function, implant survival, and/or complications. We retrospectively reviewed 97 patients (100 TKAs) undergoing TKAs for minimal preoperative deformities. Fifty TKAs were performed with an image-free surgical navigation system and the other 50 with a standard technique. We compared femoral angle (FA), tibial angle (TA), and femorotibial angle (FTA) and determined whether any differences altered clinical or functional scores, as measured by the Knee Society Score (KSS), or complications. Seventy-three patients (75 TKAs) had a minimum followup of 8 years (mean, 8.3 years; range, 8-9.1 years). All patients included in the surgical navigation group had a FTA between 177° and 182º. We found no differences in the KSS or implant survival between the two groups and no differences in complication rates, although more complications occurred in the standard technique group (seven compared with two in the surgical navigation group). In the midterm, we found no difference in functional and clinical scores or implant survival between TKAs performed with and without the assistance of a navigation system. Level II, therapeutic study. See the Guidelines online for a complete description of levels of evidence.
Reliability of frames of reference used for tibial component rotation in total knee arthroplasty.
Page, Stephen R; Deakin, Angela H; Payne, Anthony P; Picard, Frederic
2011-01-01
This study evaluated seven different frames of reference used for tibial component rotation in total knee arthroplasty (TKA) to determine which ones showed good reliability between bone specimens. An optoelectronic system based around a computer-assisted surgical navigation system was used to measure and locate 34 individual anatomical landmarks on 40 tibias. Each particular frame of reference was reconstructed from a group of data points taken from the surface of each bone. The transverse axis was used as the baseline to which the other axes were compared, and the differences in angular rotation between the other six reference frames and the transverse axis were calculated. There was high variability in the tibial rotational alignment associated with all frames of reference. Of the references widely used in current TKA procedures, the tibial tuberosity axis and the anterior condylar axis had lower standard deviations (6.1° and 7.3°, respectively) than the transmalleolar axis and the posterior condylar axis (9.3° for both). In conclusion, we found high variability in the frames of reference used for tibial rotation alignment. However, the anterior condylar axis and transverse axis may warrant further tests with the use of navigation. Combining different frames of reference such as the tibial tuberosity axis, anterior condylar axis and transverse axis may reduce the range of errors found in all of these measurements.
Knee arthrodesis with circular external fixation.
Garberina, M J; Fitch, R D; Hoffmann, E D; Hardaker, W T; Vail, T P; Scully, S P
2001-01-01
Knee arthrodesis can enable limb salvage in patients with disability secondary to trauma, infected total knee arthroplasty, pyarthrosis, and other complications. Historically, intramedullary nailing has resulted in the highest overall knee fusion rates. However, intramedullary nailing is relatively contraindicated in the presence of active infection. Nineteen patients who underwent knee arthrodesis with circular external fixation were studied retrospectively. Postoperative radiographs were evaluated for evidence of bony fusion, which was defined as trabecular bridging between the femur and tibia. Patients were interviewed and graded using the functional assessment portion of the Knee Society clinical rating system. Fusion was successful in 13 of 19 (68%) patients. Overall, patients spent an average of 4 months 8 days wearing the circular external fixator. Average time to radiographic and clinical evidence of arthrodesis (defined as lack of motion across the fusion site) was 4 months 18 days. No patient with successful fusion considered himself or herself housebound. All but one of these patients require some form of assistive device for ambulation. Complications occurred in 16 of 19 (84%) patients overall. Superficial pin tract infection (55%) and nonunion (32%) were the most common. Circular external fixation is an effective method for obtaining knee arthrodesis in patients who are not good candidates for intramedullary nailing.
Lionberger, David R; Weise, Jennifer; Ho, David M; Haddad, John L
2008-06-01
Forty-six primary total knee arthroplasties were performed using either an electromagnetic (EM) or infrared (IR) navigation system. In this IRB-approved study, patients were evaluated clinically and for accuracy using spiral computed tomographic imaging and 36-in standing radiographs. Although EM navigation was subject to metal interference, it was not as drastic as line-of-sight interference with IR navigation. Mechanical alignment was ideal in 92.9% of EM and 90.0% of IR cases based on spiral computed tomographic imaging and 100% of EM and 95% of IR cases based on x-ray. Individual measurements of component varus/valgus and sagittal measurements showed EM to be equivalent to IR, with both systems producing subdegree accuracy in 95% of the readings.
Managing Recurrence in Intraarticular Melorheostosis Involving the Knee Joint: A Case Report.
John, Bobby; Sharma, Anirudh; Pandey, Ritesh A
2017-01-01
Melorheostosis is a rare benign sclerosing dysplasia affecting bone, which causes significant morbidity in the form of pain and restriction of joint movement. Treatment options are varied, and recurrence is common after surgical treatment. Choosing the most appropriate treatment option in the management of a recurrent case is challenging, with very little supporting evidence in literature owing to the rarity of the disease. We hereby present a case of recurrent melorheostosis involving the knee; discuss treatment options and the rationale of our treatment. We present the case of a 42-year-old female who was operated at our institution previously 7 years ago for melorheostosis of her left knee and had undergone excision of intrarticular hyperostotic masses. However, pain and limitation of motion recurred in the operated knee 4 years later, and radiographs and computed tomography revealed a mineralized mass situated behind the patella in the patellofemoral joint. She was treated with repeat open excision of the mass and put on a regimen of physiotherapy and bisphosphonates. Open excision of symptomatic hyperostotic or mineralized soft tissue masses is perhaps the favored treatment option in such cases, the other options being arthroscopic excision and total knee arthroplasty. Limited knee motion and size of the mass often make arthroscopy an unfeasible option. Total knee arthroplasty should be reserved for cases with significant flexion contractures of the knee, or where multiple excisions have failed.
Ushio, Tetsuro; Mizu-Uchi, Hideki; Okazaki, Ken; Ma, Yuan; Kuwashima, Umito; Iwamoto, Yukihide
2017-03-01
We evaluated the effect of cutting surface on the anteroposterior (AP) axis of the proximal tibia using a 3-dimensional (3D) bone model to ensure proper tibial rotational alignment in total knee arthroplasty. 3D bone models were reconstructed from the preoperative computed tomography data of 93 Japanese osteoarthritis knees with varus deformity. The AP axis was defined as the perpendicular bisector of the medial and lateral condylar centers in a 3D coordinate system. Bone cutting of the proximal tibia was performed with various tibial posterior slopes (0°, 3°, 7°) to the mechanical axis, and we compared the AP axes before and after bone cutting. The AP axis before bone cutting crossed a point at about 16% (one-sixth) of the distance from the medial edge of the patellar tendon at its tibial attachment. The AP axis after bone cutting was significantly internally rotated at all posterior slopes: 4.1° at slope 0°, 3.0° at slope 3°, and 2.1° at slope 7°. The percentages of cases with differences of more than 3° or 5° were 66.7% and 34.4% at slope 0°, 53.8% and 24.7% at slope 3°, and 38.3% and 11.8% at slope 7°, respectively. The AP axis of the proximal tibia may be rotated internally after resection of the proximal tibia in total knee arthroplasty. Hence, surgeons should recognize the effect of changes in the cutting surface on rotational alignment of the proximal tibia. Copyright © 2016 Elsevier Inc. All rights reserved.
Smith, Colin R; Vignos, Michael F; Lenhart, Rachel L; Kaiser, Jarred; Thelen, Darryl G
2016-02-01
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.
Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.
2016-01-01
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement. PMID:26769446
Anthropometry of Arabian Arthritic Knees: Comparison to Other Ethnic Groups and Implant Dimensions.
Hafez, Mahmoud A; Sheikhedrees, Sharafeldin M; Saweeres, Emad S B
2016-05-01
We aim to measure the proximal tibia and distal femur of the osteoarthritic knees of Arab patients and to compare these measurements with data on other ethnic groups available in literature and with the dimensions of 6 knee implants. Anteroposterior and mediolateral measurements of tibia and femur were done on 3-dimensional computed tomography reconstructions of 124 osteoarthritic knees undergoing total knee arthroplasty with patient-specific instruments. Average mediolateral and anteroposterior dimensions of the tibia for Arab knees were 74.36 ± 6 mm and 48.94 ± 4.57 mm, respectively, whereas for femur, 72.04 ± 6.6 and 68.1 ± 7.75, respectively. Average aspect ratio for tibial was 152.62 ± 12.66 and for femur 106.37 ± 14.34. The size of Arab knees was generally smaller than Caucasian and larger than Asian. There is significant asymmetry of proximal tibial plateau and femur condyles. Copyright © 2016 Elsevier Inc. All rights reserved.
Lerner, Zachary F; Damiano, Diane L; Bulea, Thomas C
2016-08-01
A robotic exoskeleton was designed for individuals with crouch gait caused by cerebral palsy with the intent to supplement existing muscle function during walking. The aim of this study was to evaluate how powered knee extension assistance provided during stance and swing phases of the gait cycle affect knee kinematics, and knee flexor and extensor muscle activity. Muscle activity and kinematic data were collected from four individuals with crouch gait from cerebral palsy during their normal walking condition and while walking with the exoskeleton under stance, swing, and stance & swing assistance. The exoskeleton was effective in reducing crouch by an average of 13.8° in three of the four participants when assistance was provided during the stance phase; assistance during the swing phase alone was ineffective. Peak knee extensor activity was maintained for all of the conditions during the stance and swing phases. Integrated (i.e. area under the curve) knee extensor activity decreased in two of the subjects indicating a more well-modulated activation pattern. Modest increases in peak and integrated antagonist knee flexor activity were exhibited in all participants; the subject without kinematic improvement had the greatest increase. While the exoskeleton was well tolerated, additional training with a focus on reducing knee flexor activity may lead to further improvements in crouch gait reduction.
Hasenkamp, W; Villard, J; Delaloye, J R; Arami, A; Bertsch, A; Jolles, B M; Aminian, K; Renaud, P
2014-06-01
Ligament balance is an important and subjective task performed during total knee arthroplasty (TKA) procedure. For this reason, it is desirable to develop instruments to quantitatively assess the soft-tissue balance since excessive imbalance can accelerate prosthesis wear and lead to early surgical revision. The instrumented distractor proposed in this study can assist surgeons on performing ligament balance by measuring the distraction gap and applied load. Also the device allows the determination of the ligament stiffness which can contribute a better understanding of the intrinsic mechanical behavior of the knee joint. Instrumentation of the device involved the use of hall-sensors for measuring the distractor displacement and strain gauges to transduce the force. The sensors were calibrated and tested to demonstrate their suitability for surgical use. Results show the distraction gap can be measured reliably with 0.1mm accuracy and the distractive loads could be assessed with an accuracy in the range of 4N. These characteristics are consistent with those have been proposed, in this work, for a device that could assist on performing ligament balance while permitting surgeons evaluation based on his experience. Preliminary results from in vitro tests were in accordance with expected stiffness values for medial collateral ligament (MCL) and lateral collateral ligament (LCL). Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Schroer, William C; Diesfeld, Paul J; Reedy, Mary E; Lemarr, Angela R
2008-06-01
A total of 50 total knee arthroplasty (TKA) patients, 25 traditional and 25 minimally invasive surgical (MIS), underwent computed tomography scans to determine if a loss of accuracy in implant alignment occurred when a surgeon switched from a traditional medial parapatellar arthrotomy to a mini-subvastus surgical technique. Surgical accuracy was determined by comparing the computed tomography measured implant alignment with the surgical alignment goals. There was no loss in accuracy in the implantation of the tibial component with the mini-subvastus technique. The mean variance for the tibial coronal alignment was 1.03 degrees for the traditional TKA and 1.00 degrees for the MIS TKA (P = .183). Similarly, there was no difference in the mean variance for the posterior tibial slope (P = .054). Femoral coronal alignment was less accurate with the MIS procedure, mean variance of 1.04 degrees and 1.71 degrees for the traditional and MIS TKA, respectively (P = .045). Instrumentation and surgical technique concerns that led to this loss in accuracy were determined.
Keshmiri, Armin; Springorum, Hans; Baier, Clemens; Zeman, Florian; Grifka, Joachim; Maderbacher, Günther
2015-03-01
Several authors emphasise that the appearance of patellar maltracking after total knee arthroplasty (TKA) is caused by rotational malalignment of the femoral and tibial components. Ligament-balanced femoral component rotation was not found to be associated with abnormal postoperative patellar position. We hypothesised that a ligament-balanced technique in TKA has the ability to best re-establish patellar kinematics. In ten cadaveric knees TKA was performed assessing femoral rotation in ligament-balanced and different femoral and tibial component rotation alignments. Patellar kinematics after different component rotations were analysed using a commercial computer navigation system. Ligament-balanced femoral rotation showed the best re-establishment of patellar kinematics after TKA compared to the healthy pre-operative knee. In contrast to tibial component rotation, femoral component rotation had a major impact on patellofemoral kinematics. This investigation suggests that a ligament-balanced technique in TKA is most likely to re-establish natural patellofemoral kinematics. Tibial component rotation did not influence patellar kinematics.
Blyth, M J G; Anthony, I; Rowe, P; Banger, M S; MacLean, A; Jones, B
2017-11-01
This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised clinical trial comparing robotic arm-assisted unicompartmental knee arthroplasty (UKA) for medial compartment osteoarthritis of the knee with manual UKA performed using traditional surgical jigs. This follows reporting of the primary outcomes of implant accuracy and gait analysis that showed significant advantages in the robotic arm-assisted group. A total of 139 patients were recruited from a single centre. Patients were randomised to receive either a manual UKA implanted with the aid of traditional surgical jigs, or a UKA implanted with the aid of a tactile guided robotic arm-assisted system. Outcome measures included the American Knee Society Score (AKSS), Oxford Knee Score (OKS), Forgotten Joint Score, Hospital Anxiety Depression Scale, University of California at Los Angeles (UCLA) activity scale, Short Form-12, Pain Catastrophising Scale, somatic disease (Primary Care Evaluation of Mental Disorders Score), Pain visual analogue scale, analgesic use, patient satisfaction, complications relating to surgery, 90-day pain diaries and the requirement for revision surgery. From the first post-operative day through to week 8 post-operatively, the median pain scores for the robotic arm-assisted group were 55.4% lower than those observed in the manual surgery group (p = 0.040).At three months post-operatively, the robotic arm-assisted group had better AKSS (robotic median 164, interquartile range (IQR) 131 to 178, manual median 143, IQR 132 to 166), although no difference was noted with the OKS.At one year post-operatively, the observed differences with the AKSS had narrowed from a median of 21 points to a median of seven points (p = 0.106) (robotic median 171, IQR 153 to 179; manual median 164, IQR 144 to 182). No difference was observed with the OKS, and almost half of each group reached the ceiling limit of the score (OKS > 43). A greater proportion of patients receiving robotic arm-assisted surgery improved their UCLA activity score.Binary logistic regression modelling for dichotomised outcome scores predicted the key factors associated with achieving excellent outcome on the AKSS: a pre-operative activity level > 5 on the UCLA activity score and use of robotic-arm surgery. For the same regression modelling, factors associated with a poor outcome were manual surgery and pre-operative depression. Robotic arm-assisted surgery results in improved early pain scores and early function scores in some patient-reported outcomes measures, but no difference was observed at one year post-operatively. Although improved results favoured the robotic arm-assisted group in active patients (i.e. UCLA ⩾ 5), these do not withstand adjustment for multiple comparisons. Cite this article : M. J. G. Blyth, I. Anthony, P. Rowe, M. S. Banger, A. MacLean, B. Jones. Robotic arm-assisted versus conventional unicompartmental knee arthroplasty: Exploratory secondary analysis of a randomised controlled trial. Bone Joint Res 2017;6:631-639. DOI: 10.1302/2046-3758.611.BJR-2017-0060.R1. © 2017 Blyth et al.
A handheld computer as part of a portable in vivo knee joint load monitoring system
Szivek, JA; Nandakumar, VS; Geffre, CP; Townsend, CP
2009-01-01
In vivo measurement of loads and pressures acting on articular cartilage in the knee joint during various activities and rehabilitative therapies following focal defect repair will provide a means of designing activities that encourage faster and more complete healing of focal defects. It was the goal of this study to develop a totally portable monitoring system that could be used during various activities and allow continuous monitoring of forces acting on the knee. In order to make the monitoring system portable, a handheld computer with custom software, a USB powered miniature wireless receiver and a battery-powered coil were developed to replace a currently used computer, AC powered bench top receiver and power supply. A Dell handheld running Windows Mobile operating system(OS) programmed using Labview was used to collect strain measurements. Measurements collected by the handheld based system connected to the miniature wireless receiver were compared with the measurements collected by a hardwired system and a computer based system during bench top testing and in vivo testing. The newly developed handheld based system had a maximum accuracy of 99% when compared to the computer based system. PMID:19789715
Simulation of in vivo dynamics during robot assisted joint movement.
Bobrowitsch, Evgenij; Lorenz, Andrea; Wülker, Nikolaus; Walter, Christian
2014-12-16
Robots are very useful tools in orthopedic research. They can provide force/torque controlled specimen motion with high repeatability and precision. A method to analyze dissipative energy outcome in an entire joint was developed in our group. In a previous study, a sheep knee was flexed while axial load remained constant during the measurement of dissipated energy. We intend to apply this method for the investigation of osteoarthritis. Additionally, the method should be improved by simulation of in vivo knee dynamics. Thus, a new biomechanical testing tool will be developed for analyzing in vitro joint properties after different treatments. Discretization of passive knee flexion was used to construct a complex flexion movement by a robot and simulate altering axial load similar to in vivo sheep knee dynamics described in a previous experimental study. The robot applied an in vivo like axial force profile with high reproducibility during the corresponding knee flexion (total standard deviation of 0.025 body weight (BW)). A total residual error between the in vivo and simulated axial force was 0.16 BW. Posterior-anterior and medio-lateral forces were detected by the robot as a backlash of joint structures. Their curve forms were similar to curve forms of corresponding in vivo measured forces, but in contrast to the axial force, they showed higher total standard deviation of 0.118 and 0.203 BW and higher total residual error of 0.79 and 0.21 BW for posterior-anterior and medio-lateral forces respectively. We developed and evaluated an algorithm for the robotic simulation of complex in vivo joint dynamics using a joint specimen. This should be a new biomechanical testing tool for analyzing joint properties after different treatments.
Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie
2014-01-01
Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.
Simon, Ann M.; Hargrove, Levi J.
2016-01-01
Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed. PMID:26807889
A Systematic Literature Review of Three Modalities in Technologically Assisted TKA
Leone, William A.; Elson, Leah C.; Anderson, Christopher R.
2015-01-01
In effort to reduce the revision burden of total knee arthroplasty (TKA), industry emphasis has focused on replacing manual techniques—which are subject to variability—with technological implements. Unfortunately, technological innovation often continues before adequate time for critical evaluation has passed. Therefore, the purpose of this descriptive literature review was to collect a large sample of international data and report on the clinical and economic efficacy of three major types of technologically assisted TKA: navigation, patient-specific instrumentation, and sensorized trials. PMID:26664755
Arnholt, Christina M; MacDonald, Daniel W; Malkani, Arthur L; Klein, Gregg R; Rimnac, Clare M; Kurtz, Steven M; Kocagoz, Sevi B; Gilbert, Jeremy L
2016-12-01
Metal debris and ion release has raised concerns in joint arthroplasty. The purpose of this study was to characterize the sources of metallic ions and particulate debris released from long-term (in vivo >15 years) total knee arthroplasty femoral components. A total of 52 CoCr femoral condyles were identified as having been implanted for more than 15 years. The femoral components were examined for incidence of 5 types of damage (metal-on-metal wear due to historical polyethylene insert failure, mechanically assisted crevice corrosion at taper interfaces, cement interface corrosion, third-body abrasive wear, and inflammatory cell-induced corrosion [ICIC]). Third-body abrasive wear was evaluated using the Hood method for polyethylene components and a similar method quantifying surface damage of the femoral condyle was used. The total area damaged by ICIC was quantified using digital photogrammetry. Surface damage associated with corrosion and/or CoCr debris release was identified in 51 (98%) CoCr femoral components. Five types of damage were identified: 98% of femoral components exhibited third-body abrasive wear (mostly observed as scratching, n = 51/52), 29% of femoral components exhibited ICIC damage (n = 15/52), 41% exhibited cement interface damage (n = 11/27), 17% exhibited metal-on-metal wear after wear-through of the polyethylene insert (n = 9/52), and 50% of the modular femoral components exhibited mechanically assisted crevice corrosion taper damage (n = 2/4). The total ICIC-damaged area was an average of 0.11 ± 0.12 mm 2 (range: 0.01-0.46 mm 2 ). Although implant damage in total knee arthroplasty is typically reported with regard to the polyethylene insert, the results of this study demonstrate that abrasive and corrosive damage occurs on the CoCr femoral condyle in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Managing Recurrence in Intraarticular Melorheostosis Involving the Knee Joint: A Case Report
John, Bobby; Sharma, Anirudh; Pandey, Ritesh A
2017-01-01
Introduction: Melorheostosis is a rare benign sclerosing dysplasia affecting bone, which causes significant morbidity in the form of pain and restriction of joint movement. Treatment options are varied, and recurrence is common after surgical treatment. Choosing the most appropriate treatment option in the management of a recurrent case is challenging, with very little supporting evidence in literature owing to the rarity of the disease. We hereby present a case of recurrent melorheostosis involving the knee; discuss treatment options and the rationale of our treatment. Case Report: We present the case of a 42-year-old female who was operated at our institution previously 7 years ago for melorheostosis of her left knee and had undergone excision of intrarticular hyperostotic masses. However, pain and limitation of motion recurred in the operated knee 4 years later, and radiographs and computed tomography revealed a mineralized mass situated behind the patella in the patellofemoral joint. She was treated with repeat open excision of the mass and put on a regimen of physiotherapy and bisphosphonates. Conclusion: Open excision of symptomatic hyperostotic or mineralized soft tissue masses is perhaps the favored treatment option in such cases, the other options being arthroscopic excision and total knee arthroplasty. Limited knee motion and size of the mass often make arthroscopy an unfeasible option. Total knee arthroplasty should be reserved for cases with significant flexion contractures of the knee, or where multiple excisions have failed. PMID:29242791
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
Dembia, Christopher L; Silder, Amy; Uchida, Thomas K; Hicks, Jennifer L; Delp, Scott L
2017-01-01
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work.
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads
Silder, Amy; Uchida, Thomas K.; Hicks, Jennifer L.; Delp, Scott L.
2017-01-01
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work. PMID:28700630
Correlation between varus knee malalignment and patellofemoral osteoarthritis.
Otsuki, Shuhei; Nakajima, Mikio; Okamoto, Yoshinori; Oda, Shuhei; Hoshiyama, Yoshiaki; Iida, Go; Neo, Masashi
2016-01-01
To evaluate the relationship between patellofemoral osteoarthritis (OA) and varus OA of the knee with a focus on the location of joint space narrowing. Eighty-five patients scheduled to undergo total knee arthroplasty caused by varus OA were enrolled in this study. The relationship between patellofemoral OA and varus knee malalignment was elucidated. To determine the alignment of the patellofemoral joint in varus knees, patellar tilt, and the tibial tuberosity-trochlear groove (TT-TG) distance were measured, and patellofemoral OA was classified using computed tomography. The femorotibial angles in patients with stage II-IV patellofemoral OA were significantly larger than those in patients with stage I patellofemoral OA, and the patellar tilt in patients with stage II-IV patellofemoral OA and the TT-TG distance in patients with stage IV patellofemoral OA were significantly larger than those in patients with stage I patellofemoral OA. The TT-TG distance was strongly correlated with patellar tilt (R(2) = 0.41, P < 0.001). Patellofemoral joint space narrowing was mainly noted at the lateral facet, and it was found on both sides as patellofemoral OA worsened. Varus knee malalignment was induced by patellofemoral OA, especially at the lateral facet. Patellar tilt and the TT-TG distance are considered critical factors for the severity of patellofemoral OA. Understanding the critical factors for patellofemoral OA in varus knees such as the TT-TG distance and patellar will facilitate the prevention of patellofemoral OA using procedures such as high tibial osteotomy and total knee arthroplasty to correct knee malalignment. Retrospective cohort study, Level III.
The Evolution of Image-Free Robotic Assistance in Unicompartmental Knee Arthroplasty.
Lonner, Jess H; Moretti, Vincent M
2016-01-01
Semiautonomous robotic technology has been introduced to optimize accuracy of bone preparation, implant positioning, and soft tissue balance in unicompartmental knee arthroplasty (UKA), with the expectation that there will be a resultant improvement in implant durability and survivorship. Currently, roughly one-fifth of UKAs in the US are being performed with robotic assistance, and it is anticipated that there will be substantial growth in market penetration of robotics over the next decade. First-generation robotic technology improved substantially implant position compared to conventional methods; however, high capital costs, uncertainty regarding the value of advanced technologies, and the need for preoperative computed tomography (CT) scans were barriers to broader adoption. Newer image-free semiautonomous robotic technology optimizes both implant position and soft tissue balance, without the need for preoperative CT scans and with pricing and portability that make it suitable for use in an ambulatory surgery center setting, where approximately 40% of these systems are currently being utilized. This article will review the robotic experience for UKA, including rationale, system descriptions, and outcomes.
Schmidt, Kai; Duarte, Jaime E; Grimmer, Martin; Sancho-Puchades, Alejandro; Wei, Haiqi; Easthope, Chris S; Riener, Robert
2017-01-01
Muscle weakness-which can result from neurological injuries, genetic disorders, or typical aging-can affect a person's mobility and quality of life. For many people with muscle weakness, assistive devices provide the means to regain mobility and independence. These devices range from well-established technology, such as wheelchairs, to newer technologies, such as exoskeletons and exosuits. For assistive devices to be used in everyday life, they must provide assistance across activities of daily living (ADLs) in an unobtrusive manner. This article introduces the Myosuit, a soft, wearable device designed to provide continuous assistance at the hip and knee joint when working with and against gravity in ADLs. This robotic device combines active and passive elements with a closed-loop force controller designed to behave like an external muscle (exomuscle) and deliver gravity compensation to the user. At 4.1 kg (4.6 kg with batteries), the Myosuit is one of the lightest untethered devices capable of delivering gravity support to the user's knee and hip joints. This article presents the design and control principles of the Myosuit. It describes the textile interface, tendon actuators, and a bi-articular, synergy-based approach for continuous assistance. The assistive controller, based on bi-articular force assistance, was tested with a single subject who performed sitting transfers, one of the most gravity-intensive ADLs. The results show that the control concept can successfully identify changes in the posture and assist hip and knee extension with up to 26% of the natural knee moment and up to 35% of the knee power. We conclude that the Myosuit's novel approach to assistance using a bi-articular architecture, in combination with the posture-based force controller, can effectively assist its users in gravity-intensive ADLs, such as sitting transfers.
Schmidt, Kai; Duarte, Jaime E.; Grimmer, Martin; Sancho-Puchades, Alejandro; Wei, Haiqi; Easthope, Chris S.; Riener, Robert
2017-01-01
Muscle weakness—which can result from neurological injuries, genetic disorders, or typical aging—can affect a person's mobility and quality of life. For many people with muscle weakness, assistive devices provide the means to regain mobility and independence. These devices range from well-established technology, such as wheelchairs, to newer technologies, such as exoskeletons and exosuits. For assistive devices to be used in everyday life, they must provide assistance across activities of daily living (ADLs) in an unobtrusive manner. This article introduces the Myosuit, a soft, wearable device designed to provide continuous assistance at the hip and knee joint when working with and against gravity in ADLs. This robotic device combines active and passive elements with a closed-loop force controller designed to behave like an external muscle (exomuscle) and deliver gravity compensation to the user. At 4.1 kg (4.6 kg with batteries), the Myosuit is one of the lightest untethered devices capable of delivering gravity support to the user's knee and hip joints. This article presents the design and control principles of the Myosuit. It describes the textile interface, tendon actuators, and a bi-articular, synergy-based approach for continuous assistance. The assistive controller, based on bi-articular force assistance, was tested with a single subject who performed sitting transfers, one of the most gravity-intensive ADLs. The results show that the control concept can successfully identify changes in the posture and assist hip and knee extension with up to 26% of the natural knee moment and up to 35% of the knee power. We conclude that the Myosuit's novel approach to assistance using a bi-articular architecture, in combination with the posture-based force controller, can effectively assist its users in gravity-intensive ADLs, such as sitting transfers. PMID:29163120
Agonist and antagonist muscle activation in elite athletes: influence of age.
Quinzi, Federico; Camomilla, Valentina; Felici, Francesco; Di Mario, Alberto; Sbriccoli, Paola
2015-01-01
Age-related neuromuscular control adaptations have been investigated mainly in untrained populations, where higher antagonist activation in adults was observed with respect to children. In elite athletes age-related differences in neuromuscular control have scarcely been investigated. Therefore, this study aims at investigating differences in co-activation about the knee joint in two groups of karate athletes belonging to the Junior (JK) and Senior (SK) age categories, performing the roundhouse kick (RK). Six SK and six JK performed the RK impacting on a punching bag. Each participant performed three attempts during which kicking limb kinematics and sEMG from the vastus lateralis (VL) and from the biceps femoris (BF) were recorded. Co-activation index during knee flexion and extension (CIF; CIE) and agonist and antagonist activation areas of VL and BF (I AGO-VL; I AGO-BF; I ANT-VL; I ANT-BF) were computed. Hip and knee range of motion, peak angular velocity and minima and maxima of lower limb angular momentum were computed. During knee extension, the SK demonstrated higher CIE, higher IANT-BF and higher total angular momentum with respect to the JK. Significant relationships were observed between I ANT-BF and total angular momentum maxima, and between I ANT-BF and age. IANT-BF is partially related to the age of the group and to joint protection upon impact. Moreover, given the very brief duration of the task, a feed-forward mechanism modulating antagonist activation partly based on the stress imposed on the knee joint could be hypothesized. This mechanism potentially involves skill dependent re-modelling of the peripheral and central nervous system.
Sedki, Imad; Fisher, Keren
2015-06-01
Microprocessor-controlled prosthetic knees have gained increasing popularity over the last decade. Research supports their provision to address specific problems or to achieve certain rehabilitation goals. However, there are yet no agreed protocols or prescribing criteria to assist clinicians in the identification and appropriate selection of suitable users. The aim is to reach professionals' agreement on specific prescribing guidelines for microprocessor-controlled prosthetic knees. The study involved multidisciplinary teams from the Inter Regional Prosthetic Audit Group, representing nine Prosthetic Rehabilitation Centres in the South East England region. We used the Delphi technique with a total of three rounds to reach professionals' agreement. The prescribing guidelines were agreed and will be reviewed and updated depending on new research evidence and technical advances. This project is highly useful for professionals in a clinic setting to aid in appropriate patient selection and to justify the cost of prescribing microprocessor-controlled prosthetic knees. © The International Society for Prosthetics and Orthotics 2014.
Carbone, Laura D.; Satterfield, Suzanne; Liu, Caiqin; Kwoh, Kent C.; Neogi, Tuhina; Tolley, Elizabeth; Nevitt, Michael
2012-01-01
Objectives To identify factors that predicted incident use of assistive walking devices (AWDs) and to explore whether AWD use was associated with changes in osteoarthritis of the knee. Design Prospective cohort study. Setting 2,639 elderly men and women in the Health ABC (Health, Aging and Body Composition). Study followed for incident use of AWDs, including a subset of 874 with prevalent knee pain. Participants NA Interventions NA Main Outcome Measures Incident use of AWDs, mean Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain scores and frequency of joint space narrowing on knee radiographs over a three year time period. Results AWD use was initiated by 9% of the entire Health ABC cohort and 12% of the knee pain subset. Factors that predicted use in both groups were age ≥73 [entire cohort: OR 2.07 (95% CI 1.43, 3.01); knee pain subset: OR 1.87 (95% CI 1.16, 3.03)], black race [entire cohort: OR 2.95 (95% CI 2.09, 4.16); knee pain subset: OR 3.21 (95% CI 2.01, 5.11)] and lower balance ratios [entire cohort: OR 3.18 (95% CI 2.21, 4.59); knee pain subset: OR 3.77 (95% CI 2.34, 6.07)]. Mean WOMAC pain scores decreased slightly over time in both AWD and non-AWD users. 20% of non-AWD users and 28% of AWD users had radiographic progression in joint space narrowing of the tibiofemoral joint in at least one knee. 14% of non-AWD users and 12% of AWD users had radiographic progression in joint space narrowing in the patellofemoral joint in at least one knee. Conclusions Assistive walking devices are frequently used by elderly men and women. Knee pain and balance problems are significant reasons why elderly individuals initiate use of an assistive walking device. In an exploratory analysis, there was no consistent relationship between use or nonuse of an AWD and WOMAC pain scores or knee joint space narrowing progression. Further studies of the relationship of use of AWDs to changes in knee osteoarthritis are needed. PMID:23041146
Zhao, Feng; Wang, Chuan; Fan, Yubo
2015-01-01
Wear of polyethylene (PE) tibial inserts is a significant cause of implant failure of total knee arthroplasty (TKA). PE inserts wear measurement and evaluation is the key in TKA researches. There are many methods to measure insert wear. Qualitative methods such as observation are used to determine the wear and its type. Quantitative methods such as gravimetric analysis, coordinate measuring machines (CMM) and micro-computed tomography (micro-CT) are used to measure the mass, volume and geometry of wear. In this paper, the principle, characteristics and research progress of main insert wear evaluation method were introduced and the problems and disadvantages were analyzed.
Kinney, Matthew C; Cidambi, Krishna R; Severns, Dustyn L; Gonzales, Francis B
2018-01-01
Recent advances in total knee arthroplasty (TKA) include an intelligent instrument system designed to provide intraoperative guidance to reduce mechanical alignment errors. Internal position-sensing technology is integrated into microelectronic pods that attach to cutting blocks. The purpose of this prospective, randomized study was to determine whether this iAssist system enables the surgeon to make more accurate bone resections and better restore the mechanical axis compared to conventional instruments in TKA. We randomized patients undergoing TKA into 2 groups. Group I (n = 25) underwent TKA assisted by the iAssist guidance system, group II (n = 25) underwent TKA using conventional instruments. Preoperative and postoperative mechanical axes were measured from full-length lower extremity radiographs to evaluate alignment. Additional surgical parameters were also assessed, including tourniquet time and blood loss. Patient demographics and preoperative mechanical axis alignments were similar between the groups. Postoperatively, 4.0% of patients had greater than 3° of tibial or femoral component mal-alignment in the guidance-assisted cohort, compared with 36.0% in the conventional group (P < .05). Additionally, group I showed significant improvement in variance seen in both the femoral mechanical axis (1.65° ± 0.17° vs 2.23° ± 0.33°, P < .005) and tibial mechanical axis (1.28° ± 0.13° vs 1.71° ± 0.24°, P < .005) compared to group II. There were no significant differences in tourniquet time (P = .86) or blood loss (P = .39) between groups. Use of the iAssist system in TKA results in an improved postoperative mechanical axis and decreased alignment variability compared to conventional instruments, without significantly increasing operative time. Copyright © 2017 Elsevier Inc. All rights reserved.
Revision of Unicondylar to Total Knee Arthroplasty: A Systematic Review
Siddiqui, Nashat A; Ahmad, Zafar M
2012-01-01
Isolated unicompartmental osteoarthritis in the young patient is a difficult problem to treat; they may be too young to consider total knee arthroplasty due to difficulties with inevitable future revision. Unicompartmental knee arthroplasty is one possible solution as it is perceived by some as being a smaller surgical insult than total knee arthroplasty, with easier revision to total knee arthroplasty than a revision total knee arthroplasty. A total knee arthroplasty performed as a revision unicondylar knee arthroplasty is thought by some authors to have equivalent functional outcomes to a primary total knee replacement. However, there have been several studies suggesting that revision is not as simple as suggested, and that function is not as good as primary total knee arthroplasty. We performed a systematic review of the literature regarding outcomes after revision of a unicondylar knee arthroplasty. Although there are many studies proposing selective use of the unicondylar knee arthroplasty, there are a number of studies highlighting difficulties with revision and poorer outcomes, and, therefore, the unicondylar knee arthroplasty cannot be considered a small procedure that will 'buy time' for the patient, and have results equal to a primary knee arthroplasty when revised. Further controlled studies, ideally randomised, are required before final conclusions can be drawn. PMID:22905072
Reducing gender disparities in post-total knee arthroplasty expectations through a decision aid.
Volkmann, Elizabeth R; FitzGerald, John D
2015-02-07
Gender disparities in total knee arthroplasty utilization may be due to differences in perceptions and expectations about total knee arthroplasty outcomes. This study evaluates the impact of a decision aid on perceptions about total knee arthroplasty and decision-making parameters among patients with knee osteoarthritis. Patients with moderate to severe knee osteoarthritis viewed a video about knee osteoarthritis treatments options, including total knee arthroplasty, and received a personalized arthritis report. An adapted version of the Western Ontario and McMaster Universities Osteoarthritis Index was used to assess pain and physical function expectations following total knee arthroplasty before/after the intervention. These scores were compared to an age- and gender-adjusted means for a cohort of patients who had undergone total knee arthroplasty. Decision readiness and conflict were also measured. At baseline, both men and women had poorer expectations about post-operative pain and physical outcomes compared with observed outcomes of the comparator group. Following the intervention, women's mean age-adjusted expectations about post- total knee arthroplasty pain outcomes improved (Pre: 27.0; Post: 21.8 [p =0.08; 95% CI -0.7, 11.0]) and were closer to observed post-TKA outcomes; whereas men did not have a significant change in their pain expectations (Pre: 21.3; Post: 19.6 [p = 0.6; 95% CI -5.8, 9.4]). Women also demonstrated a significant improvement in decision readiness; whereas men did not. Both genders had less decision conflict after the intervention. Both women and men with osteoarthritis had poor estimates of total knee arthroplasty outcomes. Women responded to the intervention with more accurate total knee arthroplasty outcome expectations and greater decision readiness. Improving patient knowledge of total knee arthroplasty through a decision aid may improve medical decision-making and reduce gender disparities in total knee arthroplasty utilization.
Impact of obesity and knee osteoarthritis on morbidity and mortality in older Americans.
Losina, Elena; Walensky, Rochelle P; Reichmann, William M; Holt, Holly L; Gerlovin, Hanna; Solomon, Daniel H; Jordan, Joanne M; Hunter, David J; Suter, Lisa G; Weinstein, Alexander M; Paltiel, A David; Katz, Jeffrey N
2011-02-15
Obesity and knee osteoarthritis are among the most frequent chronic conditions affecting Americans aged 50 to 84 years. To estimate quality-adjusted life-years lost due to obesity and knee osteoarthritis and health benefits of reducing obesity prevalence to levels observed a decade ago. The U.S. Census and obesity data from national data sources were combined with estimated prevalence of symptomatic knee osteoarthritis to assign persons aged 50 to 84 years to 4 subpopulations: nonobese without knee osteoarthritis (reference group), nonobese with knee osteoarthritis, obese without knee osteoarthritis, and obese with knee osteoarthritis. The Osteoarthritis Policy Model, a computer simulation model of knee osteoarthritis and obesity, was used to estimate quality-adjusted life-year losses due to knee osteoarthritis and obesity in comparison with the reference group. United States. U.S. population aged 50 to 84 years. Quality-adjusted life-years lost owing to knee osteoarthritis and obesity. Estimated total losses of per-person quality-adjusted life-years ranged from 1.857 in nonobese persons with knee osteoarthritis to 3.501 for persons affected by both conditions, resulting in a total of 86.0 million quality-adjusted life-years lost due to obesity, knee osteoarthritis, or both. Quality-adjusted life-years lost due to knee osteoarthritis and/or obesity represent 10% to 25% of the remaining quality-adjusted survival of persons aged 50 to 84 years. Hispanic and black women had disproportionately high losses. Model findings suggested that reversing obesity prevalence to levels seen 10 years ago would avert 178,071 cases of coronary heart disease, 889,872 cases of diabetes, and 111,206 total knee replacements. Such a reduction in obesity would increase the quantity of life by 6,318,030 years and improve life expectancy by 7,812,120 quality-adjusted years in U.S. adults aged 50 to 84 years. Comorbidity incidences were derived from prevalence estimates on the basis of life expectancy of the general population, potentially resulting in conservative underestimates. Calibration analyses were conducted to ensure comparability of model-based projections and data from external sources. The number of quality-adjusted life-years lost owing to knee osteoarthritis and obesity seems to be substantial, with black and Hispanic women experiencing disproportionate losses. Reducing mean body mass index to the levels observed a decade ago in this population would yield substantial health benefits. The National Institutes of Health and the Arthritis Foundation.
Biomechanical Effects of Stiffness in Parallel With the Knee Joint During Walking.
Shamaei, Kamran; Cenciarini, Massimo; Adams, Albert A; Gregorczyk, Karen N; Schiffman, Jeffrey M; Dollar, Aaron M
2015-10-01
The human knee behaves similarly to a linear torsional spring during the stance phase of walking with a stiffness referred to as the knee quasi-stiffness. The spring-like behavior of the knee joint led us to hypothesize that we might partially replace the knee joint contribution during stance by utilizing an external spring acting in parallel with the knee joint. We investigated the validity of this hypothesis using a pair of experimental robotic knee exoskeletons that provided an external stiffness in parallel with the knee joints in the stance phase. We conducted a series of experiments involving walking with the exoskeletons with four levels of stiffness, including 0%, 33%, 66%, and 100% of the estimated human knee quasi-stiffness, and a pair of joint-less replicas. The results indicated that the ankle and hip joints tend to retain relatively invariant moment and angle patterns under the effects of the exoskeleton mass, articulation, and stiffness. The results also showed that the knee joint responds in a way such that the moment and quasi-stiffness of the knee complex (knee joint and exoskeleton) remains mostly invariant. A careful analysis of the knee moment profile indicated that the knee moment could fully adapt to the assistive moment; whereas, the knee quasi-stiffness fully adapts to values of the assistive stiffness only up to ∼80%. Above this value, we found biarticular consequences emerge at the hip joint.
Kuriyama, Shinichi; Ishikawa, Masahiro; Nakamura, Shinichiro; Furu, Moritoshi; Ito, Hiromu; Matsuda, Shuichi
2016-08-01
Condylar lift-off can induce excessive polyethylene wear after total knee arthroplasty (TKA). A computer simulation was used to evaluate the influence of femoral varus alignment and lateral collateral ligament (LCL) laxity on lift-off after single-design TKA. It was hypothesised that proper ligament balancing and coronal alignment would prevent lift-off. The computer model in this study is a dynamic musculoskeletal program that simulates gait up to 60° of knee flexion. The lift-off phenomenon was defined as positive with an intercomponent distance of >2 mm. In neutrally aligned components in the coronal plane, the femoral and tibial components were set perpendicular to the femoral and tibial mechanical axis, respectively. The femoral coronal alignment was changed from neutral to 5° varus in 1° increments. Simultaneously, the LCL length was elongated from 0 to 5 mm in 1-mm increments to provide a model of pathological slack. Within 2° of femoral varus alignment, lift-off did not occur even if the LCL was elongated by up to 5 mm. However, lift-off occurred easily in the stance phase in femoral varus alignments of >3° with slight LCL slack. The contact forces of the tibiofemoral joint were influenced more by femoral varus alignment than by LCL laxity. Aiming for neutral alignment in severely varus knees makes it difficult to achieve appropriate ligament balance. Our study suggests that no lift-off occurs with excessive LCL laxity alone in a neutrally aligned TKA and therefore that varus alignment should be avoided to decrease lift-off after TKA. Case series, Level IV.
Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.
Hast, Michael W; Piazza, Stephen J
2013-02-01
Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.
Computational knee ligament modeling using experimentally determined zero-load lengths.
Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin
2012-01-01
This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models.
Controlling costs without compromising quality: paying hospitals for total knee replacement.
Pine, Michael; Fry, Donald E; Jones, Barbara L; Meimban, Roger J; Pine, Gregory J
2010-10-01
Unit costs of health services are substantially higher in the United States than in any other developed country in the world, without a correspondingly healthier population. An alternative payment structure, especially for high volume, high cost episodes of care (eg, total knee replacement), is needed to reward high quality care and reduce costs. The National Inpatient Sample of administrative claims data was used to measure risk-adjusted mortality, postoperative length-of-stay, costs of routine care, adverse outcome rates, and excess costs of adverse outcomes for total knee replacements performed between 2002 and 2005. Empirically identified inefficient and ineffective hospitals were then removed to create a reference group of high-performance hospitals. Predictive models for outcomes and costs were recalibrated to the reference hospitals and used to compute risk-adjusted outcomes and costs for all hospitals. Per case predicted costs were computed and compared with observed costs. Of the 688 hospitals with acceptable data, 62 failed to meet effectiveness criteria and 210 were identified as inefficient. The remaining 416 high-performance hospitals had 13.4% fewer risk-adjusted adverse outcomes (4.56%-3.95%; P < 0.001; χ) and 9.9% lower risk-adjusted total costs ($12,773-$11,512; P < 0.001; t test) than all study hospitals. Inefficiency accounted for 96% of excess costs. A payment system based on the demonstrated performance of effective, efficient hospitals can produce sizable cost savings without jeopardizing quality. In this study, 96% of total excess hospital costs resulted from higher routine costs at inefficient hospitals, whereas only 4% was associated with ineffective care.
Kang, Kyoung-Tak; Kim, Sung-Hwan; Son, Juhyun; Lee, Young Han; Koh, Yong-Gon
2017-01-01
Computational models have been identified as efficient techniques in the clinical decision-making process. However, computational model was validated using published data in most previous studies, and the kinematic validation of such models still remains a challenge. Recently, studies using medical imaging have provided a more accurate visualization of knee joint kinematics. The purpose of the present study was to perform kinematic validation for the subject-specific computational knee joint model by comparison with subject's medical imaging under identical laxity condition. The laxity test was applied to the anterior-posterior drawer under 90° flexion and the varus-valgus under 20° flexion with a series of stress radiographs, a Telos device, and computed tomography. The loading condition in the computational subject-specific knee joint model was identical to the laxity test condition in the medical image. Our computational model showed knee laxity kinematic trends that were consistent with the computed tomography images, except for negligible differences because of the indirect application of the subject's in vivo material properties. Medical imaging based on computed tomography with the laxity test allowed us to measure not only the precise translation but also the rotation of the knee joint. This methodology will be beneficial in the validation of laxity tests for subject- or patient-specific computational models.
Lee, Ho Min; Kim, Jong Pil; Chung, Phil Hyun; Kang, Suk; Kim, Young Sung; Go, Bo Seong
2018-05-24
Knee dislocation following total knee replacement arthroplasty is a rare but serious complication. The incidence of dislocation following primary total knee arthroplasty with posterior stabilized implants ranges from 0.15 to 0.5%, and posterior dislocation after revision total knee arthroplasty is even rarer. Here, we report the case of a 76-year-old male who presented with posterior dislocation after posterior stabilized revision total knee arthroplasty.
Effects of Cementing on Ligament Balance During Total Knee Arthroplasty.
Chow, Jimmy; Wang, Kevin; Elson, Leah; Anderson, Christopher; Roche, Martin
2017-05-01
Complications related to joint imbalance may contribute to some of the most predominant modes of failure in total knee arthroplasty (TKA). These complications include instability, aseptic loosening, asymmetric component wear, and idiopathic pain. Fixation may represent a step that introduces unchecked variability into the procedure and may contribute to the incidence of joint imbalance-related complications. The ability to quantify in vivo loading in the medial and lateral compartments would allow for the ability to confirm balance after fixation and prior to wound closure. This retrospective study sought to capture any variability and imbalance associated with cementing technique. A total of 93 patients underwent sensor-assisted TKA. All patients were confirmed to have quantifiably balanced joints prior to cementation. After cementing and final component placement, the sensor was reinserted into the joint to capture any cementation-induced changes in loading. Imbalance was observed in 44% of patients after cementation. There was no difference in the proportion of imbalance due to surgeon experience (P=.456), cement type (P=.429), or knee system (P=.792). A majority of knees exhibited loading increase in the medial compartment. It was concluded that cementation technique contributes to a significant amount of balance-related variability at the fixation stage of the procedure. The use of the sensor in this study allowed for the correction of all instances of imbalance prior to closure. More objective methods of balance verification may be important for ensuring optimal surgical outcomes. [Orthopedics. 2017; 40(3):e455-e459.]. Copyright 2017, SLACK Incorporated.
Stance control knee mechanism for lower-limb support in hybrid neuroprosthesis
To, Curtis S.; Kobetic, Rudi; Bulea, Thomas C.; Audu, Musa L.; Schnellenberger, John R.; Pinault, Gilles; Triolo, Ronald J.
2014-01-01
A hydraulic stance control knee mechanism (SCKM) was developed to fully support the knee against flexion during stance and allow uninhibited motion during swing for individuals with paraplegia using functional neuromuscular stimulation (FNS) for gait assistance. The SCKM was optimized for maximum locking torque for body-weight support and minimum resistance when allowing for free knee motion. Ipsilateral and contralateral position and force feedback were used to control the SCKM. Through bench and nondisabled testing, the SCKM was shown to be capable of supporting up to 70 N-m, require no more than 13% of the torque achievable with FNS to facilitate free motion, and responsively and repeatedly unlock under an applied flexion knee torque of up to 49 N-m. Preliminary tests of the SCKM with an individual with paraplegia demonstrated that it could support the body and maintain knee extension during stance without the stimulation of the knee extensor muscles. This was achieved without adversely affecting gait, and knee stability was comparable to gait assisted by knee extensor stimulation during stance. PMID:21938668
Computer assisted outcomes research in orthopedics: total joint replacement.
Arslanian, C; Bond, M
1999-06-01
Long-term studies are needed to determine clinically relevant outcomes within the practice of orthopedic surgery. Historically, the patient's subjective feelings of quality of life have been largely ignored. However, there has been a strong movement toward measuring perceived quality of life through such instruments as the SF-36. In a large database from an orthopedic practice results are presented. First, computerized data entry using touch screen technology is not only cost effective but user friendly. Second, patients undergoing hip or knee arthroplasty surgeries make statistically significant improvements in seven of the eight domains of the SF-36 in the first 3 months after surgery. Additional statistically significant improvements over the next 6 to 12 months are also seen. The data are presented here in detail to demonstrate the benefits of a patient outcomes program, to enhance the understanding and use of outcomes data and to encourage further work in outcomes measurement in orthopedics.
Fang, Chao-Hua; Chang, Chia-Ming; Lai, Yu-Shu; Chen, Wen-Chuan; Song, Da-Yong; McClean, Colin J; Kao, Hao-Yuan; Qu, Tie-Bing; Cheng, Cheng-Kung
2015-11-01
Excellent clinical and kinematical performance is commonly reported after medial pivot knee arthroplasty. However, there is conflicting evidence as to whether the posterior cruciate ligament should be retained. This study simulated how the posterior cruciate ligament, post-cam mechanism and medial tibial insert morphology may affect postoperative kinematics. After the computational intact knee model was validated according to the motion of a normal knee, four TKA models were built based on a medial pivot prosthesis; PS type, modified PS type, CR type with PCL retained and CR type with PCL sacrificed. Anteroposterior translation and axial rotation of femoral condyles on the tibia during 0°-135° knee flexion were analyzed. There was no significant difference in kinematics between the intact knee model and reported data for a normal knee. In all TKA models, normal motion was almost fully restored, except for the CR type with PCL sacrificed. Sacrificing the PCL produced paradoxical anterior femoral translation and tibial external rotation during full flexion. Either the posterior cruciate ligament or post-cam mechanism is necessary for medial pivot prostheses to regain normal kinematics after total knee arthroplasty. The morphology of medial tibial insert was also shown to produce a small but noticeable effect on knee kinematics. V.
Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui
2018-01-01
The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases. PMID:29304102
Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui; Bull, Anthony M J
2018-01-01
The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases.
Physicians' perspectives of adopting computer-assisted navigation in orthopedic surgery.
Hsu, Hui-Mei; Chang, I-Chiu; Lai, Ta-Wei
2016-10-01
Using Computer-assisted orthopedic navigation surgery system (CAOS) has many advantages but is not mandatory to use during an orthopedic surgery. Therefore, opinions obtained from clinical orthopedists with this system are valuable. This paper integrates technology acceptance model and theory of planned behavior to examine the determinants of continued CAOS use to facilitate user management. Opinions from orthopedists who had used a CAOS for at least two years were collected through a cross-sectional survey to verify the research framework. Follow-up interviews with an expert panel based on their experiences of CAOS were conducted to reason the impacts of factors of the research framework. The results show that factors of "perceived usefulness" and "facilitating condition" determine the intention to continue using CAOS, and "perceived usefulness" was driving by "complexity of task" and "social influence". Additionally, support in practice from high-level managers had an influence on orthopedists' satisfaction after using a CAOS. The aging population is accompanied by the increasing requirements for medical care and medical care attendant expenses, especially in total knee replacement. More precision and improvements on survivorship of patients' artificial joints are needed. This study facilitates suggestions in user management when encountering an obstacle in implementing a CAOS. Based on these findings, scientific and practical implications are then discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Prosthetic knee design by simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollerbach, K; Hollister, A
1999-07-30
Although 150,000 total knee replacement surgeries are performed annually in North America, current designs of knee prostheses have mechanical problems that include a limited range of motion, abnormal gait patterns, patellofemoral joint dysfunction, implant loosening or subsidence, and excessive wear. These problems fall into three categories: failure to reproduce normal joint kinematics, which results in altered limb function; bone-implant interface failure; and material failure. Modern computer technology can be used to design, prototype, and test new total knee implants. The design team uses the full range of CAD-CAM to design and produce implant prototypes for mechanical and clinical testing. Closermore » approximation of natural knee kinematics and kinetics is essential for improved patient function and diminished implant loads. Current knee replacement designs are based on 19th Century theories that the knee moves about a variable axis of rotation. Recent research has shown, however, that knee motion occurs about two fixed, offset axes of rotation. These aces are not perpendicular to the long axes of the bones or to each other, and the axes do not intersect. Bearing surfaces of mechanisms that move about axes of rotation are surfaces of revolution of those axes which advanced CAD technology can produce. Solids with surfaces of revolution for the two axes of rotation for the knee have been made using an HP9000 workstation and Structural Ideas Master Series CAD software at ArthroMotion. The implant's CAD model should closely replicate movements of the normal knee. The knee model will have a range of flexion-extension (FE) from -5 to 120 degrees. Movements include varus, valgus, internal and external rotation, as well as flexion and extension. The patellofemoral joint is aligned perpendicular to the FE axis and replicates the natural joint more closely than those of existing prostheses. The bearing surfaces will be more congruent than current designs and should generate lower stresses in the materials.« less
Bulea, Thomas C; Lerner, Zachary F; Gravunder, Andrew J; Damiano, Diane L
2017-07-01
Effective rehabilitation of children with cerebral palsy (CP) requires intensive task-specific exercise but many in this population lack the motor capabilities to complete the desired training tasks. Providing robotic assistance is a potential solution yet the effects of this assistance are unclear. We combined a novel exoskeleton and exercise video game (exergame) to create a new rehabilitation paradigm for children with CP. We incorporated high density electroencephalography (EEG) to assess cortical activity. Movement to targets in the game was controlled by knee extension while standing. The distance between targets was the same with and without the exoskeleton to isolate the effect of robotic assistance. Our results show that children with CP maintain or increase knee extensor muscle activity during knee extension in the presence of synergistic robotic assistance. Our EEG findings also demonstrate that participants remained engaged in the exercise with robotic assistance. Interestingly we observed a developmental trajectory of sensorimotor mu rhythm in children with CP similar, though delayed, to those reported in typically developing children. While not the goal here, the exoskeleton significantly increased knee extension in 3/6 participants during use. Future work will focus on utilizing the exoskeleton to enhance volitional knee extension capability and in combination with EMG and EEG to study sensorimotor cortex response to progressive exercise in children with CP.
Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths
Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin
2012-01-01
This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522
Pua, Yong-Hao; Clark, Ross A; Ong, Peck-Hoon
2015-01-01
To provide proof-of-concept for the validity of the Wii Balance Board (WBB) measures to predict the type of walking aids required by inpatients with a recent (≤4 days) total knee arthroplasty (TKA). A cross-sectional sample of 89 inpatients (mean age, 67.0±8 years) with TKA was analyzed. A multivariable proportional odds prediction model was constructed using 8 pre-specified predictors – namely, age, sex, body mass index, knee pain, knee range-of-motion, active knee lag, and WBB-derived standing balance. The type of walking aids prescribed on day 4 post-surgery was the outcome of interest – an ordinal variable with 4 categories (walking stick, narrow- and broad-base quadstick, and walking frame). Women, increasing body mass index, and poorer standing balance were independently associated with greater odds for requiring walking aids with a larger base-of-support. The concordance-index of the prediction model was 0.74. The model comprising only WBB-derived standing balance had nearly half (44%) the explanatory power of the full model. Adding WBB-derived standing balance to conventional demographic and knee variables resulted in a continuous net reclassification index of 0.60 (95%CI,0.19-1.01), predominantly due to better identification of patients who required walking aids with a large base-of-support (sensitivity gain). The WBB was able to provide quantitative measures of standing balance which could assist healthcare professionals in prescribing the appropriate type of walking aids for patients. Further investigation is needed to assess whether using the WBB could lead to meaningful changes in clinical outcomes such as falls.
Pua, Yong-Hao; Clark, Ross A.; Ong, Peck-Hoon
2015-01-01
Background and Objectives To provide proof-of-concept for the validity of the Wii Balance Board (WBB) measures to predict the type of walking aids required by inpatients with a recent (≤4days) total knee arthroplasty (TKA). Methods A cross-sectional sample of 89 inpatients (mean age, 67.0±8years) with TKA was analyzed. A multivariable proportional odds prediction model was constructed using 8 pre-specified predictors – namely, age, sex, body mass index, knee pain, knee range-of-motion, active knee lag, and WBB-derived standing balance. The type of walking aids prescribed on day 4 post-surgery was the outcome of interest – an ordinal variable with 4 categories (walking stick, narrow- and broad-base quadstick, and walking frame). Results Women, increasing body mass index, and poorer standing balance were independently associated with greater odds for requiring walking aids with a larger base-of-support. The concordance-index of the prediction model was 0.74. The model comprising only WBB-derived standing balance had nearly half (44%) the explanatory power of the full model. Adding WBB-derived standing balance to conventional demographic and knee variables resulted in a continuous net reclassification index of 0.60 (95%CI,0.19-1.01), predominantly due to better identification of patients who required walking aids with a large base-of-support (sensitivity gain). Conclusions The WBB was able to provide quantitative measures of standing balance which could assist healthcare professionals in prescribing the appropriate type of walking aids for patients. Further investigation is needed to assess whether using the WBB could lead to meaningful changes in clinical outcomes such as falls. PMID:25615952
Squat exercise to estimate knee megaprosthesis rehabilitation: a pilot study
Lovecchio, Nicola; Zago, Matteo; Sciumè, Luciana; Lopresti, Maurizio; Sforza, Chiarella
2015-01-01
[Purpose] This study evaluated a specific rehabilitation protocol using a half squat after total knee reconstruction with distal femur megaprosthesis and tibial allograft-prosthesis composite. [Subject and Methods] Squat execution was recorded by a three-dimensional system before and after a specific rehabilitation program on a 28-year-old patient. Squat duration, body center of mass trajectory, and vertical range of motion were determined. Step width and joint angles and symmetry (hip flexion, extension, and rotation, knee flexion, and ankle dorsal and plantar flexion) were estimated. Knee and hip joint symmetry was computed using a bilateral cyclogram technique. [Results] After rehabilitation, the squat duration was longer (75%), step width was similar, and vertical displacement was higher. Hip flexion increased by over 20%, and ankle dorsiflexion diminished by 14%. The knee had the highest symmetry gain (4.1–3.4%). Angle-angle plot subtended areas decreased from 108° to 40°2 (hip) and from 204° to 85°2 (knee), showing improvement in movement symmetry. [Conclusion] We concluded that the squat is an effective multifactorial exercise to estimate rehabilitation outcomes after megaprosthesis, also considering that compressive and shear forces are minimal up to 60–70° of knee flexion. PMID:26311992
Gaździk, Tadeusz Szymon; Kotas-Strzoda, Justyna; Bozek, Marek
2004-01-01
Knee arthrodesis is the method of choice in treatment of failed total knee replacement. It is recommended when revisory total knee replacement is impossible. The authors present 2 cases of knee fusions using intramedullary nails after prosthesis loosening (1 aseptic, 1 septic). In both cases good results were achieved, with no complications observed during convalescence.
Kinematic analysis of a posterior-stabilized knee prosthesis.
Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia
2015-01-20
The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0-135° flexion. Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, "rollback" compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis.
Changes in the three-dimensional load-bearing axis after mobile-bearing total knee arthroplasty.
Ishii, Yoshinori; Noguchi, Hideo; Sato, Junko; Ezawa, Nobukazu; Toyabe, Shin-Ichi
2016-07-01
The purpose of this study was to assess changes in the three-dimensional (3D) load-bearing mechanical axis (LBMA) preoperatively and at 3 weeks and more than 1-year follow-up after total knee arthroplasty (TKA), and effects of the degree of constraint in the anteroposterior (AP) direction because of the retention of the posterior cruciate ligament (PCL) and the implant design on the changes in LBMA. We evaluated 157 knees from 131 patients, including 79 knees that received meniscal-bearing-type (PCL-retaining) and 78 knees that received rotating-platform-type (PCL-substituting) prostheses. Quantitative 3D computed tomography was used to assess changes in the location of the pre- and postoperative LBMA at the tibial plateau level. Changes in the 3D axis were mainly found from medial to lateral and posterior to anterior in both implant designs with no significant differences. Change in the mediolateral (ML) direction was improved soon after TKA, but change in the AP direction improved more gradually over time. The different constraints in the AP direction because of the retention of the PCL and different implant designs did not affect the changes in the LBMA. The LBMA in the AP direction more than 1 year postoperatively, as well as the LBMA in the ML direction at 3 weeks, appears to shift toward the location found in normal knees after TKA, regardless of the type of prosthetic constraint. These changes may be an important factor that influences the periarticular knee bone mineral density which load bearing may be related to. Level II, Prognostic study.
Normal axial alignment of the lower extremity and load-bearing distribution at the knee.
Hsu, R W; Himeno, S; Coventry, M B; Chao, E Y
1990-06-01
Based on a series of 120 normal subjects of different gender and age, the geometry of the knee joint was analyzed using a full-length weight-bearing roentgenogram of the lower extremity. A special computer program based on the theory of a rigid body spring model was applied to calculate the important anatomic and biomechanical factors of the knee joint. The tibiofemoral mechanical angle was 1.2 degrees varus. Hence, it is difficult to rationalize the 3 degree varus placement of the tibial component in total knee arthroplasty suggested by some authors. The distal femoral anatomic valgus (measured from the lower one-half of the femur) was 4.2 degrees in reference to its mechanical axis. This angle became 4.9 degrees when the full-length femoral anatomic axis was used. When simulating a one-legged weight-bearing stance by shifting the upper-body gravity closer to the knee joint, 75% of the knee joint load passed through the medial tibial plateau. The knee joint-line obliquity was more varus in male subjects. The female subjects had a higher peak joint pressure and a greater patello-tibial Q angle. Age had little effect on the factors relating to axial alignment of the lower extremity and load transmission through the knee joint.
Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
Lin, Yi-Chung; Walter, Jonathan P; Pandy, Marcus G
2018-04-18
We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot-ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were < 2.0° for rotations and < 0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.
Total knee arthroplasty in patients with a previous patellectomy.
Maslow, Jed; Zuckerman, Joseph D; Immerman, Igor
2013-01-01
Post-patellectomy patients represent a specific subgroup of patients that may develop arthritis and persistent knee pain and potentially require treatment with total knee arthroplasty. This article reviews the treatment and functional outcomes following total knee arthroplasty in patients with prior patellectomy. A case report is presented as an example of the clinical management of a post-patellectomy patient with significant knee pain and disability treated with total knee arthroplasty. Emphasis will be placed in decision- making, specifically with the use of a posterior stabilized implant. In addition, postoperative strengthening of the quadriceps is essential to compensate for the lack of the patella and increase the success of total knee arthroplasty in this subgroup of patients.
One Stage Conversion of an Infected Fused Knee to Total Knee Replacement - A Surgical Challenge
Ravikumar, Mukartihal; Kendoff, Daniel; Citak, Mustafa; Luck, Stefan; Gehrke, Thorsten; Zahar, Akos
2013-01-01
Background and Purpose: Two-stage revision arthroplasty is a common technique for the treatment of infected total knee replacement. Few reports have addressed the conversion of a fused knee into a total knee replacement. However, there is no case reported of converting an infected fused knee into a hinge knee using a one-stage procedure. Methods: We report on a 51-year old male patient with an infected fused knee after multiple surgeries. Results and Interpretation: A one-stage conversion of septic fused knee into total knee arthroplasty by a rotational hinge prosthesis was performed. The case highlights that with profound preoperative assessment, meticulous surgical technique, combined antibiotic treatment and the right implant, one-stage revision in a surgical challenge may have a role as a treatment option with good functional outcome. PMID:23526706
Total knee arthroplasty in limbs affected by poliomyelitis.
Giori, Nicholas J; Lewallen, David G
2002-07-01
Little information is available regarding the results and complications of total knee arthroplasty in limbs affected by poliomyelitis with severe knee degeneration. We performed a retrospective chart and radiograph review of patients with a history of poliomyelitis involving a limb that subsequently underwent primary total knee arthroplasty between 1970 and 2000. Sixteen total knee arthroplasties were performed in limbs affected by poliomyelitis in fifteen patients. Eleven patients were followed for a minimum of two years, one (two knees) died before the minimum two-year follow-up could be completed, and three were followed for less than two years. No patient was lost to follow-up. There were two periprosthetic fractures, one peroneal nerve palsy, one avulsion of the patellar tendon, and four cases of recurrent instability. These complications were related to the poor bone quality, valgus deformity, patella baja, poor musculature, and attenuated soft tissues commonly found in knees affected by poliomyelitis. Knee Society pain and knee scores were improved postoperatively for all nine knees with a two-year follow-up that had had at least antigravity quadriceps strength prior to surgery. However, Knee Society function scores remained at 0 or worsened for six of the eleven knees followed for at least two years, including those with less than antigravity strength, and four of the nine knees with at least antigravity strength. None of the prostheses loosened. Pain and knee scores improved following total knee arthroplasty in patients with a history of poliomyelitis and antigravity quadriceps strength, but there was less pain relief in patients with less than antigravity quadriceps strength. Recurrence of instability and progressive functional deterioration is possible in all knees affected by poliomyelitis that have undergone total knee replacement, but they appear to occur more commonly in more severely affected knees.
Splash in elective primary knee and hip replacement: are we adequately protected?
Singh, V K; Kalairajah, Y
2009-08-01
An intra-operative splash is a common occurrence in elective knee and hip replacement surgery and can potentially transmit bloodborne diseases, with devastating consequences. This study aimed to quantify the risk of a splash and to assess its correlation with body mass index, duration of surgery and the volume of lavage fluid used. Between December 2007 and April 2008, 62 consecutive patients (38 women, 24 men) undergoing an elective total knee or total hip replacement (TKR, THR) were recruited into the study (32 TKRs and 30 THRs) after appropriate consent. A splash occurred in all 62 cases. A THR had a slightly higher risk of a splash than a TKR, but this was not statistically significant (p = 0.27). The correlation between body mass index, duration of surgery and the amount of pulse lavage used with a splash was r = 0.013, (non-significant), r = 0.52, (significant) and r = 0.92 (highly significant), respectively. A high number of splashes are generated during a TKR and a THR. The simple visor mask fails to protect the surgeon, the assistant or the patient from the risk of a splash and reverse splash, respectively.
Subsequent Total Joint Arthroplasty After Primary Total Knee or Hip Arthroplasty
Sanders, Thomas L.; Maradit Kremers, Hilal; Schleck, Cathy D.; Larson, Dirk R.; Berry, Daniel J.
2017-01-01
Background: Despite the large increase in total hip arthroplasties and total knee arthroplasties, the incidence and prevalence of additional contralateral or ipsilateral joint arthroplasty are poorly understood. The purpose of this study was to determine the rate of additional joint arthroplasty after a primary total hip arthroplasty or total knee arthroplasty. Methods: This historical cohort study identified population-based cohorts of patients who underwent primary total hip arthroplasty (n = 1,933) or total knee arthroplasty (n = 2,139) between 1969 and 2008. Patients underwent passive follow-up through their medical records beginning with the primary total hip arthroplasty or total knee arthroplasty. We assessed the likelihood of undergoing a subsequent total joint arthroplasty, including simultaneous and staged bilateral procedures. Age, sex, and calendar year were evaluated as potential predictors of subsequent arthroplasty. Results: During a mean follow-up of 12 years after an initial total hip arthroplasty, we observed 422 contralateral total hip arthroplasties (29% at 20 years), 76 contralateral total knee arthroplasties (6% at 10 years), and 32 ipsilateral total knee arthroplasties (2% at 20 years). Younger age was a significant predictor of contralateral total hip arthroplasty (p < 0.0001), but not a predictor of the subsequent risk of total knee arthroplasty. During a mean follow-up of 11 years after an initial total knee arthroplasty, we observed 809 contralateral total knee arthroplasties (45% at 20 years), 31 contralateral total hip arthroplasties (3% at 20 years), and 29 ipsilateral total hip arthroplasties (2% at 20 years). Older age was a significant predictor of ipsilateral or contralateral total hip arthroplasty (p < 0.001). Conclusions: Patients undergoing total hip arthroplasty or total knee arthroplasty can be informed of a 30% to 45% chance of a surgical procedure in a contralateral cognate joint and about a 5% chance of a surgical procedure in noncognate joints within 20 years of initial arthroplasty. Increased risk of contralateral total knee arthroplasty following an initial total hip arthroplasty may be due to gait changes prior to and/or following total hip arthroplasty. The higher prevalence of bilateral total hip arthroplasty in younger patients may result from bilateral disease processes that selectively affect the young hip, such as osteonecrosis, or structural hip problems, such as acetabular dysplasia or femoroacetabular impingement. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:28244910
[Comparison of external fixation with or without limited internal fixation for open knee fractures].
Li, K N; Lan, H; He, Z Y; Wang, X J; Yuan, J; Zhao, P; Mu, J S
2018-03-01
Objective: To explore the characteristics and methods of different fixation methods and prevention of open knee joint fracture. Methods: The data of 86 cases of open knee joint fracture admitted from January 2002 to December 2015 in Department of Orthopaedics, Affiliated Hospital of Chengdu University were analyzed retrospectively.There were 65 males and 21 females aged of 38.6 years. There were 38 cases treated with trans articular external fixation alone, 48 cases were in the trans articular external fixation plus auxiliary limited internal fixation group. All the patients were treated according to the same three stages except for different fixation methods. Observation of external fixation and fracture fixation, fracture healing, wound healing and treatment, treatment and related factors of infection control and knee function recovery. χ(2) test was used to analyze data. Results: Eleven patients had primary wound healing, accounting for 12.8%. Seventy-five patients had two wounds healed, accounting for 87.2%. Only 38 cases of trans articular external fixator group had 31 cases of articular surface reduction, accounting for 81.6%; Five cases of trans articular external fixator assisted limited internal fixation group had 5 cases of poor reduction, accounting for 10.4%; There was significant difference between the two groups (χ(2)=44.132, P <0.05). Take a single cross joint external fixation group, a total of 23 cases of patients with infection, accounted for 60.5% of external fixation group; trans articular external fixation assisted limited internal fixation group there were 30 cases of patients with infection, accounting for the assistance of external fixator and limited internal fixation group 62.5%; There was significant difference between the two groups(χ(2)=0.035, P >0.05). Five cases of fracture nonunion cases of serious infection, patients voluntarily underwent amputation. The Lysholm Knee Scale: In the external fixation group, 23 cases were less than 50 points, accounting for 60.5%, 15 cases were more than 50 points, accounting for 39.5%, external fixation and limited internal fixation group 20 cases were less than 50 points, accounting for 41.7%, 28 cases were more than 50 points, accounting for 58.3%; There was significant difference between the two groups(χ(2)=1.279, P >0.05). Conclusions: Prevention and control of infection is a central link in the treatment of open fracture of the knee. Trans articular external fixator plus limited internal fixation is an important measure to treat open fracture of the knee-joint.
Predicting dynamic knee joint load with clinical measures in people with medial knee osteoarthritis.
Hunt, Michael A; Bennell, Kim L
2011-08-01
Knee joint loading, as measured by the knee adduction moment (KAM), has been implicated in the pathogenesis of knee osteoarthritis (OA). Given that the KAM can only currently be accurately measured in the laboratory setting with sophisticated and expensive equipment, its utility in the clinical setting is limited. This study aimed to determine the ability of a combination of four clinical measures to predict KAM values. Three-dimensional motion analysis was used to calculate the peak KAM at a self-selected walking speed in 47 consecutive individuals with medial compartment knee OA and varus malalignment. Clinical predictors included: body mass; tibial angle measured using an inclinometer; walking speed; and visually observed trunk lean toward the affected limb during the stance phase of walking. Multiple linear regression was performed to predict KAM magnitudes using the four clinical measures. A regression model including body mass (41% explained variance), tibial angle (17% explained variance), and walking speed (9% explained variance) explained a total of 67% of variance in the peak KAM. Our study demonstrates that a set of measures easily obtained in the clinical setting (body mass, tibial alignment, and walking speed) can help predict the KAM in people with medial knee OA. Identifying those patients who are more likely to experience high medial knee loads could assist clinicians in deciding whether load-modifying interventions may be appropriate for patients, whilst repeated assessment of joint load could provide a mechanism to monitor disease progression or success of treatment. Copyright © 2010 Elsevier B.V. All rights reserved.
Holm, Bente; Husted, Henrik; Kehlet, Henrik; Bandholm, Thomas
2012-08-01
To investigate the acute effect of knee joint icing on knee extension strength and knee pain in patients shortly after total knee arthroplasty. A prospective, single-blinded, randomized, cross-over study. A fast-track orthopaedic arthroplasty unit at a university hospital. Twenty patients (mean age 66 years; 10 women) scheduled for primary unilateral total knee arthroplasty. The patients were treated on two days (day 7 and day 10) postoperatively. On one day they received 30 minutes of knee icing (active treatment) and on the other day they received 30 minutes of elbow icing (control treatment). The order of treatments was randomized. Maximal knee extension strength (primary outcome), knee pain at rest and knee pain during the maximal knee extensions were measured 2-5 minutes before and 2-5 minutes after both treatments by an assessor blinded for active or control treatment. The change in knee extension strength associated with knee icing was not significantly different from that of elbow icing (knee icing change (mean (1 SD)) -0.01 (0.07) Nm/kg, elbow icing change -0.02 (0.07) Nm/kg, P = 0.493). Likewise, the changes in knee pain at rest (P = 0.475), or knee pain during the knee extension strength measurements (P = 0.422) were not different between treatments. In contrast to observations in experimental knee effusion models and inflamed knee joints, knee joint icing for 30 minutes shortly after total knee arthroplasty had no acute effect on knee extension strength or knee pain.
Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation
NASA Astrophysics Data System (ADS)
Maiti, Raman
2016-06-01
The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step.
Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation
NASA Astrophysics Data System (ADS)
Maiti, Raman
2018-06-01
The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step.
Nam, Denis; Vajapey, Sravya; Nunley, Ryan M; Barrack, Robert L
2016-10-01
The optimal coronal alignment after total knee arthroplasty (TKA) has become an area of increased debate. Sources of variability among investigations include the radiographic technique used for both preoperative surgical planning and postoperative alignment assessments. This study's purpose was to assess the impact of the imaging modality used on the measurement of coronal plane alignment after TKA. A consecutive series of patients undergoing TKA using the same cruciate-retaining prosthesis were included for analysis. Postoperatively, all patients received both a rotationally controlled, scout computed tomography scan and a hip-knee-ankle (HKA) image using the EOS Imaging system (EOS Inc., Paris, France). Two, independent observers measured the HKA angle, and femoral and tibial component alignment from each image. After classifying overall and component alignment as neutral, varus, or valgus, 40.6% (65 of 160) of knees had a discordant alignment classification for HKA, 28.1% (45 of 160) for femoral component alignment, and 26.9% (43 of 160) for tibial component alignment between their computed tomography and EOS images. Overall, 24.4% (39 of 160) of patients had a HKA difference of ≥3° between the 2 images, whereas 18.8% (30 of 160) and 20.0% (32 of 160) of patients had a femoral and tibial component alignment difference of ≥2°, respectively. Significant differences are present when comparing 2 measurement techniques of mechanical alignment after TKA. The impact of imaging modality on postoperative assessments must be accounted for and be consistent when comparing the results of different investigations. Copyright © 2016 Elsevier Inc. All rights reserved.
Soft tissue knee contracture of the knee due to melorheostosis, treated by total knee arthroplasty.
Moulder, Elizabeth; Marsh, Clayton
2006-10-01
Melorheostosis is a rare condition which can cause soft tissue joint contractures. We present a case of melorheostosis causing disabling knee joint contracture, treated successfully by total knee arthroplasty.
Above and below knee femoropopliteal VIABAHN®.
Shackles, Christopher; Rundback, John H; Herman, Kevin; David, Yitzchak; Barkarma, Ravit
2015-04-01
To assess the clinical outcomes of VIABAHN® stent grafts deployed across the knee to those deployed above the knee. The placement of stent-grafts across the knee joint and extending into the distal popliteal artery has been avoided due to a perceived higher risk of stent fractures, restenosis, and thrombosis due to the unique hemodynamic forces in this region. A retrospective evaluation was conducted of 114 patients in 127 limbs. Patients were divided into two groups based on the location of the distal end of the deployed VIABAHN® stent: above knee (AK) (n=89) in which the VIABAHN® implant ended at or above the femoral condyles and below the knee (BK) (n=38) with extension of the graft into the below knee popliteal segment. Study end points were loss of primary, assisted, and secondary patency. One year primary, assisted, and secondary patency rates in the AK versus BK group were 67.7% vs. 47.2% (P=0.0092), 77.1% vs. 53.7% (P=0.0022), and 86.3% vs. 59.8% (P=0.0035), respectively. Univariate analysis demonstrated an increased relative risk of a primary [RR=2.07 (P=0.001)], assisted [RR=2.34 (P=0.002)], or secondary events [RR=2.98 (P=0.002)] in patients when the stent was placed below the femoral condyles. Major amputations occurred in 10% of AK and 34% of BK patients (P=0.002). VIABAHN® stent grafts have a significantly lower clinical patency and higher rates of amputation when they extend across the knee joint. © 2014 Wiley Periodicals, Inc.
Kömürcü, Erkam; Yüksel, Halil Yalçın; Ersöz, Murat; Aktekin, Cem Nuri; Hapa, Onur; Çelebi, Levent; Akbal, Ayla; Biçimoğlu, Ali
2014-12-01
The aim of this study was to evaluate the effect of knee position during wound closure (flexed vs. extended) in total knee arthroplasty on knee strength and function, as determined by knee society scores and isokinetic testing of extensor and flexor muscle groups. In a prospective, randomized, double-blind trial, 29 patients were divided in two groups: for Group 1 patients, surgical closing was performed with the knee extended, and for Group 2 patients, the knee flexed at 90°. All the patients were treated with the same anaesthesia method, surgical team, surgical technique, prosthesis type, and rehabilitation process. American Knee Society Score values and knee flexion degrees were recorded. Isokinetic muscle strength measurements of both knees in flexion and extension were taken using 60° and 180°/s angular velocity. The peak torque and total work values, isokinetic muscle strength differences, and total work difference values were calculated for surgically repaired and healthy knees. No significant difference in the mean American Knee Society Score values and knee flexion degrees was observed between the two groups. However, using isokinetic evaluation, a significant difference was found in the isokinetic muscle strength differences and total work difference of the flexor muscle between the two groups when patients were tested at 180°/s. Less loss of strength was detected in the isokinetic muscle strength differences of the flexor muscle in Group 2 (-4.2%) than in Group 1 (-23.1%). For patients undergoing total knee arthroplasty, post-operative flexor muscle strength is improved if the knee is flexed during wound closure. II.
Baldwin, Mark A; Clary, Chadd; Maletsky, Lorin P; Rullkoetter, Paul J
2009-10-16
Verified computational models represent an efficient method for studying the relationship between articular geometry, soft-tissue constraint, and patellofemoral (PF) mechanics. The current study was performed to evaluate an explicit finite element (FE) modeling approach for predicting PF kinematics in the natural and implanted knee. Experimental three-dimensional kinematic data were collected on four healthy cadaver specimens in their natural state and after total knee replacement in the Kansas knee simulator during a simulated deep knee bend activity. Specimen-specific FE models were created from medical images and CAD implant geometry, and included soft-tissue structures representing medial-lateral PF ligaments and the quadriceps tendon. Measured quadriceps loads and prescribed tibiofemoral kinematics were used to predict dynamic kinematics of an isolated PF joint between 10 degrees and 110 degrees femoral flexion. Model sensitivity analyses were performed to determine the effect of rigid or deformable patellar representations and perturbed PF ligament mechanical properties (pre-tension and stiffness) on model predictions and computational efficiency. Predicted PF kinematics from the deformable analyses showed average root mean square (RMS) differences for the natural and implanted states of less than 3.1 degrees and 1.7 mm for all rotations and translations. Kinematic predictions with rigid bodies increased average RMS values slightly to 3.7 degrees and 1.9 mm with a five-fold decrease in computational time. Two-fold increases and decreases in PF ligament initial strain and linear stiffness were found to most adversely affect kinematic predictions for flexion, internal-external tilt and inferior-superior translation in both natural and implanted states. The verified models could be used to further investigate the effects of component alignment or soft-tissue variability on natural and implant PF mechanics.
Geller, Jeffrey A; Lakra, Akshay; Murtaugh, Taylor
2017-05-01
Total knee arthroplasty (TKA) is a highly successful surgery shown to improve quality of life. One of the more common known complications of TKA is early arthrofibrosis requiring manipulation under anesthesia (MUA). This investigation evaluates the incidence of arthrofibrosis before and after the implementation of an electronic sensor device used to assist with ligament balancing. Six hundred ninety TKAs performed without sensor use were compared to a cohort of 252 TKAs performed with sensor usage. Prior to usage, there was a 5% rate of MUA after TKA, while after implementation, the MUA rate went down to 1.6% (P = .004). Ligament balancing using sensor assistance led to a statistically significant decrease in MUA in this cohort of patients. An odds ratio analysis also demonstrated that non-sensor patients had a 3.2× higher likelihood of requiring MUA than the sensor patients. The use of an electronic sensor device during trialing of TKA with resultant improved ligamentous balancing led to a statistically significant reduction in the rate of MUA in this cohort of patients. This type of approach to ligamentous balancing may continue to show evidence of improved clinical outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Fan, J Ch
2018-04-01
Data from a local report revealed the superior outcome of regional anaesthesia and analgesia compared with general anaesthesia and intravenous patient-controlled analgesia in total knee arthroplasty. This retrospective study aimed to assess the efficacy of intra-operative periarticular multimodal injection in improving postoperative pain and reducing morphine consumption with patient-controlled analgesia after total knee arthroplasty in patients with knee osteoarthritis. From July 2005 to May 2009, 213 total knee arthroplasties without intra-operative periarticular multimodal injection (control group) were performed at a local hospital. From June 2009 to December 2012, 185 total knee arthroplasties were performed with intra-operative periarticular multimodal injection (cocktail group). The inclusion criteria were osteoarthritis of the knee, single method of anaesthesia (general or neuraxial), simple total knee arthroplasty without any metal augmentation or constraint, and postoperative patient-controlled analgesia. Postoperative patient-controlled morphine doses were compared. A total of 152 total knee arthroplasties were recruited to the cocktail group, and 89 to the control group. Duration of tourniquet application and preoperative knee score did not significantly correlate with morphine consumption by patient-controlled analgesia. Multimodal injection significantly decreased such consumption for 36 h. When injection was separately analysed for general and neuraxial anaesthesia, the effect lasted for 42 h and 24 h, respectively. Intra-operative periarticular multimodal injection decreased morphine consumption for up to 42 h postoperatively.
Gautam, Arvind; Callejas, Miguel A; Acharyya, Amit; Acharyya, Swati Ghosh
2018-05-01
This study introduced a shape memory alloy (SMA)-based smart knee spacer for total knee arthroplasty (TKA). Subsequently, a 3D CAD model of a smart tibial component of TKA was designed in Solidworks software, and verified using a finite element analysis in ANSYS Workbench. The two major properties of the SMA (NiTi), the pseudoelasticity (PE) and shape memory effect (SME), were exploited, modelled, and analysed for a TKA application. The effectiveness of the proposed model was verified in ANSYS Workbench through the finite element analysis (FEA) of the maximum deformation and equivalent (von Mises) stress distribution. The proposed model was also compared with a polymethylmethacrylate (PMMA)-based spacer for the upper portion of the tibial component for three subjects with body mass index (BMI) of 23.88, 31.09, and 38.39. The proposed SMA -based smart knee spacer contained 96.66978% less deformation with a standard deviation of 0.01738 than that of the corresponding PMMA based counterpart for the same load and flexion angle. Based on the maximum deformation analysis, the PMMA-based spacer had 30 times more permanent deformation than that of the proposed SMA-based spacer for the same load and flexion angle. The SME property of the lower portion of the tibial component for fixation of the spacer at its position was verified by an FEA in ANSYS. Wherein, a strain life-based fatigue analysis was performed and tested for the PE and SME built spacers through the FEA. Therefore, the SMA-based smart knee spacer eliminated the drawbacks of the PMMA-based spacer, including spacer fracture, loosening, dislocation, tilting or translation, and knee subluxation. Copyright © 2018. Published by Elsevier Ltd.
Jungmann, P M; Nevitt, M C; Baum, T; Liebl, H; Nardo, L; Liu, F; Lane, N E; McCulloch, C E; Link, T M
2015-07-01
To evaluate the association of prevalent unilateral total hip arthroplasty (THA) with worsening of degenerative knee abnormalities and clinical outcomes in the ipsilateral and contralateral knee. Both knees of 30 individuals in the Osteoarthritis Initiative (OAI) with unilateral THA (n = 14 left, n = 16 right) at baseline were assessed at baseline and at 4-year follow-up for Whole-organ MR Imaging Scores (WORMS), cartilage T2 relaxation times (only available for right knees), Western Ontario and McMasters Universities Arthritis Index (WOMAC) scores and upper leg isometric strength. Right knees of 30 individuals without THA were analyzed as controls. Contralateral knees were compared to ipsilateral knees with paired t-tests and to control knees with multivariate regression analysis adjusting for covariates. In paired analyses, compared to ipsilateral knees, contralateral knees had higher WORMS total (P = 0.008) and cartilage scores (P = 0.007) at baseline. Over 4 years contralateral knees worsened more on WORMS total score (P = 0.008). Cartilage T2 values were higher in knees contralateral to the THA (baseline, P = 0.02; follow-up, P < 0.001). Contralateral knees had greater declines in knee extension strength (P = 0.04) and had a trend for greater worsening in WOMAC pain, stiffness, function and total scores (P = 0.04-0.09). Similar results were found comparing contralateral knees with control knees in multivariate regression models. Prevalent unilateral THA is associated with an greater progression of degenerative findings for the knee contralateral to THA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Ghomrawi, Hassan M.; Eggman, Ashley A.; Pearle, Andrew D.
2015-01-01
Background: Trade-offs between upfront benefits and later risk of revision of unicompartmental knee arthroplasty compared with those of total knee arthroplasty are poorly understood. The purpose of our study was to compare the cost-effectiveness of unicompartmental knee arthroplasty with that of total knee arthroplasty across the age spectrum of patients undergoing knee replacement. Methods: Using a Markov decision analytic model, we compared unicompartmental knee arthroplasty with total knee arthroplasty with regard to lifetime costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios (ICERs) from a societal perspective for patients undergoing surgery at forty-five, fifty-five, sixty-five, seventy-five, or eighty-five years of age. Transition probabilities were estimated from the literature; survival, from the Swedish Knee Arthroplasty Register; and costs, from the literature and the Healthcare Cost and Utilization Project (HCUP) database. Costs and QALYs were discounted at 3.0% annually. We conducted sensitivity analyses to test the robustness of model estimates and threshold analyses. Results: For patients sixty-five years of age and older, unicompartmental knee arthroplasty dominated total knee arthroplasty, with lower lifetime costs and higher QALYs. Unicompartmental knee arthroplasty was no longer cost-effective at a $100,000/QALY threshold when total knee arthroplasty rehabilitation costs were reduced by two-thirds or more for these older patients. Lifetime societal savings from utilizing unicompartmental knee arthroplasty in all older patients (sixty-five or older) in 2015 and 2020 were $56 to $336 million and $84 to $544 million, respectively. In the forty-five and fifty-five-year-old age cohorts, total knee arthroplasty had an ICER of $30,300/QALY and $63,000/QALY, respectively. Unicompartmental knee arthroplasty became cost-effective when its twenty-year revision rate dropped from 27.8% to 25.7% for the forty-five-year age group and from 27.9% to 26.7% for the fifty-five-year age group. Conclusions: Unicompartmental knee arthroplasty is an economically attractive alternative in patients sixty-five years of age or older, and modest improvements in implant survivorship could make it a cost-effective alternative in younger patients. PMID:25740030
Nakamura, Shinichiro; Tanaka, Yoshihisa; Kuriyama, Shinichi; Nishitani, Kohei; Ito, Hiromu; Furu, Moritoshi; Matsuda, Shuichi
2017-06-01
Anterior knee pain has been reported as a major postoperative complication after total knee arthroplasty, which may lead to patient dissatisfaction. Rotational alignment and the medial-lateral position correlate with patellar maltracking, which can cause knee pain postoperatively. However, the superior-inferior position of the patellar component has not been investigated. The purpose of the current study was to investigate the effects of the patellar superior-inferior position on patellofemoral kinematics and kinetics. Superior, central, and inferior models with a dome patellar component were constructed. In the superior and inferior models, the position of the patellar component translated superiorly and inferiorly, respectively, by 3mm, relative to the center model. Kinematics of the patellar component, quadriceps force, and patellofemoral contact force were calculated using a computer simulation during a squatting activity in a weight-bearing deep knee bend. In the inferior model, the flexion angle, relative to the tibial component, was the greatest among all models. The inferior model showed an 18.0%, 36.5%, and 22.7% increase in the maximum quadriceps force, the maximum medial patellofemoral force, and the maximum lateral patellofemoral force, respectively, compared with the superior model. Superior-inferior positions affected patellofemoral kinematic and kinetics. Surgeons should avoid the inferior position of the patellar component, because the inferior positioned model showed greater quadriceps and patellofemoral force, resulting in a potential risk for anterior knee pain and component loosening. Copyright © 2017. Published by Elsevier Ltd.
Prevalence of Total Hip and Knee Replacement in the United States.
Maradit Kremers, Hilal; Larson, Dirk R; Crowson, Cynthia S; Kremers, Walter K; Washington, Raynard E; Steiner, Claudia A; Jiranek, William A; Berry, Daniel J
2015-09-02
Descriptive epidemiology of total joint replacement procedures is limited to annual procedure volumes (incidence). The prevalence of the growing number of individuals living with a total hip or total knee replacement is currently unknown. Our objective was to estimate the prevalence of total hip and total knee replacement in the United States. Prevalence was estimated using the counting method by combining historical incidence data from the National Hospital Discharge Survey and the Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases from 1969 to 2010 with general population census and mortality counts. We accounted for relative differences in mortality rates between those who have had total hip or knee replacement and the general population. The 2010 prevalence of total hip and total knee replacement in the total U.S. population was 0.83% and 1.52%, respectively. Prevalence was higher among women than among men and increased with age, reaching 5.26% for total hip replacement and 10.38% for total knee replacement at eighty years. These estimates corresponded to 2.5 million individuals (1.4 million women and 1.1 million men) with total hip replacement and 4.7 million individuals (3.0 million women and 1.7 million men) with total knee replacement in 2010. Secular trends indicated a substantial rise in prevalence over time and a shift to younger ages. Around 7 million Americans are living with a hip or knee replacement, and consequently, in most cases, are mobile, despite advanced arthritis. These numbers underscore the substantial public health impact of total hip and knee arthroplasties. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Health literacy and surgery expectations in total hip and knee arthroplasty patients.
Hadden, Kristie B; Prince, Latrina Y; Bushmiaer, Marty K; Watson, Jamie C; Barnes, C Lowry
2018-05-28
This study assessed patients' health literacy and expectations for total hip (THA) and total knee (TKA) replacement surgery, and compared health literacy levels of patients and their caregivers. A convenience sample of 200 THA/TKA participants, patients and their caregivers, participated in this study. Results demonstrated no statistical difference in health literacy between patients and their caregivers. However, patients with lower health literacy had significantly lower expectations for walking after surgery. Practices should be aware that caregivers may not be any better equipped to consume and use complicated patient education materials than the patient they are assisting. Additionally, lower health literacy, rather than or in addition to race or social factors, may contribute to disparities in opting for THA/TKA because of lower expectations for walking after surgery. Healthcare practices should develop patient educational materials that are easy for all patients and caregivers to understand, especially those with low health literacy. Additional patient education and counseling may help patients with low health literacy realistically align their expectations and mitigate barriers to consenting to surgery due to low expectations. Copyright © 2018 Elsevier B.V. All rights reserved.
Kinematic Analysis of a Posterior-stabilized Knee Prosthesis
Zhao, Zhi-Xin; Wen, Liang; Qu, Tie-Bing; Hou, Li-Li; Xiang, Dong; Bin, Jia
2015-01-01
Background: The goal of total knee arthroplasty (TKA) is to restore knee kinematics. Knee prosthesis design plays a very important role in successful restoration. Here, kinematics models of normal and prosthetic knees were created and validated using previously published data. Methods: Computed tomography and magnetic resonance imaging scans of a healthy, anticorrosive female cadaver were used to establish a model of the entire lower limbs, including the femur, tibia, patella, fibula, distal femur cartilage, and medial and lateral menisci, as well as the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments. The data from the three-dimensional models of the normal knee joint and a posterior-stabilized (PS) knee prosthesis were imported into finite element analysis software to create the final kinematic model of the TKA prosthesis, which was then validated by comparison with a previous study. The displacement of the medial/lateral femur and the internal rotation angle of the tibia were analyzed during 0–135° flexion. Results: Both the output data trends and the measured values derived from the normal knee's kinematics model were very close to the results reported in a previous in vivo study, suggesting that this model can be used for further analyses. The PS knee prosthesis underwent an abnormal forward displacement compared with the normal knee and has insufficient, or insufficiently aggressive, “rollback” compared with the lateral femur of the normal knee. In addition, a certain degree of reverse rotation occurs during flexion of the PS knee prosthesis. Conclusions: There were still several differences between the kinematics of the PS knee prosthesis and a normal knee, suggesting room for improving the design of the PS knee prosthesis. The abnormal kinematics during early flexion shows that the design of the articular surface played a vital role in improving the kinematics of the PS knee prosthesis. PMID:25591565
Pierce, Todd P; Issa, Kimona; Festa, Anthony; Scillia, Anthony J; McInerney, Vincent K; Mont, Michael A
2017-09-01
Manipulation under anesthesia (MUA) can help patients regain an adequate range of motion (ROM) following total knee arthroplasty (TKA). Although there are studies reporting that MUA can assist in improving ROM, there is a paucity of studies regarding whether requiring an MUA is associated with an increased risk of revision. The purpose of this study was to assess the: (1) incidence of revision TKA and (2) outcomes of those undergoing MUA and compare it with a matched cohort who did not require MUA. A prospectively collected database of two high-volume institutions was assessed for patients who required a single MUA following TKA between 2005 and 2011. We found a total of 138 knees with a mean 8.5-year follow-up post-MUA. We compared this with a matched cohort (1:1) who underwent TKA during this same time period but did not require an MUA. Incidence of revision surgery and clinical outcomes were compared between the two cohorts. Within the MUA cohort, nine knees underwent revision, which was similar to the matched cohort that had seven revisions (93 vs. 95%; p = 0.6). The mean KSS-functional (88 vs. 90 points; p = 0.15) and clinical scores (87 vs. 89 points; p = 0.1) were similar between the two cohorts. Undergoing an MUA was not associated with an increased risk of revision TKA. If patients require MUA, they may still achieve satisfactory outcomes. This information can be used in educating patients so they may be able to formulate their expectations following their MUA. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Current and innovative pain management techniques in total knee arthroplasty.
Dalury, David F; Lieberman, Jay R; Macdonald, Steven J
2012-01-01
Pain management is a major concern for patients contemplating total knee replacement surgery and is one of the leading causes of dissatisfaction after knee replacement. Substantial progress has been made over the past several years in improving pain control after total knee replacement using multimodal pain control, preemptive analgesia, and periarticular injections.
Design forms of total knee replacement.
Walker, P S; Sathasivam, S
2000-01-01
The starting point of this article is a general design criterion applicable to all types of total knee replacement. This criterion is then expanded upon to provide more specifics of the required kinematics, and the forces which the total knee must sustain. A characteristic which differentiates total knees is the amount of constraint which is required, and whether the constraint is translational or rotational. The different forms of total knee replacement are described in terms of these constraints, starting with the least constrained unicompartments to the almost fully constrained fixed and rotating hinges. Much attention is given to the range of designs in between these two extreme types, because they constitute by far the largest in usage. This category includes condylar replacements where the cruciate ligaments are preserved or resected, posterior cruciate substituting designs and mobile bearing knees. A new term, 'guided motion knees', is applied to the growing number of designs which control the kinematics by the use of intercondylar cams or specially shaped and even additional bearing surfaces. The final section deals with the selection of an appropriate design of total knee for specific indications based on the design characteristics.
Smith, Tyler; Elson, Leah; Anderson, Christopher; Leone, William
2016-01-01
Despite technological advances in operative technique and component materials, the total knee arthroplasty (TKA) revision burden, in the United States, has remained static for the past decade. In light of an anticipated exponential increase in annual surgical volume, it is important to thoroughly understand contemporary challenges associated with technologically driven TKA. This descriptive literature review harvested 69 relevant publications to extrapolate patient trends, benefits, costs, and complications associated with computer-assisted surgery, patient specific instrumentation, and intra-operative sensors. Due to additional charges, a steep learning curve, and questionable cost-effectiveness, widespread use of these systems has been limited. Intra-operative sensors are a relatively recent development, and have been shown to improve both soft-tissue balance and overall functional outcomes at a relatively low price and without disrupting operative workflow. The introduction of new technology into the operating suite should be considered carefully, especially with respect to combined clinically efficacy and cost.
Comparison of loading rate-dependent injury modes in a murine model of post-traumatic osteoarthritis
Lockwood, Kevin A.; Chu, Bryce T.; Anderson, Matthew J.; Haudenschild, Dominik R.; Christiansen, Blaine A.
2014-01-01
Post-traumatic osteoarthritis (PTOA) is a common long-term consequence of joint injuries such as anterior cruciate ligament (ACL) rupture. In this study we used a tibial compression overload mouse model to compare knee injury induced at low speed (1 mm/s), which creates an avulsion fracture, to injury induced at high speed (500 mm/s), which induces midsubstance tear of the ACL. Mice were sacrificed at 0 days, 10 days, 12 weeks, or 16 weeks post-injury, and joints were analyzed with micro-computed tomography, whole joint histology, and biomechanical laxity testing. Knee injury with both injury modes caused considerable trabecular bone loss by 10 days post-injury, with the Low Speed Injury group (avulsion) exhibiting a greater amount of bone loss than the High Speed Injury group (midsubstance tear). Immediately after injury, both injury modes resulted in greater than 2-fold increases in total AP joint laxity relative to control knees. By 12 and 16 weeks post-injury, total AP laxity was restored to uninjured control values, possibly due to knee stabilization via osteophyte formation. This model presents an opportunity to explore fundamental questions regarding the role of bone turnover in PTOA, and the findings of this study support a biomechanical mechanism of osteophyte formation following injury. PMID:24019199
NASA Astrophysics Data System (ADS)
Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi
2011-03-01
To achieve 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques, which use X-ray fluoroscopic images and computer-aided design (CAD) model of the knee implant, have attracted attention in recent years. These techniques could provide information regarding the movement of radiopaque femoral and tibial components but could not provide information of radiolucent polyethylene insert, because the insert silhouette on X-ray image did not appear clearly. Therefore, it was difficult to obtain 3D kinemaitcs of polyethylene insert, particularly mobile-bearing insert that move on the tibial component. This study presents a technique and the accuracy for 3D kinematic analysis of mobile-bearing insert in TKA using X-ray fluoroscopy, and finally performs clinical applications. For a 3D pose estimation technique of the mobile-bearing insert in TKA using X-ray fluoroscopy, tantalum beads and CAD model with its beads are utilized, and the 3D pose of the insert model is estimated using a feature-based 2D/3D registration technique. In order to validate the accuracy of the present technique, experiments including computer simulation test were performed. The results showed the pose estimation accuracy was sufficient for analyzing mobile-bearing TKA kinematics (the RMS error: about 1.0 mm, 1.0 degree). In the clinical applications, seven patients with mobile-bearing TKA in deep knee bending motion were studied and analyzed. Consequently, present technique enables us to better understand mobile-bearing TKA kinematics, and this type of evaluation was thought to be helpful for improving implant design and optimizing TKA surgical techniques.
Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.
Saxby, David John; Bryant, Adam L; Modenese, Luca; Gerus, Pauline; Killen, Bryce A; Konrath, Jason; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G
2016-11-01
To investigate differences in anterior cruciate ligament-reconstructed (ACLR) and healthy individuals in terms of the magnitude of the tibiofemoral contact forces, as well as the relative muscle and external load contributions to those contact forces, during walking, running, and sidestepping gait tasks. A computational EMG-driven neuromusculoskeletal model was used to estimate the muscle and tibiofemoral contact forces in those with single-bundle combined semitendinosus and gracilis tendon autograft ACLR (n = 104, 29.7 ± 6.5 yr, 78.1 ± 14.4 kg) and healthy controls (n = 60, 27.5 ± 5.4 yr, 67.8 ± 14.0 kg) during walking (1.4 ± 0.2 m·s), running (4.5 ± 0.5 m·s) and sidestepping (3.7 ± 0.6 m·s). Within the computational model, the semitendinosus of ACLR participants was adjusted to account for literature reported strength deficits and morphological changes subsequent to autograft harvesting. ACLR had smaller maximum total and medial tibiofemoral contact forces (~80% of control values, scaled to bodyweight) during the different gait tasks. Compared with controls, ACLR were found to have a smaller maximum knee flexion moment, which explained the smaller tibiofemoral contact forces. Similarly, compared with controls, ACLR had both a smaller maximum knee flexion angle and knee flexion excursion during running and sidestepping, which may have concentrated the articular contact forces to smaller areas within the tibiofemoral joint. Mean relative muscle and external load contributions to the tibiofemoral contact forces were not significantly different between ACLR and controls. ACLR had lower bodyweight-scaled tibiofemoral contact forces during walking, running, and sidestepping, likely due to lower knee flexion moments and straighter knee during the different gait tasks. The relative contributions of muscles and external loads to the contact forces were equivalent between groups.
Narayanan, Rajkishen; Lenz, Nathaniel; Werner, Jordan Alexander; Cross, Michael B; Hughes, Dean; Laster, Scott; Schwarzkopf, Ran
2018-04-13
Proper ligament tension in knee flexion within cruciate-retaining (CR) total knee arthroplasty has long been associated with clinical success; however, traditional balancing principles have assumed that the distal femoral joint line (DFJL) affects only extension. The purpose of this study was to determine the effect DFJL may have on ligament strains and tibiofemoral kinematics of CR knee designs in flexion. A computational analysis was performed using a musculoskeletal modeling system for two different knee implants, the high-flex CR (HFCR) and guided-motion CR (GMCR). Tibiofemoral kinematics and ligament strain were measured at 90-degree knee flexion while the implants' DFJL was incrementally shifted proximally. Femoral implant position and kinematics were used to determine the femur's anteroposterior position relative to the tibia. The change in the femoral medial condyle position relative to the tibia was 0.33 mm and 0.53 mm more anterior per each 1-mm elevation of the DFJL for HFCR and GMCR, respectively. The change in the lateral condyle position was 0.20 mm more anterior and 0.06 mm more posterior for HFCR and GMCR, respectively. The strain in the lateral and medial collateral ligaments changed minimally with elevation of the DFJL. In both implants, strain increased in the anterior lateral and posterior medial bundles of the posterior collateral ligament with elevation of the DFJL, whereas strain decreased in the iliotibial band and iliotibial patellar band. Our findings suggest that DFJL affects ligament tension at 90-degree knee flexion and therefore flexion balance for CR implants. Elevating the DFJL to address tight extension space in a CR knee while flexion space is well balanced could result in increased flexion tension especially when the flexion-extension mismatch is large. To achieve balanced flexion and extension, the amount of DFJL elevation may need to be reduced. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Patient-Specific Instrumentation Affects Perioperative Blood Loss in Total Knee Arthroplasty.
Cucchi, Davide; Menon, Alessandra; Zanini, Beatrice; Compagnoni, Riccardo; Ferrua, Paolo; Randelli, Pietro
2018-05-23
Patient-specific instrumentation (PSI) may contribute to reduced blood loss related to total knee arthroplasty (TKA). The purpose of this study was to compare the estimated hemoglobin (Hb) and red blood cell volume (RBC) losses in two groups of patients undergoing TKA with PSI and conventional instrumentation. Pre- and postoperative blood samples were collected from 22 patients randomly assigned to receive a PSI-assisted or conventional TKA. Post- to preoperative Hb difference was calculated and RBC loss was estimated according to Sehat et al. A significant difference in Hb reduction in favor of the PSI group was registered on the last day of stay ( p = 0.0084) and significant treatment effect ( p = 0.027) on Hb reduction after intervention was found with a regression model for longitudinal measurements. This study demonstrated that PSI leads to a significant trend in earlier Hb regain. These promising results suggest a beneficial effect of PSI in blood loss reduction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Patient-specific instruments: industry's innovation with a surgeon's interest.
Thienpont, Emmanuel; Bellemans, Johan; Delport, Hendrik; Van Overschelde, Philippe; Stuyts, Bart; Brabants, Karl; Victor, Jan
2013-10-01
The aim of this study was (1) to survey the orthopaedic companies about the volume of patient-specific instruments (PSI) used in Europe and worldwide; (2) to survey a group of knee arthroplasty surgeons on their acceptance of PSI and finally; (3) to survey a medico-legal expert on PSI-related issues. Seven orthopaedic implant manufacturers were contacted to obtain their sales figures (in volume) of PSI in Europe and worldwide for the 2011 and 2012 period. During the Open Meeting of the Belgian Knee Society, a survey by a direct voting system was submitted to a selection of knee surgeons. Finally, a number of medico-legal 'PSI-related' questions were submitted to an adult reconstruction surgeon/legal expert. The total volume, for all contacted companies, of PSI in Europe for 2012 was 17,515 total knee arthroplasty (TKA) and 82,556 TKA worldwide. Biomet (Warsaw, USA) was the number one in volume, both in Europe as worldwide with their Signature system. Biomet represented 27 % of the market share in PSI worldwide. Stryker preferred not to reply to the survey because of the FDA class 1 recall on ShapeMatch cutting guides. Eighty per cent of the Belgian knee surgeons expressed a great interest in PSI and especially, for 58 % of them, if it would increase their surgical accuracy. They valued it even more in unicompartmental arthroplasty, and 55 % was ready to use single-use instruments. Surprisingly, 47 % of surgeons thought it was the company's responsibility if something goes wrong with a PSI-assisted case. The medico-legal expert concluded that PSI is a complex process that exposes surgeons to new risks in case of failure and stated that companies should not produce surgical guides without validation of the planning by the surgeon. Patient-specific instruments is of great interest if it can proof to increase the surgical accuracy in knee arthroplasty to the level surgeons are expecting and if in the same time it would make the surgical process more efficient. V.
Bilateral custom-fit total knee arthroplasty in a patient with poliomyelitis.
Tardy, Nicolas; Chambat, Pierre; Murphy, Colin G; Fayard, Jean-Marie
2014-09-01
In limbs affected by poliomyelitis, total knee arthroplasty results in satisfactory pain relief. However, the risk of failure is high, especially if the preoperative quadriceps power is low. Therefore, treating osteoarthritis in the current patient represented a challenging procedure. A 66-year-old man presented with tricompartmental osteoarthritis of both knees, with valgus deformity of 14° on the left knee and 11° on the right knee. He walked with a bilateral knee recurvatum of 30° and a grade 1 quadriceps power. The authors treated both knees with cemented custom-fit hinged total knee arthroplasty with 30° of recurvatum in the tibial keel. Clinical scores showed good results 1 year postoperatively, especially on the subjective data of quality of life and function. At follow-up, radiographs showed good total knee arthroplasty positioning on the right side and a small mechanical loosening at the end of the tibial keel on the left side. Only 5 studies (Patterson and Insall; Moran; Giori and Lewallen; Jordan et al; and Tigani et al) have reported total knee arthroplasty results in patients with poliomyelitis. This study reports an original case of bilateral custom-fit hinged total knee arthroplasty in a patient with poliomyelitis. To the authors' knowledge, this is the first report of this type of procedure in the literature. The key point is the degree of recurvatum that is needed to allow walking, avoiding excessive constraints on the implants that can lead to early mechanical failure. Copyright 2014, SLACK Incorporated.
Colen, David L; Carney, Martin J; Shubinets, Valeriy; Lanni, Michael A; Liu, Tiffany; Levin, L Scott; Lee, Gwo-Chin; Kovach, Stephen J
2018-04-01
Total knee arthroplasty is a common orthopedic procedure in the United States and complications can be devastating. Soft-tissue compromise or joint infection may cause failure of prosthesis requiring knee fusion or amputation. The role of a plastic surgeon in total knee arthroplasty is critical for cases requiring optimization of the soft-tissue envelope. The purpose of this study was to elucidate factors associated with total knee arthroplasty salvage following complications and clarify principles of reconstruction to optimize outcomes. A retrospective review of patients requiring soft-tissue reconstruction performed by the senior author after total knee arthroplasty over 8 years was completed. Logistic regression and Fisher's exact tests determined factors associated with the primary outcome, prosthesis salvage versus knee fusion or amputation. Seventy-three knees in 71 patients required soft-tissue reconstruction (mean follow-up, 1.8 years), with a salvage rate of 61.1 percent, mostly using medial gastrocnemius flaps. Patients referred to our institution with complicated periprosthetic wounds were significantly more likely to lose their knee prosthesis than patients treated only within our system. Patients with multiple prior knee operations before definitive soft-tissue reconstruction had significantly decreased rates of prosthesis salvage and an increased risk of amputation. Knee salvage significantly decreased with positive joint cultures (Gram-negative greater than Gram-positive organisms) and particularly at the time of definitive reconstruction, which also trended toward an increased risk of amputation. In revision total knee arthroplasty, prompt soft-tissue reconstruction improves the likelihood of success, and protracted surgical courses and contamination increase failure and amputations. The authors show a benefit to involving plastic surgeons early in the course of total knee arthroplasty complications to optimize genicular soft tissues. Therapeutic, III.
