Henshaw, Helen; Ferguson, Melanie A.
2013-01-01
Background Auditory training involves active listening to auditory stimuli and aims to improve performance in auditory tasks. As such, auditory training is a potential intervention for the management of people with hearing loss. Objective This systematic review (PROSPERO 2011: CRD42011001406) evaluated the published evidence-base for the efficacy of individual computer-based auditory training to improve speech intelligibility, cognition and communication abilities in adults with hearing loss, with or without hearing aids or cochlear implants. Methods A systematic search of eight databases and key journals identified 229 articles published since 1996, 13 of which met the inclusion criteria. Data were independently extracted and reviewed by the two authors. Study quality was assessed using ten pre-defined scientific and intervention-specific measures. Results Auditory training resulted in improved performance for trained tasks in 9/10 articles that reported on-task outcomes. Although significant generalisation of learning was shown to untrained measures of speech intelligibility (11/13 articles), cognition (1/1 articles) and self-reported hearing abilities (1/2 articles), improvements were small and not robust. Where reported, compliance with computer-based auditory training was high, and retention of learning was shown at post-training follow-ups. Published evidence was of very-low to moderate study quality. Conclusions Our findings demonstrate that published evidence for the efficacy of individual computer-based auditory training for adults with hearing loss is not robust and therefore cannot be reliably used to guide intervention at this time. We identify a need for high-quality evidence to further examine the efficacy of computer-based auditory training for people with hearing loss. PMID:23675431
Schumann, Annette; Serman, Maja; Gefeller, Olaf; Hoppe, Ulrich
2015-03-01
Specific computer-based auditory training may be a useful completion in the rehabilitation process for cochlear implant (CI) listeners to achieve sufficient speech intelligibility. This study evaluated the effectiveness of a computerized, phoneme-discrimination training programme. The study employed a pretest-post-test design; participants were randomly assigned to the training or control group. Over a period of three weeks, the training group was instructed to train in phoneme discrimination via computer, twice a week. Sentence recognition in different noise conditions (moderate to difficult) was tested pre- and post-training, and six months after the training was completed. The control group was tested and retested within one month. Twenty-seven adult CI listeners who had been using cochlear implants for more than two years participated in the programme; 15 adults in the training group, 12 adults in the control group. Besides significant improvements for the trained phoneme-identification task, a generalized training effect was noted via significantly improved sentence recognition in moderate noise. No significant changes were noted in the difficult noise conditions. Improved performance was maintained over an extended period. Phoneme-discrimination training improves experienced CI listeners' speech perception in noise. Additional research is needed to optimize auditory training for individual benefit.
Using Neuroplasticity-Based Auditory Training to Improve Verbal Memory in Schizophrenia
Fisher, Melissa; Holland, Christine; Merzenich, Michael M.; Vinogradov, Sophia
2009-01-01
Objective Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Method Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Results Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Conclusions Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach. PMID:19448187
Computer-based multisensory learning in children with developmental dyslexia.
Kast, Monika; Meyer, Martin; Vögeli, Christian; Gross, Markus; Jäncke, Lutz
2007-01-01
Several attempts have been made to remediate developmental dyslexia using various training environments. Based on the well-known retrieval structure model, the memory strength of phonemes and graphemes should be strengthened by visual and auditory associations between graphemes and phonemes. Using specifically designed training software, we examined whether establishing a multitude of visuo-auditory associations might help to mitigate writing errors in children with developmental dyslexia. Forty-three children with developmental dyslexia and 37 carefully matched normal reading children performed a computer-based writing training (15-20 minutes 4 days a week) for three months with the aim to recode a sequential textual input string into a multi-sensory representation comprising visual and auditory codes (including musical tones). The study included four matched groups: a group of children with developmental dyslexia (n=20) and a control group (n=18) practiced with the training software in the first period (3 months, 15-20 minutes 4 days a week), while a second group of children with developmental dyslexia (n=23) (waiting group) and a second control group (n=19) received no training during the first period. In the second period the children with developmental dyslexia and controls who did not receive training during the first period now took part in the training. Children with developmental dyslexia who did not perform computer-based training during the first period hardly improved their writing skills (post-pre improvement of 0-9%), the dyslexic children receiving training strongly improved their writing skills (post-pre improvement of 19-35%). The group who did the training during the second period also revealed improvement of writing skills (post-pre improvement of 27-35%). Interestingly, we noticed a strong transfer from trained to non-trained words in that the children who underwent the training were also better able to write words correctly that were not part of the training software. In addition, even non-impaired readers and writers (controls) benefited from this training. Three-month of visual-auditory multimedia training strongly improved writing skills in children with developmental dyslexia and non-dyslexic children. Thus, according to the retrieval structure model, multi-sensory training using visual and auditory cues enhances writing performance in children with developmental dyslexia and non-dyslexic children.
Web-based auditory self-training system for adult and elderly users of hearing aids.
Vitti, Simone Virginia; Blasca, Wanderléia Quinhoneiro; Sigulem, Daniel; Torres Pisa, Ivan
2015-01-01
Adults and elderly users of hearing aids suffer psychosocial reactions as a result of hearing loss. Auditory rehabilitation is typically carried out with support from a speech therapist, usually in a clinical center. For these cases, there is a lack of computer-based self-training tools for minimizing the psychosocial impact of hearing deficiency. To develop and evaluate a web-based auditory self-training system for adult and elderly users of hearing aids. Two modules were developed for the web system: an information module based on guidelines for using hearing aids; and an auditory training module presenting a sequence of training exercises for auditory abilities along the lines of the auditory skill steps within auditory processing. We built aweb system using PHP programming language and a MySQL database .from requirements surveyed through focus groups that were conducted by healthcare information technology experts. The web system was evaluated by speech therapists and hearing aid users. An initial sample of 150 patients at DSA/HRAC/USP was defined to apply the system with the inclusion criteria that: the individuals should be over the age of 25 years, presently have hearing impairment, be a hearing aid user, have a computer and have internet experience. They were divided into two groups: a control group (G1) and an experimental group (G2). These patients were evaluated clinically using the HHIE for adults and HHIA for elderly people, before and after system implementation. A third web group was formed with users who were invited through social networks for their opinions on using the system. A questionnaire evaluating hearing complaints was given to all three groups. The study hypothesis considered that G2 would present greater auditory perception, higher satisfaction and fewer complaints than G1 after the auditory training. It was expected that G3 would have fewer complaints regarding use and acceptance of the system. The web system, which was named SisTHA portal, was finalized, rated by experts and hearing aid users and approved for use. The system comprised auditory skills training along five lines: discrimination; recognition; comprehension and temporal sequencing; auditory closure; and cognitive-linguistic and communication strategies. Users needed to undergo auditory training over a minimum period of 1 month: 5 times a week for 30 minutes a day. Comparisons were made between G1 and G2 and web system use by G3. The web system developed was approved for release to hearing aid users. It is expected that the self-training will help improve effective use of hearing aids, thereby decreasing their rejection.
Computer-Based Auditory Training Programs for Children with Hearing Impairment - A Scoping Review.
Nanjundaswamy, Manohar; Prabhu, Prashanth; Rajanna, Revathi Kittur; Ningegowda, Raghavendra Gulaganji; Sharma, Madhuri
2018-01-01
Introduction Communication breakdown, a consequence of hearing impairment (HI), is being fought by fitting amplification devices and providing auditory training since the inception of audiology. The advances in both audiology and rehabilitation programs have led to the advent of computer-based auditory training programs (CBATPs). Objective To review the existing literature documenting the evidence-based CBATPs for children with HIs. Since there was only one such article, we also chose to review the commercially available CBATPs for children with HI. The strengths and weaknesses of the existing literature were reviewed in order to improve further researches. Data Synthesis Google Scholar and PubMed databases were searched using various combinations of keywords. The participant, intervention, control, outcome and study design (PICOS) criteria were used for the inclusion of articles. Out of 124 article abstracts reviewed, 5 studies were shortlisted for detailed reading. One among them satisfied all the criteria, and was taken for review. The commercially available programs were chosen based on an extensive search in Google. The reviewed article was well-structured, with appropriate outcomes. The commercially available programs cover many aspects of the auditory training through a wide range of stimuli and activities. Conclusions There is a dire need for extensive research to be performed in the field of CBATPs to establish their efficacy, also to establish them as evidence-based practices.
Computer-Based Auditory Training Programs for Children with Hearing Impairment – A Scoping Review
Nanjundaswamy, Manohar; Prabhu, Prashanth; Rajanna, Revathi Kittur; Ningegowda, Raghavendra Gulaganji; Sharma, Madhuri
2018-01-01
Introduction Communication breakdown, a consequence of hearing impairment (HI), is being fought by fitting amplification devices and providing auditory training since the inception of audiology. The advances in both audiology and rehabilitation programs have led to the advent of computer-based auditory training programs (CBATPs). Objective To review the existing literature documenting the evidence-based CBATPs for children with HIs. Since there was only one such article, we also chose to review the commercially available CBATPs for children with HI. The strengths and weaknesses of the existing literature were reviewed in order to improve further researches. Data Synthesis Google Scholar and PubMed databases were searched using various combinations of keywords. The participant, intervention, control, outcome and study design (PICOS) criteria were used for the inclusion of articles. Out of 124 article abstracts reviewed, 5 studies were shortlisted for detailed reading. One among them satisfied all the criteria, and was taken for review. The commercially available programs were chosen based on an extensive search in Google. The reviewed article was well-structured, with appropriate outcomes. The commercially available programs cover many aspects of the auditory training through a wide range of stimuli and activities. Conclusions There is a dire need for extensive research to be performed in the field of CBATPs to establish their efficacy, also to establish them as evidence-based practices. PMID:29371904
Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.
Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva
2016-01-01
Children with auditory processing disorder (APD) typically present with "listening difficulties,"' including problems understanding speech in noisy environments. The authors examined, in a group of such children, whether a 12-week computer-based auditory training program with speech material improved the perception of speech-in-noise test performance, and functional listening skills as assessed by parental and teacher listening and communication questionnaires. The authors hypothesized that after the intervention, (1) trained children would show greater improvements in speech-in-noise perception than untrained controls; (2) this improvement would correlate with improvements in observer-rated behaviors; and (3) the improvement would be maintained for at least 3 months after the end of training. This was a prospective randomized controlled trial of 39 children with normal nonverbal intelligence, ages 7 to 11 years, all diagnosed with APD. This diagnosis required a normal pure-tone audiogram and deficits in at least two clinical auditory processing tests. The APD children were randomly assigned to (1) a control group that received only the current standard treatment for children diagnosed with APD, employing various listening/educational strategies at school (N = 19); or (2) an intervention group that undertook a 3-month 5-day/week computer-based auditory training program at home, consisting of a wide variety of speech-based listening tasks with competing sounds, in addition to the current standard treatment. All 39 children were assessed for language and cognitive skills at baseline and on three outcome measures at baseline and immediate postintervention. Outcome measures were repeated 3 months postintervention in the intervention group only, to assess the sustainability of treatment effects. The outcome measures were (1) the mean speech reception threshold obtained from the four subtests of the listening in specialized noise test that assesses sentence perception in various configurations of masking speech, and in which the target speakers and test materials were unrelated to the training materials; (2) the Children's Auditory Performance Scale that assesses listening skills, completed by the children's teachers; and (3) the Clinical Evaluation of Language Fundamental-4 pragmatic profile that assesses pragmatic language use, completed by parents. All outcome measures significantly improved at immediate postintervention in the intervention group only, with effect sizes ranging from 0.76 to 1.7. Improvements in speech-in-noise performance correlated with improved scores in the Children's Auditory Performance Scale questionnaire in the trained group only. Baseline language and cognitive assessments did not predict better training outcome. Improvements in speech-in-noise performance were sustained 3 months postintervention. Broad speech-based auditory training led to improved auditory processing skills as reflected in speech-in-noise test performance and in better functional listening in real life. The observed correlation between improved functional listening with improved speech-in-noise perception in the trained group suggests that improved listening was a direct generalization of the auditory training.
Auditory training and challenges associated with participation and compliance.
Sweetow, Robert W; Sabes, Jennifer Henderson
2010-10-01
When individuals have hearing loss, physiological changes in their brain interact with relearning of sound patterns. Some individuals utilize compensatory strategies that may result in successful hearing aid use. Others, however, are not so fortunate. Modern hearing aids can provide audibility but may not rectify spectral and temporal resolution, susceptibility to noise interference, or degradation of cognitive skills, such as declining auditory memory and slower speed of processing associated with aging. Frequently, these deficits are not identified during a typical "hearing aid evaluation." Aural rehabilitation has long been advocated to enhance communication but has not been considered time or cost-effective. Home-based, interactive adaptive computer therapy programs are available that are designed to engage the adult hearing-impaired listener in the hearing aid fitting process, provide listening strategies, build confidence, and address cognitive changes. Despite the availability of these programs, many patients and professionals are reluctant to engage in and complete therapy. The purposes of this article are to discuss the need for identifying auditory and nonauditory factors that may adversely affect the overall audiological rehabilitation process, to discuss important features that should be incorporated into training, and to examine reasons for the lack of compliance with therapeutic options. Possible solutions to maximizing compliance are explored. Only a small portion of audiologists (fewer than 10%) offer auditory training to patients with hearing impairment, even though auditory training appears to lower the rate of hearing aid returns for credit. Patients to whom auditory training programs are recommended often do not complete the training, however. Compliance for a cohort of home-based auditory therapy trainees was less than 30%. Activities to increase patient compliance to auditory training protocols are proposed. American Academy of Audiology.
A biologically plausible computational model for auditory object recognition.
Larson, Eric; Billimoria, Cyrus P; Sen, Kamal
2009-01-01
Object recognition is a task of fundamental importance for sensory systems. Although this problem has been intensively investigated in the visual system, relatively little is known about the recognition of complex auditory objects. Recent work has shown that spike trains from individual sensory neurons can be used to discriminate between and recognize stimuli. Multiple groups have developed spike similarity or dissimilarity metrics to quantify the differences between spike trains. Using a nearest-neighbor approach the spike similarity metrics can be used to classify the stimuli into groups used to evoke the spike trains. The nearest prototype spike train to the tested spike train can then be used to identify the stimulus. However, how biological circuits might perform such computations remains unclear. Elucidating this question would facilitate the experimental search for such circuits in biological systems, as well as the design of artificial circuits that can perform such computations. Here we present a biologically plausible model for discrimination inspired by a spike distance metric using a network of integrate-and-fire model neurons coupled to a decision network. We then apply this model to the birdsong system in the context of song discrimination and recognition. We show that the model circuit is effective at recognizing individual songs, based on experimental input data from field L, the avian primary auditory cortex analog. We also compare the performance and robustness of this model to two alternative models of song discrimination: a model based on coincidence detection and a model based on firing rate.
Gfeller, Kate; Guthe, Emily; Driscoll, Virginia; Brown, Carolyn J
2015-09-01
This paper provides a preliminary report of a music-based training program for adult cochlear implant (CI) recipients. Included in this report are descriptions of the rationale for music-based training, factors influencing program development, and the resulting program components. Prior studies describing experience-based plasticity in response to music training, auditory training for persons with hearing impairment, and music training for CI recipients were reviewed. These sources revealed rationales for using music to enhance speech, factors associated with successful auditory training, relevant aspects of electric hearing and music perception, and extant evidence regarding limitations and advantages associated with parameters for music training with CI users. This informed the development of a computer-based music training program designed specifically for adult CI users. Principles and parameters for perceptual training of music, such as stimulus choice, rehabilitation approach, and motivational concerns were developed in relation to the unique auditory characteristics of adults with electric hearing. An outline of the resulting program components and the outcome measures for evaluating program effectiveness are presented. Music training can enhance the perceptual accuracy of music, but is also hypothesized to enhance several features of speech with similar processing requirements as music (e.g., pitch and timbre). However, additional evaluation of specific training parameters and the impact of music-based training on speech perception of CI users is required.
Gfeller, Kate; Guthe, Emily; Driscoll, Virginia; Brown, Carolyn J.
2015-01-01
Objective This paper provides a preliminary report of a music-based training program for adult cochlear implant (CI) recipients. Included in this report are descriptions of the rationale for music-based training, factors influencing program development, and the resulting program components. Methods Prior studies describing experience-based plasticity in response to music training, auditory training for persons with hearing impairment, and music training for cochlear implant recipients were reviewed. These sources revealed rationales for using music to enhance speech, factors associated with successful auditory training, relevant aspects of electric hearing and music perception, and extant evidence regarding limitations and advantages associated with parameters for music training with CI users. This information formed the development of a computer-based music training program designed specifically for adult CI users. Results Principles and parameters for perceptual training of music, such as stimulus choice, rehabilitation approach, and motivational concerns were developed in relation to the unique auditory characteristics of adults with electric hearing. An outline of the resulting program components and the outcome measures for evaluating program effectiveness are presented. Conclusions Music training can enhance the perceptual accuracy of music, but is also hypothesized to enhance several features of speech with similar processing requirements as music (e.g., pitch and timbre). However, additional evaluation of specific training parameters and the impact of music-based training on speech perception of CI users are required. PMID:26561884
Generational Learning Style Preferences Based on Computer-Based Healthcare Training
ERIC Educational Resources Information Center
Knight, Michaelle H.
2016-01-01
Purpose. The purpose of this mixed-method study was to determine the degree of perceived differences for auditory, visual and kinesthetic learning styles of Traditionalist, Baby Boomers, Generation X and Millennial generational healthcare workers participating in technology-assisted healthcare training. Methodology. This mixed-method research…
Loo, Jenny Hooi Yin; Bamiou, Doris-Eva; Campbell, Nicci; Luxon, Linda M
2010-08-01
This article reviews the evidence for computer-based auditory training (CBAT) in children with language, reading, and related learning difficulties, and evaluates the extent it can benefit children with auditory processing disorder (APD). Searches were confined to studies published between 2000 and 2008, and they are rated according to the level of evidence hierarchy proposed by the American Speech-Language Hearing Association (ASHA) in 2004. We identified 16 studies of two commercially available CBAT programs (13 studies of Fast ForWord (FFW) and three studies of Earobics) and five further outcome studies of other non-speech and simple speech sounds training, available for children with language, learning, and reading difficulties. The results suggest that, apart from the phonological awareness skills, the FFW and Earobics programs seem to have little effect on the language, spelling, and reading skills of children. Non-speech and simple speech sounds training may be effective in improving children's reading skills, but only if it is delivered by an audio-visual method. There is some initial evidence to suggest that CBAT may be of benefit for children with APD. Further research is necessary, however, to substantiate these preliminary findings.
Perceptual Learning and Auditory Training in Cochlear Implant Recipients
Fu, Qian-Jie; Galvin, John J.
2007-01-01
Learning electrically stimulated speech patterns can be a new and difficult experience for cochlear implant (CI) recipients. Recent studies have shown that most implant recipients at least partially adapt to these new patterns via passive, daily-listening experiences. Gradually introducing a speech processor parameter (eg, the degree of spectral mismatch) may provide for more complete and less stressful adaptation. Although the implant device restores hearing sensation and the continued use of the implant provides some degree of adaptation, active auditory rehabilitation may be necessary to maximize the benefit of implantation for CI recipients. Currently, there are scant resources for auditory rehabilitation for adult, postlingually deafened CI recipients. We recently developed a computer-assisted speech-training program to provide the means to conduct auditory rehabilitation at home. The training software targets important acoustic contrasts among speech stimuli, provides auditory and visual feedback, and incorporates progressive training techniques, thereby maintaining recipients’ interest during the auditory training exercises. Our recent studies demonstrate the effectiveness of targeted auditory training in improving CI recipients’ speech and music perception. Provided with an inexpensive and effective auditory training program, CI recipients may find the motivation and momentum to get the most from the implant device. PMID:17709574
Computer-Based Working Memory Training in Children with Mild Intellectual Disability
ERIC Educational Resources Information Center
Delavarian, Mona; Bokharaeian, Behrouz; Towhidkhah, Farzad; Gharibzadeh, Shahriar
2015-01-01
We designed a working memory (WM) training programme in game framework for mild intellectually disabled students. Twenty-four students participated as test and control groups. The auditory and visual-spatial WM were assessed by primary test, which included computerised Wechsler numerical forward and backward sub-tests and secondary tests, which…
Learning to listen again: the role of compliance in auditory training for adults with hearing loss.
Chisolm, Theresa Hnath; Saunders, Gabrielle H; Frederick, Melissa T; McArdle, Rachel A; Smith, Sherri L; Wilson, Richard H
2013-12-01
To examine the role of compliance in the outcomes of computer-based auditory training with the Listening and Communication Enhancement (LACE) program in Veterans using hearing aids. The authors examined available LACE training data for 5 tasks (i.e., speech-in-babble, time compression, competing speaker, auditory memory, missing word) from 50 hearing-aid users who participated in a larger, randomized controlled trial designed to examine the efficacy of LACE training. The goals were to determine: (a) whether there were changes in performance over 20 training sessions on trained tasks (i.e., on-task outcomes); and (b) whether compliance, defined as completing all 20 sessions, vs. noncompliance, defined as completing less than 20 sessions, influenced performance on parallel untrained tasks (i.e., off-task outcomes). The majority, 84% of participants, completed 20 sessions, with maximum outcome occurring with at least 10 sessions of training for some tasks and up to 20 sessions of training for others. Comparison of baseline to posttest performance revealed statistically significant improvements for 4 of 7 off-task outcome measures for the compliant group, with at least small (0.2 < d < 0.3) Cohen's d effect sizes for 3 of the 4. There were no statistically significant improvements observed for the noncompliant group. The high level of compliance in the present study may be attributable to use of systematized verbal and written instructions with telephone follow-up. Compliance, as expected, appears important for optimizing the outcomes of auditory training. Methods to improve compliance in clinical populations need to be developed, and compliance data are important to report in future studies of auditory training.
Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia
Dale, Corby L.; Brown, Ethan G.; Fisher, Melissa; Herman, Alexander B.; Dowling, Anne F.; Hinkley, Leighton B.; Subramaniam, Karuna; Nagarajan, Srikantan S.; Vinogradov, Sophia
2016-01-01
Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory. PMID:26152668
Halder, S; Käthner, I; Kübler, A
2016-02-01
Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Zatorre, Robert J.; Delhommeau, Karine; Zarate, Jean Mary
2012-01-01
We tested changes in cortical functional response to auditory patterns in a configural learning paradigm. We trained 10 human listeners to discriminate micromelodies (consisting of smaller pitch intervals than normally used in Western music) and measured covariation in blood oxygenation signal to increasing pitch interval size in order to dissociate global changes in activity from those specifically associated with the stimulus feature that was trained. A psychophysical staircase procedure with feedback was used for training over a 2-week period. Behavioral tests of discrimination ability performed before and after training showed significant learning on the trained stimuli, and generalization to other frequencies and tasks; no learning occurred in an untrained control group. Before training the functional MRI data showed the expected systematic increase in activity in auditory cortices as a function of increasing micromelody pitch interval size. This function became shallower after training, with the maximal change observed in the right posterior auditory cortex. Global decreases in activity in auditory regions, along with global increases in frontal cortices also occurred after training. Individual variation in learning rate was related to the hemodynamic slope to pitch interval size, such that those who had a higher sensitivity to pitch interval variation prior to learning achieved the fastest learning. We conclude that configural auditory learning entails modulation in the response of auditory cortex to the trained stimulus feature. Reduction in blood oxygenation response to increasing pitch interval size suggests that fewer computational resources, and hence lower neural recruitment, is associated with learning, in accord with models of auditory cortex function, and with data from other modalities. PMID:23227019
Cognitive/emotional models for human behavior representation in 3D avatar simulations
NASA Astrophysics Data System (ADS)
Peterson, James K.
2004-08-01
Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.
Learning Disabilities and the Auditory and Visual Matching Computer Program
ERIC Educational Resources Information Center
Tormanen, Minna R. K.; Takala, Marjatta; Sajaniemi, Nina
2008-01-01
This study examined whether audiovisual computer training without linguistic material had a remedial effect on different learning disabilities, like dyslexia and ADD (Attention Deficit Disorder). This study applied a pre-test-intervention-post-test design with students (N = 62) between the ages of 7 and 19. The computer training lasted eight weeks…
Nkyekyer, Joanna; Meyer, Denny; Blamey, Peter J; Pipingas, Andrew; Bhar, Sunil
2018-03-23
Sensorineural hearing loss is the most common sensory deficit among older adults. Some of the psychosocial consequences of this condition include difficulty in understanding speech, depression, and social isolation. Studies have shown that older adults with hearing loss show some age-related cognitive decline. Hearing aids have been proven as successful interventions to alleviate sensorineural hearing loss. In addition to hearing aid use, the positive effects of auditory training-formal listening activities designed to optimize speech perception-are now being documented among adults with hearing loss who use hearing aids, especially new hearing aid users. Auditory training has also been shown to produce prolonged cognitive performance improvements. However, there is still little evidence to support the benefits of simultaneous hearing aid use and individualized face-to-face auditory training on cognitive performance in adults with hearing loss. This study will investigate whether using hearing aids for the first time will improve the impact of individualized face-to-face auditory training on cognition, depression, and social interaction for adults with sensorineural hearing loss. The rationale for this study is based on the hypothesis that, in adults with sensorineural hearing loss, using hearing aids for the first time in combination with individualized face-to-face auditory training will be more effective for improving cognition, depressive symptoms, and social interaction rather than auditory training on its own. This is a crossover trial targeting 40 men and women between 50 and 90 years of age with either mild or moderate symmetric sensorineural hearing loss. Consented, willing participants will be recruited from either an independent living accommodation or via a community database to undergo a 6-month intensive face-to-face auditory training program (active control). Participants will be assigned in random order to receive hearing aid (intervention) for either the first 3 or last 3 months of the 6-month auditory training program. Each participant will be tested at baseline, 3, and 6 months using a neuropsychological battery of computer-based cognitive assessments, together with a depression symptom instrument and a social interaction measure. The primary outcome will be cognitive performance with regard to spatial working memory. Secondary outcome measures include other cognition performance measures, depressive symptoms, social interaction, and hearing satisfaction. Data analysis is currently under way and the first results are expected to be submitted for publication in June 2018. Results from the study will inform strategies for aural rehabilitation, hearing aid delivery, and future hearing loss intervention trials. ClinicalTrials.gov NCT03112850; https://clinicaltrials.gov/ct2/show/NCT03112850 (Archived by WebCite at http://www.webcitation.org/6xz12fD0B). ©Joanna Nkyekyer, Denny Meyer, Peter J Blamey, Andrew Pipingas, Sunil Bhar. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.03.2018.
Visual-auditory integration during speech imitation in autism.
Williams, Justin H G; Massaro, Dominic W; Peel, Natalie J; Bosseler, Alexis; Suddendorf, Thomas
2004-01-01
Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training.
Computer-Based Learning of Spelling Skills in Children with and without Dyslexia
ERIC Educational Resources Information Center
Kast, Monika; Baschera, Gian-Marco; Gross, Markus; Jancke, Lutz; Meyer, Martin
2011-01-01
Our spelling training software recodes words into multisensory representations comprising visual and auditory codes. These codes represent information about letters and syllables of a word. An enhanced version, developed for this study, contains an additional phonological code and an improved word selection controller relying on a phoneme-based…
Meyer, Denny; Blamey, Peter J; Pipingas, Andrew; Bhar, Sunil
2018-01-01
Background Sensorineural hearing loss is the most common sensory deficit among older adults. Some of the psychosocial consequences of this condition include difficulty in understanding speech, depression, and social isolation. Studies have shown that older adults with hearing loss show some age-related cognitive decline. Hearing aids have been proven as successful interventions to alleviate sensorineural hearing loss. In addition to hearing aid use, the positive effects of auditory training—formal listening activities designed to optimize speech perception—are now being documented among adults with hearing loss who use hearing aids, especially new hearing aid users. Auditory training has also been shown to produce prolonged cognitive performance improvements. However, there is still little evidence to support the benefits of simultaneous hearing aid use and individualized face-to-face auditory training on cognitive performance in adults with hearing loss. Objective This study will investigate whether using hearing aids for the first time will improve the impact of individualized face-to-face auditory training on cognition, depression, and social interaction for adults with sensorineural hearing loss. The rationale for this study is based on the hypothesis that, in adults with sensorineural hearing loss, using hearing aids for the first time in combination with individualized face-to-face auditory training will be more effective for improving cognition, depressive symptoms, and social interaction rather than auditory training on its own. Methods This is a crossover trial targeting 40 men and women between 50 and 90 years of age with either mild or moderate symmetric sensorineural hearing loss. Consented, willing participants will be recruited from either an independent living accommodation or via a community database to undergo a 6-month intensive face-to-face auditory training program (active control). Participants will be assigned in random order to receive hearing aid (intervention) for either the first 3 or last 3 months of the 6-month auditory training program. Each participant will be tested at baseline, 3, and 6 months using a neuropsychological battery of computer-based cognitive assessments, together with a depression symptom instrument and a social interaction measure. The primary outcome will be cognitive performance with regard to spatial working memory. Secondary outcome measures include other cognition performance measures, depressive symptoms, social interaction, and hearing satisfaction. Results Data analysis is currently under way and the first results are expected to be submitted for publication in June 2018. Conclusions Results from the study will inform strategies for aural rehabilitation, hearing aid delivery, and future hearing loss intervention trials. Trial Registration ClinicalTrials.gov NCT03112850; https://clinicaltrials.gov/ct2/show/NCT03112850 (Archived by WebCite at http://www.webcitation.org/6xz12fD0B). PMID:29572201
Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea
2013-01-01
Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444
Loewy, Rachel; Fisher, Melissa; Schlosser, Danielle A; Biagianti, Bruno; Stuart, Barbara; Mathalon, Daniel H; Vinogradov, Sophia
2016-07-01
Individuals at clinical high risk (CHR) for psychosis demonstrate cognitive impairments that predict later psychotic transition and real-world functioning. Cognitive training has shown benefits in schizophrenia, but has not yet been adequately tested in the CHR population. In this double-blind randomized controlled trial, CHR individuals (N = 83) were given laptop computers and trained at home on 40 hours of auditory processing-based exercises designed to target verbal learning and memory operations, or on computer games (CG). Participants were assessed with neurocognitive tests based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia initiative (MATRICS) battery and rated on symptoms and functioning. Groups were compared before and after training using a mixed-effects model with restricted maximum likelihood estimation, given the high study attrition rate (42%). Participants in the targeted cognitive training group showed a significant improvement in Verbal Memory compared to CG participants (effect size = 0.61). Positive and Total symptoms improved in both groups over time. CHR individuals showed patterns of training-induced cognitive improvement in verbal memory consistent with prior observations in schizophrenia. This is a particularly vulnerable domain in individuals at-risk for psychosis that predicts later functioning and psychotic transition. Ongoing follow-up of this cohort will assess the durability of training effects in CHR individuals, as well as the potential impact on symptoms and functioning over time. Clinical Trials Number: NCT00655239. URL: https://clinicaltrials.gov/ct2/show/NCT00655239?term=vinogradov&rank=5. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center 2016.
Effects of training and motivation on auditory P300 brain-computer interface performance.
Baykara, E; Ruf, C A; Fioravanti, C; Käthner, I; Simon, N; Kleih, S C; Kübler, A; Halder, S
2016-01-01
Brain-computer interface (BCI) technology aims at helping end-users with severe motor paralysis to communicate with their environment without using the natural output pathways of the brain. For end-users in complete paralysis, loss of gaze control may necessitate non-visual BCI systems. The present study investigated the effect of training on performance with an auditory P300 multi-class speller paradigm. For half of the participants, spatial cues were added to the auditory stimuli to see whether performance can be further optimized. The influence of motivation, mood and workload on performance and P300 component was also examined. In five sessions, 16 healthy participants were instructed to spell several words by attending to animal sounds representing the rows and columns of a 5 × 5 letter matrix. 81% of the participants achieved an average online accuracy of ⩾ 70%. From the first to the fifth session information transfer rates increased from 3.72 bits/min to 5.63 bits/min. Motivation significantly influenced P300 amplitude and online ITR. No significant facilitative effect of spatial cues on performance was observed. Training improves performance in an auditory BCI paradigm. Motivation influences performance and P300 amplitude. The described auditory BCI system may help end-users to communicate independently of gaze control with their environment. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji
2016-01-01
Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications. PMID:27746716
Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji
2016-01-01
Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants ( N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.
Neural plasticity expressed in central auditory structures with and without tinnitus
Roberts, Larry E.; Bosnyak, Daniel J.; Thompson, David C.
2012-01-01
Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To assess this assumption, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by electroencephalography (EEG) are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated (AM) sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR) and P2 transient response known to localize to primary and non-primary auditory cortex, respectively. P2 amplitude increased over training sessions equally in participants with tinnitus and in control subjects, suggesting normal remodeling of non-primary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls the phase delay between the 40-Hz response and stimulus waveforms reduced by about 10° over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects) did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not non-primary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected. PMID:22654738
Effect of virtual reality on cognitive dysfunction in patients with brain tumor.
Yang, Seoyon; Chun, Min Ho; Son, Yu Ri
2014-12-01
To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment.
Effect of Virtual Reality on Cognitive Dysfunction in Patients With Brain Tumor
Yang, Seoyon; Son, Yu Ri
2014-01-01
Objective To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Methods Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. Results The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. Conclusion VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment. PMID:25566470
Options for Auditory Training for Adults with Hearing Loss.
Olson, Anne D
2015-11-01
Hearing aid devices alone do not adequately compensate for sensory losses despite significant technological advances in digital technology. Overall use rates of amplification among adults with hearing loss remain low, and overall satisfaction and performance in noise can be improved. Although improved technology may partially address some listening problems, auditory training may be another alternative to improve speech recognition in noise and satisfaction with devices. The literature underlying auditory plasticity following placement of sensory devices suggests that additional auditory training may be needed for reorganization of the brain to occur. Furthermore, training may be required to acquire optimal performance from devices. Several auditory training programs that are readily accessible for adults with hearing loss, hearing aids, or cochlear implants are described. Programs that can be accessed via Web-based formats and smartphone technology are reviewed. A summary table is provided for easy access to programs with descriptions of features that allow hearing health care providers to assist clients in selecting the most appropriate auditory training program to fit their needs.
Understanding auditory distance estimation by humpback whales: a computational approach.
Mercado, E; Green, S R; Schneider, J N
2008-02-01
Ranging, the ability to judge the distance to a sound source, depends on the presence of predictable patterns of attenuation. We measured long-range sound propagation in coastal waters to assess whether humpback whales might use frequency degradation cues to range singing whales. Two types of neural networks, a multi-layer and a single-layer perceptron, were trained to classify recorded sounds by distance traveled based on their frequency content. The multi-layer network successfully classified received sounds, demonstrating that the distorting effects of underwater propagation on frequency content provide sufficient cues to estimate source distance. Normalizing received sounds with respect to ambient noise levels increased the accuracy of distance estimates by single-layer perceptrons, indicating that familiarity with background noise can potentially improve a listening whale's ability to range. To assess whether frequency patterns predictive of source distance were likely to be perceived by whales, recordings were pre-processed using a computational model of the humpback whale's peripheral auditory system. Although signals processed with this model contained less information than the original recordings, neural networks trained with these physiologically based representations estimated source distance more accurately, suggesting that listening whales should be able to range singers using distance-dependent changes in frequency content.
Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.
Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J
2014-01-01
Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.
Auditory Training with Multiple Talkers and Passage-Based Semantic Cohesion
ERIC Educational Resources Information Center
Casserly, Elizabeth D.; Barney, Erin C.
2017-01-01
Purpose: Current auditory training methods typically result in improvements to speech recognition abilities in quiet, but learner gains may not extend to other domains in speech (e.g., recognition in noise) or self-assessed benefit. This study examined the potential of training involving multiple talkers and training emphasizing discourse-level…
Ferguson, Melanie; Henshaw, Helen
2015-09-01
The aim of this research forum article was to examine accessibility, use, and adherence to computerized and online interventions for people with hearing loss. Four intervention studies of people with hearing loss were examined: 2 auditory training studies, 1 working memory training study, and 1 study of multimedia educational support. A small proportion (approximately 15%) of participants had never used a computer, which may be a barrier to the accessibility of computer and Internet-based interventions. Computer competence was not a factor in intervention use or adherence. Computer skills and Internet access influenced participant preference for the delivery method of the multimedia educational support program. It is important to be aware of current barriers to computer and Internet-delivered interventions for people with hearing loss. However, there is a clear need to develop and future-proof hearing-related applications for online delivery.
Hoare, Derek J; Van Labeke, Nicolas; McCormack, Abby; Sereda, Magdalena; Smith, Sandra; Al Taher, Hala; Kowalkowski, Victoria L; Sharples, Mike; Hall, Deborah A
2014-01-01
Previous studies of frequency discrimination training (FDT) for tinnitus used repetitive task-based training programmes relying on extrinsic factors to motivate participation. Studies reported limited improvement in tinnitus symptoms. To evaluate FDT exploiting intrinsic motivations by integrating training with computer-gameplay. Sixty participants were randomly assigned to train on either a conventional task-based training, or one of two interactive game-based training platforms over six weeks. Outcomes included assessment of motivation, tinnitus handicap, and performance on tests of attention. Participants reported greater intrinsic motivation to train on the interactive game-based platforms, yet compliance of all three groups was similar (∼ 70%) and changes in self-reported tinnitus severity were not significant. There was no difference between groups in terms of change in tinnitus severity or performance on measures of attention. FDT can be integrated within an intrinsically motivating game. Whilst this may improve participant experience, in this instance it did not translate to additional compliance or therapeutic benefit. ClinicalTrials.gov NCT02095262.
Statistical learning and auditory processing in children with music training: An ERP study.
Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne
2017-07-01
The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
An auditory brain-computer interface evoked by natural speech
NASA Astrophysics Data System (ADS)
Lopez-Gordo, M. A.; Fernandez, E.; Romero, S.; Pelayo, F.; Prieto, Alberto
2012-06-01
Brain-computer interfaces (BCIs) are mainly intended for people unable to perform any muscular movement, such as patients in a complete locked-in state. The majority of BCIs interact visually with the user, either in the form of stimulation or biofeedback. However, visual BCIs challenge their ultimate use because they require the subjects to gaze, explore and shift eye-gaze using their muscles, thus excluding patients in a complete locked-in state or under the condition of the unresponsive wakefulness syndrome. In this study, we present a novel fully auditory EEG-BCI based on a dichotic listening paradigm using human voice for stimulation. This interface has been evaluated with healthy volunteers, achieving an average information transmission rate of 1.5 bits min-1 in full-length trials and 2.7 bits min-1 using the optimal length of trials, recorded with only one channel and without formal training. This novel technique opens the door to a more natural communication with users unable to use visual BCIs, with promising results in terms of performance, usability, training and cognitive effort.
Reversal of age-related neural timing delays with training
Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina
2013-01-01
Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541
Noise-robust speech recognition through auditory feature detection and spike sequence decoding.
Schafer, Phillip B; Jin, Dezhe Z
2014-03-01
Speech recognition in noisy conditions is a major challenge for computer systems, but the human brain performs it routinely and accurately. Automatic speech recognition (ASR) systems that are inspired by neuroscience can potentially bridge the performance gap between humans and machines. We present a system for noise-robust isolated word recognition that works by decoding sequences of spikes from a population of simulated auditory feature-detecting neurons. Each neuron is trained to respond selectively to a brief spectrotemporal pattern, or feature, drawn from the simulated auditory nerve response to speech. The neural population conveys the time-dependent structure of a sound by its sequence of spikes. We compare two methods for decoding the spike sequences--one using a hidden Markov model-based recognizer, the other using a novel template-based recognition scheme. In the latter case, words are recognized by comparing their spike sequences to template sequences obtained from clean training data, using a similarity measure based on the length of the longest common sub-sequence. Using isolated spoken digits from the AURORA-2 database, we show that our combined system outperforms a state-of-the-art robust speech recognizer at low signal-to-noise ratios. Both the spike-based encoding scheme and the template-based decoding offer gains in noise robustness over traditional speech recognition methods. Our system highlights potential advantages of spike-based acoustic coding and provides a biologically motivated framework for robust ASR development.
Simon, Nadine; Käthner, Ivo; Ruf, Carolin A; Pasqualotto, Emanuele; Kübler, Andrea; Halder, Sebastian
2014-01-01
Brain-computer interfaces (BCIs) can serve as muscle independent communication aids. Persons, who are unable to control their eye muscles (e.g., in the completely locked-in state) or have severe visual impairments for other reasons, need BCI systems that do not rely on the visual modality. For this reason, BCIs that employ auditory stimuli were suggested. In this study, a multiclass BCI spelling system was implemented that uses animal voices with directional cues to code rows and columns of a letter matrix. To reveal possible training effects with the system, 11 healthy participants performed spelling tasks on 2 consecutive days. In a second step, the system was tested by a participant with amyotrophic lateral sclerosis (ALS) in two sessions. In the first session, healthy participants spelled with an average accuracy of 76% (3.29 bits/min) that increased to 90% (4.23 bits/min) on the second day. Spelling accuracy by the participant with ALS was 20% in the first and 47% in the second session. The results indicate a strong training effect for both the healthy participants and the participant with ALS. While healthy participants reached high accuracies in the first session and second session, accuracies for the participant with ALS were not sufficient for satisfactory communication in both sessions. More training sessions might be needed to improve spelling accuracies. The study demonstrated the feasibility of the auditory BCI with healthy users and stresses the importance of training with auditory multiclass BCIs, especially for potential end-users of BCI with disease.
Sacks, Stephanie; Fisher, Melissa; Garrett, Coleman; Alexander, Phillip; Holland, Christine; Rose, Demian; Hooker, Christine; Vinogradov, Sophia
2013-01-01
Social cognitive deficits are an important treatment target in schizophrenia, but it is unclear to what degree they require specialized interventions and which specific components of behavioral interventions are effective. In this pilot study, we explored the effects of a novel computerized neuroplasticity-based auditory training delivered in conjunction with computerized social cognition training (SCT) in patients with schizophrenia. Nineteen clinically stable schizophrenia subjects performed 50 hours of computerized exercises that place implicit, increasing demands on auditory perception, plus 12 hours of computerized training in emotion identification, social perception, and theory of mind tasks. All subjects were assessed with MATRICS-recommended measures of neurocognition and social cognition, plus a measure of self-referential source memory before and after the computerized training. Subjects showed significant improvements on multiple measures of neurocognition. Additionally, subjects showed significant gains on measures of social cognition, including the MSCEIT Perceiving Emotions, MSCEIT Managing Emotions, and self-referential source memory, plus a significant decrease in positive symptoms. Computerized training of auditory processing/verbal learning in schizophrenia results in significant basic neurocognitive gains. Further, addition of computerized social cognition training results in significant gains in several social cognitive outcome measures. Computerized cognitive training that directly targets social cognitive processes can drive improvements in these crucial functions.
Feasibility of and Design Parameters for a Computer-Based Attitudinal Research Information System
1975-08-01
Auditory Displays Auditory Evoked Potentials Auditory Feedback Auditory Hallucinations Auditory Localization Auditory Maski ng Auditory Neurons...surprising to hear these prob- lems e:qpressed once again and in the same old refrain. The Navy attitude surveyors were frustrated when they...Audiolcgy Audiometers Aud iometry Audiotapes Audiovisual Communications Media Audiovisual Instruction Auditory Cortex Auditory
Interconnected growing self-organizing maps for auditory and semantic acquisition modeling
Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J.
2014-01-01
Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic–semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory–semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model. PMID:24688478
Hoare, Derek J.; Van Labeke, Nicolas; McCormack, Abby; Sereda, Magdalena; Smith, Sandra; Taher, Hala Al; Kowalkowski, Victoria L.; Sharples, Mike; Hall, Deborah A.
2014-01-01
Background Previous studies of frequency discrimination training (FDT) for tinnitus used repetitive task-based training programmes relying on extrinsic factors to motivate participation. Studies reported limited improvement in tinnitus symptoms. Purpose To evaluate FDT exploiting intrinsic motivations by integrating training with computer-gameplay. Methods Sixty participants were randomly assigned to train on either a conventional task-based training, or one of two interactive game-based training platforms over six weeks. Outcomes included assessment of motivation, tinnitus handicap, and performance on tests of attention. Results Participants reported greater intrinsic motivation to train on the interactive game-based platforms, yet compliance of all three groups was similar (∼70%) and changes in self-reported tinnitus severity were not significant. There was no difference between groups in terms of change in tinnitus severity or performance on measures of attention. Conclusion FDT can be integrated within an intrinsically motivating game. Whilst this may improve participant experience, in this instance it did not translate to additional compliance or therapeutic benefit. Trial Registration ClinicalTrials.gov NCT02095262 PMID:25215617
Lidestam, Björn; Moradi, Shahram; Pettersson, Rasmus; Ricklefs, Theodor
2014-08-01
The effects of audiovisual versus auditory training for speech-in-noise identification were examined in 60 young participants. The training conditions were audiovisual training, auditory-only training, and no training (n = 20 each). In the training groups, gated consonants and words were presented at 0 dB signal-to-noise ratio; stimuli were either audiovisual or auditory-only. The no-training group watched a movie clip without performing a speech identification task. Speech-in-noise identification was measured before and after the training (or control activity). Results showed that only audiovisual training improved speech-in-noise identification, demonstrating superiority over auditory-only training.
Acquisition of L2 Japanese Geminates: Training with Waveform Displays
ERIC Educational Resources Information Center
Motohashi-Saigo, Miki; Hardison, Debra M.
2009-01-01
The value of waveform displays as visual feedback was explored in a training study involving perception and production of L2 Japanese by beginning-level L1 English learners. A pretest-posttest design compared auditory-visual (AV) and auditory-only (A-only) Web-based training. Stimuli were singleton and geminate /t,k,s/ followed by /a,u/ in two…
Long-range synchrony of gamma oscillations and auditory hallucination symptoms in schizophrenia
Mulert, C.; Kirsch; Pascual-Marqui, Roberto; McCarley, Robert W.; Spencer, Kevin M.
2010-01-01
Phase locking in the gamma-band range has been shown to be diminished in patients with schizophrenia. Moreover, there have been reports of positive correlations between phase locking in the gamma-band range and positive symptoms, especially hallucinations. The aim of the present study was to use a new methodological approach in order to investigate gamma-band phase synchronization between the left and right auditory cortex in patients with schizophrenia and its relationship to auditory hallucinations. Subjects were 18 patients with chronic schizophrenia (SZ) and 16 healthy control (HC) subjects. Auditory hallucination symptom scores were obtained using the Scale for the Assessment of Positive Symptoms. Stimuli were 40-Hz binaural click trains. The generators of the 40 Hz-ASSR were localized using eLORETA and based on the computed intracranial signals lagged interhemispheric phase locking between primary and secondary auditory cortices was analyzed. Current source density of the 40 ASSR response was significantly diminished in SZ in comparison to HC in the right superior and middle temporal gyrus (p<0.05). Interhemispheric phase locking was reduced in SZ in comparison to HC for the primary auditory cortices (p<0.05) but not in the secondary auditory cortices. A significant positive correlation was found between auditory hallucination symptom scores and phase synchronization between the primary auditory cortices (p<0.05, corrected for multiple testing) but not for the secondary auditory cortices. These results suggest that long-range synchrony of gamma oscillations is disturbed in schizophrenia and that this deficit is related to clinical symptoms such as auditory hallucinations. PMID:20713096
Strait, Dana L.; Kraus, Nina
2011-01-01
Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker's voice amidst others). Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and non-musicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not non-musicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development and maintenance of language-related skills, musical training may aid in the prevention, habilitation, and remediation of individuals with a wide range of attention-based language, listening and learning impairments. PMID:21716636
Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie
2014-01-01
Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087
[Auditory training with wide-band white noise: effects on the recruitment (III)].
Domínguez Ugidos, L J; Rodríguez Morejón, C; Vallés Varela, H; Iparraguirre Bolinaga, V; Knaster del Olmo, J
2001-05-01
The auditory training with wide-band white noise is a methodology for the qualitative recovery of the hearing loss in people suffering from sensorineural hearing loss. It is based on the application of a wide-band white modified noise. In a prospective study, we have assessed the modifications of the recruitment coefficient in a sample of 48 patients who have followed a program of 15 auditory training with wide-band white noise sessions. The average improvement of the recruitment coefficient expressed in percentage is a 7.7498%, which comes up to 23.5249% in the case of a binaural recruitment coefficient. From our results, it can be deduced that the auditory training with wide-band white noise reduces the recruitment. That is to say, the decrease of the recruitment in high intensities both binaurally and in all ears.
Planning music-based amelioration and training in infancy and childhood based on neural evidence.
Huotilainen, Minna; Tervaniemi, Mari
2018-05-04
Music-based amelioration and training of the developing auditory system has a long tradition, and recent neuroscientific evidence supports using music in this manner. Here, we present the available evidence showing that various music-related activities result in positive changes in brain structure and function, becoming helpful for auditory cognitive processes in everyday life situations for individuals with typical neural development and especially for individuals with hearing, learning, attention, or other deficits that may compromise auditory processing. We also compare different types of music-based training and show how their effects have been investigated with neural methods. Finally, we take a critical position on the multitude of error sources found in amelioration and training studies and on publication bias in the field. We discuss some future improvements of these issues in the field of music-based training and their potential results at the neural and behavioral levels in infants and children for the advancement of the field and for a more complete understanding of the possibilities and significance of the training. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.
Rieger, Kathryn; Rarra, Marie-Helene; Diaz Hernandez, Laura; Hubl, Daniela; Koenig, Thomas
2018-03-01
Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t (4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t (7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback. Furthermore, independent of the training group, a significant spatial pre-post difference was found in the event-related component P200 ( P = .04).
Suggested Outline for Auditory Perception Training.
ERIC Educational Resources Information Center
Kelley, Clare A.
Presented are suggestions for speech therapists to use in auditory perception training and screening of language handicapped children in kindergarten through grade 3. Directions are given for using the program, which is based on games. Each component is presented in terms of purpose, materials, a description of the game, and directions for…
Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.
Reimers, Stian; Stewart, Neil
2016-09-01
Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.
Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc
2016-10-01
Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.