Paschos, Nikolaos K
2015-01-01
In this article, a concise description of the recent advances in the field of osteoarthritis management is presented. The main focus is to highlight the most promising techniques that emerge in both biological joint replacement and artificial joint arthroplasty. A critical view of high quality evidence regarding outcome and safety profile of these techniques is presented. The potential role of kinematically aligned total knee replacement, navigation, and robotic-assisted surgery is outlined. A critical description of both primary and stem cell-based therapies, the cell homing theory, the use of biologic factors and recent advancements in tissue engineering and regenerative medicine is provided. Based on the current evidence, some thoughts on a realistic approach towards answering these questions are attempted. PMID:26495242
Weber-Spickschen, Thomas Sanjay; Colcuc, Christian; Hanke, Alexander; Clausen, Jan-Dierk; James, Paul Abraham; Horstmann, Hauke
2017-01-01
The initial goals of rehabilitation after knee injuries and operations are to achieve full knee extension and to activate quadriceps muscle. In addition to regular physiotherapy, an android-based knee training device is designed to help patients achieve these goals and improve compliance in the early rehabilitation period. This knee training device combines fun in a computer game with muscular training or rehabilitation. Our aim was to test the feasibility and acceptability of this new device. 50 volunteered subjects enrolled to test out the computer game aided device. The first game was the high-striker game, which recorded maximum knee extension power. The second game involved controlling quadriceps muscular power to simulate flying an aeroplane in order to record accuracy of muscle activation. The subjects evaluated this game by completing a simple questionnaire. No technical problem was encountered during the usage of this device. No subjects complained of any discomfort after using this device. Measurements including maximum knee extension power, knee muscle activation and control were recorded successfully. Subjects rated their experience with the device as either excellent or very good and agreed that the device can motivate and monitor the progress of knee rehabilitation training. To the best of our knowledge, this is the first android-based tool available to fast track knee rehabilitation training. All subjects gave very positive feedback to this computer game aided knee device.
Thangavel, Pavithra; Vidhya, S; Li, Junhua; Chew, Effie; Bezerianos, Anastasios; Yu, Haoyong
2017-07-01
Since manual rehabilitation therapy can be taxing for both the patient and the physiotherapist, a gait rehabilitation robot has been built to reduce the physical strain and increase the efficacy of the rehabilitation therapy. The prototype of the gait rehabilitation robot is designed to provide assistance while walking for patients with abnormal gait pattern and it can also be used for rehabilitation therapy to restore an individual's normal gait pattern by aiding motor recovery. The Gait Rehabilitation Robot uses gait event based synchronization, which enables the exoskeleton to provide synchronous assistance during walking that aims to reduce the lower-limb muscle activation. This study emphasizes on the biomechanical effects of assisted walking on the lower limb by analyzing the EMG signal, knee joint kinematics data that was collected from the right leg during the various experimental conditions. The analysis of the measured data shows an improved knee joint trajectory and reduction in muscle activity with assistance. The result of this study does not only assess the functionality of the exoskeleton but also provides a profound understanding of the human-robot interaction by studying the effects of assistance on the lower limb.
Design and testing of a regenerative magnetorheological actuator for assistive knee braces
NASA Astrophysics Data System (ADS)
Ma, Hao; Chen, Bing; Qin, Ling; Liao, Wei-Hsin
2017-03-01
In this paper, a multifunctional magneto-rheological actuator with power regeneration capability, named regenerative magnetorheological actuator (RMRA), is designed for gait assistance in the knee joint. RMRA has motor and magnetorheological (MR) brake parts working in parallel that can harvest energy through regenerative braking. This novel design provides multiple functions with good energy efficiency. The configuration and basic design of the RMRA are first introduced. Then geometrical optimization of the MR brake is conducted based on a parameterized model, and multiple factors are considered in the design objectives: braking torque, weight, and power consumption. After the optimal design is obtained, an RMRA prototype is fabricated and associated driver circuits are designed. Finally, multiple functions of the RMRA, especially three different braking modes, are modeled and tested. Experimental results of RMRA output performances in all working modes match the modeling and simulation. Assistive knee braces with the developed RMRA are promising for future applications in gait assistance and rehabilitation.
Peters, Christopher L; Jimenez, Chris; Erickson, Jill; Anderson, Mike B; Pelt, Christopher E
2013-10-16
Soft-tissue releases are commonly necessary to achieve symmetrical flexion and extension gaps in primary total knee arthroplasty performed with a measured resection technique. We reviewed the frequency of required releases according to preoperative alignment and the clinical and radiographic results; associations with failure, reoperations, and complications are presented. We reviewed 1216 knees that underwent primary total knee arthroplasty from 2004 to 2009; 774 (64%) were in female patients and 442 (36%), in male patients. In the coronal plane, 855 knees had preoperative varus deformity, 123 were neutral, and 238 had valgus deformity. The mean age at the time of the index procedure was 62.7 years (range, twenty-three to ninety-four years), and the mean body mass index was 32.7 kg/m² (range, 17.4 to 87.9 kg/m²). Clinical outcomes included the Knee Society Score (KSS), implant failure, reoperation, and complications. Radiographs were analyzed for component alignment. The only difference in the total KSS was found at the time of final follow-up between valgus knees with zero releases (total KSS = 178) and those with one or two releases (KSS = 160, p = 0.026). Overall, 407 knees (33.5%) required zero releases, 686 (56.4%) required one or two releases, and 123 (10.1%) required three or more releases. Among varus knees, 37% required zero releases, 55% required one or two releases, and 7.5% required three or more releases. Among neutral knees, 39% required zero releases, 55% required one or two releases, and 5.7% required three or more releases. Only 17% of valgus knees required zero releases whereas 61% required one or two releases and 21.8% required three or more releases. Valgus knees required more releases than neutral or varus knees did (p < 0.001). Selective soft-tissue release for gap balancing in primary total knee arthroplasty is an effective technique that produced excellent clinical and radiographic results regardless of preoperative alignment. Consistent anatomic coronal-plane alignment and soft-tissue balance could be achieved without bone cut modification by using measured bone resection and selective soft-tissue release.
Meding, J B; Keating, E M; Ritter, M A; Faris, P M
2000-09-01
The outcome of total knee replacement after high tibial osteotomy remains uncertain. We hypothesized that the results of total knee replacement with or without a previous high tibial osteotomy are similar. The results of a consecutive series of thirty-nine bilateral total knee arthroplasties performed with cement at an average of 8.7 years after unilateral high tibial osteotomy were reviewed. There were twenty-seven men and twelve women. Preoperatively, the knee scores according to the system of the Knee Society were similar for all of the knees; however, valgus alignment and patella infera were more common in the knees with a previous high tibial osteotomy. Bilateral total knee replacement was staged in seven patients and was simultaneous in thirty-two patients. The results of the total knee arthroplasties were retrospectively reviewed with respect to the knee and function scores according to the system of the Knee Society, the radiographic findings, and the complications. Intraoperatively, no notable differences were identified in the number of medial, lateral, or lateral patellar releases required. However, less lateral tibial bone was resected in the group with a previous high tibial osteotomy (average, 3.3 millimeters) than in the group without a high tibial osteotomy (average, 7.5 millimeters). The average duration of follow-up was 7.5 years (range, three to sixteen years) in the group with a previous high tibial osteotomy and 6.8 years (range, two to ten years) in the group without a high tibial osteotomy. At the time of the final follow-up, the knee and function scores were similar for the two groups (89.0 and 81.0 points, respectively, for the group with a previous high tibial osteotomy, and 89.6 and 83.9 points, respectively, for the group without a high tibial osteotomy). Although more knees were free of pain in the group without a previous high tibial osteotomy (thirty-six) than in the group with a previous osteotomy (thirty-three), this difference was not found to be significant with the numbers available (p = 0.4810). Knee alignment and stability, femoral and tibial component alignment, and range of motion also were similar in both groups postoperatively. One allpolyethylene tibial component was revised in the high tibial osteotomy group. Two knees in each group required manipulation. There were no deep infections. While patients with a previous high tibial osteotomy may have important differences preoperatively, including valgus alignment, patella infera, and decreased bone stock in the proximal part of the tibia, the present study suggests that the clinical and radiographic results of primary total knee arthroplasty in knees with and without a previous high tibial osteotomy are not substantially different. In our relatively small group of patients, the previous high tibial osteotomy had no adverse effect on the outcome of the subsequent total knee replacement.
NASA Astrophysics Data System (ADS)
Johnson, Michael D.
1994-09-01
The impact of using the 2.1 micrometers Ho:YAG laser in orthopaedic surgery has not been fully investigated, especially as to what affect it may have on an employee's return to work and normal activities. In this retrospective review of 140 patients who underwent arthroscopic surgery at our facility, there were found to be significant decreases in time on crutches and time off from work when laser-assisted knee arthroscopies were compared to procedures where conventional mechanical or motorized instruments were used. The patients who had laser-assisted knee arthroscopies discontinued use of crutches 5 days earlier than the conventional group and returned to work 10 days earlier than their counterparts who had undergone conventional arthroscopic surgery. The ability to return to work more quickly translates into significant cost savings for employers who otherwise would have to replace the worker with temporary help, pay overtime, or face lost productivity due to an employee's absence following arthroscopic knee surgery.
[Prevention and repair of patellar ligament injury in total knee arthroplasty].
Bian, Yanyan; Weng, Xisheng
2013-09-01
To review the progress in the prevention and repair of patellar ligament injury in total knee Recent literature about the prevention and repair of patellar ligament injury in total knee arthroplasty arthroplasty. was reviewed and analyzed. Increased exposure can prevent the patellar ligament injury, and treatments of acute patellar ligament rupture can be obtained by simple repair, reconstruction with allograft materials or artificial materials, and auxiliary strengthening. Patellar ligament injury in total knee arthroplasty should not be ignored. Active prevention and repair of patellar ligament injury can obtain better function of knee joint.
Maintenance of the paraspinal muscles may protect against radiographic knee osteoarthritis.
Azuma, Koichiro; Sera, Yasushi; Shinjo, Takuma; Takayama, Michiyo; Shiomi, Eisuke; Momoshima, Suketaka; Iwao, Yasushi; Ishida, Hiroyuki; Matsumoto, Hideo
2017-01-01
Knee osteoarthritis (OA) is an increasing health problem worldwide. So far, only obesity and quadriceps weakness are identified as modifiable risk factors for knee OA. Core muscle strengthening is becoming increasingly popular among older adults because of its ability to enhance the activities of daily living during old age. This study investigated the associations of the size and quality of the abdominal trunk muscles with radiographic knee osteoarthritis (RKOA). From 2012 to 2016, data were collected from 146 males and 135 females (age 63.9±13.4 years, BMI 23.2±3.8 kg/m 2 ) at annual musculoskeletal examinations, including knee radiographs and body composition analyses, by dual-energy X-ray absorptiometry. Cross-sectional areas of abdominal trunk muscles were measured using a single-slice computed tomography scan image obtained at the level of the umbilicus. The prevalence of RKOA was 21.2% in males and 28.1% in females. Compared to subjects without RKOA, subjects with RKOA were ~6 years older and had smaller paraspinal muscle (38.4±8.7 vs 33.1±10.1 cm 2 , p <0.01 in males; 24.1±7.1 vs 20.7±7.5 cm 2 , p <0.05 in females). In contrast, there was no decrease in appendicular or total lean mass, and only in females, BMI and total fat mass (FM) were higher in subjects with RKOA (21.5±3.5 vs 24.5±4.4 kg/m 2 , 16.7±7.0 vs 20.5±7.7 kg, respectively, both p <0.01). After adjusting for age and sex, smaller cross-sectional area/lower attenuation value of the paraspinal muscles was associated with RKOA (both p <0.05), while greater appendicular or total lean mass as well as greater FM was associated with RKOA. The size and quality of the paraspinal muscles were not associated with knee pain or habitual exercise. Small, poor-quality paraspinal muscles may be linked to a higher risk of RKOA, but appendicular or total lean mass was not a good predictor of RKOA.
Peltola, Erno K; Lindahl, Jan; Koskinen, Seppo K
2014-06-01
The aims of this study were to assess the incidence of reverse Segond fracture, to examine the associated ligamentous injuries, and to examine how often reverse Segond fracture coexists with a knee dislocation. At a level 1 trauma center, an 11-year period of emergency department multidetector-row computed tomography (MDCT) examinations for knee trauma was evaluated for reverse Segond and Segond fractures. Surgical findings served as the reference standard for intra-articular injuries. The hospital discharge register was searched for the diagnosis of knee dislocation from August 2000 through the end of August 2011. A total of 1,553 knee MDCT examinations were evaluated. Ten patients with a reverse Segond fracture were found, comprising 0.64 % of emergency room acute knee trauma MDCT examinations. Seven patients who had a reverse Segond fracture were operated: Three had an avulsion fracture of the anterior cruciate ligament, one had an avulsion fracture of posterior cruciate ligament, two had a lateral meniscal tear, and two had a medial collateral ligament tear. The ratio of reverse Segond fractures to Segond fractures was 1:4. None of the 71 knee dislocation patients had a reverse Segond fracture. Reverse Segond fracture is a rare finding even in a level 1 trauma center. Cruciate ligament injuries appear to be associated with avulsion fracture, but every patient does not have PCL injury, as previously reported. Our results do not support the association of knee dislocation with reverse Segond fracture.
Joint Line Reconstruction in Navigated Total Knee Arthroplasty Revision
2012-05-16
Revision Total Knee Arthroplasty Because of; Loosening; Instability; Impingement; or Other Reasons Accepted as Indications for TKA Exchange.; The Focus is to Determine the Precision of Joint Line Restoration in Navigated vs. Conventional Revision Total Knee Arthroplasty
Radiologic changes of ankle joint after total knee arthroplasty.
Lee, Jung Hee; Jeong, Bi O
2012-12-01
The authors noticed that ankle joint osteoarthritis was not uncommon when lower extremity malalignment, such as a knee varus deformity, was present as a result of severe osteoarthritis of the knee. The purpose of this study was to analyze radiologic changes of the ankle joint after total knee arthroplasty. This study included 142 cases in 110 patients who underwent total knee arthroplasty and were followed for at least 3 years. The varus knee group included 128 cases and the valgus knee group included 14 cases. On anteroposterior standing lower extremity radiographs, varus and valgus angles of the knee were measured preoperatively and at the last follow-up. The angle between the ground surface and the distal tibial plafond as well as the upper talus was also measured. In addition, tibial anterior surface angle, talar tilt, space between the medial malleolar distal tip and the medial articular surface of the talus, and medial tibiotalar joint space of the ankle joint were measured. Out of 142 cases, 50 (35.2%) had arthritis in the ankle before total knee arthroplasty and 31 (21.8%) had newly developed or progressive arthritis after surgery. In particular, the varus knee group demonstrated statistically significant differences in preoperative varus deformity, preoperative talar tilt, and postoperative correction angle between the cases that developed or had progressive arthritis and those that did not show any changes (p < .05). After total knee arthroplasty, arthritis developed or progressed in the ankle of many cases radiographically. In particular, when the preoperative talar tilt increased medial to the ankle or the postoperative correction angle was large, the incidence of arthritis in the ankle joint increased. The authors recommend more cautious follow-up on the symptoms of the ankle joint after total knee arthroplasty.
Failure of aseptic revision total knee arthroplasties
Leta, Tesfaye H; Lygre, Stein Håkon L; Skredderstuen, Arne; Hallan, Geir; Furnes, Ove
2015-01-01
Background and purpose In Norway, the proportion of revision knee arthroplasties increased from 6.9% in 1994 to 8.5% in 2011. However, there is limited information on the epidemiology and causes of subsequent failure of revision knee arthroplasty. We therefore studied survival rate and determined the modes of failure of aseptic revision total knee arthroplasties. Method This study was based on 1,016 aseptic revision total knee arthroplasties reported to the Norwegian Arthroplasty Register between 1994 and 2011. Revisions done for infections were not included. Kaplan-Meier and Cox regression analyses were used to assess the survival rate and the relative risk of re-revision with all causes of re-revision as endpoint. Results 145 knees failed after revision total knee arthroplasty. Deep infection was the most frequent cause of re-revision (28%), followed by instability (26%), loose tibial component (17%), and pain (10%). The cumulative survival rate for revision total knee arthroplasties was 85% at 5 years, 78% at 10 years, and 71% at 15 years. Revision total knee arthroplasties with exchange of the femoral or tibial component exclusively had a higher risk of re-revision (RR = 1.7) than those with exchange of the whole prosthesis. The risk of re-revision was higher for men (RR = 2.0) and for patients aged less than 60 years (RR = 1.6). Interpretation In terms of implant survival, revision of the whole implant was better than revision of 1 component only. Young age and male sex were risk factors for re-revision. Deep infection was the most frequent cause of failure of revision of aseptic total knee arthroplasties. PMID:25267502
Zheng, Hua; Rosal, Milagros C; Li, Wenjun; Borg, Amy; Yang, Wenyun; Ayers, David C
2018-01-01
Background Data-driven surgical decisions will ensure proper use and timing of surgical care. We developed a Web-based patient-centered treatment decision and assessment tool to guide treatment decisions among patients with advanced knee osteoarthritis who are considering total knee replacement surgery. Objective The aim of this study was to examine user experience and acceptance of the Web-based treatment decision support tool among older adults. Methods User-centered formative and summative evaluations were conducted for the tool. A sample of 28 patients who were considering total knee replacement participated in the study. Participants’ responses to the user interface design, the clarity of information, as well as usefulness, satisfaction, and acceptance of the tool were collected through qualitative (ie, individual patient interviews) and quantitative (ie, standardized Computer System Usability Questionnaire) methods. Results Participants were older adults with a mean age of 63 (SD 11) years. Three-quarters of them had no technical questions using the tool. User interface design recommendations included larger fonts, bigger buttons, less colors, simpler navigation without extra “next page” click, less mouse movement, and clearer illustrations with simple graphs. Color-coded bar charts and outcome-specific graphs with positive action were easiest for them to understand the outcomes data. Questionnaire data revealed high satisfaction with the tool usefulness and interface quality, and also showed ease of use of the tool, regardless of age or educational status. Conclusions We evaluated the usability of a patient-centered decision support tool designed for advanced knee arthritis patients to facilitate their knee osteoarthritis treatment decision making. The lessons learned can inform other decision support tools to improve interface and content design for older patients’ use. PMID:29712620
Comparison of fixed-bearing and mobile-bearing total knee arthroplasty after high tibial osteotomy.
Hernigou, Philippe; Huys, Maxime; Pariat, Jacques; Roubineau, François; Flouzat Lachaniette, Charles Henri; Dubory, Arnaud
2018-02-01
There is no information comparing the results of fixed-bearing total knee replacement and mobile-bearing total knee replacement in the same patients previously treated by high tibial osteotomy. The purpose was therefore to compare fixed-bearing and mobile-bearing total knee replacements in patients treated with previous high tibial osteotomy. We compared the results of 57 patients with osteoarthritis who had received a fixed-bearing prosthesis after high tibial osteotomy with the results of 41 matched patients who had received a rotating platform after high tibial osteotomy. The match was made for length of follow-up period. The mean follow-up was 17 years (range, 15-20 years). The patients were assessed clinically and radiographically. The pre-operative knee scores had no statistically significant differences between the two groups. So was the case with the intra-operative releases, blood loss, thromboembolic complications and infection rates in either group. There was significant improvement in both groups of knees, and no significant difference was observed between the groups (i.e., fixed-bearing and mobile-bearing knees) for the mean Knee Society knee clinical score (95 and 92 points, respectively), or the Knee Society knee functional score (82 and 83 points, respectively) at the latest follow-up. However, the mean post-operative knee motion was higher for the fixed-bearing group (117° versus 110°). In the fixed-bearing group, one knee was revised because of periprosthetic fracture. In the rotating platform mobile-bearing group, one knee was revised because of aseptic loosening of the tibial component. The Kaplan-Meier survivorship for revision at ten years of follow-up was 95.2% for the fixed bearing prosthesis and 91.1% for the rotating platform mobile-bearing prosthesis. Although we did manage to detect significant differences mainly in clinical and radiographic results between the two groups, we found no superiority or inferiority of the mobile-bearing total knee prosthesis over the fixed-bearing total knee prosthesis for patients previously operated by high tibial osteotomy.
Makki, D; Deierl, K; Pandit, A; Trakru, S
2014-09-01
The aim of this prospective study was to investigate the risk of contamination of surgical gloves during preparation and draping in joint replacement surgery. During 46 hip and knee replacement procedures, the gloves of orthopaedic consultants (n=5) and registrars (n=3) were assessed for contamination immediately after draping by impression of gloved fingers on blood agar. Contamination was evaluated by the surgeon's grade, the type of procedure, the role of the assistant and the dominance of the hand. A total of 125 pairs of top gloves were examined (79 pairs from registrars and 46 pairs from consultants). Bacterial contamination was isolated on 19 pairs (15.2%) (16 pairs from registrars and 3 pairs from consultants, p=0.04). Coagulase negative staphylococci were the main isolates and contamination was considered low in all cases (1-5 colonies). Contamination was seen more on the dominant hand (16 gloves from dominant hands and 6 from non-dominant hands, p=0.04), on the index finger and thumb. More contaminated gloves were seen in hip arthroplasty procedures (16 pairs from total hip replacements vs 3 pairs from total knee replacements, p=0.02). Contamination of glove fingertips during draping in joint replacement procedures is more likely to occur among junior surgeons, in hip rather than knee arthroplasty procedures and on the dominant hand. It is therefore essential that surgeons of different grades replace gloves used in draping to avoid exposing patients to the risk of infection.
Arthrodesis Using Pedicled Fibular Flap After Failed Infected Knee Arthroplasty
Minear, Steve C.; Lee, Gordon; Kahn, David; Goodman, Stuart
2011-01-01
Objective: Severe bone loss associated with failed revision total knee arthroplasty is a challenging scenario. The pedicled fibular flap is a method to obtain vascularized bone for use in knee arthrodesis after failure of a total knee arthroplasty, with substantial loss of bone. Methods: We report 2 successful knee arthrodeses using this method in patients with infected, failed multiply revised total knee arthroplasties. The failed prosthesis was removed, and the bones were aligned and stabilized. The fibular flap was then harvested, fed through a subcutaneous tunnel, and placed within the medullary canal at the arthrodesis site. The soft tissue was closed over the grafts and flaps. Results: Two elderly women presented with pain and drainage from previous total knee arthroplasties after multiple revisions. Arthrodeses were performed as described, and both patients were pain-free with the knee fused at 1 year. Conclusions: Thus, pedicled vascularized flaps are a viable alternative in the treatment of failed revision arthroplasty with large segmental bone loss. PMID:22132250
Gautam, Arvind; Rani, A Bhargavi; Callejas, Miguel A; Acharyya, Swati Ghosh; Acharyya, Amit; Biswas, Dwaipayan; Bhandari, Vasundhra; Sharma, Paresh; Naik, Ganesh R
2016-08-01
In this paper we introduce Shape Memory Alloy (SMA) for designing the tibial part of Total Knee Arthroplasty (TKA) by exploiting the shape-memory and pseudo-elasticity property of the SMA (e.g. NiTi). This would eliminate the drawbacks of the state-of-the art PMMA based knee-spacer including fracture, sustainability, dislocation, tilting, translation and subluxation for tackling the Osteoarthritis especially for the aged people of 45-plus or the athletes. In this paper a Computer Aided Design (CAD) model using SolidWorks for the knee-spacer is presented based on the proposed SMA adopting the state-of-the art industry-standard geometry that is used in the PMMA based spacer design. Subsequently Ansys based Finite Element Analysis is carried out to measure and compare the performance between the proposed SMA based model with the state-of-the art PMMA ones. 81% more bending is noticed in the PMMA based spacer compared to the proposed SMA that would eventually cause fracture and tilting or translation of spacer. Permanent shape deformation of approximately 58.75% in PMMA based spacer is observed compared to recoverable 11% deformation in SMA when same load is applied on both separately.
Kelly, N; Cawley, D T; Shannon, F J; McGarry, J P
2013-11-01
The stress distribution and plastic deformation of peri-prosthetic trabecular bone during press-fit tibial component implantation in total knee arthroplasty is investigated using experimental and finite element techniques. It is revealed that the computed stress distribution, implantation force and plastic deformation in the trabecular bone is highly dependent on the plasticity formulation implemented. By incorporating pressure dependent yielding using a crushable foam plasticity formulation to simulate the trabecular bone during implantation, highly localised stress concentrations and plastic deformation are computed at the bone-implant interface. If the pressure dependent yield is neglected using a traditional von Mises plasticity formulation, a significantly different stress distribution and implantation force is computed in the peri-prosthetic trabecular bone. The results of the study highlight the importance of: (i) simulating the insertion process of press-fit stem implantation; (ii) implementing a pressure dependent plasticity formulation, such as the crushable foam plasticity formulation, for the trabecular bone; (iii) incorporating friction at the implant-bone interface during stem insertion. Simulation of the press-fit implantation process with an appropriate pressure dependent plasticity formulation should be implemented in the design and assessment of arthroplasty prostheses. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Weber-Spickschen, Thomas Sanjay; Colcuc, Christian; Hanke, Alexander; Clausen, Jan-Dierk; James, Paul Abraham; Horstmann, Hauke
2017-01-01
Purpose: The initial goals of rehabilitation after knee injuries and operations are to achieve full knee extension and to activate quadriceps muscle. In addition to regular physiotherapy, an android-based knee training device is designed to help patients achieve these goals and improve compliance in the early rehabilitation period. This knee training device combines fun in a computer game with muscular training or rehabilitation. Our aim was to test the feasibility and acceptability of this new device. Methods: 50 volunteered subjects enrolled to test out the computer game aided device. The first game was the high-striker game, which recorded maximum knee extension power. The second game involved controlling quadriceps muscular power to simulate flying an aeroplane in order to record accuracy of muscle activation. The subjects evaluated this game by completing a simple questionnaire. Results: No technical problem was encountered during the usage of this device. No subjects complained of any discomfort after using this device. Measurements including maximum knee extension power, knee muscle activation and control were recorded successfully. Subjects rated their experience with the device as either excellent or very good and agreed that the device can motivate and monitor the progress of knee rehabilitation training. Conclusion: To the best of our knowledge, this is the first android-based tool available to fast track knee rehabilitation training. All subjects gave very positive feedback to this computer game aided knee device. PMID:29081870
Extra-articular deformity correction using Taylor spatial frame prior to total knee arthroplasty.
Tawari, Gautam J K; Maheshwari, Rajan; Madan, Sanjeev S
2018-03-20
A good long-term outcome following a total knee arthroplasty relies on restoration of the mechanical axis and effective soft tissue balancing of the prosthetic knee. Arthroplasty surgery in patients with secondary osteoarthritis of the knee with an extra-articular tibial deformity is a complex and challenging procedure. The correction of mal-alignment of the mechanical axis is associated with unpredictable result and with higher revision rates. Single-staged deformity correction and replacement surgery often result in the use of constraint implants. We describe our experience with staged correction of deformity using a Taylor Spatial Frame (TSF) followed by total knee arthroplasty in these patients and highlight the advantage of staged approach. The use of TSF fixator for deformity correction prior to a primary total knee arthroplasty has not been described in the literature. We describe three cases of secondary osteoarthritis of the knee associated with multiplanar tibial deformity treated effectively with a total knee arthroplasty following deformity correction and union using a TSF. All patients had an improved Knee Society score and Oxford Knee score postoperatively and were satisfied with their replacement outcome. Staged deformity correction followed by arthroplasty allows the use of standard primary arthroplasty implants with predicable results and flexible aftercare. This approach may also provide significant improvement of patient symptoms following correction of deformity resulting in deferment of the arthroplasty surgery.
Kuriyama, Shinichi; Ishikawa, Masahiro; Nakamura, Shinichiro; Furu, Moritoshi; Ito, Hiromu; Matsuda, Shuichi
2015-08-01
During cruciate-retaining total knee arthroplasty, surgeons sometimes encounter increased tension of the posterior cruciate ligament. This study investigated the effects of femoral size, posterior tibial slope, and rotational alignment of the femoral and tibial components on forces at the posterior cruciate ligament in cruciate-retaining total knee arthroplasty using a musculoskeletal computer simulation. Forces at the posterior cruciate ligament were assessed with the standard femoral component, as well as with 2-mm upsizing and 2-mm downsizing in the anterior-posterior dimension. These forces were also determined with posterior tibial slope angles of 5°, 7°, and 9°, and lastly, were measured in 5° increments when the femoral (tibial) components were positioned from 5° (15°) of internal rotation to 5° (15°) of external rotation. Forces at the posterior cruciate ligament increased by up to 718N with the standard procedure during squatting. The 2-mm downsizing of the femoral component decreased the force at the posterior cruciate ligament by up to 47%. The 2° increment in posterior tibial slope decreased the force at the posterior cruciate ligament by up to 41%. In addition, posterior cruciate ligament tension increased by 11% during internal rotation of the femoral component, and increased by 18% during external rotation of the tibial component. These findings suggest that accurate sizing and bone preparation are very important to maintain posterior cruciate ligament forces in cruciate-retaining total knee arthroplasty. Care should also be taken regarding malrotation of the femoral and tibial components because this increases posterior cruciate ligament tension. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Optimizing primary total hip replacement--a technique to effect saving of manpower].
Huber, J F; Rink, M; Broger, I; Zumstein, M; Ruflin, G B
2003-01-01
Development of a standardized surgical technique for total hip replacement thereby saving manpower (one assistant) by using a retractor system. Total hip replacement is performed with the patient in a true lateral position on a tunnel cushion. By means of a direct lateral approach the pelvitrochanteric muscles are partially detached using an omega-shaped cut. The Bookwalter retractor is fixed dorsally on the operating table. The ring is centered keeping the greater trochanter in the middle. The Hohmann retractors are fixed to the ring to sufficiently expose the acetabulum. To insert the femoral stem the ring needs to be opened dorsally and the patient's leg is bent 90 degrees in the hip and the knee over the tunnel cushion. The muscles inserting at the greater trochanter are retracted by a separate Hohmann retractor with weight. In a case control study with matched pairs the patients treated with this technique were compared with those treated in supine position with the transgluteal approach. The number of assistants required and the operating time were assessed. All the hip replacements with the patient in side position were performed with one assistant, in supine position with two assistants. The operating time did not differ significantly (supine position 110 min/side position 112 min). The complication rate in both groups was comparable (one secondary wound healing, one transient ischalgia). The process of total hip replacement can be optimized. The described technique allows to spare one surgical assistant without prolonging the operating time.
D'Lima, Darryl D; Patil, Shantanu; Steklov, Nicolai; Colwell, Clifford W
2011-10-01
Tibiofemoral forces are important in the design and clinical outcomes of TKA. We developed a tibial tray with force transducers and a telemetry system to directly measure tibiofemoral compressive forces in vivo. Knee forces and kinematics traditionally have been measured under laboratory conditions. Although this approach is useful for quantitative measurements and experimental studies, the extrapolation of results to clinical conditions may not always be valid. We therefore developed wearable monitoring equipment and computer algorithms for classifying and identifying unsupervised activities outside the laboratory. Tibial forces were measured for activities of daily living, athletic and recreational activities, and with orthotics and braces, during 4 years postoperatively. Additional measurements included video motion analysis, EMG, fluoroscopic kinematic analysis, and ground reaction force measurement. In vivo measurements were used to evaluate computer models of the knee. Finite element models were used for contact analysis and for computing knee kinematics from measured knee forces. A third-generation system was developed for continuous monitoring of knee forces and kinematics outside the laboratory using a wearable data acquisition hardware. By using measured knee forces and knee flexion angle, we were able to compute femorotibial AP translation (-12 to +4 mm), mediolateral translation (-1 to 1.5 mm), axial rotation (-3° to 12°), and adduction-abduction (-1° to +1°). The neural-network-based classification system was able to identify walking, stair-climbing, sit-to-stand, and stand-to-sit activities with 100% accuracy. Our data may be used to improve existing in vitro models and wear simulators, and enhance prosthetic designs and biomaterials.
Auditory display of knee-joint vibration signals
NASA Astrophysics Data System (ADS)
Krishnan, Sridhar; Rangayyan, Rangaraj M.; Bell, G. Douglas; Frank, Cyril B.
2001-12-01
Sounds generated due to rubbing of knee-joint surfaces may lead to a potential tool for noninvasive assessment of articular cartilage degeneration. In the work reported in the present paper, an attempt is made to perform computer-assisted auscultation of knee joints by auditory display (AD) of vibration signals (also known as vibroarthrographic or VAG signals) emitted during active movement of the leg. Two types of AD methods are considered: audification and sonification. In audification, the VAG signals are scaled in time and frequency using a time-frequency distribution to facilitate aural analysis. In sonification, the instantaneous mean frequency and envelope of the VAG signals are derived and used to synthesize sounds that are expected to facilitate more accurate diagnosis than the original signals by improving their aural quality. Auditory classification experiments were performed by two orthopedic surgeons with 37 VAG signals including 19 normal and 18 abnormal cases. Sensitivity values (correct detection of abnormality) of 31%, 44%, and 83%, and overall classification accuracies of 53%, 40%, and 57% were obtained with the direct playback, audification, and sonification methods, respectively. The corresponding d' scores were estimated to be 1.10, -0.36, and 0.55. The high sensitivity of the sonification method indicates that the technique could lead to improved detection of knee-joint abnormalities; however, additional work is required to improve its specificity and achieve better overall performance.
Milles, Jeffrey L; Nuelle, Clayton W; Pfeiffer, Ferris; Stannard, James P; Smith, Patrick; Kfuri, Mauricio; Cook, James L
2017-05-01
Controversy exists regarding double-bundle (DB) versus single-bundle (SB) posterior cruciate ligament (PCL) reconstruction, with differences in multiple variables affecting biomechanical and clinical results. Our objective was to compare immediate postimplantation biomechanics of SB versus DB reconstructions to determine the relative importance of restoring both PCL bundles versus total graft volume. Twenty knees were randomly assigned to five techniques ( n = 4 knees/technique), performed by three surgeons experienced in their technique(s), three SB techniques ( n = 12; all-inside arthroscopic inlay, all-inside suspensory fixation, and arthroscopic-assisted open onlay), and two DB techniques ( n = 8; arthroscopic-assisted open inlay and all-inside suspensory fixation). Each knee was tested in three conditions: PCL-intact, PCL-deficient, and post-PCL reconstruction. Testing consisted of a posterior-directed force at four knee flexion angles, 10, 30, 60, and 90 degrees, to measure load to 5 mm of posterior displacement, maximum displacement (at 100 N load), and stiffness. Data for each knee were normalized, combined into two groups (SB and DB), and then compared using one-way analysis of variance. Graft volumes were calculated and analyzed to determine if differences significantly influenced the biomechanical results. Intact knees were stiffer than both groups at most angles ( p < 0.02; p < 0.05). DB was stiffer than SB at all angles except 30 degrees ( p < 0.05). Intact knees had less laxity than SB ( p < 0.03) and DB ( p < 0.05) at 60 and 90 degrees. DB had less laxity than SB at all angles except 60 degrees ( p < 0.05). Intact knees required more load than SB at 30, 60, and 90 degrees ( p < 0.01) and more than DB at 60 and 90 degrees ( p < 0.05). DB required more load than SB at 30, 60, and 90 degrees ( p < 0.01). Graft volumes did not have strong correlations ( r = 0.13-0.37) to any measurements. Neither group of PCL reconstruction techniques was able to replicate native PCL biomechanics. DB reconstructions were biomechanically superior to SB reconstructions; they may be preferred for clinical use when immediate post-reconstruction graft strength and stability are critical. These results were not strongly influenced by graft size differences, further supporting the PCL codominance theory. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Total knee arthroplasty in patients with a prior fracture of the tibial plateau.
Weiss, Nicholas G; Parvizi, Javad; Trousdale, Robert T; Bryce, Rex D; Lewallen, David G
2003-02-01
A fracture of the tibial plateau may predispose the knee to the development of posttraumatic arthritis. Malunion, intra-articular chondro-osseous defects, limb malalignment, retained internal fixation devices, and poor surrounding soft tissues may in turn compromise the outcome of total knee arthroplasty. The aim of our study was to evaluate the results of total knee arthroplasty in patients with a previous fracture of the tibial plateau. The results of sixty-two condylar total knee arthroplasties performed with cement, from 1988 to 1999, in sixty-two patients with a previous fracture of the tibial plateau were reviewed. The fracture of the tibial plateau had been treated by open reduction and internal fixation in thirty-eight knees, external fixation in one knee, and nonoperatively in twenty-three knees. There were forty women and twenty-two men with an average age of sixty-three years at the time of the arthroplasty. Knee Society scores were recorded preoperatively and at the time of follow-up, at an average of 4.7 years, and complications were noted. No patient was lost to follow-up. The mean Knee Society scores improved significantly (p < 0.0001), from 43.9 points for pain and 52 points for function preoperatively to 82.9 and 84 points, respectively, at the time of the latest follow-up. There were thirteen reoperations, which included manipulation with the patient under anesthesia (five knees), wound revision (three knees), and component revision (five knees). There were six intraoperative complications (10%). A postoperative complication occurred in sixteen knees (26%). The vast majority of patients treated with total knee arthroplasty after a previous fracture of the tibial plateau have substantial improvement in function and relief of pain. However, these patients are at increased risk for perioperative complications, as evidenced by the high reoperation rate of 21% in this study.
The SIGN nail for knee fusion: technique and clinical results.
Anderson, Duane Ray; Anderson, Lucas Aaron; Haller, Justin M; Feyissa, Abebe Chala
2016-02-05
Evaluate the efficacy of using the SIGN nail for instrumented knee fusion. Six consecutive patients (seven knees, three males) with an average age of 30.5 years (range, 18-50 years) underwent a knee arthrodesis with SIGN nail (mean follow-up 10.7 months; range, 8-14 months). Diagnoses included tuberculosis (two knees), congenital knee dislocation in two knees (one patient), bacterial septic arthritis (one knee), malunited spontaneous fusion (one knee), and severe gout with 90° flexion contracture (one knee). The nail was inserted through an anteromedial entry point on the femur and full weightbearing was permitted immediately. All knees had clinical and radiographic evidence of fusion at final follow-up and none required further surgery. Four of six patients ambulated without assistive device, and all patients reported improved overall physical function. There were no post-operative complications. The technique described utilizing the SIGN nail is both safe and effective for knee arthrodesis and useful for austere environments with limited fluoroscopy and implant options.
Bauer, T; Biau, D; Colmar, M; Poux, X; Hardy, P; Lortat-Jacob, A
2010-12-01
The range of motion of the knee joint after Total Knee Replacement (TKR) is a factor of great importance that determines the postoperative function of patients. Much enthusiasm has been recently directed towards the posterior condylar offset with some authors reporting increasing postoperative knee flexion with increasing posterior condylar offset and others who did not report any significant association. Patients undergoing primary total knee replacement were included in a prospective multicentre study and the effect of the posterior condylar offset on the postoperative knee flexion was assessed after adjusting for known influential factors. All knees were implanted by three senior orthopedist surgeons with the same cemented cruciate-sacrificing mobile-bearing implant and with identical surgical technique. Clinical data, active knee flexion and posterior condylar offset were recorded preoperatively and postoperatively at a minimal one year follow-up for all patients. Univariate and multivariate linear models were fitted to select independent predictors of the postoperative knee flexion. Four hundred and ten consecutive total knee replacements (379 patients) were included in the study. The mean preoperative knee flexion was 112°. The mean condylar offset was 28.3mm preoperatively and 29.4mm postoperatively. The mean postoperative knee flexion was 108°. No correlation was found between the posterior condylar offset or the tibial slope and the postoperative knee flexion. The most significant predictive factor for postoperative flexion after posterior-stabilized TKR without PCL retention was the preoperative range of flexion, with a linear effect. Copyright © 2009 Elsevier B.V. All rights reserved.
[The application of electroacupuncture to postoperative rehabilitation of total knee replacement].
Chen, Gang; Gu, Rui-Xin; Xu, Dan-Dan
2012-04-01
To explore the effect of electroacupuncture therapy for postoperative rehabilitation of total knee replacement of knee osteoarthritis. Seventy cases of total knee replacement of knee osteoarthritis were randomly divided into an acupuncture-rehabilitation group and a rehabilitation group, thirty five cases in each group. In acupuncture-rehabilitation group, routine rehabilitation therapy combined with electroacupuncture therapy was applied. The acupoints selection was mainly based on pathological location; Xuehai (SP 10), Liangqiu (ST 34), Dubi (ST 35), Neixiyan (EX-LE 4) and Yanglingquan (GB 34), etc. were selected. In rehabilitation group, routine rehabilitation therapy was applied. The functions of affected knee in both groups were evaluated by artificial total knee replacement scale of the New York Hospital for Special Surgery (HSS), range of motion (ROM) of affected knee, Visual Analogue Scale (VAS) of pain and Manual Muscle Test (MMT) before, and 2, 6 and 12 weeks after surgery. HSS scores in acupuncture-rehabilitation group were markedly higher than those in rehabilitation group in 2, 6 and 12 weeks after surgery (P < 0.05, P < 0.01); VAS scores in acupuncture-rehabilitation group were markedly lower than those in rehabilitation group (P < 0.05, P < 0.01); ROM and MMT in acupuncture-rehabilitation group were little superior to those in rehabilitation group, however, there was no significant difference (all P > 0.05). Rehabilitation therapy combined with electroacupuncture can obviously restrain the pain during rehabilitation process for total knee replacement patients, improve the endurance capacity of rehabilitation training and motivation, and obviously promote the recovery of total knee joint function.
Outcomes of Total Knee Arthroplasty in Patients With Poliomyelitis.
Gan, Zhi-Wei Jonathan; Pang, Hee Nee
2016-11-01
We report our experience with outcomes of poliomyelitis in the Asian population. Sixteen total knee replacements in 14 patients with polio-affected knees were followed up for at least 18 months. Follow-up assessment included scoring with the American Knee Society Score (AKSS), Oxford knee score, and Short Form 36 Health Survey scores. The mean AKSS improved from 25.59 preoperatively to 82.94 at 24 months, with greater improvement in the knee score. The mean Oxford knee score improved from 40.82 preoperatively to 20.53 at 24 months. The mean AKSS pain score rose from 2.35 to 47.66 at 24 months. The Short Form 36 Health Survey physical functioning and bodily pain scores improved for all patients. Primary total knee arthroplasty of poliomyelitis-affected limbs shows good outcomes, improving quality of life, and decreasing pain. Copyright © 2016 Elsevier Inc. All rights reserved.
Ruiz Garate, Virginia; Parri, Andrea; Yan, Tingfang; Munih, Marko; Molino Lova, Raffaele; Vitiello, Nicola; Ronsse, Renaud
2017-01-01
An emerging approach to design locomotion assistive devices deals with reproducing desirable biological principles of human locomotion. In this paper, we present a bio-inspired controller for locomotion assistive devices based on the concept of motor primitives. The weighted combination of artificial primitives results in a set of virtual muscle stimulations. These stimulations then activate a virtual musculoskeletal model producing reference assistive torque profiles for different locomotion tasks (i.e., walking, ascending stairs, and descending stairs). The paper reports the validation of the controller through a set of experiments conducted with healthy participants. The proposed controller was tested for the first time with a unilateral leg exoskeleton assisting hip, knee, and ankle joints by delivering a fraction of the computed reference torques. Importantly, subjects performed a track involving ground-level walking, ascending stairs, and descending stairs and several transitions between these tasks. These experiments highlighted the capability of the controller to provide relevant assistive torques and to effectively handle transitions between the tasks. Subjects displayed a natural interaction with the device. Moreover, they significantly decreased the time needed to complete the track when the assistance was provided, as compared to wearing the device with no assistance. PMID:28367121
The Influence Of Component Alignment On The Life Of Total Knee Prostheses
NASA Astrophysics Data System (ADS)
Bugariu, Delia; Bereteu, Liviu
2012-12-01
An arthritic knee affects the patient's life by causing pain and limiting movement. If the cartilage and the bone surfaces are severely affected, the natural joint is replaced with an artificial joint. The procedure is called total knee arthroplasty (TKA). Lately, the numbers of implanted total knee prostheses grow steadily. An important factor in TKA is the perfect alignment of the total knee prosthesis (TKP) components. Component misalignment can lead to the prosthesis loss by producing wear particles. The paper proposes a study on mechanical behaviors of a TKP based on numerical analysis, using ANSYS software. The numerical analysis is based on both the normal and the changed angle of the components alignment.
Sisak, Krisztian; Lloyd, John; Fiddian, Nick
2011-01-01
Peripheral nerve blocks have found increased popularity in providing prolonged post-operative analgesia following total knee replacement surgery. They generally provide effective analgesia with fewer complications than epidurals. This report describes an acute low-energy knee dislocation after a well balanced, fixed bearing, cruciate-retaining primary total knee replacement performed under a spinal anaesthetic with combined complimentary femoral and sciatic nerve blocks. The dislocation was not accompanied by neurovascular compromise. Due to the subsequent instability and injury to both collaterals, the posterior cruciate ligament and posterolateral corner structures, the knee was treated with a rotating-hinge revision total knee replacement. The dislocation occurred whilst the peripheral nerve blocks (PNB) were still working. We review our incidence of PNB related complications and conclude that PNB remain a safe and effective analgesia for total knee replacements. However, we advocate that ward staff and patients should be sufficiently educated to ensure that unaided post-operative mobilisation is prevented until such a time that patients have regained complete voluntary muscle control. Copyright © 2009 Elsevier B.V. All rights reserved.
Arnold, John B; Mackintosh, Shylie; Olds, Timothy S; Jones, Sara; Thewlis, Dominic
2015-12-01
Total knee arthroplasty (TKA) in people with knee osteoarthritis increases knee-specific and general physical function, but it has not been established if there is a relationship between changes in these elements of functional ability. This study investigated changes and relationships between knee biomechanics during walking, physical activity, and use of time after TKA. Fifteen people awaiting TKA underwent 3D gait analysis before and six months after surgery. Physical activity and use of time were determined in free-living conditions from a high resolution 24-h activity recall. After surgery, participants displayed significant improvements in sagittal plane knee biomechanics and improved their physical activity profiles, standing for 105 more minutes (p=0.001) and performing 64 min more inside chores on average per day (p=0.008). Changes in sagittal plane knee range of motion (ROM) and peak knee flexion positively correlated with changes in total daily energy expenditure, time spent undertaking moderate to vigorous physical activity, inside chores and passive transport (r=0.52-0.66, p=0.005-0.047). Restoration of knee function occurs in parallel and is associated with improvements in physical activity and use of time after TKA. Increased functional knee ROM is required to support improvements in total and context specific physical activity. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
A wearable robotic orthosis with a spring-assist actuator.
Seungmin Jung; Chankyu Kim; Jisu Park; Dongyoub Yu; Jaehwan Park; Junho Choi
2016-08-01
This paper introduces a wearable robotic orthosis with spring-assist actuators, which is designed to assist people who have difficulty in walking. The spring-assist actuator consists of an electrical motor and a spring, which are attached to a rotational axis in parallel to each other. The spring-assist actuator is developed based on the analysis on the stiffness of the knee and hip joints during walking. "COWALK-Mobile," which is a wearable robotic orthosis, is developed using the spring-assist actuators to reduce the required motor torque during walking. The COWALK-Mobile has active hip and knee joints and passive ankle joints to provide assistive torque to the wearer. The required joint torque is generated by the spring as well as the electrical motor, which results in a decrease of maximum required torque for the motor. In order to evaluate the performance of the spring-assist actuator, experiments are carried out. The experiments show that the spring-assist actuators reduced the required motor torque during walking.
The trivector approach for minimally invasive total knee arthroplasty: a technical note.
Benazzo, Francesco; Rossi, Stefano Marco Paolo
2012-09-01
One of the main criticisms of minimally invasive approaches in total knee arthroplasty has been their poor adaptability in cases of major deformity or stiffness of the knee joint. When they are used in such cases, excessive soft-tissue tension is needed to provide appropriate joint exposure. Here, we describe the "mini trivector approach," which has become our standard approach for total knee replacement because it permits us to enlarge the indication for minimally or less invasive total knee replacement to many knees where quad sparing, a subvastus approach, or a mini quad or mini midvastus snip may not be sufficient to achieve correct exposure. It consists of a limited double snip of the VMO and the quadriceps tendon that reduces tension on the extensor mechanism and allows easier verticalization of the patella as well as good joint exposure.
Gregersen, Colin S; Hull, M L
2003-06-01
Assessing the importance of non-driving intersegmental knee moments (i.e. varus/valgus and internal/external axial moments) on over-use knee injuries in cycling requires the use of a three-dimensional (3-D) model to compute these loads. The objectives of this study were: (1) to develop a complete, 3-D model of the lower limb to calculate the 3-D knee loads during pedaling for a sample of the competitive cycling population, and (2) to examine the effects of simplifying assumptions on the calculations of the non-driving knee moments. The non-driving knee moments were computed using a complete 3-D model that allowed three rotational degrees of freedom at the knee joint, included the 3-D inertial loads of the shank/foot, and computed knee loads in a shank-fixed coordinate system. All input data, which included the 3-D segment kinematics and the six pedal load components, were collected from the right limb of 15 competitive cyclists while pedaling at 225 W and 90 rpm. On average, the peak varus and internal axial moments of 7.8 and 1.5 N m respectively occurred during the power stroke whereas the peak valgus and external axial moments of 8.1 and 2.5 N m respectively occurred during the recovery stroke. However, the non-driving knee moments were highly variable between subjects; the coefficients of variability in the peak values ranged from 38.7% to 72.6%. When it was assumed that the inertial loads of the shank/foot for motion out of the sagittal plane were zero, the root-mean-squared difference (RMSD) in the non-driving knee moments relative to those for the complete model was 12% of the peak varus/valgus moment and 25% of the peak axial moment. When it was also assumed that the knee joint was revolute with the flexion/extension axis perpendicular to the sagittal plane, the RMSD increased to 24% of the peak varus/valgus moment and 204% of the peak axial moment. Thus, the 3-D orientation of the shank segment has a major affect on the computation of the non-driving knee moments, while the inertial contributions to these loads for motions out of the sagittal plane are less important.
Use of Hybrid Assistive Limb (HAL®) for a postoperative patient with cerebral palsy: a case report.
Mataki, Yuki; Kamada, Hiroshi; Mutsuzaki, Hirotaka; Shimizu, Yukiyo; Takeuchi, Ryoko; Mizukami, Masafumi; Yoshikawa, Kenichi; Takahashi, Kazushi; Matsuda, Mayumi; Iwasaki, Nobuaki; Kawamoto, Hiroaki; Wadano, Yasuyoshi; Sankai, Yoshiyuki; Yamazaki, Masashi
2018-03-27
The Hybrid Assistive Limb (HAL ® ) is an exoskeleton wearable robot suit that assists in voluntary control of knee and hip joint motion. There have been several studies on HAL intervention effects in stroke, spinal cord injury, and cerebral palsy. However, no study has investigated HAL intervention for patients with cerebral palsy after surgery. We report a case of using HAL in a postoperative patient with cerebral palsy. A 15-year-old boy was diagnosed with spastic diplegia cerebral palsy Gross Motor Function Classification System level IV, with knee flection contracture, equinus foot, and paralysis of the right upper extremity with adduction contracture. He underwent tendon lengthening of the bilateral hamstrings and Achilles tendons. Although the flexion contractures of the bilateral knees and equinus foot improved, muscle strength decreased after the soft tissue surgery. HAL intervention was performed twice during postoperative months 10 and 11. Walking speed, stride, and cadence were increased after HAL intervention. Post HAL intervention, extension angles of the knee in stance phase and hip in the pre-swing phase were improved. In the gait cycle, the proportion of terminal stance in the stance and swing phase was increased. Hybrid Assistive Limb intervention for postoperative patients with cerebral palsy whose muscle strength decreases can enhance improvement in walking ability. Further studies are needed to examine the safety and potential application of HAL in this setting.
Groen, V A; van de Graaf, V A; Scholtes, V A B; Sprague, S; van Wagensveld, B A; Poolman, R W
2015-02-01
Obesity is a major risk factor for the development of knee osteoarthritis, and over the past 30 years the prevalence of obesity has more than doubled. In an advanced-stage knee osteoarthritis is treated with total knee arthroplasty, and the demand for primary total knee arthroplasties is expected to grow exponentially. However, total knee arthroplasty in obese patients is associated with more complications, longer hospital stay and higher costs. We aimed to determine the effects of bariatric surgery on knee complaints in (morbidly) obese (body mass index >30 kg m(-2) ) adult patients. The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, TRIP, BIOSIS-Previews and reference lists of retrieved publications were systematically searched from earliest available up to 20 April 2014 for any English, German, French and Dutch studies. There was no restriction on study design. We included studies on the effect of surgically induced weight reduction on knee complaints in (morbidly) obese adult patients, with a minimal follow-up of 3 months. Studies on the effects of lipectomy or liposuction and studies in which patients had already received a total knee arthroplasty were excluded. Thirteen studies were included in this systematic review with a total of 3,837 patients. Although different assessment tools were used, an overall significant improvement in knee pain was seen in 73% out of the used assessments. All studies measuring intensity of knee pain, knee physical function and knee stiffness showed a significant improvement after bariatric surgery. The quality of evidence was very low or too low for most of the included studies and moderate for one study. Bariatric surgery with subsequent marked weight loss is likely to improve knee pain, physical function and stiffness in (morbidly) obese adult patients. However, with the current available evidence, there is need for high-quality studies. © 2014 World Obesity.
Chen, Peng; Zeng, Min; Xie, Jie; Wang, Long; Su, Weiping; Hu, Yihe
2016-09-28
To investigate the clinical effect of total knee arthroplasty on patients with knee osteoarthritis combined with mild to moderate valgus knee deformity. A total of 15 patients received total knee arthroplasty for correcting mild (10°-15°) to moderate (15°-30°) valgus knee between January 2011 and February 2014 in Xiangya Hospital of Central South University. We adopted a stable prosthesis surgery through patellar medial approach, osteophytes cleaning, conventional osteotomy, a selective soft tissue release and balance technical correcting of knee valgus deformity. Then conventional anticoagulation and symptomatic rehabilitation was utilized. Preoperative and postoperative X-ray was conducted in patients with measuring femor-tibial angle (FTA) and inspecting the prosthesis position. FTA, visual analog scale (VAS) standard, and parallel knee scoring system (KSS) were used to evaluate the clinical effect. Fifteen patients were followed up for 14 to 36 (22.40±11.88) months. The hospitalization time was 7-13 (7.73±1.58) d; operative time was 58-110 (81.8±16.85) min, the dominant blood loss was 140-600 (337.30±143.65) mL. Two cases had knee extension hysteresis, and the knee activity recovered after exercise. Leg power lines were normal. Three postoperative cases suffered anterior knee pain. They were subjected to celecoxib analgesic treatment and the pain gradually eased after 3 months. One postoperative case showed incision discharge and swelling, which was healed after change of dressing. During follow-up, review of X-ray film does not show prosthesis loose, subsidence and other complications. The knee valgus angle (8.1±1.8)°, knee motion range (107.33±9.61)°, KSS knee score (74.7±14.5, 75.3±2.7) and pain score (2.5±0.9) were significantly better than the preoperative (P<0.05). The clinical and function KSS scores showed that the improvement rate was 80%. Total knee arthroplasty is an effective way to treat patients with knee osteoarthritis combined with mild to moderate valgus knee deformity. The correction of deformity and improvement of joint function can be achieved significantly. The clinical result is satisfactory and patients' quality of life is improved.
Ren, J T; Xu, C; Wang, J S; Liu, X L
2017-10-01
Objective: To evaluate the effects of three-dimensional printing patient-specific instrumentation(PSI) versus conventional instrumentation(CI) in the total knee arthroplasty. Methods: According to "patient-specific" , "patient-matched" , "custom" , "Instrumentation" , "Guide Instrumentation" , "cutting blocks" , "total knee arthroplasty" , "total knee replacement" , "TKA" and "TKR" , the literature on PubMed, EMbase, Cochrane library, CBM and WanFang were searched. According to the inclusion and exclusion criteria, the high quality randomized control trial (RCT) studies about three-dimensional (3D) printing patient-specific instrumentation versus conventional instrumentation in the total knee arthroplasty were collected. The post-operative limb mechanical axis outlier, the position of the components outlier, post-operative knee function, operative time, post-operative blood transfusion and complications were analyzed by RevMan 5.3 software. Results: A total of 13 high quality RCT studies were included. The results of Meta-analysis show that there were no statistical differences in the post-operative limb mechanical axis outlier( Z =0.55, P =0.58, 95% CI: 0.78 to 1.56), femoral coronal component outlier( Z =0.38, P =0.71, 95% CI: 0.69 to 1.72), tibia coronal component outlier( Z =1.95, P =0.05, 95% CI: 1.00 to 3.38), femoral rotation angle outlier( Z =0.36, P =0.72, 95% CI: 0.49 to 1.64), post-operative knee function( Z =1.18, P =0.24, 95% CI : -0.66 to 2.63), post-operative blood transfusions( Z =0.74, P =0.46, 95% CI: -0.10 to 0.05) and complications( Z =0.18, P =0.86, 95% CI: -0.07 to 0.05) between the PSI group and the CI group. But there are statistical differences in the operation time( Z =2.66, P =0.01, 95% CI: -15.97 to -2.41)and tibia sagittal component outlier ( Z =3.69, P =0.00, 95% CI: 1.43 to 3.18)between the PSI group and the CI group. Conclusions: In the primary total knee arthroplasty the PSI is not superior over the CI for the knee without severe knee varus or valgus deformity or contracture deformity, without the deformity around the knee and without the knee bone loss and obesity. The use of PSI in the primary total knee arthroplasty are not recommend.
Functional health of patients with knee osteoarthritis in a family medicine clinic in Ibadan.
Ilori, T; Ladipo, M M; Ogunbode, A M
2016-09-01
Patients with knee osteoarthritis experience pain and functional impairment, which impacts upon activities of daily living ultimately leading to a loss of functional independence and low quality- of-life. This study therefore aimed at evaluating the functional health status of patients with knee osteoarthritis in the Family Medicine clinic, University College Hospital, Ibadan, Nigeria. A cross-sectional study was conducted on 270 eligible respondents between January and March 2011. The Ibadan Knee/Hip Osteoarthritis Measure (IKHOAM) was administered after screening with the knee pain screening tool (KNEST). Respondents'Socio- demographic characteristics and knee pain intensity ratings were also recorded. The age range of respondents in the study was from 28 years to 85 years with a female: male ratio 5:1. Out of the 270 respondents studied, 146 (54.1%) reported restriction in performing duties at work. One hundred and twenty seven respondents (47.0%) needed some assistance in walking outside the house for 15 to 20 minutes, whilst 195 (72.2%) required some assistance in climbing stairs. Thirty four (12.6%) of Muslims and 77 (28.5%) of Christians could not kneel to pray. Males are twice more likely to have a better functional health than females (OR= 2.1, 95% CI= 1.0- 4.6, p=0.046). Knee osteoarthritis significantly impairs activities of daily living, especially some socio-cultural and religious practices of respondents. Therefore in addition to treating the knee symptoms, removing environmental barriers may reduce immobility within and outside the home thereby improving functionality.
Beckwée, David; Vaes, Peter; Shahabpour, Maryam; Muyldermans, Ronald; Rommers, Nikki; Bautmans, Ivan
2015-12-01
Bone marrow lesions (BMLs) are considered as predictors of pain, disability, and structural progression of knee osteoarthritis. The relationship between knee loading and BMLs is not yet completely understood. To summarize the available evidence regarding the relationship between joint loading and the prevalence and progression of BMLs in the tibiofemoral joint. Meta-analysis. Three databases (PubMed, Web of Science, and The Cochrane Library) were systematically screened for studies encompassing BMLs and changes in knee loading. A methodological quality assessment was conducted, and a meta-analysis computing overall odds ratios (ORs) was performed where possible. A total of 29 studies involving 7641 participants were included. Mechanical loading was categorized as body weight and composition, compartmental load, structural lesion, and physical activity. High compartmental loads and structural lesions increased the risk for BMLs (overall ORs ranging from 1.56 [95% CI, 1.13-2.15] to 8.2 [95% CI, 4.4-15.1]; P = .006). Body weight increased the risk for BMLs to a lesser extent (overall OR, 1.03; 95% CI, 1.01-1.05; P = .007). Contradictory results for the effect of physical activity on BMLs were found. Augmented compartmental loads and structural lesions increased the risk of the presence or progression of BMLs. Body weight increased the risk for BMLs to a lesser extent. Contradictory results for the effect of physical activity on BMLs may be explained by a dose-response relationship, knee alignment, and structural lesions. It has been shown that unloading the knee temporarily may induce beneficial effects on osteoarthritis-related structural changes. Therefore, an early recognition of BMLs in the aging athlete's knee may provide information to counter the onset and aggravation of symptomatic knee osteoarthritis by reducing the knee load. © 2015 The Author(s).
Mullaji, A B; Shetty, G M
2016-01-01
Collateral ligament release is advocated in total knee arthroplasty (TKA) to deal with significant coronal plane deformities, but is also associated with significant disadvantages. We describe steps to avoid release of the collateral (superficial medial and lateral collateral) ligaments during TKA in severely deformed knees, while correcting deformity and balancing the knee. ©2016 The British Editorial Society of Bone & Joint Surgery.
[Arthrodesis following revision of a knee endoprosthesis. Literature review 1984-1994].
Kohn, D; Schmolke, S
1996-04-01
Two percent of primary and 8% of revision total knee replacements are followed by arthrodesis. Today knee arthrodesis is the most important salvage procedure after failed total knee arthroplasty, resection arthroplasty and above-the-knee amputation being the only alternatives. Analysis of the literature between 1984 and 1994 revealed 533 cases treated with arthrodesis of the knee; 403 were done after failed total knee arthroplasty. The fusion rate was 74%. External fixation, intramedullary nail, plates and combinations of these are currently used for fixation. The literature and an analysis of our own patients from 1988 to 1994 showed that arthrodesis after failed arthroplasty is a difficult procedure, and complications often occur. Bone loss of the distal femur and proximal tibia is the one most important prognostic factor. A new classification system for bone loss is presented.
Profix cemented total knee replacement: a 5-year outcome review from Lagos, Nigeria.
Ugbeye, M E; Odunubi, O O; Dim, E M; Ekundayo, O O
2012-01-01
Total knee replacement is a standard treatment for severe osteoarthritis of the knees. It is however, still a novel procedure in Nigeria. Literature on the procedure and outcome of management are sparse in Nigeria. This study aimed at describing Total Knee prosthetic Replacement as it is practiced in National Orthopaedic Hospital, Lagos. Data on patients treated with Total knee replacement between 2006 and 2010 were analyzed retrospectively. The standard anterior approach, with a medial parapatellar incision under pneumatic tourniquet was used in all cases. There were a total of 59 knees in 48 patients operated, with a female: male ratio of 5:1. Patients were in the sixth to ninth decades of life. There was a statistically significant relationship between duration of symptoms and severity of angular deformity. The average pre-operative Knee score (KS) was 27 and average function score (FS) was 43. Average duration of surgery was 126.38 minutes. Tourniquet removal after wound closure was associated with reduced intra-operative blood loss (p < 0.05). Post-operative complications included peri-prosthetic fracture (1.69%), post-operative anaemia (8.47%), superficial wound dehiscence (3.39%) and foot drop (3.39%). The mean post-operative KS and FS increased to 80 and 75 respectively. Total knee replacement, though a novel procedure in our institution is beneficial to patients with severe osteoarthritis. A long term outcome study is being planned.
The dynamic nature of alignment and variations in normal knees.
Deep, K; Eachempati, K K; Apsingi, S
2015-04-01
The restoration of knee alignment is an important goal during total knee arthroplasty (TKA). In the past surgeons aimed to restore neutral limb alignment during surgery. However, previous studies have demonstrated alignment to be dynamic, varying depending on the position of the limb and the degree of weight-bearing, and between patients. We used a validated computer navigation system to measure the femorotibial mechanical angle (FTMA) in 264 knees in 77 male and 55 female healthy volunteers aged 18 to 35 years (mean 26.2). We found the mean supine alignment to be a varus angle of 1.2° (standard deviation (sd) 4), with few patients having neutral alignment. FTMA differs significantly between males and females (with a mean varus of 1.7° (sd 4) and 0.4° (sd 3.9), respectively; p = 0.008). It changes significantly with posture, the knee hyperextending by a mean of 5.6°, and coronal plane alignment becoming more varus by 2.2° (sd 3.6) on standing compared with supine. Knee alignment is different in different individuals and is dynamic in nature, changing with different postures. This may have implications for the assessment of alignment in TKA, which is achieved in non-weight-bearing conditions and which may not represent the situation observed during weight-bearing. ©2015 The British Editorial Society of Bone & Joint Surgery.
Manning, William A; Ghosh, Kanishka; Blain, Alasdair; Longstaff, Lee; Deehan, David John
2017-06-01
Accurate soft tissue balance must be achieved to improve functional outcome after total knee arthroplasty (TKA). Sensor-integrated tibial trials have been introduced that allow real-time measurement of tibiofemoral kinematics during TKA. This study examined the interplay between tibiofemoral force and laxity, under defined intraoperative conditions, so as to quantify the kinematic behaviour of the CR femoral single-radius knee. TKA was undertaken in eight loaded cadaveric specimens. Computer navigation in combination with sensor data defined laxity and tibiofemoral contact force, respectively, during manual laxity testing. Fixed-effect linear modelling allowed quantification of the effect for flexion angle, direction of movement and TKA implantation upon the knee. An inverse relationship between laxity and contact force was demonstrated. With flexion, laxity increased as contact force decreased under manual stress. Change in laxity was significant beyond 30° for coronal plane laxity and beyond 60° for rotatory laxity (p < 0.01). Rotational stress in mid-flexion demonstrated the greatest mismatch in inter-compartmental forces. Contact point position over the tibial sensor demonstrated paradoxical roll-forward with knee flexion. Traditional balancing techniques may not reliably equate to uniform laxity or contact forces across the tibiofemoral joint through a range of flexion and argue for the role of per-operative sensor use to aid final balancing of the knee.
Custom-fit total knee arthroplasty: our initial experience with 30 knees.
Bonicoli, Enrico; Andreani, Lorenzo; Parchi, Paolo; Piolanti, Nicola; Lisanti, Michele
2014-10-01
We report our initial experience of total knee arthroplasty (TKA) using customized cutting block technology in 30 TKAs from December 2010 to September 2012. Customized blocks were generated for each of the knees using preoperative magnetic resonance imaging of knee and long-leg weight-bearing radiographs. At 30 days, long-leg radiographs were obtained to evaluate the coronal alignment. Twenty-six of the 30 knees had a mechanical axis restored to within 3° of neutral. We conclude that this technology can be safely used in most of the cases of osteoarthritis.
Miyake, Tamon; Kobayashi, Yo; Fujie, Masakatsu G; Sugano, Shigeki
2017-07-01
Gait training robots are useful for changing gait patterns and decreasing risk of trip. Previous research has reported that decreasing duration of the assistance or guidance of the robot is beneficial for efficient gait training. Although robotic intermittent control method for assisting joint motion has been established, the effect of the robot intervention timing on change of toe clearance is unclear. In this paper, we tested different timings of applying torque to the knee, employing the intermittent control of a gait training robot to increase toe clearance throughout the swing phase. We focused on knee flexion motion and designed a gait training robot that can apply flexion torque to the knee with a wire-driven system. We used a method of timing detecting for the robot conducting torque control based on information from the hip, knee, and ankle angles to establish a non-time dependent parameter that can be used to adapt to gait change, such as gait speed. We carried out an experiment in which the conditions were four time points: starting the swing phase, lifting the foot, maintaining knee flexion, and finishing knee flexion. The results show that applying flexion torque to the knee at the time point when people start lifting their toe is effective for increasing toe clearance in the whole swing phase.
A Comparison of Two Surgical Techniques Using the Unity Knee™ Total Knee System
2018-04-24
Osteoarthritis, Knee; Rheumatoid Arthritis; Post-Traumatic Osteoarthritis of Knee; Varus Deformity, Not Elsewhere Classified, Knee; Valgus Deformity, Not Elsewhere Classified, Knee; Flexion Deformity, Knee; Fracture of Distal End of Femur; Fracture of Upper End of Tibia
Design comparison: manipulation after total knee arthroplasty.
Rogers, Jason M; Patel, Kevin V; Barnes, C Lowry
2015-01-01
Postoperative stiffness is a relatively uncommon issue in total knee arthroplasty (TKA). However, it can be a debilitating complication when it occurs. Manipulation under anesthesia (MUA) is commonly used as the primary treatment modality following failed physiotherapy. The Advance medial pivot knee (Wright Medical Technology) was created in an effort to prevent stiffness postoperatively and increase range of motion. The Evolution medial pivot knee is a second-generation design that builds on the technology of the Advance knee. This article presents a retrospective review of prospectively collected data on 881 primary medial pivot knees (592 Advance knees, 289 Evolution knees). It was theorized that the design changes made to the Evolution knees might contribute toward reducing the need for MUA. It was found that the Evolution knees required significantly fewer manipulations under anesthesia (p = .036). The design modifications made to the Evolution knees may have contributed to the lower rate of MUA.
Outcome following total knee arthroplasty in obese versus non-obese Asian patients.
Goh, Graham Seow-Hng; Liow, Ming Han Lincoln; Mitra, Amit Kanta
2015-12-01
To compare the outcome following total knee arthroplasty (TKA) in obese and non-obese Asian patients. 27 obese patients were compared with 27 non-obese controls matched for age, gender, diagnosis (osteoarthritis), prosthesis, preoperative Knee Society knee and function scores, preoperative Oxford Knee Score, and follow-up duration. All TKAs were performed by a single surgeon. Patients were assessed at 6 months and 2 years for the range of motion, Knee Society knee and function scores, Oxford Knee Score, and Short Form-36 Health Survey (SF-36). The obese and non-obese groups did not differ significantly in pre- and post-operative variables: range of motion, Knee Society knee and function scores, Oxford Knee Score, and SF-36 score. Using revision as an end-point, implant survival was 100%. There were no intra- or post-operative complications in either group. Obese and non-obese Asian patients achieved a comparable outcome following TKA.
Purevsuren, Tserenchimed; Dorj, Ariunzaya; Kim, Kyungsoo; Kim, Yoon Hyuk
2016-04-01
The computational modeling approach has commonly been used to predict knee joint contact forces, muscle forces, and ligament loads during activities of daily living. Knowledge of these forces has several potential applications, for example, within design of equipment to protect the knee joint from injury and to plan adequate rehabilitation protocols, although clinical applications of computational models are still evolving and one of the limiting factors is model validation. The objective of this study was to extend previous modeling technique and to improve the validity of the model prediction using publicly available data set of the fifth "Grand Challenge Competition to Predict In Vivo Knee Loads." A two-stage modeling approach, which combines conventional inverse dynamic analysis (the first stage) with a multi-body subject-specific lower limb model (the second stage), was used to calculate medial and lateral compartment contact forces. The validation was performed by direct comparison of model predictions and experimental measurement of medial and lateral compartment contact forces during normal and turning gait. The model predictions of both medial and lateral contact forces showed strong correlations with experimental measurements in normal gait (r = 0.75 and 0.71) and in turning gait trials (r = 0.86 and 0.72), even though the current technique over-estimated medial compartment contact forces in swing phase. The correlation coefficient, Sprague and Geers metrics, and root mean squared error indicated that the lateral contact forces were predicted better than medial contact forces in comparison with the experimental measurements during both normal and turning gait trials. © IMechE 2016.
Tanaka, Yoshihisa; Nakamura, Shinichiro; Kuriyama, Shinichi; Ito, Hiromu; Furu, Moritoshi; Komistek, Richard D; Matsuda, Shuichi
2016-11-01
It is unknown whether a computer simulation with simple models can estimate individual in vivo knee kinematics, although some complex models have predicted the knee kinematics. The purposes of this study are first, to validate the accuracy of the computer simulation with our developed model during a squatting activity in a weight-bearing deep knee bend and then, to analyze the contact area and the contact stress of the tri-condylar implants for individual patients. We compared the anteroposterior (AP) contact positions of medial and lateral condyles calculated by the computer simulation program with the positions measured from the fluoroscopic analysis for three implanted knees. Then the contact area and the stress including the third condyle were calculated individually using finite element (FE) analysis. The motion patterns were similar in the simulation program and the fluoroscopic surveillance. Our developed model could nearly estimate the individual in vivo knee kinematics. The mean and maximum differences of the AP contact positions were 1.0mm and 2.5mm, respectively. At 120° of knee flexion, the contact area at the third condyle was wider than the both condyles. The mean maximum contact stress at the third condyle was lower than the both condyles at 90° and 120° of knee flexion. Individual bone models are required to estimate in vivo knee kinematics in our simple model. The tri-condylar implant seems to be safe for deep flexion activities due to the wide contact area and low contact stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
[CORRECTION OF VARUS KNEE WITH REDUCTION OSTEOTOMY DURING TOTAL KNEE ARTHROPLASTY].
Su, Weiping; Xie, Jie; Li, Mingqing; Zeng, Min; Lei, Pengfei; Wang, Long; Hu, Yihe
2015-12-01
To evaluate the effectiveness of reduction osteotomy for correction of varus knee during total knee arthroplasty. A retrospective analysis was made on the clinical data of 16 patients (24 knees) who received reduction osteotomy for correcting varus knee during total knee arthroplasty between May 2010 and July 2012. There were 2 males (3 knees) and 14 females (21 knees), with an average age of 67 years (range, 57-79 years). The disease duration ranged from 3 to 15 years (mean, 9.1 years). The Knee Society Score (KSS) was 38.71 ± 10.04 for clinical score and 50.31 ± 14.31 for functional score. The range of motion (ROM) of the knee was (91.88 ± 13.01). The tibiofemoral angle was (9.04 ± 4.53)° of varus deformity. Reduction osteotomy was applied to correct varus knee. The operation time was 85-245 minutes (mean, 165.5 minutes); the obvious blood loss was 10-800 mL (mean, 183.1 mL); the hospitalization time was 8-22 days (mean, 13.6 days). All incisions healed by first intention. No neurovascular injury or patellar fracture occurred. The follow-up duration ranged from 37 to 62 months (mean, 48 months). The tibiofemoral angle was corrected to (3.92 ± 1.89)° of valgus at 48 hours after operation. The lower limb alignment recovered to normal. The X-ray films showed no evidence of obvious radiolucent line, osteolysis, or prosthesis subsidence. The results of KSS were significantly improved to 84.21 ± 6.49 for clinical score and 85.31 ± 6.95 for functional score (t = 20.665, P = 0.000; t = 9.585, P = 0.000); and ROM of the knee was significantly increased to (105.83 ± 11.29)° (t = 8.333, P = 0.000) at last follow-up. The effectiveness of reduction osteotomy for varus knee deformity during total knee arthroplasty is satisfactory. Proper alignment, ROM, and function of knee can be achieved.
Carey, Brian W; Harty, James
2018-03-15
The ATTUNE Knee by DePuy Synthes was introduced in 2013. It is designed to provide better range of motion and address patient-reported instability. The PFC Sigma Knee, an earlier prosthesis by DePuy Synthes, is a common knee replacement with a strong clinical track record. Our aim is to compare the outcomes after primary total knee replacement for end-stage knee osteoarthritis of the PFC and ATTUNE knee systems in 21 patients who each have prosthesis in opposite knees using WOMAC, Oxford Knee and SF-12 scores and evaluation of range of motion. A review was carried out on 21 patients who underwent primary total knee replacement with both the ATTUNE and PFC knee systems. These were staged operations performed in the same institution and by the same surgeon. All cases were followed up for a minimum of 6 months. WOMAC, Oxford Knee and SF-12 scores, as well as knee range of motion were recorded preoperatively and at 6 months postoperatively. There was a significant difference in pre- to 6-month post-operative outcomes in PFC and ATTUNE groups with regard to improvement in range of motion (10° ± 8 and 13° ± 11, respectively). There was also a significant improvement in WOMAC scores (PFC group) and Oxford Knee Scores (ATTUNE group) (8.9 ± 7.7 and 12.1 ± 8.4, respectively). There was a significant improvement in SF-12 Score in both groups (10.1 ± 9.3 for PFC and 15.8 ± 13.3 for ATTUNE). The minimum clinically important difference (MCID) in scoring systems at 6 months was reached by 6 patients in the PFC group and 12 in the ATTUNE group. A significant difference was demonstrated in clinical outcome at 6 months postoperatively between PFC and ATTUNE knee systems in patients who underwent total knee arthroplasty with both prostheses. Superior results were recorded for the ATTUNE knee system.
Figueroa, José; Guarachi, Juan Pablo; Matas, José; Arnander, Magnus; Orrego, Mario
2016-04-01
Computed tomography (CT) is widely used to assess component rotation in patients with poor results after total knee arthroplasty (TKA). The purpose of this study was to simultaneously determine the accuracy and reliability of CT in measuring TKA component rotation. TKA components were implanted in dry-bone models and assigned to two groups. The first group (n = 7) had variable femoral component rotations, and the second group (n = 6) had variable tibial tray rotations. CT images were then used to assess component rotation. Accuracy of CT rotational assessment was determined by mean difference, in degrees, between implanted component rotation and CT-measured rotation. Intraclass correlation coefficient (ICC) was applied to determine intra-observer and inter-observer reliability. Femoral component accuracy showed a mean difference of 2.5° and the tibial tray a mean difference of 3.2°. There was good intra- and inter-observer reliability for both components, with a femoral ICC of 0.8 and 0.76, and tibial ICC of 0.68 and 0.65, respectively. CT rotational assessment accuracy can differ from true component rotation by approximately 3° for each component. It does, however, have good inter- and intra-observer reliability.
Arthroscopically assisted knee contracture release secondary to melorheostosis: a case report.
Claramunt, Raúl Torres; López, Xavier Pelfort; Palou, Enric Cáceres; García, Joan C Monllau; Verdie, Lluís Puig
2011-02-01
Melorheostosis is a rare non-hereditary bone disease characterized by a radiographic pattern of flowing hyperostosis along the cortex with sclerotomal distribution. We report a case of a patient with severe knee contracture and a restricted range of motion caused by intraarticular bone fragment and hyperostotic bone lesions secondary to melorheostosis. An arthroscopically assisted approach was used successfully in order to remove free bone fragments and to release the hyperostotic lesions in the bone cortex of the distal femur.
Schnaser, Erik; Lee, Yuo-yu; Boettner, Friedrich; Gonzalez Della Valle, Alejandro
2015-08-01
The achievement of a well-balanced total knee arthroplasty is necessary for long-term success. We hypothesize that the dislocation of the patella during surgery affects the distribution of loads in the medial and lateral compartments. Intraoperative load sensors were used to record medial and lateral compartment loads in 56 well-balanced TKAs. Loads were recorded in full extension, relaxed extension, at 45 and 90° of flexion at full gravity-assisted flexion, with the patella in four different positions: dislocated (everted and not), located, and located and secured with two retinacular sutures. The loads in the lateral compartment in flexion were higher with a dislocated patella than with a located patella (P<0.001). A lateralized extensor mechanism artificially increases in the lateral compartment loads in flexion during TKA surgery. Instruments that allow intraoperative soft tissue balance with the patella in a physiologic position are more likely to replicate postoperative compartment loads. II (prospective comparative study). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Salvage of infected total knee fusion: the last option.
Wiedel, Jerome D
2002-11-01
Currently the most common indication for an arthrodesis of the knee is a failed infected total knee prosthesis. Other causes of a failed total knee replacement that might necessitate a knee fusion include aseptic loosening, deficient extensor mechanism, poor soft tissues, and Charcot joint. Techniques available for achieving a knee fusion are external fixation and internal fixation methods. The external fixation compression devices have been the most widely used for knee fusion and have been successful until the indications for fusion changed to mostly failed prosthetic knee replacement. With failed total knee replacement, the problem of severe bone loss became an issue, and the external fixation compression devices, even including the biplane external fixators, have been the least successful method reported for gaining fusion. The Ilizarov technique has been shown to achieve rigid fixation despite this bone loss, and a review of reports are showing high fusion rates using this method. Internal fixation methods including plate fixation and intramedullary nails have had the best success in gaining fusion in the face of this bone loss and have replaced external fixation methods as the technique of choice for knee fusion when severe bone loss is present. A review of the literature and a discussion of different fusion techniques are presented including a discussion of the influence that infection has on the success of fusion.
Intraoperative evaluation of total knee replacement: kinematic assessment with a navigation system.
Casino, Daniela; Zaffagnini, Stefano; Martelli, Sandra; Lopomo, Nicola; Bignozzi, Simone; Iacono, Francesco; Russo, Alessandro; Marcacci, Maurilio
2009-04-01
Interest in the kinematics of reconstructed knees has increased since it was shown that the alteration of knee motion could lead to abnormal wear and damage to soft tissues. We performed intraoperative kinematic measurements using a navigation system to study knee kinematics before and after posterior substituting rotating platform total knee arthroplasty (TKA). We verified intraoperatively (1) if varus/valgus (VV) laxity and anterior/posterior (AP) laxity were restored after TKA; (2) if TKA induced abnormal femoral rollback; and (3) how tibial axial rotation was influenced by TKA throughout the range of flexion. We found that TKA improved alignment in preoperative osteoarthritic varus knees which became neutral after surgery and maintained a neutral alignment in neutral knees. The VV stability at 0 degrees was restored while AP laxity at 90 degrees significantly increased after TKA. Following TKA, the femur had an abnormal anterior translation up to 60 degrees of flexion, followed by a small rollback of 12 +/- 5 mm. TKA influenced the tibia rotation pattern during flexion, but not the total amount of internal/external rotation throughout whole range of flexion, which was preserved after TKA (6 degrees +/- 5 degrees ). This study showed that the protocol proposed might be useful to adjust knee stability at time zero and that knee kinematic outcome during total knee replacement can be monitored by a navigation system.
Mootanah, R.; Imhauser, C.W.; Reisse, F.; Carpanen, D.; Walker, R.W.; Koff, M.F.; Lenhoff, M.W.; Rozbruch, S.R.; Fragomen, A.T.; Dewan, Z.; Kirane, Y.M.; Cheah, Pamela A.; Dowell, J.K.; Hillstrom, H.J.
2014-01-01
A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between EE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning. PMID:24786914
Mootanah, R; Imhauser, C W; Reisse, F; Carpanen, D; Walker, R W; Koff, M F; Lenhoff, M W; Rozbruch, S R; Fragomen, A T; Dewan, Z; Kirane, Y M; Cheah, K; Dowell, J K; Hillstrom, H J
2014-01-01
A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning.
Röhner, Eric; Windisch, Christoph; Nuetzmann, Katy; Rau, Max; Arnhold, Michael; Matziolis, Georg
2015-01-01
Background: Periprosthetic infection is one of the most dreaded orthopaedic complications. Current treatment procedures include one-stage or two-stage revision total knee arthroplasty. If the periprosthetic infection is no longer controllable after several revision total knee arthroplasties, many surgeons regard knee arthrodesis as a promising option. The aim of our study was to ascertain whether intramedullary nailing results in the suppression or eradication of an infection and to identify risk factors for persistent infection. Methods: All patients who had undergone intramedullary nailing following septic failure of revision total knee arthroplasty between 1997 and 2013 were included in the study. Pathogens, risk factors predisposing to persistent infection, and the rate of persistent infections were recorded. In addition, a visual analog scale (VAS) and Knee injury Osteoarthritis Outcome Score (KOOS), Knee Society Score (KSS), Lysholm, Short Form-36 (SF-36), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaires were completed to assess clinical outcomes and quality of life. Results: Twenty-six patients were included in the study. Thirteen (50%) had a persistent infection requiring additional revision surgery. Nineteen patients (73%) reported persistent pain (VAS score of >3). All scores showed marked impairment of quality of life. Conclusions: Intramedullary nailing following septic failure of revision total knee arthroplasty must be regarded with skepticism, and we cannot recommend it. Repeat revision total knee arthroplasty or amputation should be considered as an alternative in such difficult cases. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:25695981
Collateral ligament strains during knee joint laxity evaluation before and after TKA.
Delport, Hendrik; Labey, Luc; De Corte, Ronny; Innocenti, Bernardo; Vander Sloten, Jos; Bellemans, Johan
2013-08-01
Passive knee stability is provided by the soft tissue envelope. There is consensus among orthopedic surgeons that good outcome in Total Knee Arthroplasty requires equal tension in the medial/lateral compartment of the knee joint, as well as equal tension in the flexion/extension gap. The purpose of this study was to quantify the ligament laxity in the normal non-arthritic knee before and after Posterior-Stabilized Total Knee Arthroplasty. We hypothesized that the Medial/Lateral Collateral Ligament shows minimal changes in length when measured directly by extensometers in the native human knee during varus/valgus laxity testing. We also hypothesized that due to differences in material properties and surface geometry, native laxity is difficult to reconstruct using a Posterior-Stabilized Total Knee. Six specimens were used to perform this in vitro cadaver test using extensometers to provide numerical values for laxity and varus-valgus tilting in the frontal plane. This study enabled a precise measurement of varus-valgus laxity as compared with the clinical assessment. The strains in both ligaments in the replaced knee were different from those in the native knee. Both ligaments were stretched in extension, in flexion the Medial Collateral Ligament tends to relax and the Lateral Collateral Ligament remains tight. As material properties and surface geometry of the replaced knee add stiffness to the joint, we recommend to avoid overstuffing the joint, when using this type of Posterior-Stabilized Total Knee Arthroplasty, in order to obtain varus/valgus laxity close to the native joint. Copyright © 2013 Elsevier Ltd. All rights reserved.
The SIGN nail for knee fusion: technique and clinical results
Anderson, Duane Ray; Anderson, Lucas Aaron; Haller, Justin M.; Feyissa, Abebe Chala
2016-01-01
Purpose: Evaluate the efficacy of using the SIGN nail for instrumented knee fusion. Methods: Six consecutive patients (seven knees, three males) with an average age of 30.5 years (range, 18–50 years) underwent a knee arthrodesis with SIGN nail (mean follow-up 10.7 months; range, 8–14 months). Diagnoses included tuberculosis (two knees), congenital knee dislocation in two knees (one patient), bacterial septic arthritis (one knee), malunited spontaneous fusion (one knee), and severe gout with 90° flexion contracture (one knee). The nail was inserted through an anteromedial entry point on the femur and full weightbearing was permitted immediately. Results: All knees had clinical and radiographic evidence of fusion at final follow-up and none required further surgery. Four of six patients ambulated without assistive device, and all patients reported improved overall physical function. There were no post-operative complications. Conclusion: The technique described utilizing the SIGN nail is both safe and effective for knee arthrodesis and useful for austere environments with limited fluoroscopy and implant options. PMID:27163095
2013-01-01
Background Knee extensor strength and knee extension range of motion (ROM) are important predictors of physical function in patients with a total knee arthroplasty (TKA). However, the relationship between the two knee measures remains unclear. The purpose of this study was to examine whether changes in knee extensor strength mediate the association between changes in knee extension ROM and self-report physical function. Methods Data from 441 patients with a TKA were collected preoperatively and 6 months postoperatively. Self-report measure of physical function was assessed by the Short Form 36 (SF-36) questionnaire. Knee extensor strength was measured by handheld dynamometry and knee extension ROM by goniometry. A bootstrapped cross product of coefficients approach was used to evaluate mediation effects. Results Mediation analyses, adjusted for clinicodemographic measures, revealed that the association between changes in knee extension ROM and SF-36 physical function was mediated by changes in knee extensor strength. Conclusions In patients with TKA, knee extensor strength mediated the influence of knee extension ROM on physical function. These results suggest that interventions to improve the range of knee extension may be useful in improving knee extensor performance. PMID:23332039
Powers, Christopher M; Chen, Yu-Jen; Scher, Irving; Lee, Thay Q
2006-01-01
The purpose of this study was to determine the influence of patellofemoral joint contact geometry on the modeling of three-dimensional patellofemoral joint forces. To achieve this goal, patellofemoral joint reaction forces (PFJRFs) that were measured from an in-vitro cadaveric set-up were compared to PFJRFs estimated from a computer model that did not consider patellofemoral joint contact geometry. Ten cadaver knees were used in this study. Each was mounted on a custom jig that was fixed to an Instron frame. Quadriceps muscle loads were accomplished using a pulley system and weights. The force in the patellar ligament was obtained using a buckle transducer. To quantify the magnitude and direction of the PFJRF, a six-axis load cell was incorporated into the femoral fixation system so that a rigid body assumption could be made. PFJRF data were obtained at 0 degrees , 20 degrees , 40 degrees and 60 degrees of knee flexion. Following in vitro testing, SIMM modeling software was used to develop computational models based on the three-dimensional coordinates (Microscribe digitizer) of individual muscle and patellar ligament force vectors obtained from the cadaver knees. The overall magnitude of the PFJRF estimated from the computer generated models closely matched the direct measurements from the in vitro set-up (Pearson's correlation coefficient, R(2)=0.91, p<0.001). Although the computational model accurately estimated the posteriorly directed forces acting on the joint, some discrepancies were noted in the forces acting in the superior and lateral directions. These differences however, were relatively small when expressed as a total of the overall PFJRF magnitude.
Skinner, Sarah
2012-11-01
Magnetic resonance imaging (MRI) is the gold standard in noninvasive investigation of knee pain. It has a very high negative predictive value and may assist in avoiding unnecessary knee arthroscopy; its accuracy in the diagnosis of meniscal and anterior cruciate ligament (ACL) tears is greater than 89%; it has a greater than 90% sensitivity for the detection of medial meniscal tears; and it is probably better at assessing the posterior horn than arthroscopy.
Deierl, K; Pandit, A; Trakru, S
2014-01-01
Introduction The aim of this prospective study was to investigate the risk of contamination of surgical gloves during preparation and draping in joint replacement surgery. Methods During 46 hip and knee replacement procedures, the gloves of orthopaedic consultants (n=5) and registrars (n=3) were assessed for contamination immediately after draping by impression of gloved fingers on blood agar. Contamination was evaluated by the surgeon’s grade, the type of procedure, the role of the assistant and the dominance of the hand. Results A total of 125 pairs of top gloves were examined (79 pairs from registrars and 46 pairs from consultants). Bacterial contamination was isolated on 19 pairs (15.2%) (16 pairs from registrars and 3 pairs from consultants, p=0.04). Coagulase negative staphylococci were the main isolates and contamination was considered low in all cases (1–5 colonies). Contamination was seen more on the dominant hand (16 gloves from dominant hands and 6 from non-dominant hands, p=0.04), on the index finger and thumb. More contaminated gloves were seen in hip arthroplasty procedures (16 pairs from total hip replacements vs 3 pairs from total knee replacements, p=0.02). Conclusions Contamination of glove fingertips during draping in joint replacement procedures is more likely to occur among junior surgeons, in hip rather than knee arthroplasty procedures and on the dominant hand. It is therefore essential that surgeons of different grades replace gloves used in draping to avoid exposing patients to the risk of infection. PMID:25198974
In vivo determination of total knee arthroplasty kinematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komistek, Richard D; Mahfouz, Mohamed R; Bertin, Kim
2008-01-01
The objective of this study was to determine if consistent posterior femoral rollback of an asymmetrical posterior cruciate retaining (PCR) total knee arthroplasty was mostly influenced by the implant design, surgical technique, or presence of a well-functioning posterior cruciate ligament (PCL). Three-dimensional femorotibial kinematics was determined for 80 subjects implanted by 3 surgeons, and each subject was evaluated under fluoroscopic surveillance during a deep knee bend. All subjects in this present study having an intact PCL had a well-functioning PCR knee and experienced normal kinematic patterns, although less in magnitude than the normal knee. In addition, a surprising finding wasmore » that, on average, subjects without a PCL still achieved posterior femoral rollback from full extension to maximum knee flexion. The findings in this study revealed that implant design did contribute to the normal kinematics demonstrated by subjects having this asymmetrical PCR total knee arthroplasty.« less
Anterior knee pain after a total knee arthroplasty: What can cause this pain?
Breugem, Stéfanus Jacob Martinus; Haverkamp, Daniël
2014-01-01
Total Knee Arthroplasty has been shown to be a successful procedure for treating patients with osteoarthritis, and yet approximately 5%-10% of patients experience residual pain, especially in the anterior part of the knee. Many theories have been proposed to explain the etiology of this anterior knee pain (AKP) but, despite improvements having been made, AKP remains a problem. AKP can be described as retropatellar or peripatellar pain, which limits patients in their everyday lives. Patients suffering from AKP experience difficulty in standing up from a chair, walking up and down stairs and riding a bicycle. The question asked was: “How can a ‘perfectly’ placed total knee arthroplasty (TKA) still be painful: what can cause this pain?”. To prevent AKP after TKA it is important to first identify the different anatomical structures that can cause this pain. Greater attention to and understanding of AKP should lead to significant pain relief and greater overall patient satisfaction after TKA. This article is a review of what pain is, how nerve signalling works and what is thought to cause Anterior Knee Pain after a Total Knee Arthroplasty. PMID:25035818
Bao, H R C; Zhu, D; Gong, H; Gu, G S
2013-03-01
In recent years, with technological advances in arthroscopy and magnetic resonance imaging and improved biomechanical studies of the meniscus, there has been some progress in the diagnosis and treatment of injuries to the roots of the meniscus. However, the biomechanical effect of posterior lateral meniscus root tears on the knee has not yet become clear. The purpose of this study was to determine the effect of a complete radial posterior lateral meniscus root tear on the knee contact mechanics and the function of the posterior meniscofemoral ligament on the knee with tear in the posterior root of lateral meniscus. A finite element model of the knee was developed to simulate different cases for intact knee, a complete radial posterior lateral meniscus root tear, a complete radial posterior lateral meniscus root tear with posterior meniscofemoral ligament deficiency, and total meniscectomy of the lateral meniscus. A compressive load of 1000 N was applied in all cases to calculate contact areas, contact pressure, and meniscal displacements. The complete radial posterior lateral meniscus root tear decreased the contact area and increased the contact pressure on the lateral compartment under compressive load. We also found a decreased contact area and increased contact pressure in the medial compartment, but it was not obvious compared to the lateral compartment. The lateral meniscus was radially displaced by compressive load after a complete radial posterior lateral meniscus root tear, and the displacement took place mainly in the body and posterior horn of lateral meniscus. There were further decrease in contact area and increases in contact pressure and raidial displacement of the lateral meniscus in the case of the complete posterior lateral meniscus root tear in combination with posterior meniscofemoral ligament deficiency. Complete radial posterior lateral meniscus root tear is not functionally equivalent to total meniscectomy. The posterior root torn lateral meniscus continues to provide some load transmission and distribution functions across the joint. The posterior meniscofemoral ligament prevents excessive radial displacement of the posterior root torn lateral meniscus and assists the torn lateral meniscus in transmitting a certain amount of stress in the lateral compartment.
Revision total knee arthroplasty in the young patient: is there trouble on the horizon?
Aggarwal, Vinay K; Goyal, Nitin; Deirmengian, Gregory; Rangavajulla, Ashwin; Parvizi, Javad; Austin, Matthew S
2014-04-02
The volume of total knee arthroplasties, including revisions, in young patients is expected to rise. The objective of this study was to compare the reasons for revision and re-revision total knee arthroplasties between younger and older patients, to determine the survivorship of revision total knee arthroplasties, and to identify risk factors associated with failure of revision in patients fifty years of age or younger. Perioperative data were collected for all total knee arthroplasty revisions performed from August 1999 to December 2009. A cohort of eighty-four patients who were fifty years of age or younger and a cohort of eighty-four patients who were sixty to seventy years of age were matched for the date of surgery, sex, and body mass index (BMI). The etiology of failure of the index total knee arthroplasty and all subsequent revision total knee arthroplasties was determined. Kaplan-Meier survival curves were used to evaluate the timing of the primary failure and the survivorship of revision knee procedures. Finally, multivariate Cox regression was used to calculate risk ratios for the influence of age, sex, BMI, and the reason for the initial revision on survival of the revision total knee arthroplasty. The most common reason for the initial revision was aseptic loosening (27%; 95% confidence interval [CI] = 19% to 38%) in the younger cohort and infection (30%; 95% CI = 21% to 40%) in the older cohort. Of the twenty-five second revisions in younger patients, 32% (95% CI = 17% to 52%) were for infection, whereas 50% (95% CI = 32% to 68%) of the twenty-six second revisions in the older cohort were for infection. Cumulative six-year survival rates were 71.0% (95% CI = 60.7% to 83.0%) and 66.1% (95% CI = 54.5% to 80.2%) for revisions in the younger and older cohorts, respectively. Infection and a BMI of ≥ 40 kg/m(2) posed the greatest risk of failure of revision procedures, with risk ratios of 2.731 (p = 0.006) and 2.934 (p = 0.009), respectively. The survivorship of knee revisions in younger patients is a cause of concern, and the higher rates of aseptic failure in these patients may be related to unique demands that they place on the reconstruction. Improvement in implant fixation and treatment of infection when these patients undergo revision total knee arthroplasty is needed.
Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A
2017-01-01
Knee joint kinematics derived from multi-body optimisation (MBO) still requires evaluation. The objective of this study was to corroborate model-derived kinematics of osteoarthritic knees obtained using four generic knee joint models used in musculoskeletal modelling - spherical, hinge, degree-of-freedom coupling curves and parallel mechanism - against reference knee kinematics measured by stereo-radiography. Root mean square errors ranged from 0.7° to 23.4° for knee rotations and from 0.6 to 9.0 mm for knee displacements. Model-derived knee kinematics computed from generic knee joint models was inaccurate. Future developments and experiments should improve the reliability of osteoarthritic knee models in MBO and musculoskeletal modelling.
Total knee arthroplasty in a rheumatoid arthritic knee with large geode: a case report.
Shih, H N; Hsu, K Y; Tan, C F; Hsueh, S; Hsu, R W
1997-09-01
Geodes (subchondral cysts) are a well-known manifestation of rheumatoid arthritis. Solitary cysts or cysts larger than 2 cm are not generally found in the knee joint of patients with rheumatoid arthritis (RA). We report a case of RA involving both knees with a giant geode over the right proximal tibia. Surgical treatment was performed including synovectomy, cyst enucleation and packing of autogenous bone chips followed by primary total knee arthroplasty. The postsurgical result was excellent with the knee restored to good function and complete healing of the cystic lesion.
Teichtahl, Andrew J; Quirk, Emma; Harding, Paula; Holland, Anne E; Delany, Clare; Hinman, Rana S; Wluka, Anita E; Liew, Susan M; Cicuttini, Flavia M
2015-06-07
Inconsistent findings of weight change following total knee (TKA) and hip (THA) arthroplasty may largely be attributable to heterogeneous cohorts and varied definitions of weight loss. This study examined weight change following TKA and THA for osteoarthritis (OA). 64 participants with hip or knee OA were recruited from orthopaedic joint arthroplasty waiting lists at a single major Australian public hospital between March and October 2011. The Short Form (SF) 12 survey was used to assess baseline physical and mental functioning. 49 participants completed 6 month follow-up (20 from the THA group and 29 from the TKA group). The majority of subjects lost weight (>0 kg) 6 months following THA (70 %) and TKA (58.6 %). When at least a 5 % reduction in total body weight was used to define clinically significant weight loss, the proportion of people with weight loss was 37.9 % for TKA and 25 % for THA. Greater weight loss occurred 6 months following TKA compared with THA (7.2 % versus 3.7 % of body weight; p = 0.04). Worse pre-operative physical functioning (SF-12) was associated with greater weight loss following TKA (β = 0.22 kg, 95 % CI 0.02-0.42 kg; p = 0.04). Most people lost weight (>0 kg) 6 months following TKA and THA and a considerable proportion of people achieved ≥5 % loss of body weight. The magnitude of weight loss was greater following TKA than THA, with worse pre-operative function being a predictor of more weight loss. Further attention to weight management is required to assist a greater number of people to achieve a larger magnitude of weight loss following knee and hip joint arthroplasty.
[Arthroscopic refixation of acute proximal anterior cruciate ligament rupture using suture anchors].
Achtnich, A; Rosslenbroich, S; Beitzel, K; Imhoff, A B; Petersen, W
2017-04-01
Arthroscopic assisted suture anchor refixation combined with microfracturing of the femoral ACL insertion zone in cases of acute proximal anterior cruciate ligament (ACL) rupture to restore anatomical and biomechanical properties of the native ACL. Acute proximal ACL rupture/avulsion, multiligament injury of the knee CONTRAINDICATIONS: Chronic (>6 weeks) proximal ACL rupture, intraligamentary rupture, as well as previous ACL surgery. Arthroscopic examination of the knee joint, debridement of the femoral insertion zone, examination of the ligament quality by a probe, insertion of a curved lasso through the ACL to place the sutures and use of a drill guide to place the anchor in the middle of the femoral ACL insertion. Microfracturing holes around the femoral footprint were made by an awl to enhance healing properties of the ACL. Partial weight bearing was permitted and crutches were used for 6 weeks, knee brace limited for the first 2 weeks 0‑0-0°, then 0‑0-90° for the following 4 weeks. A total of 20 patients who underwent acute proximal ACL suture anchor refixation were evaluated after a mean follow-up of 28 months. Regarding stability, mean values of the KT-1000 arthrometer indicated stable results (<3 mm), 3 patients had a 1+ Lachman and 4 patients had a 1+ pivot shift. IKDC (International Knee Documentation Committee) score indicated that 17 cases were very good to good (12A, 4B) and in 3 cases the results were satisfactory (3C). Magnetic resonance imaging showed that the ALC was found to be intact in 17 cases. The total rate of revision was 15 % (3/20) because of recurrent instability.
Multimedia patient education to assist the informed consent process for knee arthroscopy.
Cornoiu, Andrei; Beischer, Andrew D; Donnan, Leo; Graves, Stephen; de Steiger, Richard
2011-03-01
In contemporary clinical practice, the ability for orthopaedic surgeons to obtain true 'informed consent' is becoming increasingly difficult. This problem has been driven by factors including increased expectations of surgical outcome by patients and increasing complexity of surgical procedures. Surgical pamphlets and computer presentations have been advocated as ways of improving patient education, but evidence of their efficacy is limited. The aim of this study was to compare the efficacy of a computer-based multimedia (MM) presentation against standardized verbal consent and information pamphlets for patients considering knee arthroscopy surgery. A randomized, controlled prospective trial was conducted, comparing the efficacy of three methods of providing preoperative informed consent information to patients. Sixty-one patients were randomly allocated into MM, verbal consent or pamphlet groups 3-6 weeks prior to knee arthroscopy surgery. Information recall after the initial consent process was assessed by questionnaire. Retention of this information was again assessed by questionnaire at the time of surgery and 6 weeks after surgery. The MM group demonstrated a significantly greater proportion of correct responses, 98%, in the questionnaire at the time of consent, in comparison with 88% for verbal and 76% for pamphlet groups, with no difference in anxiety levels. Information was also better retained by the MM group up to 6 weeks after surgery. Patient satisfaction with information delivery was higher in the MM group. MM is an effective tool for aiding in the provision and retention of information during the informed consent process. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.
3D kinematics of mobile-bearing total knee arthroplasty using X-ray fluoroscopy.
Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi
2015-04-01
Total knee arthroplasty (TKA) 3D kinematic analysis requires 2D/3D image registration of X-ray fluoroscopic images and a computer-aided design (CAD) model of the knee implant. However, these techniques cannot provide information on the radiolucent polyethylene insert, since the insert silhouette does not appear clearly in X-ray images. Therefore, it is difficult to obtain the 3D kinematics of the polyethylene insert, particularly the mobile-bearing insert. A technique for 3D kinematic analysis of a mobile-bearing insert used in TKA was developed using X-ray fluoroscopy. The method was tested and a clinical application was evaluated. Tantalum beads and a CAD model of the mobile-bearing TKA insert are used for 3D pose estimation of the mobile-bearing insert used in TKA using X-ray fluoroscopy. The insert model was created using four identical tantalum beads precisely located at known positions in a polyethylene insert using a specially designed insertion device. Finally, the 3D pose of the insert model was estimated using a feature-based 2D/3D registration technique, using the silhouette of beads in fluoroscopic images and the corresponding CAD insert model. In vitro testing for the repeatability of the positioning of the tantalum beads and computer simulations for 3D pose estimation of the mobile-bearing insert were performed. The pose estimation accuracy achieved was sufficient for analyzing mobile-bearing TKA kinematics (RMS error: within 1.0 mm and 1.0°, except for medial-lateral translation). In a clinical application, nine patients with mobile-bearing TKA were investigated and analyzed with respect to a deep knee bending motion. A 3D kinematic analysis technique was developed that enables accurate quantitative evaluation of mobile-bearing TKA kinematics. This method may be useful for improving implant design and optimizing TKA surgical techniques.
Applicability of Shape Memory Alloy Wire for an Active, Soft Orthotic
NASA Astrophysics Data System (ADS)
Stirling, Leia; Yu, Chih-Han; Miller, Jason; Hawkes, Elliot; Wood, Robert; Goldfield, Eugene; Nagpal, Radhika
2011-07-01
Current treatments for gait pathologies associated with neuromuscular disorders may employ a passive, rigid brace. While these provide certain benefits, they can also cause muscle atrophy. In this study, we examined NiTi shape memory alloy (SMA) wires that were annealed into springs to develop an active, soft orthotic (ASO) for the knee. Actively controlled SMA springs may provide variable assistances depending on factors such as when, during the gait cycle, the springs are activated; ongoing muscle activity level; and needs of the wearer. Unlike a passive brace, an active orthotic may provide individualized control, assisting the muscles so that they may be used more appropriately, and possibly leading to a re-education of the neuro-motor system and eventual independence from the orthotic system. A prototype was tested on a suspended, robotic leg to simulate the swing phase of a typical gait. The total deflection generated by the orthotic depended on the knee angle and the total number of actuators triggered, with a max deflection of 35°. While SMA wires have a high energy density, they require a significant amount of power. Furthermore, the loaded SMA spring response times were much longer than the natural frequency of an average gait for the power conditions tested. While the SMA wires are not appropriate for correction of gait pathologies as currently implemented, the ability to have a soft, actuated material could be appropriate for slower timescale applications.
Nassif, Jeffrey M; Pietrzak, William S
2015-01-01
While it is generally recognized that anatomical differences exist between the male and female knee, the literature generally refutes the clinical need for gender-specific total knee prostheses. It has been found that standard, unisex knees perform as well, or better, in women than men. Recently, high-flex knees have become available that mechanically accommodate increased flexion yet no studies have directly compared the outcomes of these devices in men and women to see if gender-based differences exist. We retrospectively compared the performance of the high-flex Vanguard knee (Biomet, Warsaw, IN) in 716 male and 1,069 female knees. Kaplan-Meier survivorship was 98.5% at 5.6-5.7 years for both genders. After 2 years, mean improvements in Knee Society Knee and Function scores for men and women (50.9 versus 46.3; 26.5 versus 23.1) and corresponding SF-12 Mental and Physical scores (0.2 versus 2.2; 13.7 versus 12.2) were similar with differences not clinically relevant. Postoperative motion gains as a function of preoperative motion level were virtually identical in men and women. This further confirms the suitability of unisex total knee prostheses for both men and women.
Kerver, A L A; Leliveld, M S; den Hartog, D; Verhofstad, M H J; Kleinrensink, G J
2013-12-04
Iatrogenic injury to the infrapatellar branch of the saphenous nerve is a common complication of surgical approaches to the anteromedial side of the knee. A detailed description of the relative anatomic course of the nerve is important to define clinical guidelines and minimize iatrogenic damage during anterior knee surgery. In twenty embalmed knees, the infrapatellar branch of the saphenous nerve was dissected. With use of a computer-assisted surgical anatomy mapping tool, safe and risk zones, as well as the location-dependent direction of the nerve, were calculated. The location of the infrapatellar branch of the saphenous nerve is highly variable, and no definite safe zone could be identified. The infrapatellar branch runs in neither a purely horizontal nor a vertical course. The course of the branch is location-dependent. Medially, it runs a nearly vertical course; medial to the patellar tendon, it has a -45° distal-lateral course; and on the patella and patellar tendon, it runs a close to horizontal-lateral course. Three low risk zones for iatrogenic nerve injury were identified: one is on the medial side of the knee, at the level of the tibial tuberosity, where a -45° oblique incision is least prone to damage the nerves, and two zones are located medial to the patellar apex (cranial and caudal), where close to horizontal incisions are least prone to damage the nerves. The infrapatellar branch of the saphenous nerve is at risk for iatrogenic damage in anteromedial knee surgery, especially when longitudinal incisions are made. There are three low risk zones for a safer anterior approach to the knee. The direction of the infrapatellar branch of the saphenous nerve is location-dependent. To minimize iatrogenic damage to the nerve, the direction of incisions should be parallel to the direction of the nerve when technically possible. These findings suggest that iatrogenic damage of the infrapatellar branch of the saphenous nerve can be minimized in anteromedial knee surgery when both the location and the location-dependent direction of the nerve are considered when making the skin incision.
Vertullo, Christopher J; Lewis, Peter L; Lorimer, Michelle; Graves, Stephen E
2017-07-05
Controversy still exists as to the optimum management of the posterior cruciate ligament (PCL) in total knee arthroplasty. Surgeons can choose to kinematically substitute the PCL with a posterior-stabilized total knee replacement or alternatively to utilize a cruciate-retaining, also known as minimally stabilized, total knee replacement. Proponents of posterior-stabilized total knee replacement propose that the reported lower survivorship in registries when directly compared with minimally stabilized total knee replacement is due to confounders such as selection bias because of the preferential usage of posterior-stabilized total knee replacement in more complex or severe cases. In this study, we aimed to eliminate these possible confounders by performing an instrumental variable analysis based on surgeon preference to choose either posterior-stabilized or minimally stabilized total knee replacement, rather than the actual prosthesis received. Cumulative percent revision, hazard ratio (HR), and revision diagnosis data were obtained from the Australian Orthopaedic Association National Joint Replacement Registry from September 1, 1999, to December 31, 2014, for 2 cohorts of patients, those treated by high-volume surgeons who preferred minimally stabilized replacements and those treated by high-volume surgeons who preferred posterior-stabilized replacements. All patients had a diagnosis of osteoarthritis and underwent fixed-bearing total knee replacement with patellar resurfacing. At 13 years, the cumulative percent revision was 5.0% (95% confidence interval [CI], 4.0% to 6.2%) for the surgeons who preferred the minimally stabilized replacements compared with 6.0% (95% CI, 4.2% to 8.5%) for the surgeons who preferred the posterior-stabilized replacements. The revision risk for the surgeons who preferred posterior-stabilized replacements was significantly higher for all causes (HR = 1.45 [95% CI, 1.30 to 1.63]; p < 0.001), for loosening or lysis (HR = 1.93 [95% CI, 1.58 to 2.37]; p < 0.001), and for infection (HR = 1.51 [95% CI, 1.25 to 1.82]; p < 0.001). This finding was irrespective of patient age and was evident with cemented fixation and with both cross-linked polyethylene and non-cross-linked polyethylene. However, the higher revision risk was only evident in male patients. There was a 45% higher risk of revision for the patients of surgeons who preferred a posterior-stabilized total knee replacement compared with the patients of surgeons who preferred a minimally stabilized total knee replacement. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
Yim, Soo Jae; Jang, Mun Suk; Kim, Wook Joong; Kang, Hee Kyung
2012-01-01
Purpose The purpose of this study was to evaluate the clinical effect of electrocautery on the reduction of pain in patellar non-resurfacing bilateral total knee arthroplasty. Materials and Methods A total of 50 patients were enrolled into this study; all patients had undergone bilateral patellar non-resurfacing total knee arthoplasty at our hospital, between January 2007 to December 2008. The minimum follow-up period was 1 year. The electrocautery of the patellar rim was performed randomly on one side only. The clinical results were evaluated between the electrocautery group and the non-electrocautery group based on measures of anterior knee pain, range of motion, American Knee Society clinical rating score, Feller knee score, Western Ontario and McMaster Universities score, and radiographic analysis. Results There were statistically significant differences between preoperative and postoperative status for all parameters. There were no statistically significant differences noted between the electrocautery group and the non electrocautery group for all parameters. Conclusions Electrocautery of patellar rim is thought to be less effective in reducing anterior knee pain. PMID:22708111
Knee arthrodesis with an intramedullary nail: a retrospective study.
De Vil, Jeroen; Almqvist, Karl Fredrik; Vanheeren, Philippe; Boone, Barbara; Verdonk, René
2008-07-01
A group of 19 patients who underwent knee arthrodesis with use of an intramedullary nail between 1996 and 2005, was studied. In the majority of patients knee arthrodesis was performed as a salvage procedure for the limb following an infected total knee arthroplasty. The outcome of the procedure was evaluated with radiographs, the SF-36 score and the Oxford 12-item knee score. The functional result of a successful arthrodesis was found to be comparable with that of a revised hinged total knee arthroplasty. Knee arthrodesis with an intramedullary nail allows weightbearing within 1 week and is accompanied by a high rate of pain relief. However, recurrence of infection is the most challenging problem.