Finley, John P; Caissie, Rachel; Nicol, Pam; Hoyt, Brian
2015-08-01
Recognition of normal and abnormal heart sounds and murmurs is an important but declining clinical skill among practitioners. Current teaching methods are often ineffective. This may result from inadequate repetition and normal-abnormal comparisons needed for auditory recognition. This paper describes a rapid new method of teaching murmur recognition using principles of auditory training. Participants were 120 Australian and 42 Canadian medical students. The medical students were randomised to intervention and control (no intervention) groups. The 1-h online programme structured like a computer game used auditory training methodology to teach students to distinguish between innocent and pathological murmurs. Participants underwent pre- and post-testing on 20 paediatric murmurs. Post-testing occurred immediately following training and after 2 months. Twenty-two Canadian medical students were retested 1 year later with a brief mastery-style reinforcement programme. Median pre- and post-test scores improved in about 1 h from 75-95% (P < 0.001) for Australian students and 85-95% (P = 0.004) for Canadian students. Two-month post-test scores declined for Australian students to 85% (P = 0.001), and for Canadian students to 85% (P = 0.02). Australian controls had no significant change during the study period, whereas Canadian controls improved slightly. The group receiving reinforcement after 1 year had a median final score of 90%. This auditory training programme rapidly teaches students to distinguish innocent and pathological murmurs with at least 90% accuracy. The skill declines within 2 months but can be restored with brief mastery reinforcement 1 year later. © 2015 The Authors. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Envelope Responses in Single-Trial EEG Indicate Attended Speaker in a Cocktail Party
2013-06-20
users to modulate their brain activity, such as motor rhythms, in order to signal intent [13], but these often require considerable training . Other...BCIs forgo training and instead have subjects make choices by attending to one of multiple visual and/or auditory stimuli. By presenting each stimulus...modulated). An envelope-based BCI could operate on more naturalistic auditory stimuli, such as speech or music . For example, an envelope-based BCI
Benefits of music training in mandarin-speaking pediatric cochlear implant users.
Fu, Qian-Jie; Galvin, John J; Wang, Xiaosong; Wu, Jiunn-Liang
2015-02-01
The aims of this study were to assess young (5- to 10-year-old) Mandarin-speaking cochlear implant (CI) users' musical pitch perception and to assess the benefits of computer-based home training on performance. Melodic contour identification (MCI) was used to assess musical pitch perception in 14 Mandarin-speaking pediatric CI users; the instrument timbre and the contour length were varied as experimental parameters. Six subjects received subsequent MCI training on their home computer in which auditory and visual feedback were provided. MCI performance was generally poor (grand mean=33.3% correct) and highly variable, with scores ranging from 9.3% to 98.1% correct; there was no significant effect of instrument timbre or contour length on performance (p>.05). After 4 weeks of training, performance sharply improved. Follow-up measures that were conducted 8 weeks after training was stopped showed no significant decline in MCI performance. For the 6 trained subjects, there was a significant effect of contour length for the training and follow-up measures. These preliminary data suggest that although baseline MCI performance initially may be poor, training may greatly improve Mandarin-speaking pediatric CI users' melodic pitch perception.
Gudi-Mindermann, Helene; Rimmele, Johanna M; Nolte, Guido; Bruns, Patrick; Engel, Andreas K; Röder, Brigitte
2018-04-12
The functional relevance of crossmodal activation (e.g. auditory activation of occipital brain regions) in congenitally blind individuals is still not fully understood. The present study tested whether the occipital cortex of blind individuals is integrated into a challenged functional network. A working memory (WM) training over four sessions was implemented. Congenitally blind and matched sighted participants were adaptively trained with an n-back task employing either voices (auditory training) or tactile stimuli (tactile training). In addition, a minimally demanding 1-back task served as an active control condition. Power and functional connectivity of EEG activity evolving during the maintenance period of an auditory 2-back task were analyzed, run prior to and after the WM training. Modality-specific (following auditory training) and modality-independent WM training effects (following both auditory and tactile training) were assessed. Improvements in auditory WM were observed in all groups, and blind and sighted individuals did not differ in training gains. Auditory and tactile training of sighted participants led, relative to the active control group, to an increase in fronto-parietal theta-band power, suggesting a training-induced strengthening of the existing modality-independent WM network. No power effects were observed in the blind. Rather, after auditory training the blind showed a decrease in theta-band connectivity between central, parietal, and occipital electrodes compared to the blind tactile training and active control groups. Furthermore, in the blind auditory training increased beta-band connectivity between fronto-parietal, central and occipital electrodes. In the congenitally blind, these findings suggest a stronger integration of occipital areas into the auditory WM network. Copyright © 2018 Elsevier B.V. All rights reserved.
Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning
2012-01-01
Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus-tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy are planned. A goal is to transfer this novel, completely non-invasive and low-cost treatment approach for tonal tinnitus into routine clinical practice.
Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning
2012-01-01
Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus—tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy are planned. A goal is to transfer this novel, completely non-invasive and low-cost treatment approach for tonal tinnitus into routine clinical practice. PMID:22754508
Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children
Shiller, Douglas M.; Rochon, Marie-Lyne
2015-01-01
Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067
Assessing Auditory Discrimination Skill of Malay Children Using Computer-based Method.
Ting, H; Yunus, J; Mohd Nordin, M Z
2005-01-01
The purpose of this paper is to investigate the auditory discrimination skill of Malay children using computer-based method. Currently, most of the auditory discrimination assessments are conducted manually by Speech-Language Pathologist. These conventional tests are actually general tests of sound discrimination, which do not reflect the client's specific speech sound errors. Thus, we propose computer-based Malay auditory discrimination test to automate the whole process of assessment as well as to customize the test according to the specific speech error sounds of the client. The ability in discriminating voiced and unvoiced Malay speech sounds was studied for the Malay children aged between 7 and 10 years old. The study showed no major difficulty for the children in discriminating the Malay speech sounds except differentiating /g/-/k/ sounds. Averagely the children of 7 years old failed to discriminate /g/-/k/ sounds.
Figure-background in dichotic task and their relation to skills untrained.
Cibian, Aline Priscila; Pereira, Liliane Desgualdo
2015-01-01
To evaluate the effectiveness of auditory training in dichotic task and to compare the responses of trained skills with the responses of untrained skills, after 4-8 weeks. Nineteen subjects, aged 12-15 years, underwent an auditory training based on dichotic interaural intensity difference (DIID), organized in eight sessions, each lasting 50 min. The assessment of auditory processing was conducted in three stages: before the intervention, after the intervention, and in the middle and at the end of the training. Data from this evaluation were analyzed as per group of disorder, according to the changes in the auditory processes evaluated: selective attention and temporal processing. Each of them was named selective attention group (SAG) and temporal processing group (TPG), and, for both the processes, selective attention and temporal processing group (SATPG). The training improved both the trained and untrained closing skill, normalizing all individuals. Untrained solving and temporal ordering skills did not reach normality for SATPG and TPG. Individuals reached normality for the trained figure-ground skill and for the untrained closing skill. The untrained solving and temporal ordering skills improved in some individuals but failed to reach normality.
Neural correlates of accelerated auditory processing in children engaged in music training.
Habibi, Assal; Cahn, B Rael; Damasio, Antonio; Damasio, Hanna
2016-10-01
Several studies comparing adult musicians and non-musicians have shown that music training is associated with brain differences. It is unknown, however, whether these differences result from lengthy musical training, from pre-existing biological traits, or from social factors favoring musicality. As part of an ongoing 5-year longitudinal study, we investigated the effects of a music training program on the auditory development of children, over the course of two years, beginning at age 6-7. The training was group-based and inspired by El-Sistema. We compared the children in the music group with two comparison groups of children of the same socio-economic background, one involved in sports training, another not involved in any systematic training. Prior to participating, children who began training in music did not differ from those in the comparison groups in any of the assessed measures. After two years, we now observe that children in the music group, but not in the two comparison groups, show an enhanced ability to detect changes in tonal environment and an accelerated maturity of auditory processing as measured by cortical auditory evoked potentials to musical notes. Our results suggest that music training may result in stimulus specific brain changes in school aged children. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effect of Auditory-Perceptual Training With Natural Voice Anchors on Vocal Quality Evaluation.
Dos Santos, Priscila Campos Martins; Vieira, Maurílio Nunes; Sansão, João Pedro Hallack; Gama, Ana Cristina Côrtes
2018-01-10
To analyze the effects of auditory-perceptual training with anchor stimuli of natural voices on inter-rater agreement during the assessment of vocal quality. This is a quantitative nature study. An auditory-perceptual training site was developed consisting of Programming Interface A, an auditory training activity, and Programming Interface B, a control activity. Each interface had three stages: pre-training/pre-interval evaluation, training/interval, and post-training/post-interval evaluation. Two experienced evaluators classified 381 voices according to the GRBASI scale (G-grade, R-roughness, B-breathiness, A-asthenia, S-strain, I-instability). Voices were selected that received the same evaluation by both evaluators: 57 voices for evaluation and 56 for training were selected, with varying degrees of deviation across parameters. Fifteen inexperienced evaluators were then selected. In the pre-, post-training, pre-, and postinterval stages, evaluators listened to the voices and classified them via the GRBASI scale. In the stage interval evaluators read a text. In the stage training each parameter was trained separately. Evaluators analyzed the degrees of deviation of the GRBASI parameters based on anchor stimuli, and could only advance after correctly classifying the voices. To quantify inter-rater agreement and provide statistical analyses, the AC1 coefficient, confidence intervals, and percentage variation of agreement were employed. Except for the asthenia parameter, decreased agreement was observed in the control condition. Improved agreement was observed with auditory training, but this improvement did not achieve statistical significance. Training with natural voice anchors suggest an increased inter-rater agreement during perceptual voice analysis, potentially indicating that new internal references were established. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B
2014-04-01
Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.
Plasticity in neuromagnetic cortical responses suggests enhanced auditory object representation
2013-01-01
Background Auditory perceptual learning persistently modifies neural networks in the central nervous system. Central auditory processing comprises a hierarchy of sound analysis and integration, which transforms an acoustical signal into a meaningful object for perception. Based on latencies and source locations of auditory evoked responses, we investigated which stage of central processing undergoes neuroplastic changes when gaining auditory experience during passive listening and active perceptual training. Young healthy volunteers participated in a five-day training program to identify two pre-voiced versions of the stop-consonant syllable ‘ba’, which is an unusual speech sound to English listeners. Magnetoencephalographic (MEG) brain responses were recorded during two pre-training and one post-training sessions. Underlying cortical sources were localized, and the temporal dynamics of auditory evoked responses were analyzed. Results After both passive listening and active training, the amplitude of the P2m wave with latency of 200 ms increased considerably. By this latency, the integration of stimulus features into an auditory object for further conscious perception is considered to be complete. Therefore the P2m changes were discussed in the light of auditory object representation. Moreover, P2m sources were localized in anterior auditory association cortex, which is part of the antero-ventral pathway for object identification. The amplitude of the earlier N1m wave, which is related to processing of sensory information, did not change over the time course of the study. Conclusion The P2m amplitude increase and its persistence over time constitute a neuroplastic change. The P2m gain likely reflects enhanced object representation after stimulus experience and training, which enables listeners to improve their ability for scrutinizing fine differences in pre-voicing time. Different trajectories of brain and behaviour changes suggest that the preceding effect of a P2m increase relates to brain processes, which are necessary precursors of perceptual learning. Cautious discussion is required when interpreting the finding of a P2 amplitude increase between recordings before and after training and learning. PMID:24314010
Musical Experience, Auditory Perception and Reading-Related Skills in Children
Banai, Karen; Ahissar, Merav
2013-01-01
Background The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Methodology/Principal Findings Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Conclusions/Significance Participants’ previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less likely to study music and if so, why this is the case. PMID:24086654
Decoding power-spectral profiles from FMRI brain activities during naturalistic auditory experience.
Hu, Xintao; Guo, Lei; Han, Junwei; Liu, Tianming
2017-02-01
Recent studies have demonstrated a close relationship between computational acoustic features and neural brain activities, and have largely advanced our understanding of auditory information processing in the human brain. Along this line, we proposed a multidisciplinary study to examine whether power spectral density (PSD) profiles can be decoded from brain activities during naturalistic auditory experience. The study was performed on a high resolution functional magnetic resonance imaging (fMRI) dataset acquired when participants freely listened to the audio-description of the movie "Forrest Gump". Representative PSD profiles existing in the audio-movie were identified by clustering the audio samples according to their PSD descriptors. Support vector machine (SVM) classifiers were trained to differentiate the representative PSD profiles using corresponding fMRI brain activities. Based on PSD profile decoding, we explored how the neural decodability correlated to power intensity and frequency deviants. Our experimental results demonstrated that PSD profiles can be reliably decoded from brain activities. We also suggested a sigmoidal relationship between the neural decodability and power intensity deviants of PSD profiles. Our study in addition substantiates the feasibility and advantage of naturalistic paradigm for studying neural encoding of complex auditory information.
Parker, Mark; Cunningham, Stuart; Enderby, Pam; Hawley, Mark; Green, Phil
2006-01-01
The STARDUST project developed robust computer speech recognizers for use by eight people with severe dysarthria and concomitant physical disability to access assistive technologies. Independent computer speech recognizers trained with normal speech are of limited functional use by those with severe dysarthria due to limited and inconsistent proximity to "normal" articulatory patterns. Severe dysarthric output may also be characterized by a small mass of distinguishable phonetic tokens making the acoustic differentiation of target words difficult. Speaker dependent computer speech recognition using Hidden Markov Models was achieved by the identification of robust phonetic elements within the individual speaker output patterns. A new system of speech training using computer generated visual and auditory feedback reduced the inconsistent production of key phonetic tokens over time.
Speech training alters consonant and vowel responses in multiple auditory cortex fields
Engineer, Crystal T.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Fink, Melyssa K.; Kilgard, Michael P.
2015-01-01
Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination. PMID:25827927
Casali, John G; Robinette, Martin B
2015-02-01
To determine if training with electronically-modulated hearing protection (EMHP) and the open ear results in auditory learning on a horizontal localization task. Baseline localization testing was conducted in three listening conditions (open-ear, in-the-ear (ITE) EMHP, and over-the-ear (OTE) EMHP). Participants then wore either an ITE or OTE EMHP for 12, almost daily, one-hour training sessions. After training was complete, participants again underwent localization testing in all three listening conditions. A computer with a custom software and hardware interface presented localization sounds and collected participant responses. Twelve participants were recruited from the student population at Virginia Tech. Audiometric requirements were 35 dBHL at 500, 1000, and 2000 Hz bilaterally, and 55 dBHL at 4000 Hz in at least one ear. Pre-training localization performance with an ITE or OTE EMHP was worse than open-ear performance. After training with any given listening condition, including open-ear, performance in that listening condition improved, in part from a practice effect. However, post-training localization performance showed near equal performance between the open-ear and training EMHP. Auditory learning occurred for the training EMHP, but not for the non-training EMHP; that is, there was no significant training crossover effect between the ITE and the OTE devices. It is evident from this study that auditory learning (improved horizontal localization performance) occurred with the EMHP for which training was performed. However, performance improvements found with the training EMHP were not realized in the non-training EMHP. Furthermore, localization performance in the open-ear condition also benefitted from training on the task.
Biological Impact of Music and Software-Based Auditory Training
ERIC Educational Resources Information Center
Kraus, Nina
2012-01-01
Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals--both young and old--encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in…
[Effects of auditory integrative training on autistic children].
Zhang, Gai-qiao; Gong, Qun; Zhang, Feng-ling; Chen, Sun-min; Hu, Li-qun; Liu, Feng; Cui, Rui-hua; He, Lin
2009-08-18
To explore the short-term treatment effect of the auditory integrative training on autistic children and provide them with clinical support for rehabilitative treatment. A total of 81 cases of autistic children were selected through the standard of DSM-4 and clinical case study was used. They were divided randomly into experimental group and control one, and respectively received auditory integrative training and no training based on the multiple therapies. The patients were investigated using clinical manifestation and Autism Behavior Checklist (ABC) and intelligence quotient (IQ) before and after six months of treatment. The effect was evaluated through the changes of clinical manifestations and scores of ABC and IQ. The changes of scores of IQ were determined with Gesell and WPPSI or WISC-R. Compared with 40 patients of the control group after the six months of the auditory integrative training, 41 of the experimental group had greatly improved in many aspects, such as the disorders of their language, social interactions and typical behavior symptoms while they had not changed in their abnormal behaviors. The scores of IQ or DQ had increased and scores of ABC had dropped. The differences between the two groups were greatly significant in statistics (P < 0.01). The decreasing level of both ABC scores and the increasing level of the IQ scores were negatively correlated with age, and the decreasing level of ABC scores was in line regression(positive correlation) with base IQ. The treatment of auditory integrative training (AIT) could greatly improve on language disorders, the difficulties of social interactions, typical behavior symptoms and developmental levels,therefore it is positive to the autistic children in its short-term treatment effect.
Barcroft, Joe; Sommers, Mitchell S; Tye-Murray, Nancy; Mauzé, Elizabeth; Schroy, Catherine; Spehar, Brent
2011-11-01
Our long-term objective is to develop an auditory training program that will enhance speech recognition in those situations where patients most want improvement. As a first step, the current investigation trained participants using either a single talker or multiple talkers to determine if auditory training leads to transfer-appropriate gains. The experiment implemented a 2 × 2 × 2 mixed design, with training condition as a between-participants variable and testing interval and test version as repeated-measures variables. Participants completed a computerized six-week auditory training program wherein they heard either the speech of a single talker or the speech of six talkers. Training gains were assessed with single-talker and multi-talker versions of the Four-choice discrimination test. Participants in both groups were tested on both versions. Sixty-nine adult hearing-aid users were randomly assigned to either single-talker or multi-talker auditory training. Both groups showed significant gains on both test versions. Participants who trained with multiple talkers showed greater improvement on the multi-talker version whereas participants who trained with a single talker showed greater improvement on the single-talker version. Transfer-appropriate gains occurred following auditory training, suggesting that auditory training can be designed to target specific patient needs.
Hoare, Derek J; Kowalkowski, Victoria L; Hall, Deborah A
2012-08-01
That auditory perceptual training may alleviate tinnitus draws on two observations: (1) tinnitus probably arises from altered activity within the central auditory system following hearing loss and (2) sound-based training can change central auditory activity. Training that provides sound enrichment across hearing loss frequencies has therefore been hypothesised to alleviate tinnitus. We tested this prediction with two randomised trials of frequency discrimination training involving a total of 70 participants with chronic subjective tinnitus. Participants trained on either (1) a pure-tone standard at a frequency within their region of normal hearing, (2) a pure-tone standard within the region of hearing loss or (3) a high-pass harmonic complex tone spanning a region of hearing loss. Analysis of the primary outcome measure revealed an overall reduction in self-reported tinnitus handicap after training that was maintained at a 1-month follow-up assessment, but there were no significant differences between groups. Secondary analyses also report the effects of different domains of tinnitus handicap on the psychoacoustical characteristics of the tinnitus percept (sensation level, bandwidth and pitch) and on duration of training. Our overall findings and conclusions cast doubt on the superiority of a purely acoustic mechanism to underpin tinnitus remediation. Rather, the nonspecific patterns of improvement are more suggestive that auditory perceptual training affects impact on a contributory mechanism such as selective attention or emotional state.
Xu, Yifang; Collins, Leslie M
2007-08-01
Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.
[Auditory training in workshops: group therapy option].
Santos, Juliana Nunes; do Couto, Isabel Cristina Plais; Amorim, Raquel Martins da Costa
2006-01-01
auditory training in groups. to verify in a group of individuals with mental retardation the efficacy of auditory training in a workshop environment. METHOD a longitudinal prospective study with 13 mentally retarded individuals from the Associação de Pais e Amigos do Excepcional (APAE) of Congonhas divided in two groups: case (n=5) and control (n=8) and who were submitted to ten auditory training sessions after verifying the integrity of the peripheral auditory system through evoked otoacoustic emissions. Participants were evaluated using a specific protocol concerning the auditory abilities (sound localization, auditory identification, memory, sequencing, auditory discrimination and auditory comprehension) at the beginning and at the end of the project. Data (entering, processing and analyses) were analyzed by the Epi Info 6.04 software. the groups did not differ regarding aspects of age (mean = 23.6 years) and gender (40% male). In the first evaluation both groups presented similar performances. In the final evaluation an improvement in the auditory abilities was observed for the individuals in the case group. When comparing the mean number of correct answers obtained by both groups in the first and final evaluations, a statistically significant result was obtained for sound localization (p=0.02), auditory sequencing (p=0.006) and auditory discrimination (p=0.03). group auditory training demonstrated to be effective in individuals with mental retardation, observing an improvement in the auditory abilities. More studies, with a larger number of participants, are necessary in order to confirm the findings of the present research. These results will help public health professionals to reanalyze the theory models used for therapy, so that they can use specific methods according to individual needs, such as auditory training workshops.
Nicholas, Marjorie; Sinotte, Michele P.; Helm-Estabrooks, Nancy
2011-01-01
Learning how to use a computer-based communication system can be challenging for people with severe aphasia even if the system is not word-based. This study explored cognitive and linguistic factors relative to how they affected individual patients’ ability to communicate expressively using C-Speak Aphasia, (CSA), an alternative communication computer program that is primarily picture-based. Ten individuals with severe non-fluent aphasia received at least six months of training with CSA. To assess carryover of training, untrained functional communication tasks (i.e., answering autobiographical questions, describing pictures, making telephone calls, describing a short video, and two writing tasks) were repeatedly probed in two conditions: 1) using CSA in addition to natural forms of communication, and 2) using only natural forms of communication, e.g., speaking, writing, gesturing, drawing. Four of the ten participants communicated more information on selected probe tasks using CSA than they did without the computer. Response to treatment also was examined in relation to baseline measures of non-linguistic executive function skills, pictorial semantic abilities, and auditory comprehension. Only nonlinguistic executive function skills were significantly correlated with treatment response. PMID:21506045
NASA Astrophysics Data System (ADS)
McMullen, Kyla A.
Although the concept of virtual spatial audio has existed for almost twenty-five years, only in the past fifteen years has modern computing technology enabled the real-time processing needed to deliver high-precision spatial audio. Furthermore, the concept of virtually walking through an auditory environment did not exist. The applications of such an interface have numerous potential uses. Spatial audio has the potential to be used in various manners ranging from enhancing sounds delivered in virtual gaming worlds to conveying spatial locations in real-time emergency response systems. To incorporate this technology in real-world systems, various concerns should be addressed. First, to widely incorporate spatial audio into real-world systems, head-related transfer functions (HRTFs) must be inexpensively created for each user. The present study further investigated an HRTF subjective selection procedure previously developed within our research group. Users discriminated auditory cues to subjectively select their preferred HRTF from a publicly available database. Next, the issue of training to find virtual sources was addressed. Listeners participated in a localization training experiment using their selected HRTFs. The training procedure was created from the characterization of successful search strategies in prior auditory search experiments. Search accuracy significantly improved after listeners performed the training procedure. Next, in the investigation of auditory spatial memory, listeners completed three search and recall tasks with differing recall methods. Recall accuracy significantly decreased in tasks that required the storage of sound source configurations in memory. To assess the impacts of practical scenarios, the present work assessed the performance effects of: signal uncertainty, visual augmentation, and different attenuation modeling. Fortunately, source uncertainty did not affect listeners' ability to recall or identify sound sources. The present study also found that the presence of visual reference frames significantly increased recall accuracy. Additionally, the incorporation of drastic attenuation significantly improved environment recall accuracy. Through investigating the aforementioned concerns, the present study made initial footsteps guiding the design of virtual auditory environments that support spatial configuration recall.
Auditory training improves auditory performance in cochlear implanted children.
Roman, Stephane; Rochette, Françoise; Triglia, Jean-Michel; Schön, Daniele; Bigand, Emmanuel
2016-07-01
While the positive benefits of pediatric cochlear implantation on language perception skills are now proven, the heterogeneity of outcomes remains high. The understanding of this heterogeneity and possible strategies to minimize it is of utmost importance. Our scope here is to test the effects of an auditory training strategy, "sound in Hands", using playful tasks grounded on the theoretical and empirical findings of cognitive sciences. Indeed, several basic auditory operations, such as auditory scene analysis (ASA) are not trained in the usual therapeutic interventions in deaf children. However, as they constitute a fundamental basis in auditory cognition, their development should imply general benefit in auditory processing and in turn enhance speech perception. The purpose of the present study was to determine whether cochlear implanted children could improve auditory performances in trained tasks and whether they could develop a transfer of learning to a phonetic discrimination test. Nineteen prelingually unilateral cochlear implanted children without additional handicap (4-10 year-olds) were recruited. The four main auditory cognitive processing (identification, discrimination, ASA and auditory memory) were stimulated and trained in the Experimental Group (EG) using Sound in Hands. The EG followed 20 training weekly sessions of 30 min and the untrained group was the control group (CG). Two measures were taken for both groups: before training (T1) and after training (T2). EG showed a significant improvement in the identification, discrimination and auditory memory tasks. The improvement in the ASA task did not reach significance. CG did not show any significant improvement in any of the tasks assessed. Most importantly, improvement was visible in the phonetic discrimination test for EG only. Moreover, younger children benefited more from the auditory training program to develop their phonetic abilities compared to older children, supporting the idea that rehabilitative care is most efficient when it takes place early on during childhood. These results are important to pinpoint the auditory deficits in CI children, to gather a better understanding of the links between basic auditory skills and speech perception which will in turn allow more efficient rehabilitative programs. Copyright © 2016 Elsevier B.V. All rights reserved.
Vukanovic-Criley, Jasminka M; Criley, Stuart; Warde, Carole Marie; Boker, John R; Guevara-Matheus, Lempira; Churchill, Winthrop Hallowell; Nelson, William P; Criley, John Michael
2006-03-27
Cardiac examination is an essential aspect of the physical examination. Previous studies have shown poor diagnostic accuracy, but most used audio recordings, precluding correlation with visible observations. The training spectrum from medical students (MSs) to faculty has not been tested, to our knowledge. A validated 50-question, computer-based test was used to assess 4 aspects of cardiac examination competency: (1) cardiac physiology knowledge, (2) auditory skills, (3) visual skills, and (4) integration of auditory and visual skills using computer graphic animations and virtual patient examinations (actual patients filmed at the bedside). We tested 860 participants: 318 MSs, 289 residents (225 internal medicine and 64 family medicine), 85 cardiology fellows, 131 physicians (50 full-time faculty, 12 volunteer clinical faculty, and 69 private practitioners), and 37 others. Mean scores improved from MS1-2 to MS3-4 (P = .003) but did not improve or differ significantly among MS3, MS4, internal medicine residents, family medicine residents, full-time faculty, volunteer clinical faculty, and private practitioners. Only cardiology fellows tested significantly better (P<.001), and they were the best in all 4 subcategories of competency, whereas MS1-2 were the worst in the auditory and visual subcategories. Participants demonstrated low specificity for systolic murmurs (0.35) and low sensitivity for diastolic murmurs (0.49). Cardiac examination skills do not improve after MS3 and may decline after years in practice, which has important implications for medical decision making, patient safety, cost-effective care, and continuing medical education. Improvement in cardiac examination competency will require training in simultaneous audio and visual examination in faculty and trainees.
Fitting neuron models to spike trains.
Rossant, Cyrille; Goodman, Dan F M; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K; Brette, Romain
2011-01-01
Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model.
Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam
2011-01-01
To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.
Task- and Talker-Specific Gains in Auditory Training
ERIC Educational Resources Information Center
Barcroft, Joe; Spehar, Brent; Tye-Murray, Nancy; Sommers, Mitchell
2016-01-01
Purpose: This investigation focused on generalization of outcomes for auditory training by examining the effects of task and/or talker overlap between training and at test. Method: Adults with hearing loss completed 12 hr of meaning-oriented auditory training and were placed in a group that trained on either multiple talkers or a single talker. A…
Henshaw, Helen; McCormack, Abby; Ferguson, Melanie A.
2015-01-01
Hearing aid intervention typically occurs after significant delay, or not at all, resulting in an unmet need for many people with hearing loss. Computer-based auditory training (CBAT) may provide generalized benefits to real-world listening, particularly in adverse listening conditions, and can be conveniently delivered in the home environment. Yet as with any intervention, adherence to CBAT is critical to its success. The main aim of this investigation was to explore motivations for uptake, engagement and adherence with home-delivered CBAT in a randomized controlled trial of adults with mild sensorineural hearing loss (SNHL), with a view to informing future CBAT development. A secondary aim examined perceived benefits of CBAT. Participants (n = 44, 50–74 years olds with mild SNHL who did not have hearing aids) completed a 4-week program of phoneme discrimination CBAT at home. Participants' experiences of CBAT were captured using a post-training questionnaire (n = 44) and two focus groups (n = 5 per group). A mixed-methods approach examined participants' experiences with the intervention, the usability and desirability of the CBAT software, and participants' motivations for CBAT uptake, engagement and adherence. Self-Determination Theory (SDT) was used as a theoretical framework for the interpretation of results. Participants found the CBAT intervention easy to use, interesting and enjoyable. Initial participation in the study was associated with extrinsic motivation (e.g., hearing difficulties). Engagement and adherence with CBAT was influenced by intrinsic (e.g., a desire to achieve higher scores), and extrinsic (e.g., to help others with hearing loss) motivations. Perceived post-training benefits included better concentration and attention leading to improved listening. CBAT also prompted further help-seeking behaviors for some individuals. We see this as an important first-step for informing future theory-driven development of effective CBAT interventions. PMID:26300796
True Zero-Training Brain-Computer Interfacing – An Online Study
Kindermans, Pieter-Jan; Schreuder, Martijn; Schrauwen, Benjamin; Müller, Klaus-Robert; Tangermann, Michael
2014-01-01
Despite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user. In typical state-of-the-art BCI systems with a supervised classifier, the labeled data is collected during a calibration recording, in which the user is asked to perform a specific task. Based on the known labels of this recording, the BCI's classifier can learn to decode the individual's brain signals. Unfortunately, this calibration recording consumes valuable time. Furthermore, it is unproductive with respect to the final BCI application, e.g. text entry. Therefore, the calibration period must be reduced to a minimum, which is especially important for patients with a limited concentration ability. The main contribution of this manuscript is an online study on unsupervised learning in an auditory event-related potential (ERP) paradigm. Our results demonstrate that the calibration recording can be bypassed by utilizing an unsupervised trained classifier, that is initialized randomly and updated during usage. Initially, the unsupervised classifier tends to make decoding mistakes, as the classifier might not have seen enough data to build a reliable model. Using a constant re-analysis of the previously spelled symbols, these initially misspelled symbols can be rectified posthoc when the classifier has learned to decode the signals. We compare the spelling performance of our unsupervised approach and of the unsupervised posthoc approach to the standard supervised calibration-based dogma for n = 10 healthy users. To assess the learning behavior of our approach, it is unsupervised trained from scratch three times per user. Even with the relatively low SNR of an auditory ERP paradigm, the results show that after a limited number of trials (30 trials), the unsupervised approach performs comparably to a classic supervised model. PMID:25068464
Henshaw, Helen; McCormack, Abby; Ferguson, Melanie A
2015-01-01
Hearing aid intervention typically occurs after significant delay, or not at all, resulting in an unmet need for many people with hearing loss. Computer-based auditory training (CBAT) may provide generalized benefits to real-world listening, particularly in adverse listening conditions, and can be conveniently delivered in the home environment. Yet as with any intervention, adherence to CBAT is critical to its success. The main aim of this investigation was to explore motivations for uptake, engagement and adherence with home-delivered CBAT in a randomized controlled trial of adults with mild sensorineural hearing loss (SNHL), with a view to informing future CBAT development. A secondary aim examined perceived benefits of CBAT. Participants (n = 44, 50-74 years olds with mild SNHL who did not have hearing aids) completed a 4-week program of phoneme discrimination CBAT at home. Participants' experiences of CBAT were captured using a post-training questionnaire (n = 44) and two focus groups (n = 5 per group). A mixed-methods approach examined participants' experiences with the intervention, the usability and desirability of the CBAT software, and participants' motivations for CBAT uptake, engagement and adherence. Self-Determination Theory (SDT) was used as a theoretical framework for the interpretation of results. Participants found the CBAT intervention easy to use, interesting and enjoyable. Initial participation in the study was associated with extrinsic motivation (e.g., hearing difficulties). Engagement and adherence with CBAT was influenced by intrinsic (e.g., a desire to achieve higher scores), and extrinsic (e.g., to help others with hearing loss) motivations. Perceived post-training benefits included better concentration and attention leading to improved listening. CBAT also prompted further help-seeking behaviors for some individuals. We see this as an important first-step for informing future theory-driven development of effective CBAT interventions.
Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; D'Esposito, Mark; Vinogradov, Sophia
2013-08-30
Both cognitive and social-cognitive deficits impact functional outcome in schizophrenia. Cognitive remediation studies indicate that targeted cognitive and/or social-cognitive training improves behavioral performance on trained skills. However, the neural effects of training in schizophrenia and their relation to behavioral gains are largely unknown. This study tested whether a 50-h intervention which included both cognitive and social-cognitive training would influence neural mechanisms that support social ccognition. Schizophrenia participants completed a computer-based intervention of either auditory-based cognitive training (AT) plus social-cognition training (SCT) (N=11) or non-specific computer games (CG) (N=11). Assessments included a functional magnetic resonance imaging (fMRI) task of facial emotion recognition, and behavioral measures of cognition, social cognition, and functional outcome. The fMRI results showed the predicted group-by-time interaction. Results were strongest for emotion recognition of happy, surprise and fear: relative to CG participants, AT+SCT participants showed a neural activity increase in bilateral amygdala, right putamen and right medial prefrontal cortex. Across all participants, pre-to-post intervention neural activity increase in these regions predicted behavioral improvement on an independent emotion perception measure (MSCEIT: Perceiving Emotions). Among AT+SCT participants alone, neural activity increase in right amygdala predicted behavioral improvement in emotion perception. The findings indicate that combined cognition and social-cognition training improves neural systems that support social-cognition skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Wright, Rachel L; Brownless, Simone Briony; Pratt, David; Sackley, Catherine M; Wing, Alan M
2017-01-01
Hemiparesis after stroke typically results in a reduced walking speed, an asymmetrical gait pattern and a reduced ability to make gait adjustments. The purpose of this pilot study was to investigate the feasibility and preliminary efficacy of home-based training involving auditory cueing of stepping in place. Twelve community-dwelling participants with chronic hemiparesis completed two 3-week blocks of home-based stepping to music overlaid with an auditory metronome. Tempo of the metronome was increased 5% each week. One 3-week block used a regular metronome, whereas the other 3-week block had phase shift perturbations randomly inserted to cue stepping adjustments. All participants reported that they enjoyed training, with 75% completing all training blocks. No adverse events were reported. Walking speed, Timed Up and Go (TUG) time and Dynamic Gait Index (DGI) scores (median [inter-quartile range]) significantly improved between baseline (speed = 0.61 [0.32, 0.85] m⋅s -1 ; TUG = 20.0 [16.0, 39.9] s; DGI = 14.5 [11.3, 15.8]) and post stepping training (speed = 0.76 [0.39, 1.03] m⋅s -1 ; TUG = 16.3 [13.3, 35.1] s; DGI = 16.0 [14.0, 19.0]) and was maintained at follow-up (speed = 0.75 [0.41, 1.03] m⋅s -1 ; TUG = 16.5 [12.9, 34.1] s; DGI = 16.5 [13.5, 19.8]). This pilot study suggests that auditory-cued stepping conducted at home was feasible and well-tolerated by participants post-stroke, with improvements in walking and functional mobility. No differences were detected between regular and phase-shift training with the metronome at each assessment point.
Kim, Jin-Seop; Oh, Duck-Won; Kim, Suhn-Yeop; Choi, Jong-Duk
2011-02-01
To compare the effect of visual and kinesthetic locomotor imagery training on walking performance and to determine the clinical feasibility of incorporating auditory step rhythm into the training. Randomized crossover trial. Laboratory of a Department of Physical Therapy. Fifteen subjects with post-stroke hemiparesis. Four locomotor imagery trainings on walking performance: visual locomotor imagery training, kinesthetic locomotor imagery training, visual locomotor imagery training with auditory step rhythm and kinesthetic locomotor imagery training with auditory step rhythm. The timed up-and-go test and electromyographic and kinematic analyses of the affected lower limb during one gait cycle. After the interventions, significant differences were found in the timed up-and-go test results between the visual locomotor imagery training (25.69 ± 16.16 to 23.97 ± 14.30) and the kinesthetic locomotor imagery training with auditory step rhythm (22.68 ± 12.35 to 15.77 ± 8.58) (P < 0.05). During the swing and stance phases, the kinesthetic locomotor imagery training exhibited significantly increased activation in a greater number of muscles and increased angular displacement of the knee and ankle joints compared with the visual locomotor imagery training, and these effects were more prominent when auditory step rhythm was integrated into each form of locomotor imagery training. The activation of the hamstring during the swing phase and the gastrocnemius during the stance phase, as well as kinematic data of the knee joint, were significantly different for posttest values between the visual locomotor imagery training and the kinesthetic locomotor imagery training with auditory step rhythm (P < 0.05). The therapeutic effect may be further enhanced in the kinesthetic locomotor imagery training than in the visual locomotor imagery training. The auditory step rhythm together with the locomotor imagery training produces a greater positive effect in improving the walking performance of patients with post-stroke hemiparesis.
Strait, Dana L.; Kraus, Nina
2013-01-01
Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians’ subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model by which to study mechanisms of experience-dependent changes in auditory function in humans. PMID:23988583
ERIC Educational Resources Information Center
Thomson, Jennifer M.; Leong, Victoria; Goswami, Usha
2013-01-01
The purpose of this study was to compare the efficacy of two auditory processing interventions for developmental dyslexia, one based on rhythm and one based on phonetic training. Thirty-three children with dyslexia participated and were assigned to one of three groups (a) a novel rhythmic processing intervention designed to highlight auditory…
Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J
2017-01-01
Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.
Katyal, Sucharit; Engel, Stephen A.; Oxenham, Andrew J.
2017-01-01
Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects. PMID:28107359
Moradi, Shahram; Wahlin, Anna; Hällgren, Mathias; Rönnberg, Jerker; Lidestam, Björn
2017-01-01
This study aimed to examine the efficacy and maintenance of short-term (one-session) gated audiovisual speech training for improving auditory sentence identification in noise in experienced elderly hearing-aid users. Twenty-five hearing aid users (16 men and 9 women), with an average age of 70.8 years, were randomly divided into an experimental (audiovisual training, n = 14) and a control (auditory training, n = 11) group. Participants underwent gated speech identification tasks comprising Swedish consonants and words presented at 65 dB sound pressure level with a 0 dB signal-to-noise ratio (steady-state broadband noise), in audiovisual or auditory-only training conditions. The Hearing-in-Noise Test was employed to measure participants' auditory sentence identification in noise before the training (pre-test), promptly after training (post-test), and 1 month after training (one-month follow-up). The results showed that audiovisual training improved auditory sentence identification in noise promptly after the training (post-test vs. pre-test scores); furthermore, this improvement was maintained 1 month after the training (one-month follow-up vs. pre-test scores). Such improvement was not observed in the control group, neither promptly after the training nor at the one-month follow-up. However, no significant between-groups difference nor an interaction between groups and session was observed. Audiovisual training may be considered in aural rehabilitation of hearing aid users to improve listening capabilities in noisy conditions. However, the lack of a significant between-groups effect (audiovisual vs. auditory) or an interaction between group and session calls for further research.
Cha, Yuri; Kim, Young; Hwang, Sujin; Chung, Yijung
2014-01-01
Motor relearning protocols should involve task-oriented movement, focused attention, and repetition of desired movements. To investigate the effect of intensive gait training with rhythmic auditory stimulation on postural control and gait performance in individuals with chronic hemiparetic stroke. Twenty patients with chronic hemiparetic stroke participated in this study. Subjects in the Rhythmic auditory stimulation training group (10 subjects) underwent intensive gait training with rhythmic auditory stimulation for a period of 6 weeks (30 min/day, five days/week), while those in the control group (10 subjects) underwent intensive gait training for the same duration. Two clinical measures, Berg balance scale and stroke specific quality of life scale, and a 2-demensional gait analysis system, were used as outcome measure. To provide rhythmic auditory stimulation during gait training, the MIDI Cuebase musical instrument digital interface program and a KM Player version 3.3 was utilized for this study. Intensive gait training with rhythmic auditory stimulation resulted in significant improvement in scores on the Berg balance scale, gait velocity, cadence, stride length and double support period in affected side, and stroke specific quality of life scale compared with the control group after training. Findings of this study suggest that intensive gait training with rhythmic auditory stimulation improves balance and gait performance as well as quality of life, in individuals with chronic hemiparetic stroke.
Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; Vinogradov, Sophia
2012-08-01
Cognitive remediation training has been shown to improve both cognitive and social cognitive deficits in people with schizophrenia, but the mechanisms that support this behavioral improvement are largely unknown. One hypothesis is that intensive behavioral training in cognition and/or social cognition restores the underlying neural mechanisms that support targeted skills. However, there is little research on the neural effects of cognitive remediation training. This study investigated whether a 50 h (10-week) remediation intervention which included both cognitive and social cognitive training would influence neural function in regions that support social cognition. Twenty-two stable, outpatient schizophrenia participants were randomized to a treatment condition consisting of auditory-based cognitive training (AT) [Brain Fitness Program/auditory module ~60 min/day] plus social cognition training (SCT) which was focused on emotion recognition [~5-15 min per day] or a placebo condition of non-specific computer games (CG) for an equal amount of time. Pre and post intervention assessments included an fMRI task of positive and negative facial emotion recognition, and standard behavioral assessments of cognition, emotion processing, and functional outcome. There were no significant intervention-related improvements in general cognition or functional outcome. fMRI results showed the predicted group-by-time interaction. Specifically, in comparison to CG, AT+SCT participants had a greater pre-to-post intervention increase in postcentral gyrus activity during emotion recognition of both positive and negative emotions. Furthermore, among all participants, the increase in postcentral gyrus activity predicted behavioral improvement on a standardized test of emotion processing (MSCEIT: Perceiving Emotions). Results indicate that combined cognition and social cognition training impacts neural mechanisms that support social cognition skills. Copyright © 2012 Elsevier B.V. All rights reserved.
Hooker, Christine I.; Bruce, Lori; Fisher, Melissa; Verosky, Sara C.; Miyakawa, Asako; Vinogradov, Sophia
2012-01-01
Cognitive remediation training has been shown to improve both cognitive and social-cognitive deficits in people with schizophrenia, but the mechanisms that support this behavioral improvement are largely unknown. One hypothesis is that intensive behavioral training in cognition and/or social-cognition restores the underlying neural mechanisms that support targeted skills. However, there is little research on the neural effects of cognitive remediation training. This study investigated whether a 50 hour (10-week) remediation intervention which included both cognitive and social-cognitive training would influence neural function in regions that support social-cognition. Twenty-two stable, outpatient schizophrenia participants were randomized to a treatment condition consisting of auditory-based cognitive training (AT) [Brain Fitness Program/auditory module ~60 minutes/day] plus social-cognition training (SCT) which was focused on emotion recognition [~5–15 minutes per day] or a placebo condition of non-specific computer games (CG) for an equal amount of time. Pre and post intervention assessments included an fMRI task of positive and negative facial emotion recognition, and standard behavioral assessments of cognition, emotion processing, and functional outcome. There were no significant intervention-related improvements in general cognition or functional outcome. FMRI results showed the predicted group-by-time interaction. Specifically, in comparison to CG, AT+SCT participants had a greater pre-to-post intervention increase in postcentral gyrus activity during emotion recognition of both positive and negative emotions. Furthermore, among all participants, the increase in postcentral gyrus activity predicted behavioral improvement on a standardized test of emotion processing (MSCEIT: Perceiving Emotions). Results indicate that combined cognition and social-cognition training impacts neural mechanisms that support social-cognition skills. PMID:22695257
Computer Aided Lip Reading Training Tool
ERIC Educational Resources Information Center
Sarmasik, Gamze; Dalkilic, Gokhan; Kut, Alp; Cebi, Yalcin; Serbetcioglu, Bulent
2007-01-01
Worldwide auditory-verbal education is becoming widespread for deaf children. But many prelingually, late-diagnosed deaf children and adults may utilize neither hearing aids nor cochlear implants and needed the support of lip-reading. Therefore, lip-reading skill remains to be important for oral education programmes of hearing impaired. The…
Rapidly Learned Identification of Epileptic Seizures from Sonified EEG
Loui, Psyche; Koplin-Green, Matan; Frick, Mark; Massone, Michael
2014-01-01
Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient’s electroencephalogram (EEG). However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here, we describe an algorithm that we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determined whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures from non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy. PMID:25352802
Speech comprehension training and auditory and cognitive processing in older adults.
Pichora-Fuller, M Kathleen; Levitt, Harry
2012-12-01
To provide a brief history of speech comprehension training systems and an overview of research on auditory and cognitive aging as background to recommendations for future directions for rehabilitation. Two distinct domains were reviewed: one concerning technological and the other concerning psychological aspects of training. Historical trends and advances in these 2 domains were interrelated to highlight converging trends and directions for future practice. Over the last century, technological advances have influenced both the design of hearing aids and training systems. Initially, training focused on children and those with severe loss for whom amplification was insufficient. Now the focus has shifted to older adults with relatively little loss but difficulties listening in noise. Evidence of brain plasticity from auditory and cognitive neuroscience provides new insights into how to facilitate perceptual (re-)learning by older adults. There is a new imperative to complement training to increase bottom-up processing of the signal with more ecologically valid training to boost top-down information processing based on knowledge of language and the world. Advances in digital technologies enable the development of increasingly sophisticated training systems incorporating complex meaningful materials such as music, audiovisual interactive displays, and conversation.
Neural network retuning and neural predictors of learning success associated with cello training.
Wollman, Indiana; Penhune, Virginia; Segado, Melanie; Carpentier, Thibaut; Zatorre, Robert J
2018-06-26
The auditory and motor neural systems are closely intertwined, enabling people to carry out tasks such as playing a musical instrument whose mapping between action and sound is extremely sophisticated. While the dorsal auditory stream has been shown to mediate these audio-motor transformations, little is known about how such mapping emerges with training. Here, we use longitudinal training on a cello as a model for brain plasticity during the acquisition of specific complex skills, including continuous and many-to-one audio-motor mapping, and we investigate individual differences in learning. We trained participants with no musical background to play on a specially designed MRI-compatible cello and scanned them before and after 1 and 4 wk of training. Activation of the auditory-to-motor dorsal cortical stream emerged rapidly during the training and was similarly activated during passive listening and cello performance of trained melodies. This network activation was independent of performance accuracy and therefore appears to be a prerequisite of music playing. In contrast, greater recruitment of regions involved in auditory encoding and motor control over the training was related to better musical proficiency. Additionally, pre-supplementary motor area activity and its connectivity with the auditory cortex during passive listening before training was predictive of final training success, revealing the integrative function of this network in auditory-motor information processing. Together, these results clarify the critical role of the dorsal stream and its interaction with auditory areas in complex audio-motor learning.
Saunders, Gabrielle H; Smith, Sherri L; Chisolm, Theresa H; Frederick, Melissa T; McArdle, Rachel A; Wilson, Richard H
2016-01-01
To examine the effectiveness of the Listening and Communication Enhancement (LACE) program as a supplement to standard-of-care hearing aid intervention in a Veteran population. A multisite randomized controlled trial was conducted to compare outcomes following standard-of-care hearing aid intervention supplemented with (1) LACE training using the 10-session DVD format, (2) LACE training using the 20-session computer-based format, (3) placebo auditory training (AT) consisting of actively listening to 10 hr of digitized books on a computer, and (4) educational counseling-the control group. The study involved 3 VA sites and enrolled 279 veterans. Both new and experienced hearing aid users participated to determine if outcomes differed as a function of hearing aid user status. Data for five behavioral and two self-report measures were collected during three research visits: baseline, immediately following the intervention period, and at 6 months postintervention. The five behavioral measures were selected to determine whether the perceptual and cognitive skills targeted in LACE training generalized to untrained tasks that required similar underlying skills. The two self-report measures were completed to determine whether the training resulted in a lessening of activity limitations and participation restrictions. Outcomes were obtained from 263 participants immediately following the intervention period and from 243 participants 6 months postintervention. Analyses of covariance comparing performance on each outcome measure separately were conducted using intervention and hearing aid user status as between-subject factors, visit as a within-subject factor, and baseline performance as a covariate. No statistically significant main effects or interactions were found for the use of LACE on any outcome measure. Findings from this randomized controlled trial show that LACE training does not result in improved outcomes over standard-of-care hearing aid intervention alone. Potential benefits of AT may be different than those assessed by the performance and self-report measures utilized here. Individual differences not assessed in this study should be examined to evaluate whether AT with LACE has any benefits for particular individuals. Clinically, these findings suggest that audiologists may want to temper the expectations of their patients who embark on LACE training.
Partial maintenance of auditory-based cognitive training benefits in older adults
Anderson, Samira; White-Schwoch, Travis; Choi, Hee Jae; Kraus, Nina
2014-01-01
The potential for short-term training to improve cognitive and sensory function in older adults has captured the public’s interest. Initial results have been promising. For example, eight weeks of auditory-based cognitive training decreases peak latencies and peak variability in neural responses to speech presented in a background of noise and instills gains in speed of processing, speech-in-noise recognition, and short-term memory in older adults. But while previous studies have demonstrated short-term plasticity in older adults, we must consider the long-term maintenance of training gains. To evaluate training maintenance, we invited participants from an earlier training study to return for follow-up testing six months after the completion of training. We found that improvements in response peak timing to speech in noise and speed of processing were maintained, but the participants did not maintain speech-in-noise recognition or memory gains. Future studies should consider factors that are important for training maintenance, including the nature of the training, compliance with the training schedule, and the need for booster sessions after the completion of primary training. PMID:25111032
Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun
2015-01-01
Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p < 0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.
Arts, Remo A G J; George, Erwin L J; Janssen, Miranda A M L; Griessner, Andreas; Zierhofer, Clemens; Stokroos, Robert J
2018-06-01
Previous studies show that intracochlear electrical stimulation independent of environmental sounds appears to suppress tinnitus, even long-term. In order to assess the viability of this potential treatment option it is essential to study the effects of this tinnitus specific electrical stimulation on speech perception. A randomised, prospective crossover design. Ten patients with unilateral or asymmetric hearing loss and severe tinnitus complaints. The audiological effects of standard clinical CI, formal auditory training and tinnitus specific electrical stimulation were investigated. Results show that standard clinical CI in unilateral or asymmetric hearing loss is shown to be beneficial for speech perception in quiet, speech perception in noise and subjective hearing ability. Formal auditory training does not appear to improve speech perception performance. However, CI-related discomfort reduces significantly more rapidly during CI rehabilitation in subjects receiving formal auditory training. Furthermore, tinnitus specific electrical stimulation has neither positive nor negative effects on speech perception. In combination with the findings from previous studies on tinnitus suppression using intracochlear electrical stimulation independent of environmental sounds, the results of this study contribute to the viability of cochlear implantation based on tinnitus complaints.