Shelbourne, K Donald; Barnes, Adam F; Gray, Tinker
2012-11-01
Limited studies exist regarding how well a single assessment numeric evaluation (SANE) rating correlates with validated knee surveys. To determine whether a SANE rating correlates positively with the International Knee Documentation Committee (IKDC) and the modified Cincinnati Knee Rating System (CKRS) total scores after knee surgery. Cohort study (Diagnosis); Level of evidence, 2. Patients undergoing either anterior cruciate ligament (ACL) reconstruction or knee arthroscopy were prospectively given subjective evaluations yearly after surgery between January 2000 and June 2011. Subjective evaluations were obtained using modified CKRS and IKDC subjective knee surveys and a SANE rating. Interclass correlation coefficient was used to determine the correlation of the SANE rating to the survey total scores. Bland-Altman method was used to access precision and limits of agreement between scores. In addition, the data were analyzed according to sex and age categories (<18, 18-24, 25-40, >40 years). A total of 11,939 surveys were collected from 3209 patients (mean, 3.7 surveys/person; range, 1-22) after ACL reconstruction with a mean survey age of 35.2 ± 11.9 years (range, 13-72). A total of 4615 surveys were collected from 1813 patients (mean, 2.6 surveys/person; range, 1-17) after knee arthroscopy with a mean survey age of 47.4 ± 14.6 years (range, 11-88). For patients who underwent ACL reconstruction, the SANE rating had a moderate positive correlation of 0.66 to the total survey scores. For patients who underwent knee arthroscopies, the SANE rating had a strong positive correlation of 0.74 to total scores. There was minimal difference in correlations based on age group or sex. Bland-Altman analysis showed that the limits of agreement between the SANE score and the 2 surveys were met for at least 94% of patients in both patient groups. The SANE ratings exhibited moderate to strong positive correlations with the modified CKRS and IKDC subjective surveys after ACL reconstruction and knee arthroscopy for patients of all ages and both sexes.
van Jonbergen, H P W; Scholtes, V A B; van Kampen, A; Poolman, R W
2011-08-01
The efficacy of circumpatellar electrocautery in reducing the incidence of post-operative anterior knee pain is unknown. We conducted a single-centre, outcome-assessor and patient-blinded, parallel-group, randomised, controlled trial to compare circumpatellar electrocautery with no electrocautery in total knee replacement in the absence of patellar resurfacing. Patients requiring knee replacement for primary osteoarthritis were randomly assigned circumpatellar electrocautery (intervention group) or no electrocautery (control group). The primary outcome measure was the incidence of anterior knee pain. A secondary measure was the standardised clinical and patient-reported outcomes determined by the American Knee Society scores and the Western Ontario and McMaster Universities (WOMAC) osteoarthritis index. A total of 131 knees received circumpatellar electrocautery and 131 had no electrocautery. The overall incidence of anterior knee pain at follow-up at one year was 26% (20% to 31%), with 19% (12% to 26%) in the intervention group and 32% (24% to 40%) in the control group (p = 0.02). The relative risk reduction from electrocautery was 40% (9% to 61%) and the number needed to treat was 7.7 (4.3 to 41.4). The intervention group had a better mean total WOMAC score at follow-up at one year compared with the control group (16.3 (0 to 77.7) versus 21.6 (0 to 76.7), p = 0.04). The mean post-operative American Knee Society knee scores and function scores were similar in the intervention and control groups (knee score: 92.4 (55 to 100) versus 90.4 (51 to 100), respectively (p = 0.14); function score: 86.5 (15 to 100) versus 84.5 (30 to 100), respectively (p = 0.49)). Our study suggests that in the absence of patellar resurfacing electrocautery around the margin of the patella improves the outcome of total knee replacement.
Vibration arthrometry in the patients with failed total knee replacement.
Jiang, C C; Lee, J H; Yuan, T T
2000-02-01
This is a preliminary research on the vibration arthrometry of artificial knee joint in vivo. Analyzing the vibration signals measured from the accelerometer on patella, there are two speed protocols in knee kinematics: 1) 2 degrees/s, the signal is called "physiological patellofemoral crepitus (PPC)", and 2) 67 degrees/s, the signal is called "vibration signal in rapid knee motion". The study has collected 14 patients who had revision total knee arthroplasty due to prosthetic wear or malalignment represent the failed total knee replacement (FTKR), and 12 patients who had just undergone the primary total knee arthroplasty in the past two to six months and have currently no knee pain represent the normal total knee replacement (NTKR). FTKR is clinically divided into three categories: metal wear, polyethylene wear of the patellar component, and no wear but with prosthesis malalignment. In PPC, the value of root mean square (rms) is used as a parameter; in vibration signals in rapid knee motion, autoregressive modeling is used for adaptive segmentation and extracting the dominant pole of each signal segment to calculate the spectral power ratios in f < 100 Hz and f > 500 Hz. It was found that in the case of metal wear, the rms value of PPC signal is far greater than a knee joint with polyethylene wear and without wear, i.e., PPC signal appears only in metal wear. As for vibration signals in rapid knee motion, prominent time-domain vibration signals could be found in the FTKR patients with either polyethylene or metal wear of the patellar component. We also found that for normal knee joint, the spectral power ratio of dominant poles has nearly 80% distribution in f < 100 Hz, is between 50% and 70% for knee with polyethylene wear and below 30% for metal wear, whereas in f > 500 Hz, spectral power ratio of dominant poles has over 30% distribution in metal wear but only nonsignificant distribution in polyethylene wear, no wear, and normal knee. The results show that vibration signals in rapid knee motion can be used for effectively detecting polyethylene wear of the patellar component in the early stage, while PPC signals can only be used to detect prosthetic metal wear in the late stage.
Lespasio, Michelle J; Piuzzi, Nicolas S; Husni, M Elaine; Muschler, George F; Guarino, AJ; Mont, Michael A
2017-01-01
The purpose of this article is to provide a synopsis of the current medical understanding of knee osteoarthritis. We describe the prevalence, causes and associated risk factors, symptoms, diagnosis and classification, and treatment options. A quiz serves to assist readers in their understanding of the presented material. PMID:29035179
Ardestani, Marzieh Mostafavizadeh; Chen, Zhenxian; Wang, Ling; Lian, Qin; Liu, Yaxiong; He, Jiankang; Li, Dichen; Jin, Zhongmin
2014-10-01
There is a growing interest in non-surgical gait rehabilitation treatments to reduce the loading in the knee joint. In particular, synergetic kinematic changes required for joint offloading should be determined individually for each subject. Previous studies for gait rehabilitation designs are typically relied on a "trial-and-error" approach, using multi-body dynamic (MBD) analysis. However MBD is fairly time demanding which prevents it to be used iteratively for each subject. This study employed an artificial neural network to develop a cost-effective computational framework for designing gait rehabilitation patterns. A feed forward artificial neural network (FFANN) was trained based on a number of experimental gait trials obtained from literature. The trained network was then hired to calculate the appropriate kinematic waveforms (output) needed to achieve desired knee joint loading patterns (input). An auxiliary neural network was also developed to update the ground reaction force and moment profiles with respect to the predicted kinematic waveforms. The feasibility and efficiency of the predicted kinematic patterns were then evaluated through MBD analysis. Results showed that FFANN-based predicted kinematics could effectively decrease the total knee joint reaction forces. Peak values of the resultant knee joint forces, with respect to the bodyweight (BW), were reduced by 20% BW and 25% BW in the midstance and the terminal stance phases. Impulse values of the knee joint loading patterns were also decreased by 17% BW*s and 24%BW*s in the corresponding phases. The FFANN-based framework suggested a cost-effective forward solution which directly calculated the kinematic variations needed to implement a given desired knee joint loading pattern. It is therefore expected that this approach provides potential advantages and further insights into knee rehabilitation designs. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
The quality-of-life burden of knee osteoarthritis in New Zealand adults: A model-based evaluation.
Abbott, J Haxby; Usiskin, Ilana M; Wilson, Ross; Hansen, Paul; Losina, Elena
2017-01-01
Knee osteoarthritis is a leading global cause of health-related quality of life loss. The aim of this project was to quantify health losses arising from knee osteoarthritis in New Zealand (NZ) in terms of quality-adjusted life years (QALYs) lost. The Osteoarthritis Policy Model (OAPol), a validated Monte Carlo computer simulation model, was used to estimate QALYs lost due to knee osteoarthritis in the NZ adult population aged 40-84 over their lifetimes from the base year of 2006 until death. Data were from the NZ Health Survey, NZ Burden of Diseases, NZ Census, and relevant literature. QALYs were derived from NZ EQ-5D value set 2. Sensitivity to health state valuation, disease and pain prevalence were assessed in secondary analyses. Based on NZ EQ-5D health state valuations, mean health losses due to knee osteoarthritis over people's lifetimes in NZ are 3.44 QALYs per person, corresponding to 467,240 QALYs across the adult population. Average estimated per person QALY losses are higher for non-Māori females (3.55) than Māori females (3.38), and higher for non-Māori males (3.34) than Māori males (2.60). The proportion of QALYs lost out of the total quality-adjusted life expectancy for those without knee osteoarthritis is similar across all subgroups, ranging from 20 to 23 percent. At both the individual and population levels, knee osteoarthritis is responsible for large lifetime QALY losses. QALY losses are higher for females than males due to greater prevalence of knee osteoarthritis and higher life expectancy, and lower for Māori than non-Māori due to lower life expectancy. Large health gains are potentially realisable from public health and policy measures aimed at decreasing incidence, progression, pain, and disability of osteoarthritis.
Dynamic Knee Alignment and Collateral Knee Laxity and Its Variations in Normal Humans
Deep, Kamal; Picard, Frederic; Clarke, Jon V.
2015-01-01
Alignment of normal, arthritic, and replaced human knees is a much debated subject as is the collateral ligamentous laxity. Traditional quantitative values have been challenged. Methods used to measure these are also not without flaws. Authors review the recent literature and a novel method of measurement of these values has been included. This method includes use of computer navigation technique in clinic setting for assessment of the normal or affected knee before the surgery. Computer navigation has been known for achievement of alignment accuracy during knee surgery. Now its use in clinic setting has added to the inventory of measurement methods. Authors dispel the common myth of straight mechanical axis in normal knees and also look at quantification of amount of collateral knee laxity. Based on the scientific studies, it has been shown that the mean alignment is in varus in normal knees. It changes from lying non-weight-bearing position to standing weight-bearing position in both coronal and the sagittal planes. It also varies with gender and race. The collateral laxity is also different for males and females. Further studies are needed to define the ideal alignment and collateral laxity which the surgeon should aim for individual knees. PMID:26636090
Wasserstein, David; Henry, Patrick; Paterson, J Michael; Kreder, Hans J; Jenkinson, Richard
2014-01-15
The aims of operative treatment of displaced tibial plateau fractures are to stabilize the injured knee to restore optimal function and to minimize the risk of posttraumatic arthritis and the eventual need for total knee arthroplasty. The purpose of our study was to define the rate of subsequent total knee arthroplasty after tibial plateau fractures in a large cohort and to compare that rate with the rate in the general population. All patients sixteen years of age or older who had undergone surgical treatment of a tibial plateau fracture from 1996 to 2009 in the province of Ontario, Canada, were identified from administrative health databases with use of surgeon fee codes. Each member of the tibial plateau fracture cohort was matched to four individuals from the general population according to age, sex, income, and urban/rural residence. The rates of total knee arthroplasty at two, five, and ten years were compared by using time-to-event analysis. A separate Cox proportional hazards model was used to explore the influence of patient, provider, and surgical factors on the time to total knee arthroplasty. We identified 8426 patients (48.5% female; median age, 48.9 years) who had undergone fixation of a tibial plateau fracture and matched them to 33,698 controls. The two, five, and ten-year rates of total knee arthroplasty in the plateau fracture and control cohorts were 0.32% versus 0.29%, 5.3% versus 0.82%, and 7.3% versus 1.8%, respectively (p < 0.0001). After adjustment for comorbidity, plateau fracture surgery was found to significantly increase the likelihood of total knee arthroplasty (hazard ratio [HR], 5.29 [95% confidence interval, 4.58, 6.11]; p < 0.0001). Higher rates of total knee arthroplasty were also associated with increasing age (HR, 1.03 [1.03, 1.04] per year over the age of forty-eight; p < 0.0001), bicondylar fracture (HR, 1.53 [1.26, 1.84]; p < 0.0001), and greater comorbidity (HR, 2.17 [1.70, 2.77]; p < 0.001). Ten years after tibial plateau fracture surgery, 7.3% of the patients had had a total knee arthroplasty. This corresponds to a 5.3 times increase in likelihood compared with a matched group from the general population. Older patients and those with more severe fractures are also more likely to need total knee arthroplasty after repair of a tibial plateau fracture.
Effect of rotational alignment on outcome of total knee arthroplasty
Breugem, Stefan J; van den Bekerom, Michel PJ; Tuinebreijer, Willem E; van Geenen, Rutger C I
2015-01-01
Background and purpose Poor outcomes have been linked to errors in rotational alignment of total knee arthroplasty components. The aims of this study were to determine the correlation between rotational alignment and outcome, to review the success of revision for malrotated total knee arthroplasty, and to determine whether evidence-based guidelines for malrotated total knee arthroplasty can be proposed. Patients and methods We conducted a systematic review including all studies reporting on both rotational alignment and functional outcome. Comparable studies were used in a correlation analysis and results of revision were analyzed separately. Results 846 studies were identified, 25 of which met the inclusion criteria. From this selection, 11 studies could be included in the correlation analysis. A medium positive correlation (ρ = 0.44, 95% CI: 0.27–0.59) and a large positive correlation (ρ = 0.68, 95% CI: 0.64–0.73) were found between external rotation of the tibial component and the femoral component, respectively, and the Knee Society score. Revision for malrotation gave positive results in all 6 studies in this field. Interpretation Medium and large positive correlations were found between tibial and femoral component rotational alignment on the one hand and better functional outcome on the other. Revision of malrotated total knee arthroplasty may be successful. However, a clear cutoff point for revision for malrotated total knee arthroplasty components could not be identified. PMID:25708694
Zheng, Hua; Rosal, Milagros C; Li, Wenjun; Borg, Amy; Yang, Wenyun; Ayers, David C; Franklin, Patricia D
2018-04-30
Data-driven surgical decisions will ensure proper use and timing of surgical care. We developed a Web-based patient-centered treatment decision and assessment tool to guide treatment decisions among patients with advanced knee osteoarthritis who are considering total knee replacement surgery. The aim of this study was to examine user experience and acceptance of the Web-based treatment decision support tool among older adults. User-centered formative and summative evaluations were conducted for the tool. A sample of 28 patients who were considering total knee replacement participated in the study. Participants' responses to the user interface design, the clarity of information, as well as usefulness, satisfaction, and acceptance of the tool were collected through qualitative (ie, individual patient interviews) and quantitative (ie, standardized Computer System Usability Questionnaire) methods. Participants were older adults with a mean age of 63 (SD 11) years. Three-quarters of them had no technical questions using the tool. User interface design recommendations included larger fonts, bigger buttons, less colors, simpler navigation without extra "next page" click, less mouse movement, and clearer illustrations with simple graphs. Color-coded bar charts and outcome-specific graphs with positive action were easiest for them to understand the outcomes data. Questionnaire data revealed high satisfaction with the tool usefulness and interface quality, and also showed ease of use of the tool, regardless of age or educational status. We evaluated the usability of a patient-centered decision support tool designed for advanced knee arthritis patients to facilitate their knee osteoarthritis treatment decision making. The lessons learned can inform other decision support tools to improve interface and content design for older patients' use. ©Hua Zheng, Milagros C Rosal, Wenjun Li, Amy Borg, Wenyun Yang, David C Ayers, Patricia D Franklin. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 30.04.2018.
Detection of intra-articular osteochondral bodies in the knee using computed arthrotomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartoris, D.J.; Kursunoglu, S.; Pineda, C.
1985-05-01
A new technique using air arthrography followed by computed tomography enables identification of free osteocartilaginous fragments in the knee joint. Clinical examples with useful diagnostic information are presented, and potential pitfalls in the interpretation of this information are discussed.
Pua, Yong-Hao
2015-07-01
This study examines the time course of knee swelling post total knee arthroplasty (TKA) and its associations with quadriceps strength and gait speed. Eighty-five patients with unilateral TKA participated. Preoperatively and on post-operative days (PODs) 1, 4, 14, and 90, knee swelling was measured using bioimpedance spectrometry. Preoperatively and on PODs 14 and 90, quadriceps strength was measured using isokinetic dynamometry while fast gait speed was measured using the timed 10-meter walk. On POD1, knee swelling increased ~35% from preoperative levels after which, knee swelling reduced but remained at ~11% above preoperative levels on POD90. In longitudinal, multivariable analyses, knee swelling was associated with quadriceps weakness (P<0.01) and slower gait speed (P=0.03). Interventions to reduce post-TKA knee swelling may be indicated to improve quadriceps strength and gait speed. Copyright © 2015 Elsevier Inc. All rights reserved.
Kahn, Timothy L; Soheili, Aydin C; Schwarzkopf, Ran
2014-08-01
While total knee arthroplasty (TKA) has been shown to have excellent outcomes, a significant proportion of patients experience relatively poor post-operative function. In this study, we test the hypothesis that the level of osteoarthritic symptoms in the contralateral knee at the time of TKA is associated with poorer post-operative outcomes in the operated knee. Using longitudinal cohort data from the Osteoarthritis Initiative (OAI), we included 171 patients who received a unilateral TKA. We compared pre-operative Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores in the contralateral knee to post-operative WOMAC scores in the index knee. Pre-operative contralateral knee WOMAC scores were associated with post-operative index knee WOMAC Total scores, indicating that the health of the pre-operative contralateral knee is a significant factor in TKA outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
2013-01-01
Background Conversion of a knee arthrodesis to a Total Knee Arthroplasty is an uncommon procedure. Revision Total Knee Arthroplasty in this setting presents the surgeon with a number of challenges including the management of the extensor mechanism and patella. Case presentation We describe a unique case of a 69 years old Caucasian man who underwent a revision Total Knee Arthroplasty using a tibial tubercle osteotomy after a previous conversion of a knee arthrodesis without patella resurfacing. Unfortunately 9 months following surgery a tibial tubercle pseudarthrosis and spontaneous patella fracture occurred. Both were managed with open reduction and internal fixation. At 30 months follow-up the tibial tubercle osteotomy had completely consolidated while the patella fracture was still evident but with no signs of further displacement. The patient was completely satisfied with the outcome and had a painless range of knee flexion between 0-95°. Conclusions We believe that patients undergoing this type of surgery require careful counseling regarding the risk of complications both during and after surgery despite strong evidence supporting improved functional outcomes. PMID:24195600
TOTAL KNEE REPLACEMENT IN PATIENTS WITH BELOW-KNEE AMPUTATION
Karam, Matthew D; Willey, Michael; Shurr, Donald G
2010-01-01
Total knee replacement (TKR) is reserved for patients with severe and disabling arthritis that is non-responsive to conservative measures. Based on existing data, total knee replacement is a safe and cost-effective treatment for alleviating pain and improving physical function in patients who do not respond to conservative therapy. Despite the large variation in health status of patients and types of prosthesis implanted, total knee replacement has proven to be a relatively low risk and successful operation. Each year in the United States surgeons perform approximately 300,000 TKR.1 Likewise, lower extremity amputation is commonly performed in the United States with an annual incidence of 110,000 per year.2 Nearly 70% of all lower extremity amputations are performed as the result of chronic vascular disease, followed by trauma (22%), congenital etiology and tumor (4% each).3 Approximately 50% of all lower extremity amputations are performed secondary to complications from Diabetes Mellitus. Norvell et al. demonstrated that patients who have previously undergone transtibial amputation and ambulate with a prosthesis are more likely to develop degenerative joint disease in the con-tralateral extremity than the ipsilateral extremity.4 Further, radiographic changes consistent with osteoporosis have been demonstrated in up to 88% of limbs that have undergone transtibial amputation.8 To our knowledge, there have been only three reported cases of total knee replacement in patients with ipsilateral transtibial amputation.5,7 The purpose of the present study is to review the existing data on total knee replacement in patients who have undergone transtibial amputation. Further we present a patient with a transtibial amputation who underwent contralateral total knee replacement. PMID:21045987
Effect of Body Mass Index on Reoperation and Complications After Total Knee Arthroplasty.
Wagner, Eric R; Kamath, Atul F; Fruth, Kristin; Harmsen, William S; Berry, Daniel J
2016-12-21
High body mass index (BMI) is associated with increased rates of complications after total knee arthroplasty. To date, to our knowledge, studies have examined risk as a dichotomous variable using specific BMI thresholds. The purpose of this investigation was to quantify implant survival and the risk of common complications after total knee arthroplasty using BMI as a continuous variable. Using prospectively collected data from our institutional total joint registry, we analyzed 22,289 consecutive knees, in 16,136 patients, treated with primary total knee arthroplasty from 1985 to 2012. The mean BMI of these patients at the time of the surgical procedure was 31.3 kg/m (range, 11 to 69 kg/m). The Kaplan-Meier survival method was used to estimate survivorship, reoperations, and common complications, with associations of outcomes assessed using a Cox regression model. Utilizing smoothing spline parameterization, we found that reoperation (p < 0.001) and implant revision or removal rates (p < 0.001) increased with increasing BMI after total knee arthroplasty. Increasing BMI also was associated with increased rates of wound infection (hazard ratio [HR], 1.07; p < 0.001) and deep infection (HR, 1.08; p < 0.001) per unit of BMI over 35 kg/m. A BMI of 35 to 40 kg/m was associated with a higher rate of implant revision for aseptic loosening (p < 0.001) and for polyethylene wear (p < 0.001) compared with a BMI of 18 to 24.99 kg/m. There was no correlation between BMI and risk of venous thromboembolism, tibiofemoral instability, or need for knee manipulation. The rates of reoperation, implant revision or removal, and many common complications after total knee arthroplasty were strongly associated with BMI. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Beswick, Andrew D; Wylde, Vikki; Gooberman-Hill, Rachael
2015-01-01
Objectives Total knee replacement can be a successful operation for pain relief. However, 10–34% of patients experience chronic postsurgical pain. Our aim was to synthesise evidence on the effectiveness of applying predictive models to guide preventive treatment, and for interventions in the management of chronic pain after total knee replacement. Setting We conducted a systematic review of randomised controlled trials using appropriate search strategies in the Cochrane Library, MEDLINE and EMBASE from inception to October 2014. No language restrictions were applied. Participants Adult patients receiving total knee replacement. Interventions Predictive models to guide treatment for prevention of chronic pain. Interventions for management of chronic pain. Primary and secondary outcome measures Reporting of specific outcomes was not an eligibility criterion but we sought outcomes relating to pain severity. Results No studies evaluated the effectiveness of predictive models in guiding treatment and improving outcomes after total knee replacement. One study evaluated an intervention for the management of chronic pain. The trial evaluated the use of a botulinum toxin A injection with antinociceptive and anticholinergic activity in 49 patients with chronic postsurgical pain after knee replacement. A single injection provided meaningful pain relief for about 40 days and the authors acknowledged the need for a large trial with repeated injections. No trials of multidisciplinary interventions or individualised treatments were identified. Conclusions Our systematic review highlights a lack of evidence about the effectiveness of prediction and management strategies for chronic postsurgical pain after total knee replacement. As a large number of people are affected by chronic pain after total knee replacement, development of an evidence base about care for these patients should be a research priority. PMID:25967998
RSA and registries: the quest for phased introduction of new implants.
Nelissen, Rob G H H; Pijls, Bart G; Kärrholm, Johan; Malchau, Henrik; Nieuwenhuijse, Marc J; Valstar, Edward R
2011-12-21
Although the overall survival of knee and hip prostheses at ten years averages 90%, recent problems with several hip and knee prostheses have illustrated that the orthopaedic community, industry, and regulators can still further improve patient safety. Given the early predictive properties of roentgen stereophotogrammetric analysis (RSA) and the meticulous follow-up of national joint registries, these two methods are ideal tools for such a phased clinical introduction. In this paper, we elaborate on the predictive power of RSA within a two-year follow-up after arthroplasty and its relationship to national joint registries. The association between RSA prosthesis-migration data and registry data is evaluated. The five-year rate of revision of RSA-tested total knee replacements was compared with that of non-RSA-tested total knee replacements. Data were extracted from the published results of the national joint registries of Sweden, Australia, and New Zealand. There was a 22% to 35% reduction in the number of revisions of RSA-tested total knee replacements as compared with non-RSA-tested total knee replacements in the national joint registries. Assuming that the total cost of total knee arthroplasty is $37,000 in the United States, a 22% to 35% reduction in the number of revisions (currently close to 55,000 annually) could lead to an estimated annual savings of over $400 million to the health-care system. The phased clinical introduction of new prostheses with two-year RSA results as a qualitative tool could lead to better patient care and could reduce the costs associated with revision total knee arthroplasty. Follow-up in registries is necessary to substantiate these results and to improve post-market surveillance.
Kia, Mohammad; Wright, Timothy M; Cross, Michael B; Mayman, David J; Pearle, Andrew D; Sculco, Peter K; Westrich, Geoffrey H; Imhauser, Carl W
2018-01-01
The correct amount of external rotation of the femoral component during TKA is controversial because the resulting changes in biomechanical knee function associated with varying degrees of femoral component rotation are not well understood. We addressed this question using a computational model, which allowed us to isolate the biomechanical impact of geometric factors including bony shapes, location of ligament insertions, and implant size across three different knees after posterior-stabilized (PS) TKA. Using a computational model of the tibiofemoral joint, we asked: (1) Does external rotation unload the medial collateral ligament (MCL) and what is the effect on lateral collateral ligament tension? (2) How does external rotation alter tibiofemoral contact loads and kinematics? (3) Does 3° external rotation relative to the posterior condylar axis align the component to the surgical transepicondylar axis (sTEA) and what anatomic factors of the femoral condyle explain variations in maximum MCL tension among knees? We incorporated a PS TKA into a previously developed computational knee model applied to three neutrally aligned, nonarthritic, male cadaveric knees. The computational knee model was previously shown to corroborate coupled motions and ligament loading patterns of the native knee through a range of flexion. Implant geometries were virtually installed using hip-to-ankle CT scans through measured resection and anterior referencing surgical techniques. Collateral ligament properties were standardized across each knee model by defining stiffness and slack lengths based on the healthy population. The femoral component was externally rotated from 0° to 9° relative to the posterior condylar axis in 3° increments. At each increment, the knee was flexed under 500 N compression from 0° to 90° simulating an intraoperative examination. The computational model predicted collateral ligament forces, compartmental contact forces, and tibiofemoral internal/external and varus-valgus rotation through the flexion range. The computational model predicted that femoral component external rotation relative to the posterior condylar axis unloads the MCL and the medial compartment; however, these effects were inconsistent from knee to knee. When the femoral component was externally rotated by 9° rather than 0° in knees one, two, and three, the maximum force carried by the MCL decreased a respective 55, 88, and 297 N; the medial contact forces decreased at most a respective 90, 190, and 570 N; external tibial rotation in early flexion increased by a respective 4.6°, 1.1°, and 3.3°; and varus angulation of the tibia relative to the femur in late flexion increased by 8.4°, 8.0°, and 7.9°, respectively. With 3° of femoral component external rotation relative to the posterior condylar axis, the femoral component was still externally rotated by up to 2.7° relative to the sTEA in these three neutrally aligned knees. Variations in MCL force from knee to knee with 3° of femoral component external rotation were related to the ratio of the distances from the femoral insertion of the MCL to the posterior and distal cuts of the implant; the closer this ratio was to 1, the more uniform were the MCL tensions from 0° to 90° flexion. A larger ratio of distances from the femoral insertion of the MCL to the posterior and distal cuts may cause clinically relevant increases in both MCL tension and compartmental contact forces. To obtain more consistent ligament tensions through flexion, it may be important to locate the posterior and distal aspects of the femoral component with respect to the proximal insertion of the MCL such that a ratio of 1 is achieved.
Toussirot, Eric; Michel, Fabrice; Béreau, Matthieu; Dehecq, Barbara; Gaugler, Béatrice; Wendling, Daniel; Grandclément, Emilie; Saas, Philippe; Dumoulin, Gilles
2017-11-01
We conducted the present study to evaluate the serum levels of adipokines (leptin, total and high molecular adiponectin, resistin), a marker of cartilage breakdown (C2C), and ghrelin together with body composition in patients with knee osteoarthritis (OA). Fifty patients and 50 sex-matched healthy subjects (HS) were evaluated. Knee OA was scored according to the Kellgren-Lawrence (KL) grade. Body composition parameters including lean mass and measurements of fat mass (total fat, adiposity, fat in the android and gynoid regions, visceral fat and trunk/legs fat ratio) were obtained using dual energy X-ray absorptiometry. Most of the recruited patients (88%) had advanced knee OA with KL grade 3 or 4. The patients had higher body mass index than HS (p < 0.0001). Serum leptin, high molecular adiponectin, resistin and ghrelin levels did not differ between patients and HS. Total adiponectin was higher in women with OA compared to women from the HS group (p = 0.004). Total fat mass, adiposity and measurements of central adiposity (fat in the android region, trunk/lower limbs fat ratio and visceral fat) were increased in patients with knee OA (all p < 0.05). Total adiponectin was borderline associated with the severity of OA. Our results show that total adiponectin is significantly increased in women with advanced knee OA. Independently of gender, patients with severe knee OA were characterized by a significant excess of fat with a distribution toward the visceral region. This abnormal body composition may contribute to the cardiometabolic profile that is described in patients with knee OA.
Ferket, Bart S; Feldman, Zachary; Zhou, Jing; Oei, Edwin H; Bierma-Zeinstra, Sita M A; Mazumdar, Madhu
2017-03-28
Objectives To evaluate the impact of total knee replacement on quality of life in people with knee osteoarthritis and to estimate associated differences in lifetime costs and quality adjusted life years (QALYs) according to use by level of symptoms. Design Marginal structural modeling and cost effectiveness analysis based on lifetime predictions for total knee replacement and death from population based cohort data. Setting Data from two studies-Osteoarthritis Initiative (OAI) and the Multicenter Osteoarthritis Study (MOST)-within the US health system. Participants 4498 participants with or at high risk for knee osteoarthritis aged 45-79 from the OAI with no previous knee replacement (confirmed by baseline radiography) followed up for nine years. Validation cohort comprised 2907 patients from MOST with two year follow-up. Intervention Scenarios ranging from current practice, defined as total knee replacement practice as performed in the OAI (with procedural rates estimated by a prediction model), to practice limited to patients with severe symptoms to no surgery. Main outcome measures Generic (SF-12) and osteoarthritis specific quality of life measured over 96 months, model based QALYs, costs, and incremental cost effectiveness ratios over a lifetime horizon. Results In the OAI, total knee replacement showed improvements in quality of life with small absolute changes when averaged across levels of confounding variables: 1.70 (95% uncertainty interval 0.26 to 3.57) for SF-12 physical component summary (PCS); -10.69 (-13.39 to -8.01) for Western Ontario and McMaster Universities arthritis index (WOMAC); and 9.16 (6.35 to 12.49) for knee injury and osteoarthritis outcome score (KOOS) quality of life subscale. These improvements became larger with decreasing functional status at baseline. Provision of total knee replacement to patients with SF-12 PCS scores <35 was the optimal scenario given a cost effectiveness threshold of $200 000/QALY, with cost savings of $6974 ($5789 to $8269) and a minimal loss of 0.008 (-0.056 to 0.043) QALYs compared with current practice. These findings were reproduced among patients with knee osteoarthritis from the MOST cohort and were robust against various scenarios including increased rates of total knee replacement and mortality and inclusion of non-healthcare costs but were sensitive to increased deterioration in quality of life without surgery. In a threshold analysis, total knee replacement would become cost effective in patients with SF-12 PCS scores ≤40 if the associated hospital admission costs fell below $14 000 given a cost effectiveness threshold of $200 000/QALY. Conclusion Current practice of total knee replacement as performed in a recent US cohort of patients with knee osteoarthritis had minimal effects on quality of life and QALYs at the group level. If the procedure were restricted to more severely affected patients, its effectiveness would rise, with practice becoming economically more attractive than its current use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Intramedullary knee arthrodesis as a salvage procedure after failed total knee replacement.
Panagiotopoulos, E; Kouzelis, A; Matzaroglou, Ch; Saridis, A; Lambiris, E
2006-12-01
Septic and aseptic loosening with or without extensive bone loss after total knee replacement are the most common indications for knee fusion. Both external fixation and intramedullary nailing can be used for the treatment, though the latter appears to be the method of choice for most patients. Nine patients were treated after a total knee replacement failure using intramedullary nailing. A long intramedullary nail with a proximal interlocking screw was used in five cases, and a customised nail was used in four cases. Successful fusion occurred in eight of nine patients (89%). Average time for the joint union was 6.5 months, and average operative blood loss was 860 ml. In two patients, iliac crest and patellar bone graft were also used. In conclusion, intramedullary nailing can give excellent results in achieving knee fusion after a failed knee replacement as it allows early weight bearing and at the same time offers stability, pain relief, and a high rate of union, even though the surgical technique is demanding.
A Parametric Approach to Numerical Modeling of TKR Contact Forces
Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.
2009-01-01
In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015
Dargel, Jens; Michael, Joern W P; Feiser, Janna; Ivo, Roland; Koebke, Juergen
2011-04-01
This study investigates differences in the anatomy of male and female knee joints to contribute to the current debate on sex-specific total knee implants. Morphometric data were obtained from 60 human cadaver knees, and sex differences were calculated. All data were corrected for height, and male and female specimens presenting with an identical length of the femur were analyzed as matched pairs. Male linear knee joint dimensions were significantly larger when compared with females. When corrected for differences in height, medial-lateral dimensions of male knees were significantly larger than female; however, matched paired analysis did not prove these differences to be consistent. Although implant design should focus interindividual variations in knee joint anatomy, our data do not support the concept of a female-specific implant design. Copyright © 2011 Elsevier Inc. All rights reserved.
The biomechanical effect of increased valgus on total knee arthroplasty: a cadaveric study.
Bryant, Brandon J; Tilan, Justin U; McGarry, Michelle H; Takenaka, Nobuyuki; Kim, William C; Lee, Thay Q
2014-04-01
The effects of valgus load on cadaveric knees following total knee arthroplasty (TKA) were investigated using a custom testing system. TKAs were performed on 8 cadaveric knees and tested at 0°, 30°, and 60° knee flexion in both neutral and 5° valgus. Fuji pressure sensitive film was used to quantify contact areas and pressures and MCL strain was determined using a Microscribe digitizing system. Lateral tibiofemoral pressures increased (P < 0.05) at all knee flexion angles with valgus loading. Patellofemoral contact characteristics did not change significantly (P > 0.05). Significant increases in strain were observed along the anterior and posterior border of the MCL at all knee flexion angles. These findings suggest that valgus loading increases TKA joint contact pressures and MCL strain with increasing knee flexion which may increase implant instability. © 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, J.C.; Hattner, R.S.; Murray, W.R.
1980-07-01
Pain after total knee arthroplasty is a common clinical problem in orthopedics, and prosthetic loosening, often requiring surgical revision, is usually the etiology. Since standard clinical and radiographic diagnostic measures have not proven totally satisfactory, a study of the utility of bone scintigraphy to assess stability of the knee prosthesis was done. Thirty-five patients with 39 prostheses were studied. Seventeen patients with 21 total knee arthroplasties served as controls and were asymptomatic, were stable at surgery, or improved with conservative management. Eighteen knees in 18 symptomatic patients composed the experimental group. Of these, 11 knees were loose at surgery andmore » seven have had surgery recommended. Scintigrams of the knees were obtained using /sup 99m/Tc-MDP, and ranked 0-3 corresponding to increasingly abnormal localization by three observers. Highly significant differences were observed between the abnormal and control groups (p<0.001). Reciprocal changes in sensitivity and specificity with increasingly stringent criteria were shown. While it is apparent that the bone scan cannot be used as the sole diagnostic method for evaluation of prosthetic stability, it does seem to be a useful adjunct along with clinical criteria and radiographic studies.« less
Knee Replacement - Multiple Languages
... in a new window. Arabic (العربية) Expand Section Total Knee Replacement - العربية (Arabic) Bilingual PDF Health Information Translations Chinese, Simplified (Mandarin dialect) (简体中文) Expand Section Total Knee Replacement - 简体中文 (Chinese, Simplified (Mandarin dialect)) Bilingual PDF Health ...
Kwak, Ju-Yeong; Jeong, Jae-Heon; Lee, Sang-Hak; Jung, Ho-Joong; Jung, Young-Bok
2012-12-01
We compared clinical outcomes after total knee arthroplasty with the Low Contact Stress (LCS) rotating platform mobile bearing knee system and the Press Fit Condylar Sigma rotating platform high flexion (PFC Sigma RP-F) mobile bearing knee system. Fifty cases of total knee arthroplasty were performed with the PFC Sigma RP-F mobile bearing knee system and sixty-one cases were performed with the LCS mobile bearing total knee arthroplasty. The average duration of follow-up was 2.9 years. The mean Hospital for Special Surgery (HSS) knee score was 62.1 (range, 52 to 75) in the LCS group and 61.9 (range, 50 to 74) in the Sigma RP-F group preoperatively, and 90.1 (range, 84 to 100) in the LCS group and 89.8 (range, 83 to 100) in the Sigma RP-F group at the final follow-up. The mean preoperative flexion contracture was 6.7° (range, 0° to 10°) in the LCS group and 9.3° (range, 0° to 15°) in the Sigma RP-F group preoperatively. The mean range of motion was 124.6° (range, 105° to 150°) in the LCS group and 126.1° (range, 104° to 145°) in the Sigma RP-F group at the final follow-up. After a minimum duration of follow-up of two years, we found no significant differences between the two groups with regard to the range of knee motion or the clinical or radiographic results.
Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty.
Lee, Yong Seuk; Howell, Stephen M; Won, Ye-Yeon; Lee, O-Sung; Lee, Seung Hoon; Vahedi, Hamed; Teo, Seow Hui
2017-11-01
A systematic review was conducted to answer the following questions: (1) Does kinematically aligned (KA) total knee arthroplasty (TKA) achieve clinical outcomes comparable to those of mechanically aligned (MA) TKA? (2) How do the limb, knee, and component alignments differ between KA and MA TKA? (3) How is joint line orientation angle (JLOA) changed from the native knee in KA TKA compared to that in MA TKA? Nine full-text articles in English that reported the clinical and radiological outcomes of KA TKA were included. Five studies had a control group of patients who underwent MA TKA. Data on patient demographics, clinical scores, and radiological results were extracted. There were two level I, one level II, three level III, and three level IV studies. Six of the nine studies used patient-specific instrumentation, one study used computer navigation, and two studies used manual instrumentation. The clinical outcomes of KA TKA were comparable or superior to those of MA TKA with a minimum 2-year follow-up. Limb and knee alignment in KA TKA was similar to those in MA TKA, and component alignment showed slightly more varus in the tibial component and slightly more valgus in the femoral component. The JLOA in KA TKA was relatively parallel to the floor compared to that in the native knee and not oblique (medial side up and lateral side down) compared to that in MA TKA. The implant survivorship and complication rate of the KA TKA were similar to those of the MA TKA. Similar or better clinical outcomes were produced by using a KA TKA at early-term follow-up and the component alignment differed from that of MA TKA. KA TKA seemed to restore function without catastrophic failure regardless of the alignment category up to midterm follow-up. The JLOA in KA TKA was relatively parallel to the floor similar to the native knee compared to that in MA TKA. The present review of nine published studies suggests that relatively new kinematic alignment is an acceptable and alternative alignment to mechanical alignment, which is better understood. Further validation of these findings requires more randomized clinical trials with longer follow-up. Level II.
Sim, Jae Ang; Lee, Beom Koo; Kwak, Ji Hoon; Moon, Sung Hoon
2009-02-01
We report a case of knee fusion after a failed total knee arthroplasty (TKA) with severe osteolysis including the epicondyle and ipsilateral total hip arthroplasty (THA) with long Wagner revision stem (Sulzer Orthopedics, Baar, Switzerland). The conventional devices for arthrodesis were unavailable in this case because of the long Wagner revision stem and poor bone stock. A connector was made between the long Wagner revision stem and an intramedullary nail (IM nail; Solco, Seoul, Korea). The custom-made connector was coupled with a femoral stem by cylindrical taper fit with additional cement augmentation and an intramedullary nail by screws. Osseous fusion was achieved without pain or instability.
Arthroscopic treatment of patients with moderate arthrofibrosis after total knee replacement.
Jerosch, Joerg; Aldawoudy, Akram M
2007-01-01
The purpose of this study was to document the effect of arthroscopic management in patients with knee stiffness after total knee replacement. We present a case series study, in which 32 patients have been treated for moderate arthrofibrosis of the knee after total knee replacement, with the same regimen. We have excluded all cases of stiffness, because of infection, mechanical mal-alignment, loosening of the implants and other obvious reasons of stiffness of the knee, rather than pure arthrofibrosis. All patients first underwent a trial of conservative treatment before going for arthroscopic management. A pain catheter for femoral nerve block was inserted just before anesthesia for post-operative pain management. Arthroscopic arthrolysis of the intra-articular pathology was performed in a standardized technique with release of all fibrous bands in the suprapatellar pouch, reestablishing the medial and lateral gutter, release of the patella, resection of the remaining meniscal tissue or an anterior cyclops, if needed. Intensive physiotherapy and continuous passive motion were to start immediately post-operatively. All the patients were available for the follow up and they were evaluated using the knee society rating system. A total of 25 of the 32 procedures resulted in an improvement of the patients knee score. All the knees operated upon had intra-articular fibrous bands, hypertrophic synovitis and peri-patellar adhesions. A total of eight patients suffered from an anterior cyclops lesion and six patients showed pseudomenicus. In 19 cases a medial and lateral relapse of the patella was performed; only 5 patients got an isolated lateral release. The mean knee flexion was 119 degrees (100-130) at the end of arthroscopy and was 97 degrees (75-115) at the last follow up. The eight patients with extension lags decreased from 27 degrees (10 degrees-35 degrees) pre-operatively to 4 degrees (0-10) at time of follow up. The average knee society ratings increased from 70 points prior to the arthroscopy to 86 at time of follow up, which was found to be statistically significant (P < 0.01, student's t test). The average function score also showed improvement from 68 points pre-operatively to 85 at the time of final follow up. The average pain scores improved from 30 points pre-operatively to 41 at the time of final follow up. Our results showed that arthroscopic management of knee stiffness following total knee replacement is a safe and efficient method of treatment. Pain and functional knee scores can improve markedly.
Naili, Josefine E; Wretenberg, Per; Lindgren, Viktor; Iversen, Maura D; Hedström, Margareta; Broström, Eva W
2017-03-21
It is not well understood why one in five patients report poor outcomes following knee arthroplasty. This study evaluated changes in knee biomechanics, and perceived pain among patients reporting either a good or a poor outcome in knee-related quality of life after total knee arthroplasty. Twenty-eight patients (mean age 66 (SD 7) years) were included in this prospective study. Within one month of knee arthroplasty and one year after surgery, patients underwent three-dimensional (3D) gait analysis, completed the Knee Injury and Osteoarthritis Outcome Score (KOOS), and rated perceived pain using a visual analogue scale. A "good outcome" was defined as a change greater than the minimally detectable change in the KOOS knee-related quality of life, and a "poor outcome" was defined as change below the minimally detectable change. Nineteen patients (68%) were classified as having a good outcome. Groups were analyzed separately and knee biomechanics were compared using a two-way repeated measures ANOVA. Differences in pain between groups were evaluated using Mann Whitney U test. Patients classified as having a good outcome improved significantly in most knee gait biomechanical outcomes including increased knee flexion-extension range, reduced peak varus angle, increased peak flexion moment, and reduced peak valgus moment. The good outcome group also displayed a significant increase in walking speed, a reduction (normalization) of stance phase duration (% of gait cycle) and increased passive knee extension. Whereas, the only change in knee biomechanics, one year after surgery, for patients classified as having a poor outcome was a significant reduction in peak varus angle. No differences in pain postoperatively were found between groups. Patients reporting a good outcome in knee-related quality of life improved in knee biomechanics during gait, while patients reporting a poor outcome, despite similar reduction in pain, remained unchanged in knee biomechanics one year after total knee arthroplasty. With regards to surgeon-controlled biomechanical factors, surgery may most successfully address frontal plane knee alignment. However, achieving a good outcome in patient-reported knee-related quality of life may be related to dynamic improvements in the sagittal plane.
Gao, Fuqiang; Ma, Jinhui; Sun, Wei; Guo, Wanshou; Li, Zirong; Wang, Weiguo
2017-01-01
There are unanswered questions about knee-ankle alignment after total knee arthroplasty (TKA) for varus and valgus osteoarthritis (OA) of the knee. The aim of this retrospective study was to assess knee-ankle alignment after TKA. The study consisted of 149 patients who had undergone TKA due to varus and valgus knee OA. The alignment and angles in the selected knees and ankles were measured on full-length standing anteroposterior radiographs, both pre-operatively and post-operatively. The paired t-test and Pearson's correlation tests were used for statistical analysis. The results showed that ankle alignment correlated with knee alignment both pre-operatively and postoperatively (P<0.05). The pre-operative malalignment of the knee was corrected (P<0.05), and the ankle tilt angle was accordingly improved in the operative side after TKA (P<0.05). In addition, TKA had little effect on knee-ankle alignment on the non-operative side (P>0.05). These findings indicated that routine TKA could correct the varus or valgus deformity of a knee, and improve the tilt of the ankle. Ankle alignment correlated with knee alignment both pre-operatively and postoperatively. Both pre-operative knee and ankle malalignment can be simultaneously corrected following TKA. Level III. Copyright © 2016 Elsevier B.V. All rights reserved.
Chimutengwende-Gordon, Mukai; Khan, Wasim; Johnstone, David
2012-01-01
The management of distal femoral, tibial and patellar fractures after total knee arthroplasty can be complex. The incidence of these fractures is increasing as the number of total knee arthroplasties being performed and patient longevity is increasing. There is a wide range of treatment options including revision arthroplasty for loose implants. This review article discusses the epidemiology, risk factors, classification and treatment of these fractures. PMID:22888380
Kim, Y-H; Kim, D-Y; Kim, J-S
2007-07-01
We conducted a randomised prospective study to evaluate the clinical and radiological results of a mobile- and fixed-bearing total knee replacement of similar design in 174 patients who had bilateral simultaneous knee replacement. The mean follow-up was for 5.6 years (5.2 to 6.1). The total knee score, pain score, functional score and range of movement were not statistically different (p > 0.05) between the two groups. Osteolysis was not seen in any knee in either group. Two knees (1%) in the mobile-bearing group required revision because of infection; none in the fixed-bearing group needed revision. Excellent results can be achieved with both mobile- and fixed-bearing prostheses of similar design at mid-term follow-up. We could demonstrate no significant clinical advantage for a mobile bearing.
Apostolopoulos, Alexandros; Lallos, Stergios; Mastrokalos, Dimitrios; Michos, Ioannis; Darras, Nikolaos; Tzomaki, Magda; Efstathopoulos, Nikolaos
2011-01-01
The objective of this study was to capture and analyze the kinetics and kinematics and determine the functional performance of the osteoarthritic knee after a posterior cruciate ligament (PCL) retaining total knee arthroplasty. Kinematic and kinetic gait analysis of level walking was performed in 20 subjects (12 female and 8 male) with knee ostoarthritis. These patients were free of any neurological diseases that could affect their normal gait. Mean age was 69.6 ± 6.6 years; mean height was 157.6 cm ± 7.6 cm; and mean weight was 77.2 ± 12.1 kg. Full body gait analyses were performed using the BIOKIN 3D motion analysis system before and 9 months after total knee arthroplasty procedures. Single-step ascending kinetic analyses and plantar pressure distribution analyses were also performed for all subjects. International Knee Society Scores (IKSSs) were also assessed pre- and postoperatively. Significant increases were noted postoperatively in average cadence (preoperative mean = 99.26, postoperative mean = 110.5; p < 0.004), step length (preoperative mean = 0.49, postoperative mean = 0.54; p < 0.01) , and walking velocity (preoperative mean = 0.78, preoperatively, postoperative mean = 0.99; p < 0.001). Decreases in stance duration percentage and knee adduction moment were also reported postoperatively. All patients showed a significant improvement of knee kinetics and kinematics after a PCL retaining total knee arthroplasty. Significant differences were found in the cadence, step length, stride length, and walk velocity postoperatively. IKSSs also significantly improved. Further research is warranted to determine the clinical relevance of these findings.
Atraumatic haemarthrosis following total knee replacement treated with selective embolisation.
Karataglis, Dimitrios; Marlow, Duncan; Learmonth, Duncan J A
2006-06-01
Spontaneous haemarthrosis in the absence of anticoagulant medication or a bleeding disorder is a very rare complication after total knee arthroplasty. A case of recurrent spontaneous haemarthrosis following total knee replacement in a 69-year-old patient is reported. Angiography was used to aid the diagnosis. It demonstrated an abnormal blush of vessels around the anterior aspect of the knee joint, that was fed by genicular branches and a recurrent branch of the anterior tibial artery. Selective embolisation of the bleeding vessels with coils led to immediate control of the bleeding. No further recurrence of haemarthrosis has been recorded.
Conventional versus computer-navigated TKA: a prospective randomized study.
Todesca, Alessandro; Garro, Luca; Penna, Massimo; Bejui-Hugues, Jacques
2017-06-01
The purpose of this study was to assess the midterm results of total knee arthroplasty (TKA) implanted with a specific computer navigation system in a group of patients (NAV) and to assess the same prosthesis implanted with the conventional technique in another group (CON); we hypothesized that computer navigation surgery would improve implant alignment, functional scores and survival of the implant compared to the conventional technique. From 2008 to 2009, 225 patients were enrolled in the study and randomly assigned in CON and NAV groups; 240 consecutive mobile-bearing ultra-congruent score (Amplitude, Valence, France) TKAs were performed by a single surgeon, 117 using the conventional method and 123 using the computer-navigated approach. Clinical outcome assessment was based on the Knee Society Score (KSS), the Hospital for Special Surgery Knee Score and the Western Ontario Mac Master University Index score. Component survival was calculated by Kaplan-Meier analysis. Median follow-up was 6.4 years (range 6-7 years). Two patients were lost to follow-up. No differences were seen between the two groups in age, sex, BMI and side of implantation. Three patients of CON group referred feelings of instability during walking, but clinical tests were all negative. NAV group showed statistical significant better KSS Score and wider ROM and fewer outliers from neutral mechanical axis, lateral distal femoral angle, medial proximal tibial angle and tibial slope in post-operative radiographic assessment. There was one case of early post-operative superficial infection (caused by Staph. Aureus) successfully treated with antibiotics. No mechanical loosening, mobile-bearing dislocation or patellofemoral complication was seen. At 7 years of follow-up, component survival in relation to the risk of aseptic loosening or other complications was 100 %. There were no implant revisions. This study demonstrates superior accuracy in implant positioning and statistical significant better functional outcomes of computer-navigated TKA. Computer navigation for TKAs should be used routinely in primary implants. II.
The indirect cost of Patient-Specific Instruments.
Thienpont, Emmanuel; Paternostre, Frederic; Van Wymeersch, Charles
2015-09-01
To calculate the indirect costs of Patient Specific Instruments (PSI) based on an opportunity cost, cost of efforts and a supply chain cost model to compare PSI for value with conventional total knee arthroplasty (TKA). In 81 patients the total (direct+indirect) cost of PSI-assisted TKA was compared with conventional TKA. Surgical times and coronal mechanical alignment were measured to evaluate the effectiveness of the PSI system. Indirect costs (459 euro) make up 40% of the total cost that can run up to 1142 euro for a patient operated with PSI guides. No difference in surgical times or coronal alignment was observed in between both groups. Considering the total cost of PSI no value was found for the use of PSI in primary TKA as measured by surgical times or for obtaining a neutral mechanical axis in the coronal plane.
Knee arthrodesis as limb salvage for complex failures of total knee arthroplasty.
Kuchinad, Raul; Fourman, Mitchell S; Fragomen, Austin T; Rozbruch, S Robert
2014-11-01
Patients with multiple failures of total knee arthroplasty (TKA) are challenging limb salvage cases. Twenty one patients over the last 10 years were referred to our service for knee fusion by arthroplasty surgeons who felt they were not candidates for revision TKA. Active infection was present in 76.2% and total bone loss averaged 6.6 cm. Lengthening was performed in 7/22 patients. Total time in Ilizarov frames was 9 months, with 93.3% union. Patients treated with IM fusion nails had 100% union. Average LLD increased from 3.6 to 4.5 cm following intervention, while those with concurrent lengthening improved to 1.6 cm. Findings suggest that bone loss and the soft-tissue envelope dictate knee fusion method, and multiple techniques may be needed. A treatment algorithm is presented. Copyright © 2014 Elsevier Inc. All rights reserved.
Ünkar, Ethem Ayhan; Öztürkmen, Yusuf; Şükür, Erhan; Çarkçı, Engin; Mert, Murat
2017-03-01
The aim of this study was to compare the radiological and functional results of posterior cruciate ligament (PCL) - retaining and posterior-stabilized total knee arthroplasties in patients with severe varus gonarthrosis. Medical records of 112 knees of 96 patients who underwent total knee arthroplasty for severe varus (≥15°) were reviewed. PCL-retaining and PCL-stabilizing groups consisted of 58 and 54 knees, respectively. Mean follow-up time was 56.6 months (range: 24-112 months). Knee Society (KS) clinical rating system was used in clinical evaluation. Range of motion, degree of flexion contracture, postoperative alignment, and complication rates were compared between the groups. Mean preoperative mechanical tibiofemoral angle was 20.1° in varus alignment, and was restored to 4.6° in valgus postoperatively. No statistically significant differences were found between PCL-stabilizing and PCL-retaining groups when KS knee scores, function scores, and flexion arc were evaluated. Two patients in PCL-retaining group underwent revision surgery due to aseptic loosening of tibial component. One patient in PCL-stabilizing group needed arthrotomy due to patellar clunk syndrome. There were no notable differences between the 2 groups and PCL-retaining design had outcomes as good as PCL-stabilizing total knee implant in osteoarthritic knees with severe varus deformity. Level III, Therapeutic study. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Clinical and biomechanical assessment of patella resurfacing in total knee arthroplasty.
Berti, Lisa; Benedetti, Maria Grazia; Ensini, Andrea; Catani, Fabio; Giannini, Sandro
2006-07-01
Currently there is a limited understanding of the factors influencing range of motion by comparing patellar resurfacing vs non-resurfacing in total knee arthroplasty during activities of daily living. A recent meta-analysis of patellar replacement confirms better outcome with patella resurfacing; however, the result can be influenced by many other factors, such as: component design, surgeon experience, and technical aspects of the surgery. This study compares the biomechanics of the knee in patients after total knee arthroplasty with and without patellar resurfacing during stair climbing. Forty-seven patients with total knee arthroplasty were assessed at the mean follow-up of 24 months. In all of them a posterior stabilised fixed bearing prosthesis (Optetrak PS, Exactech) was implanted. Twenty-six patients were treated without patellar resurfacing and 21 with patellar resurfacing. Clinical evaluations were performed using the International Knee Society and the Hospital for Special Surgery scores. Ten patients with patellar resurfacing and 10 patients without patellar resurfacing were also studied with motion analysis during stair climbing; 10 healthy subjects were studied for statistical comparison. Clinical passive knee flexion, International Knee Society Function and Hospital for Special Surgery scores were significantly higher in the patellar resurfacing group. During stair climbing, active knee joint range of motion during the stance phase was greater in patients with patellar resurfacing. The maximum adduction moment was significantly higher in the group without patellar resurfacing. Patients with patellar resurfacing demonstrated better clinical scores, and kinematic and kinetic data while ascending stairs.
The Impact of Personality Traits on the Outcome of Total Knee Arthroplasty.