Moradi, Shahram; Wahlin, Anna; Hällgren, Mathias; Rönnberg, Jerker; Lidestam, Björn
2017-01-01
This study aimed to examine the efficacy and maintenance of short-term (one-session) gated audiovisual speech training for improving auditory sentence identification in noise in experienced elderly hearing-aid users. Twenty-five hearing aid users (16 men and 9 women), with an average age of 70.8 years, were randomly divided into an experimental (audiovisual training, n = 14) and a control (auditory training, n = 11) group. Participants underwent gated speech identification tasks comprising Swedish consonants and words presented at 65 dB sound pressure level with a 0 dB signal-to-noise ratio (steady-state broadband noise), in audiovisual or auditory-only training conditions. The Hearing-in-Noise Test was employed to measure participants’ auditory sentence identification in noise before the training (pre-test), promptly after training (post-test), and 1 month after training (one-month follow-up). The results showed that audiovisual training improved auditory sentence identification in noise promptly after the training (post-test vs. pre-test scores); furthermore, this improvement was maintained 1 month after the training (one-month follow-up vs. pre-test scores). Such improvement was not observed in the control group, neither promptly after the training nor at the one-month follow-up. However, no significant between-groups difference nor an interaction between groups and session was observed. Conclusion: Audiovisual training may be considered in aural rehabilitation of hearing aid users to improve listening capabilities in noisy conditions. However, the lack of a significant between-groups effect (audiovisual vs. auditory) or an interaction between group and session calls for further research. PMID:28348542
Experience and information loss in auditory and visual memory.
Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K
2017-07-01
Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.
Burunat, Iballa; Tsatsishvili, Valeri; Brattico, Elvira; Toiviainen, Petri
2017-01-01
Our sense of rhythm relies on orchestrated activity of several cerebral and cerebellar structures. Although functional connectivity studies have advanced our understanding of rhythm perception, this phenomenon has not been sufficiently studied as a function of musical training and beyond the General Linear Model (GLM) approach. Here, we studied pulse clarity processing during naturalistic music listening using a data-driven approach (independent component analysis; ICA). Participants' (18 musicians and 18 controls) functional magnetic resonance imaging (fMRI) responses were acquired while listening to music. A targeted region of interest (ROI) related to pulse clarity processing was defined, comprising auditory, somatomotor, basal ganglia, and cerebellar areas. The ICA decomposition was performed under different model orders, i.e., under a varying number of assumed independent sources, to avoid relying on prior model order assumptions. The components best predicted by a measure of the pulse clarity of the music, extracted computationally from the musical stimulus, were identified. Their corresponding spatial maps uncovered a network of auditory (perception) and motor (action) areas in an excitatory-inhibitory relationship at lower model orders, while mainly constrained to the auditory areas at higher model orders. Results revealed (a) a strengthened functional integration of action-perception networks associated with pulse clarity perception hidden from GLM analyses, and (b) group differences between musicians and non-musicians in pulse clarity processing, suggesting lifelong musical training as an important factor that may influence beat processing.
Effects of musical training on the auditory cortex in children.
Trainor, Laurel J; Shahin, Antoine; Roberts, Larry E
2003-11-01
Several studies of the effects of musical experience on sound representations in the auditory cortex are reviewed. Auditory evoked potentials are compared in response to pure tones, violin tones, and piano tones in adult musicians versus nonmusicians as well as in 4- to 5-year-old children who have either had or not had extensive musical experience. In addition, the effects of auditory frequency discrimination training in adult nonmusicians on auditory evoked potentials are examined. It was found that the P2-evoked response is larger in both adult and child musicians than in nonmusicians and that auditory training enhances this component in nonmusician adults. The results suggest that the P2 is particularly neuroplastic and that the effects of musical experience can be seen early in development. They also suggest that although the effects of musical training on cortical representations may be greater if training begins in childhood, the adult brain is also open to change. These results are discussed with respect to potential benefits of early musical training as well as potential benefits of musical experience in aging.
Figueiredo, Carolina Calsolari; de Andrade, Adriana Neves; Marangoni-Castan, Andréa Tortosa; Gil, Daniela; Suriano, Italo Capraro
2015-01-01
ABSTRACT Objective To investigate the long-term efficacy of acoustically controlled auditory training in adults after tarumatic brain injury. Methods A total of six audioogically normal individuals aged between 20 and 37 years were studied. They suffered severe traumatic brain injury with diffuse axional lesion and underwent an acoustically controlled auditory training program approximately one year before. The results obtained in the behavioral and electrophysiological evaluation of auditory processing immediately after acoustically controlled auditory training were compared to reassessment findings, one year later. Results Quantitative analysis of auditory brainsteim response showed increased absolute latency of all waves and interpeak intervals, bilaterraly, when comparing both evaluations. Moreover, increased amplitude of all waves, and the wave V amplitude was statistically significant for the right ear, and wave III for the left ear. As to P3, decreased latency and increased amplitude were found for both ears in reassessment. The previous and current behavioral assessment showed similar results, except for the staggered spondaic words in the left ear and the amount of errors on the dichotic consonant-vowel test. Conclusion The acoustically controlled auditory training was effective in the long run, since better latency and amplitude results were observed in the electrophysiological evaluation, in addition to stability of behavioral measures after one-year training. PMID:26676270
Dynamic reconfiguration of human brain functional networks through neurofeedback.
Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri
2013-11-01
Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.
Music and Dyslexia: A New Musical Training Method to Improve Reading and Related Disorders
Habib, Michel; Lardy, Chloé; Desiles, Tristan; Commeiras, Céline; Chobert, Julie; Besson, Mireille
2016-01-01
Numerous arguments in the recent neuroscientific literature support the use of musical training as a therapeutic tool among the arsenal already available to therapists and educators for treating children with dyslexia. In the present study, we tested the efficacy of a specially-designed Cognitivo-Musical Training (CMT) method based upon three principles: (1) music-language analogies: training dyslexics with music could contribute to improve brain circuits which are common to music and language processes; (2) the temporal and rhythmic features of music, which could exert a positive effect on the multiple dimensions of the “temporal deficit” characteristic of some types of dyslexia; and (3) cross-modal integration, based on converging evidence of impaired connectivity between brain regions in dyslexia and related disorders. Accordingly, we developed a series of musical exercises involving jointly and simultaneously sensory (visual, auditory, somatosensory) and motor systems, with special emphasis on rhythmic perception and production in addition to intensive training of various features of the musical auditory signal. Two separate studies were carried out, one in which dyslexic children received intensive musical exercises concentrated over 18 h during 3 consecutive days, and the other in which the 18 h of musical training were spread over 6 weeks. Both studies showed significant improvements in some untrained, linguistic and non-linguistic variables. The first one yielded significant improvement in categorical perception and auditory perception of temporal components of speech. The second study revealed additional improvements in auditory attention, phonological awareness (syllable fusion), reading abilities, and repetition of pseudo-words. Importantly, most improvements persisted after an untrained period of 6 weeks. These results provide new additional arguments for using music as part of systematic therapeutic and instructional practice for dyslexic children. PMID:26834689
Feasibility study of a game integrating assessment and therapy of tinnitus.
Wise, K; Kobayashi, K; Searchfield, G D
2015-07-15
Tinnitus, head and ear noise, is due to maladaptive plastic changes in auditory and associated neural networks. Tinnitus has been traditionally managed through the use of sound to passively mask or facilitate habituation to tinnitus, a process that may take 6-12 months. A game-based perceptual training method, requiring localisation and selective attention to sounds, was developed and customised to the individual's tinnitus perception. Eight participants tested the games usability at home. Each participant successfully completed 30 min of training, for 20 days, along with daily psychoacoustic assessment of tinnitus pitch and loudness. The training period and intensity of training appears sufficient to reduce tinnitus handicap. The training approach used may be a viable alternative to frequency discrimination based training for treating tinnitus (Hoare et al., 2014) and a useful tool in exploring learning mechanisms in the auditory system. Integration of tinnitus assessment with therapy in a game is feasible, and the method(s) warrant further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of Training Auditory Sequential Memory and Attention on Reading.
ERIC Educational Resources Information Center
Klein, Pnina S.; Schwartz, Allen A.
To determine if auditory sequential memory (ASM) in young children can be improved through training and to discover the effects of such training on the reading scores of children with reading problems, a study was conducted involving 92 second and third graders. For purposes of this study, auditory sequential memory was defined as the ability to…
Vocal Accuracy and Neural Plasticity Following Micromelody-Discrimination Training
Zarate, Jean Mary; Delhommeau, Karine; Wood, Sean; Zatorre, Robert J.
2010-01-01
Background Recent behavioral studies report correlational evidence to suggest that non-musicians with good pitch discrimination sing more accurately than those with poorer auditory skills. However, other studies have reported a dissociation between perceptual and vocal production skills. In order to elucidate the relationship between auditory discrimination skills and vocal accuracy, we administered an auditory-discrimination training paradigm to a group of non-musicians to determine whether training-enhanced auditory discrimination would specifically result in improved vocal accuracy. Methodology/Principal Findings We utilized micromelodies (i.e., melodies with seven different interval scales, each smaller than a semitone) as the main stimuli for auditory discrimination training and testing, and we used single-note and melodic singing tasks to assess vocal accuracy in two groups of non-musicians (experimental and control). To determine if any training-induced improvements in vocal accuracy would be accompanied by related modulations in cortical activity during singing, the experimental group of non-musicians also performed the singing tasks while undergoing functional magnetic resonance imaging (fMRI). Following training, the experimental group exhibited significant enhancements in micromelody discrimination compared to controls. However, we did not observe a correlated improvement in vocal accuracy during single-note or melodic singing, nor did we detect any training-induced changes in activity within brain regions associated with singing. Conclusions/Significance Given the observations from our auditory training regimen, we therefore conclude that perceptual discrimination training alone is not sufficient to improve vocal accuracy in non-musicians, supporting the suggested dissociation between auditory perception and vocal production. PMID:20567521
Fitting Neuron Models to Spike Trains
Rossant, Cyrille; Goodman, Dan F. M.; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K.; Brette, Romain
2011-01-01
Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input–output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model. PMID:21415925
Ai, Hiroyuki; Kai, Kazuki; Kumaraswamy, Ajayrama; Ikeno, Hidetoshi; Wachtler, Thomas
2017-11-01
Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee ( Apis mellifera ). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee. SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication. Copyright © 2017 the authors 0270-6474/17/3710624-12$15.00/0.
Bratzke, Daniel; Seifried, Tanja; Ulrich, Rolf
2012-08-01
This study assessed possible cross-modal transfer effects of training in a temporal discrimination task from vision to audition as well as from audition to vision. We employed a pretest-training-post-test design including a control group that performed only the pretest and the post-test. Trained participants showed better discrimination performance with their trained interval than the control group. This training effect transferred to the other modality only for those participants who had been trained with auditory stimuli. The present study thus demonstrates for the first time that training on temporal discrimination within the auditory modality can transfer to the visual modality but not vice versa. This finding represents a novel illustration of auditory dominance in temporal processing and is consistent with the notion that time is primarily encoded in the auditory system.
Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.
Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao
2013-01-01
Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.
Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training
Bernstein, Lynne E.; Auer, Edward T.; Eberhardt, Silvio P.; Jiang, Jintao
2013-01-01
Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called “reverse hierarchy theory” of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning. PMID:23515520
Hill, N J; Schölkopf, B
2012-01-01
We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135
NASA Astrophysics Data System (ADS)
Hill, N. J.; Schölkopf, B.
2012-04-01
We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.
Deep Learning in Medical Imaging: General Overview
Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae
2017-01-01
The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging. PMID:28670152
Deep Learning in Medical Imaging: General Overview.
Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae; Seo, Joon Beom; Kim, Namkug
2017-01-01
The artificial neural network (ANN)-a machine learning technique inspired by the human neuronal synapse system-was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.
Arnold, Denis; Tomaschek, Fabian; Sering, Konstantin; Lopez, Florence; Baayen, R Harald
2017-01-01
Sound units play a pivotal role in cognitive models of auditory comprehension. The general consensus is that during perception listeners break down speech into auditory words and subsequently phones. Indeed, cognitive speech recognition is typically taken to be computationally intractable without phones. Here we present a computational model trained on 20 hours of conversational speech that recognizes word meanings within the range of human performance (model 25%, native speakers 20-44%), without making use of phone or word form representations. Our model also generates successfully predictions about the speed and accuracy of human auditory comprehension. At the heart of the model is a 'wide' yet sparse two-layer artificial neural network with some hundred thousand input units representing summaries of changes in acoustic frequency bands, and proxies for lexical meanings as output units. We believe that our model holds promise for resolving longstanding theoretical problems surrounding the notion of the phone in linguistic theory.
Chang, Ming; Iizuka, Hiroyuki; Kashioka, Hideki; Naruse, Yasushi; Furukawa, Masahiro; Ando, Hideyuki; Maeda, Taro
2017-01-01
When people learn foreign languages, they find it difficult to perceive speech sounds that are nonexistent in their native language, and extensive training is consequently necessary. Our previous studies have shown that by using neurofeedback based on the mismatch negativity event-related brain potential, participants could unconsciously achieve learning in the auditory discrimination of pure tones that could not be consciously discriminated without the neurofeedback. Here, we examined whether mismatch negativity neurofeedback is effective for helping someone to perceive new speech sounds in foreign language learning. We developed a task for training native Japanese speakers to discriminate between 'l' and 'r' sounds in English, as they usually cannot discriminate between these two sounds. Without participants attending to auditory stimuli or being aware of the nature of the experiment, neurofeedback training helped them to achieve significant improvement in unconscious auditory discrimination and recognition of the target words 'light' and 'right'. There was also improvement in the recognition of other words containing 'l' and 'r' (e.g., 'blight' and 'bright'), even though these words had not been presented during training. This method could be used to facilitate foreign language learning and can be extended to other fields of auditory and clinical research and even other senses.
Iizuka, Hiroyuki; Kashioka, Hideki; Naruse, Yasushi; Furukawa, Masahiro; Ando, Hideyuki; Maeda, Taro
2017-01-01
When people learn foreign languages, they find it difficult to perceive speech sounds that are nonexistent in their native language, and extensive training is consequently necessary. Our previous studies have shown that by using neurofeedback based on the mismatch negativity event-related brain potential, participants could unconsciously achieve learning in the auditory discrimination of pure tones that could not be consciously discriminated without the neurofeedback. Here, we examined whether mismatch negativity neurofeedback is effective for helping someone to perceive new speech sounds in foreign language learning. We developed a task for training native Japanese speakers to discriminate between ‘l’ and ‘r’ sounds in English, as they usually cannot discriminate between these two sounds. Without participants attending to auditory stimuli or being aware of the nature of the experiment, neurofeedback training helped them to achieve significant improvement in unconscious auditory discrimination and recognition of the target words ‘light’ and ‘right’. There was also improvement in the recognition of other words containing ‘l’ and ‘r’ (e.g., ‘blight’ and ‘bright’), even though these words had not been presented during training. This method could be used to facilitate foreign language learning and can be extended to other fields of auditory and clinical research and even other senses. PMID:28617861
Rao, Aparna; Rishiq, Dania; Yu, Luodi; Zhang, Yang; Abrams, Harvey
The objectives of this study were to investigate the effects of hearing aid use and the effectiveness of ReadMyQuips (RMQ), an auditory training program, on speech perception performance and auditory selective attention using electrophysiological measures. RMQ is an audiovisual training program designed to improve speech perception in everyday noisy listening environments. Participants were adults with mild to moderate hearing loss who were first-time hearing aid users. After 4 weeks of hearing aid use, the experimental group completed RMQ training in 4 weeks, and the control group received listening practice on audiobooks during the same period. Cortical late event-related potentials (ERPs) and the Hearing in Noise Test (HINT) were administered at prefitting, pretraining, and post-training to assess effects of hearing aid use and RMQ training. An oddball paradigm allowed tracking of changes in P3a and P3b ERPs to distractors and targets, respectively. Behavioral measures were also obtained while ERPs were recorded from participants. After 4 weeks of hearing aid use but before auditory training, HINT results did not show a statistically significant change, but there was a significant P3a reduction. This reduction in P3a was correlated with improvement in d prime (d') in the selective attention task. Increased P3b amplitudes were also correlated with improvement in d' in the selective attention task. After training, this correlation between P3b and d' remained in the experimental group, but not in the control group. Similarly, HINT testing showed improved speech perception post training only in the experimental group. The criterion calculated in the auditory selective attention task showed a reduction only in the experimental group after training. ERP measures in the auditory selective attention task did not show any changes related to training. Hearing aid use was associated with a decrement in involuntary attention switch to distractors in the auditory selective attention task. RMQ training led to gains in speech perception in noise and improved listener confidence in the auditory selective attention task.
Behavioral and subcortical signatures of musical expertise in Mandarin Chinese speakers
Tervaniemi, Mari; Aalto, Daniel
2018-01-01
Both musical training and native language have been shown to have experience-based plastic effects on auditory processing. However, the combined effects within individuals are unclear. Recent research suggests that musical training and tone language speaking are not clearly additive in their effects on processing of auditory features and that there may be a disconnect between perceptual and neural signatures of auditory feature processing. The literature has only recently begun to investigate the effects of musical expertise on basic auditory processing for different linguistic groups. This work provides a profile of primary auditory feature discrimination for Mandarin speaking musicians and nonmusicians. The musicians showed enhanced perceptual discrimination for both frequency and duration as well as enhanced duration discrimination in a multifeature discrimination task, compared to nonmusicians. However, there were no differences between the groups in duration processing of nonspeech sounds at a subcortical level or in subcortical frequency representation of a nonnative tone contour, for fo or for the first or second formant region. The results indicate that musical expertise provides a cognitive, but not subcortical, advantage in a population of Mandarin speakers. PMID:29300756
Kraus, Nina; Slater, Jessica; Thompson, Elaine C.; Hornickel, Jane; Strait, Dana L.; Nicol, Trent; White-Schwoch, Travis
2014-01-01
The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements of the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for 1 year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to the instrumental training. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally-trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. Despite intrinsic constraints on our study imposed by a community setting, these findings speak to the potential of active engagement with sound (i.e., music-making) to engender experience-dependent neuroplasticity and may inform the development of strategies for auditory learning. PMID:25414631
Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis
2014-01-01
The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements of the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for 1 year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to the instrumental training. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally-trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. Despite intrinsic constraints on our study imposed by a community setting, these findings speak to the potential of active engagement with sound (i.e., music-making) to engender experience-dependent neuroplasticity and may inform the development of strategies for auditory learning.
Distributional Learning of Lexical Tones: A Comparison of Attended vs. Unattended Listening.
Ong, Jia Hoong; Burnham, Denis; Escudero, Paola
2015-01-01
This study examines whether non-tone language listeners can acquire lexical tone categories distributionally and whether attention in the training phase modulates the effect of distributional learning. Native Australian English listeners were trained on a Thai lexical tone minimal pair and their performance was assessed using a discrimination task before and after training. During Training, participants either heard a Unimodal distribution that would induce a single central category, which should hinder their discrimination of that minimal pair, or a Bimodal distribution that would induce two separate categories that should facilitate their discrimination. The participants either heard the distribution passively (Experiments 1A and 1B) or performed a cover task during training designed to encourage auditory attention to the entire distribution (Experiment 2). In passive listening (Experiments 1A and 1B), results indicated no effect of distributional learning: the Bimodal group did not outperform the Unimodal group in discriminating the Thai tone minimal pairs. Moreover, both Unimodal and Bimodal groups improved above chance on most test aspects from Pretest to Posttest. However, when participants' auditory attention was encouraged using the cover task (Experiment 2), distributional learning was found: the Bimodal group outperformed the Unimodal group on a novel test syllable minimal pair at Posttest relative to at Pretest. Furthermore, the Bimodal group showed above-chance improvement from Pretest to Posttest on three test aspects, while the Unimodal group only showed above-chance improvement on one test aspect. These results suggest that non-tone language listeners are able to learn lexical tones distributionally but only when auditory attention is encouraged in the acquisition phase. This implies that distributional learning of lexical tones is more readily induced when participants attend carefully during training, presumably because they are better able to compute the relevant statistics of the distribution.
Distributional Learning of Lexical Tones: A Comparison of Attended vs. Unattended Listening
Ong, Jia Hoong; Burnham, Denis; Escudero, Paola
2015-01-01
This study examines whether non-tone language listeners can acquire lexical tone categories distributionally and whether attention in the training phase modulates the effect of distributional learning. Native Australian English listeners were trained on a Thai lexical tone minimal pair and their performance was assessed using a discrimination task before and after training. During Training, participants either heard a Unimodal distribution that would induce a single central category, which should hinder their discrimination of that minimal pair, or a Bimodal distribution that would induce two separate categories that should facilitate their discrimination. The participants either heard the distribution passively (Experiments 1A and 1B) or performed a cover task during training designed to encourage auditory attention to the entire distribution (Experiment 2). In passive listening (Experiments 1A and 1B), results indicated no effect of distributional learning: the Bimodal group did not outperform the Unimodal group in discriminating the Thai tone minimal pairs. Moreover, both Unimodal and Bimodal groups improved above chance on most test aspects from Pretest to Posttest. However, when participants’ auditory attention was encouraged using the cover task (Experiment 2), distributional learning was found: the Bimodal group outperformed the Unimodal group on a novel test syllable minimal pair at Posttest relative to at Pretest. Furthermore, the Bimodal group showed above-chance improvement from Pretest to Posttest on three test aspects, while the Unimodal group only showed above-chance improvement on one test aspect. These results suggest that non-tone language listeners are able to learn lexical tones distributionally but only when auditory attention is encouraged in the acquisition phase. This implies that distributional learning of lexical tones is more readily induced when participants attend carefully during training, presumably because they are better able to compute the relevant statistics of the distribution. PMID:26214002
Turning down the noise: the benefit of musical training on the aging auditory brain.
Alain, Claude; Zendel, Benjamin Rich; Hutka, Stefanie; Bidelman, Gavin M
2014-02-01
Age-related decline in hearing abilities is a ubiquitous part of aging, and commonly impacts speech understanding, especially when there are competing sound sources. While such age effects are partially due to changes within the cochlea, difficulties typically exist beyond measurable hearing loss, suggesting that central brain processes, as opposed to simple peripheral mechanisms (e.g., hearing sensitivity), play a critical role in governing hearing abilities late into life. Current training regimens aimed to improve central auditory processing abilities have experienced limited success in promoting listening benefits. Interestingly, recent studies suggest that in young adults, musical training positively modifies neural mechanisms, providing robust, long-lasting improvements to hearing abilities as well as to non-auditory tasks that engage cognitive control. These results offer the encouraging possibility that musical training might be used to counteract age-related changes in auditory cognition commonly observed in older adults. Here, we reviewed studies that have examined the effects of age and musical experience on auditory cognition with an emphasis on auditory scene analysis. We infer that musical training may offer potential benefits to complex listening and might be utilized as a means to delay or even attenuate declines in auditory perception and cognition that often emerge later in life. Copyright © 2013 Elsevier B.V. All rights reserved.
Xu, Yifang; Collins, Leslie M
2004-04-01
The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.
Ron-Angevin, Ricardo; Velasco-Álvarez, Francisco; Fernández-Rodríguez, Álvaro; Díaz-Estrella, Antonio; Blanca-Mena, María José; Vizcaíno-Martín, Francisco Javier
2017-05-30
Certain diseases affect brain areas that control the movements of the patients' body, thereby limiting their autonomy and communication capacity. Research in the field of Brain-Computer Interfaces aims to provide patients with an alternative communication channel not based on muscular activity, but on the processing of brain signals. Through these systems, subjects can control external devices such as spellers to communicate, robotic prostheses to restore limb movements, or domotic systems. The present work focus on the non-muscular control of a robotic wheelchair. A proposal to control a wheelchair through a Brain-Computer Interface based on the discrimination of only two mental tasks is presented in this study. The wheelchair displacement is performed with discrete movements. The control signals used are sensorimotor rhythms modulated through a right-hand motor imagery task or mental idle state. The peculiarity of the control system is that it is based on a serial auditory interface that provides the user with four navigation commands. The use of two mental tasks to select commands may facilitate control and reduce error rates compared to other endogenous control systems for wheelchairs. Seventeen subjects initially participated in the study; nine of them completed the three sessions of the proposed protocol. After the first calibration session, seven subjects were discarded due to a low control of their electroencephalographic signals; nine out of ten subjects controlled a virtual wheelchair during the second session; these same nine subjects achieved a medium accuracy level above 0.83 on the real wheelchair control session. The results suggest that more extensive training with the proposed control system can be an effective and safe option that will allow the displacement of a wheelchair in a controlled environment for potential users suffering from some types of motor neuron diseases.
Classifying the auditory P300 using mobile EEG recordings without calibration phase.
Zink, R; Hunyádi, B; Van Huffel, S; De Vos, M
2015-08-01
One of the major drawbacks in mobile EEG Brain Computer Interfaces (BCI) is the need for subject specific training data to train a classifier. By removing the need for supervised classification and calibration phase, new users could start immediate interaction with a BCI. We propose a solution to exploit the structural difference by means of canonical polyadic decomposition (CPD) for three-class auditory oddball data without the need for subject-specific information. We achieve this by adding average event-related-potential (ERP) templates to the CPD model. This constitutes a novel similarity measure between single-trial pairs and known-templates, which results in a fast and interpretable classifier. These results have similar accuracy to those of the supervised and cross-validated stepwise LDA approach but without the need for having subject-dependent data. Therefore the described CPD method has a significant practical advantage over the traditional and widely used approach.
Surgical simulation software for insertion of pedicle screws.
Eftekhar, Behzad; Ghodsi, Mohammad; Ketabchi, Ebrahim; Rasaee, Saman
2002-01-01
As the first step toward finding noninvasive alternatives to the traditional methods of surgical training, we have developed a small, stand-alone computer program that simulates insertion of pedicle screws in different spinal vertebrae (T10-L5). We used Delphi 5.0 and DirectX 7.0 extension for Microsoft Windows. This is a stand-alone and portable program. The program can run on most personal computers. It provides the trainee with visual feedback during practice of the technique. At present, it uses predefined three-dimensional images of the vertebrae, but we are attempting to adapt the program to three-dimensional objects based on real computed tomographic scans of the patients. The program can be downloaded at no cost from the web site: www.tums.ac.ir/downloads As a preliminary work, it requires further development, particularly toward better visual, auditory, and even proprioceptive feedback and use of the individual patient's data.
Okuda, Yuji; Shikata, Hiroshi; Song, Wen-Jie
2011-09-01
As a step to develop auditory prosthesis by cortical stimulation, we tested whether a single train of pulses applied to the primary auditory cortex could elicit classically conditioned behavior in guinea pigs. Animals were trained using a tone as the conditioned stimulus and an electrical shock to the right eyelid as the unconditioned stimulus. After conditioning, a train of 11 pulses applied to the left AI induced the conditioned eye-blink response. Cortical stimulation induced no response after extinction. Our results support the feasibility of auditory prosthesis by electrical stimulation of the cortex. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Sullivan, Jessica R.; Thibodeau, Linda M.; Assmann, Peter F.
2013-01-01
Previous studies have indicated that individuals with normal hearing (NH) experience a perceptual advantage for speech recognition in interrupted noise compared to continuous noise. In contrast, adults with hearing impairment (HI) and younger children with NH receive a minimal benefit. The objective of this investigation was to assess whether auditory training in interrupted noise would improve speech recognition in noise for children with HI and perhaps enhance their utilization of glimpsing skills. A partially-repeated measures design was used to evaluate the effectiveness of seven 1-h sessions of auditory training in interrupted and continuous noise. Speech recognition scores in interrupted and continuous noise were obtained from pre-, post-, and 3 months post-training from 24 children with moderate-to-severe hearing loss. Children who participated in auditory training in interrupted noise demonstrated a significantly greater improvement in speech recognition compared to those who trained in continuous noise. Those who trained in interrupted noise demonstrated similar improvements in both noise conditions while those who trained in continuous noise only showed modest improvements in the interrupted noise condition. This study presents direct evidence that auditory training in interrupted noise can be beneficial in improving speech recognition in noise for children with HI. PMID:23297921
Bigger Brains or Bigger Nuclei? Regulating the Size of Auditory Structures in Birds
Kubke, M. Fabiana; Massoglia, Dino P.; Carr, Catherine E.
2012-01-01
Increases in the size of the neuronal structures that mediate specific behaviors are believed to be related to enhanced computational performance. It is not clear, however, what developmental and evolutionary mechanisms mediate these changes, nor whether an increase in the size of a given neuronal population is a general mechanism to achieve enhanced computational ability. We addressed the issue of size by analyzing the variation in the relative number of cells of auditory structures in auditory specialists and generalists. We show that bird species with different auditory specializations exhibit variation in the relative size of their hindbrain auditory nuclei. In the barn owl, an auditory specialist, the hind-brain auditory nuclei involved in the computation of sound location show hyperplasia. This hyperplasia was also found in songbirds, but not in non-auditory specialists. The hyperplasia of auditory nuclei was also not seen in birds with large body weight suggesting that the total number of cells is selected for in auditory specialists. In barn owls, differences observed in the relative size of the auditory nuclei might be attributed to modifications in neurogenesis and cell death. Thus, hyperplasia of circuits used for auditory computation accompanies auditory specialization in different orders of birds. PMID:14726625
The Efficacy of Auditory Perceptual Training for Tinnitus: A Systematic Review
Stacey, Paula C.; Hall, Deborah A.
2010-01-01
Auditory perceptual training affects neural plasticity and so represents a potential strategy for tinnitus management. We assessed the effects of auditory perceptual training on tinnitus perception and/or its intrusiveness via a systematic review of published literature. An electronic database search using the keywords ‘tinnitus and learning’ or ‘tinnitus and training’ was conducted, updated by a hand search. The ten studies identified were reviewed independently by two reviewers, data were extracted, study quality was assessed according to a number of specific criteria and the information was synthesised using a narrative approach. Nine out of the ten studies reported some significant change in either self-reported or psychoacoustic outcome measures after auditory training. However, all studies were quality rated as providing low or moderate levels of evidence for an effect. We identify a need for appropriately randomised and controlled studies that will generate high-quality unbiased and generalisable evidence to ascertain whether or not auditory perceptual training has a clinically relevant effect on tinnitus. PMID:20668974
Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.
Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal
2017-01-01
Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.
Lawton, Teri
2016-01-01
There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.
Effect of training and level of external auditory feedback on the singing voice: volume and quality
Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.
2015-01-01
Background Previous research suggests that classically trained professional singers rely not only on external auditory feedback but also on proprioceptive feedback associated with internal voice sensitivities. Objectives The Lombard Effect in singers and the relationship between Sound Pressure Level (SPL) and external auditory feedback was evaluated for professional and non-professional singers. Additionally, the relationship between voice quality, evaluated in terms of Singing Power Ratio (SPR), and external auditory feedback, level of accompaniment, voice register and singer gender was analyzed. Methods The subjects were 10 amateur or beginner singers, and 10 classically-trained professional or semi-professional singers (10 males and 10 females). Subjects sang an excerpt from the Star-spangled Banner with three different levels of the accompaniment, 70, 80 and 90 dBA, and with three different levels of external auditory feedback. SPL and the SPR were analyzed. Results The Lombard Effect was stronger for non-professional singers than professional singers. Higher levels of external auditory feedback were associated with a reduction in SPL. As predicted, the mean SPR was higher for professional than non-professional singers. Better voice quality was detected in the presence of higher levels of external auditory feedback. Conclusions With an increase in training, the singer’s reliance on external auditory feedback decreases. PMID:26186810
Effect of Training and Level of External Auditory Feedback on the Singing Voice: Volume and Quality.
Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J
2016-07-01
Previous research suggests that classically trained professional singers rely not only on external auditory feedback but also on proprioceptive feedback associated with internal voice sensitivities. The Lombard effect and the relationship between sound pressure level (SPL) and external auditory feedback were evaluated for professional and nonprofessional singers. Additionally, the relationship between voice quality, evaluated in terms of singing power ratio (SPR), and external auditory feedback, level of accompaniment, voice register, and singer gender was analyzed. The subjects were 10 amateur or beginner singers and 10 classically trained professional or semiprofessional singers (10 men and 10 women). Subjects sang an excerpt from the Star-Spangled Banner with three different levels of the accompaniment, 70, 80, and 90 dBA and with three different levels of external auditory feedback. SPL and SPR were analyzed. The Lombard effect was stronger for nonprofessional singers than professional singers. Higher levels of external auditory feedback were associated with a reduction in SPL. As predicted, the mean SPR was higher for professional singers than nonprofessional singers. Better voice quality was detected in the presence of higher levels of external auditory feedback. With an increase in training, the singer's reliance on external auditory feedback decreases. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Yang, Chao-Yang; Wu, Cheng-Tse
2017-03-01
This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrophysiologic Assessment of Auditory Training Benefits in Older Adults
Anderson, Samira; Jenkins, Kimberly
2015-01-01
Older adults often exhibit speech perception deficits in difficult listening environments. At present, hearing aids or cochlear implants are the main options for therapeutic remediation; however, they only address audibility and do not compensate for central processing changes that may accompany aging and hearing loss or declines in cognitive function. It is unknown whether long-term hearing aid or cochlear implant use can restore changes in central encoding of temporal and spectral components of speech or improve cognitive function. Therefore, consideration should be given to auditory/cognitive training that targets auditory processing and cognitive declines, taking advantage of the plastic nature of the central auditory system. The demonstration of treatment efficacy is an important component of any training strategy. Electrophysiologic measures can be used to assess training-related benefits. This article will review the evidence for neuroplasticity in the auditory system and the use of evoked potentials to document treatment efficacy. PMID:27587912
Musically cued gait-training improves both perceptual and motor timing in Parkinson's disease.
Benoit, Charles-Etienne; Dalla Bella, Simone; Farrugia, Nicolas; Obrig, Hellmuth; Mainka, Stefan; Kotz, Sonja A
2014-01-01
It is well established that auditory cueing improves gait in patients with idiopathic Parkinson's disease (IPD). Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor, and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here, we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a 4-week music training program with rhythmic auditory cueing. Long-term effects were assessed 1 month after the end of the training. Perceptual and motor timing was evaluated with a battery for the assessment of auditory sensorimotor and timing abilities and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients' performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts). The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing.
Aroudi, Ali; Doclo, Simon
2017-07-01
To decode auditory attention from single-trial EEG recordings in an acoustic scenario with two competing speakers, a least-squares method has been recently proposed. This method however requires the clean speech signals of both the attended and the unattended speaker to be available as reference signals. Since in practice only the binaural signals consisting of a reverberant mixture of both speakers and background noise are available, in this paper we explore the potential of using these (unprocessed) signals as reference signals for decoding auditory attention in different acoustic conditions (anechoic, reverberant, noisy, and reverberant-noisy). In addition, we investigate whether it is possible to use these signals instead of the clean attended speech signal for filter training. The experimental results show that using the unprocessed binaural signals for filter training and for decoding auditory attention is feasible with a relatively large decoding performance, although for most acoustic conditions the decoding performance is significantly lower than when using the clean speech signals.
Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.
Murphy, Cristina F B; Moore, David R; Schochat, Eliane
2015-01-01
Despite the well-established involvement of both sensory ("bottom-up") and cognitive ("top-down") processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills.
Jiang, Xiong; Chevillet, Mark A; Rauschecker, Josef P; Riesenhuber, Maximilian
2018-04-18
Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, including speech recognition. We trained human participants to categorize auditory stimuli from a large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training results in two distinct sets of changes: sharpened tuning to monkey call features (without explicit category representation) in left auditory cortex and category selectivity for different types of calls in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, whereas categorical judgment correlated with release from adaptation in the left inferior frontal gyrus. These results support the theory that auditory category learning follows a two-stage model analogous to the visual domain, suggesting general principles of perceptual category learning in the human brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Art and science: how musical training shapes the brain
Barrett, Karen Chan; Ashley, Richard; Strait, Dana L.; Kraus, Nina
2013-01-01
What makes a musician? In this review, we discuss innate and experience-dependent factors that mold the musician brain in addition to presenting new data in children that indicate that some neural enhancements in musicians unfold with continued training over development. We begin by addressing effects of training on musical expertise, presenting neural, perceptual, and cognitive evidence to support the claim that musicians are shaped by their musical training regimes. For example, many musician-advantages in the neural encoding of sound, auditory perception, and auditory-cognitive skills correlate with their extent of musical training, are not observed in young children just initiating musical training, and differ based on the type of training pursued. Even amidst innate characteristics that contribute to the biological building blocks that make up the musician, musicians demonstrate further training-related enhancements through extensive education and practice. We conclude by reviewing evidence from neurobiological and epigenetic approaches to frame biological markers of musicianship in the context of interactions between genetic and experience-related factors. PMID:24137142
Art and science: how musical training shapes the brain.
Barrett, Karen Chan; Ashley, Richard; Strait, Dana L; Kraus, Nina
2013-01-01
What makes a musician? In this review, we discuss innate and experience-dependent factors that mold the musician brain in addition to presenting new data in children that indicate that some neural enhancements in musicians unfold with continued training over development. We begin by addressing effects of training on musical expertise, presenting neural, perceptual, and cognitive evidence to support the claim that musicians are shaped by their musical training regimes. For example, many musician-advantages in the neural encoding of sound, auditory perception, and auditory-cognitive skills correlate with their extent of musical training, are not observed in young children just initiating musical training, and differ based on the type of training pursued. Even amidst innate characteristics that contribute to the biological building blocks that make up the musician, musicians demonstrate further training-related enhancements through extensive education and practice. We conclude by reviewing evidence from neurobiological and epigenetic approaches to frame biological markers of musicianship in the context of interactions between genetic and experience-related factors.
Effects of Training Auditory Sequential Memory and Attention on Reading.
ERIC Educational Resources Information Center
Klein, Pnina S.; Schwartz, Allen A.
1979-01-01
The study, involving 92 second and third graders with deficits in reading and auditory sequential memory (ASM), examined the possibility of improving ASM through training and the relationship between this training and reading ability. (Author/CL)
Bernstein, Lynne E.; Eberhardt, Silvio P.; Auer, Edward T.
2014-01-01
Training with audiovisual (AV) speech has been shown to promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. In Experiment 1, we investigated whether AV speech promotes auditory-only (AO) perceptual learning in prelingually deafened adults with late-acquired cochlear implants. Participants were assigned to learn associations between spoken disyllabic C(=consonant)V(=vowel)CVC non-sense words and non-sense pictures (fribbles), under AV and then AO (AV-AO; or counter-balanced AO then AV, AO-AV, during Periods 1 then 2) training conditions. After training on each list of paired-associates (PA), testing was carried out AO. Across all training, AO PA test scores improved (7.2 percentage points) as did identification of consonants in new untrained CVCVC stimuli (3.5 percentage points). However, there was evidence that AV training impeded immediate AO perceptual learning: During Period-1, training scores across AV and AO conditions were not different, but AO test scores were dramatically lower in the AV-trained participants. During Period-2 AO training, the AV-AO participants obtained significantly higher AO test scores, demonstrating their ability to learn the auditory speech. Across both orders of training, whenever training was AV, AO test scores were significantly lower than training scores. Experiment 2 repeated the procedures with vocoded speech and 43 normal-hearing adults. Following AV training, their AO test scores were as high as or higher than following AO training. Also, their CVCVC identification scores patterned differently than those of the cochlear implant users. In Experiment 1, initial consonants were most accurate, and in Experiment 2, medial consonants were most accurate. We suggest that our results are consistent with a multisensory reverse hierarchy theory, which predicts that, whenever possible, perceivers carry out perceptual tasks immediately based on the experience and biases they bring to the task. We point out that while AV training could be an impediment to immediate unisensory perceptual learning in cochlear implant patients, it was also associated with higher scores during training. PMID:25206344
Bernstein, Lynne E; Eberhardt, Silvio P; Auer, Edward T
2014-01-01
Training with audiovisual (AV) speech has been shown to promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. In Experiment 1, we investigated whether AV speech promotes auditory-only (AO) perceptual learning in prelingually deafened adults with late-acquired cochlear implants. Participants were assigned to learn associations between spoken disyllabic C(=consonant)V(=vowel)CVC non-sense words and non-sense pictures (fribbles), under AV and then AO (AV-AO; or counter-balanced AO then AV, AO-AV, during Periods 1 then 2) training conditions. After training on each list of paired-associates (PA), testing was carried out AO. Across all training, AO PA test scores improved (7.2 percentage points) as did identification of consonants in new untrained CVCVC stimuli (3.5 percentage points). However, there was evidence that AV training impeded immediate AO perceptual learning: During Period-1, training scores across AV and AO conditions were not different, but AO test scores were dramatically lower in the AV-trained participants. During Period-2 AO training, the AV-AO participants obtained significantly higher AO test scores, demonstrating their ability to learn the auditory speech. Across both orders of training, whenever training was AV, AO test scores were significantly lower than training scores. Experiment 2 repeated the procedures with vocoded speech and 43 normal-hearing adults. Following AV training, their AO test scores were as high as or higher than following AO training. Also, their CVCVC identification scores patterned differently than those of the cochlear implant users. In Experiment 1, initial consonants were most accurate, and in Experiment 2, medial consonants were most accurate. We suggest that our results are consistent with a multisensory reverse hierarchy theory, which predicts that, whenever possible, perceivers carry out perceptual tasks immediately based on the experience and biases they bring to the task. We point out that while AV training could be an impediment to immediate unisensory perceptual learning in cochlear implant patients, it was also associated with higher scores during training.
Music training for the development of auditory skills.
Kraus, Nina; Chandrasekaran, Bharath
2010-08-01
The effects of music training in relation to brain plasticity have caused excitement, evident from the popularity of books on this topic among scientists and the general public. Neuroscience research has shown that music training leads to changes throughout the auditory system that prime musicians for listening challenges beyond music processing. This effect of music training suggests that, akin to physical exercise and its impact on body fitness, music is a resource that tones the brain for auditory fitness. Therefore, the role of music in shaping individual development deserves consideration.
van Vugt, F T; Kafczyk, T; Kuhn, W; Rollnik, J D; Tillmann, B; Altenmüller, E
2016-01-01
Learning to play musical instruments such as piano was previously shown to benefit post-stroke motor rehabilitation. Previous work hypothesised that the mechanism of this rehabilitation is that patients use auditory feedback to correct their movements and therefore show motor learning. We tested this hypothesis by manipulating the auditory feedback timing in a way that should disrupt such error-based learning. We contrasted a patient group undergoing music-supported therapy on a piano that emits sounds immediately (as in previous studies) with a group whose sounds are presented after a jittered delay. The delay was not noticeable to patients. Thirty-four patients in early stroke rehabilitation with moderate motor impairment and no previous musical background learned to play the piano using simple finger exercises and familiar children's songs. Rehabilitation outcome was not impaired in the jitter group relative to the normal group. Conversely, some clinical tests suggests the jitter group outperformed the normal group. Auditory feedback-based motor learning is not the beneficial mechanism of music-supported therapy. Immediate auditory feedback therapy may be suboptimal. Jittered delay may increase efficacy of the proposed therapy and allow patients to fully benefit from motivational factors of music training. Our study shows a novel way to test hypotheses concerning music training in a single-blinded way, which is an important improvement over existing unblinded tests of music interventions.
Central auditory neurons have composite receptive fields.
Kozlov, Andrei S; Gentner, Timothy Q
2016-02-02
High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.
[Early auditory training of children with auditory deficiencies].
Herman, N
1988-01-01
The author insists on the importance of an early diagnosis and hearing training of the young deaf child. She shows some aspects of the new possibilities of technology in the approach of the deaf child by hearing- and speech training.
Training of Working Memory Impacts Neural Processing of Vocal Pitch Regulation
Li, Weifeng; Guo, Zhiqiang; Jones, Jeffery A.; Huang, Xiyan; Chen, Xi; Liu, Peng; Chen, Shaozhen; Liu, Hanjun
2015-01-01
Working memory training can improve the performance of tasks that were not trained. Whether auditory-motor integration for voice control can benefit from working memory training, however, remains unclear. The present event-related potential (ERP) study examined the impact of working memory training on the auditory-motor processing of vocal pitch. Trained participants underwent adaptive working memory training using a digit span backwards paradigm, while control participants did not receive any training. Before and after training, both trained and control participants were exposed to frequency-altered auditory feedback while producing vocalizations. After training, trained participants exhibited significantly decreased N1 amplitudes and increased P2 amplitudes in response to pitch errors in voice auditory feedback. In addition, there was a significant positive correlation between the degree of improvement in working memory capacity and the post-pre difference in P2 amplitudes. Training-related changes in the vocal compensation, however, were not observed. There was no systematic change in either vocal or cortical responses for control participants. These findings provide evidence that working memory training impacts the cortical processing of feedback errors in vocal pitch regulation. This enhanced cortical processing may be the result of increased neural efficiency in the detection of pitch errors between the intended and actual feedback. PMID:26553373
Encoding and decoding amplitude-modulated cochlear implant stimuli—a point process analysis
Shea-Brown, Eric; Rubinstein, Jay T.
2010-01-01
Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer’s ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article’s data in an active, re-usable format. PMID:20177761
Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis.
Ghai, Shashank; Ghai, Ishan; Schmitz, Gerd; Effenberg, Alfred O
2018-01-11
The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.
Neural correlates of auditory scene analysis and perception
Cohen, Yale E.
2014-01-01
The auditory system is designed to transform acoustic information from low-level sensory representations into perceptual representations. These perceptual representations are the computational result of the auditory system's ability to group and segregate spectral, spatial and temporal regularities in the acoustic environment into stable perceptual units (i.e., sounds or auditory objects). Current evidence suggests that the cortex--specifically, the ventral auditory pathway--is responsible for the computations most closely related to perceptual representations. Here, we discuss how the transformations along the ventral auditory pathway relate to auditory percepts, with special attention paid to the processing of vocalizations and categorization, and explore recent models of how these areas may carry out these computations. PMID:24681354
Kodak, Tiffany; Clements, Andrea; Paden, Amber R; LeBlanc, Brittany; Mintz, Joslyn; Toussaint, Karen A
2015-01-01
The current investigation evaluated repertoires that may be related to performance on auditory-to-visual conditional discrimination training with 9 students who had been diagnosed with autism spectrum disorder. The skills included in the assessment were matching, imitation, scanning, an auditory discrimination, and a visual discrimination. The results of the skills assessment showed that 4 participants failed to demonstrate mastery of at least 1 of the skills. We compared the outcomes of the assessment to the results of auditory-visual conditional discrimination training and found that training outcomes were related to the assessment outcomes for 7 of the 9 participants. One participant who did not demonstrate mastery of all assessment skills subsequently learned several conditional discriminations when blocked training trials were conducted. Another participant who did not demonstrate mastery of the auditory discrimination skill subsequently acquired conditional discriminations in 1 of the training conditions. We discuss the implications of the assessment for practice and suggest additional areas of research on this topic. © Society for the Experimental Analysis of Behavior.
Late Maturation of Auditory Perceptual Learning
ERIC Educational Resources Information Center
Huyck, Julia Jones; Wright, Beverly A.
2011-01-01
Adults can improve their performance on many perceptual tasks with training, but when does the response to training become mature? To investigate this question, we trained 11-year-olds, 14-year-olds and adults on a basic auditory task (temporal-interval discrimination) using a multiple-session training regimen known to be effective for adults. The…
Perception-Production Link in L2 Japanese Vowel Duration: Training with Technology
ERIC Educational Resources Information Center
Okuno, Tomoko; Hardison, Debra M.
2016-01-01
This study examined factors affecting perception training of vowel duration in L2 Japanese with transfer to production. In a pre-test, training, post-test design, 48 L1 English speakers were assigned to one of three groups: auditory-visual (AV) training using waveform displays, auditory-only (A-only), or no training. Within-group variables were…
Szelag, Elzbieta; Lewandowska, Monika; Wolak, Tomasz; Seniow, Joanna; Poniatowska, Renata; Pöppel, Ernst; Szymaszek, Aneta
2014-03-15
Experimental studies have often reported close associations between rapid auditory processing and language competency. The present study was aimed at improving auditory comprehension in aphasic patients following specific training in the perception of temporal order (TO) of events. We tested 18 aphasic patients showing both comprehension and TO perception deficits. Auditory comprehension was assessed by the Token Test, phonemic awareness and Voice-Onset-Time Test. The TO perception was assessed using auditory Temporal-Order-Threshold, defined as the shortest interval between two consecutive stimuli, necessary to report correctly their before-after relation. Aphasic patients participated in eight 45-minute sessions of either specific temporal training (TT, n=11) aimed to improve sequencing abilities, or control non-temporal training (NT, n=7) focussed on volume discrimination. The TT yielded improved TO perception; moreover, a transfer of improvement was observed from the time domain to the language domain, which was untrained during the training. The NT did not improve either the TO perception or comprehension in any language test. These results are in agreement with previous literature studies which proved ameliorated language competency following the TT in language-learning-impaired or dyslexic children. Our results indicated for the first time such benefits also in aphasic patients. Copyright © 2013 Elsevier B.V. All rights reserved.
Barker, Matthew D; Purdy, Suzanne C
2016-01-01
This research investigates a novel method for identifying and measuring school-aged children with poor auditory processing through a tablet computer. Feasibility and test-retest reliability are investigated by examining the percentage of Group 1 participants able to complete the tasks and developmental effects on performance. Concurrent validity was investigated against traditional tests of auditory processing using Group 2. There were 847 students aged 5 to 13 years in group 1, and 46 aged 5 to 14 years in group 2. Some tasks could not be completed by the youngest participants. Significant correlations were found between results of most auditory processing areas assessed by the Feather Squadron test and traditional auditory processing tests. Test-retest comparisons indicated good reliability for most of the Feather Squadron assessments and some of the traditional tests. The results indicate the Feather Squadron assessment is a time-efficient, feasible, concurrently valid, and reliable approach for measuring auditory processing in school-aged children. Clinically, this may be a useful option for audiologists when performing auditory processing assessments as it is a relatively fast, engaging, and easy way to assess auditory processing abilities. Research is needed to investigate further the construct validity of this new assessment by examining the association between performance on Feather Squadron and objective evoked potential, lesion studies, and/or functional imaging measures of auditory function.
Ledbetter, Christina; Moore, Amy Lawson; Mitchell, Tanya
2017-01-01
Cognitive rehabilitation training is a promising technique for remediating the cognitive deficits associated with brain injury. Extant research is dominated by computer-based interventions with varied results. Results from clinician-delivered cognitive rehabilitation are notably lacking in the literature. The current study examined the cognitive outcomes following ThinkRx, a clinician-delivered cognitive rehabilitation training program for soldiers recovering from traumatic brain injury and acquired brain injury. In a retrospective chart review, we examined cognitive outcomes of 11 cases who had completed an average of 80 h of ThinkRx cognitive rehabilitation training delivered by clinicians and supplemented with digital training exercises. Outcome measures included scores from six cognitive skill batteries on the Woodcock Johnson – III Tests of Cognitive Abilities. Participants achieved gains in all cognitive skills tested and achieved statistically significant changes in long-term memory, processing speed, auditory processing, and fluid reasoning with very large effect sizes. Clinically significant changes in multiple cognitive skills were also noted across cases. Results of the study suggest that ThinkRx clinician-delivered cognitive training supplemented with digital exercises may be a viable method for targeting the cognitive deficits associated with brain injury. PMID:28588534
Lawton, Teri
2016-01-01
There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:27551263
Zeremdini, Jihen; Ben Messaoud, Mohamed Anouar; Bouzid, Aicha
2015-09-01
Humans have the ability to easily separate a composed speech and to form perceptual representations of the constituent sources in an acoustic mixture thanks to their ears. Until recently, researchers attempt to build computer models of high-level functions of the auditory system. The problem of the composed speech segregation is still a very challenging problem for these researchers. In our case, we are interested in approaches that are addressed to the monaural speech segregation. For this purpose, we study in this paper the computational auditory scene analysis (CASA) to segregate speech from monaural mixtures. CASA is the reproduction of the source organization achieved by listeners. It is based on two main stages: segmentation and grouping. In this work, we have presented, and compared several studies that have used CASA for speech separation and recognition.
Investigation of the neurological correlates of information reception
NASA Technical Reports Server (NTRS)
1971-01-01
Animals trained to respond to a given pattern of electrical stimuli applied to pathways or centers of the auditory nervous system respond also to certain patterns of acoustic stimuli without additional training. Likewise, only certain electrical stimuli elicit responses after training to a given acoustic signal. In most instances, if a response has been learned to a given electrical stimulus applied to one center of the auditory nervous system, the same stimulus applied to another auditory center at either a higher or lower level will also elicit the response. This kind of transfer of response does not take place when a stimulus is applied through electrodes implanted in neural tissue outside of the auditory system.
Music training and working memory: an ERP study.
George, Elyse M; Coch, Donna
2011-04-01
While previous research has suggested that music training is associated with improvements in various cognitive and linguistic skills, the mechanisms mediating or underlying these associations are mostly unknown. Here, we addressed the hypothesis that previous music training is related to improved working memory. Using event-related potentials (ERPs) and a standardized test of working memory, we investigated both neural and behavioral aspects of working memory in college-aged, non-professional musicians and non-musicians. Behaviorally, musicians outperformed non-musicians on standardized subtests of visual, phonological, and executive memory. ERPs were recorded in standard auditory and visual oddball paradigms (participants responded to infrequent deviant stimuli embedded in lists of standard stimuli). Electrophysiologically, musicians demonstrated faster updating of working memory (shorter latency P300s) in both the auditory and visual domains and musicians allocated more neural resources to auditory stimuli (larger amplitude P300), showing increased sensitivity to the auditory standard/deviant difference and less effortful updating of auditory working memory. These findings demonstrate that long-term music training is related to improvements in working memory, in both the auditory and visual domains and in terms of both behavioral and ERP measures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Larson, Eric; Terry, Howard P; Canevari, Margaux M; Stepp, Cara E
2013-01-01
Human-machine interface (HMI) designs offer the possibility of improving quality of life for patient populations as well as augmenting normal user function. Despite pragmatic benefits, utilizing auditory feedback for HMI control remains underutilized, in part due to observed limitations in effectiveness. The goal of this study was to determine the extent to which categorical speech perception could be used to improve an auditory HMI. Using surface electromyography, 24 healthy speakers of American English participated in 4 sessions to learn to control an HMI using auditory feedback (provided via vowel synthesis). Participants trained on 3 targets in sessions 1-3 and were tested on 3 novel targets in session 4. An "established categories with text cues" group of eight participants were trained and tested on auditory targets corresponding to standard American English vowels using auditory and text target cues. An "established categories without text cues" group of eight participants were trained and tested on the same targets using only auditory cuing of target vowel identity. A "new categories" group of eight participants were trained and tested on targets that corresponded to vowel-like sounds not part of American English. Analyses of user performance revealed significant effects of session and group (established categories groups and the new categories group), and a trend for an interaction between session and group. Results suggest that auditory feedback can be effectively used for HMI operation when paired with established categorical (native vowel) targets with an unambiguous cue.
Training Behavior Modifiers: Videotape Self-Monitoring Versus Remote Auditory Prompting. Draft.
ERIC Educational Resources Information Center
Cone, John D.; And Others
The separate and comparative effectiveness of two procedures, remote auditory prompting (RAP) and videotape self-monitoring (VSM), for training 14 adult aides to use behavior modification with institutionalized retarded children were examined. A two-group, multiple baseline design with baseline, training, and followup phases was employed with…
Attention Training with Auditory Hallucinations: A Case Study
ERIC Educational Resources Information Center
Valmaggia, Lucia R.; Bouman, Theo K.; Schuurman, Laura
2007-01-01
The case presented in this paper illustrates how Attention Training (ATT; [Wells, A. (1990). "Panic disorder in association with relaxation induced anxiety: An attentional training approach to treatment." "Behavior Therapy," 21, 273-280.]) can be applied in an outpatient setting in the treatment of auditory hallucinations. The 25-year-old male…
1994-07-01
psychological refractory period 15. Two-flash threshold 16. Critical flicker fusion (CFF) 17. Steady state visually evoked response 18. Auditory brain stem...States of awareness I: Subliminal erceoption relationships to situational awareness (AL-TR-1992-0085). Brooks Air Force BaSe, TX: Armstrong...the signals required different inputs (e.g., visual versus auditory ) (Colley & Beech, 1989). Despite support of this theory from such experiments
Ferguson, Melanie A; Henshaw, Helen; Clark, Daniel P A; Moore, David R
2014-01-01
The aims of this study were to (i) evaluate the efficacy of phoneme discrimination training for hearing and cognitive abilities of adults aged 50 to 74 years with mild sensorineural hearing loss who were not users of hearing aids, and to (ii) determine participant compliance with a self-administered, computer-delivered, home- and game-based auditory training program. This study was a randomized controlled trial with repeated measures and crossover design. Participants were trained and tested over an 8- to 12-week period. One group (Immediate Training) trained during weeks 1 and 4. A second waitlist group (Delayed Training) did no training during weeks 1 and 4, but then trained during weeks 5 and 8. On-task (phoneme discrimination) and transferable outcome measures (speech perception, cognition, self-report of hearing disability) for both groups were obtained during weeks 0, 4, and 8, and for the Delayed Training group only at week 12. Robust phoneme discrimination learning was found for both groups, with the largest improvements in threshold shown for those with the poorest initial thresholds. Between weeks 1 and 4, the Immediate Training group showed moderate, significant improvements on self-report of hearing disability, divided attention, and working memory, specifically for conditions or situations that were more complex and therefore more challenging. Training did not result in consistent improvements in speech perception in noise. There was no evidence of any test-retest effects between weeks 1 and 4 for the Delayed Training group. Retention of benefit at 4 weeks post-training was shown for phoneme discrimination, divided attention, working memory, and self-report of hearing disability. Improved divided attention and reduced self-reported hearing difficulties were highly correlated. It was observed that phoneme discrimination training benefits some but not all people with mild hearing loss. Evidence presented here, together with that of other studies that used different training stimuli, suggests that auditory training may facilitate cognitive skills that index executive function and the self-perception of hearing difficulty in challenging situations. The development of cognitive skills may be more important than the development of sensory skills for improving communication and speech perception in everyday life. However, improvements were modest. Outcome measures need to be appropriately challenging to be sensitive to the effects of the relatively small amount of training performed.
Silva, Regiane Serafim Abreu; Simões-Zenari, Marcia; Nemr, Nair Kátia
2012-01-01
To analyze the impact of auditory training for auditory-perceptual assessment carried out by Speech-Language Pathology undergraduate students. During two semesters, 17 undergraduate students enrolled in theoretical subjects regarding phonation (Phonation/Phonation Disorders) analyzed samples of altered and unaltered voices (selected for this purpose), using the GRBAS scale. All subjects received auditory training during nine 15-minute meetings. In each meeting, a different parameter was presented using the different voices sample, with predominance of the trained aspect in each session. Sample assessment using the scale was carried out before and after training, and in other four opportunities throughout the meetings. Students' assessments were compared to an assessment carried out by three voice-experts speech-language pathologists who were the judges. To verify training effectiveness, the Friedman's test and the Kappa index were used. The rate of correct answers in the pre-training was considered between regular and good. It was observed maintenance of the number of correct answers throughout assessments, for most of the scale parameters. In the post-training moment, the students showed improvements in the analysis of asthenia, a parameter that was emphasized during training after the students reported difficulties analyzing it. There was a decrease in the number of correct answers for the roughness parameter after it was approached segmented into hoarseness and harshness, and observed in association with different diagnoses and acoustic parameters. Auditory training enhances students' initial abilities to perform the evaluation, aside from guiding adjustments in the dynamics of the university subject.
Erfanian Saeedi, Nafise; Blamey, Peter J; Burkitt, Anthony N; Grayden, David B
2016-04-01
Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.
Erfanian Saeedi, Nafise; Blamey, Peter J.; Burkitt, Anthony N.; Grayden, David B.
2016-01-01
Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons’ action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy. PMID:27049657
Music training alters the course of adolescent auditory development.
Tierney, Adam T; Krizman, Jennifer; Kraus, Nina
2015-08-11
Fundamental changes in brain structure and function during adolescence are well-characterized, but the extent to which experience modulates adolescent neurodevelopment is not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is well-known. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another in-school training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pretraining) and again 3 y later. Here, we show that in-school music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence and demonstrate that in-school programs can engender these changes.
Music training alters the course of adolescent auditory development
Tierney, Adam T.; Krizman, Jennifer; Kraus, Nina
2015-01-01
Fundamental changes in brain structure and function during adolescence are well-characterized, but the extent to which experience modulates adolescent neurodevelopment is not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is well-known. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another in-school training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pretraining) and again 3 y later. Here, we show that in-school music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence and demonstrate that in-school programs can engender these changes. PMID:26195739
Schlund, M W
2000-10-01
Bedside hearing screenings are routinely conducted by speech and language pathologists for brain injury survivors during rehabilitation. Cognitive deficits resulting from brain injury, however, may interfere with obtaining estimates of auditory thresholds. Poor comprehension or attention deficits often compromise patient abilities to follow procedural instructions. This article describes the effects of jointly applying behavioral methods and psychophysical methods to improve two severely brain-injured survivors' attending and reporting on auditory test stimuli presentation. Treatment consisted of stimulus control training that involved differentially reinforcing responding in the presence and absence of an auditory test tone. Subsequent hearing screenings were conducted with novel auditory test tones and a common titration procedure. Results showed that prior stimulus control training improved attending and reporting such that hearing screenings were conducted and estimates of auditory thresholds were obtained.
Click train encoding in primary and non-primary auditory cortex of anesthetized macaque monkeys.
Oshurkova, E; Scheich, H; Brosch, M
2008-06-02
We studied encoding of temporally modulated sounds in 28 multiunits in the primary auditory cortical field (AI) and in 35 multiunits in the secondary auditory cortical field (caudomedial auditory cortical field, CM) by presenting periodic click trains with click rates between 1 and 300 Hz lasting for 2-4 s. We found that all multiunits increased or decreased their firing rate during the steady state portion of the click train and that all except two multiunits synchronized their firing to individual clicks in the train. Rate increases and synchronized responses were most prevalent and strongest at low click rates, as expressed by best modulation frequency, limiting frequency, percentage of responsive multiunits, and average rate response and vector strength. Synchronized responses occurred up to 100 Hz; rate response occurred up to 300 Hz. Both auditory fields responded similarly to low click rates but differed at click rates above approximately 12 Hz at which more multiunits in AI than in CM exhibited synchronized responses and increased rate responses and more multiunits in CM exhibited decreased rate responses. These findings suggest that the auditory cortex of macaque monkeys encodes temporally modulated sounds similar to the auditory cortex of other mammals. Together with other observations presented in this and other reports, our findings also suggest that AI and CM have largely overlapping sensitivities for acoustic stimulus features but encode these features differently.
The Role of Age and Executive Function in Auditory Category Learning
Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath
2015-01-01
Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987
Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.
Wengenroth, Martina; Blatow, Maria; Bendszus, Martin; Schneider, Peter
2010-08-23
Individuals with the rare genetic disorder Williams-Beuren syndrome (WS) are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.
Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase
NASA Astrophysics Data System (ADS)
Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten
2016-04-01
Objective. One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. Approach. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. Main results. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. Significance. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.
Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase.
Zink, Rob; Hunyadi, Borbála; Huffel, Sabine Van; Vos, Maarten De
2016-04-01
One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.
Sound arithmetic: auditory cues in the rehabilitation of impaired fact retrieval.
Domahs, Frank; Zamarian, Laura; Delazer, Margarete
2008-04-01
The present single case study describes the rehabilitation of an acquired impairment of multiplication fact retrieval. In addition to a conventional drill approach, one set of problems was preceded by auditory cues while the other half was not. After extensive repetition, non-specific improvements could be observed for all trained problems (e.g., 3 * 7) as well as for their non-trained complementary problems (e.g., 7 * 3). Beyond this general improvement, specific therapy effects were found for problems trained with auditory cues. These specific effects were attributed to an involvement of implicit memory systems and/or attentional processes during training. Thus, the present results demonstrate that cues in the training of arithmetic facts do not have to be visual to be effective.
Speech sound discrimination training improves auditory cortex responses in a rat model of autism
Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Kilgard, Michael P.
2014-01-01
Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA) increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field (AAF) responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes. PMID:25140133
Rieger, Kathryn; Rarra, Marie-Helene; Moor, Nicolas; Diaz Hernandez, Laura; Baenninger, Anja; Razavi, Nadja; Dierks, Thomas; Hubl, Daniela; Koenig, Thomas
2018-03-01
Previous studies showed a global reduction of the event-related potential component N100 in patients with schizophrenia, a phenomenon that is even more pronounced during auditory verbal hallucinations. This reduction assumingly results from dysfunctional activation of the primary auditory cortex by inner speech, which reduces its responsiveness to external stimuli. With this study, we tested the feasibility of enhancing the responsiveness of the primary auditory cortex to external stimuli with an upregulation of the event-related potential component N100 in healthy control subjects. A total of 15 healthy subjects performed 8 double-sessions of EEG-neurofeedback training over 2 weeks. The results of the used linear mixed effect model showed a significant active learning effect within sessions ( t = 5.99, P < .001) against an unspecific habituation effect that lowered the N100 amplitude over time. Across sessions, a significant increase in the passive condition ( t = 2.42, P = .03), named as carry-over effect, was observed. Given that the carry-over effect is one of the ultimate aims of neurofeedback, it seems reasonable to apply this neurofeedback training protocol to influence the N100 amplitude in patients with schizophrenia. This intervention could provide an alternative treatment option for auditory verbal hallucinations in these patients.
Rhythm synchronization performance and auditory working memory in early- and late-trained musicians.
Bailey, Jennifer A; Penhune, Virginia B
2010-07-01
Behavioural and neuroimaging studies provide evidence for a possible "sensitive" period in childhood development during which musical training results in long-lasting changes in brain structure and auditory and motor performance. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 (early-trained; ET) perform better on a visuomotor task than those who begin after the age of 7 (late-trained; LT), even when matched on total years of musical training and experience. Two questions were raised regarding the findings from this experiment. First, would this group performance difference be observed using a more familiar, musically relevant task such as auditory rhythms? Second, would cognitive abilities mediate this difference in task performance? To address these questions, ET and LT musicians, matched on years of musical training, hours of current practice and experience, were tested on an auditory rhythm synchronization task. The task consisted of six woodblock rhythms of varying levels of metrical complexity. In addition, participants were tested on cognitive subtests measuring vocabulary, working memory and pattern recognition. The two groups of musicians differed in their performance of the rhythm task, such that the ET musicians were better at reproducing the temporal structure of the rhythms. There were no group differences on the cognitive measures. Interestingly, across both groups, individual task performance correlated with auditory working memory abilities and years of formal training. These results support the idea of a sensitive period during the early years of childhood for developing sensorimotor synchronization abilities via musical training.
Education and Training Practices: 2010 and Beyond
1989-05-01
compute attentional load at different points in the acquisition of piloting skills, or to determine fidelity standards for visual and auditory stimuli in...q electrical/magnetic cerebral stimulation . ’i instructions given out to all attendees for each Working Group were del. ..tely designed to depict...in the use of non-invasive electronic stimulation of targeted areas of the Central Nervous System (CNS). 17 Research should therefore be directed more
The Listening Cube: A Three Dimensional Auditory Training Program
Ilona, Anderson; Marleen, Bammens; Josepha, Jans; Marianne, Haesevoets; Ria, Pans; Hilde, Vandistel; Yvette, Vrolix
2012-01-01
Objectives Here we present the Listening Cube, an auditory training program for children and adults receiving cochlear implants, developed during the clinical practice at the KIDS Royal Institute for the Deaf in Belgium. We provide information on the content of the program as well as guidance as to how to use it. Methods The Listening Cube is a three-dimensional auditory training model that takes the following into consideration: the sequence of auditory listening skills to be trained, the variety of materials to be used, and the range of listening environments to be considered. During auditory therapy, it is important to develop training protocols and materials to provide rapid improvement over a relatively short time period. Moreover, effectiveness and the general real-life applicability of these protocols to various users should be determined. Results Because this publication is not a research article, but comes out of good daily practice, we cannot state the main results of this study. We can only say that this auditory training model is very successful. Since the first report was published in the Dutch language in 2003, more than 200 therapists in Belgium and the Netherlands followed a training course elected to implement the Listening Cube in their daily practice with children and adults with a hearing loss, especially in those wearing cochlear implants. Conclusion The Listening Cube is a tool to aid in planning therapeutic sessions created to meet individual needs, which is often challenging. The three dimensions of the cube are levels of perception, practice material, and practice conditions. These dimensions can serve as a visual reminder of the task analysis and of other considerations that play a role in structuring therapy sessions. PMID:22701766
Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M
2000-01-01
Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.
Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi
2017-10-01
Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Putkinen, Vesa; Tervaniemi, Mari; Saarikivi, Katri; Ojala, Pauliina; Huotilainen, Minna
2014-01-01
Adult musicians show superior auditory discrimination skills when compared to non-musicians. The enhanced auditory skills of musicians are reflected in the augmented amplitudes of their auditory event-related potential (ERP) responses. In the current study, we investigated longitudinally the development of auditory discrimination skills in…
Ciochină, Al D; Ciochină, Paula; Cobzeanu, M D; Burlui, Ada; Zaharia, D
2004-01-01
The study was to estimate the significance of auditory and kinesthetic feedback to an accurate control of fundamental frequency (F0) in 18 students beginning a professional singing education. The students sing an ascending and descending triad pattern covering their entire pitch range with and without making noise in legato and staccato and in a slow and fast tempo. F0 was measured by a computer program. The interval sizes between adjacent tones were determined and their departures from equally tempered tuning were calculated, the deviation from this tuning were used as a measure of the accuracy of intonation. Intonation accuracy was reduced by masking noise, by staccato as opposed to legato singing, and by fast as opposed to slow performance. The contribution of the auditory feedback to pitch control was not significantly improved after education, whereas the kinesthetic feedback circuit was improved in slow legato and slow staccato tasks. The results support the assumption that the kinesthetic feedback contributes substantially to intonation accuracy.
Effects of Long-Term Musical Training on Cortical Auditory Evoked Potentials.
Brown, Carolyn J; Jeon, Eun-Kyung; Driscoll, Virginia; Mussoi, Bruna; Deshpande, Shruti Balvalli; Gfeller, Kate; Abbas, Paul J
Evidence suggests that musicians, as a group, have superior frequency resolution abilities when compared with nonmusicians. It is possible to assess auditory discrimination using either behavioral or electrophysiologic methods. The purpose of this study was to determine if the acoustic change complex (ACC) is sensitive enough to reflect the differences in spectral processing exhibited by musicians and nonmusicians. Twenty individuals (10 musicians and 10 nonmusicians) participated in this study. Pitch and spectral ripple discrimination were assessed using both behavioral and electrophysiologic methods. Behavioral measures were obtained using a standard three interval, forced choice procedure. The ACC was recorded and used as an objective (i.e., nonbehavioral) measure of discrimination between two auditory signals. The same stimuli were used for both psychophysical and electrophysiologic testing. As a group, musicians were able to detect smaller changes in pitch than nonmusician. They also were able to detect a shift in the position of the peaks and valleys in a ripple noise stimulus at higher ripple densities than non-musicians. ACC responses recorded from musicians were larger than those recorded from non-musicians when the amplitude of the ACC response was normalized to the amplitude of the onset response in each stimulus pair. Visual detection thresholds derived from the evoked potential data were better for musicians than non-musicians regardless of whether the task was discrimination of musical pitch or detection of a change in the frequency spectrum of the ripple noise stimuli. Behavioral measures of discrimination were generally more sensitive than the electrophysiologic measures; however, the two metrics were correlated. Perhaps as a result of extensive training, musicians are better able to discriminate spectrally complex acoustic signals than nonmusicians. Those differences are evident not only in perceptual/behavioral tests but also in electrophysiologic measures of neural response at the level of the auditory cortex. While these results are based on observations made from normal-hearing listeners, they suggest that the ACC may provide a non-behavioral method of assessing auditory discrimination and as a result might prove useful in future studies that explore the efficacy of participation in a musically based, auditory training program perhaps geared toward pediatric or hearing-impaired listeners.
Do informal musical activities shape auditory skill development in preschool-age children?
Putkinen, Vesa; Saarikivi, Katri; Tervaniemi, Mari
2013-08-29
The influence of formal musical training on auditory cognition has been well established. For the majority of children, however, musical experience does not primarily consist of adult-guided training on a musical instrument. Instead, young children mostly engage in everyday musical activities such as singing and musical play. Here, we review recent electrophysiological and behavioral studies carried out in our laboratory and elsewhere which have begun to map how developing auditory skills are shaped by such informal musical activities both at home and in playschool-type settings. Although more research is still needed, the evidence emerging from these studies suggests that, in addition to formal musical training, informal musical activities can also influence the maturation of auditory discrimination and attention in preschool-aged children.
Do informal musical activities shape auditory skill development in preschool-age children?
Putkinen, Vesa; Saarikivi, Katri; Tervaniemi, Mari
2013-01-01
The influence of formal musical training on auditory cognition has been well established. For the majority of children, however, musical experience does not primarily consist of adult-guided training on a musical instrument. Instead, young children mostly engage in everyday musical activities such as singing and musical play. Here, we review recent electrophysiological and behavioral studies carried out in our laboratory and elsewhere which have begun to map how developing auditory skills are shaped by such informal musical activities both at home and in playschool-type settings. Although more research is still needed, the evidence emerging from these studies suggests that, in addition to formal musical training, informal musical activities can also influence the maturation of auditory discrimination and attention in preschool-aged children. PMID:24009597
Inservice Training Packet: Auditory Discrimination Listening Skills.
ERIC Educational Resources Information Center
Florida Learning Resources System/CROWN, Jacksonville.
Intended to be used as the basis for a brief inservice workshop, the auditory discrimination/listening skills packet provides information on ideas, materials, and resources for remediating auditory discrimination and listening skill deficits. Included are a sample prescription form, tests of auditory discrimination, and a list of auditory…
Effects of Long-Term Musical Training on Cortical Evoked Auditory Potentials
Brown, Carolyn J.; Jeon, Eun-Kyung; Driscoll, Virginia; Mussoi, Bruna; Deshpande, Shruti Balvalli; Gfeller, Kate; Abbas, Paul
2016-01-01
Objective Evidence suggests that musicians, as a group, have superior frequency resolution abilities when compared to non-musicians. It is possible to assess auditory discrimination using either behavioral or electrophysiologic methods. The purpose of this study was to determine if the auditory change complex (ACC) is sensitive enough to reflect the differences in spectral processing exhibited by musicians and non-musicians. Design Twenty individuals (10 musicians and 10 non-musicians) participated in this study. Pitch and spectral ripple discrimination were assessed using both behavioral and electrophysiologic methods. Behavioral measures were obtained using a standard three interval, forced choice procedure and the ACC was recorded and used as an objective (i.e. non-behavioral) measure of discrimination between two auditory signals. The same stimuli were used for both psychophysical and electrophysiologic testing. Results As a group, musicians were able to detect smaller changes in pitch than non-musicians. They also were able to detect a shift in the position of the peaks and valleys in a ripple noise stimulus at higher ripple densities than non-musicians. ACC responses recorded from musicians were larger than those recorded from non-musicians when the amplitude of the ACC response was normalized to the amplitude of the onset response in each stimulus pair. Visual detection thresholds derived from the evoked potential data were better for musicians than non-musicians regardless of whether the task was discrimination of musical pitch or detection of a change in the frequency spectrum of the rippled noise stimuli. Behavioral measures of discrimination were generally more sensitive than the electrophysiologic measures; however, the two metrics were correlated. Conclusions Perhaps as a result of extensive training, musicians are better able to discriminate spectrally complex acoustic signals than non-musicians. Those differences are evident not only in perceptual/behavioral tests, but also in electrophysiologic measures of neural response at the level of the auditory cortex. While these results are based on observations made from normal hearing listeners, they suggest that the ACC may provide a non-behavioral method of assessing auditory discrimination and as a result might prove useful in future studies that explore the efficacy of participation in a musically based, auditory training program perhaps geared toward pediatric and/or hearing-impaired listeners. PMID:28225736
Design of Training Systems, Phase II-A Report. An Educational Technology Assessment Model (ETAM)
1975-07-01
34format" for the perceptual tasks. This is applicable to auditory as well as visual tasks. Student Participation in Learning Route. When a student enters...skill formats Skill training 05.05 Vehicle properties Instructional functions: Type of stimulus presented to student visual auditory ...Subtask 05.05. For example, a trainer to identify and interpret auditory signals would not be represented in the above list. Trainers in the vehicle
Leftward Lateralization of Auditory Cortex Underlies Holistic Sound Perception in Williams Syndrome
Bendszus, Martin; Schneider, Peter
2010-01-01
Background Individuals with the rare genetic disorder Williams-Beuren syndrome (WS) are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. Methodology/Principal Findings Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. Conclusions/Significance There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties. PMID:20808792
Musical experience sharpens human cochlear tuning.
Bidelman, Gavin M; Nelms, Caitlin; Bhagat, Shaum P
2016-05-01
The mammalian cochlea functions as a filter bank that performs a spectral, Fourier-like decomposition on the acoustic signal. While tuning can be compromised (e.g., broadened with hearing impairment), whether or not human cochlear frequency resolution can be sharpened through experiential factors (e.g., training or learning) has not yet been established. Previous studies have demonstrated sharper psychophysical tuning curves in trained musicians compared to nonmusicians, implying superior peripheral tuning. However, these findings are based on perceptual masking paradigms, and reflect engagement of the entire auditory system rather than cochlear tuning, per se. Here, by directly mapping physiological tuning curves from stimulus frequency otoacoustic emissions (SFOAEs)-cochlear emitted sounds-we show that estimates of human cochlear tuning in a high-frequency cochlear region (4 kHz) is further sharpened (by a factor of 1.5×) in musicians and improves with the number of years of their auditory training. These findings were corroborated by measurements of psychophysical tuning curves (PTCs) derived via simultaneous masking, which similarly showed sharper tuning in musicians. Comparisons between SFOAE and PTCs revealed closer correspondence between physiological and behavioral curves in musicians, indicating that tuning is also more consistent between different levels of auditory processing in trained ears. Our findings demonstrate an experience-dependent enhancement in the resolving power of the cochlear sensory epithelium and the spectral resolution of human hearing and provide a peripheral account for the auditory perceptual benefits observed in musicians. Both local and feedback (e.g., medial olivocochlear efferent) mechanisms are discussed as potential mechanisms for experience-dependent tuning. Copyright © 2016 Elsevier B.V. All rights reserved.
Pérez, Miguel Ángel; Pérez-Valenzuela, Catherine; Rojas-Thomas, Felipe; Ahumada, Juan; Fuenzalida, Marco; Dagnino-Subiabre, Alexies
2013-08-29
Chronic stress induces dendritic atrophy in the rat primary auditory cortex (A1), a key brain area for auditory attention. The aim of this study was to determine whether repeated restraint stress affects auditory attention and synaptic transmission in A1. Male Sprague-Dawley rats were trained in a two-alternative choice task (2-ACT), a behavioral paradigm to study auditory attention in rats. Trained animals that reached a performance over 80% of correct trials in the 2-ACT were randomly assigned to control and restraint stress experimental groups. To analyze the effects of restraint stress on the auditory attention, trained rats of both groups were subjected to 50 2-ACT trials one day before and one day after of the stress period. A difference score was determined by subtracting the number of correct trials after from those before the stress protocol. Another set of rats was used to study the synaptic transmission in A1. Restraint stress decreased the number of correct trials by 28% compared to the performance of control animals (p < 0.001). Furthermore, stress reduced the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) and miniature IPSC in A1, whereas glutamatergic efficacy was not affected. Our results demonstrate that restraint stress decreased auditory attention and GABAergic synaptic efficacy in A1. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Zhang, Manli; Xie, Weiyi; Xu, Yanzhi; Meng, Xiangzhi
2018-03-01
Perceptual learning refers to the improvement of perceptual performance as a function of training. Recent studies found that auditory perceptual learning may improve phonological skills in individuals with developmental dyslexia in alphabetic writing system. However, whether auditory perceptual learning could also benefit the reading skills of those learning the Chinese logographic writing system is, as yet, unknown. The current study aimed to investigate the remediation effect of auditory temporal perceptual learning on Mandarin-speaking school children with developmental dyslexia. Thirty children with dyslexia were screened from a large pool of students in 3th-5th grades. They completed a series of pretests and then were assigned to either a non-training control group or a training group. The training group worked on a pure tone duration discrimination task for 7 sessions over 2 weeks with thirty minutes per session. Post-tests immediately after training and a follow-up test 2 months later were conducted. Analyses revealed a significant training effect in the training group relative to non-training group, as well as near transfer to the temporal interval discrimination task and far transfer to phonological awareness, character recognition and reading fluency. Importantly, the training effect and all the transfer effects were stable at the 2-month follow-up session. Further analyses found that a significant correlation between character recognition performance and learning rate mainly existed in the slow learning phase, the consolidation stage of perceptual learning, and this effect was modulated by an individuals' executive function. These findings indicate that adaptive auditory temporal perceptual learning can lead to learning and transfer effects on reading performance, and shed further light on the potential role of basic perceptual learning in the remediation and prevention of developmental dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.
Utilizing Oral-Motor Feedback in Auditory Conceptualization.
ERIC Educational Resources Information Center
Howard, Marilyn
The Auditory Discrimination in Depth (ADD) program, an oral-motor approach to beginning reading instruction, trains first grade children in auditory skills by a process in which language and oral-motor feedback are used to integrate auditory properties with visual properties. This emphasis of the ADD program makes the child's perceptual…
Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.
2016-01-01
In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594
Neural Biomarkers for Dyslexia, ADHD, and ADD in the Auditory Cortex of Children.
Serrallach, Bettina; Groß, Christine; Bernhofs, Valdis; Engelmann, Dorte; Benner, Jan; Gündert, Nadine; Blatow, Maria; Wengenroth, Martina; Seitz, Angelika; Brunner, Monika; Seither, Stefan; Parncutt, Richard; Schneider, Peter; Seither-Preisler, Annemarie
2016-01-01
Dyslexia, attention deficit hyperactivity disorder (ADHD), and attention deficit disorder (ADD) show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N = 147) using neuroimaging, magnetencephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms) of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only allowed for clear discrimination between two subtypes of attentional disorders (ADHD and ADD), a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.
Neural Biomarkers for Dyslexia, ADHD, and ADD in the Auditory Cortex of Children
Serrallach, Bettina; Groß, Christine; Bernhofs, Valdis; Engelmann, Dorte; Benner, Jan; Gündert, Nadine; Blatow, Maria; Wengenroth, Martina; Seitz, Angelika; Brunner, Monika; Seither, Stefan; Parncutt, Richard; Schneider, Peter; Seither-Preisler, Annemarie
2016-01-01
Dyslexia, attention deficit hyperactivity disorder (ADHD), and attention deficit disorder (ADD) show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N = 147) using neuroimaging, magnetencephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10–40 ms) of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89–98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only allowed for clear discrimination between two subtypes of attentional disorders (ADHD and ADD), a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities. PMID:27471442
Neuroscience-inspired computational systems for speech recognition under noisy conditions
NASA Astrophysics Data System (ADS)
Schafer, Phillip B.
Humans routinely recognize speech in challenging acoustic environments with background music, engine sounds, competing talkers, and other acoustic noise. However, today's automatic speech recognition (ASR) systems perform poorly in such environments. In this dissertation, I present novel methods for ASR designed to approach human-level performance by emulating the brain's processing of sounds. I exploit recent advances in auditory neuroscience to compute neuron-based representations of speech, and design novel methods for decoding these representations to produce word transcriptions. I begin by considering speech representations modeled on the spectrotemporal receptive fields of auditory neurons. These representations can be tuned to optimize a variety of objective functions, which characterize the response properties of a neural population. I propose an objective function that explicitly optimizes the noise invariance of the neural responses, and find that it gives improved performance on an ASR task in noise compared to other objectives. The method as a whole, however, fails to significantly close the performance gap with humans. I next consider speech representations that make use of spiking model neurons. The neurons in this method are feature detectors that selectively respond to spectrotemporal patterns within short time windows in speech. I consider a number of methods for training the response properties of the neurons. In particular, I present a method using linear support vector machines (SVMs) and show that this method produces spikes that are robust to additive noise. I compute the spectrotemporal receptive fields of the neurons for comparison with previous physiological results. To decode the spike-based speech representations, I propose two methods designed to work on isolated word recordings. The first method uses a classical ASR technique based on the hidden Markov model. The second method is a novel template-based recognition scheme that takes advantage of the neural representation's invariance in noise. The scheme centers on a speech similarity measure based on the longest common subsequence between spike sequences. The combined encoding and decoding scheme outperforms a benchmark system in extremely noisy acoustic conditions. Finally, I consider methods for decoding spike representations of continuous speech. To help guide the alignment of templates to words, I design a syllable detection scheme that robustly marks the locations of syllabic nuclei. The scheme combines SVM-based training with a peak selection algorithm designed to improve noise tolerance. By incorporating syllable information into the ASR system, I obtain strong recognition results in noisy conditions, although the performance in noiseless conditions is below the state of the art. The work presented here constitutes a novel approach to the problem of ASR that can be applied in the many challenging acoustic environments in which we use computer technologies today. The proposed spike-based processing methods can potentially be exploited in effcient hardware implementations and could significantly reduce the computational costs of ASR. The work also provides a framework for understanding the advantages of spike-based acoustic coding in the human brain.
Is the Role of External Feedback in Auditory Skill Learning Age Dependent?
Zaltz, Yael; Roth, Daphne Ari-Even; Kishon-Rabin, Liat
2017-12-20
The purpose of this study is to investigate the role of external feedback in auditory perceptual learning of school-age children as compared with that of adults. Forty-eight children (7-9 years of age) and 64 adults (20-35 years of age) conducted a training session using an auditory frequency discrimination (difference limen for frequency) task, with external feedback (EF) provided for half of them. Data supported the following findings: (a) Children learned the difference limen for frequency task only when EF was provided. (b) The ability of the children to benefit from EF was associated with better cognitive skills. (c) Adults showed significant learning whether EF was provided or not. (d) In children, within-session learning following training was dependent on the provision of feedback, whereas between-sessions learning occurred irrespective of feedback. EF was found beneficial for auditory skill learning of 7-9-year-old children but not for young adults. The data support the supervised Hebbian model for auditory skill learning, suggesting combined bottom-up internal neural feedback controlled by top-down monitoring. In the case of immature executive functions, EF enhanced auditory skill learning. This study has implications for the design of training protocols in the auditory modality for different age groups, as well as for special populations.
SDI Software Technology Program Plan Version 1.5
1987-06-01
computer generation of auditory communication of meaningful speech. Most speech synthesizers are based on mathematical models of the human vocal tract, but...oral/ auditory and multimodal communications. Although such state-of-the-art interaction technology has not fully matured, user experience has...superior I pattern matching capabilities and the subliminal intuitive deduction capability. The error performance of humans can be helped by careful
Biagianti, Bruno; Roach, Brian J; Fisher, Melissa; Loewy, Rachel; Ford, Judith M; Vinogradov, Sophia; Mathalon, Daniel H
2017-01-01
Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. Compared to HC, ESZ individuals showed significant MMN reductions at baseline ( p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals ( p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group ( p = .02), but not in the CG group. In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN was significantly reduced relative to HCs, and associated with global cognitive impairment. MMN did not show changes after AT and exhibited trait-like stability. Greater deficits in the trait aspects of Double-Deviant MMN predicted greater gains in global cognition in response to AT, suggesting that MMN may identify individuals who stand to gain the most from AT. NCT00694889. Registered 1 August 2007.
Biagianti, Bruno; Roach, Brian J.; Fisher, Melissa; Loewy, Rachel; Ford, Judith M.; Vinogradov, Sophia; Mathalon, Daniel H.
2017-01-01
Background Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. Methods Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. Results Compared to HC, ESZ individuals showed significant MMN reductions at baseline (p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals (p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59–.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group (p = .02), but not in the CG group. Conclusions In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN was significantly reduced relative to HCs, and associated with global cognitive impairment. MMN did not show changes after AT and exhibited trait-like stability. Greater deficits in the trait aspects of Double-Deviant MMN predicted greater gains in global cognition in response to AT, suggesting that MMN may identify individuals who stand to gain the most from AT. Trial registration NCT00694889. Registered 1 August 2007. PMID:28845238
The Easy-to-Hard Effect in Human (Homo sapiens) and Rat (Rattus norvegicus) Auditory Identification
Liu, Estella H.; Mercado, Eduardo; Church, Barbara A.; Orduña, Itzel
2009-01-01
Training exercises can improve perceptual sensitivities. We examined whether progressively training humans and rats to perform a difficult auditory identification task led to larger improvements than extensive training with highly similar sounds (the easy-to-hard effect). Practice improved humans’ ability to distinguish sounds regardless of the training regimen. However, progressively trained participants were more accurate and showed more generalization, despite significantly less training with the stimuli that were the most difficult to distinguish. Rats showed less capacity to improve with practice, but still benefited from progressive training. These findings indicate that transitioning from an easier to a more difficult task during training can facilitate, and in some cases may be essential for, auditory perceptual learning. The results are not predicted by an explanation that assumes interaction of generalized excitation and inhibition, but are consistent with a hierarchical account of perceptual learning in which the representational precision required to distinguish stimuli determines the mechanisms engaged during learning. PMID:18489229
3D hierarchical spatial representation and memory of multimodal sensory data
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Dow, Paul A.; Huber, David J.
2009-04-01
This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.
Biological impact of preschool music classes on processing speech in noise
Strait, Dana L.; Parbery-Clark, Alexandra; O’Connell, Samantha; Kraus, Nina
2013-01-01
Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. PMID:23872199
Biological impact of preschool music classes on processing speech in noise.
Strait, Dana L; Parbery-Clark, Alexandra; O'Connell, Samantha; Kraus, Nina
2013-10-01
Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. Copyright © 2013 Elsevier Ltd. All rights reserved.
Music training relates to the development of neural mechanisms of selective auditory attention.
Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina
2015-04-01
Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
2011-01-01
Background Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task. Methods Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error. Results Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke. Conclusions Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for the hemiparetic arm, suggesting that the increased demands associated with controlling an affected arm make the motor system more prone to slack when distracted. Providing an alternate sensory channel for feedback, i.e., auditory feedback of tracking error, enabled the participants to simultaneously perform the tracking task and distracter task effectively. Thus, incorporating real-time auditory feedback of performance errors might improve clinical outcomes of robotic therapy systems. PMID:21513561
Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.
Rutkowski, Tomasz M; Mori, Hiromu
2015-04-15
The paper presents a report on the recently developed BCI alternative for users suffering from impaired vision (lack of focus or eye-movements) or from the so-called "ear-blocking-syndrome" (limited hearing). We report on our recent studies of the extents to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. In the proposed tactile and bone-conduction auditory BCI novel multiple head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) P300 brain responses, in order to define a multimodal tactile and bone-conduction auditory brain computer interface (tbcaBCI). In order to further remove EEG interferences and to improve P300 response classification synchrosqueezing transform (SST) is applied. SST outperforms the classical time-frequency analysis methods of the non-linear and non-stationary signals such as EEG. The proposed method is also computationally more effective comparing to the empirical mode decomposition. The SST filtering allows for online EEG preprocessing application which is essential in the case of BCI. Experimental results with healthy BCI-naive users performing online tbcaBCI, validate the paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies. We present a comparison of the proposed SST-based preprocessing method, combined with a logistic regression (LR) classifier, together with classical preprocessing and LDA-based classification BCI techniques. The proposed tbcaBCI paradigm together with data-driven preprocessing methods are a step forward in robust BCI applications research. Copyright © 2014 Elsevier B.V. All rights reserved.
Auditory Discrimination Learning: Role of Working Memory.
Zhang, Yu-Xuan; Moore, David R; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal
2016-01-01
Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.
Li, Qiongling; Wang, Xuetong; Wang, Shaoyi; Xie, Yongqi; Li, Xinwei; Xie, Yachao; Li, Shuyu
2018-05-01
Playing music requires a strong coupling of perception and action mediated by multimodal integration of brain regions, which can be described as network connections measured by anatomical and functional correlations between regions. However, the structural and functional connectivities within and between the auditory and sensorimotor networks after long-term musical training remain largely uninvestigated. Here, we compared the structural connectivity (SC) and resting-state functional connectivity (rs-FC) within and between the two networks in 29 novice healthy young adults before and after musical training (piano) with those of another 27 novice participants who were evaluated longitudinally but with no intervention. In addition, a correlation analysis was performed between the changes in FC or SC with practice time in the training group. As expected, participants in the training group showed increased FC within the sensorimotor network and increased FC and SC of the auditory-motor network after musical training. Interestingly, we further found that the changes in FC within the sensorimotor network and SC of the auditory-motor network were positively correlated with practice time. Our results indicate that musical training could induce enhanced local interaction and global integration between musical performance-related regions, which provides insights into the mechanism of brain plasticity in young adults. © 2018 Wiley Periodicals, Inc.
Auditory Discrimination Learning: Role of Working Memory
Zhang, Yu-Xuan; Moore, David R.; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal
2016-01-01
Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience. PMID:26799068
Auditory Learning Using a Portable Real-Time Vocoder: Preliminary Findings
Pisoni, David B.
2015-01-01
Purpose Although traditional study of auditory training has been in controlled laboratory settings, interest has been increasing in more interactive options. The authors examine whether such interactive training can result in short-term perceptual learning, and the range of perceptual skills it impacts. Method Experiments 1 (N = 37) and 2 (N = 21) used pre- and posttest measures of speech and nonspeech recognition to find evidence of learning (within subject) and to compare the effects of 3 kinds of training (between subject) on the perceptual abilities of adults with normal hearing listening to simulations of cochlear implant processing. Subjects were given interactive, standard lab-based, or control training experience for 1 hr between the pre- and posttest tasks (unique sets across Experiments 1 & 2). Results Subjects receiving interactive training showed significant learning on sentence recognition in quiet task (Experiment 1), outperforming controls but not lab-trained subjects following training. Training groups did not differ significantly on any other task, even those directly involved in the interactive training experience. Conclusions Interactive training has the potential to produce learning in 1 domain (sentence recognition in quiet), but the particulars of the present training method (short duration, high complexity) may have limited benefits to this single criterion task. PMID:25674884
Use of rhythm in acquisition of a computer-generated tracking task.
Fulop, A C; Kirby, R H; Coates, G D
1992-08-01
This research assessed whether rhythm aids acquisition of motor skills by providing cues for the timing of those skills. Rhythms were presented to participants visually or visually with auditory cues. It was hypothesized that the auditory cues would facilitate recognition and learning of the rhythms. The three timing principles of rhythms were also explored. It was hypothesized that rhythms that satisfied all three timing principles would be more beneficial in learning a skill than rhythms that did not satisfy the principles. Three groups learned three different rhythms by practicing a tracking task. After training, participants attempted to reproduce the tracks from memory. Results suggest that rhythms do help in learning motor skills but different sets of timing principles explain perception of rhythm in different modalities.
Music supported therapy promotes motor plasticity in individuals with chronic stroke.
Ripollés, P; Rojo, N; Grau-Sánchez, J; Amengual, J L; Càmara, E; Marco-Pallarés, J; Juncadella, M; Vaquero, L; Rubio, F; Duarte, E; Garrido, C; Altenmüller, E; Münte, T F; Rodríguez-Fornells, A
2016-12-01
Novel rehabilitation interventions have improved motor recovery by induction of neural plasticity in individuals with stroke. Of these, Music-supported therapy (MST) is based on music training designed to restore motor deficits. Music training requires multimodal processing, involving the integration and co-operation of visual, motor, auditory, affective and cognitive systems. The main objective of this study was to assess, in a group of 20 individuals suffering from chronic stroke, the motor, cognitive, emotional and neuroplastic effects of MST. Using functional magnetic resonance imaging (fMRI) we observed a clear restitution of both activity and connectivity among auditory-motor regions of the affected hemisphere. Importantly, no differences were observed in this functional network in a healthy control group, ruling out possible confounds such as repeated imaging testing. Moreover, this increase in activity and connectivity between auditory and motor regions was accompanied by a functional improvement of the paretic hand. The present results confirm MST as a viable intervention to improve motor function in chronic stroke individuals.
Auditory temporal processing skills in musicians with dyslexia.
Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha
2014-08-01
The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.
Exploring the simulation requirements for virtual regional anesthesia training
NASA Astrophysics Data System (ADS)
Charissis, V.; Zimmer, C. R.; Sakellariou, S.; Chan, W.
2010-01-01
This paper presents an investigation towards the simulation requirements for virtual regional anaesthesia training. To this end we have developed a prototype human-computer interface designed to facilitate Virtual Reality (VR) augmenting educational tactics for regional anaesthesia training. The proposed interface system, aims to compliment nerve blocking techniques methods. The system is designed to operate in real-time 3D environment presenting anatomical information and enabling the user to explore the spatial relation of different human parts without any physical constrains. Furthermore the proposed system aims to assist the trainee anaesthetists so as to build a mental, three-dimensional map of the anatomical elements and their depictive relationship to the Ultra-Sound imaging which is used for navigation of the anaesthetic needle. Opting for a sophisticated approach of interaction, the interface elements are based on simplified visual representation of real objects, and can be operated through haptic devices and surround auditory cues. This paper discusses the challenges involved in the HCI design, introduces the visual components of the interface and presents a tentative plan of future work which involves the development of realistic haptic feedback and various regional anaesthesia training scenarios.
Enhanced attention-dependent activity in the auditory cortex of older musicians.
Zendel, Benjamin Rich; Alain, Claude
2014-01-01
Musical training improves auditory processing abilities, which correlates with neuro-plastic changes in exogenous (input-driven) and endogenous (attention-dependent) components of auditory event-related potentials (ERPs). Evidence suggests that musicians, compared to non-musicians, experience less age-related decline in auditory processing abilities. Here, we investigated whether lifelong musicianship mitigates exogenous or endogenous processing by measuring auditory ERPs in younger and older musicians and non-musicians while they either attended to auditory stimuli or watched a muted subtitled movie of their choice. Both age and musical training-related differences were observed in the exogenous components; however, the differences between musicians and non-musicians were similar across the lifespan. These results suggest that exogenous auditory ERPs are enhanced in musicians, but decline with age at the same rate. On the other hand, attention-related activity, modeled in the right auditory cortex using a discrete spatiotemporal source analysis, was selectively enhanced in older musicians. This suggests that older musicians use a compensatory strategy to overcome age-related decline in peripheral and exogenous processing of acoustic information. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of virtual reality on cognition in stroke patients.
Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young
2011-08-01
To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients.
Bidelman, Gavin M
2016-10-01
Musical training is associated with behavioral and neurophysiological enhancements in auditory processing for both musical and nonmusical sounds (e.g., speech). Yet, whether the benefits of musicianship extend beyond enhancements to auditory-specific skills and impact multisensory (e.g., audiovisual) processing has yet to be fully validated. Here, we investigated multisensory integration of auditory and visual information in musicians and nonmusicians using a double-flash illusion, whereby the presentation of multiple auditory stimuli (beeps) concurrent with a single visual object (flash) induces an illusory perception of multiple flashes. We parametrically varied the onset asynchrony between auditory and visual events (leads and lags of ±300 ms) to quantify participants' "temporal window" of integration, i.e., stimuli in which auditory and visual cues were fused into a single percept. Results show that musically trained individuals were both faster and more accurate at processing concurrent audiovisual cues than their nonmusician peers; nonmusicians had a higher susceptibility for responding to audiovisual illusions and perceived double flashes over an extended range of onset asynchronies compared to trained musicians. Moreover, temporal window estimates indicated that musicians' windows (<100 ms) were ~2-3× shorter than nonmusicians' (~200 ms), suggesting more refined multisensory integration and audiovisual binding. Collectively, findings indicate a more refined binding of auditory and visual cues in musically trained individuals. We conclude that experience-dependent plasticity of intensive musical experience extends beyond simple listening skills, improving multimodal processing and the integration of multiple sensory systems in a domain-general manner.