Giurea, A; Fraberger, G; Kolbitsch, P; Lass, R; Schneider, E; Kubista, B; Windhager, R
2016-01-01
Ten to twenty percent of patients with total knee arthroplasty (TKA) are dissatisfied with their clinical outcome. Aim of this study was to investigate the impact of personality traits on the subjective outcome of TKA. We investigated 80 patients with 86 computer navigated TKAs. We asked for patients satisfaction and divided patients into two groups (satisfied or dissatisfied). 12 personality traits were tested by the Freiburg Personality Inventory (FPI-R). Postoperative examination included Knee Society Score (KSS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC), and the Visual Analogue Scale (VAS). Radiologic investigation was done in all patients. 84% of our patients were satisfied, while 16% were not satisfied. The FPI-R showed statistical significant influence of four personality traits on patient satisfaction: life satisfaction (p = 0.006), performance orientation (p = 0.015), somatic distress (p = 0.001), and emotional stability (p = 0.002). All clinical scores (VAS, WOMAC, and KSS) showed significantly better results in the satisfied patient. Radiological examination showed optimal alignment of all TKAs. There were no complications requiring revision surgery. The results of our study show that personality traits may influence patients satisfaction and clinical outcome after TKA. Therefore patients personality traits may be a useful predictive factor for postoperative satisfaction after TKA.
The Impact of Personality Traits on the Outcome of Total Knee Arthroplasty
Giurea, A.; Fraberger, G.; Kolbitsch, P.; Lass, R.; Schneider, E.; Kubista, B.; Windhager, R.
2016-01-01
Ten to twenty percent of patients with total knee arthroplasty (TKA) are dissatisfied with their clinical outcome. Aim of this study was to investigate the impact of personality traits on the subjective outcome of TKA. We investigated 80 patients with 86 computer navigated TKAs. We asked for patients satisfaction and divided patients into two groups (satisfied or dissatisfied). 12 personality traits were tested by the Freiburg Personality Inventory (FPI-R). Postoperative examination included Knee Society Score (KSS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC), and the Visual Analogue Scale (VAS). Radiologic investigation was done in all patients. 84% of our patients were satisfied, while 16% were not satisfied. The FPI-R showed statistical significant influence of four personality traits on patient satisfaction: life satisfaction (p = 0.006), performance orientation (p = 0.015), somatic distress (p = 0.001), and emotional stability (p = 0.002). All clinical scores (VAS, WOMAC, and KSS) showed significantly better results in the satisfied patient. Radiological examination showed optimal alignment of all TKAs. There were no complications requiring revision surgery. The results of our study show that personality traits may influence patients satisfaction and clinical outcome after TKA. Therefore patients personality traits may be a useful predictive factor for postoperative satisfaction after TKA. PMID:26989686
[EFFECTIVENESS OF BILATERAL TOTAL HIP AND KNEE ARTHROPLASTY FOR SEVERE INFLAMMATORY ARTHROPATHIES].
Li, Xin; Li, Heng; Ni, Ming; Li, Xiang; Song, Xinggui; Kong, Xiangpeng; Li, Yucong; Chen, Jiying
2016-11-08
To evaluate the application and effectiveness of bilateral total hip arthroplasty and total knee arthroplasty in the treatment of severe inflammatory arthropathies. Between September 2008 and September 2015, 31 patients with severe inflammatory arthropathies were treated with bilateral total hip arthroplasty and total knee arthroplasty. Of 31 cases, 22 were male and 9 were female with an average age of 30 years (range, 20 to 41 years); there were 15 cases of rheumatoid arthritis and 16 cases of ankylosing spondylitis with an average onset age of 14 years (range, 5-28 years); all 4 ankylosed joints were observed in 11 cases, 3 ankylosed joints in 2 cases, 2 ankylosed joints in 6 cases, 1 ankylosed joint in 1 case, and no ankylosed joint in 11 cases. Before operation, the hip range of motion (ROM) value was (17.82±28.18)°, and the knee ROM value score was (26.45±30.18)°; the hip Harris score was 29.64±11.58, and the hospital for special surgery (HSS) score was 27.07±11.04. The patients were grouped and compared in accordance with etiology and ankylosed joint. One-stage arthroplasty was performed in 1 case, two-stage arthroplasty in 22 cases, three-stage arthroplasty in 7 cases, and four-stage arthroplasty in 1 case. The total operation time was 325-776 minutes; the total blood loss was 900-3 900 mL; the total transfusion volume was 2 220-8 070 mL; and the total hospitalization time was 21-65 days. The patients were followed up 12-94 months (mean, 51 months). The hip and knee ROM values, Harris score and HSS score at last follow-up were significantly improved when compared with preoperative ones ( P <0.05). The subjective satisfaction degree was good in 16 cases, moderate in 10 cases, and poor in 5 cases. Periprosthetic infection occurred in 2 cases (3 knees), joint stiffness in 3 cases (6 knees), joint instability in 1 case (1 knee), leg length discrepancy of >2 cm in 2 cases, and flexion deformity of 10° in 1 case (1 knee). The hip and knee ROM values, Harris score and HSS score showed no significant difference between patients with ankylosing spondylitis and patients rheumatoid arthritis at last follow-up ( P >0.05). The hip and knee ROM values of the patients with ankylosed joint were significantly lower than those of patients with no ankylosed joint ( P <0.05); the Harris score and HSS score of the patients with ankylosed joint were lower than those of patients with no ankylosed joint, but no significant difference was found ( P >0.05). A combination of bilateral hip and knee arthroplasty is an efficient treatment for severe lower extremities deformity, arthralgia and poor quality of life caused by inflammatory arthropathies. However, the postoperative periprosthetic infection and stiffness of knee are important complications influencing the effectiveness of operation.
Wang, Hao; Shen, Bin; Zeng, Yi
2014-12-01
There has been much debate and controversy about the optimal regimen of tranexamic acid in primary total knee arthroplasty. The purpose of this study was to undertake a meta-analysis to compare the efficacy of topical and intravenous regimen of tranexamic acid in primary total knee arthroplasty. A systematic review of the electronic databases PubMed, CENTRAL, Web of Science, and Embase was undertaken. All randomized controlled trials and prospective cohort studies evaluating the effectiveness of topical and intravenous tranexamic acid during primary total knee arthroplasty were included. The focus of the analysis was on the outcomes of blood loss, transfusion rate, and thromboembolic complications. Subgroup analysis was performed when possible. Of 328 papers identified, six trials were eligible for data extraction and meta-analysis comprising 679 patients (739 knees). We found no statistically significant difference between topical and intravenous administration of tranexamic acid in terms of blood loss, transfusion requirements and thromboembolic complications. Topical tranexamic acid has a similar efficacy to intravenous tranexamic acid in reducing both blood loss and transfusion rate without sacrificing safety in primary total knee arthroplasty. II. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of cemented and uncemented fixation in total knee arthroplasty.
Brown, Thomas E; Harper, Benjamin L; Bjorgul, Kristian
2013-05-01
As a result of reading this article, physicians should be able to :1. Understand the rationale behind using uncemented fixation in total knee arthroplasty.2.Discuss the current literature comparing cemented and uncemented total knee arthroplasty3. Describe the value of radiostereographic analysis in assessing implant stability.4. Appreciate the limitations in the available literature advocating 1 mode of fixation in total knee arthroplasty. Total knee arthroplasty performed worldwide uses either cemented, cementless, or hybrid (cementless femur with a cemented tibia) fixation of the components. No recent literature review concerning the outcomes of cemented vs noncemented components has been performed. Noncemented components offer the potential advantage of a biologic interface between the bone and implants, which could demonstrate the greatest advantage in long-term durable fixation in the follow-up of young patients undergoing arthroplasty. Several advances have been made in the backing of the tibial components that have not been available long enough to yield long-term comparative follow-up studies. Short-term radiostereographic analysis studies have yielded differing results. Although long-term, high-quality studies are still needed, material advances in biologic fixation surfaces, such as trabecular metal and hydroxyapatite, may offer promising results for young and active patients undergoing total knee arthroplasty when compared with traditional cemented options. Copyright 2013, SLACK Incorporated.
Computer-Assisted Instruction Guide.
ERIC Educational Resources Information Center
Entelek, Inc., Newburyport, MA.
Provided is a compilation of abstracts of currently available computer-assisted instructional (CAI) programs. The guide contains the specifications of all operational CAI programs that have come under the surveillance of ENTELEK's CAI Information Exchange since its establishment in 1965. A total of 226 CAI programs by 160 authors at 38 CAI centers…
Avulsion of the fibular head post-total knee replacement.
Phadnis, Ashish; Johnston, Phillip; Glasgow, Malcom
2007-11-01
We report a case of an avulsion of part of the fibular head during a primary total knee replacement for osteoarthritis. Post-operatively the patient developed a foot-drop. However, there was no clinically demonstrable instability of the knee. The patient was managed conservatively, the foot-drop recovered completely and the knee remained clinically stable. We observed that excessive hyperextension and/or a varus strain on the knee during pressurisation while cementing could have led to the injury. We advise caution while using this manoeuvre for pressurisation. This is the first injury of its kind reported in the literature.
Standifird, Tyler W; Saxton, Arnold M; Coe, Dawn P; Cates, Harold E; Reinbolt, Jeffrey A; Zhang, Songning
2016-01-01
This study compared biomechanics during stair ascent in replaced and non-replaced limbs of total knee arthroplasty (TKA) patients with control limbs of healthy participants. Thirteen TKA patients and fifteen controls performed stair ascent. Replaced and non-replaced knees of TKA patients were less flexed at contact compared to controls. The loading response peak knee extension moment was greater in control and non-replaced knees compared with replaced. The push-off peak knee abduction moment was elevated in replaced limbs compared to controls. Loading and push-off peak hip abduction moments were greater in replaced limbs compared to controls. The push-off peak hip abduction moment was greater in non-replaced limbs compared to controls. Future rehabilitation protocols should consider the replaced knee and also the non-replaced knee and surrounding joints. Copyright © 2016 Elsevier Inc. All rights reserved.
Sakai, Norihiro; Inoue, Takaya; Kunugiza, Yasuo; Tomita, Tetsuya; Mashimo, Takashi
2013-05-01
We conducted the prospective randomized controlled trial to test that continuous femoral nerve block (CFNB) improves attainment of 120° knee flexion compared to continuous epidural analgesia (CEA). Sixty-six patients scheduled for unilateral total knee arthroplasty were randomized into two groups; infusion of ropivacaine 0.15% into CEA or CFNB to third postoperative days. We studied the time required to attain 120° knee flexion, variations in thigh and calf circumferences around the treated knee, pain scores, rehabilitation milestones, the need for adjuvant analgesics, and side effects. CFNB patients attained earlier knee flexion to 120°, lower variations in thigh and calf circumferences, less pain during rehabilitation, and less need for adjuvant analgesics. CFNB is a better pain management strategy that accelerates knee flexion rehabilitation. Copyright © 2013 Elsevier Inc. All rights reserved.
2012-01-01
Background Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis. Methods We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion. Results During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design. Conclusions Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding. PMID:22704638
Ferrel, Jason R; Davis, Richard L; Agha, Obiajulu A J C; Politi, Joel R
2015-05-01
Poor range of motion may decrease a patient's ability to participate in activities of daily living after total knee arthroplasty. Manipulation under anesthesia has been shown to improve range of motion; however, some patients have persistent stiffness even after manipulation. The goal of this study was to evaluate the outcomes and complications of patients who underwent a second manipulation under anesthesia for persistent stiffness after total knee arthroplasty. The review of surgical records of two joint arthroplasty surgeons identified 226 knees in 210 patients who underwent a manipulation under anesthesia for poor range of motion after total knee arthroplasty. Of these patients, 16 patients underwent a second manipulation under anesthesia. For patients undergoing two manipulations under anesthesia procedures, at latest follow up (mean 539 days), mean extension improved from 10.50° to 2.50° (p=0.001) and mean flexion improved from 87.50° to 112.69° (p=0.001) respectively. SF-12 scores were available for 12 of 16 knees with a mean score of 34.42. Two of 16 patients (12.5%) experienced a complication. Three of 16 (18.8%) patients who underwent a second manipulation required a revision arthroplasty procedure. In conclusion, a second manipulation under anesthesia can achieve functional range of motion that is sustained after total knee arthroplasty.
Lower Limbs Function and Pain Relationships after Unilateral Total Knee Arthroplasty
ERIC Educational Resources Information Center
Tali, Maie; Maaroos, Jaak
2010-01-01
The aim of the study was to evaluate gait characteristics, lower limbs joint function, and pain relationships associated with knee osteoarthritis of female patients before and 3 months after total knee arthroplasty at an outpatient clinic rehabilitation department. Gait parameters were registered, the active range of lower extremity joints was…
Historical view and future demand for knee arthroplasty in Sweden
Rolfson, Ola; W-Dahl, Annette; Garellick, Göran; Sundberg, Martin; Kärrholm, Johan; Robertsson, Otto
2015-01-01
Background and purpose The incidence of knee osteoarthritis will most likely increase. We analyzed historical trends in the incidence of knee arthroplasty in Sweden between 1975 and 2013, in order to be able to provide projections of future demand. Patients and methods We obtained information on all knee arthroplasties in Sweden in the period 1975–2013 from the Swedish Knee Arthroplasty Register, and used public domain data from Statistics Sweden on the evolution of and forecasts for the Swedish population. We forecast the incidence, presuming the existence of a maximum incidence. Results We found that the incidence of knee arthroplasty will continue to increase until a projected upper incidence level of about 469 total knee replacements per 105 Swedish residents aged 40 years and older is reached around the year 2130. In 2020, the estimated incidence of total knee arthroplasties per 105 Swedish residents aged 40 years and older will be 334 (95% prediction interval (PI): 281–374) and in 2030 it will be 382 (PI: 308–441). Using officially forecast population growth data, around 17,500 operations would be expected to be performed in 2020 and around 21,700 would be expected to be performed in 2030. Interpretation Today’s levels of knee arthroplasty are well below the expected maximum incidence, and we expect a continued annual increase in the total number of knee arthroplasties performed. PMID:25806653
Casino, Daniela; Martelli, Sandra; Zaffagnini, Stefano; Lopomo, Nicola; Iacono, Francesco; Bignozzi, Simone; Visani, Andrea; Marcacci, Maurilio
2009-02-01
Surgical navigation systems are currently used to guide the surgeon in the correct alignment of the implant. The aim of this study was to expand the use of navigation systems by proposing a surgical protocol for intraoperative kinematics evaluations during knee arthroplasty. The protocol was evaluated on 20 patients, half undergoing unicondylar knee arthroplasty (UKA) and half undergoing posterior-substituting, rotating-platform total knee arthroplasty (TKA). The protocol includes a simple acquisition procedure and an original elaboration methodology. Kinematic tests were performed before and after surgery and included varus/valgus stress at 0 and 30 degrees and passive range of motion. Both UKA and TKA improved varus/valgus stability in extension and preserved the total magnitude of screw-home motion during flexion. Moreover, compared to preoperative conditions, values assumed by tibial axial rotation during flexion in TKA knees were more similar to the rotating patterns of UKA knees. The analysis of the anteroposterior displacement of the knee compartments confirmed that the two prostheses did not produce medial pivoting, but achieved a postoperative normal behavior. These results demonstrated that proposed intraoperative kinematics evaluations by a navigation system provided new information on the functional outcome of the reconstruction useful to restore knee kinematics during surgery.
Oliver, William M; Arthur, Calum H C; Wood, Alexander M; Clayton, Robert A E; Brenkel, Ivan J; Walmsley, Philip
2018-03-27
We report 15-year survival, clinical, and radiographic follow-up data for the Press-Fit Condylar Sigma total knee arthroplasty. Between October 1998 and October 1999, 235 consecutive TKAs were performed in 203 patients. Patients were reviewed at a specialist nurse-led clinic before surgery and at 5, 8-10, and 15 years postoperatively. Clinical outcomes, including Knee Society Score, were recorded prospectively at each clinic visit, and radiographs were obtained. Of our initial cohort, 99 patients (118 knees) were alive at 15 years, and 31 patients (34 knees) were lost to follow-up. Thirteen knees (5.5%) were revised; 5 (2.1%) for infection, 7 (3%) for instability, and 1 (0.4%) for aseptic loosening. Cumulative survival with the end point of revision for any reason was 92.3% at 15 years and with revision for aseptic failure as the end point was 94.4%. The mean Knee Society Score knee score was 77.4 (33-99) at 15 years, compared with 31.7 (2-62) preoperatively. Of 71 surviving knees for which X-rays were available, 12 (16.9%) had radiolucent lines and 1 (1.4%) demonstrated clear radiographic evidence of loosening. The Press-Fit Condylar Sigma total knee arthroplasty represents a durable, effective option for patients undergoing knee arthroplasty, with excellent survival and good clinical and radiographic outcomes at 15 years. Copyright © 2018 Elsevier Inc. All rights reserved.
Matrix assisted autologous chondrocyte transplantation for cartilage treatment
Kon, E.; Filardo, G.; Di Matteo, B.; Perdisa, F.; Marcacci, M.
2013-01-01
Objectives Matrix-assisted autologous chondrocyte transplantation (MACT) has been developed and applied in the clinical practice in the last decade to overcome most of the disadvantages of the first generation procedures. The purpose of this systematic review is to document and analyse the available literature on the results of MACT in the treatment of chondral and osteochondral lesions of the knee. Methods All studies published in English addressing MACT procedures were identified, including those that fulfilled the following criteria: 1) level I-IV evidence, 2) measures of functional or clinical outcome, 3) outcome related to cartilage lesions of the knee cartilage. Results The literature analysis showed a progressively increasing number of articles per year. A total of 51 articles were selected: three randomised studies, ten comparative studies, 33 case series and five case reports. Several scaffolds have been developed and studied, with good results reported at short to medium follow-up. Conclusions MACT procedures are a therapeutic option for the treatment of chondral lesions that can offer a positive outcome over time for specific patient categories, but high-level studies are lacking. Systematic long-term evaluation of these techniques and randomised controlled trials are necessary to confirm the potential of this treatment approach, especially when comparing against less ambitious traditional treatments. PMID:23610698
The present state of treatments for articular cartilage defects in the knee
Perera, JR; Gikas, PD; Bentley, G
2012-01-01
INTRODUCTION Chondral and osteochondral lesions of the knee are notoriously difficult to treat due to the poor healing capacity of articular cartilage and the hostile environment of moving joints, ultimately causing disabling pain and early osteoarthritis. There are many different reconstructive techniques used currently but few are proven to be of value. However, some have been shown to produce a better repair with hyaline-like cartilage rather than fibrocartilage. METHODS A systematic search of all available online databases including PubMed, MEDLINE® and Embase™ was undertaken using several keywords. All the multiple treatment options and methods available were considered. These were summarised and the evidence for and against them was scrutinised. RESULTS A total of 460 articles were identified after cross-referencing the database searches using the keywords. These revealed that autologous and matrix assisted chondrocyte implantation demonstrated both ‘good to excellent’ histological results and significant improvement in clinical outcomes. CONCLUSIONS Autologous and matrix assisted chondrocyte implantation have been shown to treat symptomatic lesions successfully with significant histological and clinical improvement. There is, however, still a need for further randomised clinical trials, perfecting the type of scaffold and the use of adjuncts such as growth factors. A list of recommendations for treatment and the potential future trends of managing these lesions are given. PMID:22943326
Schwarzkopf, Ran; Laster, Scott K; Cross, Michael B; Lenz, Nathaniel M
2016-04-01
Proper ligament tension in flexion with posterior cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. The purpose of this study was to determine the effect of varying levels of posterior cruciate ligament (PCL) release on the tibiofemoral kinematics and PCL strain. A computational analysis was performed and varying levels of PCL release were simulated. Tibiofemoral kinematics was evaluated. The maximum PCL strain was determined for each bundle to evaluate the risk of rupture based on the failure strain. The femoral AP position shifted anteriorly as the PCL stiffness was reduced. PCL strain in both bundles increased as stiffness was reduced. The model predicts that the AL bundle should not rupture for a 75% release. Risk of PM bundle rupture is greater than AL bundle. Our findings suggest that a partial PCL release impacts tibiofemoral kinematics and ligament tension and strain. The relationship is dynamic and care should be taken when seeking optimal balance intra-operatively.
Detection of total knee prostheses at airport security checkpoints.
Naziri, Qais; Johnson, Aaron J; Hooper, Hasan A; Sana, Said H; Mont, Michael A
2012-06-01
Airport security screening measures have changed substantially during the past decade, but few reports have examined how this affects patients who have undergone knee arthroplasties. The purpose of this study was to characterize the efficacy of airport metal detection of total knee prostheses, the delays faced, any inconvenience this may have caused, and the role of implant identification cards. Ninety-seven total knee arthroplasty recipients reported passing through an airport metal detector, with 70 triggering the alarm a mean of 3 times (range, 1-36). The presence of a single-knee prosthesis triggered airport security alarms more than 83% of the time and increased patient inconvenience. Patients should be informed about this chance and be prepared to present documentation of their prosthesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Nielsen, Flemming K; Egund, Niels; Peters, David; Jurik, Anne Grethe
2014-12-20
Longitudinal assessment of bone marrow lesions (BMLs) in knee osteoarthritis (KOA) by MRI is usually performed using semi-quantitative grading methods. Quantitative segmentation methods may be more sensitive to detect change over time. The purpose of this study was to evaluate and compare the validity and sensitivity to detect changes of two quantitative MR segmentation methods for measuring BMLs in KOA, one computer assisted (CAS) and one manual (MS) method. Twenty-two patients with KOA confined to the medial femoro-tibial compartment obtained MRI at baseline and follow-up (median 334 days in between). STIR, T1 and fat saturated T1 post-contrast sequences were obtained using a 1.5 T system. The 44 sagittal STIR sequences were assessed independently by two readers for quantification of BML. The signal intensities (SIs) of the normal bone marrow in the lateral femoral condyles and tibial plateaus were used as threshold values. The volume of bone marrow with SIs exceeding the threshold values (BML) was measured in the medial femoral condyle and tibial plateau and related to the total volume of the condyles/plateaus.The 95% limits of agreement at baseline were used to determine the sensitivity to change. The mean threshold values of CAS and MS were almost identical but the absolute and relative BML volumes differed being 1319 mm3/10% and 1828 mm3/15% in the femur and 941 mm3/7% and 2097 mm3/18% in the tibia using CAS and MS, respectively. The BML volumes obtained by CAS and MS were significantly correlated but the tissue changes measured were different. The volume of voxels exceeding the threshold values was measured by CAS whereas MS included intervening voxels with normal SI.The 95% limits of agreement were narrower by CAS than by MS; a significant change of relative BML by CAS was outside the limits of -2.0%-4.7% whereas the limits by MS were -6.9%-8.2%. The BML changed significantly in 13 knees using CAS and in 10 knees by MS. CAS was a reliable method for measuring BML and more sensitive to detect changes over time than MS. The BML volumes measured by the two methods differed but were significantly correlated.
Caruso, Maria Vittoria; Gramigna, Vera; Renzulli, Attilio; Fragomeni, Gionata
2016-01-01
The extracorporeal membrane oxygenation (ECMO) is a temporary, but prolonged circulatory support for cardiopulmonary failure. Clinical evidence suggests that pulsed flow is healthier than non pulsatile perfusion. The aim of this study was to computationally evaluate the effects of total and partial ECMO assistance and pulsed flow on hemodynamics in a patient-specific aorta model. The pulsatility was obtained by means of the intra-aortic balloon pump (IABP), and two different cases were investigated, considering a cardiac output (CO) of 5 L/min: Case A - total assistance - the whole flow delivered through the ECMO arterial cannula; Case B - partial assistance - flow delivered half through the cannula and half through the aorta. Computational fluid dynamic (CFD) analysis was carried out using the multiscale approach to couple the 3D aorta model with the lumped parameter model (resistance boundary condition). In case A pulsatility followed the balloon radius change, while in case B it was mostly influenced by the cardiac one. Furthermore, during total assistance, a blood stagnation occurred in the ascending aorta; in the case of partial assistance, the flow was orderly when the IABP was on and was chaotic when the balloon was off. Moreover, the mean arterial pressure (MAP) was higher in case B. The wall shear stress was worse in ascending aorta in case A. Partial support is hemodynamically advisable.
Non-Traumatic Anterior Dislocation of a Total Knee Replacement Associated with Neurovascular Injury
Aderinto, Joseph; Gross, Allan E; Rittenhouse, Bryan
2009-01-01
Prosthetic total knee replacements rarely dislocate. When dislocation does occur, it is usually in a posterior direction in association with a posterior stabilised, cruciate-sacrificing prosthesis. Neurovascular injury is unusual. In this report, we describe a case of anterior dislocation of a cruciate-retaining total knee replacement in a 67-year-old woman. The dislocation occurred in the absence of overt trauma and resulted in severe neurovascular injury. PMID:19686618
Lee, Dae-Hee; Shin, Young-Soo; Jeon, Jin-Ho; Suh, Dong-Won; Han, Seung-Beom
2014-08-01
The aim of this study was to investigate the mechanism underlying the development of gap differences in total knee arthroplasty using the navigation-assisted gap technique and to assess whether these gap differences have statistical significance. Ninety-two patients (105 knees) implanted with cruciate-retaining prostheses using the navigation-assisted gap balancing technique were prospectively analysed. Medial extension and flexion gaps and lateral extension and flexion gaps were measured at full extension and at 90° of flexion. Repeated measures analysis of variance was used to compare the mean values of these four gaps. The correlation coefficient between each pair of gaps was assessed using Pearson's correlation analysis. Mean intra-operative medial and lateral extension gaps were 20.6 ± 2.1 and 21.7 ± 2.2 mm, respectively, and mean intra-operative medial and lateral flexion gaps were 21.6 ± 2.7 and 22.1 ± 2.5 mm, respectively. The pairs of gaps differed significantly (P < 0.05 each), except for the difference between the medial flexion and lateral extension gaps (n.s.). All four gaps were significantly correlated with each other, with the highest correlation between the medial and lateral flexion gaps (r = 0.890, P < 0.001) and the lowest between the medial flexion and lateral extension gaps (r = 0.701, P < 0.001). Medial and lateral flexion and extension gaps created using the navigation-assisted gap technique differed significantly, although the differences between them were <2 mm, and the gaps were closely correlated. These narrow ranges of statistically acceptable gap differences and the strong correlations between gaps should be considered by surgeons, as should the risks of soft tissue over-release or unintentional increases in extension or flexion gap after preparation of the other gap.
Shimizu, Yukiyo; Kadone, Hideki; Kubota, Shigeki; Suzuki, Kenji; Saotome, Kousaku; Ueno, Tomoyuki; Abe, Tetsuya; Marushima, Aiki; Watanabe, Hiroki; Endo, Ayumu; Tsurumi, Kazue; Ishimoto, Ryu; Matsushita, Akira; Koda, Masao; Matsumura, Akira; Sankai, Yoshiyuki; Hada, Yasushi; Yamazaki, Masashi
2018-01-19
We sought to describe our experience with the Hybrid Assistive Limb® (HAL®) for active knee extension and voluntary ambulation with remaining muscle activity in a patient with complete paraplegia after spinal cord injury. A 30-year-old man with complete paraplegia used the HAL® for 1 month (10 sessions) using his remaining muscle activity, including hip flexor and upper limb activity. Electromyography was used to evaluate muscle activity of the gluteus maximus, tensor fascia lata, quadriceps femoris, and hamstring muscles in synchronization with the Vicon motion capture system. A HAL® session included a knee extension session with the hip flexor and voluntary gait with upper limb activity. After using the HAL® for one month, the patient's manual muscle hip flexor scores improved from 1/5 to 2/5 for the right and from 2/5 to 3/5 for the left knee, and from 0/5 to 1/5 for the extension of both knees. Knee extension sessions with HAL®, and hip flexor and upper-limb-triggered HAL® ambulation seem a safe and feasible option in a patient with complete paraplegia due to spinal cord injury.
Bedard, Nicholas A; Dowdle, Spencer B; Anthony, Christopher A; DeMik, David E; McHugh, Michael A; Bozic, Kevin J; Callaghan, John J
2017-09-01
Despite American Academy of Orthopaedic Surgeons Clinical Practice Guidelines (CPGs) related to the non-arthroplasty management of osteoarthritis (OA) of the knee, non-recommended treatments remain in common use. We sought to determine the costs associated with non-arthroplasty management of knee OA in the year prior to total knee arthroplasty (TKA) and stratify them by CPG recommendation status. The Humana database was reviewed from 2007 to 2015 for primary TKA patients. Costs for hyaluronic acid (HA) and corticosteroid injections, physical therapy, braces, wedge insoles, opioids, non-steroidal anti-inflammatories, and tramadol in the year prior to TKA were calculated. Cost was defined as reimbursement paid by the insurance provider. Costs were analyzed relative to the overall non-inpatient costs for knee OA and categorized based on CPG recommendations. In total 86,081 primary TKA patients were analyzed and 65.8% had at least one treatment in the year prior to TKA. Treatments analyzed made up 57.6% of the total non-inpatient cost of knee OA in the year prior to TKA. Only 3 of the 8 treatments studied have a strong recommendation for their use (physical therapy, non-steroidal anti-inflammatories, tramadol) and costs for these interventions represented 12.2% of non-inpatient knee OA cost. In contrast, 29.3% of the costs are due to HA injections alone, which are not supported by CPGs. In the year prior to TKA, over half of the non-inpatient costs associated with knee OA are from injections, therapy, prosthetics, and prescriptions. Approximately 30% of this is due to HA injections alone. If only interventions recommend by the CPG are utilized then costs associated with knee OA could be decreased by 45%. Copyright © 2017 Elsevier Inc. All rights reserved.
2016-01-01
Total knee replacement (TKR) is a procedure used to treat knee arthropathy. Patients’ dissatisfaction is still relevant (literature reports dissatisfaction rates as high as 40%). The anterior cruciate ligament is usually removed while performing a total knee arthroplasty, thus changing knee biomechanics. As patients’ mean age to surgery is decreasing, bicruciate retaining models, which preserve normal biomechanics, may be useful in increasing patients’ outcomes. Limited data concerning bicruciate retaining arthroplasty is available; although clinical results are encouraging, there are concerns regarding surgical exposure, anterior cruciate integrity evaluation, and implant fixation. PMID:27162778
Qiu, Bing; Liu, Fei; Tang, Bensen; Deng, Biyong; Liu, Fang; Zhu, Weimin; Zhen, Dong; Xue, Mingyuan; Zhang, Mingjiao
2017-10-01
Patient-specific instrumentation (PSI) was designed to improve the accuracy of preoperative planning and postoperative prosthesis positioning in total knee arthroplasty (TKA). However, better understanding needs to be achieved due to the subtle nature of the PSI systems. In this study, 3D printing technique based on the image data of computed tomography (CT) has been utilized for optimal controlling of the surgical parameters. Two groups of TKA cases have been randomly selected as PSI group and control group with no significant difference of age and sex ( p > 0.05). The PSI group is treated with 3D printed cutting guides whereas the control group is treated with conventional instrumentation (CI). By evaluating the proximal osteotomy amount, distal osteotomy amount, valgus angle, external rotation angle, and tibial posterior slope angle of patients, it can be found that the preoperative quantitative assessment and intraoperative changes can be controlled with PSI whereas CI is relied on experience. In terms of postoperative parameters, such as hip-knee-ankle (HKA), frontal femoral component (FFC), frontal tibial component (FTC), and lateral tibial component (LTC) angles, there is a significant improvement in achieving the desired implant position ( p < 0.05). Assigned from the morphology of patients' knees, the PSI represents the convergence of congruent designs with current personalized treatment tools. The PSI can achieve less extremity alignment and greater accuracy of prosthesis implantation compared against control method, which indicates potential for optimal HKA, FFC, and FTC angles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Van den Bempt, Maxim; Van Genechten, Wouter; Claes, Toon; Claes, Steven
2016-12-01
The aim of this study was to give an overview of the accuracy of coronal limb alignment correction after high tibial osteotomy (HTO) for the arthritic varus knee by performing a systematic review of the literature. The databases PubMed, MEDLINE and Cochrane Library were screened for relevant articles. Only prospective clinical studies with the accuracy of alignment correction by performing HTO as primary or secondary objective were included. Fifteen studies were included in this systematic review and were subdivided in 23 cohorts. A total of 966 procedures were considered. Nine cohorts used computer navigation during HTO and the other 14 cohorts used a conventional method. In seven computer navigation cohorts, at least 75% of the study population fell into the accepted "range of accuracy" (AR) as proposed by the different studies, but only six out of 14 conventional cohorts reached this percentage. Four out of eight conventional cohorts that provided data on under- and overcorrection, had a tendency to undercorrection. The accuracy of coronal alignment corrections using conventional HTO falls short. The number of procedures outside the proposed AR is surprising and exposes a critical concern for modern HTO. Computer navigation might improve the accuracy of correction, but its use is not widespread among orthopedic surgeons. Although HTO procedures have been shown to be successful in the treatment of unicompartmental knee arthritis when performed accurately, the results of this review stress the importance of ongoing efforts in order to improve correction accuracy in modern HTO. Copyright © 2016 Elsevier B.V. All rights reserved.
Comfort, Thomas; Baste, Valborg; Froufe, Miquel Angel; Namba, Robert; Bordini, Barbara; Robertsson, Otto; Cafri, Guy; Paxton, Elizabeth; Sedrakyan, Art; Graves, Stephen
2014-12-17
Differences in survivorship of non-posterior-stabilized compared with posterior-stabilized knee designs carry substantial economic consequences, especially with limited health-care resources. However, these comparisons have often been made between relatively small groups of patients, often with short-term follow-up, with only small differences demonstrated between the groups. The goal of this study is to compare the outcomes of non-posterior-stabilized and posterior-stabilized total knee arthroplasties with use of a unique collaboration of multiple established knee arthroplasty registries. A distributed health data network was developed by the International Consortium of Orthopaedic Registries and was used in this study to reduce barriers to participation (such as security, propriety, legal, and privacy issues) compared with a centralized data warehouse approach. The study included only replacements in osteoarthritis patients who underwent total knee procedures involving fixed-bearing devices from 2001 to 2010. The outcome of interest was time to first revision. On average, not resurfacing showed a more harmful effect than resurfacing did when posterior-stabilized and non-posterior-stabilized knee replacements were compared, while the risk of revision for posterior-stabilized compared with non-posterior-stabilized knees was highest in year zero to one, followed by year one to two, years eight through ten, and years two through eight. Posterior-stabilized knees did significantly worse than non-posterior-stabilized knees did when the patella was not resurfaced. This difference was most pronounced in the first two years (year zero to one: hazard ratio [HR] = 2.15, 95% confidence interval [CI] = 1.56 to 2.95, p < 0.001; year one to two: HR = 1.61, 95% CI = 1.48 to 1.75, p < 0.001). When the patella was resurfaced, posterior-stabilized knees did significantly worse than non-posterior-stabilized knees did. This was again most pronounced in the first two years (year zero to one: HR = 1.75, 95% CI = 1.27 to 2.42, p = 0.001; year one to two: HR = 1.31, 95% CI = 1.19 to 1.45, p < 0.001). There was a reduced risk of revision with a patient age of more than sixty-five years (HR = 0.57, 95% CI = 0.55 to 0.60, p < 0.001). We found that fixed non-posterior-stabilized total knee arthroplasty performed better with or without patellar resurfacing than did fixed posterior-stabilized total knee arthroplasty. This effect was most pronounced in the first two years. The risk of revision for posterior-stabilized total knee arthroplasties was reduced with patellar resurfacing. Also, a patient age of more than sixty-five years and female gender reduced the risk of revision. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Beswick, Andrew D; Wylde, Vikki; Gooberman-Hill, Rachael
2015-05-12
Total knee replacement can be a successful operation for pain relief. However, 10-34% of patients experience chronic postsurgical pain. Our aim was to synthesise evidence on the effectiveness of applying predictive models to guide preventive treatment, and for interventions in the management of chronic pain after total knee replacement. We conducted a systematic review of randomised controlled trials using appropriate search strategies in the Cochrane Library, MEDLINE and EMBASE from inception to October 2014. No language restrictions were applied. Adult patients receiving total knee replacement. Predictive models to guide treatment for prevention of chronic pain. Interventions for management of chronic pain. Reporting of specific outcomes was not an eligibility criterion but we sought outcomes relating to pain severity. No studies evaluated the effectiveness of predictive models in guiding treatment and improving outcomes after total knee replacement. One study evaluated an intervention for the management of chronic pain. The trial evaluated the use of a botulinum toxin A injection with antinociceptive and anticholinergic activity in 49 patients with chronic postsurgical pain after knee replacement. A single injection provided meaningful pain relief for about 40 days and the authors acknowledged the need for a large trial with repeated injections. No trials of multidisciplinary interventions or individualised treatments were identified. Our systematic review highlights a lack of evidence about the effectiveness of prediction and management strategies for chronic postsurgical pain after total knee replacement. As a large number of people are affected by chronic pain after total knee replacement, development of an evidence base about care for these patients should be a research priority. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ota, Susumu; Nakashima, Takeshi; Morisaka, Ayako; Omachi, Takaaki; Ida, Kunio; Kawamura, Morio
2010-12-01
Diminished range of motion (ROM) of the knee joint after total knee arthroplasty (TKA) is thought to be related to reduced patellar mobility. This has not been confirmed clinically due to a lack of quantitative methods adequate for measuring patellar mobility. We investigated the relationship between patellar mobility by a reported quantitative method and knee joint ROM after TKA. Forty-nine patients [osteoarthritis--OA: 29 knees; rheumatoid arthritis--RA: 20 knees] were examined after TKA. Respective medial and lateral patellar mobility was measured 1 and 6 months postoperatively using a patellofemoral arthrometer (PFA). Knee joint ROM was also measured in each of those 2 sessions. Although the flexion and extension of the knee joints improved significantly from 1 to 6 months after TKA, the medial and lateral patellar displacements (LPDs) failed to improve during that same period. Moreover, only the changes in knee flexion and medial patellar displacement (MPD) between the two sessions were positively correlated (r = 0.31, p < 0.05). However, our findings demonstrated that medial and lateral patellar mobility had no sufficient longitudinal relationship with knee ROM after TKA. Copyright © 2010 Elsevier Ltd. All rights reserved.
Computer Assisted Vocational Math. Written for TRS-80, Model I, Level II, 16K.
ERIC Educational Resources Information Center
Daly, Judith; And Others
This computer-assisted curriculum is intended to be used to enhance a vocational mathematics/applied mathematics course. A total of 32 packets were produced to increase the basic mathematics skills of students in the following vocational programs: automotive trades, beauty culture, building trades, climate control, electrical trades,…
Kim, Sol-Bi; Ko, Chang-Yong; Son, Jinho; Kang, Sungjae; Ryu, Jeicheong; Mun, Museong
2017-01-01
Management of a knee contracture is important for regaining gait ability in transtibial amputees. However, there has been little study of prosthesis training for enhancing mobility and improving range of motion in cases of restricted knee extension. This study aimed to evaluate the effects of adaptive training for an assist device (ATAD) for a transtibial amputee with a knee flexion contracture (KFC). A male transtibial amputee with KFC performed 4 months of ATAD with a multidisciplinary team. During the ATAD, the passive range of motion (PROM) in the knee, amputee mobility predictor (AMP) assessment, center of pressure (COP) on a force plate-equipped treadmill, gait features determined by three-dimensional motion analysis, and Short-Form 36 Item Health Survey (SF-36) scores were evaluated. Following ATAD, PROM showed immediate improvement (135.6 ± 2.4° at baseline, 142.5 ± 1.7° at Step 1, 152.1 ± 1.8° at Step 2, 165.8 ± 1.9° at Step 3, and 166.0 ± 1.4° at Step 4); this was followed by an enhanced COP. Gradually, gait features also improved. Additionally, the AMP score (5 at baseline to 29 at Step 4) and K-level (K0 at baseline to K3 at Step 4) increased after ATAD. Along with these improvements, the SF-36 score also improved. ATAD could be beneficial for transtibial amputees by relieving knee contractures and improving gait.
Influence of bi- and tri-compartmental knee arthroplasty on the kinematics of the knee joint.
Wünschel, Markus; Lo, Jiahsuan; Dilger, Torsten; Wülker, Nikolaus; Müller, Otto
2011-01-27
The cruciate ligaments are important stabilizers of the knee joint and determine joint kinematics in the natural knee and after cruciate retaining arthroplasty.No in vitro data is available to biomechanically evaluate the ability of the anterior cruciate ligament (ACL) to maintain knee joint kinematics after bicruciate-retaining bi-compartmental knee arthroplasty (BKA).Therefore, the objective of the current study was to investigate the kinematics of the natural knee joint, before and after installing bicruciate-retaining BKA and posterior cruciate retaining total knee arthroplasty. Specifically, we incorporated a dynamic knee simulator to simulate weight-bearing flexions on cadaveric knee specimen before and after surgical manipulations. In this cadaveric study we investigated rotational and translational tibiofemoral kinematics during simulated weight-bearing flexions of the intact knee, after bi-compartmental knee arthroplasty (BKA+), after resecting the ACL in BKA (BKA-), and after posterior cruciate retaining total knee arthroplasty (TKA). Rotation of BKA+ is closest to the intact knee joint, whereas TKA shows significant differences from 30 to 90 degree of flexion. Within the tested flexion range (15 to 90 degree of flexion), there was no significant difference in the anterior-posterior translation among intact, BKA+, and TKA knees. Resecting the ACL in BKA leads to a significant anterior tibial translation. BKA with intact cruciate ligaments resembles rotation and translation of the natural knee during a simulated weight-bearing flexion. It is a suitable treatment option for medial and patellofemoral osteoarthritis with advantages in rotational characteristics compared to TKA.
Wear Distribution Detection of Knee Joint Prostheses by Means of 3D Optical Scanners
Affatato, Saverio; Valigi, Maria Cristina; Logozzo, Silvia
2017-01-01
The objective of this study was to examine total knee polyethylene inserts from in vitro simulation to evaluate and display—using a 3D optical scanner—wear patterns and wear rates of inserts exposed to wear by means of simulators. Various sets of tibial inserts have been reconstructed by using optical scanners. With this in mind, the wear behavior of fixed and mobile bearing polyethylene knee configurations was investigated using a knee wear joint simulator. After the completion of the wear test, the polyethylene menisci were analyzed by an innovative 3D optical scanners in order to evaluate the 3D wear distribution on the prosthesis surface. This study implemented a new procedure for evaluating polyethylene bearings of joint prostheses obtained after in vitro wear tests and the proposed new approach allowed quantification of the contact zone on the geometry of total knee prostheses. The results of the present study showed that mobile TKPs (total knee prosthesis) have lower wear resistance with respect to fixed TKPs. PMID:28772725
Cross-linked polyethylene does not reduce wear in total knee arthroplasty.
Lasurt-Bachs, S; Torner, P; Maculé, F; Prats, E; Menéndez-García, F; Ríos-Guillermo, J; Torrents, A
To compare two different types of inserts: Ultra-high molecular weight polyethylene (UHMWPE) and cross-linked polyethylene with a quantitative and qualitative study of polyethylene wear particles in synovial fluid 3 years after total knee arthroplasty. A prospective, randomized, controlled cohort study with blinded evaluation was carried out on 25 patients undergoing staged bilateral total knee replacement, 6 months apart. Knee arthrocentesis was performed on 12 patients 3 years after surgery, and the polyethylene particles were analyzed. No significant differences were found in the number of particles generated by the two different types of inserts at 3 years from total knee arthroplasty (3,000×: x¯ cross-linked=849.7; x¯ UHMWPE=796.9; P=.63; 20,000×: x¯ cross-linked=66.3; x¯ UHMWPE=73.1; P=.76). Likewise, no differences in the probability of finding elongated (χ 2 =0.19; P=.66) or rounded (χ 2 =1.44; P=.23) particles in both types of inserts were observed. However, the probability of finding fibrillar particles is 3.08 times greater in UHMWPE. Cross-linked polyethylene does not significantly reduce the generation of polyethylene particles in patients with total knee arthroplasty, 3 years after the surgical procedure. Copyright © 2018 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Simultaneous bilateral total knee and ankle arthroplasty as a single surgical procedure.
Pagenstert, Geert; Hintermann, Beat
2011-10-13
Simultaneous osteoarthritis (OA) of the ankle joint complicates primary total knee arthroplasty (TKA). In such cases, rehabilitation of TKA is limited by debilitating ankle pain, but varus or valgus ankle arthritis may even compromise placement of knee prosthetic components. We present a patient with simultaneous bilateral valgus and patellofemoral OA of the knees and bilateral varus OA of the ankle joints that equally contributed to overall disability. This 63 years old, motivated and otherwise healthy patient was treated by simultaneous bilateral total knee and ankle arthroplasty (quadruple total joint arthroplasty, TJA) during the same anesthesia. Two years outcome showed excellent alignment and function of all four replaced joints. Postoperative time for rehabilitation, back to work (6th week) and hospital stay (12 days) of this special patient was markedly reduced compared to the usual course of separate TJA. Simultaneous quadruple TJA in equally disabling OA of bilateral deformed knees and ankles resulted in a better functional outcome and faster recovery compared to the average reported results after TKA and TAA in literature. However, careful preoperative planning, extensive patient education, and two complete surgical teams were considered essential for successful performance. To the best of our knowledge this is the first case report in literature about quadruple major total joint arthroplasty implanted during the same anesthesia in the same patient.
Kim, Young-Hoo; Kim, Jun-Shik; Park, Jang-Won; Joo, Jong-Hwan
2011-06-01
To our knowledge, no study to date has compared the clinical results of posterior cruciate-sacrificing mobile-bearing total knee replacements with those of posterior-stabilized mobile-bearing total knee replacements in the same patients. The purpose of the present study was to compare the clinical and radiographic results of these two designs. We hypothesized that the results would be better for knees treated with the posterior-stabilized mobile-bearing prosthesis. The present study consisted of a consecutive series of 107 female patients (mean age, 66.8 years) who underwent bilateral simultaneous total knee arthroplasty at the same surgical setting. All of these patients received a posterior cruciate-sacrificing mobile-bearing prosthesis in one knee and a posterior-stabilized mobile-bearing prosthesis in the contralateral knee. At the time of each follow-up (mean, 7.4 years; range, seven to 7.6 years), the patients were assessed clinically. The mean postoperative Knee Society knee score (96 compared with 97 points) and Hospital for Special Surgery knee score (93 compared with 94 points) were similar between the two groups. At the time of the latest follow-up, the average range of motion was 127.7° (range, 70° to 150°) in the knees with a posterior cruciate-sacrificing mobile-bearing prosthesis and 132.4° (range, 90° to 150°) in the knees with a posterior-stabilized mobile-bearing prosthesis. With a margin of error of the manual measurement of 5°, this difference was not significant. The estimated survival rate was 97.2% (95% confidence interval, 91% to 99%) at seven years in the posterior-cruciate sacrificing mobile-bearing prosthesis group and 98.1% (95% confidence interval, 92% to 99%) at seven years in the posterior-stabilized mobile-bearing prosthesis group. After a minimum duration of follow-up of seven years, we found no significant differences between the two groups with regard to the clinical and radiographic results, including knee range of motion.
Comparative study of design and PCL-substituting systems of total knee prosthesis.
Adam, R; Orban, C; Orban, H
2014-01-01
The aim of this study is to assess postoperative results obtained by different knee implants. The main implant types differences are given by generally implant design and by PCL substituting systems that are used. Between 04.2004 - 02.2012 we have performed 506 total knee arthroplasties (TKA), on a group of 460 patients. Our choice, was for cemented total knee prostheses, using PCL-substituting systems. Regarding general design and PCL-substituting systems of the implant we had divided the main group in three lots. In order to assess post operative result we had used the American Knee Society Score(AKSS). All prostheses types that we had implanted, had registered satisfactory values of AKSS. Our study showed that one group scored higher values of AKSS, compared the other two, but there are not statistical semnificative differences (p=0,09). Celsius.
Opolski, Maksymilian P; Debski, Artur; Borucki, Bartosz A; Staruch, Adam D; Kepka, Cezary; Rokicki, Jakub K; Sieradzki, Bartosz; Witkowski, Adam
2017-11-01
Percutaneous coronary intervention (PCI) of chronic total occlusion (CTO) may be facilitated by projection of coronary computed tomography angiography (CTA) datasets in the catheterization laboratory. There is no data on the feasibility and safety outcomes of CTA-assisted CTO PCI using a wearable augmented-reality glass. A total of 15 patients scheduled for elective antegrade CTO intervention were prospectively enrolled and underwent preprocedural coronary CTA. Three-dimensional and curved multiplanar CT reconstructions were transmitted to a head-mounted hands-free computer worn by interventional cardiologists during CTO PCI to provide additional information on CTO tortuosity and calcification. The results of CTO PCI using a wearable computer were compared with a time-matched prospective angiographic registry of 59 patients undergoing antegrade CTO PCI without a wearable computer. Operators' satisfaction was assessed by a 5-point Likert scale. Mean age was 64 ± 8 years and the mean J-CTO score was 2.1 ± 0.9 in the CTA-assisted group. The voice-activated co-registration and review of CTA images in a wearable computer during CTO PCI were feasible and highly rated by PCI operators (4.7/5 points). There were no major adverse cardiovascular events. Compared with standard CTO PCI, CTA-assisted recanalization of CTO using a wearable computer showed more frequent selection of the first-choice stiff wire (0% vs 40%, p < 0.001) and lower contrast exposure (166 ± 52 vs 134 ± 43 ml, p = 0.03). Overall CTO success rates and safety outcomes remained similar between both groups. CTA-assisted CTO PCI using an augmented-reality glass is feasible and safe, and might reduce the resources required for the interventional treatment of CTO. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Invariant hip moment pattern while walking with a robotic hip exoskeleton
Lewis, Cara L.; Ferris, Daniel P.
2011-01-01
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 minutes of the powered condition and the unpowered condition. After completing three 30-minute training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. PMID:21333995
Mont, Michael A; McElroy, Mark J; Johnson, Aaron J; Pivec, Robert
2013-08-01
The purpose of this prospective controlled trial was to determine if efficiency increases could be achieved in non-navigated and navigated total knee arthroplasties by replacing traditional saws, cutting blocks, and trials with specialized saws and single-use cutting blocks and trials. Various timing metrics during total knee arthroplasty, including operating room preparation times and specific intra-operative times, were measured in 400 procedures performed by eight different surgeons at 6 institutions. Efficiency increases were the result of statistically significant reductions in combined instrument setup and cleanup times as well as in adjusted surgical episode times in navigated total knee arthroplasties. Single-use instruments show promising benefits, but adequate patient follow-up is needed to confirm safety and efficacy before they can be widely adopted. Nevertheless, the authors believe that the use of single-use instruments, cutting guides, and trial implants for total knee arthroplasty will play an increasing role in improving operating room efficiency. Copyright © 2013 Elsevier Inc. All rights reserved.
Energy Expenditure During Cane-Assisted Gait in Patients with Knee Osteoarthritis
Jones, Anamaria; Alves, Ana Claudia Monteiro; de Oliveira, Leda Magalhães; Saad, Marcelo; Natour, Jamil
2008-01-01
OBJECTIVE To compare the energy expenditure in patients with unilateral knee osteoarthritis while walking with canes of different lengths. METHODS A quasi-experimental study (single-group) was carried out on thirty patients with unilateral knee osteoarthritis. An adjustable aluminum cane was used, and three different cane lengths were determined for each subject: C1 – length from the floor to the greater trochanter; C2 – length from the floor to the distal wrist crease; and C3 – length obtained by the formula: height x 0.45 + 0.87 m. Resting and walking heart rates were measured with a Polar hear rate meter. Walking speed was calculated by the time required for the patient to walk 10 m. Gait energy cost was estimated using the physiological cost index, and results were compared. RESULTS The sample consisted of 25 women and five men (average age of 68 years). Statistically significant differences in physiological cost index measurements were observed between unassisted walking and assisted walking with a cane of any length (p<0.001), as well as between walking with a C2-length cane and unassisted walking, and walking with a C1-length cane and walking with a C3-length cane (p=0.001; p = 0.037; p=0.001; respectively). CONCLUSION These data demonstrate that small alterations in the length of canes used for weight-bearing ambulation in patients with unilateral knee osteoarthritis increase the energy expenditure measured by the physiological cost index during walking. Further studies are needed for a more precise quantification of the increase in energy expenditure during cane-assisted gait and an assessment of the effectiveness of cane use in relieving pain and improving function in patients with knee osteoarthritis. PMID:18438573
[Research progress of three-dimensional digital model for repair and reconstruction of knee joint].
Tong, Lu; Li, Yanlin; Hu, Meng
2013-01-01
To review recent advance in the application and research of three-dimensional digital knee model. The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.
Knee joint forces: prediction, measurement, and significance
D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.
2011-01-01
Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461
Burke, Neil G; Green, Connor; McHugh, Gavin; McGolderick, Niall; Kilcoyne, Carol; Kenny, Patrick
2012-08-01
It is important to reduce potential wound complications in total hip and total knee arthroplasty procedures. The purpose of this study was to compare the jubilee dressing method to a standard adhesive dressing. 124 patients (62 total hip replacements and 62 total knee replacements) were randomly selected to have either a standard adhesive dressing or jubilee method dressing. The number of dressing changes, incidence of blistering, leakage, appearance of inflammation, infection rate and the average stay in hospital was recorded for each patient. The jubilee dressing significantly reduced the rate of blistering, leakage and number of dressing changes when compare to a traditional adhesive dressing (p < 0.05). The rate of inflammation and average length of stay in hospital was not significantly different between the two groups. The authors recommend the use of this dressing for total hip and total knee arthroplasty procedures due to the associated lower complication rate. Copyright © 2012 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Results of revision total knee arthroplasty using press-fit cementless stem.
Iamaguchi, Maurício Masasi; de Castro, Fernando Bley Vicente; Gobbi, Riccardo Gomes; Tirico, Luis Eduardo Passarelli; Pécora, José Ricardo; Camanho, Gilberto Luis
2013-01-01
To show our experience with press-fit cementless stem and metaphyseal fixation with cement in a selected series of patients who underwent revision total knee arthroplasty. Thirty-four patients (35 knees) underwent revision total knee arthroplasty using the press-fit technique. Minimum follow-up was one year (mean 2.2 years) with a maximum length of three years. Of 34 patients, 20 were women and 14 were men. There was one death due to causes not related to arthroplasty and one patient dropout. There were no cases in which further review was necessary. Patients who underwent revision had clinical and functional improvement demonstrated by the results of the KSS, results of the SF-36 quality of life questionnaire, through gains in range of motion and improved limb alignment. There was postoperative clinical and functional improvement in comparison to the preoperative status in revision total knee arthroplasty with press-fit cementless stem. Level of Evidence IV, Case series.
Braito, Matthias; Giesinger, Johannes M; Fischler, Stefan; Koller, Arnold; Niederseer, David; Liebensteiner, Michael C
2016-08-01
In light of the existing lack of evidence, it was the aim of this study to compare gait characteristics and knee extensor strength after medial unicondylar knee arthroplasty (MUKA) with those after total knee arthroplasty (TKA), given the same standardized minimally invasive surgery (MIS) approach in both groups. Patients scheduled for MIS-MUKA or MIS-TKA as part of clinical routine were invited to participate. A posterior cruciate ligament-retaining total knee design was used for all MIS-TKA. A 3-dimensional gait analysis was performed preoperatively with a VICON system and at 8 weeks postoperative to determine temporospatial parameters, ground reaction forces, joint angles, and joint moments. At the same 2 times, isokinetic tests were performed to obtain peak values of knee extensor torque. A multivariate analysis of variance was conducted and included the main effects time (before and after surgery) and surgical group and the group-by-time interaction effect. Fifteen MIS-MUKA patients and 17 MIS-TKA patients were eligible for the final analysis. The groups showed no differences regarding age, body mass index, sex, side treated, or stage of osteoarthritis. We determined neither intergroup differences nor time × group interactions for peak knee extensor torque or any gait parameters (temporospatial, ground reaction forces, joint angles, and joint moments). It is concluded that MUKA is not superior to TKA with regard to knee extensor strength or 3-dimensional gait characteristics at 8 weeks after operation. As gait characteristics and knee extensor strength are only 2 of the various potential outcome parameters (knee scores, activity scores…) and quadriceps strength might take a longer time to recover, our findings should be interpreted with caution. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Connelly, Jacob O; Edwards, Paul K; Mears, Simon C; Barnes, C Lowry
2015-01-01
Postoperative pain control after total knee arthroplasty is a major contributing factor to patient satisfaction, rehabilitation, and length of stay. Current clinical practice guidelines recommend a multimodal pain management protocol, including the use of regional anesthesia. Periarticular injection (PAI) has been shown to provide excellent pain relief after total knee arthroplasty. Recently, liposomal bupivacaine has been introduced as a long-acting alternative to traditional local anesthetics, such as bupivacaine or ropivacaine. Liposomal bupivacaine is a sustained-release preparation designed to provide local analgesia up to 72 hours after initial application. The efficacy of PAI relies significantly on a meticulous, systematic injection technique. This article details recommendations for solution preparation and injection during total knee arthroplasty on the basis of the experience of a high-volume orthopaedic reconstruction service.