Denham, Susan; Bõhm, Tamás M.; Bendixen, Alexandra; Szalárdy, Orsolya; Kocsis, Zsuzsanna; Mill, Robert; Winkler, István
2014-01-01
The ability of the auditory system to parse complex scenes into component objects in order to extract information from the environment is very robust, yet the processing principles underlying this ability are still not well understood. This study was designed to investigate the proposal that the auditory system constructs multiple interpretations of the acoustic scene in parallel, based on the finding that when listening to a long repetitive sequence listeners report switching between different perceptual organizations. Using the “ABA-” auditory streaming paradigm we trained listeners until they could reliably recognize all possible embedded patterns of length four which could in principle be extracted from the sequence, and in a series of test sessions investigated their spontaneous reports of those patterns. With the training allowing them to identify and mark a wider variety of possible patterns, participants spontaneously reported many more patterns than the ones traditionally assumed (Integrated vs. Segregated). Despite receiving consistent training and despite the apparent randomness of perceptual switching, we found individual switching patterns were idiosyncratic; i.e., the perceptual switching patterns of each participant were more similar to their own switching patterns in different sessions than to those of other participants. These individual differences were found to be preserved even between test sessions held a year after the initial experiment. Our results support the idea that the auditory system attempts to extract an exhaustive set of embedded patterns which can be used to generate expectations of future events and which by competing for dominance give rise to (changing) perceptual awareness, with the characteristics of pattern discovery and perceptual competition having a strong idiosyncratic component. Perceptual multistability thus provides a means for characterizing both general mechanisms and individual differences in human perception. PMID:24616656
Denham, Susan; Bõhm, Tamás M; Bendixen, Alexandra; Szalárdy, Orsolya; Kocsis, Zsuzsanna; Mill, Robert; Winkler, István
2014-01-01
The ability of the auditory system to parse complex scenes into component objects in order to extract information from the environment is very robust, yet the processing principles underlying this ability are still not well understood. This study was designed to investigate the proposal that the auditory system constructs multiple interpretations of the acoustic scene in parallel, based on the finding that when listening to a long repetitive sequence listeners report switching between different perceptual organizations. Using the "ABA-" auditory streaming paradigm we trained listeners until they could reliably recognize all possible embedded patterns of length four which could in principle be extracted from the sequence, and in a series of test sessions investigated their spontaneous reports of those patterns. With the training allowing them to identify and mark a wider variety of possible patterns, participants spontaneously reported many more patterns than the ones traditionally assumed (Integrated vs. Segregated). Despite receiving consistent training and despite the apparent randomness of perceptual switching, we found individual switching patterns were idiosyncratic; i.e., the perceptual switching patterns of each participant were more similar to their own switching patterns in different sessions than to those of other participants. These individual differences were found to be preserved even between test sessions held a year after the initial experiment. Our results support the idea that the auditory system attempts to extract an exhaustive set of embedded patterns which can be used to generate expectations of future events and which by competing for dominance give rise to (changing) perceptual awareness, with the characteristics of pattern discovery and perceptual competition having a strong idiosyncratic component. Perceptual multistability thus provides a means for characterizing both general mechanisms and individual differences in human perception.
Cecere, Roberto; Gross, Joachim; Thut, Gregor
2016-06-01
The ability to integrate auditory and visual information is critical for effective perception and interaction with the environment, and is thought to be abnormal in some clinical populations. Several studies have investigated the time window over which audiovisual events are integrated, also called the temporal binding window, and revealed asymmetries depending on the order of audiovisual input (i.e. the leading sense). When judging audiovisual simultaneity, the binding window appears narrower and non-malleable for auditory-leading stimulus pairs and wider and trainable for visual-leading pairs. Here we specifically examined the level of independence of binding mechanisms when auditory-before-visual vs. visual-before-auditory input is bound. Three groups of healthy participants practiced audiovisual simultaneity detection with feedback, selectively training on auditory-leading stimulus pairs (group 1), visual-leading stimulus pairs (group 2) or both (group 3). Subsequently, we tested for learning transfer (crossover) from trained stimulus pairs to non-trained pairs with opposite audiovisual input. Our data confirmed the known asymmetry in size and trainability for auditory-visual vs. visual-auditory binding windows. More importantly, practicing one type of audiovisual integration (e.g. auditory-visual) did not affect the other type (e.g. visual-auditory), even if trainable by within-condition practice. Together, these results provide crucial evidence that audiovisual temporal binding for auditory-leading vs. visual-leading stimulus pairs are independent, possibly tapping into different circuits for audiovisual integration due to engagement of different multisensory sampling mechanisms depending on leading sense. Our results have implications for informing the study of multisensory interactions in healthy participants and clinical populations with dysfunctional multisensory integration. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Auditory Training with Frequent Communication Partners
ERIC Educational Resources Information Center
Tye-Murray, Nancy; Spehar, Brent; Sommers, Mitchell; Barcroft, Joe
2016-01-01
Purpose: Individuals with hearing loss engage in auditory training to improve their speech recognition. They typically practice listening to utterances spoken by unfamiliar talkers but never to utterances spoken by their most frequent communication partner (FCP)--speech they most likely desire to recognize--under the assumption that familiarity…
Structured Activities in Perceptual Training to Aid Retention of Visual and Auditory Images.
ERIC Educational Resources Information Center
Graves, James W.; And Others
The experimental program in structured activities in perceptual training was said to have two main objectives: to train children in retention of visual and auditory images and to increase the children's motivation to learn. Eight boys and girls participated in the program for two hours daily for a 10-week period. The age range was 7.0 to 12.10…
Audio-tactile integration and the influence of musical training.
Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo
2014-01-01
Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.
Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan
2016-05-01
Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem responses in long-term severely-hearing impaired CI users could be an attribute of processes associated with long-term hearing impairment and/or electrical stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.
A CAI System for Visually Impaired Children to Improve Abilities of Orientation and Mobility
NASA Astrophysics Data System (ADS)
Yoneda, Takahiro; Kudo, Hiroaki; Minagawa, Hiroki; Ohnishi, Noboru; Matsubara, Shizuya
Some visually impaired children have difficulty in simple locomotion, and need orientation and mobility training. We developed a computer assisted instruction system which assists this training. A user realizes a task given by a tactile map and synthesized speech. The user walks around a room according to the task. The system gives the gap of walk path from its target path via both auditory and tactile feedback after the end of a task. Then the user can understand how well the user walked. We describe the detail of the proposed system and task, and the experimental result with three visually impaired children.
Recognizing Spoken Words: The Neighborhood Activation Model
Luce, Paul A.; Pisoni, David B.
2012-01-01
Objective A fundamental problem in the study of human spoken word recognition concerns the structural relations among the sound patterns of words in memory and the effects these relations have on spoken word recognition. In the present investigation, computational and experimental methods were employed to address a number of fundamental issues related to the representation and structural organization of spoken words in the mental lexicon and to lay the groundwork for a model of spoken word recognition. Design Using a computerized lexicon consisting of transcriptions of 20,000 words, similarity neighborhoods for each of the transcriptions were computed. Among the variables of interest in the computation of the similarity neighborhoods were: 1) the number of words occurring in a neighborhood, 2) the degree of phonetic similarity among the words, and 3) the frequencies of occurrence of the words in the language. The effects of these variables on auditory word recognition were examined in a series of behavioral experiments employing three experimental paradigms: perceptual identification of words in noise, auditory lexical decision, and auditory word naming. Results The results of each of these experiments demonstrated that the number and nature of words in a similarity neighborhood affect the speed and accuracy of word recognition. A neighborhood probability rule was developed that adequately predicted identification performance. This rule, based on Luce's (1959) choice rule, combines stimulus word intelligibility, neighborhood confusability, and frequency into a single expression. Based on this rule, a model of auditory word recognition, the neighborhood activation model, was proposed. This model describes the effects of similarity neighborhood structure on the process of discriminating among the acoustic-phonetic representations of words in memory. The results of these experiments have important implications for current conceptions of auditory word recognition in normal and hearing impaired populations of children and adults. PMID:9504270
Fernández-Caballero, Antonio; Navarro, Elena; Fernández-Sotos, Patricia; González, Pascual; Ricarte, Jorge J.; Latorre, José M.; Rodriguez-Jimenez, Roberto
2017-01-01
This perspective paper faces the future of alternative treatments that take advantage of a social and cognitive approach with regards to pharmacological therapy of auditory verbal hallucinations (AVH) in patients with schizophrenia. AVH are the perception of voices in the absence of auditory stimulation and represents a severe mental health symptom. Virtual/augmented reality (VR/AR) and brain computer interfaces (BCI) are technologies that are growing more and more in different medical and psychological applications. Our position is that their combined use in computer-based therapies offers still unforeseen possibilities for the treatment of physical and mental disabilities. This is why, the paper expects that researchers and clinicians undergo a pathway toward human-avatar symbiosis for AVH by taking full advantage of new technologies. This outlook supposes to address challenging issues in the understanding of non-pharmacological treatment of schizophrenia-related disorders and the exploitation of VR/AR and BCI to achieve a real human-avatar symbiosis. PMID:29209193
Fernández-Caballero, Antonio; Navarro, Elena; Fernández-Sotos, Patricia; González, Pascual; Ricarte, Jorge J; Latorre, José M; Rodriguez-Jimenez, Roberto
2017-01-01
This perspective paper faces the future of alternative treatments that take advantage of a social and cognitive approach with regards to pharmacological therapy of auditory verbal hallucinations (AVH) in patients with schizophrenia. AVH are the perception of voices in the absence of auditory stimulation and represents a severe mental health symptom. Virtual/augmented reality (VR/AR) and brain computer interfaces (BCI) are technologies that are growing more and more in different medical and psychological applications. Our position is that their combined use in computer-based therapies offers still unforeseen possibilities for the treatment of physical and mental disabilities. This is why, the paper expects that researchers and clinicians undergo a pathway toward human-avatar symbiosis for AVH by taking full advantage of new technologies. This outlook supposes to address challenging issues in the understanding of non-pharmacological treatment of schizophrenia-related disorders and the exploitation of VR/AR and BCI to achieve a real human-avatar symbiosis.
Feasibility of Audio Training for Identification of Auditory Signatures of Small Arms Fire
2010-12-01
and M14) were presented through headphones. Participants were allowed to train at their own pace, were tested using the recorded material ; and were...properties (e.g., barrel length, round type), environmental conditions (e.g., temperature, wind speed, reverberant properties of the sound field; proximal...developed, training materials can be presented in a comprehensive CD-based course that can be completed in several hours and reviewed when needed. 2
ERIC Educational Resources Information Center
Van Laere, E.; Braak, J.
2017-01-01
Text-to-speech technology can act as an important support tool in computer-based learning environments (CBLEs) as it provides auditory input, next to on-screen text. Particularly for students who use a language at home other than the language of instruction (LOI) applied at school, text-to-speech can be useful. The CBLE E-Validiv offers content in…
Auditory and visual interhemispheric communication in musicians and non-musicians.
Woelfle, Rebecca; Grahn, Jessica A
2013-01-01
The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.
Semantic-based crossmodal processing during visual suppression.
Cox, Dustin; Hong, Sang Wook
2015-01-01
To reveal the mechanisms underpinning the influence of auditory input on visual awareness, we examine, (1) whether purely semantic-based multisensory integration facilitates the access to visual awareness for familiar visual events, and (2) whether crossmodal semantic priming is the mechanism responsible for the semantic auditory influence on visual awareness. Using continuous flash suppression, we rendered dynamic and familiar visual events (e.g., a video clip of an approaching train) inaccessible to visual awareness. We manipulated the semantic auditory context of the videos by concurrently pairing them with a semantically matching soundtrack (congruent audiovisual condition), a semantically non-matching soundtrack (incongruent audiovisual condition), or with no soundtrack (neutral video-only condition). We found that participants identified the suppressed visual events significantly faster (an earlier breakup of suppression) in the congruent audiovisual condition compared to the incongruent audiovisual condition and video-only condition. However, this facilitatory influence of semantic auditory input was only observed when audiovisual stimulation co-occurred. Our results suggest that the enhanced visual processing with a semantically congruent auditory input occurs due to audiovisual crossmodal processing rather than semantic priming, which may occur even when visual information is not available to visual awareness.
RCT of working memory training in ADHD: long-term near-transfer effects.
Hovik, Kjell Tore; Saunes, Brit-Kari; Aarlien, Anne Kristine; Egeland, Jens
2013-01-01
The aim of the study is to evaluate the long-term near-transfer effects of computerized working memory (WM) training on standard WM tasks in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Sixty-seven children aged 10-12 years in Vestfold/Telemark counties (Norway) diagnosed with F90.0 Hyperkinetic disorder (ICD-10) were randomly assigned to training or control group. The training group participated in a 25-day training program at school, while the control group received treatment-as-usual. Participants were tested one week before intervention, immediately after and eight months later. Based on a component analysis, six measures of WM were grouped into composites representing Visual, Auditory and Manipulation WM. The training group had significant long-term differential gains compared to the control group on all outcome measures. Performance gains for the training group were significantly higher in the visual domain than in the auditory domain. The differential gain in Manipulation WM persisted after controlling for an increase in simple storage capacity. Systematic training resulted in a long-term positive gain in performance on similar tasks, indicating the viability of training interventions for children with ADHD. The results provide evidence for both domain-general and domain-specific models. Far-transfer effects were not investigated in this article. Controlled-Trials.com ISRCTN19133620.
Temporal plasticity in auditory cortex improves neural discrimination of speech sounds
Engineer, Crystal T.; Shetake, Jai A.; Engineer, Navzer D.; Vrana, Will A.; Wolf, Jordan T.; Kilgard, Michael P.
2017-01-01
Background Many individuals with language learning impairments exhibit temporal processing deficits and degraded neural responses to speech sounds. Auditory training can improve both the neural and behavioral deficits, though significant deficits remain. Recent evidence suggests that vagus nerve stimulation (VNS) paired with rehabilitative therapies enhances both cortical plasticity and recovery of normal function. Objective/Hypothesis We predicted that pairing VNS with rapid tone trains would enhance the primary auditory cortex (A1) response to unpaired novel speech sounds. Methods VNS was paired with tone trains 300 times per day for 20 days in adult rats. Responses to isolated speech sounds, compressed speech sounds, word sequences, and compressed word sequences were recorded in A1 following the completion of VNS-tone train pairing. Results Pairing VNS with rapid tone trains resulted in stronger, faster, and more discriminable A1 responses to speech sounds presented at conversational rates. Conclusion This study extends previous findings by documenting that VNS paired with rapid tone trains altered the neural response to novel unpaired speech sounds. Future studies are necessary to determine whether pairing VNS with appropriate auditory stimuli could potentially be used to improve both neural responses to speech sounds and speech perception in individuals with receptive language disorders. PMID:28131520
Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano
2013-01-01
The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli.
Exploring the role of auditory analysis in atypical compared to typical language development.
Grube, Manon; Cooper, Freya E; Kumar, Sukhbinder; Kelly, Tom; Griffiths, Timothy D
2014-02-01
The relationship between auditory processing and language skills has been debated for decades. Previous findings have been inconsistent, both in typically developing and impaired subjects, including those with dyslexia or specific language impairment. Whether correlations between auditory and language skills are consistent between different populations has hardly been addressed at all. The present work presents an exploratory approach of testing for patterns of correlations in a range of measures of auditory processing. In a recent study, we reported findings from a large cohort of eleven-year olds on a range of auditory measures and the data supported a specific role for the processing of short sequences in pitch and time in typical language development. Here we tested whether a group of individuals with dyslexic traits (DT group; n = 28) from the same year group would show the same pattern of correlations between auditory and language skills as the typically developing group (TD group; n = 173). Regarding the raw scores, the DT group showed a significantly poorer performance on the language but not the auditory measures, including measures of pitch, time and rhythm, and timbre (modulation). In terms of correlations, there was a tendency to decrease in correlations between short-sequence processing and language skills, contrasted by a significant increase in correlation for basic, single-sound processing, in particular in the domain of modulation. The data support the notion that the fundamental relationship between auditory and language skills might differ in atypical compared to typical language development, with the implication that merging data or drawing inference between populations might be problematic. Further examination of the relationship between both basic sound feature analysis and music-like sound analysis and language skills in impaired populations might allow the development of appropriate training strategies. These might include types of musical training to augment language skills via their common bases in sound sequence analysis. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Examining neural plasticity and cognitive benefit through the unique lens of musical training.
Moreno, Sylvain; Bidelman, Gavin M
2014-02-01
Training programs aimed to alleviate or improve auditory-cognitive abilities have either experienced mixed success or remain to be fully validated. The limited benefits of such regimens are largely attributable to our weak understanding of (i) how (and which) interventions provide the most robust and long lasting improvements to cognitive and perceptual abilities and (ii) how the neural mechanisms which underlie such abilities are positively modified by certain activities and experience. Recent studies indicate that music training provides robust, long-lasting biological benefits to auditory function. Importantly, the behavioral advantages conferred by musical experience extend beyond simple enhancements to perceptual abilities and even impact non-auditory functions necessary for higher-order aspects of cognition (e.g., working memory, intelligence). Collectively, preliminary findings indicate that alternative forms of arts engagement (e.g., visual arts training) may not yield such widespread enhancements, suggesting that music expertise uniquely taps and refines a hierarchy of brain networks subserving a variety of auditory as well as domain-general cognitive mechanisms. We infer that transfer from specific music experience to broad cognitive benefit might be mediated by the degree to which a listener's musical training tunes lower- (e.g., perceptual) and higher-order executive functions, and the coordination between these processes. Ultimately, understanding the broad impact of music on the brain will not only provide a more holistic picture of auditory processing and plasticity, but may help inform and tailor remediation and training programs designed to improve perceptual and cognitive benefits in human listeners. Copyright © 2013 Elsevier B.V. All rights reserved.
Graulty, Christian; Papaioannou, Orestis; Bauer, Phoebe; Pitts, Michael A; Canseco-Gonzalez, Enriqueta
2018-04-01
In auditory-visual sensory substitution, visual information (e.g., shape) can be extracted through strictly auditory input (e.g., soundscapes). Previous studies have shown that image-to-sound conversions that follow simple rules [such as the Meijer algorithm; Meijer, P. B. L. An experimental system for auditory image representation. Transactions on Biomedical Engineering, 39, 111-121, 1992] are highly intuitive and rapidly learned by both blind and sighted individuals. A number of recent fMRI studies have begun to explore the neuroplastic changes that result from sensory substitution training. However, the time course of cross-sensory information transfer in sensory substitution is largely unexplored and may offer insights into the underlying neural mechanisms. In this study, we recorded ERPs to soundscapes before and after sighted participants were trained with the Meijer algorithm. We compared these posttraining versus pretraining ERP differences with those of a control group who received the same set of 80 auditory/visual stimuli but with arbitrary pairings during training. Our behavioral results confirmed the rapid acquisition of cross-sensory mappings, and the group trained with the Meijer algorithm was able to generalize their learning to novel soundscapes at impressive levels of accuracy. The ERP results revealed an early cross-sensory learning effect (150-210 msec) that was significantly enhanced in the algorithm-trained group compared with the control group as well as a later difference (420-480 msec) that was unique to the algorithm-trained group. These ERP modulations are consistent with previous fMRI results and provide additional insight into the time course of cross-sensory information transfer in sensory substitution.
Real-time classification of auditory sentences using evoked cortical activity in humans
NASA Astrophysics Data System (ADS)
Moses, David A.; Leonard, Matthew K.; Chang, Edward F.
2018-06-01
Objective. Recent research has characterized the anatomical and functional basis of speech perception in the human auditory cortex. These advances have made it possible to decode speech information from activity in brain regions like the superior temporal gyrus, but no published work has demonstrated this ability in real-time, which is necessary for neuroprosthetic brain-computer interfaces. Approach. Here, we introduce a real-time neural speech recognition (rtNSR) software package, which was used to classify spoken input from high-resolution electrocorticography signals in real-time. We tested the system with two human subjects implanted with electrode arrays over the lateral brain surface. Subjects listened to multiple repetitions of ten sentences, and rtNSR classified what was heard in real-time from neural activity patterns using direct sentence-level and HMM-based phoneme-level classification schemes. Main results. We observed single-trial sentence classification accuracies of 90% or higher for each subject with less than 7 minutes of training data, demonstrating the ability of rtNSR to use cortical recordings to perform accurate real-time speech decoding in a limited vocabulary setting. Significance. Further development and testing of the package with different speech paradigms could influence the design of future speech neuroprosthetic applications.
The effects of context and musical training on auditory temporal-interval discrimination.
Banai, Karen; Fisher, Shirley; Ganot, Ron
2012-02-01
Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.
Yu, Jyaehyoung; Jeon, Hanjae; Song, Changgeun; Han, Woojae
2017-01-01
The goal of the present study was to develop an auditory training program using a mobile device and to test its efficacy by applying it to older adults suffering from moderate-to-severe sensorineural hearing loss. Among the 20 elderly hearing-impaired listeners who participated, 10 were randomly assigned to a training group (TG) and 10 were assigned to a non-training group (NTG) as a control. As a baseline, all participants were measured by vowel, consonant and sentence tests. In the experiment, the TG had been trained for 4 weeks using a mobile program, which had four levels and consisted of 10 Korean nonsense syllables, with each level completed in 1 week. In contrast, traditional auditory training had been provided for the NTG during the same period. To evaluate whether a training effect was achieved, the two groups also carried out the same tests as the baseline after completing the experiment. The results showed that performance on the consonant and sentence tests in the TG was significantly increased compared with that of the NTG. Also, improved scores of speech perception were retained at 2 weeks after the training was completed. However, vowel scores were not changed after the 4-week training in both the TG and the NTG. This result pattern suggests that a moderate amount of auditory training using the mobile device with cost-effective and minimal supervision is useful when it is used to improve the speech understanding of older adults with hearing loss. Geriatr Gerontol Int 2017; 17: 61-68. © 2015 Japan Geriatrics Society.
The plastic ear and perceptual relearning in auditory spatial perception
Carlile, Simon
2014-01-01
The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10–60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5–10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis. PMID:25147497
Brasileiro, A; Gama, G; Trigueiro, L; Ribeiro, T; Silva, E; Galvão, É; Lindquist, A
2015-02-01
Stroke is an important causal factor of deficiency and functional dependence worldwide. To determine the immediate effects of visual and auditory biofeedback, combined with partial body weight supported (PBWS) treadmill training on the gait of individuals with chronic hemiparesis. Randomized controlled trial. Outpatient rehabilitation hospital. Thirty subjects with chronic hemiparesis and ability to walk with some help. Participants were randomized to a control group that underwent only PBWS treadmill training; or experimental I group with visual biofeedback from the display monitor, in the form of symbolic feet as the subject took a step; or experimental group II with auditory biofeedback associated display, using a metronome at 115% of the individual's preferred cadence. They trained for 20 minutes and were evaluated before and after training. Spatio-temporal and angular gait variables were obtained by kinematics from the Qualisys Motion Analysis system. Increases in speed and stride length were observed for all groups over time (speed: F=25.63; P<0.001; stride length: F=27.18; P<0.001), as well as changes in hip and ankle range of motion - ROM (hip ROM: F=14.43; P=0.001; ankle ROM: F=4.76; P=0.038), with no time*groups interaction. Other spatio-temporal and angular parameters remain unchanged. Visual biofeedback and auditory biofeedback had no influence on PBWS treadmill training of individuals with chronic hemiparesis, in short term. Additional studies are needed to determine whether, in long term, the biofeedback will promote additional benefit to the PBWS treadmill training. The findings of this study indicate that visual and auditory biofeedback does not bring immediate benefits on PBWS treadmill training of individuals with chronic hemiparesis. This suggest that, for additional benefits are achieved with biofeedback, effects should be investigated after long-term training, which may determine if some kind of biofeedback is superior to another to improve the hemiparetic gait.
ERIC Educational Resources Information Center
Southwestern Region Deaf-Blind Center, Sacramento, CA.
The document contains 11 papers presented at a workshop sponsored by the Southwestern Region Deaf-Blind Center on the identification, assessment, and training of the deaf blind and multiply handicapped child. Entries include the following titles and authors: "Auditory Assessment of the Multihandicapped Deaf-Blind Child" (auditory evaluation of…
Effects of Lips and Hands on Auditory Learning of Second-Language Speech Sounds
ERIC Educational Resources Information Center
Hirata, Yukari; Kelly, Spencer D.
2010-01-01
Purpose: Previous research has found that auditory training helps native English speakers to perceive phonemic vowel length contrasts in Japanese, but their performance did not reach native levels after training. Given that multimodal information, such as lip movement and hand gesture, influences many aspects of native language processing, the…
Auditory Learning Using a Portable Real-Time Vocoder: Preliminary Findings
ERIC Educational Resources Information Center
Casserly, Elizabeth D.; Pisoni, David B.
2015-01-01
Purpose: Although traditional study of auditory training has been in controlled laboratory settings, interest has been increasing in more interactive options. The authors examine whether such interactive training can result in short-term perceptual learning, and the range of perceptual skills it impacts. Method: Experiments 1 (N = 37) and 2 (N =…
ERIC Educational Resources Information Center
Mullen, Stuart; Dixon, Mark R.; Belisle, Jordan; Stanley, Caleb
2017-01-01
The current study sought to evaluate the efficacy of a stimulus equivalence training procedure in establishing auditory-tactile-visual stimulus classes with 2 children with autism and developmental delays. Participants were exposed to vocal-tactile (A-B) and tactile-picture (B-C) conditional discrimination training and were tested for the…
Combined Auditory and Vibrotactile Feedback for Human-Machine-Interface Control.
Thorp, Elias B; Larson, Eric; Stepp, Cara E
2014-01-01
The purpose of this study was to determine the effect of the addition of binary vibrotactile stimulation to continuous auditory feedback (vowel synthesis) for human-machine interface (HMI) control. Sixteen healthy participants controlled facial surface electromyography to achieve 2-D targets (vowels). Eight participants used only real-time auditory feedback to locate targets whereas the other eight participants were additionally alerted to having achieved targets with confirmatory vibrotactile stimulation at the index finger. All participants trained using their assigned feedback modality (auditory alone or combined auditory and vibrotactile) over three sessions on three days and completed a fourth session on the third day using novel targets to assess generalization. Analyses of variance performed on the 1) percentage of targets reached and 2) percentage of trial time at the target revealed a main effect for feedback modality: participants using combined auditory and vibrotactile feedback performed significantly better than those using auditory feedback alone. No effect was found for session or the interaction of feedback modality and session, indicating a successful generalization to novel targets but lack of improvement over training sessions. Future research is necessary to determine the cognitive cost associated with combined auditory and vibrotactile feedback during HMI control.
Is auditory perceptual timing a core deficit of developmental coordination disorder?
Trainor, Laurel J; Chang, Andrew; Cairney, John; Li, Yao-Chuen
2018-05-09
Time is an essential dimension for perceiving and processing auditory events, and for planning and producing motor behaviors. Developmental coordination disorder (DCD) is a neurodevelopmental disorder affecting 5-6% of children that is characterized by deficits in motor skills. Studies show that children with DCD have motor timing and sensorimotor timing deficits. We suggest that auditory perceptual timing deficits may also be core characteristics of DCD. This idea is consistent with evidence from several domains, (1) motor-related brain regions are often involved in auditory timing process; (2) DCD has high comorbidity with dyslexia and attention deficit hyperactivity, which are known to be associated with auditory timing deficits; (3) a few studies report deficits in auditory-motor timing among children with DCD; and (4) our preliminary behavioral and neuroimaging results show that children with DCD at age 6 and 7 have deficits in auditory time discrimination compared to typically developing children. We propose directions for investigating auditory perceptual timing processing in DCD that use various behavioral and neuroimaging approaches. From a clinical perspective, research findings can potentially benefit our understanding of the etiology of DCD, identify early biomarkers of DCD, and can be used to develop evidence-based interventions for DCD involving auditory-motor training. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.
Serino, Andrea; Canzoneri, Elisa; Marzolla, Marilena; di Pellegrino, Giuseppe; Magosso, Elisa
2015-01-01
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data. PMID:25698947
Serino, Andrea; Canzoneri, Elisa; Marzolla, Marilena; di Pellegrino, Giuseppe; Magosso, Elisa
2015-01-01
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data.
Revisiting the "enigma" of musicians with dyslexia: Auditory sequencing and speech abilities.
Zuk, Jennifer; Bishop-Liebler, Paula; Ozernov-Palchik, Ola; Moore, Emma; Overy, Katie; Welch, Graham; Gaab, Nadine
2017-04-01
Previous research has suggested a link between musical training and auditory processing skills. Musicians have shown enhanced perception of auditory features critical to both music and speech, suggesting that this link extends beyond basic auditory processing. It remains unclear to what extent musicians who also have dyslexia show these specialized abilities, considering often-observed persistent deficits that coincide with reading impairments. The present study evaluated auditory sequencing and speech discrimination in 52 adults comprised of musicians with dyslexia, nonmusicians with dyslexia, and typical musicians. An auditory sequencing task measuring perceptual acuity for tone sequences of increasing length was administered. Furthermore, subjects were asked to discriminate synthesized syllable continua varying in acoustic components of speech necessary for intraphonemic discrimination, which included spectral (formant frequency) and temporal (voice onset time [VOT] and amplitude envelope) features. Results indicate that musicians with dyslexia did not significantly differ from typical musicians and performed better than nonmusicians with dyslexia for auditory sequencing as well as discrimination of spectral and VOT cues within syllable continua. However, typical musicians demonstrated superior performance relative to both groups with dyslexia for discrimination of syllables varying in amplitude information. These findings suggest a distinct profile of speech processing abilities in musicians with dyslexia, with specific weaknesses in discerning amplitude cues within speech. Because these difficulties seem to remain persistent in adults with dyslexia despite musical training, this study only partly supports the potential for musical training to enhance the auditory processing skills known to be crucial for literacy in individuals with dyslexia. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Thaut, M H; Leins, A K; Rice, R R; Argstatter, H; Kenyon, G P; McIntosh, G C; Bolay, H V; Fetter, M
2007-01-01
The effectiveness of 2 different types of gait training in stroke rehabilitation, rhythmic auditory stimulation (RAS) versus neurodevelopmental therapy (NDT)/Bobath- based training, was compared in 2 groups of hemiparetic stroke patients over a 3-week period of daily training (RAS group, n = 43; NDT/Bobath group =35). Mean entry date into the study was 21.3 days poststroke for the RAS group and 22.3 days for the control group. Patients entered the study as soon as they were able to complete 5 stride cycles with handheld assistance. Patients were closely equated by age, gender, and lesion site. Motor function in both groups was pre-assessed by the Barthel Index and the Fugl-Meyer Scales. Pre- to posttest measures showed a significant improvement in the RAS group for velocity (P = .006), stride length (P = .0001), cadence (P = .0001) and symmetry (P = .0049) over the NDT/Bobath group. Effect sizes for RAS over NDT/Bobath training were 13.1 m/min for velocity, 0.18 m for stride length, and 19 steps/min for cadence. The data show that after 3 weeks of gait training, RAS is an effective therapeutic method to enhance gait training in hemiparetic stroke rehabilitation. Gains were significantly higher for RAS compared to NDT/Bobath training.
Protocol for a randomized controlled trial of piano training on cognitive and psychosocial outcomes.
Bugos, Jennifer
2018-05-09
Age-related cognitive decline and cognitive impairment represent the fastest growing health epidemic worldwide among those over 60. There is a critical need to identify effective and novel complex cognitive interventions to promote successful aging. Since piano training engages cognitive and bimanual sensorimotor processing, we hypothesize that piano training may serve as an effective cognitive intervention, as it requires sustained attention and engages an executive network that supports generalized cognition and emotional control. Here, I describe the protocol of a randomized controlled trial (RCT) to evaluate the impact of piano training on cognitive performance in adulthood, a period associated with decreased neuroplasticity. In this cluster RCT, healthy older adults (age 60-80) were recruited and screened to control for confounding variables. Eligible participants completed an initial 3-h assessment of standardized cognitive and psychosocial measures. Participants were stratified by age, education, and estimate of intelligence and randomly assigned to one of three groups: piano training, computer brain training, or a no-treatment control group. Computer brain training consisted of progressively difficult auditory cognitive exercises (Brain HQ; Posit Science, 2010). Participants assigned to training groups completed a 16-week program that met twice a week for 90 minutes. Upon program completion and at a 3-month follow-up, training participants and no-treatment controls completed a posttest visit lasting 2.5 hours. © 2018 New York Academy of Sciences.
A robotic voice simulator and the interactive training for hearing-impaired people.
Sawada, Hideyuki; Kitani, Mitsuki; Hayashi, Yasumori
2008-01-01
A talking and singing robot which adaptively learns the vocalization skill by means of an auditory feedback learning algorithm is being developed. The robot consists of motor-controlled vocal organs such as vocal cords, a vocal tract and a nasal cavity to generate a natural voice imitating a human vocalization. In this study, the robot is applied to the training system of speech articulation for the hearing-impaired, because the robot is able to reproduce their vocalization and to teach them how it is to be improved to generate clear speech. The paper briefly introduces the mechanical construction of the robot and how it autonomously acquires the vocalization skill in the auditory feedback learning by listening to human speech. Then the training system is described, together with the evaluation of the speech training by auditory impaired people.
Recent advances in exploring the neural underpinnings of auditory scene perception
Snyder, Joel S.; Elhilali, Mounya
2017-01-01
Studies of auditory scene analysis have traditionally relied on paradigms using artificial sounds—and conventional behavioral techniques—to elucidate how we perceptually segregate auditory objects or streams from each other. In the past few decades, however, there has been growing interest in uncovering the neural underpinnings of auditory segregation using human and animal neuroscience techniques, as well as computational modeling. This largely reflects the growth in the fields of cognitive neuroscience and computational neuroscience and has led to new theories of how the auditory system segregates sounds in complex arrays. The current review focuses on neural and computational studies of auditory scene perception published in the past few years. Following the progress that has been made in these studies, we describe (1) theoretical advances in our understanding of the most well-studied aspects of auditory scene perception, namely segregation of sequential patterns of sounds and concurrently presented sounds; (2) the diversification of topics and paradigms that have been investigated; and (3) how new neuroscience techniques (including invasive neurophysiology in awake humans, genotyping, and brain stimulation) have been used in this field. PMID:28199022
Hierarchical Processing of Auditory Objects in Humans
Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D
2007-01-01
This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641
Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model
Rallapalli, Varsha H.
2016-01-01
Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to: (a) reduce S + N envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.
Acoustic transient classification with a template correlation processor.
Edwards, R T
1999-10-01
I present an architecture for acoustic pattern classification using trinary-trinary template correlation. In spite of its computational simplicity, the algorithm and architecture represent a method which greatly reduces bandwidth of the input, storage requirements of the classifier memory, and power consumption of the system without compromising classification accuracy. The linear system should be amenable to training using recently-developed methods such as Independent Component Analysis (ICA), and we predict that behavior will be qualitatively similar to that of structures in the auditory cortex.
Audiomotor Perceptual Training Enhances Speech Intelligibility in Background Noise.
Whitton, Jonathon P; Hancock, Kenneth E; Shannon, Jeffrey M; Polley, Daniel B
2017-11-06
Sensory and motor skills can be improved with training, but learning is often restricted to practice stimuli. As an exception, training on closed-loop (CL) sensorimotor interfaces, such as action video games and musical instruments, can impart a broad spectrum of perceptual benefits. Here we ask whether computerized CL auditory training can enhance speech understanding in levels of background noise that approximate a crowded restaurant. Elderly hearing-impaired subjects trained for 8 weeks on a CL game that, like a musical instrument, challenged them to monitor subtle deviations between predicted and actual auditory feedback as they moved their fingertip through a virtual soundscape. We performed our study as a randomized, double-blind, placebo-controlled trial by training other subjects in an auditory working-memory (WM) task. Subjects in both groups improved at their respective auditory tasks and reported comparable expectations for improved speech processing, thereby controlling for placebo effects. Whereas speech intelligibility was unchanged after WM training, subjects in the CL training group could correctly identify 25% more words in spoken sentences or digit sequences presented in high levels of background noise. Numerically, CL audiomotor training provided more than three times the benefit of our subjects' hearing aids for speech processing in noisy listening conditions. Gains in speech intelligibility could be predicted from gameplay accuracy and baseline inhibitory control. However, benefits did not persist in the absence of continuing practice. These studies employ stringent clinical standards to demonstrate that perceptual learning on a computerized audio game can transfer to "real-world" communication challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thalamic and cortical pathways supporting auditory processing
Lee, Charles C.
2012-01-01
The neural processing of auditory information engages pathways that begin initially at the cochlea and that eventually reach forebrain structures. At these higher levels, the computations necessary for extracting auditory source and identity information rely on the neuroanatomical connections between the thalamus and cortex. Here, the general organization of these connections in the medial geniculate body (thalamus) and the auditory cortex is reviewed. In addition, we consider two models organizing the thalamocortical pathways of the non-tonotopic and multimodal auditory nuclei. Overall, the transfer of information to the cortex via the thalamocortical pathways is complemented by the numerous intracortical and corticocortical pathways. Although interrelated, the convergent interactions among thalamocortical, corticocortical, and commissural pathways enable the computations necessary for the emergence of higher auditory perception. PMID:22728130
Auditory and Visual Interhemispheric Communication in Musicians and Non-Musicians
Woelfle, Rebecca; Grahn, Jessica A.
2013-01-01
The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer. PMID:24386382
[Can music therapy for patients with neurological disorders?].
Myskja, Audun
2004-12-16
Recent developments in brain research and in the field of music therapy have led to the development of music-based methods specifically aimed at relieving symptoms of Parkinson's disease and other neurologic disorders. Rhythmic auditory stimulation uses external rhythmic auditory cues from song, music or metronome to aid patients improving their walking functioning and has been shown to be effective both within sessions and as a result of training over time. Melodic intonation therapy and related vocal techniques can improve expressive dysphasia and aid rehabilitation of neurologic disorders, particularly Parkinson's disease, stroke and developmental disorders.
ERIC Educational Resources Information Center
Annett, John
An experienced person, in such tasks as sonar detection and recognition, has a considerable superiority over a machine recognition system in auditory pattern recognition. However, people require extensive exposure to auditory patterns before achieving a high level of performance. In an attempt to discover a method of training people to recognize…
A Learning Print Approach Toward Perceptual Training and Reading in Kindergarten.
ERIC Educational Resources Information Center
D'Annunzio, Anthony
The purpose of this research study was to compare two kinds of perceptual training for kindergarteners. A control group was grouped for instruction in visual or auditory perception. The children whose weaker modality was auditory received an "Open Court" program which stressed the acquisition of phonetic skills. The Frostig-Horne program was given…
ERIC Educational Resources Information Center
Iverson, Paul; Pinet, Melanie; Evans, Bronwen G.
2012-01-01
This study examined whether high-variability auditory training on natural speech can benefit experienced second-language English speakers who already are exposed to natural variability in their daily use of English. The subjects were native French speakers who had learned English in school; experienced listeners were tested in England and the less…
Auditory integration training for children with autism: no behavioral benefits detected.
Mudford, O C; Cross, B A; Breen, S; Cullen, C; Reeves, D; Gould, J; Douglas, J
2000-03-01
Auditory integration training and a control treatment were provided for 16 children with autism in a crossover experimental design. Measures, blind to treatment order, included parent and teacher ratings of behavior, direct observational recordings, IQ, language, and social/adaptive tests. Significant differences tended to show that the control condition was superior on parent-rated measures of hyperactivity and on direct observational measures of ear-occlusion. No differences were detected on teacher-rated measures. Children's IQs and language comprehension did not increase, but adaptive/social behavior scores and expressive language quotients decreased. The majority of parents (56%) were unable to report in retrospect when their child had received auditory integration training. No individual child was identified as benefiting clinically or educationally from the treatment.
Perceptual constancy in auditory perception of distance to railway tracks.
De Coensel, Bert; Nilsson, Mats E; Berglund, Birgitta; Brown, A L
2013-07-01
Distance to a sound source can be accurately estimated solely from auditory information. With a sound source such as a train that is passing by at a relatively large distance, the most important auditory information for the listener for estimating its distance consists of the intensity of the sound, spectral changes in the sound caused by air absorption, and the motion-induced rate of change of intensity. However, these cues are relative because prior information/experience of the sound source-its source power, its spectrum and the typical speed at which it moves-is required for such distance estimates. This paper describes two listening experiments that allow investigation of further prior contextual information taken into account by listeners-viz., whether they are indoors or outdoors. Asked to estimate the distance to the track of a railway, it is shown that listeners assessing sounds heard inside the dwelling based their distance estimates on the expected train passby sound level outdoors rather than on the passby sound level actually experienced indoors. This form of perceptual constancy may have consequences for the assessment of annoyance caused by railway noise.
Injury- and Use-Related Plasticity in the Adult Auditory System.
ERIC Educational Resources Information Center
Irvine, Dexter R. F.
2000-01-01
This article discusses findings concerning the plasticity of auditory cortical processing mechanisms in adults, including the effects of restricted cochlear damage or behavioral training with acoustic stimuli on the frequency selectivity of auditory cortical neurons and evidence for analogous injury- and use-related plasticity in the adult human…
Research and Studies Directory for Manpower, Personnel, and Training
1989-05-01
LOUIS MO 314-889-6805 CONTROL OF BIOSONAR BEHAVIOR BY THE AUDITORY CORTEX TANGNEY J AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 202-767-5021 A MODEL FOR...VISUAL ATTENTION AUDITORY PERCEPTION OF COMPLEX SOUNDS CONTROL OF BIOSONAR BEHAVIOR BY THE AUDITORY CORTEX EYE MOVEMENTS AND SPATIAL PATTERN VISION EYE
Effect of Virtual Reality on Cognition in Stroke Patients
Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young
2011-01-01
Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159
Mapping perception to action in piano practice: a longitudinal DC-EEG study
Bangert, Marc; Altenmüller, Eckart O
2003-01-01
Background Performing music requires fast auditory and motor processing. Regarding professional musicians, recent brain imaging studies have demonstrated that auditory stimulation produces a co-activation of motor areas, whereas silent tapping of musical phrases evokes a co-activation in auditory regions. Whether this is obtained via a specific cerebral relay station is unclear. Furthermore, the time course of plasticity has not yet been addressed. Results Changes in cortical activation patterns (DC-EEG potentials) induced by short (20 minute) and long term (5 week) piano learning were investigated during auditory and motoric tasks. Two beginner groups were trained. The 'map' group was allowed to learn the standard piano key-to-pitch map. For the 'no-map' group, random assignment of keys to tones prevented such a map. Auditory-sensorimotor EEG co-activity occurred within only 20 minutes. The effect was enhanced after 5-week training, contributing elements of both perception and action to the mental representation of the instrument. The 'map' group demonstrated significant additional activity of right anterior regions. Conclusion We conclude that musical training triggers instant plasticity in the cortex, and that right-hemispheric anterior areas provide an audio-motor interface for the mental representation of the keyboard. PMID:14575529
Cross-modal prediction changes the timing of conscious access during the motion-induced blindness.
Chang, Acer Y C; Kanai, Ryota; Seth, Anil K
2015-01-01
Despite accumulating evidence that perceptual predictions influence perceptual content, the relations between these predictions and conscious contents remain unclear, especially for cross-modal predictions. We examined whether predictions of visual events by auditory cues can facilitate conscious access to the visual stimuli. We trained participants to learn associations between auditory cues and colour changes. We then asked whether congruency between auditory cues and target colours would speed access to consciousness. We did this by rendering a visual target subjectively invisible using motion-induced blindness and then gradually changing its colour while presenting congruent or incongruent auditory cues. Results showed that the visual target gained access to consciousness faster in congruent than in incongruent trials; control experiments excluded potentially confounding effects of attention and motor response. The expectation effect was gradually established over blocks suggesting a role for extensive training. Overall, our findings show that predictions learned through cross-modal training can facilitate conscious access to visual stimuli. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Phillips, Rachel; Madhavan, Poornima
2010-01-01
The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence interaction with automation via significant effects on trust and system utilization. These findings have implications for both automation design and operator training.
EEG Responses to Auditory Stimuli for Automatic Affect Recognition
Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin
2016-01-01
Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410
Training to Facilitate Adaptation to Novel Sensory Environments
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.
2010-01-01
After spaceflight, the process of readapting to Earth s gravity causes locomotor dysfunction. We are developing a gait training countermeasure to facilitate adaptive responses in locomotor function. Our training system is comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to train subjects to rapidly adapt their gait patterns to changes in the sensory environment. The goal of our present study was to determine if training improved both the locomotor and dual-tasking ability responses to a novel sensory environment and to quantify the retention of training. Subjects completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill without any support surface or visual alterations. To determine the efficacy of training, all subjects were then tested using a novel visual flow and support surface movement not previously experienced during training. This test was performed 20 minutes, 1 week, and 1, 3, and 6 months after the final training session. Stride frequency and auditory reaction time were collected as measures of postural stability and cognitive effort, respectively. Subjects who received training showed less alteration in stride frequency and auditory reaction time compared to controls. Trained subjects maintained their level of performance over 6 months. We conclude that, with training, individuals became more proficient at walking in novel discordant sensorimotor conditions and were able to devote more attention to competing tasks.
Long-term music training modulates the recalibration of audiovisual simultaneity.
Jicol, Crescent; Proulx, Michael J; Pollick, Frank E; Petrini, Karin
2018-07-01
To overcome differences in physical transmission time and neural processing, the brain adaptively recalibrates the point of simultaneity between auditory and visual signals by adapting to audiovisual asynchronies. Here, we examine whether the prolonged recalibration process of passively sensed visual and auditory signals is affected by naturally occurring multisensory training known to enhance audiovisual perceptual accuracy. Hence, we asked a group of drummers, of non-drummer musicians and of non-musicians to judge the audiovisual simultaneity of musical and non-musical audiovisual events, before and after adaptation with two fixed audiovisual asynchronies. We found that the recalibration for the musicians and drummers was in the opposite direction (sound leading vision) to that of non-musicians (vision leading sound), and change together with both increased music training and increased perceptual accuracy (i.e. ability to detect asynchrony). Our findings demonstrate that long-term musical training reshapes the way humans adaptively recalibrate simultaneity between auditory and visual signals.
Immersive audiomotor game play enhances neural and perceptual salience of weak signals in noise
Whitton, Jonathon P.; Hancock, Kenneth E.; Polley, Daniel B.
2014-01-01
All sensory systems face the fundamental challenge of encoding weak signals in noisy backgrounds. Although discrimination abilities can improve with practice, these benefits rarely generalize to untrained stimulus dimensions. Inspired by recent findings that action video game training can impart a broader spectrum of benefits than traditional perceptual learning paradigms, we trained adult humans and mice in an immersive audio game that challenged them to forage for hidden auditory targets in a 2D soundscape. Both species learned to modulate their angular search vectors and target approach velocities based on real-time changes in the level of a weak tone embedded in broadband noise. In humans, mastery of this tone in noise task generalized to an improved ability to comprehend spoken sentences in speech babble noise. Neural plasticity in the auditory cortex of trained mice supported improved decoding of low-intensity sounds at the training frequency and an enhanced resistance to interference from background masking noise. These findings highlight the potential to improve the neural and perceptual salience of degraded sensory stimuli through immersive computerized games. PMID:24927596
Immersive audiomotor game play enhances neural and perceptual salience of weak signals in noise.
Whitton, Jonathon P; Hancock, Kenneth E; Polley, Daniel B
2014-06-24
All sensory systems face the fundamental challenge of encoding weak signals in noisy backgrounds. Although discrimination abilities can improve with practice, these benefits rarely generalize to untrained stimulus dimensions. Inspired by recent findings that action video game training can impart a broader spectrum of benefits than traditional perceptual learning paradigms, we trained adult humans and mice in an immersive audio game that challenged them to forage for hidden auditory targets in a 2D soundscape. Both species learned to modulate their angular search vectors and target approach velocities based on real-time changes in the level of a weak tone embedded in broadband noise. In humans, mastery of this tone in noise task generalized to an improved ability to comprehend spoken sentences in speech babble noise. Neural plasticity in the auditory cortex of trained mice supported improved decoding of low-intensity sounds at the training frequency and an enhanced resistance to interference from background masking noise. These findings highlight the potential to improve the neural and perceptual salience of degraded sensory stimuli through immersive computerized games.
Is sensorimotor BCI performance influenced differently by mono, stereo, or 3-D auditory feedback?
McCreadie, Karl A; Coyle, Damien H; Prasad, Girijesh
2014-05-01
Imagination of movement can be used as a control method for a brain-computer interface (BCI) allowing communication for the physically impaired. Visual feedback within such a closed loop system excludes those with visual problems and hence there is a need for alternative sensory feedback pathways. In the context of substituting the visual channel for the auditory channel, this study aims to add to the limited evidence that it is possible to substitute visual feedback for its auditory equivalent and assess the impact this has on BCI performance. Secondly, the study aims to determine for the first time if the type of auditory feedback method influences motor imagery performance significantly. Auditory feedback is presented using a stepped approach of single (mono), double (stereo), and multiple (vector base amplitude panning as an audio game) loudspeaker arrangements. Visual feedback involves a ball-basket paradigm and a spaceship game. Each session consists of either auditory or visual feedback only with runs of each type of feedback presentation method applied in each session. Results from seven subjects across five sessions of each feedback type (visual, auditory) (10 sessions in total) show that auditory feedback is a suitable substitute for the visual equivalent and that there are no statistical differences in the type of auditory feedback presented across five sessions.
Bell, Brittany A; Phan, Mimi L; Vicario, David S
2015-03-01
How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions. Copyright © 2015 the American Physiological Society.
Auditory Temporal Acuity Probed With Cochlear Implant Stimulation and Cortical Recording
Kirby, Alana E.
2010-01-01
Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms. PMID:19923242
NASA Astrophysics Data System (ADS)
Widge, Alik S.; Moritz, Chet T.
2014-04-01
Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.
Xu, Yifang; Collins, Leslie M
2005-06-01
This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.
ERIC Educational Resources Information Center
Smith, Sherri L.; Saunders, Gabrielle H.; Chisolm, Theresa H.; Frederick, Melissa; Bailey, Beth A.
2016-01-01
Purpose: The purpose of this study was to determine if patient characteristics or clinical variables could predict who benefits from individual auditory training. Method: A retrospective series of analyses were performed using a data set from a large, multisite, randomized controlled clinical trial that compared the treatment effects of at-home…
ERIC Educational Resources Information Center
Tye-Murray, Nancy; Spehar, Brent; Barcroft, Joe; Sommers, Mitchell
2017-01-01
Purpose: The spacing effect in human memory research refers to situations in which people learn items better when they study items in spaced intervals rather than massed intervals. This investigation was conducted to compare the efficacy of meaning-oriented auditory training when administered with a spaced versus massed practice schedule. Method:…
ERIC Educational Resources Information Center
Ryan, Tamara E.
2014-01-01
The purpose of this study was to determine the effects of auditory integration training (AIT) on a component of the executive function of working memory; specifically, to determine if learning preferences might have an interaction with AIT to increase the outcome for some learners. The question asked by this quantitative pretest posttest design is…
ERIC Educational Resources Information Center
Howard, A. M.; Park, Chung Hyuk; Remy, S.
2012-01-01
The robotics field represents the integration of multiple facets of computer science and engineering. Robotics-based activities have been shown to encourage K-12 students to consider careers in computing and have even been adopted as part of core computer-science curriculum at a number of universities. Unfortunately, for students with visual…
1997-08-01
have difficulties dealing with the stress of the flight training environment. The DMT presents subjects with repeated subliminal exposure to a...ability (i.e., visual and auditory ) and flight training performance. Also, there have been some reports of success for using a variety of tests (e.g...has reported moderate correlations (.22 to .54) between a measure of dual-tasking ability (i.e., visual and auditory ) and flight training performance
Auditory Sensory Substitution is Intuitive and Automatic with Texture Stimuli
Stiles, Noelle R. B.; Shimojo, Shinsuke
2015-01-01
Millions of people are blind worldwide. Sensory substitution (SS) devices (e.g., vOICe) can assist the blind by encoding a video stream into a sound pattern, recruiting visual brain areas for auditory analysis via crossmodal interactions and plasticity. SS devices often require extensive training to attain limited functionality. In contrast to conventional attention-intensive SS training that starts with visual primitives (e.g., geometrical shapes), we argue that sensory substitution can be engaged efficiently by using stimuli (such as textures) associated with intrinsic crossmodal mappings. Crossmodal mappings link images with sounds and tactile patterns. We show that intuitive SS sounds can be matched to the correct images by naive sighted participants just as well as by intensively-trained participants. This result indicates that existing crossmodal interactions and amodal sensory cortical processing may be as important in the interpretation of patterns by SS as crossmodal plasticity (e.g., the strengthening of existing connections or the formation of new ones), especially at the earlier stages of SS usage. An SS training procedure based on crossmodal mappings could both considerably improve participant performance and shorten training times, thereby enabling SS devices to significantly expand blind capabilities. PMID:26490260
Pérez-Valenzuela, Catherine; Gárate-Pérez, Macarena F.; Sotomayor-Zárate, Ramón; Delano, Paul H.; Dagnino-Subiabre, Alexies
2016-01-01
Chronic stress impairs auditory attention in rats and monoamines regulate neurotransmission in the primary auditory cortex (A1), a brain area that modulates auditory attention. In this context, we hypothesized that norepinephrine (NE) levels in A1 correlate with the auditory attention performance of chronically stressed rats. The first objective of this research was to evaluate whether chronic stress affects monoamines levels in A1. Male Sprague–Dawley rats were subjected to chronic stress (restraint stress) and monoamines levels were measured by high performance liquid chromatographer (HPLC)-electrochemical detection. Chronically stressed rats had lower levels of NE in A1 than did controls, while chronic stress did not affect serotonin (5-HT) and dopamine (DA) levels. The second aim was to determine the effects of reboxetine (a selective inhibitor of NE reuptake) on auditory attention and NE levels in A1. Rats were trained to discriminate between two tones of different frequencies in a two-alternative choice task (2-ACT), a behavioral paradigm to study auditory attention in rats. Trained animals that reached a performance of ≥80% correct trials in the 2-ACT were randomly assigned to control and stress experimental groups. To analyze the effects of chronic stress on the auditory task, trained rats of both groups were subjected to 50 2-ACT trials 1 day before and 1 day after of the chronic stress period. A difference score (DS) was determined by subtracting the number of correct trials after the chronic stress protocol from those before. An unexpected result was that vehicle-treated control rats and vehicle-treated chronically stressed rats had similar performances in the attentional task, suggesting that repeated injections with vehicle were stressful for control animals and deteriorated their auditory attention. In this regard, both auditory attention and NE levels in A1 were higher in chronically stressed rats treated with reboxetine than in vehicle-treated animals. These results indicate that NE has a key role in A1 and attention of stressed rats during tone discrimination. PMID:28082872
Musical training during early childhood enhances the neural encoding of speech in noise
Strait, Dana L.; Parbery-Clark, Alexandra; Hittner, Emily; Kraus, Nina
2012-01-01
For children, learning often occurs in the presence of background noise. As such, there is growing desire to improve a child’s access to a target signal in noise. Given adult musicians’ perceptual and neural speech-in-noise enhancements, we asked whether similar effects are present in musically-trained children. We assessed the perception and subcortical processing of speech in noise and related cognitive abilities in musician and nonmusician children that were matched for a variety of overarching factors. Outcomes reveal that musicians’ advantages for processing speech in noise are present during pivotal developmental years. Supported by correlations between auditory working memory and attention and auditory brainstem response properties, we propose that musicians’ perceptual and neural enhancements are driven in a top-down manner by strengthened cognitive abilities with training. Our results may be considered by professionals involved in the remediation of language-based learning deficits, which are often characterized by poor speech perception in noise. PMID:23102977
Auditory Perceptual Learning in Adults with and without Age-Related Hearing Loss
Karawani, Hanin; Bitan, Tali; Attias, Joseph; Banai, Karen
2016-01-01
Introduction : Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL). Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL. Methods : Fifty-six listeners (60–72 y/o), 35 participants with ARHL, and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training, and no-training group). Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1) Speech-in-noise, (2) time compressed speech, and (3) competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results : Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions : ARHL did not preclude auditory perceptual learning but there was little generalization to untrained conditions. We suggest that most training-related changes occurred at higher level task-specific cognitive processes in both groups. However, these were enhanced by high quality perceptual representations in the normal-hearing group. In contrast, some training-related changes have also occurred at the level of phonemic representations in the ARHL group, consistent with an interaction between bottom-up and top-down processes. PMID:26869944
Biagianti, Bruno; Fisher, Melissa; Neilands, Torsten B.; Loewy, Rachel; Vinogradov, Sophia
2016-01-01
BACKGROUND Individuals with schizophrenia who engage in targeted cognitive training (TCT) of the auditory system show generalized cognitive improvements. The high degree of variability in cognitive gains maybe due to individual differences in the level of engagement of the underlying neural system target. METHODS 131 individuals with schizophrenia underwent 40 hours of TCT. We identified target engagement of auditory system processing efficiency by modeling subject-specific trajectories of auditory processing speed (APS) over time. Lowess analysis, mixed models repeated measures analysis, and latent growth curve modeling were used to examine whether APS trajectories were moderated by age and illness duration, and mediated improvements in cognitive outcome measures. RESULTS We observed signifcant improvements in APS from baseline to 20 hours of training (initial change), followed by a flat APS trajectory (plateau) at subsequent time-points. Participants showed inter-individual variability in the steepness of the initial APS change and in the APS plateau achieved and sustained between 20–40 hours. We found that participants who achieved the fastest APS plateau, showed the greatest transfer effects to untrained cognitive domains. CONCLUSIONS There is a significant association between an individual's ability to generate and sustain auditory processing efficiency and their degree of cognitive improvement after TCT, independent of baseline neurocognition. APS plateau may therefore represent a behavioral measure of target engagement mediating treatment response. Future studies should examine the optimal plateau of auditory processing efficiency required to induce significant cognitive improvements, in the context of inter-individual differences in neural plasticity and sensory system efficiency that characterize schizophrenia. PMID:27617637
Alpini, Dario; Cesarani, Antonio; Hahn, Ales
2007-01-01
Stress is a significant factor influencing the clinical course of tinnitus. The auditory system is particularly sensitive to the effects of various stress factors (chemical, oxidative, emotional, etc.). Different stages of reaction (alarm, resistance, exhaustion) lead to different characteristics of tinnitus and to different therapeutic approaches. Individual characteristics of stress reaction may explain different aspects of tinnitus in various patients with different responses to treatment, despite similar audiological and etiological factors. A model based on individual reactions to stress factors (stress-reaction tinnitus model, or SRTM) could explain tinnitus as an alarm signal. In each patient, stressors have to be identified during the alarm phase to prevent an evolution toward the resistance and exhaustion phases. In the exhaustion phase, chronic tinnitus is due to the organization of a paradoxical auditory memory and a pathologically shifted attention to tinnitus. The aim of our study is to describe a therapeutic proposal based on the SRTM by taking an educational approach to management of chronic tinnitus. The educational aspect is emphasized; thus, we named our approach tinnitus school. Selection of appropriate patients and follow-up is based on psychometrics of tinnitus and stress questionnaires, including a tinnitus reaction questionnaire, a tinnitus cognitive questionnaire, and a 20-item perceived stress questionnaire. Tinnitus school is a three-phase program: counseling, training, and home training. Training is based on a tinnitus-fitted physiotherapeutic protocol.
Effects of auditory radio interference on a fine, continuous, open motor skill.
Lazar, J M; Koceja, D M; Morris, H H
1995-06-01
The effects of human speech on a fine, continuous, and open motor skill were examined. A tape of auditory human radio traffic was injected into a tank gunnery simulator during each training session for 4 wk. of training for 3 hr. a week. The dependent variables were identification time, fire time, kill time, systems errors, and acquisition errors. These were measured by the Unit Conduct Of Fire Trainer (UCOFT). The interference was interjected into the UCOFT Tank Table VIII gunnery test. A Solomon four-group design was used. A 2 x 2 analysis of variance was used to assess whether interference gunnery training resulted in improvements in interference posttest scores. During the first three weeks of training, the interference group committed 106% more systems errors and 75% more acquisition errors than the standard group. The interference training condition was associated with a significant improvement from pre- to posttest of 44% in over-all UCOFT scores; however, when examined on the posttest the standard training did not improve performance significantly over the same period. It was concluded that auditory radio interference degrades performance of this fine, continuous, open motor skill, and interference training appears to abate the effects of this degradation.
Schelinski, Stefanie; Riedel, Philipp; von Kriegstein, Katharina
2014-12-01
In auditory-only conditions, for example when we listen to someone on the phone, it is essential to fast and accurately recognize what is said (speech recognition). Previous studies have shown that speech recognition performance in auditory-only conditions is better if the speaker is known not only by voice, but also by face. Here, we tested the hypothesis that such an improvement in auditory-only speech recognition depends on the ability to lip-read. To test this we recruited a group of adults with autism spectrum disorder (ASD), a condition associated with difficulties in lip-reading, and typically developed controls. All participants were trained to identify six speakers by name and voice. Three speakers were learned by a video showing their face and three others were learned in a matched control condition without face. After training, participants performed an auditory-only speech recognition test that consisted of sentences spoken by the trained speakers. As a control condition, the test also included speaker identity recognition on the same auditory material. The results showed that, in the control group, performance in speech recognition was improved for speakers known by face in comparison to speakers learned in the matched control condition without face. The ASD group lacked such a performance benefit. For the ASD group auditory-only speech recognition was even worse for speakers known by face compared to speakers not known by face. In speaker identity recognition, the ASD group performed worse than the control group independent of whether the speakers were learned with or without face. Two additional visual experiments showed that the ASD group performed worse in lip-reading whereas face identity recognition was within the normal range. The findings support the view that auditory-only communication involves specific visual mechanisms. Further, they indicate that in ASD, speaker-specific dynamic visual information is not available to optimize auditory-only speech recognition. Copyright © 2014 Elsevier Ltd. All rights reserved.
Devecioğlu, İsmail; Güçlü, Burak
2015-03-15
Rat skin is innervated by mechanoreceptive fibers similar to those in other mammals. Tactile experiments with behaving rats mostly focus on the vibrissal system which does not exist in humans. The aim of this study was to design and implement a novel vibrotactile system to stimulate the glabrous skin of behaving rats during operant conditioning. A computer-controlled vibrotactile system was developed for various tasks in which the volar surface of unrestrained rats' fore- and hindpaws was stimulated in an operant chamber. The operant chamber was built from off-the-shelf components. A highly accurate electrodynamic shaker with a novel multi-probe design was used for generating mechanical displacements. Twenty-five rats were trained for four sequential tasks: (A) middle-lever (trial start signal) press, (B) side-lever press with an associated visual cue, (C) similar to (B) with the addition of an auditory/tactile stimulus, (D) auditory/tactile detection (yes/no) task. Out of 9 rats which could complete the tactile version of this training schedule, 5 had over 70% accuracy in the tactile version of the detection task. Unlike actuators for stimulating whiskers, this system does not require a particular head/body alignment and can be used with freely behaving animals. The vibrotactile system was found to be effective for conditioning freely behaving rats based on stimuli applied on the glabrous skin. However, detection accuracies were lower compared to those in tasks involving whisker stimulation reported previously, probably due to differences in cortical processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Auditory Reserve and the Legacy of Auditory Experience
Skoe, Erika; Kraus, Nina
2014-01-01
Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function. PMID:25405381
Enhanced auditory temporal gap detection in listeners with musical training.
Mishra, Srikanta K; Panda, Manas R; Herbert, Carolyn
2014-08-01
Many features of auditory perception are positively altered in musicians. Traditionally auditory mechanisms in musicians are investigated using the Western-classical musician model. The objective of the present study was to adopt an alternative model-Indian-classical music-to further investigate auditory temporal processing in musicians. This study presents that musicians have significantly lower across-channel gap detection thresholds compared to nonmusicians. Use of the South Indian musician model provides an increased external validity for the prediction, from studies on Western-classical musicians, that auditory temporal coding is enhanced in musicians.
Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano
2013-01-01
The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard “condition-based” designs, as well as “computational” methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli. PMID:24194828
2016-11-28
of low spontaneous rate auditory nerve fibers (ANFs) and reduction of auditory brainstem response wave-I amplitudes. The goal of this research is...auditory nerve (AN) responses to speech stimuli under a variety of difficult listening conditions. The resulting cochlear neurogram, a spectrogram
Yu, Luodi; Rao, Aparna; Zhang, Yang; Burton, Philip C.; Rishiq, Dania; Abrams, Harvey
2017-01-01
Although audiovisual (AV) training has been shown to improve overall speech perception in hearing-impaired listeners, there has been a lack of direct brain imaging data to help elucidate the neural networks and neural plasticity associated with hearing aid (HA) use and auditory training targeting speechreading. For this purpose, the current clinical case study reports functional magnetic resonance imaging (fMRI) data from two hearing-impaired patients who were first-time HA users. During the study period, both patients used HAs for 8 weeks; only one received a training program named ReadMyQuipsTM (RMQ) targeting speechreading during the second half of the study period for 4 weeks. Identical fMRI tests were administered at pre-fitting and at the end of the 8 weeks. Regions of interest (ROI) including auditory cortex and visual cortex for uni-sensory processing, and superior temporal sulcus (STS) for AV integration, were identified for each person through independent functional localizer task. The results showed experience-dependent changes involving ROIs of auditory cortex, STS and functional connectivity between uni-sensory ROIs and STS from pretest to posttest in both cases. These data provide initial evidence for the malleable experience-driven cortical functionality for AV speech perception in elderly hearing-impaired people and call for further studies with a much larger subject sample and systematic control to fill in the knowledge gap to understand brain plasticity associated with auditory rehabilitation in the aging population. PMID:28270763
Yu, Luodi; Rao, Aparna; Zhang, Yang; Burton, Philip C; Rishiq, Dania; Abrams, Harvey
2017-01-01
Although audiovisual (AV) training has been shown to improve overall speech perception in hearing-impaired listeners, there has been a lack of direct brain imaging data to help elucidate the neural networks and neural plasticity associated with hearing aid (HA) use and auditory training targeting speechreading. For this purpose, the current clinical case study reports functional magnetic resonance imaging (fMRI) data from two hearing-impaired patients who were first-time HA users. During the study period, both patients used HAs for 8 weeks; only one received a training program named ReadMyQuips TM (RMQ) targeting speechreading during the second half of the study period for 4 weeks. Identical fMRI tests were administered at pre-fitting and at the end of the 8 weeks. Regions of interest (ROI) including auditory cortex and visual cortex for uni-sensory processing, and superior temporal sulcus (STS) for AV integration, were identified for each person through independent functional localizer task. The results showed experience-dependent changes involving ROIs of auditory cortex, STS and functional connectivity between uni-sensory ROIs and STS from pretest to posttest in both cases. These data provide initial evidence for the malleable experience-driven cortical functionality for AV speech perception in elderly hearing-impaired people and call for further studies with a much larger subject sample and systematic control to fill in the knowledge gap to understand brain plasticity associated with auditory rehabilitation in the aging population.
ERIC Educational Resources Information Center
Ugwuanyi, L. T.; Adaka, T. A.
2015-01-01
The paper focused on the effect of auditory training on reading comprehension of children with hearing impairment in Enugu State. A total of 33 children with conductive, sensory neural and mixed hearing loss were sampled for the study in the two schools for the Deaf in Enugu State. The design employed for the study was a quasi experiment (pre-test…
A Wearable System for Gait Training in Subjects with Parkinson's Disease
Casamassima, Filippo; Ferrari, Alberto; Milosevic, Bojan; Ginis, Pieter; Farella, Elisabetta; Rocchi, Laura
2014-01-01
In this paper, a system for gait training and rehabilitation for Parkinson's disease (PD) patients in a daily life setting is presented. It is based on a wearable architecture aimed at the provision of real-time auditory feedback. Recent studies have, in fact, shown that PD patients can receive benefit from a motor therapy based on auditory cueing and feedback, as happens in traditional rehabilitation contexts with verbal instructions given by clinical operators. To this extent, a system based on a wireless body sensor network and a smartphone has been developed. The system enables real-time extraction of gait spatio-temporal features and their comparison with a patient's reference walking parameters captured in the lab under clinical operator supervision. Feedback is returned to the user in form of vocal messages, encouraging the user to keep her/his walking behavior or to correct it. This paper describes the overall concept, the proposed usage scenario and the parameters estimated for the gait analysis. It also presents, in detail, the hardware-software architecture of the system and the evaluation of system reliability by testing it on a few subjects. PMID:24686731
Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model
Diehl, Peter U.; Schaette, Roland
2015-01-01
Hyperacusis is a frequent auditory disorder that is characterized by abnormal loudness perception where sounds of relatively normal volume are perceived as too loud or even painfully loud. As hyperacusis patients show decreased loudness discomfort levels (LDLs) and steeper loudness growth functions, it has been hypothesized that hyperacusis might be caused by an increase in neuronal response gain in the auditory system. Moreover, since about 85% of hyperacusis patients also experience tinnitus, the conditions might be caused by a common mechanism. However, the mechanisms that give rise to hyperacusis have remained unclear. Here, we have used a computational model of the auditory system to investigate candidate mechanisms for hyperacusis. Assuming that perceived loudness is proportional to the summed activity of all auditory nerve (AN) fibers, the model was tuned to reproduce normal loudness perception. We then evaluated a variety of potential hyperacusis gain mechanisms by determining their effects on model equal-loudness contours and comparing the results to the LDLs of hyperacusis patients with normal hearing thresholds. Hyperacusis was best accounted for by an increase in non-linear gain in the central auditory system. Good fits to the average patient LDLs were obtained for a general increase in gain that affected all frequency channels to the same degree, and also for a frequency-specific gain increase in the high-frequency range. Moreover, the gain needed to be applied after subtraction of spontaneous activity of the AN, which is in contrast to current theories of tinnitus generation based on amplification of spontaneous activity. Hyperacusis and tinnitus might therefore be caused by different changes in neuronal processing in the central auditory system. PMID:26236277
Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH).
Tierney, Adam; Kraus, Nina
2014-01-01
Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills.
Hunter, Eric J; Svec, Jan G; Titze, Ingo R
2006-12-01
Frequency and intensity ranges (in true decibel sound pressure level, 20 microPa at 1 m) of voice production in trained and untrained vocalists were compared with the perceived dynamic range (phons) and units of loudness (sones) of the ear. Results were reported in terms of standard voice range profiles (VRPs), perceived VRPs (as predicted by accepted measures of auditory sensitivities), and a new metric labeled as an overall perceptual level construct. Trained classical singers made use of the most sensitive part of the hearing range (around 3-4 kHz) through the use of the singer's formant. When mapped onto the contours of equal loudness (depicting nonuniform spectral and dynamic sensitivities of the auditory system), the formant is perceived at an even higher sound level, as measured in phons, than a flat or A-weighted spectrum would indicate. The contributions of effects like the singer's formant and the sensitivities of the auditory system helped the trained singers produce 20% to 40% more units of loudness, as measured in sones, than the untrained singers. Trained male vocalists had a maximum overall perceptual level construct that was 40% higher than the untrained male vocalists. Although the A-weighted spectrum (commonly used in VRP measurement) is a reasonable first-order approximation of auditory sensitivities, it misrepresents the most salient part of the sensitivities (where the singer's formant is found) by nearly 10 dB.
Computer-based training for safety: comparing methods with older and younger workers.
Wallen, Erik S; Mulloy, Karen B
2006-01-01
Computer-based safety training is becoming more common and is being delivered to an increasingly aging workforce. Aging results in a number of changes that make it more difficult to learn from certain types of computer-based training. Instructional designs derived from cognitive learning theories may overcome some of these difficulties. Three versions of computer-based respiratory safety training were shown to older and younger workers who then took a high and a low level learning test. Younger workers did better overall. Both older and younger workers did best with the version containing text with pictures and audio narration. Computer-based training with pictures and audio narration may be beneficial for workers over 45 years of age. Computer-based safety training has advantages but workers of different ages may benefit differently. Computer-based safety programs should be designed and selected based on their ability to effectively train older as well as younger learners.
Reducing the lag of accommodation by auditory biofeedback: A pilot study.
Wagner, Sandra; Ohlendorf, Arne; Schaeffel, Frank; Wahl, Siegfried
2016-12-01
The purpose of this study was to investigate whether a reduction of the accommodative lag is possible by training the accuracy of accommodation using auditory biofeedback. Accommodation responses were measured in thirty-one young adults with myopia for dioptric target distances of 2.0, 2.5, and 3.0D using an eccentric infrared photorefractor. For the biofeedback training, subjects were randomly assigned to an experimental (n=15) or a control group (n=16). Subjects of the experimental group were provided with two tones while fixating a target, one tone was related to their accommodative response and the second to the target distance. Their task was to match these tones. The control group did not receive any auditory biofeedback. Two different training methods were applied, a continuous training of 200s, and ten consecutive sessions of 20s each. The training effects on the lag of accommodation (change Δ) were highly variable. Regarding the entire study group, the observed change in the accommodative lag was greater at closer distances, while no difference between the two training methods was revealed. Nevertheless, seven experimental subjects reduced their lag by ⩾0.3D (3.0D target distance: Δ long =-0.29±0.20D, Δ short =-0.24±0.21D). This reduction was also seen in two control subjects. Remeasurement revealed that the average training effect cannot be preserved over a period of 5-7days. The current investigation has shown that the accuracy of accommodation can be trained in some subjects using auditory biofeedback for target distances of 2.5D or closer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza
2017-11-01
The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.
Air traffic controllers' long-term speech-in-noise training effects: A control group study.
Zaballos, Maria T P; Plasencia, Daniel P; González, María L Z; de Miguel, Angel R; Macías, Ángel R
2016-01-01
Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and -5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=-5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions.
Maddox, Stephanie A.; Watts, Casey S.; Schafe, Glenn E.
2014-01-01
We have previously shown that auditory Pavlovian fear conditioning is associated with an increase in DNA methyltransferase (DNMT) expression in the lateral amygdala (LA) and that intra-LA infusion or bath application of an inhibitor of DNMT activity impairs the consolidation of an auditory fear memory and long-term potentiation (LTP) at thalamic and cortical inputs to the LA, in vitro. In the present study, we use awake behaving neurophysiological techniques to examine the role of DNMT activity in memory-related neurophysiological changes accompanying fear memory consolidation and reconsolidation in the LA, in vivo. We show that auditory fear conditioning results in a training-related enhancement in the amplitude of short-latency auditory-evoked field potentials (AEFPs) in the LA. Intra-LA infusion of a DNMT inhibitor impairs both fear memory consolidation and, in parallel, the consolidation of training-related neural plasticity in the LA; that is, short-term memory (STM) and short-term training-related increases in AEFP amplitude in the LA are intact, while long-term memory (LTM) and long-term retention of training-related increases in AEFP amplitudes are impaired. In separate experiments, we show that intra-LA infusion of a DNMT inhibitor following retrieval of an auditory fear memory has no effect on post-retrieval STM or short-term retention of training-related changes in AEFP amplitude in the LA, but significantly impairs both post-retrieval LTM and long-term retention of AEFP amplitude changes in the LA. These findings are the first to demonstrate the necessity of DNMT activity in the consolidation and reconsolidation of memory-associated neural plasticity, in vivo. PMID:24291571
Plasticity of white matter connectivity in phonetics experts.
Vandermosten, Maaike; Price, Cathy J; Golestani, Narly
2016-09-01
Phonetics experts are highly trained to analyze and transcribe speech, both with respect to faster changing, phonetic features, and to more slowly changing, prosodic features. Previously we reported that, compared to non-phoneticians, phoneticians had greater local brain volume in bilateral auditory cortices and the left pars opercularis of Broca's area, with training-related differences in the grey-matter volume of the left pars opercularis in the phoneticians group (Golestani et al. 2011). In the present study, we used diffusion MRI to examine white matter microstructure, indexed by fractional anisotropy, in (1) the long segment of arcuate fasciculus (AF_long), which is a well-known language tract that connects Broca's area, including left pars opercularis, to the temporal cortex, and in (2) the fibers arising from the auditory cortices. Most of these auditory fibers belong to three validated language tracts, namely to the AF_long, the posterior segment of the arcuate fasciculus and the middle longitudinal fasciculus. We found training-related differences in phoneticians in left AF_long, as well as group differences relative to non-experts in the auditory fibers (including the auditory fibers belonging to the left AF_long). Taken together, the results of both studies suggest that grey matter structural plasticity arising from phonetic transcription training in Broca's area is accompanied by changes to the white matter fibers connecting this very region to the temporal cortex. Our findings suggest expertise-related changes in white matter fibers connecting fronto-temporal functional hubs that are important for phonetic processing. Further studies can pursue this hypothesis by examining the dynamics of these expertise related grey and white matter changes as they arise during phonetic training.
Single electrode micro-stimulation of rat auditory cortex: an evaluation of behavioral performance.
Rousche, Patrick J; Otto, Kevin J; Reilly, Mark P; Kipke, Daryl R
2003-05-01
A combination of electrophysiological mapping, behavioral analysis and cortical micro-stimulation was used to explore the interrelation between the auditory cortex and behavior in the adult rat. Auditory discriminations were evaluated in eight rats trained to discriminate the presence or absence of a 75 dB pure tone stimulus. A probe trial technique was used to obtain intensity generalization gradients that described response probabilities to mid-level tones between 0 and 75 dB. The same rats were then chronically implanted in the auditory cortex with a 16 or 32 channel tungsten microwire electrode array. Implanted animals were then trained to discriminate the presence of single electrode micro-stimulation of magnitude 90 microA (22.5 nC/phase). Intensity generalization gradients were created to obtain the response probabilities to mid-level current magnitudes ranging from 0 to 90 microA on 36 different electrodes in six of the eight rats. The 50% point (the current level resulting in 50% detections) varied from 16.7 to 69.2 microA, with an overall mean of 42.4 (+/-8.1) microA across all single electrodes. Cortical micro-stimulation induced sensory-evoked behavior with similar characteristics as normal auditory stimuli. The results highlight the importance of the auditory cortex in a discrimination task and suggest that micro-stimulation of the auditory cortex might be an effective means for a graded information transfer of auditory information directly to the brain as part of a cortical auditory prosthesis.
Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning.
Liu, Shuyan; Kuschpel, Maxim S; Schad, Daniel J; Heinz, Andreas; Rapp, Michael A
2015-11-01
The interruption of learning processes by breaks filled with diverse activities is common in everyday life. This study investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on auditory versus visual memory performance. Young adults were exposed to breaks involving (a) open eyes resting, (b) listening to music, and (c) playing a video game, immediately after memorizing auditory versus visual stimuli. To assess learning performance, words were recalled directly after the break (an 8:30 minute delay) and were recalled and recognized again after 7 days. Based on linear mixed-effects modeling, it was found that playing the Angry Birds video game during a short learning break impaired long-term retrieval in auditory learning but enhanced long-term retrieval in visual learning compared with the music and rest conditions. These differential effects of video games on visual versus auditory learning suggest specific interference of common break activities on learning.
Musical training sharpens and bonds ears and tongue to hear speech better.
Du, Yi; Zatorre, Robert J
2017-12-19
The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively.
Musical training sharpens and bonds ears and tongue to hear speech better
Du, Yi; Zatorre, Robert J.
2017-01-01
The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively. PMID:29203648
Bendor, Daniel
2015-01-01
In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843
Individualization of music-based rhythmic auditory cueing in Parkinson's disease.
Bella, Simone Dalla; Dotov, Dobromir; Bardy, Benoît; de Cock, Valérie Cochen
2018-06-04
Gait dysfunctions in Parkinson's disease can be partly relieved by rhythmic auditory cueing. This consists in asking patients to walk with a rhythmic auditory stimulus such as a metronome or music. The effect on gait is visible immediately in terms of increased speed and stride length. Moreover, training programs based on rhythmic cueing can have long-term benefits. The effect of rhythmic cueing, however, varies from one patient to the other. Patients' response to the stimulation may depend on rhythmic abilities, often deteriorating with the disease. Relatively spared abilities to track the beat favor a positive response to rhythmic cueing. On the other hand, most patients with poor rhythmic abilities either do not respond to the cues or experience gait worsening when walking with cues. An individualized approach to rhythmic auditory cueing with music is proposed to cope with this variability in patients' response. This approach calls for using assistive mobile technologies capable of delivering cues that adapt in real time to patients' gait kinematics, thus affording step synchronization to the beat. Individualized rhythmic cueing can provide a safe and cost-effective alternative to standard cueing that patients may want to use in their everyday lives. © 2018 New York Academy of Sciences.
End-to-End Multimodal Emotion Recognition Using Deep Neural Networks
NASA Astrophysics Data System (ADS)
Tzirakis, Panagiotis; Trigeorgis, George; Nicolaou, Mihalis A.; Schuller, Bjorn W.; Zafeiriou, Stefanos
2017-12-01
Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Inspired by this success, we propose an emotion recognition system using auditory and visual modalities. To capture the emotional content for various styles of speaking, robust features need to be extracted. To this purpose, we utilize a Convolutional Neural Network (CNN) to extract features from the speech, while for the visual modality a deep residual network (ResNet) of 50 layers. In addition to the importance of feature extraction, a machine learning algorithm needs also to be insensitive to outliers while being able to model the context. To tackle this problem, Long Short-Term Memory (LSTM) networks are utilized. The system is then trained in an end-to-end fashion where - by also taking advantage of the correlations of the each of the streams - we manage to significantly outperform the traditional approaches based on auditory and visual handcrafted features for the prediction of spontaneous and natural emotions on the RECOLA database of the AVEC 2016 research challenge on emotion recognition.
NASA Astrophysics Data System (ADS)
Becker, Meike; Kirschner, Matthias; Sakas, Georgios
2014-03-01
Our research project investigates a multi-port approach for minimally-invasive otologic surgery. For planning such a surgery, an accurate segmentation of the risk structures is crucial. However, the segmentation of these risk structures is a challenging task: The anatomical structures are very small and some have a complex shape, low contrast and vary both in shape and appearance. Therefore, prior knowledge is needed which is why we apply model-based approaches. In the present work, we use the Probabilistic Active Shape Model (PASM), which is a more flexible and specific variant of the Active Shape Model (ASM), to segment the following risk structures: cochlea, semicircular canals, facial nerve, chorda tympani, ossicles, internal auditory canal, external auditory canal and internal carotid artery. For the evaluation we trained and tested the algorithm on 42 computed tomography data sets using leave-one-out tests. Visual assessment of the results shows in general a good agreement of manual and algorithmic segmentations. Further, we achieve a good Average Symmetric Surface Distance while the maximum error is comparatively large due to low contrast at start and end points. Last, we compare the PASM to the standard ASM and show that the PASM leads to a higher accuracy.
Effects of Background Music on Objective and Subjective Performance Measures in an Auditory BCI.
Zhou, Sijie; Allison, Brendan Z; Kübler, Andrea; Cichocki, Andrzej; Wang, Xingyu; Jin, Jing
2016-01-01
Several studies have explored brain computer interface (BCI) systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory, and other BCIs are typically studied without background music. Some work has explored the possibility of using polyphonic music in auditory BCI systems. However, this approach requires users with good musical skills, and has not been explored in online experiments. Our hypothesis was that an auditory BCI with background music would be preferred by subjects over a similar BCI without background music, without any difference in BCI performance. We introduce a simple paradigm (which does not require musical skill) using percussion instrument sound stimuli and background music, and evaluated it in both offline and online experiments. The result showed that subjects preferred the auditory BCI with background music. Different performance measures did not reveal any significant performance effect when comparing background music vs. no background. Since the addition of background music does not impair BCI performance but is preferred by users, auditory (and perhaps other) BCIs should consider including it. Our study also indicates that auditory BCIs can be effective even if the auditory channel is simultaneously otherwise engaged.
Using complex auditory-visual samples to produce emergent relations in children with autism.
Groskreutz, Nicole C; Karsina, Allen; Miguel, Caio F; Groskreutz, Mark P
2010-03-01
Six participants with autism learned conditional relations between complex auditory-visual sample stimuli (dictated words and pictures) and simple visual comparisons (printed words) using matching-to-sample training procedures. Pre- and posttests examined potential stimulus control by each element of the complex sample when presented individually and emergence of additional conditional relations and oral labeling. Tests revealed class-consistent performance for all participants following training.
Biagianti, Bruno; Fisher, Melissa; Neilands, Torsten B; Loewy, Rachel; Vinogradov, Sophia
2016-11-01
Individuals with schizophrenia who engage in targeted cognitive training (TCT) of the auditory system show generalized cognitive improvements. The high degree of variability in cognitive gains maybe due to individual differences in the level of engagement of the underlying neural system target. 131 individuals with schizophrenia underwent 40 hours of TCT. We identified target engagement of auditory system processing efficiency by modeling subject-specific trajectories of auditory processing speed (APS) over time. Lowess analysis, mixed models repeated measures analysis, and latent growth curve modeling were used to examine whether APS trajectories were moderated by age and illness duration, and mediated improvements in cognitive outcome measures. We observed significant improvements in APS from baseline to 20 hours of training (initial change), followed by a flat APS trajectory (plateau) at subsequent time-points. Participants showed interindividual variability in the steepness of the initial APS change and in the APS plateau achieved and sustained between 20 and 40 hours. We found that participants who achieved the fastest APS plateau, showed the greatest transfer effects to untrained cognitive domains. There is a significant association between an individual's ability to generate and sustain auditory processing efficiency and their degree of cognitive improvement after TCT, independent of baseline neurocognition. APS plateau may therefore represent a behavioral measure of target engagement mediating treatment response. Future studies should examine the optimal plateau of auditory processing efficiency required to induce significant cognitive improvements, in the context of interindividual differences in neural plasticity and sensory system efficiency that characterize schizophrenia. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model
Nakao, Kazuhito; Nakazawa, Kazu
2014-01-01
In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs) are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR) hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP) activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 s, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1) a broadband increase in spontaneous LFP power in the absence of external inputs, and (2) a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The “paradoxically” high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception. PMID:25018691
Sequenced subjective accents for brain-computer interfaces
NASA Astrophysics Data System (ADS)
Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.
2011-06-01
Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.
Noto, M; Nishikawa, J; Tateno, T
2016-03-24
A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self-exciting system is a key element for qualitatively reproducing A1 population activity and to understand the underlying mechanisms. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Putkinen, Vesa; Tervaniemi, Mari; Saarikivi, Katri; Huotilainen, Minna
2015-03-01
Adult musicians show superior neural sound discrimination when compared to nonmusicians. However, it is unclear whether these group differences reflect the effects of experience or preexisting neural enhancement in individuals who seek out musical training. Tracking how brain function matures over time in musically trained and nontrained children can shed light on this issue. Here, we review our recent longitudinal event-related potential (ERP) studies that examine how formal musical training and less formal musical activities influence the maturation of brain responses related to sound discrimination and auditory attention. These studies found that musically trained school-aged children and preschool-aged children attending a musical playschool show more rapid maturation of neural sound discrimination than their control peers. Importantly, we found no evidence for pretraining group differences. In a related cross-sectional study, we found ERP and behavioral evidence for improved executive functions and control over auditory novelty processing in musically trained school-aged children and adolescents. Taken together, these studies provide evidence for the causal role of formal musical training and less formal musical activities in shaping the development of important neural auditory skills and suggest transfer effects with domain-general implications. © 2015 New York Academy of Sciences.
2017-08-01
principles for effective Computer-Based Training (CBT) that can be applied broadly to Army courses to build and evaluate exemplar CBT for Army advanced...individual training courses. To assist cadre who do not have a dedicated instructional design team, the Computer-Based Training Principles Guide was...document is the resulting contents, organization, and presentation style of the Computer- Based Training Principles Guide and its companion User’s Guide
The Application of Timing in Therapy of Children and Adults with Language Disorders
Szelag, Elzbieta; Dacewicz, Anna; Szymaszek, Aneta; Wolak, Tomasz; Senderski, Andrzej; Domitrz, Izabela; Oron, Anna
2015-01-01
A number of evidence revealed a link between temporal information processing (TIP) and language. Both literature data and results of our studies indicated an overlapping of deficient TIP and disordered language, pointing to the existence of an association between these two functions. On this background the new approach is to apply such knowledge in therapy of patients suffering from language disorders. In two studies we asked the following questions: (1) can the temporal training reduce language deficits in aphasic patients (Study 1) or in children with specific language impairment (SLI, Study 2)? (2) can such training ameliorate also the other cognitive functions? Each of these studies employed pre-training assessment, training application, post-training and follow-up assessment. In Study 1 we tested 28 patients suffering from post-stroke aphasia. They were assigned either to the temporal training (Group A, n = 15) in milliseconds range, or to the non-temporal training (Group B, n = 13). Following the training we found only in Group A improved TIP, accompanied by a transfer of improvement to language and working memory functions. In Study 2 we tested 32 children aged from 5 to 8 years, affected by SLI who were classified into the temporal training (Group A, n = 17) or non-temporal training (Group B, n = 15). Group A underwent the multileveled audio-visual computer training Dr. Neuronowski®, recently developed in our laboratory. Group B performed the computer speech therapy exercises extended by playing computer games. Similarly as in Study 1, in Group A we found significant improvements of TIP, auditory comprehension and working memory. These results indicated benefits of temporal training for amelioration of language and other cognitive functions in both aphasic patients and children with SLI. The novel powerful therapy tools provide evidence for future promising clinical applications. PMID:26617547
Kleber, Boris; Veit, Ralf; Moll, Christina Valérie; Gaser, Christian; Birbaumer, Niels; Lotze, Martin
2016-06-01
In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured. Copyright © 2016 Elsevier Inc. All rights reserved.
Incorporating Auditory Models in Speech/Audio Applications
NASA Astrophysics Data System (ADS)
Krishnamoorthi, Harish
2011-12-01
Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.
Is the Role of External Feedback in Auditory Skill Learning Age Dependent?
ERIC Educational Resources Information Center
Zaltz, Yael; Roth, Daphne Ari-Even; Kishon-Rabin, Liat
2017-01-01
Purpose: The purpose of this study is to investigate the role of external feedback in auditory perceptual learning of school-age children as compared with that of adults. Method: Forty-eight children (7-9 years of age) and 64 adults (20-35 years of age) conducted a training session using an auditory frequency discrimination (difference limen for…
ERIC Educational Resources Information Center
Kodak, Tiffany; Clements, Andrea; Paden, Amber R.; LeBlanc, Brittany; Mintz, Joslyn; Toussaint, Karen A.
2015-01-01
The current investigation evaluated repertoires that may be related to performance on auditory-to-visual conditional discrimination training with 9 students who had been diagnosed with autism spectrum disorder. The skills included in the assessment were matching, imitation, scanning, an auditory discrimination, and a visual discrimination. The…
ERIC Educational Resources Information Center
Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J.
2006-01-01
Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields…
Keough, Dwayne; Hawco, Colin; Jones, Jeffery A
2013-03-09
Auditory feedback is important for accurate control of voice fundamental frequency (F(0)). The purpose of this study was to address whether task instructions could influence the compensatory responding and sensorimotor adaptation that has been previously found when participants are presented with a series of frequency-altered feedback (FAF) trials. Trained singers and musically untrained participants (nonsingers) were informed that their auditory feedback would be manipulated in pitch while they sang the target vowel [/α /]. Participants were instructed to either 'compensate' for, or 'ignore' the changes in auditory feedback. Whole utterance auditory feedback manipulations were either gradually presented ('ramp') in -2 cent increments down to -100 cents (1 semitone) or were suddenly ('constant') shifted down by 1 semitone. Results indicated that singers and nonsingers could not suppress their compensatory responses to FAF, nor could they reduce the sensorimotor adaptation observed during both the ramp and constant FAF trials. Compared to previous research, these data suggest that musical training is effective in suppressing compensatory responses only when FAF occurs after vocal onset (500-2500 ms). Moreover, our data suggest that compensation and adaptation are automatic and are influenced little by conscious control.
2013-01-01
Background Auditory feedback is important for accurate control of voice fundamental frequency (F0). The purpose of this study was to address whether task instructions could influence the compensatory responding and sensorimotor adaptation that has been previously found when participants are presented with a series of frequency-altered feedback (FAF) trials. Trained singers and musically untrained participants (nonsingers) were informed that their auditory feedback would be manipulated in pitch while they sang the target vowel [/ɑ /]. Participants were instructed to either ‘compensate’ for, or ‘ignore’ the changes in auditory feedback. Whole utterance auditory feedback manipulations were either gradually presented (‘ramp’) in -2 cent increments down to -100 cents (1 semitone) or were suddenly (’constant‘) shifted down by 1 semitone. Results Results indicated that singers and nonsingers could not suppress their compensatory responses to FAF, nor could they reduce the sensorimotor adaptation observed during both the ramp and constant FAF trials. Conclusions Compared to previous research, these data suggest that musical training is effective in suppressing compensatory responses only when FAF occurs after vocal onset (500-2500 ms). Moreover, our data suggest that compensation and adaptation are automatic and are influenced little by conscious control. PMID:23497238
Nosik, Melissa R; Williams, W Larry; Garrido, Natalia; Lee, Sarah
2013-01-01
In the current study, behavior skills training (BST) is compared to a computer based training package for teaching discrete trial instruction to staff, teaching an adult with autism. The computer based training package consisted of instructions, video modeling and feedback. BST consisted of instructions, modeling, rehearsal and feedback. Following training, participants were evaluated in terms of their accuracy on completing critical skills for running a discrete trial program. Six participants completed training; three received behavior skills training and three received the computer based training. Participants in the BST group performed better overall after training and during six week probes than those in the computer based training group. There were differences across both groups between research assistant and natural environment competency levels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Psychophysics and Neuronal Bases of Sound Localization in Humans
Ahveninen, Jyrki; Kopco, Norbert; Jääskeläinen, Iiro P.
2013-01-01
Localization of sound sources is a considerable computational challenge for the human brain. Whereas the visual system can process basic spatial information in parallel, the auditory system lacks a straightforward correspondence between external spatial locations and sensory receptive fields. Consequently, the question how different acoustic features supporting spatial hearing are represented in the central nervous system is still open. Functional neuroimaging studies in humans have provided evidence for a posterior auditory “where” pathway that encompasses non-primary auditory cortex areas, including the planum temporale (PT) and posterior superior temporal gyrus (STG), which are strongly activated by horizontal sound direction changes, distance changes, and movement. However, these areas are also activated by a wide variety of other stimulus features, posing a challenge for the interpretation that the underlying areas are purely spatial. This review discusses behavioral and neuroimaging studies on sound localization, and some of the competing models of representation of auditory space in humans. PMID:23886698
Behavioral training enhances cortical temporal processing in neonatally deafened juvenile cats
Vollmer, Maike; Raggio, Marcia W.; Schreiner, Christoph E.
2011-01-01
Deaf humans implanted with a cochlear prosthesis depend largely on temporal cues for speech recognition because spectral information processing is severely impaired. Training with a cochlear prosthesis is typically required before speech perception shows improvement, suggesting that relevant experience modifies temporal processing in the central auditory system. We tested this hypothesis in neonatally deafened cats by comparing temporal processing in the primary auditory cortex (AI) of cats that received only chronic passive intracochlear electric stimulation (ICES) with cats that were also trained with ICES to detect temporally challenging trains of electric pulses. After months of chronic passive stimulation and several weeks of detection training in behaviorally trained cats, multineuronal AI responses evoked by temporally modulated ICES were recorded in anesthetized animals. The stimulus repetition rates that produced the maximum number of phase-locked spikes (best repetition rate) and 50% cutoff rate were significantly higher in behaviorally trained cats than the corresponding rates in cats that received only chronic passive ICES. Behavioral training restored neuronal temporal following ability to levels comparable with those recorded in naïve prior normal-hearing adult deafened animals. Importantly, best repetitition rates and cutoff rates were highest for neuronal clusters activated by the electrode configuration used in behavioral training. These results suggest that neuroplasticity in the AI is induced by behavioral training and perceptual learning in animals deprived of ordinary auditory experience during development and indicate that behavioral training can ameliorate or restore temporal processing in the AI of profoundly deaf animals. PMID:21543753
Rizza, Aurora; Terekhov, Alexander V; Montone, Guglielmo; Olivetti-Belardinelli, Marta; O'Regan, J Kevin
2018-01-01
Tactile speech aids, though extensively studied in the 1980's and 1990's, never became a commercial success. A hypothesis to explain this failure might be that it is difficult to obtain true perceptual integration of a tactile signal with information from auditory speech: exploitation of tactile cues from a tactile aid might require cognitive effort and so prevent speech understanding at the high rates typical of everyday speech. To test this hypothesis, we attempted to create true perceptual integration of tactile with auditory information in what might be considered the simplest situation encountered by a hearing-impaired listener. We created an auditory continuum between the syllables /BA/ and /VA/, and trained participants to associate /BA/ to one tactile stimulus and /VA/ to another tactile stimulus. After training, we tested if auditory discrimination along the continuum between the two syllables could be biased by incongruent tactile stimulation. We found that such a bias occurred only when the tactile stimulus was above, but not when it was below its previously measured tactile discrimination threshold. Such a pattern is compatible with the idea that the effect is due to a cognitive or decisional strategy, rather than to truly perceptual integration. We therefore ran a further study (Experiment 2), where we created a tactile version of the McGurk effect. We extensively trained two Subjects over 6 days to associate four recorded auditory syllables with four corresponding apparent motion tactile patterns. In a subsequent test, we presented stimulation that was either congruent or incongruent with the learnt association, and asked Subjects to report the syllable they perceived. We found no analog to the McGurk effect, suggesting that the tactile stimulation was not being perceptually integrated with the auditory syllable. These findings strengthen our hypothesis according to which tactile aids failed because integration of tactile cues with auditory speech occurred at a cognitive or decisional level, rather than truly at a perceptual level.
Rizza, Aurora; Terekhov, Alexander V.; Montone, Guglielmo; Olivetti-Belardinelli, Marta; O’Regan, J. Kevin
2018-01-01
Tactile speech aids, though extensively studied in the 1980’s and 1990’s, never became a commercial success. A hypothesis to explain this failure might be that it is difficult to obtain true perceptual integration of a tactile signal with information from auditory speech: exploitation of tactile cues from a tactile aid might require cognitive effort and so prevent speech understanding at the high rates typical of everyday speech. To test this hypothesis, we attempted to create true perceptual integration of tactile with auditory information in what might be considered the simplest situation encountered by a hearing-impaired listener. We created an auditory continuum between the syllables /BA/ and /VA/, and trained participants to associate /BA/ to one tactile stimulus and /VA/ to another tactile stimulus. After training, we tested if auditory discrimination along the continuum between the two syllables could be biased by incongruent tactile stimulation. We found that such a bias occurred only when the tactile stimulus was above, but not when it was below its previously measured tactile discrimination threshold. Such a pattern is compatible with the idea that the effect is due to a cognitive or decisional strategy, rather than to truly perceptual integration. We therefore ran a further study (Experiment 2), where we created a tactile version of the McGurk effect. We extensively trained two Subjects over 6 days to associate four recorded auditory syllables with four corresponding apparent motion tactile patterns. In a subsequent test, we presented stimulation that was either congruent or incongruent with the learnt association, and asked Subjects to report the syllable they perceived. We found no analog to the McGurk effect, suggesting that the tactile stimulation was not being perceptually integrated with the auditory syllable. These findings strengthen our hypothesis according to which tactile aids failed because integration of tactile cues with auditory speech occurred at a cognitive or decisional level, rather than truly at a perceptual level. PMID:29875719
Generality and specificity in the effects of musical expertise on perception and cognition.
Carey, Daniel; Rosen, Stuart; Krishnan, Saloni; Pearce, Marcus T; Shepherd, Alex; Aydelott, Jennifer; Dick, Frederic
2015-04-01
Performing musicians invest thousands of hours becoming experts in a range of perceptual, attentional, and cognitive skills. The duration and intensity of musicians' training - far greater than that of most educational or rehabilitation programs - provides a useful model to test the extent to which skills acquired in one particular context (music) generalize to different domains. Here, we asked whether the instrument-specific and more instrument-general skills acquired during professional violinists' and pianists' training would generalize to superior performance on a wide range of analogous (largely non-musical) skills, when compared to closely matched non-musicians. Violinists and pianists outperformed non-musicians on fine-grained auditory psychophysical measures, but surprisingly did not differ from each other, despite the different demands of their instruments. Musician groups did differ on a tuning system perception task: violinists showed clearest biases towards the tuning system specific to their instrument, suggesting that long-term experience leads to selective perceptual benefits given a training-relevant context. However, we found only weak evidence of group differences in non-musical skills, with musicians differing marginally in one measure of sustained auditory attention, but not significantly on auditory scene analysis or multi-modal sequencing measures. Further, regression analyses showed that this sustained auditory attention metric predicted more variance in one auditory psychophysical measure than did musical expertise. Our findings suggest that specific musical expertise may yield distinct perceptual outcomes within contexts close to the area of training. Generalization of expertise to relevant cognitive domains may be less clear, particularly where the task context is non-musical. Copyright © 2014 Elsevier B.V. All rights reserved.