Multimodal analgesia without parenteral narcotics for total knee arthroplasty.
Dorr, Lawrence D; Raya, Julio; Long, William T; Boutary, Myriam; Sirianni, Leigh Ellen
2008-06-01
Use of parenteral narcotics after total knee arthroplasty is considered by most orthopedic surgeons to be the standard of care. This study tested the hypothesis that a multimodal oral pain medication protocol could control pain and minimize complications of parenteral narcotics. Postoperative oral analgesia was augmented with either continuous epidural infusion or continuous femoral infusion using ropivacaine only. Seventy patients had total knee arthroplasty with a protocol that included preemptive oral analgesics, epidural anesthesia, pericapsular analgesic injection, and postoperative analgesia without parenteral opioids. The average daily pain score was less than 4 out of 10, nausea occurred in 15 patients (21%), emesis in 1 patient (1.4%), and there were no severe complications. This study proved the hypothesis that pain after total knee arthroplasty could be effectively managed without routine use of parenteral opioids.
Chaudhry, Fouad A; Ismail, Sanaa Z; Davis, Edward T
2018-05-01
Computer-assisted navigation techniques are used to optimise component placement and alignment in total hip replacement. It has developed in the last 10 years but despite its advantages only 0.3% of all total hip replacements in England and Wales are done using computer navigation. One of the reasons for this is that computer-assisted technology increases operative time. A new method of pelvic registration has been developed without the need to register the anterior pelvic plane (BrainLab hip 6.0) which has shown to improve the accuracy of THR. The purpose of this study was to find out if the new method reduces the operating time. This was a retrospective analysis of comparing operating time in computer navigated primary uncemented total hip replacement using two methods of registration. Group 1 included 128 cases that were performed using BrainLab versions 2.1-5.1. This version relied on the acquisition of the anterior pelvic plane for registration. Group 2 included 128 cases that were performed using the newest navigation software, BrainLab hip 6.0 (registration possible with the patient in the lateral decubitus position). The operating time was 65.79 (40-98) minutes using the old method of registration and was 50.87 (33-74) minutes using the new method of registration. This difference was statistically significant. The body mass index (BMI) was comparable in both groups. The study supports the use of new method of registration in improving the operating time in computer navigated primary uncemented total hip replacements.
Steimle, Jerrod A; Groover, Michael T; Webb, Brad A; Ceccarelli, Brian J
2018-01-01
Utilizing patient-specific instrumentation during total knee arthroplasty has gained popularity in recent years with theoretical advantages in blood loss, intraoperative time, length of stay, postoperative alignment, and functional outcome, amongst others. No study has compared acute perioperative measures between patient-specific instrumentation and conventional instrumentation in the bilateral total knee arthroplasty setting. We compared patient-specific instrumentation versus conventional instrumentation in the setting of bilateral total knee arthroplasty to determine any benefits in the immediate perioperative period including surgical time, blood loss, pain medication use, length of stay, and discharge disposition. A total of 49 patients with standard instrumentation and 31 patients with patient-specific instrumentation were retrospectively reviewed in a two-year period at one facility. At baseline, the groups were comparable with respect to age, ASA, BMI, and comorbid conditions. We analyzed data on operative time, blood loss, hemoglobin change, need for transfusion, pain medication use, length of stay, and discharge disposition. There was no statistically significant difference between groups in regards to these parameters. Patient-specific instrumentation in the setting of bilateral total knee arthroplasty did not provide any immediate perioperative benefit compared to conventional instrumentation.
[Local infiltration analgesia in total joint replacement].
de Jonge, Tamás; Görgényi, Szabolcs; Szabó, Gabriella; Torkos, Miklós Bulcsú
2017-03-01
Total hip and knee replacment surgeries are characterized by severe postoperative pain. Local infiltration analgesia is proved to be very effective. However this method has not been widely used in Hungary. To evaluate the efficacy of the local infiltration analgesia with modified components in patients underwent total hip or knee replacement surgery. Data of 99 consecutive patients underwent primary total hip or knee replacement surgery were evaluated prospectively. In all the 99 surgeries modified local infiltration analgesia was applied. Postoperative pain reported on a visual analog scale was recorded as well as the need for further analgetics during the first 18 hours after surgery. The cost of the analgetic drugs was calculated. The control group comprised 97 consecutive patients underwent total hip or knee replacement, where local infiltration analgesia was not applied. Statistical analysis was done. Patients received local infiltration analgesia reported significantly less pain (p<0.001). The need for postoperatively given analgetics was almost 50% less, and the cost of all postoperative analgetics was 47% less than in the control group. In total hip and knee replacement surgeries the modified local infiltration analgesia decreases postoperative pain effectively and contribute to the early mobilization of the patients. Orv. Hetil., 2017, 158(9), 352-357.
Zhao, Dong; Sakoda, Hideyuki; Sawyer, W Gregory; Banks, Scott A; Fregly, Benjamin J
2008-02-01
Wear of ultrahigh molecular weight polyethylene remains a primary factor limiting the longevity of total knee replacements (TKRs). However, wear testing on a simulator machine is time consuming and expensive, making it impractical for iterative design purposes. The objectives of this paper were first, to evaluate whether a computational model using a wear factor consistent with the TKR material pair can predict accurate TKR damage measured in a simulator machine, and second, to investigate how choice of surface evolution method (fixed or variable step) and material model (linear or nonlinear) affect the prediction. An iterative computational damage model was constructed for a commercial knee implant in an AMTI simulator machine. The damage model combined a dynamic contact model with a surface evolution model to predict how wear plus creep progressively alter tibial insert geometry over multiple simulations. The computational framework was validated by predicting wear in a cylinder-on-plate system for which an analytical solution was derived. The implant damage model was evaluated for 5 million cycles of simulated gait using damage measurements made on the same implant in an AMTI machine. Using a pin-on-plate wear factor for the same material pair as the implant, the model predicted tibial insert wear volume to within 2% error and damage depths and areas to within 18% and 10% error, respectively. Choice of material model had little influence, while inclusion of surface evolution affected damage depth and area but not wear volume predictions. Surface evolution method was important only during the initial cycles, where variable step was needed to capture rapid geometry changes due to the creep. Overall, our results indicate that accurate TKR damage predictions can be made with a computational model using a constant wear factor obtained from pin-on-plate tests for the same material pair, and furthermore, that surface evolution method matters only during the initial "break in" period of the simulation.
Knee osteoarthritis image registration: data from the Osteoarthritis Initiative
NASA Astrophysics Data System (ADS)
Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.
2015-03-01
Knee osteoarthritis is a very common disease, in early stages, changes in joint structures are shown, some of the most common symptoms are; formation of osteophytes, cartilage degradation and joint space reduction, among others. Based on a joint space reduction measurement, Kellgren-Lawrence grading scale, is a very extensive used tool to asses radiological OA knee x-ray images, based on information obtained from these assessments, the objective of this work is to correlate the Kellgren-Lawrence score to the bilateral asymmetry between knees. Using public data from the Osteoarthritis initiative (OAI), a set of images with different Kellgren-Lawrencescores were used to determine a relationship of Kellgren-Lawrence score and the bilateral asymmetry, in order to measure the asymmetry between the knees, the right knee was registered to match the left knee, then a series of similarity metrics, mutual information, correlation, and mean squared error where computed to correlate the deformation (mismatch) of the knees to the Kellgren-Lawrence score. Radiological information was evaluated and scored by OAI radiologist groups. The results of the study suggest an association between Radiological Kellgren-Lawrence score and image registration metrics, mutual information and correlation is higher in the early stages, and mean squared error is higher in advanced stages. This association can be helpful to develop a computer aided grading tool.
Astephen Wilson, Janie L; Dunbar, Michael J; Hubley-Kozey, Cheryl L
2015-01-01
The future of total knee arthroplasty (TKA) surgery will involve planning that incorporates more patient-specific characteristics. Despite known biological, morphological, and functional differences between men and women, there has been little investigation into knee joint biomechanical and neuromuscular differences between men and women with osteoarthritis, and none that have examined sex-specific biomechanical and neuromuscular responses to TKA surgery. The objective of this study was to examine sex-associated differences in knee kinematics, kinetics and neuromuscular patterns during gait before and after TKA. Fifty-two patients with end-stage knee OA (28 women, 24 men) underwent gait and neuromuscular analysis within the week prior to and one year after surgery. A number of sex-specific differences were identified which suggest a different manifestation of end-stage knee OA between the sexes. Copyright © 2014 Elsevier Inc. All rights reserved.
Infected total knee arthroplasty treated with arthrodesis using a modular nail.
Waldman, B J; Mont, M A; Payman, K R; Freiberg, A A; Windsor, R E; Sculco, T P; Hungerford, D S
1999-10-01
Failed treatment of infected total knee replacement presents few attractive surgical options. Knee arthrodesis is challenging surgically and can be complicated by nonunion, malunion, or recurrent infection. Recently, a modular titanium intramedullary nail has been used in an attempt to reduce the incidence of nonunion and the rate of complications. In the present study, a review of the results of knee arthrodesis after infected total knee arthroplasty in 21 patients at three large academic institutions was performed. All patients were followed up for a mean of 2.4 years (range, 2-7.5 years). The mean age of the patients was 64 years. The mean number of previous operations was four (range, 2-9 operations). A solid arthrodesis was achieved without additional surgical treatment in 20 of 21 patients (95%). The mean time to fusion was 6.3 months. The one patient who suffered a nonunion achieved fusion after a subsequent bone grafting procedure. Based on the present study, intramedullary arthrodesis with a coupled titanium nail, is a reliable, effective method of achieving fusion after infection of a total knee arthroplasty. This procedure resulted in a high rate of fusion and a lower rate of complications when compared with traditional methods of arthrodesis.
The Cruciate Ligaments in Total Knee Arthroplasty.
Parcells, Bertrand W; Tria, Alfred J
2016-01-01
The early knee replacements were hinge designs that ignored the ligaments of the knee and resurfaced the joint, allowing freedom of motion in a single plane. Advances in implant fixation paved the way for modern designs, including the posterior-stabilized (PS) total knee arthroplasty (TKA) that sacrifices both cruciate ligaments while substituting for the posterior cruciate ligament (PCL), and the cruciate-retaining (CR) TKA designs that sacrifice the anterior cruciate ligament but retain the PCL. The early bicruciate retaining (BCR) TKA designs suffered from loosening and early failures. Townley and Cartier designed BCR knees that had better clinical results but the surgical techniques were challenging.Kinematic studies suggest that normal motion relies on preservation of both cruciate ligaments. Unicompartmental knee arthroplasty retains all knee ligaments and closely matches normal motion, while PS and CR TKA deviate further from normal. The 15% to 20% dissatisfaction rate with current TKA has renewed interest in the BCR design. Replication of normal knee kinematics and proprioception may address some of the dissatisfaction.
Neuerburg, Carl; Bieger, Ralf; Jung, Sebastian; Kappe, Thomas; Reichel, Heiko; Decking, Ralf
2012-08-01
Failed total knee replacement with compromised bone and soft-tissues can be challenging. In these situations, arthrodesis remains a treatment option of a limb-saving procedure. We investigated the outcome of treatment with an intramedullary cemented knee arthrodesis nail implanted in 22 consecutive patients with forlorn situations after failed total knee replacement. There were three major complications due to re-infection and two minor complications due to wound-healing disturbances that healed with the implant retained after an average follow-up of 3.4 years. Clinical examination, Short Form-36 and Oxford knee scores revealed low pain levels, safe implant anchorage, and improved stability of the knee, whilst autonomous mobility utilizing walking aids was still possible. Bridging knee arthrodesis with an intramedullary nail is a valuable salvage procedure with acceptable clinical results. As recurring infection remains the most challenging complication, regular clinical and radiological follow-up examinations are necessary following implant-related knee arthrodesis to allow timely intervention in case of loosening.
Reverse Engineering Nature to Design Biomimetic Total Knee Implants.
Varadarajan, Kartik Mangudi; Zumbrunn, Thomas; Rubash, Harry E; Malchau, Henrik; Muratoglu, Orhun K; Li, Guoan
2015-10-01
While contemporary total knee arthroplasty (TKA) provides tremendous clinical benefits, the normal feel and function of the knee is not fully restored. To address this, a novel design process was developed to reverse engineer "biomimetic" articular surfaces that are compatible with normal soft-tissue envelope and kinematics of the knee. The biomimetic articular surface is created by moving the TKA femoral component along in vivo kinematics of normal knees and carving out the tibial articular surface from a rectangular tibial block. Here, we describe the biomimetic design process. In addition, we utilize geometric comparisons and kinematic simulations to show that; (1) tibial articular surfaces of conventional implants are fundamentally incompatible with normal knee motion, and (2) the anatomic geometry of the biomimetic surface contributes directly to restoration of normal knee kinematics. Such biomimetic implants may enable us to achieve the long sought after goal of a "normal" knee post-TKA surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
2018-06-07
Surgical Wound; Revision Total Knee Arthroplasty; Wounds and Injuries; Joint Disease; Musculoskeletal Disease; Prosthesis-Related Infections; Infection; Postoperative Complications; Pathologic Processes
Jung, Myung-Chul; Chung, Jun Young; Son, Kwang-Hyun; Wang, Hui; Hwang, Jaejin; Kim, Jay Joong; Kim, Joon Ho; Min, Byoung-Hyun
2014-08-01
The purpose of this study was to compare knee kinematics during stair walking in patients with simultaneous total knee arthroplasty (TKA) and unicompartmental knee arthroplasties (UKA). It was hypothesized that UKA would reproduce more normalized knee kinematics than TKA during stair ascent and descent. Six patients who received UKA in one knee and TKA in the other knee were included in the study. For this study, a four-step staircase was assembled with two force platforms being positioned at the centre of the second and third steps. Each patient was attached with 16 reflective markers at both lower extremities and was asked to perform five roundtrip trials of stair climbing. Kinematic parameters including stance duration, knee angle, vertical ground reaction force (GRF), joint reaction force, and moments were obtained and analysed using a10-camera motion system (VICON, Oxford, UK). Nonparametric Friedman test was used to compare the results between two arthroplasty methods and between stair ascent and descent. Compared to TKA, UKA knees exhibited significantly greater degree of rotation in transverse planes (5.0 degrees during ascent and 6.0 degrees during descent on average), but showed no difference in terms of the other parameters. When comparing the results during stair ascent with descent, overall greater knee angle, vertical GRF, joint reaction force, and moment were observed during stair descent. Both UKA and TKA knees have shown overall similar knee kinematics, though UKA knee may allow greater degree of rotation freedom, which resembles normal knee kinematics during stair walking.
Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki
2018-01-01
[Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients. PMID:29545679
Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki
2018-02-01
[Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients.
Medalla, Greg Anthony; Moonot, Pradeep; Peel, Tamlyn; Kalairajah, Yegappan; Field, Richard E
2009-06-01
The American Knee Society score (AKSS) and the Oxford Knee score (OKS) are validated outcome measures for evaluation of total knee arthroplasties (TKAs). We investigated whether patient self-assessment using the OKS offers a viable alternative to clinical review using the AKSS. Preoperative, 2-year, 5-year, and 10-year postoperative OKS and AKSS were reviewed from TKA patients. The scores were analyzed using the Pearson correlation. There was good correlation of OKS and AKSS at 2 years. This implies that patient self-assessment is a viable screening tool to identify which patients require clinical review, at 2 years, after TKA. However, the moderate correlation at 5 and 10 years indicates that clinical evaluation remains necessary at these time points.
Chagas-Neto, Francisco A; Taneja, Atul K; Gregio-Junior, Everaldo; Nogueira-Barbosa, Marcello H
2017-06-01
This study aims to describe a technique for in-plane ultrasound-guided knee arthrography through a lateral suprapatellar approach, reporting its accuracy and related complications. A retrospective search was performed for computed tomography and magnetic resonance reports from June 2013 through June 2015. Imaging studies, puncture descriptions, and guided-procedure images were reviewed along with clinical and surgical history. A fellowship-trained musculoskeletal radiologist performed all procedures under sterile technique and ultrasound guidance with the probe in oblique position on the lateral suprapatellar recess after local anesthesia with the patient on dorsal decubitus, hip in neutral rotation, and 30 to 45 degrees of knee flexion. A total of 86 consecutive subjects were evaluated (mean, 55 years). All subjects underwent intra-articular injection of contrast, which was successfully reached in the first attempt in 94.2% of the procedures (81/86), and in the second attempt in 5.8% (5/86) after needle repositioning without a second puncture. There were no postprocedural reports of regional complications at the puncture site, such as significant pain, bleeding, or vascular lesions. Our study demonstrates that in-plane ultrasound-guided injection of the knee in semiflexion approaching the lateral suprapatellar recess is a safe and useful technique to administer intra-articular contrast solution, as an alternative method without radiation exposure.
Computer-assisted abdominal surgery: new technologies.
Kenngott, H G; Wagner, M; Nickel, F; Wekerle, A L; Preukschas, A; Apitz, M; Schulte, T; Rempel, R; Mietkowski, P; Wagner, F; Termer, A; Müller-Stich, Beat P
2015-04-01
Computer-assisted surgery is a wide field of technologies with the potential to enable the surgeon to improve efficiency and efficacy of diagnosis, treatment, and clinical management. This review provides an overview of the most important new technologies and their applications. A MEDLINE database search was performed revealing a total of 1702 references. All references were considered for information on six main topics, namely image guidance and navigation, robot-assisted surgery, human-machine interface, surgical processes and clinical pathways, computer-assisted surgical training, and clinical decision support. Further references were obtained through cross-referencing the bibliography cited in each work. Based on their respective field of expertise, the authors chose 64 publications relevant for the purpose of this review. Computer-assisted systems are increasingly used not only in experimental studies but also in clinical studies. Although computer-assisted abdominal surgery is still in its infancy, the number of studies is constantly increasing, and clinical studies start showing the benefits of computers used not only as tools of documentation and accounting but also for directly assisting surgeons during diagnosis and treatment of patients. Further developments in the field of clinical decision support even have the potential of causing a paradigm shift in how patients are diagnosed and treated.
Muller, Bart; Hofbauer, Marcus; Rahnemai-Azar, Amir Ata; Wolf, Megan; Araki, Daisuke; Hoshino, Yuichi; Araujo, Paulo; Debski, Richard E; Irrgang, James J; Fu, Freddie H; Musahl, Volker
2016-01-01
The pivot shift test is a commonly used clinical examination by orthopedic surgeons to evaluate knee function following injury. However, the test can only be graded subjectively by the examiner. Therefore, the purpose of this study is to develop software for a computer tablet to quantify anterior translation of the lateral knee compartment during the pivot shift test. Based on the simple image analysis method, software for a computer tablet was developed with the following primary design constraint - the software should be easy to use in a clinical setting and it should not slow down an outpatient visit. Translation of the lateral compartment of the intact knee was 2.0 ± 0.2 mm and for the anterior cruciate ligament-deficient knee was 8.9 ± 0.9 mm (p < 0.001). Intra-tester (ICC range = 0.913 to 0.999) and inter-tester (ICC = 0.949) reliability were excellent for the repeatability assessments. Overall, the average percent error of measuring simulated translation of the lateral knee compartment with the tablet parallel to the monitor increased from 2.8% at 50 cm distance to 7.7% at 200 cm. Deviation from the parallel position of the tablet did not have a significant effect until a tablet angle of 45°. Average percent error during anterior translation of the lateral knee compartment of 6mm was 2.2% compared to 6.2% for 2 mm of translation. The software provides reliable, objective, and quantitative data on translation of the lateral knee compartment during the pivot shift test and meets the design constraints posed by the clinical setting.
Helito, Camilo Partezani; Junqueira, Jader Joel Machado; Gobbi, Ricardo Gomes; Angelini, Fábio Janson; Rezende, Marcia Uchoa; Tírico, Luis Eduardo Passarelli; Demange, Marco Kawamura; da Mota e Albuquerque, Roberto Freire; Pécora, José Ricardo; Camanho, Gilberto Luis
2014-01-01
OBJECTIVES: Healing is an event that is fundamental to the success of total knee arthroplasty. The aims of the present study were to compare the rates of complications related to wound healing between two groups of volunteers submitted to total knee arthroplasty and to evaluate the effects of postoperative oxygen supplementation by means of a nasal catheter. METHOD: A total of 109 patients who underwent total knee arthroplasty were randomized into two groups, namely, groups that did and did not receive postoperative oxygen supplementation via a nasal catheter. The surgical wound was monitored every day during the hospital stay and on the 7th, 14th, 21st, 30th and 42nd postoperative days. Characteristics related to healing were observed, including hyperemia, dehiscence, necrosis, phlyctenules and deep and superficial infection. RESULTS: There were no cases of deep infection. Hyperemia was statistically correlated with the total number of complications in the groups, with oxygen demonstrated to be a protective factor against hyperemia. Approximately 30% of the patients who exhibited hyperemia had other complications, independent of oxygen supplementation. CONCLUSION: Oxygen supplementation following total knee arthroplasty was shown to be effective in diminishing hyperemia around the operative wound. The development of hyperemia was a precursor to other complications, irrespective of whether oxygen supplementation was used. PMID:25518030
The quality-of-life burden of knee osteoarthritis in New Zealand adults: A model-based evaluation
Wilson, Ross; Hansen, Paul; Losina, Elena
2017-01-01
Background Knee osteoarthritis is a leading global cause of health-related quality of life loss. The aim of this project was to quantify health losses arising from knee osteoarthritis in New Zealand (NZ) in terms of quality-adjusted life years (QALYs) lost. Methods The Osteoarthritis Policy Model (OAPol), a validated Monte Carlo computer simulation model, was used to estimate QALYs lost due to knee osteoarthritis in the NZ adult population aged 40–84 over their lifetimes from the base year of 2006 until death. Data were from the NZ Health Survey, NZ Burden of Diseases, NZ Census, and relevant literature. QALYs were derived from NZ EQ-5D value set 2. Sensitivity to health state valuation, disease and pain prevalence were assessed in secondary analyses. Results Based on NZ EQ-5D health state valuations, mean health losses due to knee osteoarthritis over people’s lifetimes in NZ are 3.44 QALYs per person, corresponding to 467,240 QALYs across the adult population. Average estimated per person QALY losses are higher for non-Māori females (3.55) than Māori females (3.38), and higher for non-Māori males (3.34) than Māori males (2.60). The proportion of QALYs lost out of the total quality-adjusted life expectancy for those without knee osteoarthritis is similar across all subgroups, ranging from 20 to 23 percent. Conclusions At both the individual and population levels, knee osteoarthritis is responsible for large lifetime QALY losses. QALY losses are higher for females than males due to greater prevalence of knee osteoarthritis and higher life expectancy, and lower for Māori than non-Māori due to lower life expectancy. Large health gains are potentially realisable from public health and policy measures aimed at decreasing incidence, progression, pain, and disability of osteoarthritis. PMID:29065119
Magnetic resonance imaging of the knee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mink, J.H.; Reicher, M.A.; Crues, J.V.
1987-01-01
Introducing a comprehensive, practical guide to the use of magnetic resonance imaging (MRI) in detecting and evaluating knee disorders and planning arthroscopic surgery) This book integrates MRI findings with pertinent anatomy, physiology, and clinical signs to assist radiologists in selecting imaging protocols and interpreting scans. Detailed chapters focus on magnetic resonance imaging of the menisci and ligaments and evaluation of osteonecrosis, osteochondrosis, and osteochondritis. The authors demonstrate the potential of MRI for diagnosing various knee disorders such as arthritis, fractures, popliteal cysts, synovial disease, plicae, popliteal artery aneurysms, tumors, and bone marrow disorders.
2001-05-01
sweating and inappropriate foot care. Metatarsalgia, stress fractures and knee problems are related primarily to load mass and duration of marching...Stress Fracture 0 1 0 1 1 Other 8 3 1 12 12 Total 68 17 17 102 100 aFrom physician’s assistances at fixed medical sites along the march bFrom medical...feet through physical training and road march practice 2. Reduce load mass Stress Fractures Persistent, boney pain 1. Smoking/tobacco cessation 2. Pre
Oviedo Baena, Ana M; Moeschler, Susan M; Smith, Hugh M; Duncan, Christopher M; Schroeder, Darrell R; Kopp, Sandra L
2015-11-01
To determine the demographic characteristics of patients undergoing primary total knee arthroplasty during the years 1989, 1999, and 2009 at our institution and determine whether their characteristics mirror the changing US demographic characteristics. Retrospective chart review of patients and prospective survey of experienced anesthesia providers in total knee arthroplasty. Tertiary care academic medical center. All patients 18 years and older who underwent unilateral primary total knee arthroplasty in 1989, 1999, and 2009 were identified through the Mayo Clinic Total Joint Registry. For each year, 200 patients were randomly selected. The demographic characteristics, comorbidities, perioperative care, and postoperative outcomes of patients, as well as survey responses from experienced anesthesia providers. During the 3 study years, a total of 591 patients were included for analysis. A statistically significant increase in body mass index (BMI) was observed over time in patients undergoing primary total knee arthroplasty (average BMI, 29.01 in 1989, 31.32 in 1999, and 32.32 in 2009 [P < .001]). Despite the increase in patient comorbidities, the percentage of patients who had postoperative complications decreased over time (P = .003), and postoperative disposition (general medicine ward vs intensive care unit) did not change. Our provider survey received a 76% response rate. In total, 82% of anesthesia providers who responded to the survey perceived that both BMI and the number of comorbidities had increased. Of survey respondents, 67% state that they have modified their perioperative anesthesia care because of changes in body habitus and patient comorbidities. The number of obese patients with comorbidities who present for total knee arthroplasty at our institution has increased over the past 20 years. Despite this fact, a reduction was detected in postoperative complications. Copyright © 2015 Elsevier Inc. All rights reserved.
Ahn, Jin Hwan; Bae, Tae Soo; Kang, Ki-Ser; Kang, Soo Yong; Lee, Sang Hak
2011-10-01
Longitudinal tears of the medial meniscus posterior horn (MMPH) are commonly associated with a chronic anterior cruciate ligament (ACL) deficiency. Many studies have demonstrated the importance of the medial meniscus in terms of limiting the amount of anterior-posterior tibial translation in response to anterior tibial loads in ACL-deficient knees. An MMPH tear in an ACL-deficient knee increases the anterior-posterior tibial translation and rotatory instability. In addition, MMPH repair will restore the tibial translation to the level before the tear. Controlled laboratory study. Ten human cadaveric knees were tested sequentially using a custom testing system under 5 conditions: intact, ACL deficient, ACL deficient with an MMPH peripheral longitudinal tear, ACL deficient with an MMPH repair, and ACL deficient with a total medial meniscectomy. The knee kinematics were measured at 0°, 15°, 30°, 60°, and 90° of flexion in response to a 134-N anterior and 200-N axial compressive tibial load. The rotatory kinematics were also measured at 15° and 30° of flexion in a combined rotatory load of 5 N·m of internal tibial torque and 10 N·m of valgus torque. Medial meniscus posterior horn longitudinal tears in ACL-deficient knees resulted in a significant increase in anterior-posterior tibial translation at all flexion angles except 90° (P < .05). An MMPH repair in an ACL-deficient knee showed a significant decrease in anterior-posterior tibial translation at all flexion angles except 60° compared with the ACL-deficient/MMPH tear state (P < .05). The total anterior-posterior translation of the ACL-deficient/MMPH repaired knee was not significantly increased compared with the ACL (only)-deficient knee but was increased compared with the ACL-intact knee (P > .05). A total medial meniscectomy in an ACL-deficient knee did not increase the anterior-posterior tibial translation significantly compared with MMPH tears in ACL-deficient knees at all flexion angles (P > .05). In a combined rotatory load, tibial rotation after MMPH tears or a total medial meniscectomy in an ACL-deficient knee were not affected significantly at all flexion angles. This study shows that an MMPH longitudinal tear in an ACL-deficient knee alters the knee kinematics, particularly the anterior-posterior tibial translation. MMPH repair significantly improved anterior-posterior tibial translation in ACL-deficient knees. These findings may help improve the treatment of patients with ACL and MMPH longitudinal tear by suggesting that the medial meniscal repairs should be performed for greater longevity when combined with an ACL reconstruction.
Nyland, John; Kanouse, Zachary; Krupp, Ryan; Caborn, David; Jakob, Rolie
2011-01-01
Knee osteoarthritis is one of the most common disabling medical conditions. With longer life expectancy the number of total knee arthroplasty (TKA) procedures being performed worldwide is projected to increase dramatically. Patient education, physical activity, bodyweight levels, expectations and goals regarding the ability to continue athletic activity participation are also increasing. For the subset of motivated patients with knee osteoarthritis who have athletic activity approach type goals, early TKA may not be the best knee osteoarthritis treatment option to improve satisfaction, quality of life and outcomes. The purpose of this clinical commentary is to present a conceptual decision-making model designed to improve the knee osteoarthritis treatment intervention outcome for motivated patients with athletic activity approach type goals. The model focuses on improving knee surgeon, patient and rehabilitation clinician dialogue by rank ordering routine activities of daily living and quality of life evoking athletic activities based on knee symptom exacerbation or re-injury risk. This process should help establish realistic patient expectations and goals for a given knee osteoarthritis treatment intervention that will more likely improve self-efficacy, functional independence, satisfaction and outcomes while decreasing the failure risk associated with early TKA.
Total knee replacement-cementless tibial fixation with screws: 10-year results.
Ersan, Önder; Öztürk, Alper; Çatma, Mehmet Faruk; Ünlü, Serhan; Akdoğan, Mutlu; Ateş, Yalım
2017-12-01
The aim of this study was to evaluate the long term clinical and radiological results of cementless total knee replacement. A total of 51 knees of 49 patients (33 female and 16 male; mean age: 61.6 years (range, 29-66 years)) who underwent TKR surgery with a posterior stabilized hydroxyapatite coated knee implant were included in this study. All of the tibial components were fixed with screws. The HSS scores were examined preoperatively and at the final follow-up. Radiological assessment was performed with Knee Society evaluating and scoring system. Kaplan-Meier survival analysis was performed to rule out the survival of the tibial component. The mean HSS scores were 45.8 (range 38-60) and 88.1 (range 61-93), preoperatively and at the final follow-up respectively. Complete radiological assessment was performed for 48 knees. Lucent lines at the tibial component were observed in 4 patients; one of these patients underwent a revision surgery due to the loosening of the tibial component. The 10-year survival rate of a tibial component was 98%. Cementless total knee replacement has satisfactory long term clinical results. Primary fixation of the tibial component with screws provides adequate stability even in elderly patients with good bone quality. Level IV, Therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
2014-01-01
Background This study hopes to establish the timeframe for a safe return to driving under different speed conditions for patients after minimally invasive total knee arthroplasty and further explores how well various kinds of functional tests on knee performance can predict the patients’ braking ability. Methods 14 patients with right knee osteoarthritis were included in the present study and instructed to perform three simulated driving tasks at preoperative, 2 weeks postoperative and 4 weeks postoperative. Results The results showed that the total braking time at 4 week postoperative has attained the preoperative level at the driving speed 50 and 70 km/hr but not at the driving speed 90 km/hr. It had significantly improving in knee reaction time and maximum isometric force at 4 weeks postoperative. Besides, there was a moderate to high correlation between the scores of the step counts and the total braking time. Conclusions Summary, it is recommended that driving may be resumed 4 weeks after a right knee replacement but had to drive at low or moderate speed and the best predictor of safety driving is step counts. PMID:24913312
Influence of bi- and tri-compartmental knee arthroplasty on the kinematics of the knee joint
2011-01-01
Background The cruciate ligaments are important stabilizers of the knee joint and determine joint kinematics in the natural knee and after cruciate retaining arthroplasty. No in vitro data is available to biomechanically evaluate the ability of the anterior cruciate ligament (ACL) to maintain knee joint kinematics after bicruciate-retaining bi-compartmental knee arthroplasty (BKA). Therefore, the objective of the current study was to investigate the kinematics of the natural knee joint, before and after installing bicruciate-retaining BKA and posterior cruciate retaining total knee arthroplasty. Specifically, we incorporated a dynamic knee simulator to simulate weight-bearing flexions on cadaveric knee specimen before and after surgical manipulations. Methods In this cadaveric study we investigated rotational and translational tibiofemoral kinematics during simulated weight-bearing flexions of the intact knee, after bi-compartmental knee arthroplasty (BKA+), after resecting the ACL in BKA (BKA-), and after posterior cruciate retaining total knee arthroplasty (TKA). Results Rotation of BKA+ is closest to the intact knee joint, whereas TKA shows significant differences from 30 to 90 degree of flexion. Within the tested flexion range (15 to 90 degree of flexion), there was no significant difference in the anterior-posterior translation among intact, BKA+, and TKA knees. Resecting the ACL in BKA leads to a significant anterior tibial translation. Conclusions BKA with intact cruciate ligaments resembles rotation and translation of the natural knee during a simulated weight-bearing flexion. It is a suitable treatment option for medial and patellofemoral osteoarthritis with advantages in rotational characteristics compared to TKA. PMID:21272328
ERIC Educational Resources Information Center
Hsu, P. -S.; Van Dyke, M.; Chen, Y.; Smith, T. J.
2015-01-01
The purpose of this quasi-experimental study was to explore how seventh graders in a suburban school in the United States developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application. A total of 54 students (three classes) comprised this treatment…
Chughtai, Morad; Mont, Michael A; Cherian, Chris; Cherian, Jeffrey Jai; Elmallah, Randa D K; Naziri, Qais; Harwin, Steven F; Bhave, Anil
2016-04-01
Certain patients continue to suffer from knee stiffness following total knee arthroplasty (TKA) despite undergoing conventional therapies. Astym therapy to these patients may offer an effective, safe, nonoperative treatment. This study evaluates the effects of Astym therapy upon (1) range of motion and (2) subjective functional improvements in post-TKA patients who suffered from stiffness recalcitrant to other nonoperative interventions. Twenty-three post-TKA patients (29 knees) who had recalcitrant knee stiffness were included in this study. Pre- and post-Astym improvements in range of motion and Knee Society scores were compared. We analyzed knees based on the presence of flexion deficit or contracture. Further stratification was made into knees that received Astym therapy before and after a 3-month period of standard rehabilitation. Differences in range of motion from pre- to post-Astym were evaluated by measuring (1) degree of flexion deficit or contracture and (2) total arc of passive motion. Improvements in subjective functional status were determined by evaluating Knee Society scores pre- and post-Astym therapy. A two-tailed Student t-test was used to compare weighted mean differences from pre- to post-Astym for the above parameters. The mean flexion deficit improved significantly (p < 0.001) in all patients after Astym therapy. The mean flexion contracture improved significantly in (p = 0.001) in 91% of patients after Astym therapy. Knees with flexion deficits or contractures both improved in total arc of motion when compared with pretherapy. Overall, patients who underwent treatment with Astym therapy reported significant mean improvements in both Knee Society objective (80 vs. 57 points; p < 0.0001) and functional scores (80 vs. 54 points; p = 0.0003) when compared with their pretherapy objective and functional scores. No harms were reported. Astym therapy is a novel, nonoperative treatment that may be an effective treatment option for post-TKA patients suffering from persistent knee stiffness. Further studies are needed to validate this intervention as a part of cost-effective, standard treatment after TKA. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Norcross, Marc F; Blackburn, J Troy; Goerger, Benjamin M; Padua, Darin A
2010-12-01
Greater total energy absorption by the lower extremity musculature during landing may reduce stresses placed on capsuloligamentous tissues with differences in joint contributions to energy absorption potentially affecting anterior cruciate ligament injury risk. However, the relationships between energy absorption and prospectively identified biomechanical factors associated with non-contact anterior cruciate ligament injury have yet to be demonstrated. Sagittal plane total, hip, knee and ankle energy absorption, and peak vertical ground reaction force, anterior tibial shear force, knee flexion and knee valgus angles, and internal hip extension and knee varus moments were measured in 27 individuals (14 females, 13 males) performing double leg jump landings. Correlation coefficients assessed the relationships between energy absorption during three time intervals (initial impact phase, terminal phase, and total landing) and biomechanical factors related to anterior cruciate ligament injury. More favorable values of biomechanical factors related to non-contact anterior cruciate ligament injury were associated with: 1) Lesser total (R(2)=0.178-0.558), hip (R(2)=0.229-0.651) and ankle (R(2)=0.280), but greater knee (R(2)=0.147) energy absorption during the initial impact phase; 2) Greater total (R(2)=0.170-0.845), hip (R(2)=0.599), knee (R(2)=0.236-0.834), and ankle (R(2)=0.276) energy absorption during the terminal phase of landing; and 3) Greater knee (R(2)=0.158-0.709), but lesser hip (R(2)=0.309) and ankle (R(2)=0.210-0.319) energy absorption during the total landing period. These results suggest that biomechanical factors related to anterior cruciate ligament injury are influenced by both the magnitude and timing of lower extremity energy absorption during landing. Copyright © 2010 Elsevier Ltd. All rights reserved.
Losina, Elena; Collins, Jamie E; Daigle, Meghan E; Donnell-Fink, Laurel A; Prokopetz, Julian J Z; Strnad, Doris; Lerner, Vladislav; Rome, Benjamin N; Ghazinouri, Roya; Skoniecki, Debra J; Katz, Jeffrey N; Wright, John
2013-10-12
Utilization of total knee arthroplasty is increasing rapidly. A substantial number of total knee arthroplasty recipients have persistent pain after surgery. Our objective was to design a randomized controlled trial to establish the efficacy of a motivational-interviewing-based telephone intervention aimed at improving patient outcomes and satisfaction following total knee arthroplasty. The study was conducted at Brigham and Women's Hospital in Boston, Massachusetts. The study focused on individuals 40 years or older with a primary diagnosis of osteoarthritis who were scheduled for total knee arthroplasty. The study compared two management strategies over the first six months postoperatively: 1) enhanced postoperative care with frequent follow-up by a care navigator; 2) usual postoperative care. Those who were randomized into the enhanced postoperative care arm received ten calls from a trained non-clinician care navigator over the first six postoperative months. The navigator used motivational interviewing techniques to engage patients in discussions related to their rehabilitation goals, including patient's plans for and confidence in achieving those goals. Patients in the usual care arm received standard postoperative management and received no navigator phone calls. Patients in both arms were assessed at baseline, three months, and six months postoperatively. The primary outcome of the study was improvement in function as measured by the difference in Western Ontario and McMaster Universities Osteoarthritis Index function score between preoperative (baseline) status and six months postoperatively. Data were collected to identify factors that may be related to total knee arthroplasty outcomes, including preoperative pain, pain catastrophizing, self-efficacy, and depression. A formal economic analysis is also planned to determine the cost-effectiveness of the care navigator as a component of total knee arthroplasty care. ClinicalTrials.gov NCT01540851.
Palsis, John A; Brehmer, Thomas S; Pellegrini, Vincent D; Drew, Jacob M; Sachs, Barton L
2018-02-21
In an era of mandatory bundled payments for total joint replacement, accurate analysis of the cost of procedures is essential for orthopaedic surgeons and their institutions to maintain viable practices. The purpose of this study was to compare traditional accounting and time-driven activity-based costing (TDABC) methods for estimating the total costs of total hip and knee arthroplasty care cycles. We calculated the overall costs of elective primary total hip and total knee replacement care cycles at our academic medical center using traditional and TDABC accounting methods. We compared the methods with respect to the overall costs of hip and knee replacement and the costs for each major cost category. The traditional accounting method resulted in higher cost estimates. The total cost per hip replacement was $22,076 (2014 USD) using traditional accounting and was $12,957 using TDABC. The total cost per knee replacement was $29,488 using traditional accounting and was $16,981 using TDABC. With respect to cost categories, estimates using traditional accounting were greater for hip and knee replacement, respectively, by $3,432 and $5,486 for personnel, by $3,398 and $3,664 for space and equipment, and by $2,289 and $3,357 for indirect costs. Implants and consumables were derived from the actual hospital purchase price; accordingly, both methods produced equivalent results. Substantial cost differences exist between accounting methods. The focus of TDABC only on resources used directly by the patient contrasts with the allocation of all operating costs, including all indirect costs and unused capacity, with traditional accounting. We expect that the true costs of hip and knee replacement care cycles are likely somewhere between estimates derived from traditional accounting methods and TDABC. TDABC offers patient-level granular cost information that better serves in the redesign of care pathways and may lead to more strategic resource-allocation decisions to optimize actual operating margins.
Beckmann, J; Steinert, A; Zilkens, C; Zeh, A; Schnurr, C; Schmitt-Sody, M; Gebauer, M
2016-04-01
Knee arthroplasty is a successful standard procedure in orthopedic surgery; however, approximately 20 % of patients are dissatisfied with the clinical results as they suffer pain and can no longer achieve the presurgery level of activity. According to the literature the reasons are inexact fitting of the prosthesis or too few anatomically formed implants resulting in less physiological kinematics of the knee joint. Reducing the number of dissatisfied patients and the corresponding number of revisions is an important goal considering the increasing need for artificial joints. In this context, patient-specific knee implants are an obvious alternative to conventional implants. For the first time implants are now matched to the individual bone and not vice versa to achieve the best possible individual situation and geometry and more structures (e.g. ligaments and bone) are preserved or only those structures are replaced which were actually destroyed by arthrosis. According to the authors view, this represents an optimal and pioneering addition to conventional implants. Patient-specific implants and the instruments needed for correct alignment and fitting can be manufactured by virtual 3D reconstruction and 3D printing based on computed tomography (CT) scans. The portfolio covers medial as well as lateral unicondylar implants, medial as well as lateral bicompartmental implants (femorotibial and patellofemoral compartments) and cruciate ligament-preserving as well as cruciate ligament-substituting total knee replacements; however, it must be explicitly emphasized that the literature is sparse and no long-term data are available.
ERIC Educational Resources Information Center
Nazzal, Mahmoud I.; Bashaireh, Khaldoon H.; Alomari, Mahmoud A.; Nazzal, Mohammad S.; Maayah, Mikhled F.; Mesmar, Mohammad
2012-01-01
The aim of this study was to examine patient satisfaction with rehabilitation after total knee arthroplasty (TKA). Fifty-six patients, aged 45-77 years, were enrolled in a post-TKA comprehensive therapy program focusing on knee strengthening and functional activities. The program lasted 3 months and was conducted for 1 h, twice a day, 5 days per…
Influence of conformity on the wear of total knee replacement: An experimental study
Brockett, Claire L; Carbone, Silvia; Fisher, John; Jennings, Louise M
2017-01-01
Wear of total knee replacement continues to be a significant factor influencing the clinical longevity of implants. Historically, failure due to delamination and fatigue directed design towards more conforming inserts to reduce contact stress. As new generations of more oxidatively stable polyethylene have been developed, more flexibility in bearing design has been introduced. The aim of this study was to investigate the effect of insert conformity on the wear performance of a fixed bearing total knee replacement through experimental simulation. Two geometries of insert were studied under standard gait conditions. There was a significant reduction in wear with reducing implant conformity. This study has demonstrated that bearing conformity has a significant impact on the wear performance of a fixed bearing total knee replacement, providing opportunities to improve clinical performance through enhanced material and design selection. PMID:29251167
Comparison of Floseal(r) and electrocautery in hemostasis after total knee arthroplasty
Helito, Camilo Partezani; Gobbi, Riccardo Gomes; Castrillon, Lucas Machado; Hinkel, Betina Bremer; Pécora, José Ricardo; Camanho, Gilberto Luis
2013-01-01
Objective To evaluate whether hemostasis with eletrocauterization in comparison with Floseal(r) leads to different bleeding rates during total knee arthroplasty. Methods A comparative study was performed between two groups: group with ten consecutive total knee arthroplasties with Floseal(r) used as hemostatic method and control group with ten consecutive total knee arthroplasties with eletrocauterization as hemostatic method. Bleeding parameters such as debit of the drain, liquid infusion and blood transfusion rate were recorded. Results Floseal(r) group received less blood transfusion, less liquid infusion and lower drainage in absolute numbers compared to the control group. However, no parameter was statistically significant. Conclusion Hemostasis with Floseal(r) is as effective as hemostasis with eletrocauterization, what makes it a viable alternative to patients with contraindication to electric scalpel use. Level of Evidence II, Prospective Comparative Study. PMID:24453689
Hernandez, Arnaldo José; Almeida, Adriano Marques de; Fávaro, Edmar; Sguizzato, Guilherme Turola
2012-09-01
To evaluate the association between tourniquet and total operative time during total knee arthroplasty and the occurrence of deep vein thrombosis. Seventy-eight consecutive patients from our institution underwent cemented total knee arthroplasty for degenerative knee disorders. The pneumatic tourniquet time and total operative time were recorded in minutes. Four categories were established for total tourniquet time: <60, 61 to 90, 91 to 120, and >120 minutes. Three categories were defined for operative time: <120, 121 to 150, and >150 minutes. Between 7 and 12 days after surgery, the patients underwent ascending venography to evaluate the presence of distal or proximal deep vein thrombosis. We evaluated the association between the tourniquet time and total operative time and the occurrence of deep vein thrombosis after total knee arthroplasty. In total, 33 cases (42.3%) were positive for deep vein thrombosis; 13 (16.7%) cases involved the proximal type. We found no statistically significant difference in tourniquet time or operative time between patients with or without deep vein thrombosis. We did observe a higher frequency of proximal deep vein thrombosis in patients who underwent surgery lasting longer than 120 minutes. The mean total operative time was also higher in patients with proximal deep vein thrombosis. The tourniquet time did not significantly differ in these patients. We concluded that surgery lasting longer than 120 minutes increases the risk of proximal deep vein thrombosis.
Rajgopal, Ashok; Aggarwal, Kalpana; Khurana, Anshika; Rao, Arun; Vasdev, Attique; Pandit, Hemant
2017-01-01
Total knee arthroplasty is a well-established treatment for managing end-stage symptomatic knee osteoarthritis. Currently, different designs of prostheses are available with majority ensuring similar clinical outcomes. Altered surface geometry is introduced to strive toward gaining superior outcomes. We aimed to investigate any differences in functional outcomes between 2 different polyethylene designs namely the Persona CR (cruciate retaining) and Persona UC (ultracongruent) tibial inserts (Zimmer-Biomet, Warsaw, IN). This prospective single blind, single-surgeon randomized controlled trial reports on 105 patients, (66 female and 39 male), who underwent simultaneous bilateral total knee arthroplasty using the Persona knee system (Zimmer-Biomet) UC inserts in one side and CR inserts in the contralateral side. By a blind assessor, at regular time intervals patients were assessed in terms of function and gait. The functional knee scoring scales used were the Western Ontario and McMaster Universities Osteoarthritis Index and Modified Knee Society Score. The gait parameters evaluated were foot pressure and step length. During the study period, no patient was lost to follow-up or underwent revision surgery for any cause. Western Ontario and McMaster Universities Osteoarthritis Index scores, Modified Knee Society Score, and knee range of motion of all 105 patients assessed preoperatively and postoperatively at 6 months, 1 year, and 2 years showed statistically better results (P < .05) for UC inserts. Gait analysis measuring foot pressures and step length, however, did not show any statistically significant differences at 2-year follow-up. Ultracongruent tibial inserts show significantly better functional outcomes as compared to CR inserts during a 2-year follow-up period. However, in this study these findings were not shown to be attributed to differences in gait parameters. Copyright © 2016 Elsevier Inc. All rights reserved.
Mencière, Maxime L; Epinette, Jean-Alain; Gabrion, Antoine; Arnalsteen, Damien; Mertl, Patrice
2014-10-01
A full range of motion after total knee arthroplasty has become more and more requested by our patients, leading to novel designs of knee implants, the so-called "hyperflex" knees. The aim of the present study was to confirm whether or not hyperflexion of operated knees really improves the patients' quality of life. A retrospective comparative case-control study has been carried out to compare clinical results shown in two types of knee prosthesis, from two homogeneous paired groups of patients including 45 cases of a "hyperflex" model (RP-F), while the control group consisted of 43 cases of a "regular design" model (Triathlon) in terms of expected postoperative flexion. The hyperflex group demonstrated significant higher mean values of passive flexion at 119.9° in the RP-F group versus 111.1° in the Triathlon group. However, global results in the "regular" control group were significantly better than the "hyperflex" study group, in both IKS knee and functional scores at 84.4 points (RP-F) vs. 89.8 points (Triathlon), and 84.6 points (RP-F) vs. 89.5 points (Triathlon), respectively. Moreover, the self-administered KOOS questionnaire was significantly in favor of the control group, with 73.5 points in RP-F knees versus 86.0 points for Triathlon knees at global KOOS postoperative scores. The quality of life of operated patients after TKA obviously would be considered as the main priority, which was better obtained by a "regular design" in our study. Hence "high flexion" cannot be considered as an absolute target when choosing a model for total knee arthroplasty.
Kim, Young-Hoo; Park, Jang-Won; Kim, Jun-Shik
2018-01-01
There is none, to our knowledge, about comparison of high-flexion fixed-bearing and high-flexion mobile-bearing total knee arthroplasties (TKAs) in the same patients. The purpose of this study was to determine whether clinical results; radiographic and computed tomographic scan results; and the survival rate of a high-flexion mobile-bearing TKA is better than that of a high-flexion fixed-bearing TKA. The present study consisted of 92 patients (184 knees) who underwent same-day bilateral TKA. Of those, 17 were men and 75 were women. The mean age at the time of index arthroplasty was 61.5 ± 8.3 years (range 52-65 years). The mean body mass index was 26.2 ± 3.3 kg/m 2 (range 23-34 kg/m 2 ). The mean follow-up was 11.2 years (range 10-12 years). The Knee Society knee scores (93 vs 92 points; P = .531) and function scores (80 vs 80 points; P = 1.000), WOMAC scores (14 vs 15 points; P = .972), and UCLA activity scores (6 vs 6 points; P = 1.000) were not different between the 2 groups at 12 years follow-up. There were no differences in any radiographic and CT scan parameters between the 2 groups. Kaplan-Meier survivorship of the TKA component was 98% (95% confidence interval, 93-100) in the high-flexion fixed-bearing TKA group and 99% (95% confidence interval, 94-100) in the high-flexion mobile-bearing TKA group 12 years after the operation. We found no benefit to mobile-bearing TKA in terms of pain, function, radiographic and CT scan results, and survivorship. Longer-term follow-up is necessary to prove the benefit of the high-flexion mobile-bearing TKA over the high-flexion fixed-bearing TKA. Copyright © 2017 Elsevier Inc. All rights reserved.
Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu
2016-03-01
Although sagittal tibial alignment in total knee arthroplasty (TKA) is important, no landmarks exist to achieve a reproducible slope. The purpose of this study was to evaluate the clinical usefulness of the distance from the guide rod to the skin surface for the tibial slope in TKA. Computer simulation studies were performed on 100 consecutive knees scheduled for TKA. The angle between the line connecting the most anterior point of the predicted tibial cut surface and the skin surface 20 cm distal to the predicted cut surface (Line S) and the mechanical axis (MA) of the tibia in the sagittal plane was measured. The mean (±SD) absolute angle difference between the Line S and the MA was 0.9°±0.7°. The Line S was almost parallel to the MA in the sagittal plane (95% and 99% within two degrees and three degrees of deviation from MA, respectively). The guide rod orientation is a surrogate for the tibial cut slope because the targeted posterior slope is usually built into the cutting block and ensuring the rod is parallel to the MA in the sagittal plane is recommended. Therefore the distance between the skin surface and the rod can be a useful guide for the tibial slope. II. Copyright © 2015 Elsevier B.V. All rights reserved.
[Ligament-controlled positioning of the knee prosthesis components].
Widmer, K-H; Zich, A
2015-04-01
There are at least two predominant goals in total knee replacement: first, the surgeon aims to achieve an optimal postoperative kinematic motion close to the patient's physiological range, and second, he aims for concurrent high ligament stability to establish pain-free movement for the entire range of motion. A number of prosthetic designs and surgical techniques have been developed in recent years to achieve both of these targets. This study presents another modified surgical procedure for total knee implantation. As in common practice the osteotomies are planned preoperatively, referencing well-defined bony landmarks, but their placement and orientation are also controlled intraoperatively in a stepwise sequence via ligamentous linkages. This method is open to all surgical approaches and can be applied for PCL-conserving or -sacrificing techniques. The anterior femoral osteotomy is carried out first, followed by the distal femoral osteotomy. Then, the extension gap is finalized by tensioning the ligaments and "top-down" referencing at the level of the tibial osteotomy, followed by finishing the flexion gap in the same way, except that the osteotomy of the posterior condyles is referenced in a "bottom-up" fashion. Hence, this technique relies on both bony and ligament-controlled procedures. Thus, it respects the modified ligamentous framework and drives the prosthetic components into the new ligamentous envelope. Further improvement may be achieved by additional control of the kinematics during surgery by applying modern computer navigation technology.
Increased conformity offers diminishing returns for reducing total knee replacement wear.
Fregly, Benjamin J; Marquez-Barrientos, Carlos; Banks, Scott A; DesJardins, John D
2010-02-01
Wear remains a significant problem limiting the lifespan of total knee replacements (TKRs). Though increased conformity between TKR components has the potential to decrease wear, the optimal amount and planes of conformity have not been investigated. Furthermore, differing conformities in the medial and lateral compartments may provide designers the opportunity to address both wear and kinematic design goals simultaneously. This study used a computational model of a Stanmore knee simulator machine and a previously validated wear model to investigate this issue for simulated gait. TKR geometries with different amounts and planes of conformity on the medial and lateral sides were created and tested in two phases. The first phase utilized a wide range of sagittal and coronal conformity combinations to blanket a physically realistic design space. The second phase performed a focused investigation of the conformity conditions from the first phase to which predicted wear volume was sensitive. For the first phase, sagittal but not coronal conformity was found to have a significant effect on predicted wear volume. For the second phase, increased sagittal conformity was found to decrease predicted wear volume in a nonlinear fashion, with reductions gradually diminishing as conformity increased. These results suggest that TKR geometric design efforts aimed at minimizing wear should focus on sagittal rather than coronal conformity and that at least moderate sagittal conformity is desirable in both compartments.
Miki, Takaaki; Miki, Takahito; Nishiyama, Akihiro
2014-01-15
Stress fractures have been reported to occur in the pubis, femoral neck, proximal part of the tibia, and fabella during the postoperative period following total knee or total hip arthroplasty. However, to our knowledge, calcaneal stress fractures after total hip or total knee arthroplasty have not been reported in the English-language literature. Most orthopaedic surgeons are not familiar with calcaneal stress fractures that may occur in elderly patients after a total knee or total hip arthroplasty. We retrospectively reviewed the clinical features, imaging findings, and bone mineral content of the proximal part of the femur and the distal end of the radius in five patients who had a calcaneal stress fracture after a total knee or total hip arthroplasty. All patients were women with a mean age of 76.8 years. All fractures occurred in the calcaneus on the same side as the arthroplasty. The fracture appeared at a mean of 10.2 weeks postoperatively. All patients reported heel pain on walking. Swelling and local heat were found in four and three patients, respectively. Pain was elicited by squeezing the calcaneus in all patients. Early radiographs had normal findings in two patients, and an irregular sclerotic line appeared later in the radiographs of all patients. All fractures were treated conservatively. Four fractures healed uneventfully, but one fracture displaced. All patients had osteoporosis. Calcaneal stress fractures during the postoperative period following total knee or total hip arthroplasty may not be as rare as previously thought. Because clinical symptoms of the fracture appear insidiously and radiographic findings are absent or subtle in the early stage, a high index of suspicion is needed for orthopaedic surgeons to make the correct diagnosis. Magnetic resonance imaging or repeated radiographs may be necessary to make the correct diagnosis when no abnormality is apparent on the initial radiograph.
Matz, Jacob; Howard, James L; Morden, David J; MacDonald, Steven J; Teeter, Matthew G; Lanting, Brent A
2017-03-01
Patellofemoral joint biomechanics contribute to anterior knee pain, instability, and dysfunction following total knee arthroplasty (TKA). Information about specific factors leading to anterior knee pain and dysfunction is currently limited. Changes in patellofemoral joint offset (PFO) refers to a mismatch between the preoperative and postoperative anteroposterior geometry of the patellofemoral joint. It remains unclear whether these changes lead to adverse outcomes in TKA. A retrospective radiographic review of 970 knees pre-TKA and post-TKA was completed to correlate the radiographic and clinical outcomes of changing the PFO using a posterior-stabilized single knee design with patellar resurfacing. A total of 970 patients were reviewed. Postoperatively, the anterior femoral offset, anteroposterior femoral size, and anterior patellar offset were changed in 40%, 60%, and 71% of knees, respectively, compared to preoperative values. The Western Ontario and McMasters Osteoarthritis Index total score as well as subscale scores for pain and function were not significantly affected by an increase or decrease in PFO. Similarly, Knee Society Scores and range of motion were not significantly affected. Increased anterior patellar offset was, however, associated with increased postoperative patellar tilt. Postoperative patellar tilt was not correlated with adverse patient satisfaction scores or loss of range of motion. Changes in PFO (decreased, maintained, or increased) are common post-TKA and are not associated with a difference in clinical outcomes. Increases in anterior patellar offset led to increased patellar tilt, which was not associated with adverse patient satisfaction scores. Copyright © 2016 Elsevier Inc. All rights reserved.
Kolb, Werner; Guhlmann, Hanno; Windisch, Christoph; Marx, Frank; Koller, Heiko; Kolb, Klaus
2010-09-01
The complication rate of periprosthetic femoral fractures above well-fixed total knee arthroplasties is high. The Less Invasive Stabilization System (LISS) was introduced to reduce surgical dissections at the fracture site. The purpose of this retrospective study was to evaluate the midterm functional outcome of a group of patients with periprosthetic fractures above well-fixed total knee arthroplasties treated with the LISS. Between January 1999 and June 2004, 23 consecutive patients (all women) with periprosthetic fractures above well-fixed total knee arthroplasties were treated with the LISS. The mean age was 77 years (range, 61-90 years). Nineteen of the patients (83%) were seen after a midterm follow-up of 46 months (range, 26-67 months). Three patients (13%) died, and one patient (4%) was lost to follow-up. A proximal screw pull-out of the internal fixator occurred in one patient (4%). All fractures healed within a mean of 14 weeks (range, 9-21 weeks). No bone graft was required. There were two delayed unions, no nonunions or infections. One patient (4%) had a malalignment with 7° varus. The mean range of motion was 102° (range, 65-120°). The mean knee score of the Knee Society was 81 points (range, 65-90 points), and the mean function score of the Knee Society was 56 points (range, 35-90 points). We found that a minimally invasive, locked plating system permitted stable fixation, early knee motion with good midterm results, and minimal complications. These techniques should be used in place of less stable and more invasive methods.
Chronic Quadriceps Tendon Rupture After Total Knee Arthroplasty Augmented With Synthetic Mesh.
Ormaza, Amaia; Moreta, Jesús; Mosquera, Javier; de Ugarte, Oskar Sáez; Mozos, José Luis Martinez-de Los
2017-01-01
Tear of the quadriceps tendon after revision or primary total knee arthroplasty is a rare complication, but when it occurs, this injury has serious functional consequences. In complete tears, the outcome of direct repair is unpredictable, and several authors recommend that the suture should be reinforced. Several techniques have been described, including the use of autografts, allografts, and synthetic mesh. The goal of this study was to assess the outcomes of a reconstruction technique augmented with synthetic mesh. A retrospective study was performed involving 3 patients who had chronic partial quadriceps tendon tear after total knee revision. In 2 cases, proximal quadriceps release was performed. When conservative management failed, surgical reconstruction with suture reinforced with synthetic mesh was attempted. The knee was immobilized in full extension for 6 weeks after the surgical procedure. A minimum follow-up of 12 months was required to assess results. All reconstructions showed clinical success at a mean follow-up of 19 months. Mean Knee Society Score improved from 55.7 to 87.3, with average postoperative extensor lag of 3.3° (range, 0°-10°). The mean visual analog scale pain score was 2.3 (range, 0-4). No complications were reported. Synthetic mesh has previously been shown to be an effective treatment for patellar tendon repairs after total knee replacement, but there have been few articles on quadriceps rupture. Surgical reconstruction with synthetic mesh is a viable option that provides good functional outcomes in chronic quadriceps tendon rupture after total knee arthroplasty. [Orthopedics. 2017; 40(1):38-42.]. Copyright 2016, SLACK Incorporated.
Jawed, Akram; Kumar, Vijay; Malhotra, R; Yadav, C S; Bhan, S
2012-06-01
Since the introduction of mobile bearing total knee designs nearly 30 years back, many studies have been done to evaluate its long-term result. Comparison with fixed bearing designs has been done in the past, but the studies were confounded by variables such as disease, surgeon, bone quality, pain tolerance, etc. We attempt to eliminate these variables in this study. A total of 50 patients who had bilateral arthritis of the knee with similar deformity and pre-operative range of motion on both sides agreed to have one knee replaced with mobile bearing total knee design (PFC-RP) and the other with a fixed bearing design (PFC Sigma) were prospectively evaluated. Comparative analysis of both the designs was done at a mean follow-up of 40 months, minimizing patient, surgeon and observer related bias. Clinical and radiographic outcome, survival and complication rates were compared. At a mean follow-up of 40 months (range 36-47 months), no benefit of mobile bearing (PFC-RP) over fixed bearing design (PFC Sigma) could be demonstrated with respect to Knee Society scores, pain scores, range of flexion, subject preference or patello-femoral complication rates. Radiographs showed no difference in prosthetic alignment. No patient required a revision surgery till last follow-up. Our study demonstrated no advantage of the mobile-bearing arthroplasty over fixed bearing arthroplasty with regard to clinical results at short-term follow-up. However, longer follow-up is necessary to confirm whether these results are sustained.
Hwang, Jongseok; Shin, Yongil; Park, Ji-Ho; Cha, Young Joo; You, Joshua Sung H
2018-04-07
The robotic-assisted gait training (RAGT) system has gained recognition as an innovative, effective paradigm to improve functional ambulation and activities of daily living in spinal cord injury and stroke. However, the effects of the Walkbot robotic-assisted gait training system with a specialized hip-knee-ankle actuator have never been examined in the paraplegia and quadriplegia population. The aim of this study was to determine the long-term effects of Walkbot training on clinical for hips and knee stiffness in individuals with paraplegia or quadriplegia. Nine adults with subacute or chronic paraplegia resulting from spinal cord injury or quadriplegia resulting from cerebral vascular accident (CVA) and/or hypoxia underwent progressive conventional gait retraining combined with the Walkbot RAGT for 5 days/week over an average of 43 sessions for 8 weeks. Clinical outcomes were measured with the Functional Ambulation Category (FAC), Modified Rankin Scale (MRS), Korean version of the Modified Barthel Index (K-MBI), Modified Ashworth Scale (MAS). Kinetic and kinematic data were collected via a built-in Walkbot program. Wilcoxon signed-rank tests showed significant positive intervention effects on K-MBI, maximal hip flexion and extension, maximal knee flexion, active torque in the knee joint, resistive torque, and stiffness in the hip joint (P < 0.05). These findings suggest that the Walkbot RAGT was effective for improving knee and hip kinematics and the active knee joint moment while decreasing hip resistive force. These improvements were associated with functional recovery in gait, balance, mobility and daily activities. These findings suggest that the Walkbot RAGT was effective for improving knee and hip kinematics and the active knee joint moment while decreasing hip resistive force. This is the first clinical evidence for intensive, long-term effects of the Walkbot RAGT on active or resistive moments and stiffness associated with spasticity and functional mobility in individuals with subacute or chronic paraplegia or quadriplegia who had reached a plateau in motor recovery after conventional therapy.
Mont, Michael A; Elmallah, Randa K; Cherian, Jeffrey J; Banerjee, Samik; Kapadia, Bhaveen H
2016-01-01
This study assessed gross and histopathological ACL changes in arthritic knees (n=174) undergoing total knee arthroplasty. Histopathological changes were assessed and graded as absent (0), mild (1), moderate (2), or marked (3). These were correlated to demographic and clinical factors, and radiographic evaluations. The ACL was intact in 43, frayed in 85, torn in 15, and absent in 31 knees. Eighty-five percent had histological changes. Overall, there were significant associations between greater age and BMI, and histological changes. Grade IV knees had significantly greater calcium pyrophosphate deposits, microcyst formation, and number of pathologic changes. These correlations may aid decision-making when determining suitability for unicompartmental or bicruciate-retaining arthroplasties, though further studies should correlate these histological findings to mechanical and functional knee status. Copyright © 2016 Elsevier Inc. All rights reserved.
Self-Reported Knee Instability Before and After Total Knee Replacement Surgery.
Fleeton, Genevieve; Harmer, Alison R; Nairn, Lillias; Crosbie, Jack; March, Lyn; Crawford, Ross; van der Esch, Martin; Fransen, Marlene
2016-04-01
To determine the prevalence and burden of pain and activity limitations associated with retaining presurgery self-reported knee instability 6 months after total knee replacement (TKR) surgery and to identify early potentially modifiable risk factors for retaining knee instability in the operated knee after TKR surgery. A secondary analysis was performed using measures obtained from 390 participants undergoing primary unilateral TKR and participating in a randomized clinical trial. Self-reported knee instability was measured using 2 items from the Activities of Daily Living Scale of the Knee Outcome Survey. Outcome measures were knee pain (range 0-20) and physical function (range 0-68) on the Western Ontario and McMaster Universities Arthritis Index (WOMAC), stair-climb power, 50-foot walk time, knee range of motion, and isometric knee flexion and extension strength. In this study, 72% of participants reported knee instability just prior to surgery, with 32% retaining instability in the operated knee 6 months after surgery. Participants retaining operated knee instability had significantly more knee pain and activity limitations 6 months after surgery, with mean ± SD WOMAC scores of 4.8 ± 3.7 and 17.5 ± 11.1, respectively, compared to participants without knee instability, with 2.9 ± 3.1 and 9.8 ± 9.2. The multivariable predictor model for retained knee instability included a high comorbidity score (>6), low stair-climb power (<150 watts), more pain in the operated knee (>7 of 20), and younger age (<60 years). Self-reported knee instability is highly prevalent before and after TKR surgery and is associated with a considerable burden of pain and activity limitation in the operated knee. Increasing lower extremity muscle power may reduce the risk of retaining knee instability after TKR surgery. © 2016, American College of Rheumatology.
Results of press-fit stems in revision knee arthroplasties.
Wood, Gavin C; Naudie, Douglas D R; MacDonald, Steven J; McCalden, Richard W; Bourne, Robert B
2009-03-01
The ideal method of stem fixation in revision knee arthroplasty is controversial with advantages and disadvantages for cemented and press-fit designs. Studies have suggested cemented revision knee stems may provide better long-term survival. The aim of this study was to report our experience with press-fit uncemented stems and metaphyseal cement fixation in a selected series of patients undergoing revision total knee arthroplasty. One hundred twenty-seven patients (135 knees) who underwent revision total knee arthroplasty using a press-fit technique (press-fit diaphyseal fixation and cemented metaphyseal fixation) were reviewed. Minimum followup was 2 years (mean, 5 years; range, 2-12 years). A Kaplan-Meier survivorship analysis using an end point of revision surgery or radiographic loosening was used to determine probability of survival at 5 and 10 years. Of the 127 patients (135 knees), 31 patients (36 knees) died and two patients (two knees) were lost to followup. Six patients (six knees) had revisions at a mean of 3.5 years (range, 1-8 years). Kaplan-Meier survivorship analysis revealed a probability of survival free of revision for aseptic loosening of 98% at 12 years. Survivorship of press-fit stems for revision knee arthroplasty is comparable to reported survivorship of cemented stem revision knee arthroplasty. Radiographic analysis has shown continued satisfactory appearances regardless of constraint, stem size, and augmentations.
Meyer, Andrew J; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Colwell, Clifford W; Fregly, Benjamin J
2013-06-01
Mechanical loading is believed to be a critical factor in the development and treatment of knee osteoarthritis. However, the contact forces to which the knee articular surfaces are subjected during daily activities cannot be measured clinically. Thus, the ability to predict internal knee contact forces accurately using external measures (i.e., external knee loads and muscle electromyographic [EMG] signals) would be clinically valuable. We quantified how well external knee load and EMG measures predict internal knee contact forces during gait. A single subject with a force-measuring tibial prosthesis and post-operative valgus alignment performed four gait patterns (normal, medial thrust, walking pole, and trunk sway) to induce a wide range of external and internal knee joint loads. Linear regression analyses were performed to assess how much of the variability in internal contact forces was accounted for by variability in the external measures. Though the different gait patterns successfully induced significant changes in the external and internal quantities, changes in external measures were generally weak indicators of changes in total, medial, and lateral contact force. Our results suggest that when total contact force may be changing, caution should be exercised when inferring changes in knee contact forces based on observed changes in external knee load and EMG measures. Advances in musculoskeletal modeling methods may be needed for accurate estimation of in vivo knee contact forces. Copyright © 2012 Orthopaedic Research Society.
Dai, B; Butler, R J; Garrett, W E; Queen, R M
2014-12-01
Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P < 0.05), except for loading rate. Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.78, P < 0.01) asymmetry indices. For the side-cutting tasks, knee kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P < 0.05). Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.55, P < 0.01) asymmetry indices. The vertical GRF asymmetries may be a viable surrogate for knee kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Aguirre-Ollinger, G; Colgate, J E; Peshkin, M A; Goswami, A
2011-03-01
Many of the current implementations of exoskeletons for the lower extremities are conceived to either augment the user's load-carrying capabilities or reduce muscle activation during walking. Comparatively little research has been conducted on enabling an exoskeleton to increase the agility of lower-limb movements. One obstacle in this regard is the inertia of the exoskeleton's mechanism, which tends to reduce the natural frequency of the human limbs. A control method is presented that produces an approximate compensation of the inertia of an exoskeleton's mechanism. The controller was tested on a statically mounted, single-degree-of-freedom (DOF) exoskeleton that assists knee flexion and extension. Test subjects performed multiple series of leg-swing movements in the context of a computer-based, sprint-like task. A large initial acceleration of the leg was needed for the subjects to track a virtual target on a computer screen. The uncompensated inertia of the exoskeleton mechanism slowed down the transient response of the subjects' limb, in comparison with trials performed without the exoskeleton. The subsequent use of emulated inertia compensation on the exoskeleton allowed the subjects to improve their transient response for the same task.
Ollivier, M; Tribot-Laspiere, Q; Amzallag, J; Boisrenoult, P; Pujol, N; Beaufils, P
2016-11-01
The aim of this study was to analyze first intraoperative alignment and reason to abandon the use of patient-specific instrumentation using intraoperative CAS measurement, secondly assess by postoperative CT analysis if CI, based on preoperative 3D-MRI data, improved postoperative component positioning (including femoral rotation) and lower limb alignment as compared with results obtained with CAS. In this randomized controlled trial, 80 consecutive patients scheduled to undergo TKA were enrolled. Eligible knees were randomized to the group of PSI-TKAs (n = 40) or to the group of CAS-TKAs (n = 40). In the CAS group, CAS determined and controlled cutting block positioning in each plane. In the PSI group, CAS allowed to measure adequacy of intraoperative alignment including femoral component rotation. At 3 months after surgery, implants position were measured and analyzed with full-weight bearing plain radiographs and CT scan. Intraoperatively, there was a significant difference concerning Sagittal Femoral mechanical, Frontal tibial mechanical angle and tibial slope between the two groups (respectively p = 0.01, p = 0.02, p = 0.046). Custom instrumentation was abandoned intraoperatively in seven knees (17.5 %). Abnormal tibial cuts were responsible of the abandon in three out of seven cases, femoral cut in 1/7 and dual abnormalities in 3/7. Postoperatively, tibial slope outliers percentage was higher in the patient specific instrumentation group with six patients (18.18 %) versus one patient (2.5 %) in the CAS group (p = 0.041). Patient specific instrumentation was associated with an important number of hazardous cut and a higher rate of outliers in our series and thus should be used with caution as related to. This study is the first to our acknowledgement to compare intra-operative ancillary and implant positioning of PSI-TKA and CAS-TKA. High rate of malposition are sustained by our findings, as such PSI-TKA should be used with caution, by surgeons capable to switch to conventional instrumentation intra-operatively. Randomized control trial, Level I.
[Joint dislocation after total knee arthroplasty as an ankle fracture complication. Case report].
Hrubina, M; Skoták, M
2012-01-01
Joint dislocation after total knee arthroplasty is a rare complication. It is described as the result of ligamentous instability. Here we report the case of an 82-year-old women who underwent primary total knee arthroplasty (TKA) for advanced primary grade III gonarthrosis. At 3 post-operative months the joint was stable and painless, with radiographic evidence of good TKA alignment and integration. At 4 months the patient suffered injury to the ankle involving a bimalleolar fracture and damage to knee soft tissues. The fracture was surgically treated. Subsequently, dorsal tibial dislocation was manifested. This was managed by individual intramedullary nail arthrodesis. At 8 months following the operation, the knee condition was satisfactory, with rigid arthrodesis and leg shortening of 4 cm. The patient was satisfied because she was free of pain and able to walk. Arthrodesis of the knee joint with an individual nail is an option for a definitive treatment of TKA instability. When other joints, such as ankle or hip joints, are injured, it is recommended to pay attention also to any TKA implanted previously because of potential development of instability or infection.
Wound closure in flexion versus extension following total knee arthroplasty: a systematic review.
Smith, Toby O; Davies, Leigh; Hing, Caroline B
2010-06-01
Optimising knee range of motion following total knee arthroplasty (TKA) is important for patient satisfaction, functional outcome and early rehabilitation to promote accelerated discharge. Historically, wound closure following TKA has been performed in extension. It has been suggested that knee position during wound closure may influence range of motion and clinical outcomes following TKA. The purpose of this study was to determine whether TKA wounds should be closed in flexion or extension. An electronic search of MEDLINE, EMBASE, CINAHL and AMED databases was made in addition to a review of unpublished material. All included papers were critically appraised using a modified PEDro (Physiotherapy Evidence Database) critical appraisal tool. Three papers were eligible, assessing 237 TKAs. On analysis, patients with TKA wounds closed in flexion had greater flexion range of motion and required less domiciliary physiotherapy compared to those with wounds closed in full extension. The specific degree of knee flexion used when closing total knee replacement wounds may be an important variable to clinical outcome. However, the present evidence-base is limited in both size and methodological quality.
de Achaval, Sofia; Fraenkel, Liana; Volk, Robert J.; Cox, Vanessa; Suarez-Almazor, Maria E.
2012-01-01
Our objective was to examine the impact of a videobooklet patient decision aid supplemented by an interactive values clarification exercise on decisional conflict in patients with knee osteoarthritis (OA) considering total knee arthroplasy. 208 patients participated in the study (mean age 63 years; 68% female; 66% White). Participants were randomized to 1 of 3 groups: (1) Educational booklet on OA management (control); (2) Patient decision aid (videobooklet) on OA management; and (3) Patient decision aid (videobooklet) + adaptive conjoint analysis ACA tool. The ACA tool enables patients to consider competing attributes (i.e. specific risks/benefits) by asking them to rate a series of paired-comparisons. The primary outcome was the decisional conflict scale ranging from 0 to 100. Differences between groups were analyzed using analysis of variance (ANOVA) and Tukey's honestly significant difference tests. Overall, decisional conflict decreased significantly in all groups (p<0.05). The largest reduction in decisional conflict was observed for participants in the videobooklet decision aid group (21 points). Statistically significant differences in pre vs. post-intervention total scores favored the videobooklet group compared to the control group (21 vs. 10) and to the videobooklet plus ACA group (21 vs. 14; p<0.001). Changes in the decisional conflict score for the control compared to the videobooklet decision aid + ACA group were not significantly different. In our study, an audiovisual patient decision aid decreased decisional conflict more than printed material alone, or than the addition of a more complex computer-based ACA tool requiring more intense cognitive involvement and explicit value choices. PMID:21954198
Tsukada, Sachiyuki; Fujii, Tomoko; Wakui, Motohiro
2017-08-01
This study was performed to assess the impact of soft tissue imbalance on the knee flexion angle 2 years after posterior stabilized total knee arthroplasty (TKA). A total of 329 consecutive varus knees were included to assess the association of knee flexion angle 2 years after TKA with preoperative, intraoperative, and postoperative variables. All intraoperative soft tissue measurements were performed by a single surgeon under spinal anesthesia in a standardized manner including the subvastus approach, reduced patella, and without use of a pneumonic tourniquet. Multiple linear regression analysis showed no significant correlations in terms of intraoperative valgus imbalance at 90-degree flexion or the difference in soft tissue tension between 90-degree flexion and 0-degree extension (β = -0.039; 95% confidence interval [CI], -0.88 to 0.80; P = .93 and β = 0.015; 95% CI, -0.29 to 0.32; P = .92, respectively). Preoperative flexion angle was significantly correlated with knee flexion angle 2 years after TKA (β = 0.42; 95% CI, 0.33 to 0.51; P < .0001). Avoiding valgus imbalance at 90-degree flexion and aiming for strictly equal soft tissue tension between 90-degree flexion and 0-degree extension had little practical value with regard to knee flexion angle 2 years after posterior stabilized TKA. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Gharaibeh, Monther A; Chen, Darren B; MacDessi, Samuel J
2018-05-01
Sensor-guided assessment for soft tissue balance in total knee arthroplasty (TKA) has been reported to improve patient satisfaction and self-reported outcome scores. As more surgeons adopt this technology in TKA, we performed this study to identify if there is a learning curve with its use. Analysis of a total of 90 consecutive cases was performed in this study. Initial and final intercompartmental pressure differences were recorded before and after knee ligament balancing. The first 45 patients (group 1) were compared to the last 45 patients (group 2) in terms of operative time and the final state of knee balance. A balanced knee was defined as pressure difference between medial and lateral compartments of ≤15 pounds. Group 1 had 10 unbalanced knees in the final pressure difference assessment, while all cases in group 2 were balanced (P < 0.001). There was no statistically significant difference in mean operative time between the two groups. A scatter plot of intercompartmental pressure difference identified that after 30 cases, the capacity to achieve knee ligament balance improved. This study suggests that there is a learning curve with the use of sensor-guided assessment in TKA in achieving knee balance; however, the differences noted between initial and final groups were small and may not be of clinical significance. © 2018 Royal Australasian College of Surgeons.
Minoda, Yukihide; Hata, Kanako; Iwaki, Hiroyoshi; Ikebuchi, Mitsuhiko; Hashimoto, Yusuke; Inori, Fumiaki; Nakamura, Hiroaki
2014-03-01
Polyethylene wear particle generation is one of the most important factors affecting mid- to long-term results of total knee arthroplasties. Oxidized zirconium was introduced as a material for femoral components to reduce polyethylene wear generation. However, an in vivo advantage of oxidized zirconium on polyethylene wear particle generation is still controversial. The purpose of this study was to compare in vivo polyethylene wear particles between oxidized zirconium total knee prosthesis and conventional cobalt-chromium (Co-Cr) total knee prosthesis. Synovial fluid was obtained from the knees of 6 patients with oxidized zirconium total knee prosthesis and from 6 patients with conventional cobalt-chromium (Co-Cr) total knee prosthesis 12 months after the operation. Polyethylene particles were isolated and examined using a scanning electron microscope and image analyser. Total number of particles in each knee was 3.3 ± 1.3 × 10(7) in the case of oxidized zirconium (mean ± SD) and 3.4 ± 1.2 × 10(7) in that of Co-Cr (n.s.). The particle size (equivalent circle diameter) was 0.8 ± 0.3 μm in the case of oxidized zirconium and 0.6 ± 0.1 μm in that of Co-Cr (n.s.). The particle shape (aspect ratio) was 1.4 ± 0.0 in the case of oxidized zirconium and 1.4 ± 0.0 in that of metal Co-Cr (n.s). Although newly introduced oxidized zirconium femoral component did not reduce the in vivo polyethylene wear particles in early clinical stage, there was no adverse effect of newly introduced material. At this moment, there is no need to abandon oxidized zirconium femoral component. However, further follow-up of polyethylene wear particle generation should be performed to confirm the advantage of the oxidized zirconium femoral component. Therapeutic study, Level III.
Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang
2017-11-01
Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Bhave, Anil; Corcoran, James; Cherian, Jeffery J; Mont, Michael A
2016-01-01
Knee stiffness is a common complication after total knee arthroplasty (TKA). Despite studies published on the surgical management of reduced range of motion (ROM) after TKA, there is limited evidence on the nonoperative management of joint and soft tissue imbalances possibly contributing to reduced knee ROM. This report assesses changes in ROM, pain, function, and patellar tendon length after Astym® joint mobilization use. A 38-year-old male professional skier had a right TKA 3 months before presentation with 2 subsequent manipulations under anesthesia secondary to persistent knee stiffness. He had patellar baja on radiograph, a reduced arc of ROM, reduced patellar mobility and muscular extensibility, and pain to palpation along the patellar tendon. He had 12 visits of physical therapy with the use of Astym®, patellar mobilization, and tibio-femoral mobilizations with movement. The patient also used a customized knee device at home for prolonged knee extension stretching. The patient was treated for 12 visits, along with home use of customized bracing for knee extension. Significant improvements were seen in pain, function, and ROM. He returned to work full-time, ambulated prolonged distances, and negotiated stairs pain-free. He also demonstrated resolution of patellar baja radiographically. Conservative management of recalcitrant knee joint stiffness after primary TKA can be effective in restoring knee mobility and reducing pain and activity limitation. A multimodal approach using Astym® treatment, customized knee bracing, and targeted joint mobilization can be effective in resolving knee joint stiffness.
Primary Total Knee Replacement: Is Suction a Portal of Infection?
Budnar, Vijaya M; Amirfeyz, Rouin; Ng, Michael; Bannister, Gordon C; Blom, Ashley W
2009-01-01
INTRODUCTION Pulsed lavage during a total knee replacement usually leaves a pool of fluid on the surgical drapes. It is common practice to suck away this fluid using the same suction device used intra-operatively. This could be a cause of direct wound contamination. We hypothesised that bacteria contaminate fluid that collects around the foot in total knee replacement surgery and that suction equipment could be a portal of contamination. We also hypothesised that bacterial count in the fluid is lower if chlorhexidine, rather than saline, is used in the pulsed lavage. PATIENTS AND METHODS Forty patients undergoing primary total knee replacement were divided into two groups. The first group had pulsed lavage with normal saline and the second with 0.05% chlorhexidine. RESULTS At the end of the operation, 20 ml of fluid, pooled on the surgical drapes was aspirated and cultured for bacterial growth. None of the fluid samples showed bacterial growth. CONCLUSIONS Suction device used peri-operatively during knee replacement is unlikely to be a cause of wound contamination. Pulsed lavage with normal saline is as effective as lavage with chlorhexidine. PMID:19335972
Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu; Yoshino, Kensuke; Suzuki, Mashiko
2018-05-01
The aim of this study was to determine factors that contribute to bone cutting errors of conventional instrumentation for tibial resection in total knee arthroplasty (TKA) as assessed by an image-free navigation system. The hypothesis is that preoperative varus alignment is a significant contributory factor to tibial bone cutting errors. This was a prospective study of a consecutive series of 72 TKAs. The amount of the tibial first-cut errors with reference to the planned cutting plane in both coronal and sagittal planes was measured by an image-free computer navigation system. Multiple regression models were developed with the amount of tibial cutting error in the coronal and sagittal planes as dependent variables and sex, age, disease, height, body mass index, preoperative alignment, patellar height (Insall-Salvati ratio) and preoperative flexion angle as independent variables. Multiple regression analysis showed that sex (male gender) (R = 0.25 p = 0.047) and preoperative varus alignment (R = 0.42, p = 0.001) were positively associated with varus tibial cutting errors in the coronal plane. In the sagittal plane, none of the independent variables was significant. When performing TKA in varus deformity, careful confirmation of the bone cutting surface should be performed to avoid varus alignment. The results of this study suggest technical considerations that can help a surgeon achieve more accurate component placement. IV.
Mannan, A; Smith, T O
2016-03-01
Implant malposition in total knee arthroplasty (TKA) often results in unsatisfactory outcomes. Rotational malalignment leads to impaired patellar tracking, stability and joint biomechanics. Patient-specific instrumentation aims to improve three-dimensional implant positioning while reducing overall costs of instrumentation. A PRISMA compliant search of all relevant literature between 2000 and 2014 was performed. The primary outcome of interest was deviation from a neutral femoral and tibial axial alignment of patient-specific instrumentation (PSI) vs conventional instrumentation. Femoral rotation was measured with reference to the transepicondylar axis. Tibial rotation was reported with reference to the anterior tibial tuberosity and a "best fit" with the anterior tibial cortex. Six randomised studies met the inclusion criteria reporting on a total of 444 knees. Computed tomography (CT) based PSI systems were used exclusively in three studies, and two further studies in association with magnetic resonance imaging (MRI). MRI was used exclusively in one study. Mean femoral rotation in the conventional group was: -1.7 to 1.6° (vs -1.7 to 1° in the PSI group). Meta-analysis demonstrated a significant treatment effect favouring PSI with increased accuracy in "three-degree outliers" with femoral rotation: Z=2.07, P=0.04. A single study reported tibial rotational outcomes with no significant difference demonstrated in conventional instrumentation vs PSI. This Level 1 meta-analysis demonstrates favourable femoral rotational alignment outcomes in PSI knee arthroplasty. Only limited data is available for tibial rotational outcomes. Further studies with standardised "gold-standard" measurement criteria are required to clarify tibial rotational outcomes in PSI TKA. 1. Copyright © 2015 Elsevier B.V. All rights reserved.
Pan, Feng; Laslett, Laura; Tian, Jing; Cicuttini, Flavia; Winzenberg, Tania; Ding, Changhai; Jones, Graeme
2017-05-01
Pain is common in the elderly. Knee pain may predict knee cartilage loss, but whether generalized pain is associated with knee cartilage loss is unclear. This study, therefore, aimed to determine whether pain at multiple sites predicts knee cartilage volume loss among community-dwelling older adults, and, if so, to explore potential mechanisms. Data from the prospective Tasmanian Older Adult Cohort study was utilized (n = 394, mean age 63 years, range 52-79 years). Experience of pain at multiple sites was assessed using a questionnaire at baseline. T1-weighted fat-saturated magnetic resonance imaging of the right knee was performed to assess the cartilage volume at baseline and after 2.6 years. Linear regression modeling was used with adjustment for potential confounders. The median number of painful sites was 3 (range 0-7). There was a dose-response relationship between the number of painful sites and knee cartilage volume loss in the lateral and total tibiofemoral compartments (lateral β = -0.28% per annum; total β = -0.25% per annum, both P for trend < 0.05), but not in the medial compartment. These associations were stronger in participants without radiographic knee osteoarthritis (OA) (P < 0.05) and independent of age, sex, body mass index, physical activity, pain medication, and knee structural abnormalities. The number of painful sites independently predicts knee cartilage volume loss, especially in people without knee OA, suggesting that widespread pain may be an early marker of more rapid knee cartilage loss in those without radiographic knee OA. The underlying mechanism is unclear, but it is independent of anthropometrics, physical activity, and knee structural abnormalities. © 2016, American College of Rheumatology.
The treatment of recurrent chronic infected knee arthroplasty with a 2-stage procedure.
Antoci, Valentin; Phillips, Matthew J; Antoci, Valentin; Krackow, Kenneth A
2009-01-01
We report the case of a patient with recurrent periprosthetic infections after total knee arthroplasty associated with bone destruction and massive bone loss that was successfully treated with a 2-stage procedure-resection arthroplasty with insertion of an antibiotic-impregnated cement rod-spacer and systemic antibiotics and then a resection arthrodesis of the knee with the use of an intercalary allograft fixed with a long intramedullary nail. This technique is a viable option for the treatment of recurrent periprosthetic infections after total knee arthroplasty associated with bone destruction, massive bone loss, and severe instability.
Wichita fusion nail for patients with failed total knee arthroplasty and active infection.
Barsoum, Wael K; Hogg, Christopher; Krebs, Viktor; Klika, Alison K
2008-01-01
In the study reported here, we retrospectively evaluated short-term results of knee arthrodesis using the Wichita fusion nail (WFN) in patients with active infection. Clinical examinations, x-rays, time to union, knee pain after fusion, and ambulatory status were compared in 7 patients who received the WFN. Mean fusion rate was 86%, mean time to fusion was 9.8 months, and mean complication rate was 57%. Complication rates were high, but clinical outcomes were acceptable, supporting use of WFN as a reasonable way to salvage failed total knee arthroplasty in patients with active infection.
The effects of geometric uncertainties on computational modelling of knee biomechanics
NASA Astrophysics Data System (ADS)
Meng, Qingen; Fisher, John; Wilcox, Ruth
2017-08-01
The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models.
Renkawitz, Tobias; Tingart, Markus; Grifka, Joachim; Sendtner, Ernst; Kalteis, Thomas
2009-09-01
This article outlines the scientific basis and a state-of-the-art application of computer-assisted orthopedic surgery in total hip arthroplasty (THA) and provides a future perspective on this technology. Computer-assisted orthopedic surgery in primary THA has the potential to couple 3D simulations with real-time evaluations of surgical performance, which has brought these developments from the research laboratory all the way to clinical use. Nonimage- or imageless-based navigation systems without the need for additional pre- or intra-operative image acquisition have stood the test to significantly reduce the variability in positioning the acetabular component and have shown precise measurement of leg length and offset changes during THA. More recently, computer-assisted orthopedic surgery systems have opened a new frontier for accurate surgical practice in minimally invasive, tissue-preserving THA. The future generation of imageless navigation systems will switch from simple measurement tasks to real navigation tools. These software algorithms will consider the cup and stem as components of a coupled biomechanical system, navigating the orthopedic surgeon to find an optimized complementary component orientation rather than target values intraoperatively, and are expected to have a high impact on clinical practice and postoperative functionality in modern THA.
Jinnah, Alexander H; Augart, Marco A; Lara, Daniel L; Jinnah, Riyaz H; Poehling, Gary G; Gwam, Chukwuweike U; Plate, Johannes F
2018-06-01
Unicompartmental knee arthroplasty (UKA) is a commonly used procedure for patients suffering from debilitating unicompartmental knee arthritis. For UKA recipients, robotic-assisted surgery has served as an aid in improving surgical accuracy and precision. While studies exist detailing outcomes of robotic UKA, to our knowledge, there are no studies assessing time to return to work using robotic-assisted UKA. Thus, the purpose of this study was to prospectively assess the time to return to work and to achieve the level of work activity following robotic-assisted UKA to create recommendations for patients preoperatively. We hypothesized that the return to work time would be shorter for robotic-assisted UKAs compared with TKAs and manual UKAs, due to more accurate ligament balancing and precise implementation of the operative plan. Thirty consecutive patients scheduled to undergo a robotic-assisted UKA at an academic teaching hospital were prospectively enrolled in the study. Inclusion criteria included employment at the time of surgery, with the intent on returning to the same occupation following surgery and having end-stage knee degenerative joint disease (DJD) limited to the medial compartment. Patients were contacted via email, letter, or phone at two, four, six, and 12 weeks following surgery until they returned to work. The Baecke physical activity questionnaire (BQ) was administered to assess patients' level of activity at work pre- and postoperatively. Statistical analysis was performed using SAS Enterprise Guide (SAS Institute Inc., Cary, North Carolina) and Excel® (Microsoft Corporation, Redmond, Washington). Descriptive statistics were calculated to assess the demographics of the patient population. Boxplots were generated using an Excel® spreadsheet to visualize the BQ scores and a two-tailed t-test was used to assess for differences between pre- and postoperative scores with alpha 0.05. The mean time to return to work was 6.4 weeks (SD=3.4, range 2-12 weeks), with a median time of six weeks. There was no difference seen in the mean pre- and postoperative BQ scores (2.70 vs. 2.69, respectively; p=0.87). The findings of the current study suggest that most patients can return to work six weeks following robotic-assisted UKA which appears to be shorter than conventional UKA and TKA. Future level I studies are needed to verify our study findings.
Xie, Wenjun; Zhang, Yu; Qin, Xiaodong; Song, Lijun; Chen, Qun
2018-03-01
High fibular osteotomy has been preliminarily proved to be an effective treatment of knee osteoarthritis by excising a segment of bone at the proximal part of fibula. This imaginative procedure is clinical validated by its instant and explicit knee pain resorption and eventually deformity correction. The rationale of this treatment is named non-uniform settlement of the tibial plateau and used to elucidate the cause of knee joint degeneration, but cannot illuminate the reason of prompt postoperative pain resorption faithfully. To assist in better understanding of this therapeutic method and raising alert to possible unexpected complications, we proposed a new theory to elucidate the pain relief mechanism.
Martin, Curt; Harris, Ashley; DuVall, Nicholas; Wajdowicz, Michael; Roberts, Howard Wayne
2018-03-28
To evaluate the effect of premolar axial wall height on the retention of adhesive, full-coverage, computer-aided design/computer-assisted manufacture (CAD/CAM) restorations. A total of 48 premolar teeth randomized into four groups (n = 12 per group) received all-ceramic CAD/CAM restorations with axial wall heights (AWH) of 3, 2, 1, and 0 mm and 16-degree total occlusal convergence (TOC). Specimens were restored with lithium disilicate material and cemented with self-adhesive resin cement. Specimens were loaded to failure after 24 hours. The 3- and 2-mm AWH specimens demonstrated significantly greater failure load. Failure analysis suggests a 2-mm minimum AWH for premolars with a TOC of 16 degrees. Adhesive technology may compensate for compromised AWH.
Transfusions and blood loss in total hip and knee arthroplasty: a prospective observational study.
Carling, Malin S; Jeppsson, Anders; Eriksson, Bengt I; Brisby, Helena
2015-03-28
There is a high prevalence of blood product transfusions in orthopedic surgery. The reported prevalence of red blood cell transfusions in unselected patients undergoing hip or knee replacement varies between 21% and 70%. We determined current blood loss and transfusion prevalence in total hip and knee arthroplasty when tranexamic acid was used as a routine prophylaxis, and further investigated potential predictors for excessive blood loss and transfusion requirement. In total, 193 consecutive patients undergoing unilateral hip (n = 114) or knee arthroplasty (n = 79) were included in a prospective observational study. Estimated perioperative blood loss was calculated and transfusions of allogeneic blood products registered and related to patient characteristics and perioperative variables. Overall transfusion rate was 16% (18% in hip patients and 11% in knee patients, p = 0.19). Median estimated blood loss was significantly higher in hip patients (984 vs 789 mL, p < 0.001). Preoperative hemoglobin concentration was the only independent predictor of red blood cell transfusion in hip patients while low hemoglobin concentration, body mass index, and operation time were independent predictors for red blood cell transfusion in knee patients. The prevalence of red blood cell transfusion was lower than previously reported in unselected total hip or knee arthroplasty patients. Routine use of tranexamic acid may have contributed. Low preoperative hemoglobin levels, low body mass index, and long operation increase the risk for red blood cell transfusion.
10-year evaluation of the cementless low-contact- stress rotating-platform total knee arthroplasty.
Efstathopoulos, Nikolaos; Mavrogenis, Andreas F; Lallos, Stergios; Nikolaou, Vassilios; Papagelopoulos, Panayiotis J; Savvidou, Olga D; Korres, Demetrios S
2009-01-01
We present the clinical and radiographic outcomes of the cementless low-contact-stress (LCS) rotating-platform total knee arthroplasty. Overall, 423 prostheses were implanted in 393 consecutive patients (30 patients had bilateral total knee replacement) for primary varus gonarthrosis (381 patients) and rheumatoid arthritis (12 patients). There were 81 men and 312 women with a mean age of 73 years (range, 58-85 years). Patella replacement was not performed in any case. Clinical and radiographic evaluation was performed using the Knee Society Score (KSS) and the Knee Society Assessment Form, respectively. The mean follow-up was 10 years (range, 5-15 years). Three patients were lost to follow-up. Survival of the prostheses was 98% at 10 years; three prostheses required revision for deep infection, bearing dislocation, and periprosthetic fracture. The mean KSS improved significantly, from 42 and 44 points preoperatively to 90 and 79 points, respectively, at the latest evaluation (P < 0.001); results were excellent in 278 cases, good in 106, fair in 27, and poor in nine. Radiolucent lines were observed in 80 cases; revision arthroplasty was not performed in any of these cases. Complications included deep infection in one patient, bearing dislocation in one, skin necrosis in four, and a supracondylar fracture in one. The cementless LCS rotating-platform total knee arthroplasty is associated with excellent mid- and long-term results for patients with osteoarthritis and rheumatoid arthritis of the knee.
Jang, Sung Won; Koh, In Jun; Kim, Man Soo; Kim, Ju Yeong; In, Yong
2016-11-01
The sequential medial release technique including semimembranosus (semiM) release is effective and safe during varus total knee arthroplasty (TKA). However, there are concerns about weakening of knee flexion strength after semiM release. We determined whether semiM release to balance the medial soft tissue decreased knee flexion strength after TKA. Fifty-nine consecutive varus knees undergoing TKA were prospectively enrolled. A 3-step sequential release protocol which consisted of release of (1) the deep medial collateral ligament (dMCL), (2) the semiM, and (3) the superficial medial collateral ligament based on medial tightness. Gap balancing was obtained after dMCL release in 31 knees. However, 28 knees required semiM release or more after dMCL release. Isometric muscle strength of the knee was compared 6 months postoperatively between the semiM release and semiM nonrelease groups. Knee stability and clinical outcomes were also compared. No differences in knee flexor or extensor peak torque were observed between the groups 6 months postoperatively (P = .322 and P = .383, respectively). No group difference was observed in medial joint opening angle on valgus stress radiographs (P = .327). No differences in the Knee Society or Western Ontario and McMaster Universities Osteoarthritis Index scores were detected between the groups (P = .840 and P = .682, respectively). These results demonstrate that semiM release as a sequential step to balance medial soft tissue in varus knees did not affect knee flexion strength after TKA. Copyright © 2016 Elsevier Inc. All rights reserved.
Long-term outcome of 42 knees with chronic infection after total knee arthroplasty.
Bose, W J; Gearen, P F; Randall, J C; Petty, W
1995-10-01
The outcome of treatment in 40 patients (42 knees) with chronic infections after total knee arthroplasty was reviewed. Eighteen knees were treated with a 2-stage reimplantation. Sixteen of these 18 knees were treated with antibiotic-containing beads between debridement and reimplantation, and 7 of these were also treated with antibiotics in the cement at reimplantation. Infection did not recur in any of these 18 knees. Clinically, the 2-stage reimplantation group averaged a score of 90 points on the Knee Society Clinical Rating System. Average function score was 86.5 points, with average range of motion from 2 degrees to 109 degrees. Sixteen knees were treated with an arthrodesis: 9 with a 1-stage technique with a uniplanar external fixator and 7 with a 2-stage technique with intramedullary nail internal fixation. Infection did not recur in 6 of 9 knees treated with the 1-stage technique, but only 2 had a solid arthrodesis. All 7 treated with the 2-stage intramedullary nail technique had no recurrence of infection and achieved a solid fusion. Reimplantation or arthrodesis was not attempted in 8 other knees because of recalcitrant infection, vascular complications, or medical infirmity. Of the 42 knees, 11 (26%) had a severely morbid outcome. The infection could not be eradicated in 7 knees: 6 required amputation and 1 had a solid fusion but chronic drainage. In 3 knees, the infection was cured but resection arthroplasties were required, and in 1 patient an amputation was needed as a result of an intraoperative vascular complication.
Influence of Total Knee Arthroplasty on Patellar Kinematics and Patellofemoral Pressure.
Tanikawa, Hidenori; Tada, Mitsunori; Harato, Kengo; Okuma, Kazunari; Nagura, Takeo
2017-01-01
Patellofemoral complications are one of the main problems after total knee arthroplasty (TKA). The design of the TKA component may affect the patellar biomechanics, which may be associated with this postoperative complication. The purpose of this study was to assess the influence of TKA and prosthesis designs on the patellar kinematics and patellofemoral pressure. Using fresh-frozen cadavers, we measured the patellofemoral pressure, patella offset, and patella tilt in the following 4 conditions: normal knee (patella replacement only), cruciate-retaining TKA, condylar-stabilizing TKA, and posterior-stabilized TKA. The patellofemoral pressure increased significantly after the cruciate-retaining TKA and condylar-stabilizing TKA compared with the normal knee. The patella offset in the normal knee decreased with increasing knee flexion angles, while the patella offset in the TKA knees did not change significantly through the full range of motion. The amount of lateral patella tilt in the normal knee was significantly larger than the TKA knees in the full range of motion. Although the femoral components are designed to reproduce an anatomical patellar tracking, the physiological patellar kinematics were not observed. Relatively high patellofemoral pressure and kinematic change after TKA may be associated with postoperative complications such as the anterior knee pain. Copyright © 2016 Elsevier Inc. All rights reserved.
Stem cell application for osteoarthritis in the knee joint: A minireview.
Uth, Kristin; Trifonov, Dimitar
2014-11-26
Knee osteoarthritis is a chronic, indolent disease that will affect an ever increasing number of patients, especially the elderly and the obese. It is characterized by degeneration of the cartilage substance inside the knee which leads to pain, stiffness and tenderness. By some estimations in 2030, only in the United States, this medical condition will burden 67 million people. While conventional treatments like physiotherapy or drugs offer temporary relief of clinical symptoms, restoration of normal cartilage function has been difficult to achieve. Moreover, in severe cases of knee osteoarthritis total knee replacement may be required. Total knee replacements come together with high effort and costs and are not always successful. The aim of this review is to outline the latest advances in stem cell therapy for knee osteoarthritis as well as highlight some of the advantages of stem cell therapy over traditional approaches aimed at restoration of cartilage function in the knee. In addition to the latest advances in the field, challenges associated with stem cell therapy regarding knee cartilage regeneration and chondrogenesis in vitro and in vivo are also outlined and analyzed. Furthermore, based on their critical assessment of the present academic literature the authors of this review share their vision about the future of stem cell applications in the treatment of knee osteoarthritis.
Spahn, G; Lesser, A; Hofmann, G O; Schiele, R
2015-10-01
This study aimed to evaluate the incidence of knee pain or the intensification of knee-related problems during pregnancy. We hypothesised that the occurrence of knee problems correlates with an increase in body weight during pregnancy. A total of 326 women (30(th)-40(th) week of pregnancy) were involved in this study. At onset of the pregnancy, the patients were 29.4 [95% CI 28.8-29.9] years of age. We asked all patients retrospectively about their anthropometric data at the beginning of pregnancy. All patients provided information about former knee problems, knee problems occurring after onset of pregnancy or any increase in these problems. These knee patients were re-evaluated 6 weeks after childbirth. At follow-up, the patients were asked about their knee problems and about their body weight. At the beginning of pregnancy, the mean body weight was 68.0 kg (95% CI 64.4-69.6; range 41-117). The mean BMI of all patients was 24.5 kg/m² (25% CI 23.9-25.0; range 17.0-26.0). The absolute body weight increased by 13.8 kg (95% CI 13.2-1.5; range 3-38). A total of 24 patients (7.4%) reported new knee problems during pregnancy. 2 patients reported an increase in knee-related problems during pregnancy (0.6%). The incidence of knee-related problems (new cases and increase of problems n=26) was 26/326 or 7.6/100 pregnancies. In patients without knee problems, the pregnancy-related increase in the BMI (ΔBMI) was 4.8 kg/m² (95% CI 4.6-5.1, range 1.1-14.1). In cases with incident knee problems, the ΔBMI was 5.9 kg/m² (95% CI 4.9-6.9, range 2.1-11.8). The increase in body weight (Δbody weight) in patients without knee problems was 13.5 kg (95% CI 12.9-14.2, range 3-38). Patients with incident knee pain experienced a Δbody weight of 16.8 kg (95% CI 13.9-19.4, range 6-35). The differences in ΔBMI and Δbody weight were significant (p=0.009). A Δbody weight >20 kg was a significant risk factor for pregnancy-related knee pain significant risk factor pregnancy related pain. A total of 23 incident cases (92%) underwent a follow-up interview 6 weeks after parturition. At this time, a total of 6 patients (26.1%) had not experienced further knee problems, whereas persistent knee problems were reported in the remaining patients (73.9%). Patients without any knee complaints [body weight 72.5 kg (CI 95% 60.9-83.9)] tended to have a lower body weight at follow-up than patients with persistent knee pain [85.5 kg (CI 95% 71.8-99.1), p=0.162]. There is a body weight-associated increase in the incidence of functional knee pain in pregnant women. In about one-third of the cases, knee problems persist after pregnancy and are associated with a residual increase in body weight. Thus, we conclude that body weight is a potential risk factor for functional knee pain. © Georg Thieme Verlag KG Stuttgart · New York.
Niki, Yasuo; Takeda, Yuki; Harato, Kengo; Suda, Yasunori
2015-11-01
Achievement of very deep knee flexion after total knee arthroplasty (TKA) can play a critical role in the satisfaction of patients who demand a floor-sitting lifestyle and engage in high-flexion daily activities (e.g., seiza-sitting). Seiza-sitting is characterized by the knees flexed >145º and feet turned sole upwards underneath the buttocks with the tibia internally rotated. The present study investigated factors affecting the achievement of seiza-sitting after TKA using posterior-stabilized total knee prosthesis with high-flex knee design. Subjects comprised 32 patients who underwent TKA with high-flex knee prosthesis and achieved seiza-sitting (knee flexion >145º) postoperatively. Another 32 patients served as controls who were capable of knee flexion >145º preoperatively, but failed to achieve seiza-sitting postoperatively. Accuracy of femoral and tibial component positions was assessed in terms of deviation from the ideal position using a two-dimensional to three-dimensional matching technique. Accuracies of the component position, posterior condylar offset ratio and intraoperative gap length were compared between the two groups. The proportion of patients with >3º internally rotated tibial component was significantly higher in patients who failed at seiza-sitting (41 %) than among patients who achieved it (13 %, p = 0.021). Comparison of intraoperative gap length between patient groups revealed that gap length at 135º flexion was significantly larger in patients who achieved seiza-sitting (4.2 ± 0.4 mm) than in patients who failed at it (2.7 ± 0.4 mm, p = 0.007). Conversely, no significant differences in gap inclination were seen between the groups. From the perspective of surgical factors, accurate implant positioning, particularly rotational alignment of the tibial component, and maintenance of a sufficient joint gap at 135º flexion appear to represent critical factors for achieving >145º of deep knee flexion after TKA.
Willy, R W; Bigelow, M A; Kolesar, A; Willson, J D; Thomas, J S
2017-01-01
While partial meniscectomy results in a compromised tibiofemoral joint, little is known regarding tibiofemoral joint loading during running in individuals who are post-partial meniscectomy. It was hypothesized that individuals post-partial meniscectomy would run with a greater hip support moment, yielding reduced peak knee extension moments and reduced tibiofemoral joint contact forces. 3-D Treadmill running mechanics were evaluated in 23 athletic individuals post-partial meniscectomy (37.5 ± 19.0 months post-partial meniscectomy) and 23 matched controls. Bilateral hip, knee and ankle contributions to the total support moment and the peak knee extension moment were calculated. A musculoskeletal model estimated peak and impulse tibiofemoral joint contact forces. Knee function was quantified with the Knee injury and Osteoarthritis Outcome Score (KOOS). During running, the partial meniscectomy group had a greater hip support moment (p = 0.002) and a reduced knee support moment (p < 0.001) relative to the total support moment. This movement pattern was associated with a 14.5 % reduction (p = 0.019) in the peak knee extension moment. Despite these differences, there were no significant group differences in peak or impulse tibiofemoral joint contact forces. Lower KOOS Quality of Life scores were associated with greater hip support moment (p = 0.004, r = -0.58), reduced knee support moment (p = 0.006, r = 0.55) and reduced peak knee extension moment (p = 0.01, r = 0.52). Disordered running mechanics are present long term post-partial meniscectomy. A coordination strategy that shifts a proportion of the total support moment away from the knee to the hip reduces the peak knee extension moment, but does not equate to reduced tibiofemoral joint contact forces during running in individuals post-partial meniscectomy. III.
Skoffer, Birgit; Dalgas, Ulrik; Maribo, Thomas; Søballe, Kjeld; Mechlenburg, Inger
2017-11-09
Preoperative progressive resistance training (PRT) is controversial in patients scheduled for total knee arthroplasty (TKA), because of the concern that it may exacerbate knee joint pain and effusion. To examine whether preoperative PRT initiated 5 weeks prior to TKA would exacerbate pain and knee effusion, and would allow a progressively increased training load throughout the training period that would subsequently increase muscle strength. Secondary analyses from a randomized controlled trial. University Hospital and a Regional Hospital. A total of 30 patients who were scheduled for TKA due to osteoarthritis and assigned as the intervention group. Patients underwent unilateral PRT (3 sessions per week). Exercise loading was 12 repetitions maximum (RM) with progression toward 8 RM. The training program consisted of 6 exercises performed unilaterally. Before and after each training session, knee joint pain was rated on an 11-point scale, effusion was assessed by measuring the knee joint circumference, and training load was recorded. The first and last training sessions were initiated by 1 RM testing of unilateral leg press, unilateral knee extension, and unilateral knee flexion. The median pain change score from before to after each training session was 0 at all training sessions. The average increase in knee joint effusion across the 12 training sessions was a mean 0.16 cm ± 0.23 cm. No consistent increase in knee joint effusion after training sessions during the training period was found (P = .21). Training load generally increased, and maximal muscle strength improved as follows: unilateral leg press: 18% ± 30% (P = .03); unilateral knee extension: 81% ± 156% (P < .001); and unilateral knee flexion: 53% ± 57% (P < .001). PRT of the affected leg initiated shortly before TKA does not exacerbate knee joint pain and effusion, despite a substantial progression in loading and increased muscle strength. Concerns for side effects such as pain and effusion after PRT seem unfounded. To be determined. Copyright © 2017. Published by Elsevier Inc.
Wang, Jianping; Tao, Kun; Li, Huanyi; Wang, Chengtao
2014-01-01
The model of three-dimensional (3D) geometric knee was built, which included femoral-tibial, patellofemoral articulations and the bone and soft tissues. Dynamic finite element (FE) model of knee was developed to simulate both the kinematics and the internal stresses during knee flexion. The biomechanical experimental system of knee was built to simulate knee squatting using cadaver knees. The flexion motion and dynamic contact characteristics of knee were analyzed, and verified by comparing with the data from in vitro experiment. The results showed that the established dynamic FE models of knee are capable of predicting kinematics and the contact stresses during flexion, and could be an efficient tool for the analysis of total knee replacement (TKR) and knee prosthesis design. PMID:25013852
Livbjerg, Anna Emilie; Froekjaer, Sara; Simonsen, Ole; Rathleff, Michael S
2013-09-01
The purpose was to investigate risk factors for postoperative stiffness and long-term outcome following manipulation under anaesthesia (MUA). In one of the five Danish regions, all patients in a 4-year period who received MUA following total knee arthroplasty (N=36) were included in two case-control studies. Data on potential risk factors were extracted from the Danish Knee arthroplasty Register and from a postal questionnaire including long-term outcome measures regarding pain, function and quality of life (Oxford Knee Score and EQ-5D). Previous knee surgery and a high preoperative Knee Society Function Score were significant risk factors, whereas attending a preoperative information meeting was associated with a significantly decreased risk of postoperative stiffness requiring MUA (P<0.001). The long-term results following MUA (1-5 years) were equivalent to patients without postoperative stiffness. Copyright © 2013 Elsevier Inc. All rights reserved.