Nakashima, Ann; Farinaccio, Rocco
2015-04-01
Noise-induced hearing loss resulting from weapon noise exposure has been studied for decades. A summary of recent work in weapon noise signal analysis, current knowledge of hearing damage risk criteria, and auditory performance in impulse noise is presented. Most of the currently used damage risk criteria are based on data that cannot be replicated or verified. There is a need to address the effects of combined noise exposures, from similar or different weapons and continuous background noise, in future noise exposure regulations. Advancements in hearing protection technology have expanded the options available to soldiers. Individual selection of hearing protection devices that are best suited to the type of exposure, the auditory task requirements, and hearing status of the user could help to facilitate their use. However, hearing protection devices affect auditory performance, which in turn affects situational awareness in the field. This includes communication capability and the localization and identification of threats. Laboratory training using high-fidelity weapon noise recordings has the potential to improve the auditory performance of soldiers in the field, providing a low-cost tool to enhance readiness for combat. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-06-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.
Lee, Hyung Young; Kim, You Lim; Lee, Suk Min
2015-01-01
[Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training. PMID:26180341
Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae
2012-10-01
To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P < 0.05). Kinematic data demonstrated that anterior tilt of the pelvis and hip flexion during a gait cycle was significantly ameliorated after rhythmic auditory stimulation (P < 0.05). Gait deviation index also showed modest improvement in cerebral palsy patients treated with rhythmic auditory stimulation (P < 0.05). However, neurodevelopmental treatment showed that internal and external rotations of hip joints were significantly improved, whereas rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P < 0.05). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.
Perceptual, auditory and acoustic vocal analysis of speech and singing in choir conductors.
Rehder, Maria Inês Beltrati Cornacchioni; Behlau, Mara
2008-01-01
the voice of choir conductors. to evaluate the vocal quality of choir conductors based on the production of a sustained vowel during singing and when speaking in order to observe auditory and acoustic differences. participants of this study were 100 choir conductors, with an equal distribution between genders. Participants were asked to produce the sustained vowel "é" using a singing and speaking voice. Speech samples were analyzed based on auditory-perceptive and acoustic parameters. The auditory-perceptive analysis was carried out by two speech-language pathologist, specialists in this field of knowledge. The acoustic analysis was carried out with the support of the computer software Doctor Speech (Tiger Electronics, SRD, USA, version 4.0), using the Real Analysis module. the auditory-perceptive analysis of the vocal quality indicated that most conductors have adapted voices, presenting more alterations in their speaking voice. The acoustic analysis indicated different values between genders and between the different production modalities. The fundamental frequency was higher in the singing voice, as well as the values for the first formant; the second formant presented lower values in the singing voice, with statistically significant results only for women. the voice of choir conductors is adapted, presenting fewer deviations in the singing voice when compared to the speaking voice. Productions differ based the voice modality, singing or speaking.
Hunter, Eric J.; Švec, Jan G.; Titze, Ingo R.
2016-01-01
Frequency and intensity ranges (in true dB SPL re 20 μPa at 1 meter) of voice production in trained and untrained vocalists were compared to the perceived dynamic range (phons) and units of loudness (sones) of the ear. Results were reported in terms of standard Voice Range Profiles (VRPs), perceived VRPs (as predicted by accepted measures of auditory sensitivities), and a new metric labeled as an Overall Perceptual Level Construct. Trained classical singers made use of the most sensitive part of the hearing range (around 3–4 KHz) through the use of the singer’s formant. When mapped onto the contours of equal-loudness (depicting non-uniform spectral and dynamic sensitivities of the auditory system), the formant is perceived at an even higher sound level, as measured in phons, than a flat or A-weighted spectrum would indicate. The contributions of effects like the singer’s formant and the sensitivities of the auditory system helped the trained singers produce 20–40 percent more units of loudness, as measured in sones, than the untrained singers. Trained male vocalists had a maximum Overall Perceptual Level Construct that was 40% higher than the untrained male vocalists. While the A-weighted spectrum (commonly used in VRP measurement) is a reasonable first order approximation of auditory sensitivities, it misrepresents the most salient part of the sensitivities (where the singer’s formant is found) by nearly 10 dB. PMID:16325373
Music enrichment programs improve the neural encoding of speech in at-risk children.
Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis
2014-09-03
Musicians are often reported to have enhanced neurophysiological functions, especially in the auditory system. Musical training is thought to improve nervous system function by focusing attention on meaningful acoustic cues, and these improvements in auditory processing cascade to language and cognitive skills. Correlational studies have reported musician enhancements in a variety of populations across the life span. In light of these reports, educators are considering the potential for co-curricular music programs to provide auditory-cognitive enrichment to children during critical developmental years. To date, however, no studies have evaluated biological changes following participation in existing, successful music education programs. We used a randomized control design to investigate whether community music participation induces a tangible change in auditory processing. The community music training was a longstanding and successful program that provides free music instruction to children from underserved backgrounds who stand at high risk for learning and social problems. Children who completed 2 years of music training had a stronger neurophysiological distinction of stop consonants, a neural mechanism linked to reading and language skills. One year of training was insufficient to elicit changes in nervous system function; beyond 1 year, however, greater amounts of instrumental music training were associated with larger gains in neural processing. We therefore provide the first direct evidence that community music programs enhance the neural processing of speech in at-risk children, suggesting that active and repeated engagement with sound changes neural function. Copyright © 2014 the authors 0270-6474/14/3411913-06$15.00/0.
Pilot mental workload: how well do pilots really perform?
Morris, Charles H; Leung, Ying K
2006-12-15
The purpose of this study was to investigate the effects of increasing mental demands on various aspects of aircrew performance. In particular, the robustness of the prioritization and allocation hierarchy of aviate-navigate-communicate was examined, a hierarchy commonly used within the aviation industry. A total of 42 trainee pilots were divided into three workload groups (low, medium, high) to complete a desktop, computer-based exercise that simulated combinations of generic flight deck activities: flight control manipulation, rule-based actions and higher level cognitive processing, in addition to Air Traffic Control instructions that varied in length from one chunk of auditory information to seven chunks. It was found that as mental workload and auditory input increased, participants experienced considerable difficulty in carrying out the primary manipulation task. A similar decline in prioritization was also observed. Moreover, when pilots were under a high mental workload their ability to comprehend more than two chunks of auditory data deteriorated rapidly.
Automatic classification of artifactual ICA-components for artifact removal in EEG signals.
Winkler, Irene; Haufe, Stefan; Tangermann, Michael
2011-08-02
Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.
Memory and learning with rapid audiovisual sequences
Keller, Arielle S.; Sekuler, Robert
2015-01-01
We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed. PMID:26575193
Memory and learning with rapid audiovisual sequences.
Keller, Arielle S; Sekuler, Robert
2015-01-01
We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed.
New HRCT-based measurement of the human outer ear canal as a basis for acoustical methods.
Grewe, Johanna; Thiele, Cornelia; Mojallal, Hamidreza; Raab, Peter; Sankowsky-Rothe, Tobias; Lenarz, Thomas; Blau, Matthias; Teschner, Magnus
2013-06-01
As the form and size of the external auditory canal determine its transmitting function and hence the sound pressure in front of the eardrum, it is important to understand its anatomy in order to develop, optimize, and compare acoustical methods. High-resolution computed tomography (HRCT) data were measured retrospectively for 100 patients who had received a cochlear implant. In order to visualize the anatomy of the auditory canal, its length, radius, and the angle at which it runs were determined for the patients’ right and left ears. The canal’s volume was calculated, and a radius function was created. The determined length of the auditory canal averaged 23.6 mm for the right ear and 23.5 mm for the left ear. The calculated auditory canal volume (Vtotal) was 0.7 ml for the right ear and 0.69 ml for the left ear. The auditory canal was found to be significantly longer in men than in women, and the volume greater. The values obtained can be employed to develop a method that represents the shape of the auditory canal as accurately as possible to allow the best possible outcomes for hearing aid fitting.
Demonstrations of simple and complex auditory psychophysics for multiple platforms and environments
NASA Astrophysics Data System (ADS)
Horowitz, Seth S.; Simmons, Andrea M.; Blue, China
2005-09-01
Sound is arguably the most widely perceived and pervasive form of energy in our world, and among the least understood, in part due to the complexity of its underlying principles. A series of interactive displays has been developed which demonstrates that the nature of sound involves the propagation of energy through space, and illustrates the definition of psychoacoustics, which is how listeners map the physical aspects of sound and vibration onto their brains. These displays use auditory illusions and commonly experienced music and sound in novel presentations (using interactive computer algorithms) to show that what you hear is not always what you get. The areas covered in these demonstrations range from simple and complex auditory localization, which illustrate why humans are bad at echolocation but excellent at determining the contents of auditory space, to auditory illusions that manipulate fine phase information and make the listener think their head is changing size. Another demonstration shows how auditory and visual localization coincide and sound can be used to change visual tracking. These demonstrations are designed to run on a wide variety of student accessible platforms including web pages, stand-alone presentations, or even hardware-based systems for museum displays.
Strenziok, Maren; Parasuraman, Raja; Clarke, Ellen; Cisler, Dean S; Thompson, James C; Greenwood, Pamela M
2014-01-15
The ultimate goal of cognitive enhancement as an intervention for age-related cognitive decline is transfer to everyday cognitive functioning. Development of training methods that transfer broadly to untrained cognitive tasks (far transfer) requires understanding of the neural bases of training and far transfer effects. We used cognitive training to test the hypothesis that far transfer is associated with altered attentional control demands mediated by the dorsal attention network and trained sensory cortex. In an exploratory study, we randomly assigned 42 healthy older adults to six weeks of training on Brain Fitness (BF-auditory perception), Space Fortress (SF-visuomotor/working memory), or Rise of Nations (RON-strategic reasoning). Before and after training, cognitive performance, diffusion-derived white matter integrity, and functional connectivity of the superior parietal cortex (SPC) were assessed. We found the strongest effects from BF training, which transferred to everyday problem solving and reasoning and selectively changed integrity of occipito-temporal white matter associated with improvement on untrained everyday problem solving. These results show that cognitive gain from auditory perception training depends on heightened white matter integrity in the ventral attention network. In BF and SF (which also transferred positively), a decrease in functional connectivity between SPC and inferior temporal lobe (ITL) was observed compared to RON-which did not transfer to untrained cognitive function. These findings highlight the importance for cognitive training of top-down control of sensory processing by the dorsal attention network. Altered brain connectivity - observed in the two training tasks that showed far transfer effects - may be a marker for training success. © 2013 Elsevier Inc. All rights reserved.
Predictive uncertainty in auditory sequence processing
Hansen, Niels Chr.; Pearce, Marcus T.
2014-01-01
Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty—a property of listeners' prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex). Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty). Finally, we simulate listeners' perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature. The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music. PMID:25295018
Stevens, Catherine J.; Brennan, David; Petocz, Agnes; Howell, Clare
2009-01-01
An experiment investigated the assumption that natural indicators which exploit existing learned associations between a signal and an event make more effective warnings than previously unlearned symbolic indicators. Signal modality (visual, auditory) and task demand (low, high) were also manipulated. Warning effectiveness was indexed by accuracy and reaction time (RT) recorded during training and dual task test phases. Thirty-six participants were trained to recognize 4 natural and 4 symbolic indicators, either visual or auditory, paired with critical incidents from an aviation context. As hypothesized, accuracy was greater and RT was faster in response to natural indicators during the training phase. This pattern of responding was upheld in test phase conditions with respect to accuracy but observed in RT only in test phase conditions involving high demand and the auditory modality. Using the experiment as a specific example, we argue for the importance of considering the cognitive contribution of the user (viz., prior learned associations) in the warning design process. Drawing on semiotics and cognitive psychology, we highlight the indexical nature of so-called auditory icons or natural indicators and argue that the cogniser is an indispensable element in the tripartite nature of signification. PMID:20523852
Sharma, Mridula; Purdy, Suzanne C; Kelly, Andrea S
2012-07-01
The primary purpose of the study was to compare intervention approaches for children with auditory processing disorder (APD): bottom-up training including activities focused on auditory perception, discrimination, and phonological awareness, and top-down training including a range of language activities. Another purpose was to determine the benefits of personal FM systems. The study is a randomized control trial where participants were allocated to groups receiving one of the two interventions, with and without personal FM, or to the no intervention group. The six-week intervention included weekly one-hour sessions with a therapist in the clinic, plus 1-2 hours per week of parent-directed homework. 55 children (7 to 13 years) with APD participated in the study. Intervention outcomes included reading, language, and auditory processing. Positive outcomes were observed for both training approaches and personal FM systems on several measures. Pre-intervention nonverbal IQ, age, and severity of APD did not influence outcomes. Performance of control group participants did not change when retested after the intervention period. Both intervention approaches were beneficial and there were additional benefits with the use of personal FM. Positive results were not limited to the areas specifically targeted by the interventions.
The what, where and how of auditory-object perception.
Bizley, Jennifer K; Cohen, Yale E
2013-10-01
The fundamental perceptual unit in hearing is the 'auditory object'. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood.
The what, where and how of auditory-object perception
Bizley, Jennifer K.; Cohen, Yale E.
2014-01-01
The fundamental perceptual unit in hearing is the ‘auditory object’. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood. PMID:24052177
The effect of multimodal and enriched feedback on SMR-BCI performance.
Sollfrank, T; Ramsay, A; Perdikis, S; Williamson, J; Murray-Smith, R; Leeb, R; Millán, J D R; Kübler, A
2016-01-01
This study investigated the effect of multimodal (visual and auditory) continuous feedback with information about the uncertainty of the input signal on motor imagery based BCI performance. A liquid floating through a visualization of a funnel (funnel feedback) provided enriched visual or enriched multimodal feedback. In a between subject design 30 healthy SMR-BCI naive participants were provided with either conventional bar feedback (CB), or visual funnel feedback (UF), or multimodal (visual and auditory) funnel feedback (MF). Subjects were required to imagine left and right hand movement and were trained to control the SMR based BCI for five sessions on separate days. Feedback accuracy varied largely between participants. The MF feedback lead to a significantly better performance in session 1 as compared to the CB feedback and could significantly enhance motivation and minimize frustration in BCI use across the five training sessions. The present study demonstrates that the BCI funnel feedback allows participants to modulate sensorimotor EEG rhythms. Participants were able to control the BCI with the funnel feedback with better performance during the initial session and less frustration compared to the CB feedback. The multimodal funnel feedback provides an alternative to the conventional cursorbar feedback for training subjects to modulate their sensorimotor rhythms. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Nonhomogeneous transfer reveals specificity in speech motor learning.
Rochet-Capellan, Amélie; Richer, Lara; Ostry, David J
2012-03-01
Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning.
Nonhomogeneous transfer reveals specificity in speech motor learning
Rochet-Capellan, Amélie; Richer, Lara
2012-01-01
Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning. PMID:22190628
Auditory sequence analysis and phonological skill
Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E.; Turton, Stuart; Griffiths, Timothy D.
2012-01-01
This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time. The data support a limited but significant link between auditory and phonological ability with a specific role for sound-sequence analysis, and provide a possible new focus for auditory training strategies to aid language development in early adolescence. PMID:22951739
Auditory Training: Evidence for Neural Plasticity in Older Adults
Anderson, Samira; Kraus, Nina
2014-01-01
Improvements in digital amplification, cochlear implants, and other innovations have extended the potential for improving hearing function; yet, there remains a need for further hearing improvement in challenging listening situations, such as when trying to understand speech in noise or when listening to music. Here, we review evidence from animal and human models of plasticity in the brain’s ability to process speech and other meaningful stimuli. We considered studies targeting populations of younger through older adults, emphasizing studies that have employed randomized controlled designs and have made connections between neural and behavioral changes. Overall results indicate that the brain remains malleable through older adulthood, provided that treatment algorithms have been modified to allow for changes in learning with age. Improvements in speech-in-noise perception and cognition function accompany neural changes in auditory processing. The training-related improvements noted across studies support the need to consider auditory training strategies in the management of individuals who express concerns about hearing in difficult listening situations. Given evidence from studies engaging the brain’s reward centers, future research should consider how these centers can be naturally activated during training. PMID:25485037
White, Erin J.; Hutka, Stefanie A.; Williams, Lynne J.; Moreno, Sylvain
2013-01-01
Sensitive periods in human development have often been proposed to explain age-related differences in the attainment of a number of skills, such as a second language (L2) and musical expertise. It is difficult to reconcile the negative consequence this traditional view entails for learning after a sensitive period with our current understanding of the brain’s ability for experience-dependent plasticity across the lifespan. What is needed is a better understanding of the mechanisms underlying auditory learning and plasticity at different points in development. Drawing on research in language development and music training, this review examines not only what we learn and when we learn it, but also how learning occurs at different ages. First, we discuss differences in the mechanism of learning and plasticity during and after a sensitive period by examining how language exposure versus training forms language-specific phonetic representations in infants and adult L2 learners, respectively. Second, we examine the impact of musical training that begins at different ages on behavioral and neural indices of auditory and motor processing as well as sensorimotor integration. Third, we examine the extent to which childhood training in one auditory domain can enhance processing in another domain via the transfer of learning between shared neuro-cognitive systems. Specifically, we review evidence for a potential bi-directional transfer of skills between music and language by examining how speaking a tonal language may enhance music processing and, conversely, how early music training can enhance language processing. We conclude with a discussion of the role of attention in auditory learning for learning during and after sensitive periods and outline avenues of future research. PMID:24312022
Resting-state functional connectivity and pitch identification ability in non-musicians
Hou, Jiancheng; Chen, Chuansheng; Dong, Qi
2015-01-01
Previous studies have used task-related fMRI to investigate the neural basis of pitch identification (PI), but no study has examined the associations between resting-state functional connectivity (RSFC) and PI ability. Using a large sample of Chinese non-musicians (N = 320, with 56 having prior musical training), the current study examined the associations among musical training, PI ability, and RSFC. Results showed that musical training was associated with increased RSFC within the networks for multiple cognitive functions (such as vision, phonology, semantics, auditory encoding, and executive functions). PI ability was associated with RSFC with regions for perceptual and auditory encoding for participants with musical training, and with RSFC with regions for short-term memory, semantics, and phonology for participants without musical training. PMID:25717289
Bennur, Sharath; Tsunada, Joji; Cohen, Yale E; Liu, Robert C
2013-11-01
Acoustic communication between animals requires them to detect, discriminate, and categorize conspecific or heterospecific vocalizations in their natural environment. Laboratory studies of the auditory-processing abilities that facilitate these tasks have typically employed a broad range of acoustic stimuli, ranging from natural sounds like vocalizations to "artificial" sounds like pure tones and noise bursts. However, even when using vocalizations, laboratory studies often test abilities like categorization in relatively artificial contexts. Consequently, it is not clear whether neural and behavioral correlates of these tasks (1) reflect extensive operant training, which drives plastic changes in auditory pathways, or (2) the innate capacity of the animal and its auditory system. Here, we review a number of recent studies, which suggest that adopting more ethological paradigms utilizing natural communication contexts are scientifically important for elucidating how the auditory system normally processes and learns communication sounds. Additionally, since learning the meaning of communication sounds generally involves social interactions that engage neuromodulatory systems differently than laboratory-based conditioning paradigms, we argue that scientists need to pursue more ethological approaches to more fully inform our understanding of how the auditory system is engaged during acoustic communication. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.
Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey
2017-09-01
Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Air Traffic Controllers’ Long-Term Speech-in-Noise Training Effects: A Control Group Study
Zaballos, María T.P.; Plasencia, Daniel P.; González, María L.Z.; de Miguel, Angel R.; Macías, Ángel R.
2016-01-01
Introduction: Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. Subjects and Methods: 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and −5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Results: Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=−5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. Discussion: ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Conclusion: Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions. PMID:27991470
Computer-based simulation training in emergency medicine designed in the light of malpractice cases.
Karakuş, Akan; Duran, Latif; Yavuz, Yücel; Altintop, Levent; Calişkan, Fatih
2014-07-27
Using computer-based simulation systems in medical education is becoming more and more common. Although the benefits of practicing with these systems in medical education have been demonstrated, advantages of using computer-based simulation in emergency medicine education are less validated. The aim of the present study was to assess the success rates of final year medical students in doing emergency medical treatment and evaluating the effectiveness of computer-based simulation training in improving final year medical students' knowledge. Twenty four Students trained with computer-based simulation and completed at least 4 hours of simulation-based education between the dates Feb 1, 2010 - May 1, 2010. Also a control group (traditionally trained, n =24) was chosen. After the end of training, students completed an examination about 5 randomized medical simulation cases. In 5 cases, an average of 3.9 correct medical approaches carried out by computer-based simulation trained students, an average of 2.8 correct medical approaches carried out by traditionally trained group (t = 3.90, p < 0.005). We found that the success of students trained with simulation training in cases which required complicated medical approach, was statistically higher than the ones who didn't take simulation training (p ≤ 0.05). Computer-based simulation training would be significantly effective in learning of medical treatment algorithms. We thought that these programs can improve the success rate of students especially in doing adequate medical approach to complex emergency cases.
[Auditory rehabilitation programmes for adults: what do we know about their effectiveness?].
Cardemil, Felipe; Aguayo, Lorena; Fuente, Adrian
2014-01-01
Hearing loss ranks third among the health conditions that involve disability-adjusted life years. Hearing aids are the most commonly used treatment option in people with hearing loss. However, a number of auditory rehabilitation programmes have been developed with the aim of improving communicative abilities in people with hearing loss. The objective of this review was to determine the effectiveness of auditory rehabilitation programmes focused on communication strategies. This was a narrative revision. A literature search using PUBMED was carried out. This search included systematic reviews investigating the effectiveness of auditory training and individual and group auditory rehabilitation programmes with the main focus on counselling and communicative strategies for adults with hearing loss. Each study was analysed in terms of the type of intervention used and the results obtained. Three articles were identified: one article about the effectiveness of auditory training programmes and 2 systematic reviews that investigated the effectiveness of communicative programmes in adults with hearing loss. The "Active Communication Education" programme appears to be an effective group programme of auditory rehabilitation that may be used with older Spanish-speaking adults. The utility of hearing aid fitting and communicative programmes as rehabilitation options are associated with improvements in social participation and quality of life in patients with hearing loss, especially group auditory rehabilitation programmes, which seem to have good potential for reducing activity limitations and social participation restrictions, and thus for improving patient quality of life. Copyright © 2013 Elsevier España, S.L. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
Schwenk, Michael; Grewal, Gurtej S; Honarvar, Bahareh; Schwenk, Stefanie; Mohler, Jane; Khalsa, Dharma S; Najafi, Bijan
2014-12-13
Wearable sensor technology can accurately measure body motion and provide incentive feedback during exercising. The aim of this pilot study was to evaluate the effectiveness and user experience of a balance training program in older adults integrating data from wearable sensors into a human-computer interface designed for interactive training. Senior living community residents (mean age 84.6) with confirmed fall risk were randomized to an intervention (IG, n = 17) or control group (CG, n = 16). The IG underwent 4 weeks (twice a week) of balance training including weight shifting and virtual obstacle crossing tasks with visual/auditory real-time joint movement feedback using wearable sensors. The CG received no intervention. Outcome measures included changes in center of mass (CoM) sway, ankle and hip joint sway measured during eyes open (EO) and eyes closed (EC) balance test at baseline and post-intervention. Ankle-hip postural coordination was quantified by a reciprocal compensatory index (RCI). Physical performance was quantified by the Alternate-Step-Test (AST), Timed-up-and-go (TUG), and gait assessment. User experience was measured by a standardized questionnaire. After the intervention sway of CoM, hip, and ankle were reduced in the IG compared to the CG during both EO and EC condition (p = .007-.042). Improvement was obtained for AST (p = .037), TUG (p = .024), fast gait speed (p = . 010), but not normal gait speed (p = .264). Effect sizes were moderate for all outcomes. RCI did not change significantly. Users expressed a positive training experience including fun, safety, and helpfulness of sensor-feedback. Results of this proof-of-concept study suggest that older adults at risk of falling can benefit from the balance training program. Study findings may help to inform future exercise interventions integrating wearable sensors for guided game-based training in home- and community environments. Future studies should evaluate the added value of the proposed sensor-based training paradigm compared to traditional balance training programs and commercial exergames. http://www.clinicaltrials.govNCT02043834.
The Incongruency Advantage for Environmental Sounds Presented in Natural Auditory Scenes
Gygi, Brian; Shafiro, Valeriy
2011-01-01
The effect of context on the identification of common environmental sounds (e.g., dogs barking or cars honking) was tested by embedding them in familiar auditory background scenes (street ambience, restaurants). Initial results with subjects trained on both the scenes and the sounds to be identified showed a significant advantage of about 5 percentage points better accuracy for sounds that were contextually incongruous with the background scene (e.g., a rooster crowing in a hospital). Further studies with naïve (untrained) listeners showed that this Incongruency Advantage (IA) is level-dependent: there is no advantage for incongruent sounds lower than a Sound/Scene ratio (So/Sc) of −7.5 dB, but there is about 5 percentage points better accuracy for sounds with greater So/Sc. Testing a new group of trained listeners on a larger corpus of sounds and scenes showed that the effect is robust and not confined to specific stimulus set. Modeling using spectral-temporal measures showed that neither analyses based on acoustic features, nor semantic assessments of sound-scene congruency can account for this difference, indicating the Incongruency Advantage is a complex effect, possibly arising from the sensitivity of the auditory system to new and unexpected events, under particular listening conditions. PMID:21355664
Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa
2011-07-01
A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.
Optale, Gabriele; Urgesi, Cosimo; Busato, Valentina; Marin, Silvia; Piron, Lamberto; Priftis, Konstantinos; Gamberini, Luciano; Capodieci, Salvatore; Bordin, Adalberto
2010-05-01
Memory decline is a prevalent aspect of aging but may also be the first sign of cognitive pathology. Virtual reality (VR) using immersion and interaction may provide new approaches to the treatment of memory deficits in elderly individuals. The authors implemented a VR training intervention to try to lessen cognitive decline and improve memory functions. The authors randomly assigned 36 elderly residents of a rest care facility (median age 80 years) who were impaired on the Verbal Story Recall Test either to the experimental group (EG) or the control group (CG). The EG underwent 6 months of VR memory training (VRMT) that involved auditory stimulation and VR experiences in path finding. The initial training phase lasted 3 months (3 auditory and 3 VR sessions every 2 weeks), and there was a booster training phase during the following 3 months (1 auditory and 1 VR session per week). The CG underwent equivalent face-to-face training sessions using music therapy. Both groups participated in social and creative and assisted-mobility activities. Neuropsychological and functional evaluations were performed at baseline, after the initial training phase, and after the booster training phase. The EG showed significant improvements in memory tests, especially in long-term recall with an effect size of 0.7 and in several other aspects of cognition. In contrast, the CG showed progressive decline. The authors suggest that VRMT may improve memory function in elderly adults by enhancing focused attention.
Psychological Predictors of Visual and Auditory P300 Brain-Computer Interface Performance
Hammer, Eva M.; Halder, Sebastian; Kleih, Sonja C.; Kübler, Andrea
2018-01-01
Brain-Computer Interfaces (BCIs) provide communication channels independent from muscular control. In the current study we used two versions of the P300-BCI: one based on visual the other on auditory stimulation. Up to now, data on the impact of psychological variables on P300-BCI control are scarce. Hence, our goal was to identify new predictors with a comprehensive psychological test-battery. A total of N = 40 healthy BCI novices took part in a visual and an auditory BCI session. Psychological variables were measured with an electronic test-battery including clinical, personality, and performance tests. The personality factor “emotional stability” was negatively correlated (Spearman's rho = −0.416; p < 0.01) and an output variable of the non-verbal learning test (NVLT), which can be interpreted as ability to learn, correlated positively (Spearman's rho = 0.412; p < 0.01) with visual P300-BCI performance. In a linear regression analysis both independent variables explained 24% of the variance. “Emotional stability” was also negatively related to auditory P300-BCI performance (Spearman's rho = −0.377; p < 0.05), but failed significance in the regression analysis. Psychological parameters seem to play a moderate role in visual P300-BCI performance. “Emotional stability” was identified as a new predictor, indicating that BCI users who characterize themselves as calm and rational showed worse BCI performance. The positive relation of the ability to learn and BCI performance corroborates the notion that also for P300 based BCIs learning may constitute an important factor. Further studies are needed to consolidate or reject the presented predictors. PMID:29867319
Placement from community-based mental retardation programs: how well do clients do?
Schalock, R L; Harper, R S
1978-11-01
Mentally retarded clients (N = 131) placed during a 2-year period from either an independent living or competitive employment training program were evaluated as to placement success. Thirteen percent returned to the training program. Successful independent living placement was related to intelligence and demonstrated skills in symbolic operations, personal maintenance, clothing care and use, socially appropriate behavior, and functional academics. Successful employment was related to sensorimotor, visual-auditory processing, language, and symbolic-operations skills. Major reasons for returning from a job to the competitive employment training program included inappropriate behavior or need for more training; returning from community living placement was related to money management, apartment cleanliness, social behavior, and meal preparation.
Eberhardt, Silvio P; Auer, Edward T; Bernstein, Lynne E
2014-01-01
In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).
Eberhardt, Silvio P.; Auer Jr., Edward T.; Bernstein, Lynne E.
2014-01-01
In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee’s primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee’s lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT). PMID:25400566
Verhulst, Sarah; Altoè, Alessandro; Vasilkov, Viacheslav
2018-03-01
Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Seasonal Plasticity of Precise Spike Timing in the Avian Auditory System
Sen, Kamal; Rubel, Edwin W; Brenowitz, Eliot A.
2015-01-01
Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding. PMID:25716843
How musical expertise shapes speech perception: evidence from auditory classification images.
Varnet, Léo; Wang, Tianyun; Peter, Chloe; Meunier, Fanny; Hoen, Michel
2015-09-24
It is now well established that extensive musical training percolates to higher levels of cognition, such as speech processing. However, the lack of a precise technique to investigate the specific listening strategy involved in speech comprehension has made it difficult to determine how musicians' higher performance in non-speech tasks contributes to their enhanced speech comprehension. The recently developed Auditory Classification Image approach reveals the precise time-frequency regions used by participants when performing phonemic categorizations in noise. Here we used this technique on 19 non-musicians and 19 professional musicians. We found that both groups used very similar listening strategies, but the musicians relied more heavily on the two main acoustic cues, at the first formant onset and at the onsets of the second and third formants onsets. Additionally, they responded more consistently to stimuli. These observations provide a direct visualization of auditory plasticity resulting from extensive musical training and shed light on the level of functional transfer between auditory processing and speech perception.
Longitudinal auditory learning facilitates auditory cognition as revealed by microstate analysis.
Giroud, Nathalie; Lemke, Ulrike; Reich, Philip; Matthes, Katarina L; Meyer, Martin
2017-02-01
The current study investigates cognitive processes as reflected in late auditory-evoked potentials as a function of longitudinal auditory learning. A normal hearing adult sample (n=15) performed an active oddball task at three consecutive time points (TPs) arranged at two week intervals, and during which EEG was recorded. The stimuli comprised of syllables consisting of a natural fricative (/sh/,/s/,/f/) embedded between two /a/ sounds, as well as morphed transitions of the two syllables that served as deviants. Perceptual and cognitive modulations as reflected in the onset and the mean global field power (GFP) of N2b- and P3b-related microstates across four weeks were investigated. We found that the onset of P3b-like microstates, but not N2b-like microstates decreased across TPs, more strongly for difficult deviants leading to similar onsets for difficult and easy stimuli after repeated exposure. The mean GFP of all N2b-like and P3b-like microstates increased more in spectrally strong deviants compared to weak deviants, leading to a distinctive activation for each stimulus after learning. Our results indicate that longitudinal training of auditory-related cognitive mechanisms such as stimulus categorization, attention and memory updating processes are an indispensable part of successful auditory learning. This suggests that future studies should focus on the potential benefits of cognitive processes in auditory training. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of a Bayesian Estimator for Audio-Visual Integration: A Neurocomputational Study
Ursino, Mauro; Crisafulli, Andrea; di Pellegrino, Giuseppe; Magosso, Elisa; Cuppini, Cristiano
2017-01-01
The brain integrates information from different sensory modalities to generate a coherent and accurate percept of external events. Several experimental studies suggest that this integration follows the principle of Bayesian estimate. However, the neural mechanisms responsible for this behavior, and its development in a multisensory environment, are still insufficiently understood. We recently presented a neural network model of audio-visual integration (Neural Computation, 2017) to investigate how a Bayesian estimator can spontaneously develop from the statistics of external stimuli. Model assumes the presence of two unimodal areas (auditory and visual) topologically organized. Neurons in each area receive an input from the external environment, computed as the inner product of the sensory-specific stimulus and the receptive field synapses, and a cross-modal input from neurons of the other modality. Based on sensory experience, synapses were trained via Hebbian potentiation and a decay term. Aim of this work is to improve the previous model, including a more realistic distribution of visual stimuli: visual stimuli have a higher spatial accuracy at the central azimuthal coordinate and a lower accuracy at the periphery. Moreover, their prior probability is higher at the center, and decreases toward the periphery. Simulations show that, after training, the receptive fields of visual and auditory neurons shrink to reproduce the accuracy of the input (both at the center and at the periphery in the visual case), thus realizing the likelihood estimate of unimodal spatial position. Moreover, the preferred positions of visual neurons contract toward the center, thus encoding the prior probability of the visual input. Finally, a prior probability of the co-occurrence of audio-visual stimuli is encoded in the cross-modal synapses. The model is able to simulate the main properties of a Bayesian estimator and to reproduce behavioral data in all conditions examined. In particular, in unisensory conditions the visual estimates exhibit a bias toward the fovea, which increases with the level of noise. In cross modal conditions, the SD of the estimates decreases when using congruent audio-visual stimuli, and a ventriloquism effect becomes evident in case of spatially disparate stimuli. Moreover, the ventriloquism decreases with the eccentricity. PMID:29046631
Melara, Robert D; Tong, Yunxia; Rao, Aparna
2012-01-09
Behavioral and electrophysiological measures of target and distractor processing were examined in an auditory selective attention task before and after three weeks of distractor suppression training. Behaviorally, training improved target recognition and led to less conservative and more rapid responding. Training also effectively shortened the temporal distance between distractors and targets needed to achieve a fixed level of target sensitivity. The effects of training on event-related potentials were restricted to the distracting stimulus: earlier N1 latency, enhanced P2 amplitude, and weakened P3 amplitude. Nevertheless, as distractor P2 amplitude increased, so too did target P3 amplitude, connecting experience-dependent changes in distractor processing with greater distinctiveness of targets in working memory. We consider the effects of attention training on the processing priorities, representational noise, and inhibitory processes operating in working memory. Copyright © 2011 Elsevier B.V. All rights reserved.
Ramkumar, Vidya; Vanaja, C S; Hall, James W; Selvakumar, K; Nagarajan, Roopa
2018-05-01
This study assessed the validity of DPOAE screening conducted by village health workers (VHWs) in a rural community. Real-time click evoked tele-auditory brainstem response (tele-ABR) was used as the gold standard to establish validity. A cross-sectional design was utilised to compare the results of screening by VHWs to those obtained via tele-ABR. Study samples: One hundred and nineteen subjects (0 to 5 years) were selected randomly from a sample of 2880 infants and young children who received DPOAE screening by VHWs. Real time tele-ABR was conducted by using satellite or broadband internet connectivity at the village. An audiologist located at the tertiary care hospital conducted tele-ABR testing through a remote computing paradigm. Tele-ABR was recorded using standard recording parameters recommended for infants and young children. Wave morphology, repeatability and peak latency data were used for ABR analysis. Tele-ABR and DPOAE findings were compared for 197 ears. The sensitivity of DPOAE screening conducted by the VHW was 75%, and specificity was 91%. The negative and positive predictive values were 98.8% and 27.2%, respectively. The validity of DPOAE screening conducted by trained VHW was acceptable. This study supports the engagement of grass-root workers in community-based hearing health care provision.
Effects of acoustic feedback training in elite-standard Para-Rowing.
Schaffert, Nina; Mattes, Klaus
2015-01-01
Assessment and feedback devices have been regularly used in technique training in high-performance sports. Biomechanical analysis is mainly visually based and so can exclude athletes with visual impairments. The aim of this study was to examine the effects of auditory feedback on mean boat speed during on-water training of visually impaired athletes. The German National Para-Rowing team (six athletes, mean ± s, age 34.8 ± 10.6 years, body mass 76.5 ± 13.5 kg, stature 179.3 ± 8.6 cm) participated in the study. Kinematics included boat acceleration and distance travelled, collected with Sofirow at two intensities of training. The boat acceleration-time traces were converted online into acoustic feedback and presented via speakers during rowing (sections with and without alternately). Repeated-measures within-participant factorial ANOVA showed greater boat speed with acoustic feedback than baseline (0.08 ± 0.01 m·s(-1)). The time structure of rowing cycles was improved (extended time of positive acceleration). Questioning of athletes showed acoustic feedback to be a supportive training aid as it provided important functional information about the boat motion independent of vision. It gave access for visually impaired athletes to biomechanical analysis via auditory information. The concept for adaptive athletes has been successfully integrated into the preparation for the Para-Rowing World Championships and Paralympics.
The effects of ambient music on simulated anaesthesia monitoring.
Sanderson, P M; Tosh, N; Philp, S; Rudie, J; Watson, M O; Russell, W J
2005-11-01
We examined the effect of no music, classical music or rock music on simulated patient monitoring. Twenty-four non-anaesthetist participants with high or low levels of musical training were trained to monitor visual and auditory displays of patients' vital signs. In nine anaesthesia test scenarios, participants were asked every 50-70 s whether one of five vital signs was abnormal and the trend of its direction. Abnormality judgements were unaffected by music or musical training. Trend judgements were more accurate when music was playing (p = 0.0004). Musical participants reported trends more accurately (p = 0.004), and non-musical participants tended to benefit more from music than did the musical participants (p = 0.063). Music may provide a pitch and rhythm standard from which participants can judge changes in vital signs from auditory displays. Nonetheless, both groups reported that it was easier to monitor the patient with no music (p = 0.0001), and easier to rely upon the auditory displays with no music (p = 0.014).
Professional Training in Listening and Spoken Language--A Canadian Perspective
ERIC Educational Resources Information Center
Fitzpatrick, Elizabeth
2010-01-01
Several factors undoubtedly influenced the development of listening and spoken language options for children with hearing loss in Canada. The concept of providing auditory-based rehabilitation was popularized in Canada in the 1960s through the work of Drs. Daniel Ling and Agnes Ling in Montreal. The Lings founded the McGill University Project for…
Evolutionarily conserved coding properties of auditory neurons across grasshopper species
Neuhofer, Daniela; Wohlgemuth, Sandra; Stumpner, Andreas; Ronacher, Bernhard
2008-01-01
We investigated encoding properties of identified auditory interneurons in two not closely related grasshopper species (Acrididae). The neurons can be homologized on the basis of their similar morphologies and physiologies. As test stimuli, we used the species-specific stridulation signals of Chorthippus biguttulus, which evidently are not relevant for the other species, Locusta migratoria. We recorded spike trains produced in response to these signals from several neuron types at the first levels of the auditory pathway in both species. Using a spike train metric to quantify differences between neuronal responses, we found a high similarity in the responses of homologous neurons: interspecific differences between the responses of homologous neurons in the two species were not significantly larger than intraspecific differences (between several specimens of a neuron in one species). These results suggest that the elements of the thoracic auditory pathway have been strongly conserved during the evolutionary divergence of these species. According to the ‘efficient coding’ hypothesis, an adaptation of the thoracic auditory pathway to the specific needs of acoustic communication could be expected. We conclude that there must have been stabilizing selective forces at work that conserved coding characteristics and prevented such an adaptation. PMID:18505715
Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions
Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.
2014-01-01
Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967
Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.
Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro P; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko
2017-08-15
During a conversation or when listening to music, auditory and visual information are combined automatically into audiovisual objects. However, it is still poorly understood how specific type of visual information shapes neural processing of sounds in lifelike stimulus environments. Here we applied multi-voxel pattern analysis to investigate how naturally matching visual input modulates supratemporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or singing. The predictive performances of the classifiers were tested by leaving one participant at a time for testing and training the model using the remaining 15 participants. The signature patterns associated with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, revealed that activity in some of these MTG and STG areas were associated with acoustic features present in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech), lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results suggest that specific supratemporal brain areas are involved in processing complex natural speech, singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-related hand actions) supratemporal cortex are influenced by related visual information. Those anterior and posterior supratemporal areas have been linked to stimulus identification and sensory-motor integration, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.
Audiovisual cues and perceptual learning of spectrally distorted speech.
Pilling, Michael; Thomas, Sharon
2011-12-01
Two experiments investigate the effectiveness of audiovisual (AV) speech cues (cues derived from both seeing and hearing a talker speak) in facilitating perceptual learning of spectrally distorted speech. Speech was distorted through an eight channel noise-vocoder which shifted the spectral envelope of the speech signal to simulate the properties of a cochlear implant with a 6 mm place mismatch: Experiment I found that participants showed significantly greater improvement in perceiving noise-vocoded speech when training gave AV cues than when it gave auditory cues alone. Experiment 2 compared training with AV cues with training which gave written feedback. These two methods did not significantly differ in the pattern of training they produced. Suggestions are made about the types of circumstances in which the two training methods might be found to differ in facilitating auditory perceptual learning of speech.
Evidence for a Non-Lexical Influence on Children's Auditory Repetition of Familiar Words
ERIC Educational Resources Information Center
Budd, Mary-Jane; Hanley, J. Richard; Nozari, Nazbanou
2012-01-01
This paper examines evidence for a nonlexical influence on children's repetition of real words. We investigate the extent to which two computational models of auditory repetition can simulate the performance of 68 children aged between 5 and 11 years-old when they are attempting to repeat familiar words. Both computational accounts were derived…
ERIC Educational Resources Information Center
Steinhaus, Kurt A.
A 12-week study of two groups of 14 college freshmen music majors was conducted to determine which group demonstrated greater achievement in learning auditory discrimination using computer-assisted instruction (CAI). The method employed was a pre-/post-test experimental design using subjects randomly assigned to a control group or an experimental…
The Use of Spatialized Speech in Auditory Interfaces for Computer Users Who Are Visually Impaired
ERIC Educational Resources Information Center
Sodnik, Jaka; Jakus, Grega; Tomazic, Saso
2012-01-01
Introduction: This article reports on a study that explored the benefits and drawbacks of using spatially positioned synthesized speech in auditory interfaces for computer users who are visually impaired (that is, are blind or have low vision). The study was a practical application of such systems--an enhanced word processing application compared…
Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala.
Kim, Woong Bin; Cho, Jun-Hyeong
2017-08-30
In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task
Plack, Christopher J.
2010-01-01
Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change. PMID:20878201
Subcortical plasticity following perceptual learning in a pitch discrimination task.
Carcagno, Samuele; Plack, Christopher J
2011-02-01
Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.
Training Level Does Not Affect Auditory Perception of The Magnitude of Ball Spin in Table Tennis.
Santos, Daniel P R; Barbosa, Roberto N; Vieira, Luiz H P; Santiago, Paulo R P; Zagatto, Alessandro M; Gomes, Matheus M
2017-01-01
Identifying the trajectory and spin of the ball with speed and accuracy is critical for good performance in table tennis. The aim of this study was to analyze the ability of table tennis players presenting different levels of training/experience to identify the magnitude of the ball spin from the sound produced when the racket hit the ball. Four types of "forehand" contact sounds were collected in the laboratory, defined as: Fast Spin (spinning ball forward at 140 r/s); Medium Spin (105 r/s); Slow Spin (84 r/s); and Flat Hit (less than 60 r/s). Thirty-four table tennis players of both sexes (24 men and 10 women) aged 18-40 years listened to the sounds and tried to identify the magnitude of the ball spin. The results revealed that in 50.9% of the cases the table tennis players were able to identify the ball spin and the observed number of correct answers (10.2) was significantly higher (χ 2 = 270.4, p <0.05) than the number of correct answers that could occur by chance. On the other hand, the results did not show any relationship between the level of training/experience and auditory perception of the ball spin. This indicates that auditory information contributes to identification of the magnitude of the ball spin, however, it also reveals that, in table tennis, the level of training does not interfere with the auditory perception of the ball spin.
ERIC Educational Resources Information Center
Semanchik, Karen
This teacher's guide presents a course for training hearing-impaired students to listen to, create, and perform music. It emphasizes development of individual skills and group participation, encouraging students to contribute a wide variety of auditory and musical abilities and experiences while developing auditory acuity and attention. A variety…
NASA Astrophysics Data System (ADS)
Deprez, Hanne; Gransier, Robin; Hofmann, Michael; van Wieringen, Astrid; Wouters, Jan; Moonen, Marc
2018-02-01
Objective. Electrically evoked auditory steady-state responses (EASSRs) are potentially useful for objective cochlear implant (CI) fitting and follow-up of the auditory maturation in infants and children with a CI. EASSRs are recorded in the electro-encephalogram (EEG) in response to electrical stimulation with continuous pulse trains, and are distorted by significant CI artifacts related to this electrical stimulation. The aim of this study is to evaluate a CI artifacts attenuation method based on independent component analysis (ICA) for three EASSR datasets. Approach. ICA has often been used to remove CI artifacts from the EEG to record transient auditory responses, such as cortical evoked auditory potentials. Independent components (ICs) corresponding to CI artifacts are then often manually identified. In this study, an ICA based CI artifacts attenuation method was developed and evaluated for EASSR measurements with varying CI artifacts and EASSR characteristics. Artifactual ICs were automatically identified based on their spectrum. Main results. For 40 Hz amplitude modulation (AM) stimulation at comfort level, in high SNR recordings, ICA succeeded in removing CI artifacts from all recording channels, without distorting the EASSR. For lower SNR recordings, with 40 Hz AM stimulation at lower levels, or 90 Hz AM stimulation, ICA either distorted the EASSR or could not remove all CI artifacts in most subjects, except for two of the seven subjects tested with low level 40 Hz AM stimulation. Noise levels were reduced after ICA was applied, and up to 29 ICs were rejected, suggesting poor ICA separation quality. Significance. We hypothesize that ICA is capable of separating CI artifacts and EASSR in case the contralateral hemisphere is EASSR dominated. For small EASSRs or large CI artifact amplitudes, ICA separation quality is insufficient to ensure complete CI artifacts attenuation without EASSR distortion.
Specialization along the left superior temporal sulcus for auditory categorization.
Liebenthal, Einat; Desai, Rutvik; Ellingson, Michael M; Ramachandran, Brinda; Desai, Anjali; Binder, Jeffrey R
2010-12-01
The affinity and temporal course of functional fields in middle and posterior superior temporal cortex for the categorization of complex sounds was examined using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) recorded simultaneously. Data were compared before and after subjects were trained to categorize a continuum of unfamiliar nonphonemic auditory patterns with speech-like properties (NP) and a continuum of familiar phonemic patterns (P). fMRI activation for NP increased after training in left posterior superior temporal sulcus (pSTS). The ERP P2 response to NP also increased with training, and its scalp topography was consistent with left posterior superior temporal generators. In contrast, the left middle superior temporal sulcus (mSTS) showed fMRI activation only for P, and this response was not affected by training. The P2 response to P was also independent of training, and its estimated source was more anterior in left superior temporal cortex. Results are consistent with a role for left pSTS in short-term representation of relevant sound features that provide the basis for identifying newly acquired sound categories. Categorization of highly familiar phonemic patterns is mediated by long-term representations in left mSTS. Results provide new insight regarding the function of ventral and dorsal auditory streams.
Strength of German accent under altered auditory feedback
HOWELL, PETER; DWORZYNSKI, KATHARINA
2007-01-01
Borden’s (1979, 1980) hypothesis that speakers with vulnerable speech systems rely more heavily on feedback monitoring than do speakers with less vulnerable systems was investigated. The second language (L2) of a speaker is vulnerable, in comparison with the native language, so alteration to feedback should have a detrimental effect on it, according to this hypothesis. Here, we specifically examined whether altered auditory feedback has an effect on accent strength when speakers speak L2. There were three stages in the experiment. First, 6 German speakers who were fluent in English (their L2) were recorded under six conditions—normal listening, amplified voice level, voice shifted in frequency, delayed auditory feedback, and slowed and accelerated speech rate conditions. Second, judges were trained to rate accent strength. Training was assessed by whether it was successful in separating German speakers speaking English from native English speakers, also speaking English. In the final stage, the judges ranked recordings of each speaker from the first stage as to increasing strength of German accent. The results show that accents were more pronounced under frequency-shifted and delayed auditory feedback conditions than under normal or amplified feedback conditions. Control tests were done to ensure that listeners were judging accent, rather than fluency changes caused by altered auditory feedback. The findings are discussed in terms of Borden’s hypothesis and other accounts about why altered auditory feedback disrupts speech control. PMID:11414137
Computer-Based Simulations for Maintenance Training: Current ARI Research. Technical Report 544.
ERIC Educational Resources Information Center
Knerr, Bruce W.; And Others
Three research efforts that used computer-based simulations for maintenance training were in progress when this report was written: Game-Based Learning, which investigated the use of computer-based games to train electronics diagnostic skills; Human Performance in Fault Diagnosis Tasks, which evaluated the use of context-free tasks to train…
ERIC Educational Resources Information Center
Nosik, Melissa R.; Williams, W. Larry; Garrido, Natalia; Lee, Sarah
2013-01-01
In the current study, behavior skills training (BST) is compared to a computer based training package for teaching discrete trial instruction to staff, teaching an adult with autism. The computer based training package consisted of instructions, video modeling and feedback. BST consisted of instructions, modeling, rehearsal and feedback. Following…
ERIC Educational Resources Information Center
Abrams, Alvin J.; Cook, Richard L.
In training people to perform auditory identification tasks (e.g., training students to identify sound characteristics in a sonar classification task), it is important to know whether or not training procedures are merely sustaining performance during training or whether they enhance learning of the task. Often an incorrect assumption is made that…
Perception of stochastically undersampled sound waveforms: a model of auditory deafferentation
Lopez-Poveda, Enrique A.; Barrios, Pablo
2013-01-01
Auditory deafferentation, or permanent loss of auditory nerve afferent terminals, occurs after noise overexposure and aging and may accompany many forms of hearing loss. It could cause significant auditory impairment but is undetected by regular clinical tests and so its effects on perception are poorly understood. Here, we hypothesize and test a neural mechanism by which deafferentation could deteriorate perception. The basic idea is that the spike train produced by each auditory afferent resembles a stochastically digitized version of the sound waveform and that the quality of the waveform representation in the whole nerve depends on the number of aggregated spike trains or auditory afferents. We reason that because spikes occur stochastically in time with a higher probability for high- than for low-intensity sounds, more afferents would be required for the nerve to faithfully encode high-frequency or low-intensity waveform features than low-frequency or high-intensity features. Deafferentation would thus degrade the encoding of these features. We further reason that due to the stochastic nature of nerve firing, the degradation would be greater in noise than in quiet. This hypothesis is tested using a vocoder. Sounds were filtered through ten adjacent frequency bands. For the signal in each band, multiple stochastically subsampled copies were obtained to roughly mimic different stochastic representations of that signal conveyed by different auditory afferents innervating a given cochlear region. These copies were then aggregated to obtain an acoustic stimulus. Tone detection and speech identification tests were performed by young, normal-hearing listeners using different numbers of stochastic samplers per frequency band in the vocoder. Results support the hypothesis that stochastic undersampling of the sound waveform, inspired by deafferentation, impairs speech perception in noise more than in quiet, consistent with auditory aging effects. PMID:23882176
Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex.
Shetake, Jai A; Engineer, Navzer D; Vrana, Will A; Wolf, Jordan T; Kilgard, Michael P
2012-01-01
The selectivity of neurons in sensory cortex can be modified by pairing neuromodulator release with sensory stimulation. Repeated pairing of electrical stimulation of the cholinergic nucleus basalis, for example, induces input specific plasticity in primary auditory cortex (A1). Pairing nucleus basalis stimulation (NBS) with a tone increases the number of A1 neurons that respond to the paired tone frequency. Pairing NBS with fast or slow tone trains can respectively increase or decrease the ability of A1 neurons to respond to rapidly presented tones. Pairing vagus nerve stimulation (VNS) with a single tone alters spectral tuning in the same way as NBS-tone pairing without the need for brain surgery. In this study, we tested whether pairing VNS with tone trains can change the temporal response properties of A1 neurons. In naïve rats, A1 neurons respond strongly to tones repeated at rates up to 10 pulses per second (pps). Repeatedly pairing VNS with 15 pps tone trains increased the temporal following capacity of A1 neurons and repeatedly pairing VNS with 5 pps tone trains decreased the temporal following capacity of A1 neurons. Pairing VNS with tone trains did not alter the frequency selectivity or tonotopic organization of auditory cortex neurons. Since VNS is well tolerated by patients, VNS-tone train pairing represents a viable method to direct temporal plasticity in a variety of human conditions associated with temporal processing deficits. Copyright © 2011 Elsevier Inc. All rights reserved.
Software use in the (re)habilitation of hearing impaired children.
Silva, Mariane Perin da; Comerlatto Junior, Ademir Antonio; Balen, Sheila Andreoli; Bevilacqua, Maria Cecília
2012-01-01
To verify the applicability of a software in the (re)habilitation of hearing impaired children. The sample comprised 17 children with hearing impairment, ten with cochlear implants (CI) and seven with hearing aids (HA). The Software Auxiliar na Reabilitação de Distúrbios Auditivos - SARDA (Auxiliary Software for the Rehabilitation of Hearing Disorders) was used. The training protocol was applied for 30 minutes, twice a week, for the necessary time to complete the strategies proposed in the software. To measure the software's applicability for training the speech perception ability in quiet and in noise, subjects were assessed through the Hearing in Noise Test (HINT), before and after the auditory training. Data were statistically analyzed. The group of CI users needed, in average, 12.2 days to finish the strategies, and the group of HA users, in average 10.14 days. Both groups presented differences between pre and post assessments, both in quiet and in noise. Younger children showed more difficulty executing the strategies, however, there was no correlation between age and performance. The type of electronic device did not influence the training. Children presented greater difficulty in the strategy involving non-verbal stimuli and in the strategy with verbal stimuli that trains the sustained attention ability. Children's attention and motivation during stimulation were fundamental for a successful auditory training. The auditory training using the SARDA was effective, providing improvement of the speech perception ability, both in quiet and in noise, for the hearing impaired children.
ERIC Educational Resources Information Center
Strong, Gemma K.; Torgerson, Carole J.; Torgerson, David; Hulme, Charles
2011-01-01
Background: Fast ForWord is a suite of computer-based language intervention programs designed to improve children's reading and oral language skills. The programs are based on the hypothesis that oral language difficulties often arise from a rapid auditory temporal processing deficit that compromises the development of phonological…
Music playing and memory trace: evidence from event-related potentials.
Kamiyama, Keiko; Katahira, Kentaro; Abla, Dilshat; Hori, Koji; Okanoya, Kazuo
2010-08-01
We examined the relationship between motor practice and auditory memory for sound sequences to evaluate the hypothesis that practice involving physical performance might enhance auditory memory. Participants learned two unfamiliar sound sequences using different training methods. Under the key-press condition, they learned a melody while pressing a key during auditory input. Under the no-key-press condition, they listened to another melody without any key pressing. The two melodies were presented alternately, and all participants were trained in both methods. Participants were instructed to pay attention under both conditions. After training, they listened to the two melodies again without pressing keys, and ERPs were recorded. During the ERP recordings, 10% of the tones in these melodies deviated from the originals. The grand-average ERPs showed that the amplitude of mismatch negativity (MMN) elicited by deviant stimuli was larger under the key-press condition than under the no-key-press condition. This effect appeared only in the high absolute pitch group, which included those with a pronounced ability to identify a note without external reference. This result suggests that the effect of training with key pressing was mediated by individual musical skills. Copyright 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng
2005-04-01
This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.
Cue-recruitment for extrinsic signals after training with low information stimuli.
Jain, Anshul; Fuller, Stuart; Backus, Benjamin T
2014-01-01
Cue-recruitment occurs when a previously ineffective signal comes to affect the perceptual appearance of a target object, in a manner similar to the trusted cues with which the signal was put into correlation during training. Jain, Fuller and Backus reported that extrinsic signals, those not carried by the target object itself, were not recruited even after extensive training. However, recent studies have shown that training using weakened trusted cues can facilitate recruitment of intrinsic signals. The current study was designed to examine whether extrinsic signals can be recruited by putting them in correlation with weakened trusted cues. Specifically, we tested whether an extrinsic visual signal, the rotary motion direction of an annulus of random dots, and an extrinsic auditory signal, direction of an auditory pitch glide, can be recruited as cues for the rotation direction of a Necker cube. We found learning, albeit weak, for visual but not for auditory signals. These results extend the generality of the cue-recruitment phenomenon to an extrinsic signal and provide further evidence that the visual system learns to use new signals most quickly when other, long-trusted cues are unavailable or unreliable.
On the tip of the tongue: learning typing and pointing with an intra-oral computer interface.
Caltenco, Héctor A; Breidegard, Björn; Struijk, Lotte N S Andreasen
2014-07-01
To evaluate typing and pointing performance and improvement over time of four able-bodied participants using an intra-oral tongue-computer interface for computer control. A physically disabled individual may lack the ability to efficiently control standard computer input devices. There have been several efforts to produce and evaluate interfaces that provide individuals with physical disabilities the possibility to control personal computers. Training with the intra-oral tongue-computer interface was performed by playing games over 18 sessions. Skill improvement was measured through typing and pointing exercises at the end of each training session. Typing throughput improved from averages of 2.36 to 5.43 correct words per minute. Pointing throughput improved from averages of 0.47 to 0.85 bits/s. Target tracking performance, measured as relative time on target, improved from averages of 36% to 47%. Path following throughput improved from averages of 0.31 to 0.83 bits/s and decreased to 0.53 bits/s with more difficult tasks. Learning curves support the notion that the tongue can rapidly learn novel motor tasks. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, which makes the tongue a feasible input organ for computer control. Intra-oral computer interfaces could provide individuals with severe upper-limb mobility impairments the opportunity to control computers and automatic equipment. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, but does not cause fatigue easily and might be invisible to other people, which is highly prioritized by assistive device users. Combination of visual and auditory feedback is vital for a good performance of an intra-oral computer interface and helps to reduce involuntary or erroneous activations.
Adaptive training diminishes distractibility in aging across species.
Mishra, Jyoti; de Villers-Sidani, Etienne; Merzenich, Michael; Gazzaley, Adam
2014-12-03
Aging is associated with deficits in the ability to ignore distractions, which has not yet been remediated by any neurotherapeutic approach. Here, in parallel auditory experiments with older rats and humans, we evaluated a targeted cognitive training approach that adaptively manipulated distractor challenge. Training resulted in enhanced discrimination abilities in the setting of irrelevant information in both species that was driven by selectively diminished distraction-related errors. Neural responses to distractors in auditory cortex were selectively reduced in both species, mimicking the behavioral effects. Sensory receptive fields in trained rats exhibited improved spectral and spatial selectivity. Frontal theta measures of top-down engagement with distractors were selectively restrained in trained humans. Finally, training gains generalized to group and individual level benefits in aspects of working memory and sustained attention. Thus, we demonstrate converging cross-species evidence for training-induced selective plasticity of distractor processing at multiple neural scales, benefitting distractor suppression and cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.
Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli.
Barbosa, Sara; Pires, Gabriel; Nunes, Urbano
2016-03-01
Brain computer interfaces (BCIs) are one of the last communication options for patients in the locked-in state (LIS). For complete LIS patients, interfaces must be gaze-independent due to their eye impairment. However, unimodal gaze-independent approaches typically present levels of performance substantially lower than gaze-dependent approaches. The combination of multimodal stimuli has been pointed as a viable way to increase users' performance. A hybrid visual and auditory (HVA) P300-based BCI combining simultaneously visual and auditory stimulation is proposed. Auditory stimuli are based on natural meaningful spoken words, increasing stimuli discrimination and decreasing user's mental effort in associating stimuli to the symbols. The visual part of the interface is covertly controlled ensuring gaze-independency. Four conditions were experimentally tested by 10 healthy participants: visual overt (VO), visual covert (VC), auditory (AU) and covert HVA. Average online accuracy for the hybrid approach was 85.3%, which is more than 32% over VC and AU approaches. Questionnaires' results indicate that the HVA approach was the less demanding gaze-independent interface. Interestingly, the P300 grand average for HVA approach coincides with an almost perfect sum of P300 evoked separately by VC and AU tasks. The proposed HVA-BCI is the first solution simultaneously embedding natural spoken words and visual words to provide a communication lexicon. Online accuracy and task demand of the approach compare favorably with state-of-the-art. The proposed approach shows that the simultaneous combination of visual covert control and auditory modalities can effectively improve the performance of gaze-independent BCIs. Copyright © 2015 Elsevier B.V. All rights reserved.
Computer-Based Training: Capitalizing on Lessons Learned
ERIC Educational Resources Information Center
Bedwell, Wendy L.; Salas, Eduardo
2010-01-01
Computer-based training (CBT) is a methodology for providing systematic, structured learning; a useful tool when properly designed. CBT has seen a resurgence given the serious games movement, which is at the forefront of integrating primarily entertainment computer-based games into education and training. This effort represents a multidisciplinary…
Sturm, Alexandra; Rozenman, Michelle; Piacentini, John C; McGough, James J; Loo, Sandra K; McCracken, James T
2018-03-20
Predictors of math achievement in attention-deficit/hyperactivity disorder (ADHD) are not well-known. To address this gap in the literature, we examined individual differences in neurocognitive functioning domains on math computation in a cross-sectional sample of youth with ADHD. Gender and anxiety symptoms were explored as potential moderators. The sample consisted of 281 youth (aged 8-15 years) diagnosed with ADHD. Neurocognitive tasks assessed auditory-verbal working memory, visuospatial working memory, and processing speed. Auditory-verbal working memory speed significantly predicted math computation. A three-way interaction revealed that at low levels of anxious perfectionism, slower processing speed predicted poorer math computation for boys compared to girls. These findings indicate the uniquely predictive values of auditory-verbal working memory and processing speed on math computation, and their differential moderation. These findings provide preliminary support that gender and anxious perfectionism may influence the relationship between neurocognitive functioning and academic achievement.
Audiovisual Interval Size Estimation Is Associated with Early Musical Training.
Abel, Mary Kathryn; Li, H Charles; Russo, Frank A; Schlaug, Gottfried; Loui, Psyche
2016-01-01
Although pitch is a fundamental attribute of auditory perception, substantial individual differences exist in our ability to perceive differences in pitch. Little is known about how these individual differences in the auditory modality might affect crossmodal processes such as audiovisual perception. In this study, we asked whether individual differences in pitch perception might affect audiovisual perception, as it relates to age of onset and number of years of musical training. Fifty-seven subjects made subjective ratings of interval size when given point-light displays of audio, visual, and audiovisual stimuli of sung intervals. Audiovisual stimuli were divided into congruent and incongruent (audiovisual-mismatched) stimuli. Participants' ratings correlated strongly with interval size in audio-only, visual-only, and audiovisual-congruent conditions. In the audiovisual-incongruent condition, ratings correlated more with audio than with visual stimuli, particularly for subjects who had better pitch perception abilities and higher nonverbal IQ scores. To further investigate the effects of age of onset and length of musical training, subjects were divided into musically trained and untrained groups. Results showed that among subjects with musical training, the degree to which participants' ratings correlated with auditory interval size during incongruent audiovisual perception was correlated with both nonverbal IQ and age of onset of musical training. After partialing out nonverbal IQ, pitch discrimination thresholds were no longer associated with incongruent audio scores, whereas age of onset of musical training remained associated with incongruent audio scores. These findings invite future research on the developmental effects of musical training, particularly those relating to the process of audiovisual perception.
Audiovisual Interval Size Estimation Is Associated with Early Musical Training
Abel, Mary Kathryn; Li, H. Charles; Russo, Frank A.; Schlaug, Gottfried; Loui, Psyche
2016-01-01
Although pitch is a fundamental attribute of auditory perception, substantial individual differences exist in our ability to perceive differences in pitch. Little is known about how these individual differences in the auditory modality might affect crossmodal processes such as audiovisual perception. In this study, we asked whether individual differences in pitch perception might affect audiovisual perception, as it relates to age of onset and number of years of musical training. Fifty-seven subjects made subjective ratings of interval size when given point-light displays of audio, visual, and audiovisual stimuli of sung intervals. Audiovisual stimuli were divided into congruent and incongruent (audiovisual-mismatched) stimuli. Participants’ ratings correlated strongly with interval size in audio-only, visual-only, and audiovisual-congruent conditions. In the audiovisual-incongruent condition, ratings correlated more with audio than with visual stimuli, particularly for subjects who had better pitch perception abilities and higher nonverbal IQ scores. To further investigate the effects of age of onset and length of musical training, subjects were divided into musically trained and untrained groups. Results showed that among subjects with musical training, the degree to which participants’ ratings correlated with auditory interval size during incongruent audiovisual perception was correlated with both nonverbal IQ and age of onset of musical training. After partialing out nonverbal IQ, pitch discrimination thresholds were no longer associated with incongruent audio scores, whereas age of onset of musical training remained associated with incongruent audio scores. These findings invite future research on the developmental effects of musical training, particularly those relating to the process of audiovisual perception. PMID:27760134
ERIC Educational Resources Information Center
Fenton, Ginger D.; LaBorde, Luke F.; Radhakrishna, Rama B.; Brown, J. Lynne; Cutter, Catherine N.
2006-01-01
Computer-based training is increasingly favored by food companies for training workers due to convenience, self-pacing ability, and ease of use. The objectives of this study were to determine if personal hygiene training, offered through a computer-based method, is as effective as a face-to-face method in knowledge acquisition and improved…
ERIC Educational Resources Information Center
Lavender, Julie
2013-01-01
Military health care facilities make extensive use of computer-based training (CBT) for both clinical and non-clinical staff. Despite evidence identifying various factors that may impact CBT, the problem is unclear as to what factors specifically influence employee participation in computer-based training. The purpose of this mixed method case…
Training Enhances Both Locomotor and Cognitive Adaptability to a Novel Sensory Environment
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.
2010-01-01
During adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. The goal of our present study was to determine if SA training improved both the locomotor and cognitive responses to a novel sensory environment and to quantify the extent to which training would be retained. Methods: Twenty subjects (10 training, 10 control) completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill but did not receive any support surface or visual alterations. To determine the efficacy of training all subjects performed the Transfer Test upon completion of training. For this test, subjects were exposed to novel visual flow and support surface movement, not previously experienced during training. The Transfer Test was performed 20 minutes, 1 week, 1, 3 and 6 months after the final training session. Stride frequency, auditory reaction time, and heart rate data were collected as measures of postural stability, cognitive effort and anxiety, respectively. Results: Using mixed effects regression methods we determined that subjects who received SA training showed less alterations in stride frequency, auditory reaction time and heart rate compared to controls. Conclusion: Subjects who received SA training improved performance across a number of modalities including enhanced locomotor function, increased multi-tasking capability and reduced anxiety during adaptation to novel discordant sensory information. Trained subjects maintained their level of performance over six months.
NASA Technical Reports Server (NTRS)
Tompkins, F. G.
1983-01-01
The report presents guidance for the NASA Computer Security Program Manager and the NASA Center Computer Security Officials as they develop training requirements and implement computer security training programs. NASA audiences are categorized based on the computer security knowledge required to accomplish identified job functions. Training requirements, in terms of training subject areas, are presented for both computer security program management personnel and computer resource providers and users. Sources of computer security training are identified.
Effects on Training Using Illumination in Virtual Environments
NASA Technical Reports Server (NTRS)
Maida, James C.; Novak, M. S. Jennifer; Mueller, Kristian
1999-01-01
Camera based tasks are commonly performed during orbital operations, and orbital lighting conditions, such as high contrast shadowing and glare, are a factor in performance. Computer based training using virtual environments is a common tool used to make and keep CTW members proficient. If computer based training included some of these harsh lighting conditions, would the crew increase their proficiency? The project goal was to determine whether computer based training increases proficiency if one trains for a camera based task using computer generated virtual environments with enhanced lighting conditions such as shadows and glare rather than color shaded computer images normally used in simulators. Previous experiments were conducted using a two degree of freedom docking system. Test subjects had to align a boresight camera using a hand controller with one axis of rotation and one axis of rotation. Two sets of subjects were trained on two computer simulations using computer generated virtual environments, one with lighting, and one without. Results revealed that when subjects were constrained by time and accuracy, those who trained with simulated lighting conditions performed significantly better than those who did not. To reinforce these results for speed and accuracy, the task complexity was increased.
Orthography-Induced Transfer in the Production of English-Speaking Learners of Spanish
ERIC Educational Resources Information Center
Rafat, Yasaman
2016-01-01
This article reports on a study on the effect of orthography on L1-based phonological transfer in L2 production in 40 novice English-speaking learners of Spanish. In particular, the role of auditory-orthographic training and production and the influence of grapheme-to-phoneme correspondences are examined. Data elicited via a picture-naming task…
Monaural Speech Segregation by Integrating Primitive and Schema-Based Analysis
2008-02-03
vol. 19, pp. 475-492. Wang D.L. and Chang P.S. (2008): An oscillatory correlation model of auditory streaming. Cognitive Neurodynamics , vol. 2, pp...Subcontracts DeLiang Wang (Principal Investigator) March 2008 Department of Computer Science & Engineering and Center for Cognitive Science The
Boulet, Jason; Bruce, Ian C
2017-04-01
Spiral ganglion neurons (SGNs) exhibit a wide range in their strength of intrinsic adaptation on a timescale of 10s to 100s of milliseconds in response to electrical stimulation from a cochlear implant (CI). The purpose of this study was to determine how much of that variability could be caused by the heterogeneity in half-maximal activation potentials of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, which are known to produce intrinsic adaptation. In this study, a computational membrane model of cat type I SGN was developed based on the Hodgkin-Huxley model plus HCN and low-threshold potassium (KLT) conductances in which the half-maximal activation potential of the HCN channel was varied and the response of the SGN to pulse train and paired-pulse stimulation was simulated. Physiologically plausible variation of HCN half-maximal activation potentials could indeed determine the range of adaptation on the timescale of 10s to 100s of milliseconds and recovery from adaptation seen in the physiological data while maintaining refractoriness within physiological bounds. This computational model demonstrates that HCN channels may play an important role in regulating the degree of adaptation in response to pulse train stimulation and therefore contribute to variable constraints on acoustic information coding by CIs. This finding has broad implications for CI stimulation paradigms in that cell-to-cell variation of HCN channel properties are likely to significantly alter SGN excitability and therefore auditory perception.
Qualification and Approval of Personal Computer-Based Aviation Training Devices
DOT National Transportation Integrated Search
1997-05-12
This Advisory Circular (AC) provides information and guidance to potential training device manufacturers and aviation training consumers concerning a means, acceptable to the Administrator, by which personal computer-based aviation training devices (...
Tidoni, Emmanuele; Gergondet, Pierre; Fusco, Gabriele; Kheddar, Abderrahmane; Aglioti, Salvatore M
2017-06-01
The efficient control of our body and successful interaction with the environment are possible through the integration of multisensory information. Brain-computer interface (BCI) may allow people with sensorimotor disorders to actively interact in the world. In this study, visual information was paired with auditory feedback to improve the BCI control of a humanoid surrogate. Healthy and spinal cord injured (SCI) people were asked to embody a humanoid robot and complete a pick-and-place task by means of a visual evoked potentials BCI system. Participants observed the remote environment from the robot's perspective through a head mounted display. Human-footsteps and computer-beep sounds were used as synchronous/asynchronous auditory feedback. Healthy participants achieved better placing accuracy when listening to human footstep sounds relative to a computer-generated sound. SCI people demonstrated more difficulty in steering the robot during asynchronous auditory feedback conditions. Importantly, subjective reports highlighted that the BCI mask overlaying the display did not limit the observation of the scenario and the feeling of being in control of the robot. Overall, the data seem to suggest that sensorimotor-related information may improve the control of external devices. Further studies are required to understand how the contribution of residual sensory channels could improve the reliability of BCI systems.
Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.
Chambers, Anna R; Salazar, Juan J; Polley, Daniel B
2016-01-01
Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.
Anteverted internal auditory canal as an inner ear anomaly in patients with craniofacial microsomia.
L'Heureux-Lebeau, Bénédicte; Saliba, Issam
2014-09-01
Craniofacial microsomia involves structure of the first and second branchial arches. A wide range of ear anomalies, affecting external, middle and inner ear, has been described in association with this condition. We report three cases of anteverted internal auditory canal in patients presenting craniofacial microsomia. This unique internal auditory canal orientation was found on high-resolution computed tomography of the temporal bones. This internal auditory canal anomaly is yet unreported in craniofacial anomalies. Copyright © 2014. Published by Elsevier Ireland Ltd.
Sleep-dependent consolidation benefits fast transfer of time interval training.
Chen, Lihan; Guo, Lu; Bao, Ming
2017-03-01
Previous study has shown that short training (15 min) for explicitly discriminating temporal intervals between two paired auditory beeps, or between two paired tactile taps, can significantly improve observers' ability to classify the perceptual states of visual Ternus apparent motion while the training of task-irrelevant sensory properties did not help to improve visual timing (Chen and Zhou in Exp Brain Res 232(6):1855-1864, 2014). The present study examined the role of 'consolidation' after training of temporal task-irrelevant properties, or whether a pure delay (i.e., blank consolidation) following pretest of the target task would give rise to improved ability of visual interval timing, typified in visual Ternus display. A procedure of pretest-training-posttest was adopted, with the probe of discriminating Ternus apparent motion. The extended implicit training of timing in which the time intervals between paired auditory beeps or paired tactile taps were manipulated but the task was discrimination of the auditory pitches or tactile intensities, did not lead to the training benefits (Exps 1 and 3); however, a delay of 24 h after implicit training of timing, including solving 'Sudoku puzzles,' made the otherwise absent training benefits observable (Exps 2, 4, 5 and 6). The above improvements in performance were not due to a practice effect of Ternus motion (Exp 7). A general 'blank' consolidation period of 24 h also made improvements of visual timing observable (Exp 8). Taken together, the current findings indicated that sleep-dependent consolidation imposed a general effect, by potentially triggering and maintaining neuroplastic changes in the intrinsic (timing) network to enhance the ability of time perception.
Auditory training changes temporal lobe connectivity in 'Wernicke's aphasia': a randomised trial.
Woodhead, Zoe Vj; Crinion, Jennifer; Teki, Sundeep; Penny, Will; Price, Cathy J; Leff, Alexander P
2017-07-01
Aphasia is one of the most disabling sequelae after stroke, occurring in 25%-40% of stroke survivors. However, there remains a lack of good evidence for the efficacy or mechanisms of speech comprehension rehabilitation. This within-subjects trial tested two concurrent interventions in 20 patients with chronic aphasia with speech comprehension impairment following left hemisphere stroke: (1) phonological training using 'Earobics' software and (2) a pharmacological intervention using donepezil, an acetylcholinesterase inhibitor. Donepezil was tested in a double-blind, placebo-controlled, cross-over design using block randomisation with bias minimisation. The primary outcome measure was speech comprehension score on the comprehensive aphasia test. Magnetoencephalography (MEG) with an established index of auditory perception, the mismatch negativity response, tested whether the therapies altered effective connectivity at the lower (primary) or higher (secondary) level of the auditory network. Phonological training improved speech comprehension abilities and was particularly effective for patients with severe deficits. No major adverse effects of donepezil were observed, but it had an unpredicted negative effect on speech comprehension. The MEG analysis demonstrated that phonological training increased synaptic gain in the left superior temporal gyrus (STG). Patients with more severe speech comprehension impairments also showed strengthening of bidirectional connections between the left and right STG. Phonological training resulted in a small but significant improvement in speech comprehension, whereas donepezil had a negative effect. The connectivity results indicated that training reshaped higher order phonological representations in the left STG and (in more severe patients) induced stronger interhemispheric transfer of information between higher levels of auditory cortex.Clinical trial registrationThis trial was registered with EudraCT (2005-004215-30, https:// eudract .ema.europa.eu/) and ISRCTN (68939136, http://www.isrctn.com/). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.
2012-01-01
We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068
Effects of hand gestures on auditory learning of second-language vowel length contrasts.
Hirata, Yukari; Kelly, Spencer D; Huang, Jessica; Manansala, Michael
2014-12-01
Research has shown that hand gestures affect comprehension and production of speech at semantic, syntactic, and pragmatic levels for both native language and second language (L2). This study investigated a relatively less explored question: Do hand gestures influence auditory learning of an L2 at the segmental phonology level? To examine auditory learning of phonemic vowel length contrasts in Japanese, 88 native English-speaking participants took an auditory test before and after one of the following 4 types of training in which they (a) observed an instructor in a video speaking Japanese words while she made syllabic-rhythm hand gesture, (b) produced this gesture with the instructor, (c) observed the instructor speaking those words and her moraic-rhythm hand gesture, or (d) produced the moraic-rhythm gesture with the instructor. All of the training types yielded similar auditory improvement in identifying vowel length contrast. However, observing the syllabic-rhythm hand gesture yielded the most balanced improvement between word-initial and word-final vowels and between slow and fast speaking rates. The overall effect of hand gesture on learning of segmental phonology is limited. Implications for theories of hand gesture are discussed in terms of the role it plays at different linguistic levels.
Abboud, Sami; Hanassy, Shlomi; Levy-Tzedek, Shelly; Maidenbaum, Shachar; Amedi, Amir
2014-01-01
Sensory-substitution devices (SSDs) provide auditory or tactile representations of visual information. These devices often generate unpleasant sensations and mostly lack color information. We present here a novel SSD aimed at addressing these issues. We developed the EyeMusic, a novel visual-to-auditory SSD for the blind, providing both shape and color information. Our design uses musical notes on a pentatonic scale generated by natural instruments to convey the visual information in a pleasant manner. A short behavioral protocol was utilized to train the blind to extract shape and color information, and test their acquired abilities. Finally, we conducted a survey and a comparison task to assess the pleasantness of the generated auditory stimuli. We show that basic shape and color information can be decoded from the generated auditory stimuli. High performance levels were achieved by all participants following as little as 2-3 hours of training. Furthermore, we show that users indeed found the stimuli pleasant and potentially tolerable for prolonged use. The novel EyeMusic algorithm provides an intuitive and relatively pleasant way for the blind to extract shape and color information. We suggest that this might help facilitating visual rehabilitation because of the added functionality and enhanced pleasantness.
THE HARD OF HEARING. PRENTICE-HALL FOUNDATIONS OF SPEECH PATHOLOGY SERIES.
ERIC Educational Resources Information Center
O'NEILL, JOHN J.
BASIC INFORMATION ABOUT TESTING, DIAGNOSING, AND REHABILITATING THE HARD OF HEARING IS OFFERED IN THIS INTRODUCTORY TEXT. THE PHYSICS OF SOUND, AUDITORY THEORY, ANATOMY AND PATHOLOGY OF THE EAR, AND DIAGNOSTIC ROUTINES ARE DISCUSSED. A CHAPTER ON AURAL REHABILITATION INCLUDES AN OVERVIEW OF LIPREADING AND AUDITORY TRAINING TECHNIQUES FOR ADULTS…
Discussion: Changes in Vocal Production and Auditory Perception after Hair Cell Regeneration.
ERIC Educational Resources Information Center
Ryals, Brenda M.; Dooling, Robert J.
2000-01-01
A bird study found that with sufficient time and training after hair cell and hearing loss and hair cell regeneration, the mature avian auditory system can accommodate input from a newly regenerated periphery sufficiently to allow for recognition of previously familiar vocalizations and the learning of new complex acoustic classifications.…
"Can You Touch Your Imagination?" A Case Study of Schizophrenese.
ERIC Educational Resources Information Center
Greenday, Laura A.; Bennett, Clinton W.
The study evaluated the effects of an auditory monitoring and feedback approach on an adolescent boy's schizophrenic language patterns. The approach attempted to increase the subject's auditory awareness and to train him to identify and correct the linguistic errors of others and, eventually, of himself. Language samples were analyzed at baseline…
Impaired auditory temporal selectivity in the inferior colliculus of aged Mongolian gerbils.
Khouri, Leila; Lesica, Nicholas A; Grothe, Benedikt
2011-07-06
Aged humans show severe difficulties in temporal auditory processing tasks (e.g., speech recognition in noise, low-frequency sound localization, gap detection). A degradation of auditory function with age is also evident in experimental animals. To investigate age-related changes in temporal processing, we compared extracellular responses to temporally variable pulse trains and human speech in the inferior colliculus of young adult (3 month) and aged (3 years) Mongolian gerbils. We observed a significant decrease of selectivity to the pulse trains in neuronal responses from aged animals. This decrease in selectivity led, on the population level, to an increase in signal correlations and therefore a decrease in heterogeneity of temporal receptive fields and a decreased efficiency in encoding of speech signals. A decrease in selectivity to temporal modulations is consistent with a downregulation of the inhibitory transmitter system in aged animals. These alterations in temporal processing could underlie declines in the aging auditory system, which are unrelated to peripheral hearing loss. These declines cannot be compensated by traditional hearing aids (that rely on amplification of sound) but may rather require pharmacological treatment.
Plasticity in the adult human auditory brainstem following short-term linguistic training
Song, Judy H.; Skoe, Erika; Wong, Patrick C. M.; Kraus, Nina
2009-01-01
Peripheral and central structures along the auditory pathway contribute to speech processing and learning. However, because speech requires the use of functionally and acoustically complex sounds which necessitates high sensory and cognitive demands, long-term exposure and experience using these sounds is often attributed to the neocortex with little emphasis placed on subcortical structures. The present study examines changes in the auditory brainstem, specifically the frequency following response (FFR), as native English-speaking adults learn to incorporate foreign speech sounds (lexical pitch patterns) in word identification. The FFR presumably originates from the auditory midbrain, and can be elicited pre-attentively. We measured FFRs to the trained pitch patterns before and after training. Measures of pitch-tracking were then derived from the FFR signals. We found increased accuracy in pitch-tracking after training, including a decrease in the number of pitch-tracking errors and a refinement in the energy devoted to encoding pitch. Most interestingly, this change in pitch-tracking accuracy only occurred in the most acoustically complex pitch contour (dipping contour), which is also the least familiar to our English-speaking subjects. These results not only demonstrate the contribution of the brainstem in language learning and its plasticity in adulthood, but they also demonstrate the specificity of this contribution (i.e., changes in encoding only occurs in specific, least familiar stimuli, not all stimuli). Our findings complement existing data showing cortical changes after second language learning, and are consistent with models suggesting that brainstem changes resulting from perceptual learning are most apparent when acuity in encoding is most needed. PMID:18370594
Heinzel, Stephan; Rimpel, Jérôme; Stelzel, Christine; Rapp, Michael A
2017-01-01
Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60-72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality ( p < 0.05) and the auditory modality ( p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination.
Heinzel, Stephan; Rimpel, Jérôme; Stelzel, Christine; Rapp, Michael A.
2017-01-01
Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination. PMID:28286477
A software module for implementing auditory and visual feedback on a video-based eye tracking system
NASA Astrophysics Data System (ADS)
Rosanlall, Bharat; Gertner, Izidor; Geri, George A.; Arrington, Karl F.
2016-05-01
We describe here the design and implementation of a software module that provides both auditory and visual feedback of the eye position measured by a commercially available eye tracking system. The present audio-visual feedback module (AVFM) serves as an extension to the Arrington Research ViewPoint EyeTracker, but it can be easily modified for use with other similar systems. Two modes of audio feedback and one mode of visual feedback are provided in reference to a circular area-of-interest (AOI). Auditory feedback can be either a click tone emitted when the user's gaze point enters or leaves the AOI, or a sinusoidal waveform with frequency inversely proportional to the distance from the gaze point to the center of the AOI. Visual feedback is in the form of a small circular light patch that is presented whenever the gaze-point is within the AOI. The AVFM processes data that are sent to a dynamic-link library by the EyeTracker. The AVFM's multithreaded implementation also allows real-time data collection (1 kHz sampling rate) and graphics processing that allow display of the current/past gaze-points as well as the AOI. The feedback provided by the AVFM described here has applications in military target acquisition and personnel training, as well as in visual experimentation, clinical research, marketing research, and sports training.
ERIC Educational Resources Information Center
Pressman, E.; And Others
1986-01-01
The auditory receptive language skills of 40 learning disabled (LD) and 40 non-disabled boys (all 7 - 11 years old) were assessed via computerized versions of subtests of the Goldman-Fristoe-Woodcock Auditory Skills Test Battery. The computerized assessment correctly identified 92.5% of the LD group and 65% of the normal control children. (DB)
Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F
2004-03-01
Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.
Heo, Jeong; Baek, Hyun Jae; Hong, Seunghyeok; Chang, Min Hye; Lee, Jeong Su; Park, Kwang Suk
2017-05-01
Patients with total locked-in syndrome are conscious; however, they cannot express themselves because most of their voluntary muscles are paralyzed, and many of these patients have lost their eyesight. To improve the quality of life of these patients, there is an increasing need for communication-supporting technologies that leverage the remaining senses of the patient along with physiological signals. The auditory steady-state response (ASSR) is an electro-physiologic response to auditory stimulation that is amplitude-modulated by a specific frequency. By leveraging the phenomenon whereby ASSR is modulated by mind concentration, a brain-computer interface paradigm was proposed to classify the selective attention of the patient. In this paper, we propose an auditory stimulation method to minimize auditory stress by replacing the monotone carrier with familiar music and natural sounds for an ergonomic system. Piano and violin instrumentals were employed in the music sessions; the sounds of water streaming and cicadas singing were used in the natural sound sessions. Six healthy subjects participated in the experiment. Electroencephalograms were recorded using four electrodes (Cz, Oz, T7 and T8). Seven sessions were performed using different stimuli. The spectral power at 38 and 42Hz and their ratio for each electrode were extracted as features. Linear discriminant analysis was utilized to classify the selections for each subject. In offline analysis, the average classification accuracies with a modulation index of 1.0 were 89.67% and 87.67% using music and natural sounds, respectively. In online experiments, the average classification accuracies were 88.3% and 80.0% using music and natural sounds, respectively. Using the proposed method, we obtained significantly higher user-acceptance scores, while maintaining a high average classification accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Plastic brain mechanisms for attaining auditory temporal order judgment proficiency.
Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas
2010-04-15
Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity. Copyright 2010 Elsevier Inc. All rights reserved.
Effects of musical training on sound pattern processing in high-school students.
Wang, Wenjung; Staffaroni, Laura; Reid, Errold; Steinschneider, Mitchell; Sussman, Elyse
2009-05-01
Recognizing melody in music involves detection of both the pitch intervals and the silence between sequentially presented sounds. This study tested the hypothesis that active musical training in adolescents facilitates the ability to passively detect sequential sound patterns compared to musically non-trained age-matched peers. Twenty adolescents, aged 15-18 years, were divided into groups according to their musical training and current experience. A fixed order tone pattern was presented at various stimulus rates while electroencephalogram was recorded. The influence of musical training on passive auditory processing of the sound patterns was assessed using components of event-related brain potentials (ERPs). The mismatch negativity (MMN) ERP component was elicited in different stimulus onset asynchrony (SOA) conditions in non-musicians than musicians, indicating that musically active adolescents were able to detect sound patterns across longer time intervals than age-matched peers. Musical training facilitates detection of auditory patterns, allowing the ability to automatically recognize sequential sound patterns over longer time periods than non-musical counterparts.
Nawroth, Christian; von Borell, Eberhard
2015-05-01
Recently, foraging strategies have been linked to the ability to use indirect visual information. More selective feeders should express a higher aversion against losses compared to non-selective feeders and should therefore be more prone to avoid empty food locations. To extend these findings, in this study, we present a series of studies investigating the use of direct and indirect visual and auditory information by an omnivorous but selective feeder-the domestic pig. Subjects had to choose between two buckets, with only one containing a reward. Before making a choice, the subjects in Experiment 1 (N = 8) received full information regarding both the baited and non-baited location, either in a visual or auditory domain. In this experiment, the subjects were able to use visual but not auditory cues to infer the location of the reward spontaneously. Additionally, four individuals learned to use auditory cues after a period of training. In Experiment 2 (N = 8), the pigs were given different amounts of visual information about the content of the buckets-lifting either both of the buckets (full information), the baited bucket (direct information), the empty bucket (indirect information) or no bucket at all (no information). The subjects as a group were able to use direct and indirect visual cues. However, over the course of the experiment, the performance dropped to chance level when indirect information was provided. A final experiment (N = 3) provided preliminary results for pigs' use of indirect auditory information to infer the location of a reward. We conclude that pigs at a very young age are able to make decisions based on indirect information in the visual domain, whereas their performance in the use of indirect auditory information warrants further investigation.
Treating attention in mild aphasia: evaluation of attention process training-II.
Murray, Laura L; Keeton, R Jessica; Karcher, Laura
2006-01-01
This study examined whether attention processing training-II [Sohlberg, M. M., Johnson, L., Paule, L., Raskin, S. A., & Mateer, C. A. (2001). Attention Process Training-II: A program to address attentional deficits for persons with mild cognitive dysfunction (2nd ed.). Wake Forest, NC: Lash & Associates.; APT-II], when applied in the context of a multiple baseline ABA design, would improve the attention abilities of RW, a patient with mild conduction aphasia and concomitant attention and working memory deficits. We also explored whether APT-II training would enhance RW's auditory comprehension, other cognitive abilities such as memory, and his and his spouse's perceptions of his daily attention and communication difficulties. With treatment, RW improved on trained attention tasks and made modest gains on standardized tests and probes that evaluated cognitive skills related to treatment activities. Nominal change in auditory comprehension and untrained attention and memory functions was observed, and neither RW nor his spouse reported noticeable improvements in his daily attention or communication abilities. These and previous findings indicate that structured attention retraining may enhance specific attention skills, but that positive changes in broader attention and untrained functions are less likely. As a result of reading this article, the participant will be able to: (1) summarize the previous literature regarding attention impairments and treatment approaches for patients with aphasia. (2) describe how Attention Processing Training-II affected the attention, auditory comprehension, and other cognitive abilities of the patient in this study.
Bidelman, Gavin M.; Hutka, Stefanie; Moreno, Sylvain
2013-01-01
Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese) speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory). While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language. PMID:23565267
Effect of Training and Level of External Auditory Feedback on the Singing Voice: Pitch Inaccuracy
Bottalico, Pasquale; Graetzer, Simone; Hunter, Eric J.
2016-01-01
Background One of the aspects of major relevance to singing is the control of fundamental frequency. Objectives The effects on pitch inaccuracy, defined as the distance in cents in equally tempered tuning between the reference note and the sung note, of the following conditions were evaluated: (1) level of external feedback, (2) tempo (slow or fast), (3) articulation (legato or staccato), (4) tessitura (low, medium or high) and (5) semi-phrase direction (ascending or descending). Methods The subjects were 10 non-professional singers, and 10 classically-trained professional or semi-professional singers (10 males and 10 females). Subjects sang one octave and a fifth arpeggi with three different levels of external auditory feedback, two tempi and two articulations (legato or staccato). Results It was observed that inaccuracy was greatest in the descending semi-phrase arpeggi produced at a fast tempo and with a staccato articulation, especially for non-professional singers. The magnitude of inaccuracy was also relatively large in the high tessitura relative to the low and medium tessitura for such singers. Counter to predictions, when external auditory feedback was strongly attenuated by the hearing protectors, non-professional singers showed greater pitch accuracy than in the other external feedback conditions. This finding indicates the importance of internal auditory feedback in pitch control. Conclusions With an increase in training, the singer’s pitch inaccuracy decreases. PMID:26948385
Functional neuroanatomy of auditory scene analysis in Alzheimer's disease
Golden, Hannah L.; Agustus, Jennifer L.; Goll, Johanna C.; Downey, Laura E.; Mummery, Catherine J.; Schott, Jonathan M.; Crutch, Sebastian J.; Warren, Jason D.
2015-01-01
Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘background’. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology. PMID:26029629
Danna, Jérémy; Velay, Jean-Luc
2017-01-01
The aim of this study was to evaluate the compensatory effects of real-time auditory feedback on two proprioceptively deafferented subjects. The real-time auditory feedback was based on a movement sonification approach, consisting of translating some movement variables into synthetic sounds to make them audible. The two deafferented subjects and 16 age-matched control participants were asked to learn four new characters. The characters were learned under two different conditions, one without sonification and one with sonification, respecting a within-subject protocol. The results revealed that characters learned with sonification were reproduced more quickly and more fluently than characters learned without and that the effects of sonification were larger in deafferented than in control subjects. Secondly, whereas control subjects were able to learn the characters without sounds the deafferented subjects were able to learn them only when they were trained with sonification. Thirdly, although the improvement was still present in controls, the performance of deafferented subjects came back to the pre-test level 2 h after the training with sounds. Finally, the two deafferented subjects performed differently from each other, highlighting the importance of studying at least two subjects to better understand the loss of proprioception and its impact on motor control and learning. To conclude, movement sonification may compensate for a lack of proprioception, supporting the auditory-proprioception substitution hypothesis. However, sonification would act as a “sensory prosthesis” helping deafferented subjects to better feel their movements, without permanently modifying their motor performance once the prosthesis is removed. Potential clinical applications for motor rehabilitation are numerous: people with a limb prosthesis, with a stroke, or with some peripheral nerve injury may potentially be interested. PMID:28386211
How the songbird brain listens to its own songs
NASA Astrophysics Data System (ADS)
Hahnloser, Richard
2010-03-01
Songbirds are capable of vocal learning and communication and are ideally suited to the study of neural mechanisms of auditory feedback processing. When a songbird is deafened in the early sensorimotor phase after tutoring, it fails to imitate the song of its tutor and develops a highly aberrant song. It is also known that birds are capable of storing a long-term memory of tutor song and that they need intact auditory feedback to match their own vocalizations to the tutor's song. Based on these behavioral observations, we investigate feedback processing in single auditory forebrain neurons of juvenile zebra finches that are in a late developmental stage of song learning. We implant birds with miniature motorized microdrives that allow us to record the electrical activity of single neurons while birds are freely moving and singing in their cages. Occasionally, we deliver a brief sound through a loudspeaker to perturb the auditory feedback the bird experiences during singing. These acoustic perturbations of auditory feedback reveal complex sensitivity that cannot be predicted from passive playback responses. Some neurons are highly feedback sensitive in that they respond vigorously to song perturbations, but not to unperturbed songs or perturbed playback. These findings suggest that a computational function of forebrain auditory areas may be to detect errors between actual feedback and mirrored feedback deriving from an internal model of the bird's own song or that of its tutor.
Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
2011-01-01
Background Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. Methods We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Results Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. Conclusions We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies. PMID:21810266
Shin, Min-Sup; Jeon, Hyejin; Kim, Miyoung; Hwang, Taeho; Oh, Seo Jin; Hwangbo, Minsu; Kim, Ki Joong
2016-05-01
We sought to determine whether smart-tablet-based neurofeedback could improve executive function-including attention, working memory, and self-regulation-in children with attention problems. Forty children (10-12 years old) with attention problems, as determined by ratings on the Conners Parent Rating Scale, were assigned to either a neurofeedback group that received 16 sessions or a control group. A comprehensive test battery that assessed general intelligence, visual and auditory attention, attentional shifting, response inhibition and behavior rating scales were administered to both groups before neurofeedback training. Several neuropsychological tests were conducted at posttraining and follow-up assessment. Scores on several neuropsychological tests and parent behavior rating scales showed significant improvement in the training group but not in the controls. The improvements remained through the follow-up assessment. This study suggests that the smart-tablet-based neurofeedback training program might improve cognitive function in children with attention problems. © The Author(s) 2015.
Slater, Jessica; Skoe, Erika; Strait, Dana L; O'Connell, Samantha; Thompson, Elaine; Kraus, Nina
2015-09-15
Music training may strengthen auditory skills that help children not only in musical performance but in everyday communication. Comparisons of musicians and non-musicians across the lifespan have provided some evidence for a "musician advantage" in understanding speech in noise, although reports have been mixed. Controlled longitudinal studies are essential to disentangle effects of training from pre-existing differences, and to determine how much music training is necessary to confer benefits. We followed a cohort of elementary school children for 2 years, assessing their ability to perceive speech in noise before and after musical training. After the initial assessment, participants were randomly assigned to one of two groups: one group began music training right away and completed 2 years of training, while the second group waited a year and then received 1 year of music training. Outcomes provide the first longitudinal evidence that speech-in-noise perception improves after 2 years of group music training. The children were enrolled in an established and successful community-based music program and followed the standard curriculum, therefore these findings provide an important link between laboratory-based research and real-world assessment of the impact of music training on everyday communication skills. Copyright © 2015 Elsevier B.V. All rights reserved.
Neural mechanisms underlying auditory feedback control of speech
Reilly, Kevin J.; Guenther, Frank H.
2013-01-01
The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557
Training Methods to Build Human Terrain Mapping Skills
2010-10-01
confidence in making friends, and talking to strangers. • Language – a few key phrases. • Language training with Arabic teacher (not computer -based...session to evaluate the lesson content and delivery method. Based on your feedback we will make changes and corrections to the content and the computer ...requirement, exemplar training materials were developed. The training materials took the form of a modular computer /web-based and web-deliverable course of
Marchant, Jennifer L; Ruff, Christian C; Driver, Jon
2012-01-01
The brain seeks to combine related inputs from different senses (e.g., hearing and vision), via multisensory integration. Temporal information can indicate whether stimuli in different senses are related or not. A recent human fMRI study (Noesselt et al. [2007]: J Neurosci 27:11431–11441) used auditory and visual trains of beeps and flashes with erratic timing, manipulating whether auditory and visual trains were synchronous or unrelated in temporal pattern. A region of superior temporal sulcus (STS) showed higher BOLD signal for the synchronous condition. But this could not be related to performance, and it remained unclear if the erratic, unpredictable nature of the stimulus trains was important. Here we compared synchronous audiovisual trains to asynchronous trains, while using a behavioral task requiring detection of higher-intensity target events in either modality. We further varied whether the stimulus trains had predictable temporal pattern or not. Synchrony (versus lag) between auditory and visual trains enhanced behavioral sensitivity (d') to intensity targets in either modality, regardless of predictable versus unpredictable patterning. The analogous contrast in fMRI revealed BOLD increases in several brain areas, including the left STS region reported by Noesselt et al. [2007: J Neurosci 27:11431–11441]. The synchrony effect on BOLD here correlated with the subject-by-subject impact on performance. Predictability of temporal pattern did not affect target detection performance or STS activity, but did lead to an interaction with audiovisual synchrony for BOLD in inferior parietal cortex. PMID:21953980
Fast transfer of crossmodal time interval training.
Chen, Lihan; Zhou, Xiaolin
2014-06-01
Sub-second time perception is essential for many important sensory and perceptual tasks including speech perception, motion perception, motor coordination, and crossmodal interaction. This study investigates to what extent the ability to discriminate sub-second time intervals acquired in one sensory modality can be transferred to another modality. To this end, we used perceptual classification of visual Ternus display (Ternus in Psychol Forsch 7:81-136, 1926) to implicitly measure participants' interval perception in pre- and posttests and implemented an intra- or crossmodal sub-second interval discrimination training protocol in between the tests. The Ternus display elicited either an "element motion" or a "group motion" percept, depending on the inter-stimulus interval between the two visual frames. The training protocol required participants to explicitly compare the interval length between a pair of visual, auditory, or tactile stimuli with a standard interval or to implicitly perceive the length of visual, auditory, or tactile intervals by completing a non-temporal task (discrimination of auditory pitch or tactile intensity). Results showed that after fast explicit training of interval discrimination (about 15 min), participants improved their ability to categorize the visual apparent motion in Ternus displays, although the training benefits were mild for visual timing training. However, the benefits were absent for implicit interval training protocols. This finding suggests that the timing ability in one modality can be rapidly acquired and used to improve timing-related performance in another modality and that there may exist a central clock for sub-second temporal processing, although modality-specific perceptual properties may constrain the functioning of this clock.
Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin
2016-01-01
The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = -2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = -1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders.