Sample records for computer-based cognitive training

  1. Cognitive training in Parkinson disease: cognition-specific vs nonspecific computer training.

    PubMed

    Zimmermann, Ronan; Gschwandtner, Ute; Benz, Nina; Hatz, Florian; Schindler, Christian; Taub, Ethan; Fuhr, Peter

    2014-04-08

    In this study, we compared a cognition-specific computer-based cognitive training program with a motion-controlled computer sports game that is not cognition-specific for their ability to enhance cognitive performance in various cognitive domains in patients with Parkinson disease (PD). Patients with PD were trained with either a computer program designed to enhance cognition (CogniPlus, 19 patients) or a computer sports game with motion-capturing controllers (Nintendo Wii, 20 patients). The effect of training in 5 cognitive domains was measured by neuropsychological testing at baseline and after training. Group differences over all variables were assessed with multivariate analysis of variance, and group differences in single variables were assessed with 95% confidence intervals of mean difference. The groups were similar regarding age, sex, and educational level. Patients with PD who were trained with Wii for 4 weeks performed better in attention (95% confidence interval: -1.49 to -0.11) than patients trained with CogniPlus. In our study, patients with PD derived at least the same degree of cognitive benefit from non-cognition-specific training involving movement as from cognition-specific computerized training. For patients with PD, game consoles may be a less expensive and more entertaining alternative to computer programs specifically designed for cognitive training. This study provides Class III evidence that, in patients with PD, cognition-specific computer-based training is not superior to a motion-controlled computer game in improving cognitive performance.

  2. Improved Processing Speed: Online Computer-Based Cognitive Training in Older Adults

    ERIC Educational Resources Information Center

    Simpson, Tamara; Camfield, David; Pipingas, Andrew; Macpherson, Helen; Stough, Con

    2012-01-01

    In an increasingly aging population, a number of adults are concerned about declines in their cognitive abilities. Online computer-based cognitive training programs have been proposed as an accessible means by which the elderly may improve their cognitive abilities; yet, more research is needed in order to assess the efficacy of these programs. In…

  3. M18. Lack of Generalization From a High-Dose, Well-Powered Randomized Controlled Trial of Working Memory-Focused Training for Schizophrenia

    PubMed Central

    Nienow, Tasha; MacDonald, Angus

    2017-01-01

    Abstract Background: Cognitive deficits contribute to the functional disability associated with schizophrenia. Cognitive training has shown promise as a method of intervention; however, there is considerable variability in the implementation of this approach. The aim of this study was to test the efficacy of a high dose of cognitive training that targeted working memory-related functions. Methods: A randomized, double blind, active placebo-controlled, clinical trial was conducted with 80 outpatients with schizophrenia (mean age 46.44 years, 25% female). Patients were randomized to either working memory-based cognitive training or a computer skills training course that taught computer applications. In both conditions, participants received an average of 3 hours of training weekly for 16 weeks. Cognitive and functional outcomes were assessed with the MATRICS Consensus Cognitive Battery, N-Back performance, 2 measures of functional capacity (UPSA and SSPA) and a measure of community functioning, the Social Functioning Scale. Results: An intent-to-treat analysis found that patients who received cognitive training demonstrated significantly greater change on a trained task (Word N-Back), F(78) = 21.69, P < .0001, and a novel version of a trained task (Picture N-Back) as compared to those in the comparison condition, F(78) = 13.59, P = .002. However, only very modest support was found for generalization of training gains. A trend for an interaction was found on the MCCB Attention Domain score, F(78) = 2.56, P = .12. Participants who received cognitive training demonstrated significantly improved performance, t(39) = 3.79, P = .001, while those in computer skills did not, t(39) = 1.07, P = .37. Conclusion: A well-powered, high-dose, working memory focused, computer-based, cognitive training protocol produced only a small effect in patients with schizophrenia. Results indicate the importance of measuring generalization from training tasks in cognitive remediation studies. Computer-based training was not an effective method of producing change in cognition in patients with schizophrenia.

  4. Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation.

    PubMed

    Peretz, Chava; Korczyn, Amos D; Shatil, Evelyn; Aharonson, Vered; Birnboim, Smadar; Giladi, Nir

    2011-01-01

    Many studies have suggested that cognitive training can result in cognitive gains in healthy older adults. We investigated whether personalized computerized cognitive training provides greater benefits than those obtained by playing conventional computer games. This was a randomized double-blind interventional study. Self-referred healthy older adults (n = 155, 68 ± 7 years old) were assigned to either a personalized, computerized cognitive training or to a computer games group. Cognitive performance was assessed at baseline and after 3 months by a neuropsychological assessment battery. Differences in cognitive performance scores between and within groups were evaluated using mixed effects models in 2 approaches: adherence only (AO; n = 121) and intention to treat (ITT; n = 155). Both groups improved in cognitive performance. The improvement in the personalized cognitive training group was significant (p < 0.03, AO and ITT approaches) in all 8 cognitive domains. However, in the computer games group it was significant (p < 0.05) in only 4 (AO) or 6 domains (ITT). In the AO analysis, personalized cognitive training was significantly more effective than playing games in improving visuospatial working memory (p = 0.0001), visuospatial learning (p = 0.0012) and focused attention (p = 0.0019). Personalized, computerized cognitive training appears to be more effective than computer games in improving cognitive performance in healthy older adults. Further studies are needed to evaluate the ecological validity of these findings. Copyright © 2011 S. Karger AG, Basel.

  5. [User friendliness of computer-based cognitive training for psychogeriatric patients with mild to moderate cognitive impairments].

    PubMed

    van der Ploeg, Eva S; Hoorweg, Angela; van der Lee, Jacqueline

    2016-04-01

    Cognitive impairment associated with dementia is characterized by a continuous decline. Cognitive training is a method to train specific brain functions such as memory and attention to prevent or slow down cognitive decline. A small number of studies has shown that cognitive training on a computer has a positive effect on both cognition and mood in people with cognitive impairment. This pilot study tested if serious games could be integrated in a psychogeriatric rehabilitation center. Fourteen psychogeriatric patients participated twice weekly in cognitive training sessions on a computer. Both the participants and the facilitator reported positive interactions and outcomes. However, after five weeks only half of the sample still participated in the training. This was partly because of patient turn-over as well as incorporating this new task in the facilitators' daily work. Fear of failure, physical limitations and rapidly decreasing cognitive function led to drop out according to the facilitator. The engagement of patients in the games and the role of the facilitator seemed essential for success, especially monitoring (and adjusting) the difficulty level of the program for every individual participant.

  6. The influence of computer-based cognitive flexibility training on subjective cognitive well-being after stroke: A multi-center randomized controlled trial

    PubMed Central

    Murre, Jaap M. J.; Buitenweg, Jessika I. V.; Veltman, Dick J.; Aaronson, Justine A.; Nijboer, Tanja C. W.; Kruiper-Doesborgh, Suzanne J. C.; van Bennekom, Coen A. M.; Ridderinkhof, K. Richard; Schmand, Ben

    2017-01-01

    Background Stroke can result in cognitive complaints that can have a large impact on quality of life long after its occurrence. A number of computer-based training programs have been developed with the aim to improve cognitive functioning. Most studies investigating their efficacy used only objective outcome measures, whereas a reduction of subjective cognitive complaints may be equally important for improving quality of life. A few studies used subjective outcome measures but were inconclusive, partly due to methodological shortcomings such as lack of proper active and passive control groups. Objective The aim of the current study was to investigate whether computer-based cognitive flexibility training can improve subjective cognitive functioning and quality of life after stroke. Methods We performed a randomized controlled double blind trial (RCT). Adults (30–80 years old) who had a stroke 3 months to 5 years ago, were randomly assigned to either an intervention group (n = 38), an active control group (i.e., mock training; n = 35), or a waiting list control group (n = 24). The intervention and mock training consisted of 58 half-hour sessions within 12 weeks. The primary subjective outcome measures were cognitive functioning (Cognitive Failure Questionnaire), executive functioning (Dysexecutive Functioning Questionnaire), quality of life (Short Form Health Survey), instrumental activities of daily living (IADL; Lawton & Brody IADL scale), and participation in society (Utrecht Scale for Evaluation of Rehabilitation-Participation). Secondary subjective outcome measures were recovery after stroke, depressive symptoms (Hospital Anxiety Depression Scale—depression subscale), fatigue (Checklist Individual Strength—Fatigue subscale), and subjective cognitive improvement (exit list). Finally, a proxy of the participant rated the training effects in subjective cognitive functioning, subjective executive functioning, and IADL. Results and conclusions All groups improved on the two measures of subjective cognitive functioning and subjective executive functioning, but not on the other measures. These cognitive and executive improvements remained stable 4 weeks after training completion. However, the intervention group did not improve more than the two control groups. This suggests that improvement was due to training-unspecific effects. The proxies did not report any improvements. We, therefore, conclude that the computer-based cognitive flexibility training did not improve subjective cognitive functioning or quality of life after stroke. PMID:29145410

  7. The influence of computer-based cognitive flexibility training on subjective cognitive well-being after stroke: A multi-center randomized controlled trial.

    PubMed

    van de Ven, Renate M; Murre, Jaap M J; Buitenweg, Jessika I V; Veltman, Dick J; Aaronson, Justine A; Nijboer, Tanja C W; Kruiper-Doesborgh, Suzanne J C; van Bennekom, Coen A M; Ridderinkhof, K Richard; Schmand, Ben

    2017-01-01

    Stroke can result in cognitive complaints that can have a large impact on quality of life long after its occurrence. A number of computer-based training programs have been developed with the aim to improve cognitive functioning. Most studies investigating their efficacy used only objective outcome measures, whereas a reduction of subjective cognitive complaints may be equally important for improving quality of life. A few studies used subjective outcome measures but were inconclusive, partly due to methodological shortcomings such as lack of proper active and passive control groups. The aim of the current study was to investigate whether computer-based cognitive flexibility training can improve subjective cognitive functioning and quality of life after stroke. We performed a randomized controlled double blind trial (RCT). Adults (30-80 years old) who had a stroke 3 months to 5 years ago, were randomly assigned to either an intervention group (n = 38), an active control group (i.e., mock training; n = 35), or a waiting list control group (n = 24). The intervention and mock training consisted of 58 half-hour sessions within 12 weeks. The primary subjective outcome measures were cognitive functioning (Cognitive Failure Questionnaire), executive functioning (Dysexecutive Functioning Questionnaire), quality of life (Short Form Health Survey), instrumental activities of daily living (IADL; Lawton & Brody IADL scale), and participation in society (Utrecht Scale for Evaluation of Rehabilitation-Participation). Secondary subjective outcome measures were recovery after stroke, depressive symptoms (Hospital Anxiety Depression Scale-depression subscale), fatigue (Checklist Individual Strength-Fatigue subscale), and subjective cognitive improvement (exit list). Finally, a proxy of the participant rated the training effects in subjective cognitive functioning, subjective executive functioning, and IADL. All groups improved on the two measures of subjective cognitive functioning and subjective executive functioning, but not on the other measures. These cognitive and executive improvements remained stable 4 weeks after training completion. However, the intervention group did not improve more than the two control groups. This suggests that improvement was due to training-unspecific effects. The proxies did not report any improvements. We, therefore, conclude that the computer-based cognitive flexibility training did not improve subjective cognitive functioning or quality of life after stroke.

  8. Computer-Based Training in Math and Working Memory Improves Cognitive Skills and Academic Achievement in Primary School Children: Behavioral Results

    PubMed Central

    Sánchez-Pérez, Noelia; Castillo, Alejandro; López-López, José A.; Pina, Violeta; Puga, Jorge L.; Campoy, Guillermo; González-Salinas, Carmen; Fuentes, Luis J.

    2018-01-01

    Student academic achievement has been positively related to further development outcomes, such as the attainment of higher educational, employment, and socioeconomic aspirations. Among all the academic competences, mathematics has been identified as an essential skill in the field of international leadership as well as for those seeking positions in disciplines related to science, technology, and engineering. Given its positive consequences, studies have designed trainings to enhance children's mathematical skills. Additionally, the ability to regulate and control actions and cognitions, i.e., executive functions (EF), has been associated with school success, which has resulted in a strong effort to develop EF training programs to improve students' EF and academic achievement. The present study examined the efficacy of a school computer-based training composed of two components, namely, working memory and mathematics tasks. Among the advantages of using a computer-based training program is the ease with which it can be implemented in school settings and the ease by which the difficulty of the tasks can be adapted to fit the child's ability level. To test the effects of the training, children's cognitive skills (EF and IQ) and their school achievement (math and language grades and abilities) were evaluated. The results revealed a significant improvement in cognitive skills, such as non-verbal IQ and inhibition, and better school performance in math and reading among the children who participated in the training compared to those children who did not. Most of the improvements were related to training on WM tasks. These findings confirmed the efficacy of a computer-based training that combined WM and mathematics activities as part of the school routines based on the training's impact on children's academic competences and cognitive skills. PMID:29375442

  9. Computer-Based Training in Math and Working Memory Improves Cognitive Skills and Academic Achievement in Primary School Children: Behavioral Results.

    PubMed

    Sánchez-Pérez, Noelia; Castillo, Alejandro; López-López, José A; Pina, Violeta; Puga, Jorge L; Campoy, Guillermo; González-Salinas, Carmen; Fuentes, Luis J

    2017-01-01

    Student academic achievement has been positively related to further development outcomes, such as the attainment of higher educational, employment, and socioeconomic aspirations. Among all the academic competences, mathematics has been identified as an essential skill in the field of international leadership as well as for those seeking positions in disciplines related to science, technology, and engineering. Given its positive consequences, studies have designed trainings to enhance children's mathematical skills. Additionally, the ability to regulate and control actions and cognitions, i.e., executive functions (EF), has been associated with school success, which has resulted in a strong effort to develop EF training programs to improve students' EF and academic achievement. The present study examined the efficacy of a school computer-based training composed of two components, namely, working memory and mathematics tasks. Among the advantages of using a computer-based training program is the ease with which it can be implemented in school settings and the ease by which the difficulty of the tasks can be adapted to fit the child's ability level. To test the effects of the training, children's cognitive skills (EF and IQ) and their school achievement (math and language grades and abilities) were evaluated. The results revealed a significant improvement in cognitive skills, such as non-verbal IQ and inhibition, and better school performance in math and reading among the children who participated in the training compared to those children who did not. Most of the improvements were related to training on WM tasks. These findings confirmed the efficacy of a computer-based training that combined WM and mathematics activities as part of the school routines based on the training's impact on children's academic competences and cognitive skills.

  10. The Effectiveness of Computer-Based Cognitive Training Programs

    ERIC Educational Resources Information Center

    Walcott, Christy M.; Phillips, Miranda E.

    2013-01-01

    The purpose of this article is to summarize empirical findings for school-age computer-based cognitive training (CCT) programs and to provide specific guidelines to practitioners who may be consulting with parents and schools about the utility of such programs. CCT programs vary in nature and in their targeted functions, but they share similar…

  11. Crosswords to computers: a critical review of popular approaches to cognitive enhancement.

    PubMed

    Jak, Amy J; Seelye, Adriana M; Jurick, Sarah M

    2013-03-01

    Cognitive enhancement strategies have gained recent popularity and have the potential to benefit clinical and non-clinical populations. As technology advances and the number of cognitively healthy adults seeking methods of improving or preserving cognitive functioning grows, the role of electronic (e.g., computer and video game based) cognitive training becomes more relevant and warrants greater scientific scrutiny. This paper serves as a critical review of empirical evaluations of publically available electronic cognitive training programs. Many studies have found that electronic training approaches result in significant improvements in trained cognitive tasks. Fewer studies have demonstrated improvements in untrained tasks within the trained cognitive domain, non-trained cognitive domains, or on measures of everyday function. Successful cognitive training programs will elicit effects that generalize to untrained, practical tasks for extended periods of time. Unfortunately, many studies of electronic cognitive training programs are hindered by methodological limitations such as lack of an adequate control group, long-term follow-up and ecologically valid outcome measures. Despite these limitations, evidence suggests that computerized cognitive training has the potential to positively impact one's sense of social connectivity and self-efficacy.

  12. Computer-based cognitive training for ADHD: a review of current evidence.

    PubMed

    Sonuga-Barke, Edmund; Brandeis, Daniel; Holtmann, Martin; Cortese, Samuele

    2014-10-01

    There has been an increasing interest in and the use of computer-based cognitive training as a treatment of attention-deficit/hyperactivity disorder (ADHD). The authors' review of current evidence, based partly on a stringent meta-analysis of 6 randomized controlled trials (RCTs) published in 2013, and an overview of 8 recently published RCTs highlights the inconsistency of findings between trials and across blinded and nonblinded ADHD measures within trials. Based on this, they conclude that more evidence from well-blinded studies is required before cognitive training can be supported as a frontline treatment of core ADHD symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Home and family in cognitive rehabilitation after brain injury: Implementation of social reserves.

    PubMed

    Mogensen, Jesper; Wulf-Andersen, Camilla

    2017-01-01

    The focus of the present article is the home and family environment of patients suffering acquired brain injury. In order to obtain the optimal outcome of posttraumatic cognitive rehabilitation it is important (a) to obtain a sufficient intensity of rehabilitative training, (b) to achieve the maximum degree of generalization from formalized training to the daily environment of the patient, and (c) to obtain the best possible utilization of "cognitive reserves" in the form of cognitive abilities and "strategies" acquired pretraumatically. Supplementing the institution-based cognitive training with (potentially computer-based) home-based training these three goals may more easily be met. Home-based training supports a higher intensity of training. Training in the home environment also allows better utilization of cognitive strategies acquired pretraumatically and more direct transfer of training results from formalized training to activities of daily living of the patient.

  14. The influence of combined cognitive plus social-cognitive training on amygdala response during face emotion recognition in schizophrenia.

    PubMed

    Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; D'Esposito, Mark; Vinogradov, Sophia

    2013-08-30

    Both cognitive and social-cognitive deficits impact functional outcome in schizophrenia. Cognitive remediation studies indicate that targeted cognitive and/or social-cognitive training improves behavioral performance on trained skills. However, the neural effects of training in schizophrenia and their relation to behavioral gains are largely unknown. This study tested whether a 50-h intervention which included both cognitive and social-cognitive training would influence neural mechanisms that support social ccognition. Schizophrenia participants completed a computer-based intervention of either auditory-based cognitive training (AT) plus social-cognition training (SCT) (N=11) or non-specific computer games (CG) (N=11). Assessments included a functional magnetic resonance imaging (fMRI) task of facial emotion recognition, and behavioral measures of cognition, social cognition, and functional outcome. The fMRI results showed the predicted group-by-time interaction. Results were strongest for emotion recognition of happy, surprise and fear: relative to CG participants, AT+SCT participants showed a neural activity increase in bilateral amygdala, right putamen and right medial prefrontal cortex. Across all participants, pre-to-post intervention neural activity increase in these regions predicted behavioral improvement on an independent emotion perception measure (MSCEIT: Perceiving Emotions). Among AT+SCT participants alone, neural activity increase in right amygdala predicted behavioral improvement in emotion perception. The findings indicate that combined cognition and social-cognition training improves neural systems that support social-cognition skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Positive Effects of Computer-Based Cognitive Training in Adults with Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Herrera, C.; Chambon, C.; Michel, B. F.; Paban, V.; Alescio-Lautier, B.

    2012-01-01

    Considering the high risk for individuals with amnestic Mild Cognitive Impairment (A-MCI) to progress towards Alzheimer's disease (AD), we investigated the efficacy of a non-pharmacological intervention, that is, cognitive training that could reduce cognitive difficulties and delay the cognitive decline. For this, we evaluated the efficacy of a…

  16. The Memory Aid study: protocol for a randomized controlled clinical trial evaluating the effect of computer-based working memory training in elderly patients with mild cognitive impairment (MCI)

    PubMed Central

    2014-01-01

    Background Mild cognitive impairment (MCI) is a condition characterized by memory problems that are more severe than the normal cognitive changes due to aging, but less severe than dementia. Reduced working memory (WM) is regarded as one of the core symptoms of an MCI condition. Recent studies have indicated that WM can be improved through computer-based training. The objective of this study is to evaluate if WM training is effective in improving cognitive function in elderly patients with MCI, and if cognitive training induces structural changes in the white and gray matter of the brain, as assessed by structural MRI. Methods/Designs The proposed study is a blinded, randomized, controlled trail that will include 90 elderly patients diagnosed with MCI at a hospital-based memory clinic. The participants will be randomized to either a training program or a placebo version of the program. The intervention is computerized WM training performed for 45 minutes of 25 sessions over 5 weeks. The placebo version is identical in duration but is non-adaptive in the difficulty level of the tasks. Neuropsychological assessment and structural MRI will be performed before and 1 month after training, and at a 5-month folllow-up. Discussion If computer-based training results in positive changes to memory functions in patients with MCI this may represent a new, cost-effective treatment for MCI. Secondly, evaluation of any training-induced structural changes to gray or white matter will improve the current understanding of the mechanisms behind effective cognitive interventions in patients with MCI. Trial registration ClinicalTrials.gov NCT01991405. November 18, 2013. PMID:24886034

  17. The Memory Aid study: protocol for a randomized controlled clinical trial evaluating the effect of computer-based working memory training in elderly patients with mild cognitive impairment (MCI).

    PubMed

    Flak, Marianne M; Hernes, Susanne S; Chang, Linda; Ernst, Thomas; Douet, Vanessa; Skranes, Jon; Løhaugen, Gro C C

    2014-05-03

    Mild cognitive impairment (MCI) is a condition characterized by memory problems that are more severe than the normal cognitive changes due to aging, but less severe than dementia. Reduced working memory (WM) is regarded as one of the core symptoms of an MCI condition. Recent studies have indicated that WM can be improved through computer-based training. The objective of this study is to evaluate if WM training is effective in improving cognitive function in elderly patients with MCI, and if cognitive training induces structural changes in the white and gray matter of the brain, as assessed by structural MRI. The proposed study is a blinded, randomized, controlled trail that will include 90 elderly patients diagnosed with MCI at a hospital-based memory clinic. The participants will be randomized to either a training program or a placebo version of the program. The intervention is computerized WM training performed for 45 minutes of 25 sessions over 5 weeks. The placebo version is identical in duration but is non-adaptive in the difficulty level of the tasks. Neuropsychological assessment and structural MRI will be performed before and 1 month after training, and at a 5-month folllow-up. If computer-based training results in positive changes to memory functions in patients with MCI this may represent a new, cost-effective treatment for MCI. Secondly, evaluation of any training-induced structural changes to gray or white matter will improve the current understanding of the mechanisms behind effective cognitive interventions in patients with MCI. ClinicalTrials.gov NCT01991405. November 18, 2013.

  18. Novel Television-Based Cognitive Training Improves Working Memory and Executive Function

    PubMed Central

    Shatil, Evelyn; Mikulecká, Jaroslava; Bellotti, Francesco; Bureš, Vladimír

    2014-01-01

    The main study objective was to investigate the effect of interactive television-based cognitive training on cognitive performance of 119 healthy older adults, aged 60–87 years. Participants were randomly allocated to a cognitive training group or to an active control group in a single-blind controlled two-group design. Before and after training interactive television cognitive performance was assessed on well validated tests of fluid, higher-order ability, and system usability was evaluated. The participants in the cognitive training group completed a television-based cognitive training programme, while the participants in the active control group completed a TV-based programme of personally benefiting activities. Significant improvements were observed in well validated working memory and executive function tasks in the cognitive training but not in the control group. None of the groups showed statistically significant improvement in life satisfaction score. Participants' reports of “adequate” to “high” system usability testify to the successful development and implementation of the interactive television-based system and compliant cognitive training contents. The study demonstrates that cognitive training delivered by means of an interactive television system can generate genuine cognitive benefits in users and these are measurable using well-validated cognitive tests. Thus, older adults who cannot use or afford a computer can easily use digital interactive television to benefit from advanced software applications designed to train cognition. PMID:24992187

  19. Effects of peer social interaction on performance during computerized cognitive remediation therapy in patients with early course schizophrenia: A pilot study.

    PubMed

    Sandoval, Luis R; González, Betzamel López; Stone, William S; Guimond, Synthia; Rivas, Cristina Torres; Sheynberg, David; Kuo, Susan S; Eack, Shaun; Keshavan, Matcheri S

    2017-09-04

    Recent studies show that computer-based training enhances cognition in schizophrenia; furthermore, socialization has also been found to improve cognitive functions. It is generally believed that non-social cognitive remediation using computer exercises would be a pre-requisite for therapeutic benefits from social cognitive training. However, it is also possible that social interaction by itself enhances non-social cognitive functions; this possibility has scarcely been explored in schizophrenia patients. This pilot study examined the effects of computer-based neurocognitive training, along with social interaction either with a peer (PSI) or without one (N-PSI). We hypothesized that PSI will enhance cognitive performance during computerized exercises in schizophrenia, as compared with N-PSI. Sixteen adult participants diagnosed with schizophrenia or schizoaffective disorder participating in an ongoing trial of Cognitive Enhancement Therapy completed several computerized neurocognitive remediation training sessions (the Orientation Remedial Module©, or ORM), either with a peer or without a peer. We observed a significant interaction between the effect of PSI and performance on the different cognitive exercises (p<0.05). More precisely, when patients performed the session with PSI, they demonstrated better cognitive performances than with N-PSI in the ORM exercise that provides training in processing speed, alertness, and reaction time (the standard Attention Reaction Conditioner, or ARC) (p<0.01, corrected). PSI did not significantly affect other cognitive domains such as target detection and spatial attention. Our findings suggest that PSI could improve cognitive performance, such as processing speed, during computerized cognitive training in schizophrenia. Additional studies investigating the effect of PSI during cognitive remediation are needed to further evaluate this hypothesis. Copyright © 2017. Published by Elsevier B.V.

  20. Computer related self-efficacy and anxiety in older adults with and without mild cognitive impairment

    PubMed Central

    Wild, Katherine V.; Mattek, Nora; Maxwell, Shoshana A.; Dodge, Hiroko H.; Jimison, Holly B.; Kaye, Jeffrey A.

    2012-01-01

    Background This study examines differences in computer related self-efficacy and anxiety in subgroups of older adults, and changes in those measures following exposure to a systematic training program and subsequent computer use. Methods Participants were volunteers in the Intelligent Systems for Assessment of Aging Changes Study (ISAAC) carried out by the Oregon Center for Aging and Technology. Participants were administered two questionnaires prior to training and again one year later, related to computer self-efficacy and anxiety. Continuous recording of computer use was also assessed for a subset of participants. Results Baseline comparisons by gender, age, education, living arrangement, and computer proficiency, but not cognitive status, yielded significant differences in confidence and anxiety related to specific aspects of computer use. At one-year follow-up, participants reported less anxiety and greater confidence. However, the benefits of training and exposure varied by group and task. Comparisons based on cognitive status showed that the cognitively intact participants benefited more from training and/or experience with computers than did participants with Mild Cognitive Impairment (MCI), who after one year continued to report less confidence and more anxiety regarding certain aspects of computer use. Conclusion After one year of consistent computer use, cognitively intact participants in this study reported reduced levels of anxiety and increased self-confidence in their ability to perform specific computer tasks. Participants with MCI at baseline were less likely to demonstrate increased efficacy or confidence than their cognitively intact counterparts. PMID:23102124

  1. Selling points: What cognitive abilities are tapped by casual video games?

    PubMed Central

    Baniqued, Pauline L.; Lee, Hyunkyu; Voss, Michelle W.; Basak, Chandramallika; Cosman, Joshua D.; DeSouza, Shanna; Severson, Joan; Salthouse, Timothy A.; Kramer, Arthur F.

    2013-01-01

    The idea that video games or computer-based applications can improve cognitive function has led to a proliferation of programs claiming to “train the brain.” However, there is often little scientific basis in the development of commercial training programs, and many research-based programs yield inconsistent or weak results. In this study, we sought to better understand the nature of cognitive abilities tapped by casual video games and thus reflect on their potential as a training tool. A moderately large sample of participants (n=209) played 20 web-based casual games and performed a battery of cognitive tasks. We used cognitive task analysis and multivariate statistical techniques to characterize the relationships between performance metrics. We validated the cognitive abilities measured in the task battery, examined a task analysis-based categorization of the casual games, and then characterized the relationship between game and task performance. We found that games categorized to tap working memory and reasoning were robustly related to performance on working memory and fluid intelligence tasks, with fluid intelligence best predicting scores on working memory and reasoning games. We discuss these results in the context of overlap in cognitive processes engaged by the cognitive tasks and casual games, and within the context of assessing near and far transfer. While this is not a training study, these findings provide a methodology to assess the validity of using certain games as training and assessment devices for specific cognitive abilities, and shed light on the mixed transfer results in the computer-based training literature. Moreover, the results can inform design of a more theoretically-driven and methodologically-sound cognitive training program. PMID:23246789

  2. Selling points: What cognitive abilities are tapped by casual video games?

    PubMed

    Baniqued, Pauline L; Lee, Hyunkyu; Voss, Michelle W; Basak, Chandramallika; Cosman, Joshua D; Desouza, Shanna; Severson, Joan; Salthouse, Timothy A; Kramer, Arthur F

    2013-01-01

    The idea that video games or computer-based applications can improve cognitive function has led to a proliferation of programs claiming to "train the brain." However, there is often little scientific basis in the development of commercial training programs, and many research-based programs yield inconsistent or weak results. In this study, we sought to better understand the nature of cognitive abilities tapped by casual video games and thus reflect on their potential as a training tool. A moderately large sample of participants (n=209) played 20 web-based casual games and performed a battery of cognitive tasks. We used cognitive task analysis and multivariate statistical techniques to characterize the relationships between performance metrics. We validated the cognitive abilities measured in the task battery, examined a task analysis-based categorization of the casual games, and then characterized the relationship between game and task performance. We found that games categorized to tap working memory and reasoning were robustly related to performance on working memory and fluid intelligence tasks, with fluid intelligence best predicting scores on working memory and reasoning games. We discuss these results in the context of overlap in cognitive processes engaged by the cognitive tasks and casual games, and within the context of assessing near and far transfer. While this is not a training study, these findings provide a methodology to assess the validity of using certain games as training and assessment devices for specific cognitive abilities, and shed light on the mixed transfer results in the computer-based training literature. Moreover, the results can inform design of a more theoretically-driven and methodologically-sound cognitive training program. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Computer-Based Cognitive Tools in Teacher Training: The COG-TECH Projects

    ERIC Educational Resources Information Center

    Orhun, Emrah

    2003-01-01

    The COG-TECH (Cognitive Technologies for Problem Solving and Learning) Network conducted three international projects between 1994 and 2001 under the auspices of the European Commission. The main purpose of these projects was to train teacher educators in the Mediterranean countries to use computers as effective pedagogical tools. The summer…

  4. Computer-based training for safety: comparing methods with older and younger workers.

    PubMed

    Wallen, Erik S; Mulloy, Karen B

    2006-01-01

    Computer-based safety training is becoming more common and is being delivered to an increasingly aging workforce. Aging results in a number of changes that make it more difficult to learn from certain types of computer-based training. Instructional designs derived from cognitive learning theories may overcome some of these difficulties. Three versions of computer-based respiratory safety training were shown to older and younger workers who then took a high and a low level learning test. Younger workers did better overall. Both older and younger workers did best with the version containing text with pictures and audio narration. Computer-based training with pictures and audio narration may be beneficial for workers over 45 years of age. Computer-based safety training has advantages but workers of different ages may benefit differently. Computer-based safety programs should be designed and selected based on their ability to effectively train older as well as younger learners.

  5. Computer-related self-efficacy and anxiety in older adults with and without mild cognitive impairment.

    PubMed

    Wild, Katherine V; Mattek, Nora C; Maxwell, Shoshana A; Dodge, Hiroko H; Jimison, Holly B; Kaye, Jeffrey A

    2012-11-01

    This study examines differences in computer-related self-efficacy and anxiety in subgroups of older adults, and changes in those measures after exposure to a systematic training program and subsequent computer use. Participants were volunteers in the Intelligent Systems for Assessment of Aging Changes study (ISAAC) carried out by the Oregon Center for Aging and Technology. Participants were administered two questionnaires before training and again 1 year later, which were related to computer self-efficacy and anxiety. Continuous recording of computer use was also assessed for a subset of participants. Baseline comparisons by sex, age, education, living arrangement, and computer proficiency, but not cognitive status, yielded significant differences in confidence and anxiety related to specific aspects of computer use. At 1-year follow-up, participants reported less anxiety and greater confidence. However, the benefits of training and exposure varied by group and task. Comparisons based on cognitive status showed that the cognitively intact participants benefited more from training and/or experience with computers than did participants with mild cognitive impairment (MCI), who after 1 year continued to report less confidence and more anxiety regarding certain aspects of computer use. After 1 year of consistent computer use, cognitively intact participants in this study reported reduced levels of anxiety and increased self-confidence in their ability to perform specific computer tasks. Participants with MCI at baseline were less likely to demonstrate increased efficacy or confidence than their cognitively intact counterparts. Copyright © 2012 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  6. Efficacy of a short cognitive training program in patients with multiple sclerosis

    PubMed Central

    Pérez-Martín, María Yaiza; González-Platas, Montserrat; Eguía-del Río, Pablo; Croissier-Elías, Cristina; Jiménez Sosa, Alejandro

    2017-01-01

    Background Cognitive impairment is a common feature in multiple sclerosis (MS) and may have a substantial impact on quality of life. Evidence about the effectiveness of neuropsychological rehabilitation is still limited, but current data suggest that computer-assisted cognitive training improves cognitive performance. Objective The objective of this study was to evaluate the efficacy of combined computer-assisted training supported by home-based neuropsychological training to improve attention, processing speed, memory and executive functions during 3 consecutive months. Methods In this randomized controlled study blinded for the evaluators, 62 MS patients with clinically stable disease and mild-to-moderate levels of cognitive impairment were randomized to receive a computer-assisted neuropsychological training program (n=30) or no intervention (control group [CG]; n=32). The cognitive assessment included the Brief Repeatable Battery of Neuropsychological Test. Other secondary measures included subjective cognitive impairment, anxiety and depression, fatigue and quality of life measures. Results The treatment group (TG) showed significant improvements in measures of verbal memory, working memory and phonetic fluency after intervention, and repeated measures analysis of covariance revealed a positive effect in most of the functions. The control group (CG) did not show changes. The TG showed a significant reduction in anxiety symptoms and significant improvement in quality of life. There were no improvements in fatigue levels and depressive symptoms. Conclusion Cognitive intervention with a computer-assisted training supported by home training between face-to-face sessions is a useful tool to treat patients with MS and improve functions such as verbal memory, working memory and phonetic fluency. PMID:28223806

  7. The ERP Effects of Combined Cognitive Training on Intention-Based and Stimulus-Based Actions in Older Chinese Adults.

    PubMed

    Niu, Ya-Nan; Zhu, Xinyi; Li, Juan; Fu, Jiang-Ning

    2016-01-01

    Age-related decreases in action are caused by neuromuscular weakness and cognitive decline. Although physical interventions have been reported to have beneficial effects on cognitive function in older adults, whether cognitive training improves action-related function remains unclear. In this study, we investigated the effects of combined cognitive training on intention-based and stimulus-based actions in older adults using event-related potentials (ERPs). A total of 26 healthy older adults (16 in the training group and 10 in the control group) participated in the study. The training group received 16 sessions of cognitive training, including eight sessions of executive function training and eight sessions of memory strategy training. Before and after training, both groups of participants underwent cognitive assessments and ERP recordings during both the acquisition and test phases with a motor cognitive paradigm. During the acquisition phase, subjects were asked to press one of two keys, either using a self-selected (intention-based) method or based on the preceding stimulus (stimulus-based). During the test phase, subjects were asked to respond to the pre-cues with either congruent or incongruent tasks. Using ERP indices-including readiness potential, P3 and contingent negative variation to identify motor preparation, stimulus processing and interference effect, respectively-we revealed the effects of training on both intention-based and stimulus-based actions. The correlations were also computed between the improved cognitive performance and the ERP amplitudes. It was shown that the improved executive function might extend substantial benefits to both actions, whereas associative memory may be specifically related to the bidirectional action-effect association of intention-based action, although the training effect of memory was absent during the insufficient training hours. In sum, the present study provided empirical evidence demonstrating that action could benefit from cognitive training. www.chictr.org.cn, identifier: ChiCTR-OON-16007793.

  8. Cognitive Aging and Computer-Based Instructional Design: Where Do We Go from Here?

    ERIC Educational Resources Information Center

    Van Gerven, Pascal W. M.; Paas, Fred; Tabbers, Huib K.

    2006-01-01

    In this article, the most relevant literature on cognitive aging and instructional design is merged to formulate recommendations for designing computer-based training material aimed at elderly learners. The core message is that researchers and instructional designers do not need to develop special computerized instruction for older adults. Rather,…

  9. Cognitive Load Theory vs. Constructivist Approaches: Which Best Leads to Efficient, Deep Learning?

    ERIC Educational Resources Information Center

    Vogel-Walcutt, J. J.; Gebrim, J. B.; Bowers, C.; Carper, T. M.; Nicholson, D.

    2011-01-01

    Computer-assisted learning, in the form of simulation-based training, is heavily focused upon by the military. Because computer-based learning offers highly portable, reusable, and cost-efficient training options, the military has dedicated significant resources to the investigation of instructional strategies that improve learning efficiency…

  10. Computer-Based Cognitive Training for Executive Functions after Stroke: A Systematic Review

    PubMed Central

    van de Ven, Renate M.; Murre, Jaap M. J.; Veltman, Dick J.; Schmand, Ben A.

    2016-01-01

    Background: Stroke commonly results in cognitive impairments in working memory, attention, and executive function, which may be restored with appropriate training programs. Our aim was to systematically review the evidence for computer-based cognitive training of executive dysfunctions. Methods: Studies were included if they concerned adults who had suffered stroke or other types of acquired brain injury, if the intervention was computer training of executive functions, and if the outcome was related to executive functioning. We searched in MEDLINE, PsycINFO, Web of Science, and The Cochrane Library. Study quality was evaluated based on the CONSORT Statement. Treatment effect was evaluated based on differences compared to pre-treatment and/or to a control group. Results: Twenty studies were included. Two were randomized controlled trials that used an active control group. The other studies included multiple baselines, a passive control group, or were uncontrolled. Improvements were observed in tasks similar to the training (near transfer) and in tasks dissimilar to the training (far transfer). However, these effects were not larger in trained than in active control groups. Two studies evaluated neural effects and found changes in both functional and structural connectivity. Most studies suffered from methodological limitations (e.g., lack of an active control group and no adjustment for multiple testing) hampering differentiation of training effects from spontaneous recovery, retest effects, and placebo effects. Conclusions: The positive findings of most studies, including neural changes, warrant continuation of research in this field, but only if its methodological limitations are addressed. PMID:27148007

  11. Effect of virtual reality on cognitive dysfunction in patients with brain tumor.

    PubMed

    Yang, Seoyon; Chun, Min Ho; Son, Yu Ri

    2014-12-01

    To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment.

  12. Effect of Virtual Reality on Cognitive Dysfunction in Patients With Brain Tumor

    PubMed Central

    Yang, Seoyon; Son, Yu Ri

    2014-01-01

    Objective To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Methods Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. Results The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. Conclusion VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment. PMID:25566470

  13. Comparison of Two Cognitive Training Programs With Effects on Functional Activities and Quality of Life.

    PubMed

    Hagovská, Magdaléna; Dzvoník, Oliver; Olekszyová, Zuzana

    2017-07-01

    The aim of the current study was to compare the effectiveness of two types of cognitive training in 60 older adults with mild cognitive impairment by assessing the impact on functional activities, quality of life (QOL), and various cognitive functions. The primary outcomes were functional activity level and QOL. The secondary outcome was cognitive examination. Group assignment was random. Group A (n = 30) underwent CogniPlus, a computer-based, cognitive training. Group B (n = 30) underwent classical group-based cognitive training. Both programs comprised two 30-minute sessions per week for 10 weeks. After training, group A had better QOL (p < 0.001, effect size [ES] = 0.69) and better attention (increased load score, p < 0.05, ES = -0.23; errors, p < 0.001, ES = -0.47); however, there were no group differences in functional activity level. Group A demonstrated larger improvements in QOL and attention than group B (i.e., classical cognitive training), but the transfer to functional activities was the same between groups. [Res Gerontol Nurs. 2017; 10(4):172-180.]. Copyright 2017, SLACK Incorporated.

  14. Anxiety and Threat-Related Attention: Cognitive-Motivational Framework and Treatment.

    PubMed

    Mogg, Karin; Bradley, Brendan P

    2018-03-01

    Research in experimental psychopathology and cognitive theories of anxiety highlight threat-related attention biases (ABs) and underpin the development of a computer-delivered treatment for anxiety disorders: attention-bias modification (ABM) training. Variable effects of ABM training on anxiety and ABs generate conflicting research recommendations, novel ABM training procedures, and theoretical controversy. This article summarises an updated cognitive-motivational framework, integrating proposals from cognitive models of anxiety and attention, as well as evidence of ABs. Interactions between motivational salience-driven and goal-directed influences on multiple cognitive processes (e.g., stimulus evaluation, inhibition, switching, orienting) underlie anxiety and the variable manifestations of ABs (orienting towards and away from threat; threat-distractor interference). This theoretical analysis also considers ABM training as cognitive skill training, describes a conceptual framework for evaluating/developing novel ABM training procedures, and complements network-based research on reciprocal anxiety-cognition relationships. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Randomized control trial of computer-based training targeting alertness in older adults: the ALERT trial protocol.

    PubMed

    VanVleet, Thomas; Voss, Michelle; Dabit, Sawsan; Mitko, Alex; DeGutis, Joseph

    2018-05-03

    Healthy aging is associated with a decline in multiple functional domains including perception, attention, short and long-term memory, reasoning, decision-making, as well as cognitive and motor control functions; all of which are significantly modulated by an individual's level of alertness. The control of alertness also significantly declines with age and contributes to increased lapses of attention in everyday life, ranging from minor memory slips to a lack of vigilance and increased risk of falls or motor-vehicle accidents. Several experimental behavioral therapies designed to remediate age-related cognitive decline have been developed, but differ widely in content, method and dose. Preliminary studies demonstrate that Tonic and Phasic Alertness Training (TAPAT) can improve executive functions in older adults and may be a useful adjunct treatment to enhance benefits gained in other clinically validated treatments. The purpose of the current trial (referred to as the Attention training for Learning Enhancement and Resilience Trial or ALERT) is to compare TAPAT to an active control training condition, include a larger sample of patients, and assess both cognitive and functional outcomes. We will employ a multi-site, longitudinal, blinded randomized controlled trial (RCT) design with a target sample of 120 patients with age-related cognitive decline. Patients will be asked to complete 36 training sessions remotely (30 min/day, 5 days a week, over 3 months) of either the experimental TAPAT training program or an active control computer games condition. Patients will be assessed on a battery of cognitive and functional outcomes at four time points, including: a) immediately before training, b) halfway through training, c) within forty-eight hours post completion of total training, and d) after a three-month no-contact period post completion of total training, to assess the longevity of potential training effects. The strengths of this protocol are that it tests an innovative, in-home administered treatment that targets a fundamental deficit in adults with age-related cognitive decline; employs highly sensitive computer-based assessments of cognition as well as functional abilities, and incorporates a large sample size in an RCT design. ClinicalTrials.gov identifier: NCT02416401.

  16. Promising non-pharmacological therapies in PD: Targeting late stage disease and the role of computer based cognitive training.

    PubMed

    Van de Weijer, S C F; Hommel, A L A J; Bloem, B R; Nonnekes, J; De Vries, N M

    2018-01-01

    Non-pharmacological interventions are increasingly being acknowledged as valuable treatment options to overcome or reduce functional problems in patients with Parkinson's disease (PD). There is a wide range of such non-pharmacological treatments for which the supportive evidence is emerging. Physiotherapy is one good example in this domain. However, there are also several promising non-pharmacological treatment strategies that have thus far received less research attention. Here, we describe two relatively new, but encouraging approaches. First, we focus on a hitherto largely overseen subgroup of PD, namely those with late-stage disease, a population that is often excluded from clinical studies. Importantly, the aims and therapeutic strategies in late-stage PD differ considerably from those in early-stage PD, and an emphasis on non-pharmacological management is particularly important for this vulnerable subgroup. Second, we focus on computer-based cognitive training, as an example of a relatively new intervention that includes innovative elements such as personalized training, artificial intelligence, and virtual reality. We review the latest evidence, practical considerations and future research perspectives, both for non-pharmacological approaches in late-stage PD and for computer-based cognitive training. Copyright © 2017. Published by Elsevier Ltd.

  17. Efficacy of Individual Computer-Based Auditory Training for People with Hearing Loss: A Systematic Review of the Evidence

    PubMed Central

    Henshaw, Helen; Ferguson, Melanie A.

    2013-01-01

    Background Auditory training involves active listening to auditory stimuli and aims to improve performance in auditory tasks. As such, auditory training is a potential intervention for the management of people with hearing loss. Objective This systematic review (PROSPERO 2011: CRD42011001406) evaluated the published evidence-base for the efficacy of individual computer-based auditory training to improve speech intelligibility, cognition and communication abilities in adults with hearing loss, with or without hearing aids or cochlear implants. Methods A systematic search of eight databases and key journals identified 229 articles published since 1996, 13 of which met the inclusion criteria. Data were independently extracted and reviewed by the two authors. Study quality was assessed using ten pre-defined scientific and intervention-specific measures. Results Auditory training resulted in improved performance for trained tasks in 9/10 articles that reported on-task outcomes. Although significant generalisation of learning was shown to untrained measures of speech intelligibility (11/13 articles), cognition (1/1 articles) and self-reported hearing abilities (1/2 articles), improvements were small and not robust. Where reported, compliance with computer-based auditory training was high, and retention of learning was shown at post-training follow-ups. Published evidence was of very-low to moderate study quality. Conclusions Our findings demonstrate that published evidence for the efficacy of individual computer-based auditory training for adults with hearing loss is not robust and therefore cannot be reliably used to guide intervention at this time. We identify a need for high-quality evidence to further examine the efficacy of computer-based auditory training for people with hearing loss. PMID:23675431

  18. Computer Assisted Instructional Design for Computer-Based Instruction. Final Report. Working Papers.

    ERIC Educational Resources Information Center

    Russell, Daniel M.; Pirolli, Peter

    Recent advances in artificial intelligence and the cognitive sciences have made it possible to develop successful intelligent computer-aided instructional systems for technical and scientific training. In addition, computer-aided design (CAD) environments that support the rapid development of such computer-based instruction have also been recently…

  19. Effectiveness of a Computer-Based Training Program of Attention and Memory in Patients with Acquired Brain Damage

    PubMed Central

    Fernandez, Elizabeth; Bergado Rosado, Jorge A.; Rodriguez Perez, Daymi; Salazar Santana, Sonia; Torres Aguilar, Maydane; Bringas, Maria Luisa

    2017-01-01

    Many training programs have been designed using modern software to restore the impaired cognitive functions in patients with acquired brain damage (ABD). The objective of this study was to evaluate the effectiveness of a computer-based training program of attention and memory in patients with ABD, using a two-armed parallel group design, where the experimental group (n = 50) received cognitive stimulation using RehaCom software, and the control group (n = 30) received the standard cognitive stimulation (non-computerized) for eight weeks. In order to assess the possible cognitive changes after the treatment, a post-pre experimental design was employed using the following neuropsychological tests: Wechsler Memory Scale (WMS) and Trail Making test A and B. The effectiveness of the training procedure was statistically significant (p < 0.05) when it established the comparison between the performance in these scales, before and after the training period, in each patient and between the two groups. The training group had statistically significant (p < 0.001) changes in focused attention (Trail A), two subtests (digit span and logical memory), and the overall score of WMS. Finally, we discuss the advantages of computerized training rehabilitation and further directions of this line of work. PMID:29301194

  20. Negotiation Performance: Antecedents, Outcomes, and Training Recommendations

    DTIC Science & Technology

    2011-10-01

    Tutorial Cognitive Apprenticeships Instructional Conversations Independent Programmed Instruction Computer-Based Instruction I Rr La...procedural knowledge, as well as the more distal antecedents of individual difference variables (e.g., cognitive ability , personality) and psychological...individual difference variables (e.g., cognitive ability , personality) and psychological processes (e.g., cognitive , motivational, and emotional). This

  1. Enhancing Digital Fluency through a Training Program for Creative Problem Solving Using Computer Programming

    ERIC Educational Resources Information Center

    Kim, SugHee; Chung, KwangSik; Yu, HeonChang

    2013-01-01

    The purpose of this paper is to propose a training program for creative problem solving based on computer programming. The proposed program will encourage students to solve real-life problems through a creative thinking spiral related to cognitive skills with computer programming. With the goal of enhancing digital fluency through this proposed…

  2. Brain-Computer Interface for Clinical Purposes: Cognitive Assessment and Rehabilitation.

    PubMed

    Carelli, Laura; Solca, Federica; Faini, Andrea; Meriggi, Paolo; Sangalli, Davide; Cipresso, Pietro; Riva, Giuseppe; Ticozzi, Nicola; Ciammola, Andrea; Silani, Vincenzo; Poletti, Barbara

    2017-01-01

    Alongside the best-known applications of brain-computer interface (BCI) technology for restoring communication abilities and controlling external devices, we present the state of the art of BCI use for cognitive assessment and training purposes. We first describe some preliminary attempts to develop verbal-motor free BCI-based tests for evaluating specific or multiple cognitive domains in patients with Amyotrophic Lateral Sclerosis, disorders of consciousness, and other neurological diseases. Then we present the more heterogeneous and advanced field of BCI-based cognitive training, which has its roots in the context of neurofeedback therapy and addresses patients with neurological developmental disorders (autism spectrum disorder and attention-deficit/hyperactivity disorder), stroke patients, and elderly subjects. We discuss some advantages of BCI for both assessment and training purposes, the former concerning the possibility of longitudinally and reliably evaluating cognitive functions in patients with severe motor disabilities, the latter regarding the possibility of enhancing patients' motivation and engagement for improving neural plasticity. Finally, we discuss some present and future challenges in the BCI use for the described purposes.

  3. Working memory training in children: Effectiveness depends on temperament.

    PubMed

    Studer-Luethi, Barbara; Bauer, Catherine; Perrig, Walter J

    2016-02-01

    Studies revealing transfer effects of working memory (WM) training on non-trained cognitive performance of children hold promising implications for scholastic learning. However, the results of existing training studies are not consistent and provoke debates about the potential and limitations of cognitive enhancement. To examine the influence of individual differences on training outcomes is a promising approach for finding causes for such inconsistencies. In this study, we implemented WM training in an elementary school setting. The aim was to investigate near and far transfer effects on cognitive abilities and academic achievement and to examine the moderating effects of a dispositional and a regulative temperament factor, neuroticism and effortful control. Ninety-nine second-graders were randomly assigned to 20 sessions of computer-based adaptive WM training, computer-based reading training, or a no-contact control group. For the WM training group, our analyses reveal near transfer on a visual WM task, far transfer on a vocabulary task as a proxy for crystallized intelligence, and increased academic achievement in reading and math by trend. Considering individual differences in temperament, we found that effortful control predicts larger training mean and gain scores and that there is a moderation effect of both temperament factors on post-training improvement: WM training condition predicted higher post-training gains compared to both control conditions only in children with high effortful control or low neuroticism. Our results suggest that a short but intensive WM training program can enhance cognitive abilities in children, but that sufficient self-regulative abilities and emotional stability are necessary for WM training to be effective.

  4. Intensive Auditory Cognitive Training Improves Verbal Memory in Adolescents and Young Adults at Clinical High Risk for Psychosis.

    PubMed

    Loewy, Rachel; Fisher, Melissa; Schlosser, Danielle A; Biagianti, Bruno; Stuart, Barbara; Mathalon, Daniel H; Vinogradov, Sophia

    2016-07-01

    Individuals at clinical high risk (CHR) for psychosis demonstrate cognitive impairments that predict later psychotic transition and real-world functioning. Cognitive training has shown benefits in schizophrenia, but has not yet been adequately tested in the CHR population. In this double-blind randomized controlled trial, CHR individuals (N = 83) were given laptop computers and trained at home on 40 hours of auditory processing-based exercises designed to target verbal learning and memory operations, or on computer games (CG). Participants were assessed with neurocognitive tests based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia initiative (MATRICS) battery and rated on symptoms and functioning. Groups were compared before and after training using a mixed-effects model with restricted maximum likelihood estimation, given the high study attrition rate (42%). Participants in the targeted cognitive training group showed a significant improvement in Verbal Memory compared to CG participants (effect size = 0.61). Positive and Total symptoms improved in both groups over time. CHR individuals showed patterns of training-induced cognitive improvement in verbal memory consistent with prior observations in schizophrenia. This is a particularly vulnerable domain in individuals at-risk for psychosis that predicts later functioning and psychotic transition. Ongoing follow-up of this cohort will assess the durability of training effects in CHR individuals, as well as the potential impact on symptoms and functioning over time. Clinical Trials Number: NCT00655239. URL: https://clinicaltrials.gov/ct2/show/NCT00655239?term=vinogradov&rank=5. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center 2016.

  5. The Efficacy of the LearningRx Cognitive Training Program: Modality and Transfer Effects

    ERIC Educational Resources Information Center

    Hill, Oliver W.; Serpell, Zewelanji; Faison, M. Omar

    2016-01-01

    This article describes two studies testing the efficacy of a commercial one-on-one cognitive training program (LearningRx) and its computer-based version (Brainskills) in laboratory and school settings. Study 1 tested Brainskills in a laboratory setting with 322 middle school students. Paired "t"-tests revealed significant gains on all…

  6. Cognitive Effects of ThinkRx Cognitive Rehabilitation Training for Eleven Soldiers with Brain Injury: A Retrospective Chart Review

    PubMed Central

    Ledbetter, Christina; Moore, Amy Lawson; Mitchell, Tanya

    2017-01-01

    Cognitive rehabilitation training is a promising technique for remediating the cognitive deficits associated with brain injury. Extant research is dominated by computer-based interventions with varied results. Results from clinician-delivered cognitive rehabilitation are notably lacking in the literature. The current study examined the cognitive outcomes following ThinkRx, a clinician-delivered cognitive rehabilitation training program for soldiers recovering from traumatic brain injury and acquired brain injury. In a retrospective chart review, we examined cognitive outcomes of 11 cases who had completed an average of 80 h of ThinkRx cognitive rehabilitation training delivered by clinicians and supplemented with digital training exercises. Outcome measures included scores from six cognitive skill batteries on the Woodcock Johnson – III Tests of Cognitive Abilities. Participants achieved gains in all cognitive skills tested and achieved statistically significant changes in long-term memory, processing speed, auditory processing, and fluid reasoning with very large effect sizes. Clinically significant changes in multiple cognitive skills were also noted across cases. Results of the study suggest that ThinkRx clinician-delivered cognitive training supplemented with digital exercises may be a viable method for targeting the cognitive deficits associated with brain injury. PMID:28588534

  7. Simulations in Cyber-Security: A Review of Cognitive Modeling of Network Attackers, Defenders, and Users.

    PubMed

    Veksler, Vladislav D; Buchler, Norbou; Hoffman, Blaine E; Cassenti, Daniel N; Sample, Char; Sugrim, Shridat

    2018-01-01

    Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting.

  8. Neuroplasticity-Based Cognitive and Linguistic Skills Training Improves Reading and Writing Skills in College Students

    PubMed Central

    Rogowsky, Beth A.; Papamichalis, Pericles; Villa, Laura; Heim, Sabine; Tallal, Paula

    2013-01-01

    This study reports an evaluation of the effect of computer-based cognitive and linguistic training on college students’ reading and writing skills. The computer-based training included a series of increasingly challenging software programs that were designed to strengthen students’ foundational cognitive skills (memory, attention span, processing speed, and sequencing) in the context of listening and higher level reading tasks. Twenty-five college students (12 native English language; 13 English Second Language), who demonstrated poor writing skills, participated in the training group. The training group received daily training during the spring semester (11 weeks) with the Fast ForWord Literacy (FFW-L) and upper levels of the Fast ForWord Reading series (Levels 3–5). The comparison group (n = 28) selected from the general college population did not receive training. Both the training and comparison groups attended the same university. All students took the Gates MacGinitie Reading Test (GMRT) and the Oral and Written Language Scales (OWLS) Written Expression Scale at the beginning (Time 1) and end (Time 2) of the spring college semester. Results from this study showed that the training group made a statistically greater improvement from Time 1 to Time 2 in both their reading skills and their writing skills than the comparison group. The group who received training began with statistically lower writing skills before training, but exceeded the writing skills of the comparison group after training. PMID:23533100

  9. Effects of Computer Cognitive Training on Depression in Cognitively Impaired Seniors

    ERIC Educational Resources Information Center

    Allen, Nara L.

    2016-01-01

    The aim of the present study was to investigate the effects of a computer cognitive training program on depression levels in older mildly cognitive impaired individuals. Peterson et al. (1999), defines mild cognitive impairment (MCI) as a transitional stage in which an individual's memory deteriorates and his likelihood of developing Alzheimer's…

  10. A Preliminary Investigation into Cognitive Aptitudes Predictive of Overall MQ-1 Predator Pilot Qualification Training Performance

    DTIC Science & Technology

    2015-11-06

    Predator pilot vacancies. The purpose of this study was to evaluate computer-based intelligence and neuropsychological testing on training...high-risk, high-demand occupation. 15. SUBJECT TERMS Remotely piloted aircraft, RPA, neuropsychological screening, intelligence testing , computer...based testing , Predator, MQ-1 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 20 19a. NAME OF

  11. Cognitive Task Analysis and Intelligent Computer-Based Training Systems: Lessons Learned from Coached Practice Environments in Air Force Avionics.

    ERIC Educational Resources Information Center

    Katz, Sandra N.; Hall, Ellen; Lesgold, Alan

    This paper describes some results of a collaborative effort between the University of Pittsburgh and the Air Force to develop advanced troubleshooting training for F-15 maintenance technicians. The focus is on the cognitive task methodology used in the development of three intelligent tutoring systems to inform their instructional content and…

  12. Twenty Weeks of Computer-Training Improves Sense of Agency in Children with Spastic Cerebral Palsy

    ERIC Educational Resources Information Center

    Ritterband-Rosenbaum, A.; Christensen, M. S.; Nielsen, J. B.

    2012-01-01

    Children with cerebral palsy (CP) show alteration of perceptual and cognitive abilities in addition to motor and sensory deficits, which may include altered sense of agency. The aim of this study was to evaluate whether 20 weeks of internet-based motor, perceptual and cognitive training enhances the ability of CP children to determine whether they…

  13. Computer Aided Training of Cognitive Processing Strategies with Developmentally Handicapped Adults.

    ERIC Educational Resources Information Center

    Ryba, Kenneth A.; And Others

    1985-01-01

    Correlational results involving 60 developmentally handicaped adults indicated that a computerized cross-modal memory game had a highly significant relationship with most cognitive and motor coordination measures. Computer aided training was not effective in improving overall cognitive functioning. There was no evidence of cognitive skills being…

  14. A Cognitive Approach to e-Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitzer, Frank L.; Rice, Douglas M.; Eaton, Sharon L.

    2003-12-01

    Like traditional classroom instruction, distributed learning derives from passive training paradigms. Just as student-centered classroom teaching methods have been applied over several decades of classroom instruction, interactive approaches have been encouraged for distributed learning. While implementation of multimedia-based training features may appear to produce active learning, sophisticated use of multimedia features alone does not necessarily enhance learning. This paper describes the results of applying cognitive science principles to enhance learning in a student-centered, distributed learning environment, and lessons learned in developing and delivering this training. Our interactive, scenario-based approach exploits multimedia technology within a systematic, cognitive framework for learning. Themore » basis of the application of cognitive principles is the innovative use of multimedia technology to implement interaction elements. These simple multimedia interactions, which are used to support new concepts, are later combined with other interaction elements to create more complex, integrated practical exercises. This technology-based approach may be applied in a variety of training and education contexts, but is especially well suited for training of equipment operators and maintainers. For example, it has been used in a sustainment training application for the United States Army's Combat Support System Automated Information System Interface (CAISI). The CAISI provides a wireless communications capability that allows various logistics systems to communicate across the battlefield. Based on classroom training material developed by the CAISI Project Office, the Pacific Northwest National Laboratory designed and developed an interactive, student-centered distributed-learning application for CAISI operators and maintainers. This web-based CAISI training system is also distributed on CD media for use on individual computers, and material developed for the computer-based course can be used in the classroom. In addition to its primary role in sustainment training, this distributed learning course can complement or replace portions of the classroom instruction, thus supporting a blended learning solution.« less

  15. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM)

    PubMed Central

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J.; Gunter, Jeffrey L.; Carmona, Susanna; Jaeggi, Susanne M.; Thompson, Paul M.

    2016-01-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. PMID:27477628

  16. Benefits of computer-based memory and attention training in healthy older adults.

    PubMed

    Chambon, Caroline; Herrera, Cathy; Romaiguere, Patricia; Paban, Véronique; Alescio-Lautier, Béatrice

    2014-09-01

    Multifactorial cognitive training programs have a positive effect on cognition in healthy older adults. Among the age-sensitive cognitive domains, episodic memory is the most affected. In the present study, we evaluated the benefits on episodic memory of a computer-based memory and attention training. We targeted consciously controlled processes at encoding and minimizing processing at retrieval, by using more familiarity than recollection during recognition. Such an approach emphasizes processing at encoding and prevents subjects from reinforcing their own errors. Results showed that the training improved recognition performances and induced near transfer to recall. The largest benefits, however, were for tasks with high mental load. Improvement in free recall depended on the modality to recall; semantic recall was improved but not spatial recall. In addition, a far transfer was also observed with better memory self-perception and self-esteem of the participants. Finally, at 6-month follow up, maintenance of benefits was observed only for semantic free recall. The challenge now is to corroborate far transfer by objective measures of everyday life executive functioning. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. Simulations in Cyber-Security: A Review of Cognitive Modeling of Network Attackers, Defenders, and Users

    PubMed Central

    Veksler, Vladislav D.; Buchler, Norbou; Hoffman, Blaine E.; Cassenti, Daniel N.; Sample, Char; Sugrim, Shridat

    2018-01-01

    Computational models of cognitive processes may be employed in cyber-security tools, experiments, and simulations to address human agency and effective decision-making in keeping computational networks secure. Cognitive modeling can addresses multi-disciplinary cyber-security challenges requiring cross-cutting approaches over the human and computational sciences such as the following: (a) adversarial reasoning and behavioral game theory to predict attacker subjective utilities and decision likelihood distributions, (b) human factors of cyber tools to address human system integration challenges, estimation of defender cognitive states, and opportunities for automation, (c) dynamic simulations involving attacker, defender, and user models to enhance studies of cyber epidemiology and cyber hygiene, and (d) training effectiveness research and training scenarios to address human cyber-security performance, maturation of cyber-security skill sets, and effective decision-making. Models may be initially constructed at the group-level based on mean tendencies of each subject's subgroup, based on known statistics such as specific skill proficiencies, demographic characteristics, and cultural factors. For more precise and accurate predictions, cognitive models may be fine-tuned to each individual attacker, defender, or user profile, and updated over time (based on recorded behavior) via techniques such as model tracing and dynamic parameter fitting. PMID:29867661

  18. Computerized Cognitive Training with Older Adults: A Systematic Review

    PubMed Central

    Kueider, Alexandra M.; Parisi, Jeanine M.; Gross, Alden L.; Rebok, George W.

    2012-01-01

    A systematic review to examine the efficacy of computer-based cognitive interventions for cognitively healthy older adults was conducted. Studies were included if they met the following criteria: average sample age of at least 55 years at time of training; participants did not have Alzheimer’s disease or mild cognitive impairment; and the study measured cognitive outcomes as a result of training. Theoretical articles, review articles, and book chapters that did not include original data were excluded. We identified 151 studies published between 1984 and 2011, of which 38 met inclusion criteria and were further classified into three groups by the type of computerized program used: classic cognitive training tasks, neuropsychological software, and video games. Reported pre-post training effect sizes for intervention groups ranged from 0.06 to 6.32 for classic cognitive training interventions, 0.19 to 7.14 for neuropsychological software interventions, and 0.09 to 1.70 for video game interventions. Most studies reported older adults did not need to be technologically savvy in order to successfully complete or benefit from training. Overall, findings are comparable or better than those from reviews of more traditional, paper-and-pencil cognitive training approaches suggesting that computerized training is an effective, less labor intensive alternative. PMID:22792378

  19. Home-based interventions improve trained, but not novel, dual-task balance performance in older adults: A randomized controlled trial.

    PubMed

    Wongcharoen, Suleeporn; Sungkarat, Somporn; Munkhetvit, Peeraya; Lugade, Vipul; Silsupadol, Patima

    2017-02-01

    The purpose of this study was to compare the efficacy of four different home-based interventions on dual-task balance performance and to determine the generalizability of the four trainings to untrained tasks. Sixty older adults, aged 65 and older, were randomly assigned to one of four home-based interventions: single-task motor training, single-task cognitive training, dual-task motor-cognitive training, and dual-task cognitive-cognitive training. Participants received 60-min individualized training sessions, 3 times a week for 4 weeks. Prior to and following the training program, participants were asked to walk under two single-task conditions (i.e. narrow walking and obstacle crossing) and two dual-task conditions (i.e. a trained narrow walking while performing verbal fluency task and an untrained obstacle crossing while counting backward by 3s task). A nine-camera motion capture system was used to collect the trajectories of 32 reflective markers placed on bony landmarks of participants. Three-dimensional kinematics of the whole body center of mass and base of support were computed. Results from the extrapolated center of mass displacement indicated that motor-cognitive training was more effective than the single-task motor training to improve dual-task balance performance (p=0.04, ES=0.11). Interestingly, balance performance under both single-task and dual-task conditions can also be improved through a non-motor, single-task cognitive training program (p=0.01, ES=0.13, and p=0.01, ES=0.11, respectively). However, improved dual-task processing skills during training were not transferred to the novel dual task (p=0.15, ES=0.09). This is the first study demonstrating that home-based dual-task training can be effectively implemented to improve balance performance during gait in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of virtual reality on cognition in stroke patients.

    PubMed

    Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young

    2011-08-01

    To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients.

  1. The synergistic effect of acupuncture and computer-based cognitive training on post-stroke cognitive dysfunction: a study protocol for a randomized controlled trial of 2 × 2 factorial design.

    PubMed

    Yang, Shanli; Ye, Haicheng; Huang, Jia; Tao, Jing; Jiang, Cai; Lin, Zhicheng; Zheng, Guohua; Chen, Lidian

    2014-08-07

    Stroke is one of the most common causes of cognitive impairment. Up to 75% of stroke survivors may be considered to have cognitive impairment, which severely limit individual autonomy for successful reintegration into family, work and social life. The clinical efficacy of acupuncture with Baihui (DU20) and Shenting (DU24) in stroke and post-stroke cognitive impairment has been previously demonstrated. Computer-assisted cognitive training is part of conventional cognitive rehabilitation and has also shown to be effective in improvement of cognitive function of affected patients. However, the cognitive impairment after stroke is so complexity that one single treatment cannot resolve effectively. Besides, the effects of acupuncture and RehaCom cognitive training have not been systematically compared, nor has the possibility of a synergistic effect of combination of the two therapeutic modalities been evaluated. Our primary aim of this trial is to evaluate the synergistic effect of acupuncture and RehaCom cognitive training on cognitive dysfunction after stroke. A randomized controlled trial of 2 × 2 factorial design will be conducted in the Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine. A total of 240 patients with cognitive dysfunction after stroke who meet the eligibility criteria will be recruited and randomized into RehaCom training group, acupuncture group, a combination of both or control group in a 1:1:1:1 ratio. All patients will receive conventional treatment. The interventions will last for 12 weeks (30 min per day, Monday to Friday every week). Evaluations will be conducted by blinded assessors at baseline and again at 4, 8 and 12 weeks. Outcome measurements include mini-mental state examination (MMSE), Montreal cognitive assessments (MoCA), functional independence measure scale (FIM) and adverse events. The results of this trial are expected to clarify the synergistic effect of acupuncture and RehaCom cognitive training on cognitive dysfunction after stroke. Furthermore, to confirm whether combined or alone of acupuncture and RehaCom cognitive training, is more effective than conventional treatment in the management of post-stroke cognitive dysfunction. Chinese Clinical Trial Registry: ChiCTR-TRC-13003704.

  2. Cognitive Skills Training for Homeless Transition-Age Youth: Feasibility and Pilot Efficacy of a Community Based Randomized Controlled Trial.

    PubMed

    Medalia, Alice; Saperstein, Alice M; Huang, Yanlan; Lee, Seonjoo; Ronan, Elizabeth J

    2017-11-01

    Cognitive impairments are common in homeless youth and negatively impact academic and vocational outcomes. We examined the feasibility and efficacy of cognitive interventions provided to 18- to 22-year-old homeless youth living in urban supportive housing. Ninety-one homeless youth were randomized to receive either targeted cognitive training (cognitive remediation) or general cognitive activation (computer skills training). Cognitive and psychological outcomes were assessed at baseline, after 13 and 26 sessions, and 1 month postintervention. A high dropout rate highlighted the feasibility challenges of treating this population. Intent-to-treat analysis found significant improvements across groups in specific and global measures of cognition and psychological distress, with no significant group differences. Transition-age homeless youth show improvements in cognitive and psychological functioning when engaged in interventions that address their cognitive development. This speaks to the malleability of cognitive skills in this cohort and lays the groundwork for future research to address their cognitive health.

  3. Cognitive computer training in children with attention deficit hyperactivity disorder (ADHD) versus no intervention: study protocol for a randomized controlled trial.

    PubMed

    Bikic, Aida; Leckman, James F; Lindschou, Jane; Christensen, Torben Ø; Dalsgaard, Søren

    2015-10-24

    Attention Deficit Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder characterized by symptoms of inattention and impulsivity and/or hyperactivity and a range of cognitive dysfunctions. Pharmacological treatment may be beneficial; however, many affected individuals continue to have difficulties with cognitive functions despite medical treatment, and up to 30 % do not respond to pharmacological treatment. Inadequate medical compliance and the long-term effects of treatment make it necessary to explore nonpharmacological and supplementary treatments for ADHD. Treatment of cognitive dysfunctions may prove particularly important because of the impact of these dysfunctions on the ability to cope with everyday life. Lately, several trials have shown promising results for cognitive computer training, often referred to as cognitive training, which focuses on particular parts of cognition, mostly on the working memory or attention but with poor generalization of training on other cognitive functions and functional outcome. Children with ADHD have a variety of cognitive dysfunctions, and it is important that cognitive training target multiple cognitive functions. This multicenter randomized clinical superiority trial aims to investigate the effect of "ACTIVATE™," a computer program designed to improve a range of cognitive skills and ADHD symptoms. A total of 122 children with ADHD, aged 6 to 13 years, will be randomized to an intervention or a control group. The intervention group will be asked to use ACTIVATE™ at home 40 minutes per day, 6 days per week for 8 weeks. Both intervention and control group will receive treatment as usual. Outcome measures will assess cognitive functions, symptoms, and behavioral and functional measures before and after the 8 weeks of training and in a 12- and 24-week follow-up. Results of this trial will provide useful information on the effectiveness of computer training focusing on several cognitive functions. Cognitive training has the potential to reduce cognitive dysfunctions and to become a new treatment option, which can promote a more normal neural development in young children with ADHD and thus reduce cognitive dysfunctions and symptoms. This could help children with ADHD to perform better in everyday life and school. ClinicalTrials.gov: NCT01752530 , date of registration: 10 December 2012.

  4. Imagining a brighter future: the effect of positive imagery training on mood, prospective mental imagery and emotional bias in older adults.

    PubMed

    Murphy, Susannah E; Clare O'Donoghue, M; Drazich, Erin H S; Blackwell, Simon E; Christina Nobre, Anna; Holmes, Emily A

    2015-11-30

    Positive affect and optimism play an important role in healthy ageing and are associated with improved physical and cognitive health outcomes. This study investigated whether it is possible to boost positive affect and associated positive biases in this age group using cognitive training. The effect of computerised imagery-based cognitive bias modification on positive affect, vividness of positive prospective imagery and interpretation biases in older adults was measured. 77 older adults received 4 weeks (12 sessions) of imagery cognitive bias modification or a control condition. They were assessed at baseline, post-training and at a one-month follow-up. Both groups reported decreased negative affect and trait anxiety, and increased optimism across the three assessments. Imagery cognitive bias modification significantly increased the vividness of positive prospective imagery post-training, compared with the control training. Contrary to our hypothesis, there was no difference between the training groups in negative interpretation bias. This is a useful demonstration that it is possible to successfully engage older adults in computer-based cognitive training and to enhance the vividness of positive imagery about the future in this group. Future studies are needed to assess the longer-term consequences of such training and the impact on affect and wellbeing in more vulnerable groups. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Parametric Cognitive Modeling of Information and Computer Technology Usage by People with Aging- and Disability-Derived Functional Impairments

    PubMed Central

    García-Betances, Rebeca I.; Cabrera-Umpiérrez, María Fernanda; Ottaviano, Manuel; Pastorino, Matteo; Arredondo, María T.

    2016-01-01

    Despite the speedy evolution of Information and Computer Technology (ICT), and the growing recognition of the importance of the concept of universal design in all domains of daily living, mainstream ICT-based product designers and developers still work without any truly structured tools, guidance or support to effectively adapt their products and services to users’ real needs. This paper presents the approach used to define and evaluate parametric cognitive models that describe interaction and usage of ICT by people with aging- and disability-derived functional impairments. A multisensorial training platform was used to train, based on real user measurements in real conditions, the virtual parameterized user models that act as subjects of the test-bed during all stages of simulated disabilities-friendly ICT-based products design. An analytical study was carried out to identify the relevant cognitive functions involved, together with their corresponding parameters as related to aging- and disability-derived functional impairments. Evaluation of the final cognitive virtual user models in a real application has confirmed that the use of these models produce concrete valuable benefits to the design and testing process of accessible ICT-based applications and services. Parameterization of cognitive virtual user models allows incorporating cognitive and perceptual aspects during the design process. PMID:26907296

  6. Effects of acupuncture and computer-assisted cognitive training for post-stroke attention deficits: study protocol for a randomized controlled trial.

    PubMed

    Huang, Jia; McCaskey, Michael A; Yang, Shanli; Ye, Haicheng; Tao, Jing; Jiang, Cai; Schuster-Amft, Corina; Balzer, Christian; Ettlin, Thierry; Schupp, Wilfried; Kulke, Hartwig; Chen, Lidian

    2015-12-02

    A majority of stroke survivors present with cognitive impairments. Attention disturbance, which leads to impaired concentration and overall reduced cognitive functions, is strongly associated with stroke. The clinical efficacy of acupuncture with Baihui (GV20) and Shenting (GV24) as well as computer-assisted cognitive training in stroke and post-stroke cognitive impairment have both been demonstrated in previous studies. To date, no systematic comparison of these exists and the potential beneficial effects of a combined application are yet to be examined. The main objective of this pilot study is to evaluate the effects of computer-assisted cognitive training compared to acupuncture on the outcomes of attention assessments. The second objective is to test the effects of a combined cognitive intervention that incorporates computer-assisted cognitive training and acupuncture (ACoTrain). An international multicentre, single-blinded, randomised controlled pilot trial will be conducted. In a 1:1:1 ratio, 60 inpatients with post-stroke cognitive dysfunction will be randomly allocated into either the acupuncture group, the computer-assisted cognitive training group, or the ACoTrain group in addition to their individual rehabilitation programme. The intervention period of this pilot trial will last 4 weeks (30 minutes per day, 5 days per week, Monday to Friday). The primary outcome is the test battery for attentional performance. The secondary outcomes include the Trail Making Test, Test des Deux Barrages, National Institute of Health Stroke Scale, and Modified Barthel Index for assessment of daily life competence, and the EuroQol Questionnaire for health-related quality of life. This trial mainly focuses on evaluating the effects of computer-assisted cognitive training compared to acupuncture on the outcomes of attention assessments. The results of this pilot trial are expected to provide new insights on how Eastern and Western medicine can complement one another and improve the treatment of cognitive impairments in early stroke rehabilitation. Including patients with different cultural backgrounds allows a more generalisable interpretation of the results but also poses risks of performance bias. Using standardised and well-described assessments, validated for each region, is pivotal to allow pooling of the data. Clinical Trails.gov ID: NCT02324959 (8 December 2014).

  7. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM).

    PubMed

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J; Gunter, Jeffrey L; Carmona, Susanna; Jaeggi, Susanne M; Thompson, Paul M

    2016-10-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Reward-based training of recurrent neural networks for cognitive and value-based tasks

    PubMed Central

    Song, H Francis; Yang, Guangyu R; Wang, Xiao-Jing

    2017-01-01

    Trained neural network models, which exhibit features of neural activity recorded from behaving animals, may provide insights into the circuit mechanisms of cognitive functions through systematic analysis of network activity and connectivity. However, in contrast to the graded error signals commonly used to train networks through supervised learning, animals learn from reward feedback on definite actions through reinforcement learning. Reward maximization is particularly relevant when optimal behavior depends on an animal’s internal judgment of confidence or subjective preferences. Here, we implement reward-based training of recurrent neural networks in which a value network guides learning by using the activity of the decision network to predict future reward. We show that such models capture behavioral and electrophysiological findings from well-known experimental paradigms. Our work provides a unified framework for investigating diverse cognitive and value-based computations, and predicts a role for value representation that is essential for learning, but not executing, a task. DOI: http://dx.doi.org/10.7554/eLife.21492.001 PMID:28084991

  9. Predictors of performance improvements within a cognitive remediation program for schizophrenia.

    PubMed

    Scheu, Florian; Aghotor, Julia; Pfueller, Ute; Moritz, Steffen; Bohn, Francesca; Weisbrod, Matthias; Roesch-Ely, Daniela

    2013-10-30

    Cognitive impairment is regarded a core feature of schizophrenia and is associated with low psychosocial functioning. There is rich evidence that cognitive remediation can improve cognitive functions in patients with schizophrenia. However, little is known about what predicts individual remediation success. Some studies suggest that baseline cognitive impairment might be a limiting factor for training response. Aim of the current study was to further examine the role of cognitive and symptom variables as predictors of remediation success. We studied a total sample of 32 patients with schizophrenia and schizoaffective disorder who were engaged in a computer-based cognitive training program (CogPack). A pre-training test battery provided cognitive measures of selective attention, executive functioning, processing speed, verbal memory, and verbal intelligence along with measures for positive and negative symptoms. Training response was defined as improvement on training tasks. Correlation analyses revealed no significant relationship between any of the baseline cognitive or symptom measures and improvement rates. However, better baseline cognition was associated with a higher percentage of tasks with initial ceiling effects. We conclude that not carefully tailoring task difficulty to patients' cognitive abilities constitutes a much more severe threat to cognitive remediation success than cognitive impairment itself. © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Development and Evaluation of a Cognitive Training Game for Older People: A Design-based Approach.

    PubMed

    Lu, Ming-Hsin; Lin, Weijane; Yueh, Hsiu-Ping

    2017-01-01

    In the research field of cognitive aging, games have gained attention as training interventions to remediate age-related deficits. Cognitive training games on computer, video and mobile platforms have shown ample and positive support. However, the generalized effects are not agreed upon unanimously, and the game tasks are usually simple and decontextualized due to the limitations of measurements. This study adopted a qualitative approach of design-based research (DBR) to systematically review and pragmatically examine the regime, presentation and feedback design of a cognitive training game for older adults. An overview of the literature of cognitive aging and training games was conducted to form the theoretical conjectures of the design, and an iterative cycle and process were employed to develop a mobile game for older adults who are homebound or receiving care in a nursing home. Stakeholders, i.e., elderly users and institutional administrators, were invited to participate in the design process. Using two cycles of design and evaluation, a working prototype of an iPad-based app that accounted for the needs of elderly adults in terms of form, appearance and working function was developed and tested in the actual contexts of the participants' homes and an assisted living facility. The results showed that the cognitive training game developed in this study was accepted by the participants, and a high degree of satisfaction was noted. Moreover, the elements of the interface, including its size, layout and control flow, were tested and found to be suitable for use. This study contributes to the literature by providing design suggestions for such games, including the designs of the cognitive training structure, interface, interaction, instructions and feedback, based on empirical evidence collected in natural settings. This study further suggests that the effectiveness of cognitive training in mobile games be evaluated through field and physical testing on a larger scale in the future.

  11. Development and Evaluation of a Cognitive Training Game for Older People: A Design-based Approach

    PubMed Central

    Lu, Ming-Hsin; Lin, Weijane; Yueh, Hsiu-Ping

    2017-01-01

    In the research field of cognitive aging, games have gained attention as training interventions to remediate age-related deficits. Cognitive training games on computer, video and mobile platforms have shown ample and positive support. However, the generalized effects are not agreed upon unanimously, and the game tasks are usually simple and decontextualized due to the limitations of measurements. This study adopted a qualitative approach of design-based research (DBR) to systematically review and pragmatically examine the regime, presentation and feedback design of a cognitive training game for older adults. An overview of the literature of cognitive aging and training games was conducted to form the theoretical conjectures of the design, and an iterative cycle and process were employed to develop a mobile game for older adults who are homebound or receiving care in a nursing home. Stakeholders, i.e., elderly users and institutional administrators, were invited to participate in the design process. Using two cycles of design and evaluation, a working prototype of an iPad-based app that accounted for the needs of elderly adults in terms of form, appearance and working function was developed and tested in the actual contexts of the participants' homes and an assisted living facility. The results showed that the cognitive training game developed in this study was accepted by the participants, and a high degree of satisfaction was noted. Moreover, the elements of the interface, including its size, layout and control flow, were tested and found to be suitable for use. This study contributes to the literature by providing design suggestions for such games, including the designs of the cognitive training structure, interface, interaction, instructions and feedback, based on empirical evidence collected in natural settings. This study further suggests that the effectiveness of cognitive training in mobile games be evaluated through field and physical testing on a larger scale in the future. PMID:29089914

  12. The cognitive cost of anticholinergic burden: decreased response to cognitive training in schizophrenia.

    PubMed

    Vinogradov, Sophia; Fisher, Melissa; Warm, Heather; Holland, Christine; Kirshner, Margaret A; Pollock, Bruce G

    2009-09-01

    Schizophrenia is treated with medications that raise serum anticholinergic activity and are known to adversely affect cognition. The authors examined the relationship between serum anticholinergic activity and baseline cognitive performance and response to computerized cognitive training in outpatients with schizophrenia. Fifty-five patients were randomly assigned to either computerized cognitive training or a computer games control condition. A neurocognitive battery based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative was performed at baseline and after the intervention. Serum anticholinergic activity, measured at study entry by radioreceptor assay, was available for 49 patients. Serum anticholinergic activity showed a significant negative correlation with baseline performance in verbal working memory and verbal learning and memory, accounting for 7% of the variance in these measures, independent of age, IQ, or symptom severity. Patients in the cognitive training condition (N=25) showed a significant gain in global cognition compared to those in the control condition, but this improvement was negatively correlated with anticholinergic burden. Serum anticholinergic activity uniquely accounted for 20% of the variance in global cognition change, independent of age, IQ, or symptom severity. Serum anticholinergic activity in schizophrenia patients shows a significant association with impaired performance in MATRICS-based measures of verbal working memory and verbal learning and memory and is significantly associated with a lowered response to an intensive course of computerized cognitive training. These findings underscore the cognitive cost of medications that carry a high anticholinergic burden. The findings also have implications for the design and evaluation of cognitive treatments for schizophrenia.

  13. Neural activity during emotion recognition after combined cognitive plus social cognitive training in schizophrenia.

    PubMed

    Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; Vinogradov, Sophia

    2012-08-01

    Cognitive remediation training has been shown to improve both cognitive and social cognitive deficits in people with schizophrenia, but the mechanisms that support this behavioral improvement are largely unknown. One hypothesis is that intensive behavioral training in cognition and/or social cognition restores the underlying neural mechanisms that support targeted skills. However, there is little research on the neural effects of cognitive remediation training. This study investigated whether a 50 h (10-week) remediation intervention which included both cognitive and social cognitive training would influence neural function in regions that support social cognition. Twenty-two stable, outpatient schizophrenia participants were randomized to a treatment condition consisting of auditory-based cognitive training (AT) [Brain Fitness Program/auditory module ~60 min/day] plus social cognition training (SCT) which was focused on emotion recognition [~5-15 min per day] or a placebo condition of non-specific computer games (CG) for an equal amount of time. Pre and post intervention assessments included an fMRI task of positive and negative facial emotion recognition, and standard behavioral assessments of cognition, emotion processing, and functional outcome. There were no significant intervention-related improvements in general cognition or functional outcome. fMRI results showed the predicted group-by-time interaction. Specifically, in comparison to CG, AT+SCT participants had a greater pre-to-post intervention increase in postcentral gyrus activity during emotion recognition of both positive and negative emotions. Furthermore, among all participants, the increase in postcentral gyrus activity predicted behavioral improvement on a standardized test of emotion processing (MSCEIT: Perceiving Emotions). Results indicate that combined cognition and social cognition training impacts neural mechanisms that support social cognition skills. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Neural activity during emotion recognition after combined cognitive plus social-cognitive training in schizophrenia

    PubMed Central

    Hooker, Christine I.; Bruce, Lori; Fisher, Melissa; Verosky, Sara C.; Miyakawa, Asako; Vinogradov, Sophia

    2012-01-01

    Cognitive remediation training has been shown to improve both cognitive and social-cognitive deficits in people with schizophrenia, but the mechanisms that support this behavioral improvement are largely unknown. One hypothesis is that intensive behavioral training in cognition and/or social-cognition restores the underlying neural mechanisms that support targeted skills. However, there is little research on the neural effects of cognitive remediation training. This study investigated whether a 50 hour (10-week) remediation intervention which included both cognitive and social-cognitive training would influence neural function in regions that support social-cognition. Twenty-two stable, outpatient schizophrenia participants were randomized to a treatment condition consisting of auditory-based cognitive training (AT) [Brain Fitness Program/auditory module ~60 minutes/day] plus social-cognition training (SCT) which was focused on emotion recognition [~5–15 minutes per day] or a placebo condition of non-specific computer games (CG) for an equal amount of time. Pre and post intervention assessments included an fMRI task of positive and negative facial emotion recognition, and standard behavioral assessments of cognition, emotion processing, and functional outcome. There were no significant intervention-related improvements in general cognition or functional outcome. FMRI results showed the predicted group-by-time interaction. Specifically, in comparison to CG, AT+SCT participants had a greater pre-to-post intervention increase in postcentral gyrus activity during emotion recognition of both positive and negative emotions. Furthermore, among all participants, the increase in postcentral gyrus activity predicted behavioral improvement on a standardized test of emotion processing (MSCEIT: Perceiving Emotions). Results indicate that combined cognition and social-cognition training impacts neural mechanisms that support social-cognition skills. PMID:22695257

  15. Effect of Virtual Reality on Cognition in Stroke Patients

    PubMed Central

    Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young

    2011-01-01

    Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159

  16. A randomized trial to measure the impact of a community-based cognitive training intervention on balance and gait in cognitively intact Black older adults.

    PubMed

    Smith-Ray, Renae L; Makowski-Woidan, Beth; Hughes, Susan L

    2014-10-01

    Fall prevention is important for maintaining mobility and independence into old age. Approaches for reducing falls include exercise, tai chi, and home modifications; however, causes of falling are multifactorial and include not just physical but cognitive factors. Cognitive decline occurs with age, but older adults with the greatest declines in executive function experience more falls. The purpose of this study was twofold: to demonstrate the feasibility of a community-based cognitive training program for cognitively intact Black older adults and to analyze its impact on gait and balance in this population. This pilot study used a pretest/posttest randomized trial design with assignment to an intervention or control group. Participants assigned to the intervention completed a computer-based cognitive training class that met 2 days a week for 60 min over 10 weeks. Classes were held at senior/community centers. Primary outcomes included balance as measured by the Berg Balance Scale (BBS), 10-meter gait speed, and 10-meter gait speed under visuospatial dual-task condition. All measures were assessed at baseline and immediately post-intervention. Participants were community-dwelling Black adults with a mean age of 72.5 and history of falls (N = 45). Compared to controls, intervention participants experienced statistically significant improvements in BBS and gait speed. Mean performance on distracted gait speed also improved more for intervention participants compared to controls. Findings from this pilot randomized trial demonstrate the feasibility of a community-based cognitive training intervention. They provide initial evidence that cognitive training may be an efficacious approach toward improving balance and gait in older adults known to have a history of falls. © 2014 Society for Public Health Education.

  17. How is the United States Naval Academy Developing and Preparing Surface Warfare Officers: A Needs Analysis of the SWO Leadership Capstone Course

    DTIC Science & Technology

    2007-06-01

    the ship. These cognitive needs can be thought of as what would be taught at the five-month SWOSDOC, the DOSP computer -based training modules, at a...137 a. Can NL401 Provide both Closure and Further Exploration? ...................138 b. Can Both be Accomplished in the Time Allotted...Warfare Officer Community, has no follow-on school; SWO Ensigns are trained by coupling the Division Officer at Sea Program (DOSP) computer based

  18. Protocol for a randomized controlled trial of piano training on cognitive and psychosocial outcomes.

    PubMed

    Bugos, Jennifer

    2018-05-09

    Age-related cognitive decline and cognitive impairment represent the fastest growing health epidemic worldwide among those over 60. There is a critical need to identify effective and novel complex cognitive interventions to promote successful aging. Since piano training engages cognitive and bimanual sensorimotor processing, we hypothesize that piano training may serve as an effective cognitive intervention, as it requires sustained attention and engages an executive network that supports generalized cognition and emotional control. Here, I describe the protocol of a randomized controlled trial (RCT) to evaluate the impact of piano training on cognitive performance in adulthood, a period associated with decreased neuroplasticity. In this cluster RCT, healthy older adults (age 60-80) were recruited and screened to control for confounding variables. Eligible participants completed an initial 3-h assessment of standardized cognitive and psychosocial measures. Participants were stratified by age, education, and estimate of intelligence and randomly assigned to one of three groups: piano training, computer brain training, or a no-treatment control group. Computer brain training consisted of progressively difficult auditory cognitive exercises (Brain HQ; Posit Science, 2010). Participants assigned to training groups completed a 16-week program that met twice a week for 90 minutes. Upon program completion and at a 3-month follow-up, training participants and no-treatment controls completed a posttest visit lasting 2.5 hours. © 2018 New York Academy of Sciences.

  19. Executive Function Training in Children with SLI: A Pilot Study

    ERIC Educational Resources Information Center

    Vugs, Brigitte; Knoors, Harry; Cuperus, Juliane; Hendriks, Marc; Verhoeven, Ludo

    2017-01-01

    The aim of this study was to evaluate the effectiveness of a computer-based executive function (EF) training in children with specific language impairment (SLI). Ten children with SLI, ages 8 to 12 years, completed a 25-session training of visuospatial working memory, inhibition and cognitive flexibility over a 6-week period. Treatment outcome was…

  20. Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition

    PubMed Central

    Käser, Tanja; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; Richtmann, Verena; Grond, Ursina; Gross, Markus; von Aster, Michael

    2013-01-01

    This article presents the design and a first pilot evaluation of the computer-based training program Calcularis for children with developmental dyscalculia (DD) or difficulties in learning mathematics. The program has been designed according to insights on the typical and atypical development of mathematical abilities. The learning process is supported through multimodal cues, which encode different properties of numbers. To offer optimal learning conditions, a user model completes the program and allows flexible adaptation to a child's individual learning and knowledge profile. Thirty-two children with difficulties in learning mathematics completed the 6–12-weeks computer training. The children played the game for 20 min per day for 5 days a week. The training effects were evaluated using neuropsychological tests. Generally, children benefited significantly from the training regarding number representation and arithmetic operations. Furthermore, children liked to play with the program and reported that the training improved their mathematical abilities. PMID:23935586

  1. Cognitive context detection in UAS operators using eye-gaze patterns on computer screens

    NASA Astrophysics Data System (ADS)

    Mannaru, Pujitha; Balasingam, Balakumar; Pattipati, Krishna; Sibley, Ciara; Coyne, Joseph

    2016-05-01

    In this paper, we demonstrate the use of eye-gaze metrics of unmanned aerial systems (UAS) operators as effective indices of their cognitive workload. Our analyses are based on an experiment where twenty participants performed pre-scripted UAS missions of three different difficulty levels by interacting with two custom designed graphical user interfaces (GUIs) that are displayed side by side. First, we compute several eye-gaze metrics, traditional eye movement metrics as well as newly proposed ones, and analyze their effectiveness as cognitive classifiers. Most of the eye-gaze metrics are computed by dividing the computer screen into "cells". Then, we perform several analyses in order to select metrics for effective cognitive context classification related to our specific application; the objective of these analyses are to (i) identify appropriate ways to divide the screen into cells; (ii) select appropriate metrics for training and classification of cognitive features; and (iii) identify a suitable classification method.

  2. Cognitive training with casual video games: points to consider

    PubMed Central

    Baniqued, Pauline L.; Kranz, Michael B.; Voss, Michelle W.; Lee, Hyunkyu; Cosman, Joshua D.; Severson, Joan; Kramer, Arthur F.

    2014-01-01

    Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory–reasoning group, an adaptive working memory–reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory–reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games. PMID:24432009

  3. Cognitive training with casual video games: points to consider.

    PubMed

    Baniqued, Pauline L; Kranz, Michael B; Voss, Michelle W; Lee, Hyunkyu; Cosman, Joshua D; Severson, Joan; Kramer, Arthur F

    2014-01-07

    Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory-reasoning group, an adaptive working memory-reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory-reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games.

  4. Training-induced improvement of response selection and error detection in aging assessed by task switching: effects of cognitive, physical, and relaxation training.

    PubMed

    Gajewski, Patrick D; Falkenstein, Michael

    2012-01-01

    Cognitive control functions decline with increasing age. The present study examines if different types of group-based and trainer-guided training effectively enhance performance of older adults in a task switching task, and how this expected enhancement is reflected in changes of cognitive functions, as measured in electrophysiological brain activity (event-related potentials). One hundred forty-one healthy participants aged 65 years and older were randomly assigned to one of four groups: physical training (combined aerobic and strength training), cognitive training (paper-pencil and computer-aided), relaxation and wellness (social control group), and a control group that did not receive any intervention. Training sessions took place twice a week for 90 min for a period of 4 months. The results showed a greater improvement of performance for attendants of the cognitive training group compared to the other groups. This improvement was evident in a reduction of mixing costs in accuracy and intraindividual variability of speed, indexing improved maintenance of multiple task sets in working memory, and an enhanced coherence of neuronal processing. These findings were supported by event-related brain potentials which showed higher amplitudes in a number of potentials associated with response selection (N2), allocation of cognitive resources (P3b), and error detection (Ne). Taken together, our findings suggest neurocognitive plasticity of aging brains which can be stimulated by broad and multilayered cognitive training and assessed in detail by electrophysiological methods.

  5. Training-Induced Improvement of Response Selection and Error Detection in Aging Assessed by Task Switching: Effects of Cognitive, Physical, and Relaxation Training

    PubMed Central

    Gajewski, Patrick D.; Falkenstein, Michael

    2012-01-01

    Cognitive control functions decline with increasing age. The present study examines if different types of group-based and trainer-guided training effectively enhance performance of older adults in a task switching task, and how this expected enhancement is reflected in changes of cognitive functions, as measured in electrophysiological brain activity (event-related potentials). One hundred forty-one healthy participants aged 65 years and older were randomly assigned to one of four groups: physical training (combined aerobic and strength training), cognitive training (paper–pencil and computer-aided), relaxation and wellness (social control group), and a control group that did not receive any intervention. Training sessions took place twice a week for 90 min for a period of 4 months. The results showed a greater improvement of performance for attendants of the cognitive training group compared to the other groups. This improvement was evident in a reduction of mixing costs in accuracy and intraindividual variability of speed, indexing improved maintenance of multiple task sets in working memory, and an enhanced coherence of neuronal processing. These findings were supported by event-related brain potentials which showed higher amplitudes in a number of potentials associated with response selection (N2), allocation of cognitive resources (P3b), and error detection (Ne). Taken together, our findings suggest neurocognitive plasticity of aging brains which can be stimulated by broad and multilayered cognitive training and assessed in detail by electrophysiological methods. PMID:22593740

  6. A pilot randomized controlled trial using EEG-based brain-computer interface training for a Chinese-speaking group of healthy elderly.

    PubMed

    Lee, Tih-Shih; Quek, Shin Yi; Goh, Siau Juinn Alexa; Phillips, Rachel; Guan, Cuntai; Cheung, Yin Bun; Feng, Lei; Wang, Chuan Chu; Chin, Zheng Yang; Zhang, Haihong; Lee, Jimmy; Ng, Tze Pin; Krishnan, K Ranga Rama

    2015-01-01

    There is growing evidence that cognitive training (CT) can improve the cognitive functioning of the elderly. CT may be influenced by cultural and linguistic factors, but research examining CT programs has mostly been conducted on Western populations. We have developed an innovative electroencephalography (EEG)-based brain-computer interface (BCI) CT program that has shown preliminary efficacy in improving cognition in 32 healthy English-speaking elderly adults in Singapore. In this second pilot trial, we examine the acceptability, safety, and preliminary efficacy of our BCI CT program in healthy Chinese-speaking Singaporean elderly. Thirty-nine elderly participants were randomized into intervention (n=21) and wait-list control (n=18) arms. Intervention consisted of 24 half-hour sessions with our BCI-based CT training system to be completed in 8 weeks; the control arm received the same intervention after an initial 8-week waiting period. At the end of the training, a usability and acceptability questionnaire was administered. Efficacy was measured using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), which was translated and culturally adapted for the Chinese-speaking local population. Users were asked about any adverse events experienced after each session as a safety measure. The training was deemed easily usable and acceptable by senior users. The median difference in the change scores pre- and post-training of the modified RBANS total score was 8.0 (95% confidence interval [CI]: 0.0-16.0, P=0.042) higher in the intervention arm than waitlist control, while the mean difference was 9.0 (95% CI: 1.7-16.2, P=0.017). Ten (30.3%) participants reported a total of 16 adverse events - all of which were graded "mild" except for one graded "moderate". Our BCI training system shows potential in improving cognition in both English- and Chinese-speaking elderly, and deserves further evaluation in a Phase III trial. Overall, participants responded positively on the usability and acceptability questionnaire.

  7. Cognitive and neural plasticity in older adults’ prospective memory following training with the Virtual Week computer game

    PubMed Central

    Rose, Nathan S.; Rendell, Peter G.; Hering, Alexandra; Kliegel, Matthias; Bidelman, Gavin M.; Craik, Fergus I. M.

    2015-01-01

    Prospective memory (PM) – the ability to remember and successfully execute our intentions and planned activities – is critical for functional independence and declines with age, yet few studies have attempted to train PM in older adults. We developed a PM training program using the Virtual Week computer game. Trained participants played the game in 12, 1-h sessions over 1 month. Measures of neuropsychological functions, lab-based PM, event-related potentials (ERPs) during performance on a lab-based PM task, instrumental activities of daily living, and real-world PM were assessed before and after training. Performance was compared to both no-contact and active (music training) control groups. PM on the Virtual Week game dramatically improved following training relative to controls, suggesting PM plasticity is preserved in older adults. Relative to control participants, training did not produce reliable transfer to laboratory-based tasks, but was associated with a reduction of an ERP component (sustained negativity over occipito-parietal cortex) associated with processing PM cues, indicative of more automatic PM retrieval. Most importantly, training produced far transfer to real-world outcomes including improvements in performance on real-world PM and activities of daily living. Real-world gains were not observed in either control group. Our findings demonstrate that short-term training with the Virtual Week game produces cognitive and neural plasticity that may result in real-world benefits to supporting functional independence in older adulthood. PMID:26578936

  8. Novel technology for treating individuals with aphasia and concomitant cognitive deficits.

    PubMed

    Cherney, Leora R; Halper, Anita S

    2008-01-01

    This article describes three individuals with aphasia and concomitant cognitive deficits who used state-of-theart computer software for training conversational scripts. Participants were assessed before and after 9 weeks of a computer script training program. For each participant, three individualized scripts were developed, recorded on the software, and practiced sequentially at home. Weekly meetings with the speech-language pathologist occurred to monitor practice and assess progress. Baseline and posttreatment scripts were audiotaped, transcribed, and compared to the target scripts for content, grammatical productivity, and rate of production of script-related words. Interviews were conducted at the conclusion of treatment. There was great variability in improvements across scripts, with two participants improving on two of their three scripts in measures of content, grammatical productivity, and rate of production of scriptrelated words. One participant gained more than 5 points on the Aphasia Quotient of the Western Aphasia Battery. Five positive themes were consistently identified from exit interviews: increased verbal communication, improvements in other modalities and situations, communication changes noticed by others, increased confidence, and satisfaction with the software. Computer-based script training potentially may be an effective intervention for persons with chronic aphasia and concomitant cognitive deficits.

  9. Novel Technology for Treating Individuals with Aphasia and Concomitant Cognitive Deficits

    PubMed Central

    Cherney, Leora R.; Halper, Anita S.

    2009-01-01

    Purpose This article describes three individuals with aphasia and concomitant cognitive deficits who used state-of-the-art computer software for training conversational scripts. Method Participants were assessed before and after 9 weeks of a computer script training program. For each participant, three individualized scripts were developed, recorded on the software, and practiced sequentially at home. Weekly meetings with the speech-language pathologist occurred to monitor practice and assess progress. Baseline and posttreatment scripts were audiotaped, transcribed, and compared to the target scripts for content, grammatical productivity, and rate of production of script-related words. Interviews were conducted at the conclusion of treatment. Results There was great variability in improvements across scripts, with two participants improving on two of their three scripts in measures of content, grammatical productivity, and rate of production of script-related words. One participant gained more than 5 points on the Aphasia Quotient of the Western Aphasia Battery. Five positive themes were consistently identified from exit interviews: increased verbal communication, improvements in other modalities and situations, communication changes noticed by others, increased confidence, and satisfaction with the software. Conclusion Computer-based script training potentially may be an effective intervention for persons with chronic aphasia and concomitant cognitive deficits. PMID:19158062

  10. The relationship between change in cognition and change in functional ability in schizophrenia during cognitive and psychosocial rehabilitation.

    PubMed

    Rispaud, Samuel G; Rose, Jennifer; Kurtz, Matthew M

    2016-10-30

    While a wealth of studies have evaluated cross-sectional links between cognition and functioning in schizophrenia, few have investigated the relationship between change in cognition and change in functioning in the context of treatment trials targeted at cognition. Identifying cognitive skills that, when improved, predict improvement in functioning will guide the development of more targeted rehabilitation for this population. The present study identifies the relationship between change in specific cognitive skills and change in functional ability during one year of cognitive rehabilitation. Ninety-six individuals with schizophrenia were assessed with a battery of cognitive measures and a measure of performance-based functioning before and after cognitive training consisting of either drill-and-practice cognitive remediation or computer skills training. Results revealed that while working and episodic memory, problem-solving, and processing speed skills all improved during the trial, only improved working memory and processing speed skills predicted improvement in functional ability. Secondary analyses revealed these relationships were driven by individuals who showed a moderate level (SD≥0.5) of cognitive improvement during the trial. These findings suggest that while a variety of cognitive skills may improve during training targeted at cognition, only improvements in a subset of cognitive functions may translate into functional gains. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Human factors in the Naval Air Systems Command: Computer based training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seamster, T.L.; Snyder, C.E.; Terranova, M.

    1988-01-01

    Military standards applied to the private sector contracts have a substantial effect on the quality of Computer Based Training (CBT) systems procured for the Naval Air Systems Command. This study evaluated standards regulating the following areas in CBT development and procurement: interactive training systems, cognitive task analysis, and CBT hardware. The objective was to develop some high-level recommendations for evolving standards that will govern the next generation of CBT systems. One of the key recommendations is that there be an integration of the instructional systems development, the human factors engineering, and the software development standards. Recommendations were also made formore » task analysis and CBT hardware standards. (9 refs., 3 figs.)« less

  12. Efficacy of a Multimodal Cognitive Rehabilitation Including Psychomotor and Endurance Training in Parkinson's Disease

    PubMed Central

    Reuter, I.; Mehnert, S.; Sammer, G.; Oechsner, M.; Engelhardt, M.

    2012-01-01

    Mild cognitive impairment, especially executive dysfunction might occur early in the course of Parkinson's disease. Cognitive training is thought to improve cognitive performance. However, transfer of improvements achieved in paper and pencil tests into daily life has been difficult. The aim of the current study was to investigate whether a multimodal cognitive rehabilitation programme including physical exercises might be more successful than cognitive training programmes without motor training. 240 PD-patients were included in the study and randomly allocated to three treatment arms, group A cognitive training, group B cognitive training and transfer training and group C cognitive training, transfer training and psychomotor and endurance training. The primary outcome measure was the ADAS-Cog. The secondary outcome measure was the SCOPA-Cog. Training was conducted for 4 weeks on a rehabilitation unit, followed by 6 months training at home. Caregivers received an education programme. The combination of cognitive training using paper and pencil and the computer, transfer training and physical training seems to have the greatest effect on cognitive function. Thus, patients of group C showed the greatest improvement on the ADAS-Cog and SCOPA-COG and were more likely to continue with the training programme after the study. PMID:23008772

  13. A Novel Virtual Reality-Based Training Protocol for the Enhancement of the "Mental Frame Syncing" in Individuals with Alzheimer's Disease: A Development-of-Concept Trial.

    PubMed

    Serino, Silvia; Pedroli, Elisa; Tuena, Cosimo; De Leo, Gianluca; Stramba-Badiale, Marco; Goulene, Karine; Mariotti, Noemi G; Riva, Giuseppe

    2017-01-01

    A growing body of evidence suggests that people with Alzheimer's Disease (AD) show compromised spatial abilities. In addition, there exists from the earliest stages of AD a specific impairment in "mental frame syncing," which is the ability to synchronize an allocentric viewpoint-independent representation (including object-to-object information) with an egocentric one by computing the bearing of each relevant "object" in the environment in relation to the stored heading in space (i.e., information about our viewpoint contained in the allocentric viewpoint-dependent representation). The main objective of this development-of-concept trial was to evaluate the efficacy of a novel VR-based training protocol focused on the enhancement of the "mental frame syncing" of the different spatial representations in subjects with AD. We recruited 20 individuals with AD who were randomly assigned to either "VR-based training" or "Control Group." Moreover, eight cognitively healthy elderly individuals were recruited to participate in the VR-based training in order to have a different comparison group. Based on a neuropsychological assessment, our results indicated a significant improvement in long-term spatial memory after the VR-based training for patients with AD; this means that transference of improvements from the VR-based training to more general aspects of spatial cognition was observed. Interestingly, there was also a significant effect of VR-based training on executive functioning for cognitively healthy elderly individuals. In sum, VR could be considered as an advanced embodied tool suitable for treating spatial recall impairments.

  14. Baseline Predictors for Success Following Strategy-Based Cognitive Remediation Group Training in Schizophrenia.

    PubMed

    Farreny, Aida; Aguado, Jaume; Corbera, Silvia; Ochoa, Susana; Huerta-Ramos, Elena; Usall, Judith

    2016-08-01

    Our aim was to examine predictive variables associated with the improvement in cognitive, clinical, and functional outcomes after outpatient participation in REPYFLEC strategy-based Cognitive Remediation (CR) group training. In addition, we investigated which factors might be associated with some long-lasting effects at 6 months' follow-up. Predictors of improvement after CR were studied in a sample of 29 outpatients with schizophrenia. Partial correlations were computed between targeted variables and outcomes of response to explore significant associations. Subsequently, we built linear regression models for each outcome variable and predictors of improvement. The improvement in negative symptoms at posttreatment was linked to faster performance in the Trail Making Test B. Disorganization and cognitive symptoms were related to changes in executive function at follow-up. Lower levels of positive symptoms were related to durable improvements in life skills. Levels of symptoms and cognition were associated with improvements following CR, but the pattern of resulting associations was nonspecific.

  15. Exploring the Process of Adult Computer Software Training Using Andragogy, Situated Cognition, and a Minimalist Approach

    ERIC Educational Resources Information Center

    Hurt, Andrew C.

    2007-01-01

    With technology advances, computer software becomes increasingly difficult to learn. Adults often rely on software training to keep abreast of these changes. Instructor-led software training is frequently used to teach adults new software skills; however there is limited research regarding the best practices in adult computer software training.…

  16. Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks.

    PubMed

    Hefron, Ryan; Borghetti, Brett; Schubert Kabban, Christine; Christensen, James; Estepp, Justin

    2018-04-26

    Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance.

  17. Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks

    PubMed Central

    Hefron, Ryan; Borghetti, Brett; Schubert Kabban, Christine; Christensen, James; Estepp, Justin

    2018-01-01

    Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance. PMID:29701668

  18. Automatic Multimodal Cognitive Load Measurement (AMCLM)

    DTIC Science & Technology

    2011-06-01

    Design and procedure A computer-based training application, running on a tablet monitor, was designed for basketball players to learn playing strategies... MRI ) and near-infrared (NIR) neuroimaging, have also been employed to detect changes in cognitive workload (Callicott et al., 1999; He et al., 2007...Physiological characteristics of capacity constraints in working memory as revealed by functional MRI , Cerebral Cortex, vol. 9, pp. 20-26, 1999

  19. Specifications for an Advanced Instructional Design Advisor (AIDA) for Computer-Based Training

    DTIC Science & Technology

    1991-05-01

    student time under instruction o increased student comprehension and learning transfer o establishment of instruction standards o...strategies. 6. The nature of the cognitive task determines the learning objective. 7. Learning is internal; instruction is external. 12 Major...AIDAs and to its instructional products. Halff argued that cognitive structures have a role to play in instructional design. He maintained that learning

  20. Individual Differences and Learning Performance in Computer-based Training

    DTIC Science & Technology

    2011-02-01

    student outcomes, and early job satisfaction and performance . This report is a selected literature review to provide a starting point from which to...job satisfaction and performance . Initial technical training pipelines will be chosen that vary in length, complexity, and instructional methods (e.g...as job satisfaction , evaluation of authority, citizenship behavior, withdrawal cognitions, and job performance (Colquitt, Conlon, Wesson, Porter

  1. Research on Self-Directed Learning to Meet Job Performance Requirements. Final Report.

    ERIC Educational Resources Information Center

    Munro, Allen; Towne, Douglas M.

    Over a two-year period, research was conducted primarily in two areas of cognitive strategies for on-the-job training (OJT). The first area was the development and testing of a computer-based training system to improve selectivity in text processing in order to improve performance during OJT. The second area was the exploration of text-type…

  2. Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.

    ERIC Educational Resources Information Center

    Hamel, Cheryl J.; Ryan-Jones, David L.

    1997-01-01

    Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…

  3. Association between increased serum d-serine and cognitive gains induced by intensive cognitive training in schizophrenia.

    PubMed

    Panizzutti, Rogerio; Fisher, Melissa; Garrett, Coleman; Man, Wai Hong; Sena, Walter; Madeira, Caroline; Vinogradov, Sophia

    2018-04-23

    Neuroscience-guided cognitive training induces significant improvement in cognition in schizophrenia subjects, but the biological mechanisms associated with these changes are unknown. In animals, intensive cognitive activity induces increased brain levels of the NMDA-receptor co-agonist d-serine, a molecular system that plays a role in learning-induced neuroplasticity and that may be hypoactive in schizophrenia. Here, we investigated whether training-induced gains in cognition were associated with increases in serum d-serine in outpatients with schizophrenia. Ninety patients with schizophrenia and 53 healthy controls were assessed on baseline serum d-serine, l-serine, and glycine. Schizophrenia subjects performed neurocognitive tests and were assigned to 50 h of either cognitive training of auditory processing systems (N = 47) or a computer games control condition (N = 43), followed by reassessment of cognition and serum amino acids. At study entry, the mean serum d-serine level was significantly lower in schizophrenia subjects vs. healthy subjects, while the glycine levels were significantly higher. There were no significant changes in these measures at a group level after the intervention. However, in the active training group, increased d-serine was significantly and positively correlated with improvements in global cognition and in Verbal Learning. No such associations were observed in the computer games control subjects, and no such associations were found for glycine. d-Serine may be involved in the neurophysiologic changes induced by cognitive training in schizophrenia. Pharmacologic strategies that target d-serine co-agonism of NMDA-receptor functioning may provide a mechanism for enhancing the behavioral effects of intensive cognitive training. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Challenges and Emerging Concepts in the Development of Adaptive, Computer-based Tutoring Systems for Team Training

    DTIC Science & Technology

    2011-11-01

    based perception of each team member‟s behavior and physiology with the goal of predicting unobserved variables (e.g., cognitive state). Along with...sensing technologies are showing promise as enablers of computer-based perception of each team member‟s behavior and physiology with the goal...an essential element of team performance. The perception that other team members may be unable to perform their tasks is detrimental to trust and

  5. a Cognitive Approach to Teaching a Graduate-Level Geobia Course

    NASA Astrophysics Data System (ADS)

    Bianchetti, Raechel A.

    2016-06-01

    Remote sensing image analysis training occurs both in the classroom and the research lab. Education in the classroom for traditional pixel-based image analysis has been standardized across college curriculums. However, with the increasing interest in Geographic Object-Based Image Analysis (GEOBIA), there is a need to develop classroom instruction for this method of image analysis. While traditional remote sensing courses emphasize the expansion of skills and knowledge related to the use of computer-based analysis, GEOBIA courses should examine the cognitive factors underlying visual interpretation. This current paper provides an initial analysis of the development, implementation, and outcomes of a GEOBIA course that considers not only the computational methods of GEOBIA, but also the cognitive factors of expertise, that such software attempts to replicate. Finally, a reflection on the first instantiation of this course is presented, in addition to plans for development of an open-source repository for course materials.

  6. Evaluation of the Effectiveness of the Storage and Distribution Entry-Level Computer-Based Training (CBT) Program

    DTIC Science & Technology

    1990-09-01

    learning occurs when this final Zink is made into long-term memory (13:79). Cognitive scientists realize the role of the trainee as a passive receiver of...of property on the computer, and when they did, this piece of paperwork printed out on their printer . Someone from the receiving section brought this

  7. Determining the Requisite Components of Visual Threat Detection to Improve Operational Performance

    DTIC Science & Technology

    2014-04-01

    cognitive processes, and may be enhanced by focusing training development on the principle components such as causal reasoning. The second report will...discuss the development and evaluation of a research-based training exemplar. Visual threat detection pervades many military contexts, but is also... developing computer-controlled exercises to study the primary components of visual threat detection. Similarly, civilian law enforcement officers were

  8. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  9. A retrospective outcomes study examining the effect of interactive metronome on hand function.

    PubMed

    Shank, Tracy M; Harron, Wendy

    2015-01-01

    Interactive Metronome (IM, The Interactive Metronome Company, Sunrise, Florida, USA) is a computer-based modality marketed to rehabilitation professionals who want to improve outcomes in areas of coordination, motor skills, self-regulation behaviors, and cognitive skills. This retrospective study examined the efficacy of IM training on improving timing skills, hand function, and parental report of self-regulatory behaviors. Forty eight children with mixed motor and cognitive diagnoses completed an average of 14 one-hour training sessions over an average of 8.5 weeks in an outpatient setting. Each child was assessed before and after training with the Interactive Metronome Long Form Assessment, the Jebsen Taylor Test of Hand Function, and a parent questionnaire. All three measures improved with statistical significance despite participants having no direct skill training. These results suggest an intimate relationship between cognition and motor skills that has potential therapeutic value. Level 4, Retrospective Case Series. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  10. Cognitive task analysis: Techniques applied to airborne weapons training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, M.; Seamster, T.L.; Snyder, C.E.

    1989-01-01

    This is an introduction to cognitive task analysis as it may be used in Naval Air Systems Command (NAVAIR) training development. The focus of a cognitive task analysis is human knowledge, and its methods of analysis are those developed by cognitive psychologists. This paper explains the role that cognitive task analysis and presents the findings from a preliminary cognitive task analysis of airborne weapons operators. Cognitive task analysis is a collection of powerful techniques that are quantitative, computational, and rigorous. The techniques are currently not in wide use in the training community, so examples of this methodology are presented alongmore » with the results. 6 refs., 2 figs., 4 tabs.« less

  11. Using Neuroplasticity-Based Auditory Training to Improve Verbal Memory in Schizophrenia

    PubMed Central

    Fisher, Melissa; Holland, Christine; Merzenich, Michael M.; Vinogradov, Sophia

    2009-01-01

    Objective Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Method Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Results Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Conclusions Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach. PMID:19448187

  12. Dynamism in Electronic Performance Support Systems.

    ERIC Educational Resources Information Center

    Laffey, James

    1995-01-01

    Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…

  13. Efficient Vocational Skills Training for People with Cognitive Disabilities: An Exploratory Study Comparing Computer-Assisted Instruction to One-on-One Tutoring.

    PubMed

    Larson, James R; Juszczak, Andrew; Engel, Kathryn

    2016-03-01

    This study compared the effectiveness of computer-assisted instruction to that of one-on-one tutoring for teaching people with mild and moderate cognitive disabilities when both training methods are designed to take account of the specific mental deficits most commonly found in cognitive disability populations. Fifteen participants (age 22-71) received either computer-assisted instruction or one-on-one tutoring in three content domains that were of functional and daily relevance to them: behavioural limits, rights and responsibilities (two modules) and alphabetical sorting. Learning was assessed by means of a series of pretests and four learning cycle post-tests. Both instructional conditions maintained time-on-task and teaching material equivalence, and both incorporated a set of best-practices and empirically supported teaching techniques designed to address attentional deficits, stimulus processing inefficiencies and cognitive load limitations. Strong evidence of learning was found in both instructional method conditions. Moreover, in all content domains the two methods yielded approximately equivalent rates of learning and learning attainment. These findings offer tentative evidence that a repetitive, computer-assisted training program can produce learning outcomes in people with mild and moderate cognitive disabilities that are comparable to those achieved by high-quality one-on-one tutoring. © 2015 John Wiley & Sons Ltd.

  14. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework

    PubMed Central

    Wang, Xiao-Jing

    2016-01-01

    The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs) that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, “trained” networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale’s principle), which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural activity patterns and behavior that can be modeled, and suggest a unified setting in which diverse cognitive computations and mechanisms can be studied. PMID:26928718

  15. A Novel Virtual Reality-Based Training Protocol for the Enhancement of the “Mental Frame Syncing” in Individuals with Alzheimer's Disease: A Development-of-Concept Trial

    PubMed Central

    Serino, Silvia; Pedroli, Elisa; Tuena, Cosimo; De Leo, Gianluca; Stramba-Badiale, Marco; Goulene, Karine; Mariotti, Noemi G.; Riva, Giuseppe

    2017-01-01

    A growing body of evidence suggests that people with Alzheimer's Disease (AD) show compromised spatial abilities. In addition, there exists from the earliest stages of AD a specific impairment in “mental frame syncing,” which is the ability to synchronize an allocentric viewpoint-independent representation (including object-to-object information) with an egocentric one by computing the bearing of each relevant “object” in the environment in relation to the stored heading in space (i.e., information about our viewpoint contained in the allocentric viewpoint-dependent representation). The main objective of this development-of-concept trial was to evaluate the efficacy of a novel VR-based training protocol focused on the enhancement of the “mental frame syncing” of the different spatial representations in subjects with AD. We recruited 20 individuals with AD who were randomly assigned to either “VR-based training” or “Control Group.” Moreover, eight cognitively healthy elderly individuals were recruited to participate in the VR-based training in order to have a different comparison group. Based on a neuropsychological assessment, our results indicated a significant improvement in long-term spatial memory after the VR-based training for patients with AD; this means that transference of improvements from the VR-based training to more general aspects of spatial cognition was observed. Interestingly, there was also a significant effect of VR-based training on executive functioning for cognitively healthy elderly individuals. In sum, VR could be considered as an advanced embodied tool suitable for treating spatial recall impairments. PMID:28798682

  16. CASPer, an online pre-interview screen for personal/professional characteristics: prediction of national licensure scores.

    PubMed

    Dore, Kelly L; Reiter, Harold I; Kreuger, Sharyn; Norman, Geoffrey R

    2017-05-01

    Typically, only a minority of applicants to health professional training are invited to interview. However, pre-interview measures of cognitive skills predict for national licensure scores (Gauer et al. in Med Educ Online 21 2016) and subsequently licensure scores predict for performance in practice (Tamblyn et al. in JAMA 288(23): 3019-3026, 2002; Tamblyn et al. in JAMA 298(9):993-1001, 2007). Assessment of personal and professional characteristics, with the same psychometric rigour of measures of cognitive abilities, are needed upstream in the selection to health profession training programs. To fill that need, Computer-based Assessment for Sampling Personal characteristics (CASPer)-an on-line, video-based screening test-was created. In this paper, we examine the correlation between CASPer and Canadian national licensure examination outcomes in 109 doctors who took CASPer at the time of selection to medical school. Specifically, CASPer scores were correlated against performance on cognitive and 'non-cognitive' subsections of both the Medical Council of Canada Qualifying Examination (MCCQE) Parts I (end of medical school) and Part II (18 months into specialty training). Unlike most national licensure exams, MCCQE has specific subcomponents examining personal/professional qualities, providing a unique opportunity for comparison. The results demonstrated moderate predictive validity of CASPer to national licensure outcomes of personal/professional characteristics three to six years after admission to medical school. These types of disattenuated correlations (r = 0.3-0.5) are not otherwise predicted by traditional screening measures. These data support the ability of a computer-based strategy to screen applicants in a feasible, reliable test, which has now demonstrated predictive validity, lending evidence of its validation for medical school applicant selection.

  17. Factors influencing use of an e-health website in a community sample of older adults.

    PubMed

    Czaja, Sara J; Sharit, Joseph; Lee, Chin Chin; Nair, Sankaran N; Hernández, Mario A; Arana, Neysarí; Fu, Shih Hua

    2013-01-01

    The use of the internet as a source of health information and link to healthcare services has raised concerns about the ability of consumers, especially vulnerable populations such as older adults, to access these applications. This study examined the influence of training on the ability of adults (aged 45+ years) to use the Medicare.gov website to solve problems related to health management. The influence of computer experience and cognitive abilities on performance was also examined. Seventy-one participants, aged 47-92, were randomized into a Multimedia training, Unimodal training, or Cold Start condition and completed three healthcare management problems. MEASUREMENT AND ANALYSES: Computer/internet experience was measured via questionnaire, and cognitive abilities were assessed using standard neuropsychological tests. Performance metrics included measures of navigation, accuracy and efficiency. Data were analyzed using analysis of variance, χ(2) and regression techniques. The data indicate that there was no difference among the three conditions on measures of accuracy, efficiency, or navigation. However, results of the regression analyses showed that, overall, people who received training performed better on the tasks, as evidenced by greater accuracy and efficiency. Performance was also significantly influenced by prior computer experience and cognitive abilities. Participants with more computer experience and higher cognitive abilities performed better. The findings indicate that training, experience, and abilities are important when using complex health websites. However, training alone is not sufficient. The complexity of web content needs to be considered to ensure successful use of these websites by those with lower abilities.

  18. Factors influencing use of an e-health website in a community sample of older adults

    PubMed Central

    Sharit, Joseph; Lee, Chin Chin; Nair, Sankaran N; Hernández, Mario A; Arana, Neysarí; Fu, Shih Hua

    2013-01-01

    Objective The use of the internet as a source of health information and link to healthcare services has raised concerns about the ability of consumers, especially vulnerable populations such as older adults, to access these applications. This study examined the influence of training on the ability of adults (aged 45+ years) to use the Medicare.gov website to solve problems related to health management. The influence of computer experience and cognitive abilities on performance was also examined. Design Seventy-one participants, aged 47–92, were randomized into a Multimedia training, Unimodal training, or Cold Start condition and completed three healthcare management problems. Measurement and analyses Computer/internet experience was measured via questionnaire, and cognitive abilities were assessed using standard neuropsychological tests. Performance metrics included measures of navigation, accuracy and efficiency. Data were analyzed using analysis of variance, χ2 and regression techniques. Results The data indicate that there was no difference among the three conditions on measures of accuracy, efficiency, or navigation. However, results of the regression analyses showed that, overall, people who received training performed better on the tasks, as evidenced by greater accuracy and efficiency. Performance was also significantly influenced by prior computer experience and cognitive abilities. Participants with more computer experience and higher cognitive abilities performed better. Conclusions The findings indicate that training, experience, and abilities are important when using complex health websites. However, training alone is not sufficient. The complexity of web content needs to be considered to ensure successful use of these websites by those with lower abilities. PMID:22802269

  19. Training and transfer effects of N-back training for brain-injured and healthy subjects.

    PubMed

    Lindeløv, Jonas Kristoffer; Dall, Jonas Olsen; Kristensen, Casper Daniel; Aagesen, Marie Holt; Olsen, Stine Almgren; Snuggerud, Therese Ruud; Sikorska, Anna

    2016-10-01

    Working memory impairments are prevalent among patients with acquired brain injury (ABI). Computerised training targeting working memory has been researched extensively using samples from healthy populations but this field remains isolated from similar research in ABI patients. We report the results of an actively controlled randomised controlled trial in which 17 patients and 18 healthy subjects completed training on an N-back task. The healthy group had superior improvements on both training tasks (SMD = 6.1 and 3.3) whereas the ABI group improved much less (SMD = 0.5 and 1.1). Neither group demonstrated transfer to untrained tasks. We conclude that computerised training facilitates improvement of specific skills rather than high-level cognition in healthy and ABI subjects alike. The acquisition of these specific skills seems to be impaired by brain injury. The most effective use of computer-based cognitive training may be to make the task resemble the targeted behaviour(s) closely in order to exploit the stimulus-specificity of learning.

  20. Modelling and Optimizing Mathematics Learning in Children

    ERIC Educational Resources Information Center

    Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus

    2013-01-01

    This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…

  1. M69. Changes in Neural Measures of Emotion Processes Following Targeted Social Cognition Training

    PubMed Central

    Saxena, Abhishek; Guty, Erin; Dodell-Feder, David; Yin, Hong; Haut, Kristen; Nahum, Mor; Hooker, Christine

    2017-01-01

    Abstract Background: Research has shown that people who develop a psychotic disorder display observable decreases in cognitive abilities even before they begin to display overt symptoms of psychosis. Thus research has shown an increased interest in targeted cognitive training (TCT) as possible technique to deter or even stop cognitive deterioration in psychiatric disorders, such as schizophrenia. Although TCT has shown promising improvements in certain cognitive deficits, TCT research has largely ignored social cognition training. The current study investigates whether targeted social cognition training may be a viable method of improving social cognition in patient populations. Methods: To this end, 56 healthy adults from the community completed MRI scans before and after a 2-week period, where participants were randomized to complete either up to 10 hours of SocialVille, a computerized social cognition training program from PositScience Corporation, or up to 10 hours of common computer games. SocialVille consists of a variety of social cognition exercises, such as face emotion recognition, gaze tracking, and recognizing social incongruences. During the MRI scans, participants completed an emotion identification task (EmotID), consisting of object discrimination and emotion discrimination blocks. During the object discrimination blocks, participants where shown pictures of 2 cars and were asked to indicate whether the cars were the same or different, while in the emotion discrimination blocks, participants were shown 2 faces and were asked whether the faces displayed the same emotion. Results: Behavioral data indicated that controlling for initial performance, sex, age, and estimated IQ, being in the TCT group only predicted better performance during the emotion discrimination blocks after treatment compared to those who completed placebo computer games. Additionally, fMRI analyses indicate that brain regions central to the emotion processes (ie, amygdala) and the social processes (ie, MPFC), saw significant increases in connectivity to other regions of the brain associated with emotion processes during the emotion discrimination blocks after training among the participants randomized to the TCT group compared to those assigned to complete placebo computer games, and in comparison to connectivity between these regions prior to training and during the object discrimination blocks. Conclusion: These findings indicate that social cognition can be improved in healthy adults with varying ability at baseline. Furthermore, these results indicate that it is possible to target specific neural systems associated with emotion and social cognition and show a learning-induced neuroplastic response. Thus, programs, like SocialVille, may be useful tools for targeted treatment in psychiatric populations where social cognition deficits are prominent, specifically schizophrenia.

  2. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions.

    PubMed

    Barnes, Jessica J; Nobre, Anna Christina; Woolrich, Mark W; Baker, Kate; Astle, Duncan E

    2016-08-24

    Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called "phase amplitude coupling." Copyright © 2016 Barnes et al.

  3. Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions

    PubMed Central

    Barnes, Jessica J.; Nobre, Anna Christina; Woolrich, Mark W.; Baker, Kate

    2016-01-01

    Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. SIGNIFICANCE STATEMENT Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called “phase amplitude coupling.” PMID:27559180

  4. Efficacy of cognitive rehabilitation using computer software with individuals living with schizophrenia: A randomized controlled trial in Japan.

    PubMed

    Iwata, Kazuhiko; Matsuda, Yasuhiro; Sato, Sayaka; Furukawa, Shunichi; Watanabe, Yukako; Hatsuse, Norifumi; Ikebuchi, Emi

    2017-03-01

    Cognitive impairment is common in schizophrenia, and is associated with poor psychosocial functioning. Previous studies had inconsistently shown improvement in cognitive functions with cognitive remediation therapy. This study examined whether cognitive remediation is effective in improving both cognitive and social functions in schizophrenia in outpatient settings that provide learning-based psychiatric rehabilitation. This study is the first randomized controlled trial of cognitive remediation in Japan. Study participants were individuals with schizophrenia from 6 outpatient psychiatric medical facilities who were randomly assigned either a cognitive remediation program or treatment as usual. The cognitive remediation intervention includes Cognitive training using computer software (CogPack; Japanese version) administered twice a week and a weekly group over 12 weeks and was based on the Thinking Skills for Work program. Most study participants were attending day treatment services where social skills training, psychoeducation for knowledge about schizophrenia, group activities such as recreation and sport, and other psychosocial treatment were offered. Cognitive and social functioning were assessed using the Brief Assessment of Cognition in Schizophrenia (BACS) and Life Assessment Scale for Mentally Ill (LASMI) at pre- and postintervention. Of the 60 people with schizophrenia enrolled, 29 were allocated to the cognitive remediation group and 31 were allocated to the treatment as usual group. Processing speed, executive function, and the composite score of the BACS showed significantly greater improvement for the cognitive remediation group than the treatment as usual group. In addition, there was significant improvement in interpersonal relationships and work skills on the LASMI for the cognitive remediation group compared with the treatment as usual group. Changes from pretreatment to posttreatment in verbal fluency and interpersonal relationships were significantly correlated, as well as changes in attention and work skills. The present findings showed that providing cognitive remediation on addition to psychiatric rehabilitation contributed to greater improvement in both cognitive and social functioning than psychiatric rehabilitation alone. Cognitive remediation may enhance the efficacy of psychiatric rehabilitation improving social functioning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Training on Working Memory and Inhibitory Control in Young Adults

    PubMed Central

    Maraver, Maria J.; Bajo, M. Teresa; Gomez-Ariza, Carlos J.

    2016-01-01

    Different types of interventions have focused on trying to improve Executive Functions (EFs) due to their essential role in human cognition and behavior regulation. Although EFs are thought to be diverse, most training studies have targeted cognitive processes related to working memory (WM), and fewer have focused on training other control mechanisms, such as inhibitory control (IC). In the present study, we aimed to investigate the differential impact of training WM and IC as compared with control conditions performing non-executive control activities. Young adults were divided into two training (WM/IC) and two (active/passive) control conditions. Over six sessions, the training groups engaged in three different computer-based adaptive activities (WM or IC), whereas the active control group completed a program with low control-demanding activities that mainly involved processing speed. In addition, motivation and engagement were monitored through the training. The WM-training activities required maintenance, updating and memory search processes, while those from the IC group engaged response inhibition and interference control. All participants were pre- and post-tested in criterion tasks (n-back and Stroop), near transfer measures of WM (Operation Span) and IC (Stop-Signal). Non-trained far transfer outcome measures included an abstract reasoning test (Raven’s Advanced Progressive Matrices) and a well-validated experimental task (AX-CPT) that provides indices of cognitive flexibility considering proactive/reactive control. Training results revealed that strongly motivated participants reached higher levels of training improvements. Regarding transfer effects, results showed specific patterns of near transfer effects depending on the type of training. Interestingly, it was only the IC training group that showed far transfer to reasoning. Finally, all trained participants showed a shift toward a more proactive mode of cognitive control, highlighting a general effect of training on cognitive flexibility. The present results reveal specific and general modulations of executive control mechanisms after brief training intervention targeting either WM or IC. PMID:27917117

  6. Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly.

    PubMed

    Gomez-Pilar, Javier; Corralejo, Rebeca; Nicolas-Alonso, Luis F; Álvarez, Daniel; Hornero, Roberto

    2016-11-01

    Neurofeedback training (NFT) has shown to be promising and useful to rehabilitate cognitive functions. Recently, brain-computer interfaces (BCIs) were used to restore brain plasticity by inducing brain activity with an NFT. In our study, we hypothesized that an NFT with a motor imagery-based BCI (MI-BCI) could enhance cognitive functions related to aging effects. To assess the effectiveness of our MI-BCI application, 63 subjects (older than 60 years) were recruited. This novel application was used by 31 subjects (NFT group). Their Luria neuropsychological test scores were compared with the remaining 32 subjects, who did not perform NFT (control group). Electroencephalogram changes measured by relative power (RP) endorsed cognitive potential findings under study: visuospatial, oral language, memory, intellectual and attention functions. Three frequency bands were selected to assess cognitive changes: 12, 18, and 21 Hz (bandwidth 3 Hz). Significant increases (p < 0.01) in the RP of these frequency bands were found. Moreover, results from cognitive tests showed significant improvements (p < 0.01) in four cognitive functions after performing five NFT sessions: visuospatial, oral language, memory, and intellectual. This established evidence in the association between NFT performed by a MI-BCI and enhanced cognitive performance. Therefore, it could be a novel approach to help elderly people.

  7. Training Older Adults to Use Tablet Computers: Does It Enhance Cognitive Function?

    PubMed

    Chan, Micaela Y; Haber, Sara; Drew, Linda M; Park, Denise C

    2016-06-01

    Recent evidence shows that engaging in learning new skills improves episodic memory in older adults. In this study, older adults who were computer novices were trained to use a tablet computer and associated software applications. We hypothesize that sustained engagement in this mentally challenging training would yield a dual benefit of improved cognition and enhancement of everyday function by introducing useful skills. A total of 54 older adults (age 60-90) committed 15 hr/week for 3 months. Eighteen participants received extensive iPad training, learning a broad range of practical applications. The iPad group was compared with 2 separate controls: a Placebo group that engaged in passive tasks requiring little new learning; and a Social group that had regular social interaction, but no active skill acquisition. All participants completed the same cognitive battery pre- and post-engagement. Compared with both controls, the iPad group showed greater improvements in episodic memory and processing speed but did not differ in mental control or visuospatial processing. iPad training improved cognition relative to engaging in social or nonchallenging activities. Mastering relevant technological devices have the added advantage of providing older adults with technological skills useful in facilitating everyday activities (e.g., banking). This work informs the selection of targeted activities for future interventions and community programs. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.

  8. Training Older Adults to Use Tablet Computers: Does It Enhance Cognitive Function?

    PubMed Central

    Chan, Micaela Y.; Haber, Sara; Drew, Linda M.; Park, Denise C.

    2016-01-01

    Purpose of the Study: Recent evidence shows that engaging in learning new skills improves episodic memory in older adults. In this study, older adults who were computer novices were trained to use a tablet computer and associated software applications. We hypothesize that sustained engagement in this mentally challenging training would yield a dual benefit of improved cognition and enhancement of everyday function by introducing useful skills. Design and Methods: A total of 54 older adults (age 60-90) committed 15 hr/week for 3 months. Eighteen participants received extensive iPad training, learning a broad range of practical applications. The iPad group was compared with 2 separate controls: a Placebo group that engaged in passive tasks requiring little new learning; and a Social group that had regular social interaction, but no active skill acquisition. All participants completed the same cognitive battery pre- and post-engagement. Results: Compared with both controls, the iPad group showed greater improvements in episodic memory and processing speed but did not differ in mental control or visuospatial processing. Implications: iPad training improved cognition relative to engaging in social or nonchallenging activities. Mastering relevant technological devices have the added advantage of providing older adults with technological skills useful in facilitating everyday activities (e.g., banking). This work informs the selection of targeted activities for future interventions and community programs. PMID:24928557

  9. Cognitive training plus a comprehensive psychosocial programme (OPUS) versus the comprehensive psychosocial programme alone for patients with first-episode schizophrenia (the NEUROCOM trial): a study protocol for a centrally randomised, observer-blinded multi-centre clinical trial.

    PubMed

    Vesterager, Lone; Christensen, Torben Ø; Olsen, Birthe B; Krarup, Gertrud; Forchhammer, Hysse B; Melau, Marianne; Gluud, Christian; Nordentoft, Merete

    2011-02-09

    Up to 85% of patients with schizophrenia demonstrate cognitive dysfunction in at least one domain. Cognitive dysfunction plays a major role in functional outcome. It is hypothesized that addition of cognitive training to a comprehensive psychosocial programme (OPUS) enhances both cognitive and everyday functional capacity of patients more than the comprehensive psychosocial programme alone. The NEUROCOM trial examines the effect on cognitive functioning and everyday functional capacity of patients with schizophrenia of a 16-week manualised programme of individual cognitive training integrated in a comprehensive psychosocial programme versus the comprehensive psychosocial programme alone. The cognitive training consists of four modules focusing on attention, executive functioning, learning, and memory. Cognitive training involves computer-assisted training tasks as well as practical everyday tasks and calendar training. It takes place twice a week, and every other week the patient and trainer engage in a dialogue on the patient's cognitive difficulties, motivational goals, and progress in competence level. Cognitive training relies on errorless learning principles, scaffolding, and verbalisation in its effort to improve cognitive abilities and teach patients how to apply compensation strategies as well as structured problem solving techniques. At 16-week post-training and at ten-months follow-up, assessments are conducted to investigate immediate outcome and possible long-term effects of cognitive training. We conduct blinded assessments of cognition, everyday functional capacity and associations with the labour market, symptom severity, and self-esteem. Results from four-month and ten-month follow-ups have the potential of reliably providing documentation of the long-term effect of CT for patients with schizophrenia. Clinicaltrials.gov NCT00472862.

  10. Data Mining and Knowledge Discover - IBM Cognitive Alternatives for NASA KSC

    NASA Technical Reports Server (NTRS)

    Velez, Victor Hugo

    2016-01-01

    Skillful tools in cognitive computing to transform industries have been found favorable and profitable for different Directorates at NASA KSC. In this study is shown how cognitive computing systems can be useful for NASA when computers are trained in the same way as humans are to gain knowledge over time. Increasing knowledge through senses, learning and a summation of events is how the applications created by the firm IBM empower the artificial intelligence in a cognitive computing system. NASA has explored and applied for the last decades the artificial intelligence approach specifically with cognitive computing in few projects adopting similar models proposed by IBM Watson. However, the usage of semantic technologies by the dedicated business unit developed by IBM leads these cognitive computing applications to outperform the functionality of the inner tools and present outstanding analysis to facilitate the decision making for managers and leads in a management information system.

  11. Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults

    PubMed Central

    Desjardins-Crépeau, Laurence; Berryman, Nicolas; Fraser, Sarah A; Vu, Thien Tuong Minh; Kergoat, Marie-Jeanne; Li, Karen ZH; Bosquet, Laurent; Bherer, Louis

    2016-01-01

    Purpose Physical exercise and cognitive training have been shown to enhance cognition among older adults. However, few studies have looked at the potential synergetic effects of combining physical and cognitive training in a single study. Prior trials on combined training have led to interesting yet equivocal results. The aim of this study was to examine the effects of combined physical and cognitive interventions on physical fitness and neuropsychological performance in healthy older adults. Methods Seventy-six participants were randomly assigned to one of four training combinations using a 2×2 factorial design. The physical intervention was a mixed aerobic and resistance training program, and the cognitive intervention was a dual-task (DT) training program. Stretching and toning exercises and computer lessons were used as active control conditions. Physical and cognitive measures were collected pre- and postintervention. Results All groups showed equivalent improvements in measures of functional mobility. The aerobic–strength condition led to larger effect size in lower body strength, independently of cognitive training. All groups showed improved speed of processing and inhibition abilities, but only participants who took part in the DT training, independently of physical training, showed increased task-switching abilities. The level of functional mobility after intervention was significantly associated with task-switching abilities. Conclusion Combined training did not yield synergetic effects. However, DT training did lead to transfer effects on executive performance in neuropsychological tests. Both aerobic-resistance training and stretching-toning exercises can improve functional mobility in older adults. PMID:27698558

  12. A multilevel modeling approach to examining individual differences in skill acquisition for a computer-based task.

    PubMed

    Nair, Sankaran N; Czaja, Sara J; Sharit, Joseph

    2007-06-01

    This article explores the role of age, cognitive abilities, prior experience, and knowledge in skill acquisition for a computer-based simulated customer service task. Fifty-two participants aged 50-80 performed the task over 4 consecutive days following training. They also completed a battery that assessed prior computer experience and cognitive abilities. The data indicated that overall quality and efficiency of performance improved with practice. The predictors of initial level of performance and rate of change in performance varied according to the performance parameter assessed. Age and fluid intelligence predicted initial level and rate of improvement in overall quality, whereas crystallized intelligence and age predicted initial e-mail processing time, and crystallized intelligence predicted rate of change in e-mail processing time over days. We discuss the implications of these findings for the design of intervention strategies.

  13. [Psychobiosocial interventions for autism].

    PubMed

    Bölte, S

    2011-05-01

    A multitude of interventions is offered for the treatment of autism spectrum disorders (ASD). However, only few have demonstrated scientific evidence, and even the evaluated methods need further examination of their mechanisms and scope. This article provides a brief summary of the premises and principles of successful psychobiosocial ASD intervention. ABA, TEACCH, PECS, social skills and cognitive training are described as examples for established approaches to ASD. Training of μ-suppression using neurofeedback and reanimation of the fusiform gyrus and amygdala using computer-aided facial affect recognition training are introduced as neurobiologically based ASD interventions.

  14. Computer-Mediated Training Tools to Enhance Joint Task Force Cognitive Leadership Skills

    DTIC Science & Technology

    2007-04-01

    University); and 5d. TASK NUMBER Barclay Lewis (American Systems) 5e. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ...ple G am ing Platform D ecisive A ction for Training ..................................................... 43 6. Perform ance M etrics...Figure 15: Automated Performance Measurement System ................................................................... 48 iv COMPUTER-MEDIATED TRAINING

  15. Using visual processing training to enhance standard cognitive remediation outcomes in schizophrenia: A pilot study.

    PubMed

    Contreras, Natalia A; Tan, Eric J; Lee, Stuart J; Castle, David J; Rossell, Susan L

    2018-04-01

    Approaches to cognitive remediation (CR) that address sensory perceptual skills before higher cognitive skills, have been found to be effective in enhancing cognitive performance in schizophrenia. To date, however, most of the conducted trials have concentrated on auditory processing. The aim of this study was to explore whether the addition of visual processing training could enhance standard cognitive remediation outcomes in a schizophrenia population. Twenty participants were randomised to either receive 20h of computer-assisted cognitive remediation alone or 20h of visual processing training modules and cognitive remediation training. All participants were assessed at baseline and at the end of cognitive remediation training on cognitive and psychosocial (i.e. self-esteem, quality of life) measures. At the end of the study participants across both groups improved significantly in overall cognition and psychosocial functioning. No significant differences were observed between groups on any of the measures. Of potential interest, however, was that the Cohen's d assessing the between group difference in the rates of change were moderate/large for a greater improvement in Visual Learning, Working Memory and Social Cognition for the visual training plus cognitive remediation group. On the basis of our effect sizes on three domains of cognition, we recommend replicating this intervention with a larger sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Asymmetrical transfer effects of cognitive bias modification: Modifying attention to threat influences interpretation of emotional ambiguity, but not vice versa.

    PubMed

    Bowler, J O; Hoppitt, L; Illingworth, J; Dalgleish, T; Ononaiye, M; Perez-Olivas, G; Mackintosh, B

    2017-03-01

    It is well established that attention bias and interpretation bias each have a key role in the development and continuation of anxiety. How the biases may interact with one another in anxiety is, however, poorly understood. Using cognitive bias modification techniques, the present study examined whether training a more positive interpretation bias or attention bias resulted in transfer of effects to the untrained cognitive domain. Differences in anxiety reactivity to a real-world stressor were also assessed. Ninety-seven first year undergraduates who had self-reported anxiety were allocated to one of four groups: attention bias training (n = 24), interpretation bias training (n = 26), control task training (n = 25) and no training (n = 22). Training was computer-based and comprised eight sessions over four weeks. Baseline and follow-up measures of attention and interpretation bias, anxiety and depression were taken. A significant reduction in threat-related attention bias and an increase in positive interpretation bias occurred in the attention bias training group. The interpretation bias training group did not exhibit a significant change in attention bias, only interpretation bias. The effect of attention bias training on interpretation bias was significant as compared with the two control groups. There were no effects on self-report measures. The extent to which interpretive training can modify attentional processing remains unclear. Findings support the idea that attentional training might have broad cognitive consequences, impacting downstream on interpretive bias. However, they do not fully support a common mechanism hypothesis, as interpretive training did not impact on attentional bias. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Training of perceptual-cognitive skills in offside decision making.

    PubMed

    Catteeuw, Peter; Gilis, Bart; Jaspers, Arne; Wagemans, Johan; Helsen, Werner

    2010-12-01

    This study investigates the effect of two off-field training formats to improve offside decision making. One group trained with video simulations and another with computer animations. Feedback after every offside situation allowed assistant referees to compensate for the consequences of the flash-lag effect and to improve their decision-making accuracy. First, response accuracy improved and flag errors decreased for both training groups implying that training interventions with feedback taught assistant referees to better deal with the flash-lag effect. Second, the results demonstrated no effect of format, although assistant referees rated video simulations higher for fidelity than computer animations. This implies that a cognitive correction to a perceptual effect can be learned also when the format does not correspond closely with the original perceptual situation. Off-field offside decision-making training should be considered as part of training because it is a considerable help to gain more experience and to improve overall decision-making performance.

  18. Social reinforcement can regulate localized brain activity.

    PubMed

    Mathiak, Krystyna A; Koush, Yury; Dyck, Miriam; Gaber, Tilman J; Alawi, Eliza; Zepf, Florian D; Zvyagintsev, Mikhail; Mathiak, Klaus

    2010-11-01

    Social learning is essential for adaptive behavior in humans. Neurofeedback based on functional magnetic resonance imaging (fMRI) trains control over localized brain activity. It can disentangle learning processes at the neural level and thus investigate the mechanisms of operant conditioning with explicit social reinforcers. In a pilot study, a computer-generated face provided a positive feedback (smiling) when activity in the anterior cingulate cortex (ACC) increased and gradually returned to a neutral expression when the activity dropped. One female volunteer without previous experience in fMRI underwent training based on a social reinforcer. Directly before and after the neurofeedback runs, neural responses to a cognitive interference task (Simon task) were recorded. We observed a significant increase in activity within ACC during the neurofeedback blocks, correspondent with the a-priori defined anatomical region of interest. In the course of the neurofeedback training, the subject learned to regulate ACC activity and could maintain the control even without direct feedback. Moreover, ACC was activated significantly stronger during Simon task after the neurofeedback training when compared to before. Localized brain activity can be controlled by social reward. The increased ACC activity transferred to a cognitive task with the potential to reduce cognitive interference. Systematic studies are required to explore long-term effects on social behavior and clinical applications.

  19. Effects of Video Game Training on Behavioral and Electrophysiological Measures of Attention and Memory: Protocol for a Randomized Controlled Trial

    PubMed Central

    Mayas, Julia; Ruiz-Marquez, Eloisa; Prieto, Antonio; Toril, Pilar; Ponce de Leon, Laura; de Ceballos, Maria L; Reales Avilés, José Manuel

    2017-01-01

    Background Neuroplasticity-based approaches seem to offer promising ways of maintaining cognitive health in older adults and postponing the onset of cognitive decline symptoms. Although previous research suggests that training can produce transfer effects, this study was designed to overcome some limitations of previous studies by incorporating an active control group and the assessment of training expectations. Objective The main objectives of this study are (1) to evaluate the effects of a randomized computer-based intervention consisting of training older adults with nonaction video games on brain and cognitive functions that decline with age, including attention and spatial working memory, using behavioral measures and electrophysiological recordings (event-related potentials [ERPs]) just after training and after a 6-month no-contact period; (2) to explore whether motivation, engagement, or expectations might account for possible training-related improvements; and (3) to examine whether inflammatory mechanisms assessed with noninvasive measurement of C-reactive protein in saliva impair cognitive training-induced effects. A better understanding of these mechanisms could elucidate pathways that could be targeted in the future by either behavioral or neuropsychological interventions. Methods A single-blinded randomized controlled trial with an experimental group and an active control group, pretest, posttest, and 6-month follow-up repeated measures design is used in this study. A total of 75 cognitively healthy older adults were randomly distributed into experimental and active control groups. Participants in the experimental group received 16 1-hour training sessions with cognitive nonaction video games selected from Lumosity, a commercial brain training package. The active control group received the same number of training sessions with The Sims and SimCity, a simulation strategy game. Results We have recruited participants, have conducted the training protocol and pretest assessments, and are currently conducting posttest evaluations. The study will conclude in the first semester of 2017. Data analysis will take place during 2017. The primary outcome is transfer of benefit from training to attention and working memory functions and the neural mechanisms underlying possible cognitive improvements. Conclusions We expect that mental stimulation with video games will improve attention and memory both at the behavioral level and in ERP components promoting brain and mental health and extending independence among elderly people by avoiding the negative personal and economic consequences of long-term care. Trial Registration Clinicaltrials.gov NCT02796508; https://clinicaltrials.gov/ct2/show/NCT02796508 (archived by WebCite at http://www.webcitation.org/6nFeKeFNB) PMID:28119279

  20. Effects of a process-based cognitive training intervention for patients with stress-related exhaustion.

    PubMed

    Gavelin, Hanna Malmberg; Boraxbekk, Carl-Johan; Stenlund, Therese; Järvholm, Lisbeth Slunga; Neely, Anna Stigsdotter

    2015-08-13

    Stress-related exhaustion has been linked to a pattern of selective cognitive impairments, mainly affecting executive functioning, attention and episodic memory. Little is known about potential treatments of these cognitive deficits. The purpose of this study was to evaluate the effects of a process-based cognitive training intervention, designed to target the specific cognitive impairments associated with stress-related exhaustion. To this end, patients diagnosed with exhaustion disorder (ED) were randomized to either a multimodal stress rehabilitation program with the addition of a process-based cognitive training intervention (training group, n = 27) or a treatment-as-usual control condition, consisting of multimodal stress rehabilitation with no additional training (control group, n = 32). Treatment effects were evaluated through an extensive cognitive test battery, assessing both near and far transfer effects, as well as self-report forms regarding subjective cognitive complaints and burnout levels. Results showed pronounced training-related improvements on the criterion updating task (p < 0.001). Further, evidence was found of selective near transfer effects to updating (p = 0.01) and episodic memory (p = 0.04). Also, the trained group reported less subjective memory complaints (p = 0.02) and levels of burnout decreased for both groups, but more so for the trained group (p = 0.04), following the intervention. These findings suggest that process-based cognitive training may be a viable method to address the cognitive impairments associated with ED.

  1. Effects of a process-based cognitive training intervention for patients with stress-related exhaustion.

    PubMed

    Gavelin, Hanna Malmberg; Boraxbekk, Carl-Johan; Stenlund, Therese; Järvholm, Lisbeth Slunga; Neely, Anna Stigsdotter

    2015-01-01

    Stress-related exhaustion has been linked to a pattern of selective cognitive impairments, mainly affecting executive functioning, attention and episodic memory. Little is known about potential treatments of these cognitive deficits. The purpose of this study was to evaluate the effects of a process-based cognitive training intervention, designed to target the specific cognitive impairments associated with stress-related exhaustion. To this end, patients diagnosed with exhaustion disorder (ED) were randomized to either a multimodal stress rehabilitation program with the addition of a process-based cognitive training intervention (training group, n = 27) or a treatment-as-usual control condition, consisting of multimodal stress rehabilitation with no additional training (control group, n = 32). Treatment effects were evaluated through an extensive cognitive test battery, assessing both near and far transfer effects, as well as self-report forms regarding subjective cognitive complaints and burnout levels. Results showed pronounced training-related improvements on the criterion updating task (p < 0.001). Further, evidence was found of selective near transfer effects to updating (p = 0.01) and episodic memory (p = 0.04). Also, the trained group reported less subjective memory complaints (p = 0.02) and levels of burnout decreased for both groups, but more so for the trained group (p = 0.04), following the intervention. These findings suggest that process-based cognitive training may be a viable method to address the cognitive impairments associated with ED.

  2. Automated detection of heuristics and biases among pathologists in a computer-based system.

    PubMed

    Crowley, Rebecca S; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia

    2013-08-01

    The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to diagnostic errors. The authors conducted the study using a computer-based system to view and diagnose virtual slide cases. The software recorded participant responses throughout the diagnostic process, and automatically classified participant actions based on definitions of eight common heuristics and/or biases. The authors measured frequency of heuristic use and bias across three levels of training. Biases studied were detected at varying frequencies, with availability and search satisficing observed most frequently. There were few significant differences by level of training. For representativeness and anchoring, the heuristic was used appropriately as often or more often than it was used in biased judgment. Approximately half of the diagnostic errors were associated with one or more biases. We conclude that heuristic use and biases were observed among physicians at all levels of training using the virtual slide system, although their frequencies varied. The system can be employed to detect heuristic use and to test methods for decreasing diagnostic errors resulting from cognitive biases.

  3. A Tablet for Healthy Ageing: The Effect of a Tablet Computer Training Intervention on Cognitive Abilities in Older Adults.

    PubMed

    Vaportzis, Eleftheria; Martin, Mike; Gow, Alan J

    2017-08-01

    To test the efficacy of a tablet computer training intervention to improve cognitive abilities of older adults. Prospective randomized controlled trial. Community-based aging intervention study, Edinburgh, UK. Forty-eight healthy older adults aged 65 to 76 years were recruited at baseline with no or minimal tablet experience; 43 completed follow-up testing. Twenty-two participants attended a weekly 2-hour class for 10 weeks during which they learned how to use a tablet and various applications on it. A battery of cognitive tests from the WAIS-IV measuring the domains of Verbal Comprehension, Perceptual Processing, Working Memory, and Processing Speed, as well as health, psychological, and well-being measures. A 2 × 2 mixed model ANOVA suggested that the tablet intervention group (N = 22) showed greater improvements in Processing Speed (η 2  = 0.10) compared with controls (N = 21), but did not differ in Verbal Comprehension, Perceptual Processing, or Working Memory (η 2 ranged from -0.03 to 0.04). Engagement in a new mentally challenging activity (tablet training) was associated with improved processing speed. Acquiring skills in later life, including those related to adopting new technologies, may therefore have the potential to reduce or delay cognitive changes associated with ageing. It is important to understand how the development of these skills might further facilitate everyday activities, and also improve older adults' quality of life. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Training and Transfer of Complex Cognitive Skills: Effects of Worked Examples and Conventional Problem-Solving

    ERIC Educational Resources Information Center

    Darabi, Abbas; Nelson, David W.

    2004-01-01

    Thirty six senior students in chemical engineering were randomly assigned to three treatment groups in an experimental study that examined the impact of different instructional strategies for troubleshooting malfunctions in a computer-based simulation of a chemical processing plant. In two groups, different types of worked examples,…

  5. Computer-Based Simulation Systems and Role-Playing: An Effective Combination for Fostering Conditional Knowledge.

    ERIC Educational Resources Information Center

    Shlechter, Theodore M.; And Others

    1992-01-01

    Examines the effectiveness of SIMNET (Simulation Networking), a virtual reality training simulation system, combined with a program of role-playing activities for helping Army classes to master the conditional knowledge needed for successful field performance. The value of active forms of learning for promoting higher order cognitive thinking is…

  6. Attention Training in Autism as a Potential Approach to Improving Academic Performance: A School-Based Pilot Study.

    PubMed

    Spaniol, Mayra Muller; Shalev, Lilach; Kossyvaki, Lila; Mevorach, Carmel

    2018-02-01

    This study assessed the effectiveness of an attention intervention program (Computerized Progressive Attentional Training; CPAT) in improving academic performance of children with ASD. Fifteen 6-10 year olds with ASD attending a mainstream and a special school were assigned to an experimental (CPAT; n = 8) and active control (computer games; n = 7) group. Children were assessed pre- and post-intervention on measures of behavioural symptoms, cognitive skills and academic performance. The intervention was conducted in school twice a week for 8 weeks. Children in the CPAT group showed cognitive and academic improvements over and above the active control group, while children in both groups showed improvements in behaviour. Results suggest that attention training is a feasible approach to improving academic performance in this population.

  7. Cognitive Priming and Cognitive Training: Immediate and Far Transfer to Academic Skills in Children.

    PubMed

    Wexler, Bruce E; Iseli, Markus; Leon, Seth; Zaggle, William; Rush, Cynthia; Goodman, Annette; Esat Imal, A; Bo, Emily

    2016-09-12

    Cognitive operations are supported by dynamically reconfiguring neural systems that integrate processing components widely distributed throughout the brain. The inter-neuronal connections that constitute these systems are powerfully shaped by environmental input. We evaluated the ability of computer-presented brain training games done in school to harness this neuroplastic potential and improve learning in an overall study sample of 583 second-grade children. Doing a 5-minute brain-training game immediately before math or reading curricular content games increased performance on the curricular content games. Doing three 20-minute brain training sessions per week for four months increased gains on school-administered math and reading achievement tests compared to control classes tested at the same times without intervening brain training. These results provide evidence of cognitive priming with immediate effects on learning, and longer-term brain training with far-transfer or generalized effects on academic achievement.

  8. Cognitive Priming and Cognitive Training: Immediate and Far Transfer to Academic Skills in Children

    PubMed Central

    Wexler, Bruce E; Iseli, Markus; Leon, Seth; Zaggle, William; Rush, Cynthia; Goodman, Annette; Esat Imal, A.; Bo, Emily

    2016-01-01

    Cognitive operations are supported by dynamically reconfiguring neural systems that integrate processing components widely distributed throughout the brain. The inter-neuronal connections that constitute these systems are powerfully shaped by environmental input. We evaluated the ability of computer-presented brain training games done in school to harness this neuroplastic potential and improve learning in an overall study sample of 583 second-grade children. Doing a 5-minute brain-training game immediately before math or reading curricular content games increased performance on the curricular content games. Doing three 20-minute brain training sessions per week for four months increased gains on school-administered math and reading achievement tests compared to control classes tested at the same times without intervening brain training. These results provide evidence of cognitive priming with immediate effects on learning, and longer-term brain training with far-transfer or generalized effects on academic achievement. PMID:27615029

  9. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study.

    PubMed

    Nozawa, Takayuki; Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Nouchi, Rui; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta

    2015-01-01

    Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach.

  10. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study

    PubMed Central

    Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta

    2015-01-01

    Background. Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Methods. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. Results. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. Conclusion. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach. PMID:26161000

  11. Training cognitive control in older adults with the space fortress game: the role of training instructions and basic motor ability.

    PubMed

    Blumen, Helena M; Gopher, Daniel; Steinerman, Joshua R; Stern, Yaakov

    2010-01-01

    This study examined if and how cognitively healthy older adults can learn to play a complex computer-based action game called the Space Fortress (SF) as a function of training instructions [Standard vs. Emphasis Change (EC); e.g., Gopher et al., 1989] and basic motor ability. A total of 35 cognitively healthy older adults completed a 3-month SF training program with three SF sessions weekly. Twelve 3-min games were played during each session. Basic motor ability was assessed with an aiming task, which required rapidly rotating a spaceship to shoot targets. Older adults showed improved performance on the SF task over time, but did not perform at the same level as younger adults. Unlike studies of younger adults, overall SF performance in older adults was greater following standard instructions than following EC instructions. However, this advantage was primarily due to collecting more bonus points and not - the primary goal of the game - shooting and destroying the fortress, which in contrast benefited from EC instructions. Basic motor ability was low and influenced many different aspects of SF game learning, often interacted with learning rate, and influenced overall SF performance. These findings show that older adults can be trained to deal with the complexity of the SF task but that overall SF performance, and the ability to capitalize on EC instructions, differs when a basic ability such as motor control is low. Hence, the development of this training program as a cognitive intervention that can potentially compensate for age-related cognitive decline should consider that basic motor ability can interact with the efficiency of training instructions that promote the use of cognitive control (e.g., EC instructions) - and the confluence between such basic abilities and higher-level cognitive control abilities should be further examined.

  12. Training Cognitive Control in Older Adults with the Space Fortress Game: The Role of Training Instructions and Basic Motor Ability

    PubMed Central

    Blumen, Helena M.; Gopher, Daniel; Steinerman, Joshua R.; Stern, Yaakov

    2010-01-01

    This study examined if and how cognitively healthy older adults can learn to play a complex computer-based action game called the Space Fortress (SF) as a function of training instructions [Standard vs. Emphasis Change (EC); e.g., Gopher et al., 1989] and basic motor ability. A total of 35 cognitively healthy older adults completed a 3-month SF training program with three SF sessions weekly. Twelve 3-min games were played during each session. Basic motor ability was assessed with an aiming task, which required rapidly rotating a spaceship to shoot targets. Older adults showed improved performance on the SF task over time, but did not perform at the same level as younger adults. Unlike studies of younger adults, overall SF performance in older adults was greater following standard instructions than following EC instructions. However, this advantage was primarily due to collecting more bonus points and not – the primary goal of the game – shooting and destroying the fortress, which in contrast benefited from EC instructions. Basic motor ability was low and influenced many different aspects of SF game learning, often interacted with learning rate, and influenced overall SF performance. These findings show that older adults can be trained to deal with the complexity of the SF task but that overall SF performance, and the ability to capitalize on EC instructions, differs when a basic ability such as motor control is low. Hence, the development of this training program as a cognitive intervention that can potentially compensate for age-related cognitive decline should consider that basic motor ability can interact with the efficiency of training instructions that promote the use of cognitive control (e.g., EC instructions) – and the confluence between such basic abilities and higher-level cognitive control abilities should be further examined. PMID:21120135

  13. Effects of Computer Support, Collaboration, and Time Lag on Performance Self-Efficacy and Transfer of Training: A Longitudinal Meta-Analysis

    ERIC Educational Resources Information Center

    Gegenfurtner, Andreas; Veermans, Koen; Vauras, Marja

    2013-01-01

    This meta-analysis (29 studies, k = 33, N = 4158) examined the longitudinal development of the relationship between performance self-efficacy and transfer before and after training. A specific focus was on training programs that afforded varying degrees of computer-supported collaborative learning (CSCL). Consistent with social cognitive theory,…

  14. Motivational Interviewing to Increase Cognitive Rehabilitation Adherence in Schizophrenia.

    PubMed

    Fiszdon, Joanna M; Kurtz, Matthew M; Choi, Jimmy; Bell, Morris D; Martino, Steve

    2016-03-01

    Adherence to treatment in psychiatric populations is notoriously low. In this randomized, controlled, proof-of-concept study, we sought to examine whether motivational interviewing (MI) could be used to enhance motivation for, adherence to, and benefit obtained from cognitive rehabilitation. Dual diagnosis MI, developed specifically for individuals with psychotic symptoms and disorganization, was further adapted to focus on cognitive impairments and their impact. Sixty-four outpatients diagnosed with schizophrenia spectrum disorders completed baseline assessments and were randomized to receive either the 2-session MI focused on cognitive functioning or a 2-session sham control interview focused on assessment and feedback about preferred learning styles. Next, all participants were given 4 weeks during which they could attend up to 10 sessions of a computer-based math training program, which served as a brief analog for a full course of cognitive rehabilitation. As hypothesized, MI condition was associated with greater increases in task-specific motivation along with greater training program session attendance. Moreover, postinterview motivation level predicted session attendance. There were no significant differences in improvement on a measure of cognitive training content, which may have been due to the abbreviated nature of the training. While the literature on the efficacy of MI for individuals with psychosis has been mixed, we speculate that our positive findings may have been influenced by the adaptations made to MI as well as the focus on a nonpharmacological intervention. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center 2015.

  15. Tuning Up the Old Brain with New Tricks: Attention Training via Neurofeedback

    PubMed Central

    Jiang, Yang; Abiri, Reza; Zhao, Xiaopeng

    2017-01-01

    Neurofeedback (NF) is a form of biofeedback that uses real-time (RT) modulation of brain activity to enhance brain function and behavioral performance. Recent advances in Brain-Computer Interfaces (BCI) and cognitive training (CT) have provided new tools and evidence that NF improves cognitive functions, such as attention and working memory (WM), beyond what is provided by traditional CT. More published studies have demonstrated the efficacy of NF, particularly for treating attention deficit hyperactivity disorder (ADHD) in children. In contrast, there have been fewer studies done in older adults with or without cognitive impairment, with some notable exceptions. The focus of this review is to summarize current success in RT NF training of older brains aiming to match those of younger brains during attention/WM tasks. We also outline potential future advances in RT brainwave-based NF for improving attention training in older populations. The rapid growth in wireless recording of brain activity, machine learning classification and brain network analysis provides new tools for combating cognitive decline and brain aging in older adults. We optimistically conclude that NF, combined with new neuro-markers (event-related potentials and connectivity) and traditional features, promises to provide new hope for brain and CT in the growing older population. PMID:28348527

  16. Research, Development, Training, and Evaluation (RDTE) Support Delivery Order 1: Computational Cognitive Models

    DTIC Science & Technology

    1993-09-01

    AL/HR-TR- 1993-0072 AD-A271 837 RESEARCH, DEVELOPMENT, TRAINING, AND A EVALUATION (RDTE) SUPPORT R DELIVERY ORDER 1 : COMPUTATIONAL COGNITIVE M MODELS...Stephen E. Deutsch :-"LEC"E R Eva Hudlicka eNOV04 1 0 Marilyn J. Adams0 Carl E. FeehrerN G BOLT BERANEK AND NEWMAN, INCG10 MOULTON STREET CAMBRIDGE...Washington. DC 20503 1 . AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED Sep 1993 Final - March 1992 to April 1993 4

  17. Influence of Sequential vs. Simultaneous Dual-Task Exercise Training on Cognitive Function in Older Adults.

    PubMed

    Tait, Jamie L; Duckham, Rachel L; Milte, Catherine M; Main, Luana C; Daly, Robin M

    2017-01-01

    Emerging research indicates that exercise combined with cognitive training may improve cognitive function in older adults. Typically these programs have incorporated sequential training, where exercise and cognitive training are undertaken separately. However, simultaneous or dual-task training, where cognitive and/or motor training are performed simultaneously with exercise, may offer greater benefits. This review summary provides an overview of the effects of combined simultaneous vs. sequential training on cognitive function in older adults. Based on the available evidence, there are inconsistent findings with regard to the cognitive benefits of sequential training in comparison to cognitive or exercise training alone. In contrast, simultaneous training interventions, particularly multimodal exercise programs in combination with secondary tasks regulated by sensory cues, have significantly improved cognition in both healthy older and clinical populations. However, further research is needed to determine the optimal characteristics of a successful simultaneous training program for optimizing cognitive function in older people.

  18. A framework for analyzing the cognitive complexity of computer-assisted clinical ordering.

    PubMed

    Horsky, Jan; Kaufman, David R; Oppenheim, Michael I; Patel, Vimla L

    2003-01-01

    Computer-assisted provider order entry is a technology that is designed to expedite medical ordering and to reduce the frequency of preventable errors. This paper presents a multifaceted cognitive methodology for the characterization of cognitive demands of a medical information system. Our investigation was informed by the distributed resources (DR) model, a novel approach designed to describe the dimensions of user interfaces that introduce unnecessary cognitive complexity. This method evaluates the relative distribution of external (system) and internal (user) representations embodied in system interaction. We conducted an expert walkthrough evaluation of a commercial order entry system, followed by a simulated clinical ordering task performed by seven clinicians. The DR model was employed to explain variation in user performance and to characterize the relationship of resource distribution and ordering errors. The analysis revealed that the configuration of resources in this ordering application placed unnecessarily heavy cognitive demands on the user, especially on those who lacked a robust conceptual model of the system. The resources model also provided some insight into clinicians' interactive strategies and patterns of associated errors. Implications for user training and interface design based on the principles of human-computer interaction in the medical domain are discussed.

  19. Designing and evaluating Brain Powered Games for cognitive training and rehabilitation in at-risk African children.

    PubMed

    Giordani, B; Novak, B; Sikorskii, A; Bangirana, P; Nakasujja, N; Winn, B M; Boivin, M J

    2015-01-01

    Valid, reliable, accessible, and cost-effective computer-training approaches can be important components in scaling up educational support across resource-poor settings, such as sub-Saharan Africa. The goal of the current study was to develop a computer-based training platform, the Michigan State University Games for Entertainment and Learning laboratory's Brain Powered Games (BPG) package that would be suitable for use with at-risk children within a rural Ugandan context and then complete an initial field trial of that package. After game development was completed with the use of local stimuli and sounds to match the context of the games as closely as possible to the rural Ugandan setting, an initial field study was completed with 33 children (mean age = 8.55 ± 2.29 years, range 6-12 years of age) with HIV in rural Uganda. The Test of Variables of Attention (TOVA), CogState computer battery, and the Non-Verbal Index from the Kaufman Assessment Battery for Children, 2nd edition (KABC-II) were chosen as the outcome measures for pre- and post-intervention testing. The children received approximately 45 min of BPG training several days per week for 2 months (24 sessions). Although some improvements in test scores were evident prior to BPG training, following training, children demonstrated clinically significant changes (significant repeated-measures outcomes with moderate to large effect sizes) on specific TOVA and CogState measures reflecting processing speed, attention, visual-motor coordination, maze learning, and problem solving. Results provide preliminary support for the acceptability, feasibility, and neurocognitive benefit of BPG and its utility as a model platform for computerized cognitive training in cross-cultural low-resource settings.

  20. Effects of standard and explicit cognitive bias modification and computer-administered cognitive-behaviour therapy on cognitive biases and social anxiety.

    PubMed

    Mobini, Sirous; Mackintosh, Bundy; Illingworth, Jo; Gega, Lina; Langdon, Peter; Hoppitt, Laura

    2014-06-01

    This study examines the effects of a single session of Cognitive Bias Modification to induce positive Interpretative bias (CBM-I) using standard or explicit instructions and an analogue of computer-administered CBT (c-CBT) program on modifying cognitive biases and social anxiety. A sample of 76 volunteers with social anxiety attended a research site. At both pre- and post-test, participants completed two computer-administered tests of interpretative and attentional biases and a self-report measure of social anxiety. Participants in the training conditions completed a single session of either standard or explicit CBM-I positive training and a c-CBT program. Participants in the Control (no training) condition completed a CBM-I neutral task matched the active CBM-I intervention in format and duration but did not encourage positive disambiguation of socially ambiguous or threatening scenarios. Participants in both CBM-I programs (either standard or explicit instructions) and the c-CBT condition exhibited more positive interpretations of ambiguous social scenarios at post-test and one-week follow-up as compared to the Control condition. Moreover, the results showed that CBM-I and c-CBT, to some extent, changed negative attention biases in a positive direction. Furthermore, the results showed that both CBM-I training conditions and c-CBT reduced social anxiety symptoms at one-week follow-up. This study used a single session of CBM-I training, however multi-sessions intervention might result in more endurable positive CBM-I changes. A computerised single session of CBM-I and an analogue of c-CBT program reduced negative interpretative biases and social anxiety. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Effects of standard and explicit cognitive bias modification and computer-administered cognitive-behaviour therapy on cognitive biases and social anxiety☆

    PubMed Central

    Mobini, Sirous; Mackintosh, Bundy; Illingworth, Jo; Gega, Lina; Langdon, Peter; Hoppitt, Laura

    2014-01-01

    Background and objectives This study examines the effects of a single session of Cognitive Bias Modification to induce positive Interpretative bias (CBM-I) using standard or explicit instructions and an analogue of computer-administered CBT (c-CBT) program on modifying cognitive biases and social anxiety. Methods A sample of 76 volunteers with social anxiety attended a research site. At both pre- and post-test, participants completed two computer-administered tests of interpretative and attentional biases and a self-report measure of social anxiety. Participants in the training conditions completed a single session of either standard or explicit CBM-I positive training and a c-CBT program. Participants in the Control (no training) condition completed a CBM-I neutral task matched the active CBM-I intervention in format and duration but did not encourage positive disambiguation of socially ambiguous or threatening scenarios. Results Participants in both CBM-I programs (either standard or explicit instructions) and the c-CBT condition exhibited more positive interpretations of ambiguous social scenarios at post-test and one-week follow-up as compared to the Control condition. Moreover, the results showed that CBM-I and c-CBT, to some extent, changed negative attention biases in a positive direction. Furthermore, the results showed that both CBM-I training conditions and c-CBT reduced social anxiety symptoms at one-week follow-up. Limitations This study used a single session of CBM-I training, however multi-sessions intervention might result in more endurable positive CBM-I changes. Conclusions A computerised single session of CBM-I and an analogue of c-CBT program reduced negative interpretative biases and social anxiety. PMID:24412966

  2. Do Athletes Excel at Everyday Tasks?

    PubMed Central

    CHADDOCK, LAURA; NEIDER, MARK B.; VOSS, MICHELLE W.; GASPAR, JOHN G.; KRAMER, ARTHUR F.

    2014-01-01

    Purpose Cognitive enhancements are associated with sport training. We extended the sport-cognition literature by using a realistic street crossing task to examine the multitasking and processing speed abilities of collegiate athletes and nonathletes. Methods Pedestrians navigated trafficked roads by walking on a treadmill in a virtual world, a challenge that requires the quick and simultaneous processing of multiple streams of information. Results Athletes had higher street crossing success rates than nonathletes, as reflected by fewer collisions with moving vehicles. Athletes also showed faster processing speed on a computer-based test of simple reaction time, and shorter reaction times were associated with higher street crossing success rates. Conclusions The results suggest that participation in athletics relates to superior street crossing multitasking abilities and that athlete and nonathlete differences in processing speed may underlie this difference. We suggest that cognitive skills trained in sport may transfer to performance on everyday fast-paced multitasking abilities. PMID:21407125

  3. To Switch or Not to Switch: Role of Cognitive Control in Working Memory Training in Older Adults.

    PubMed

    Basak, Chandramallika; O'Connell, Margaret A

    2016-01-01

    It is currently not known what are the best working memory training strategies to offset the age-related declines in fluid cognitive abilities. In this randomized clinical double-blind trial, older adults were randomly assigned to one of two types of working memory training - one group was trained on a predictable memory updating task (PT) and another group was trained on a novel, unpredictable memory updating task (UT). Unpredictable memory updating, compared to predictable, requires greater demands on cognitive control (Basak and Verhaeghen, 2011a). Therefore, the current study allowed us to evaluate the role of cognitive control in working memory training. All participants were assessed on a set of near and far transfer tasks at three different testing sessions - before training, immediately after the training, and 1.5 months after completing the training. Additionally, individual learning rates for a comparison working memory task (performed by both groups) and the trained task were computed. Training on unpredictable memory updating, compared to predictable, significantly enhanced performance on a measure of episodic memory, immediately after the training. Moreover, individuals with faster learning rates showed greater gains in this episodic memory task and another new working memory task; this effect was specific to UT. We propose that the unpredictable memory updating training, compared to predictable memory updating training, may a better strategy to improve selective cognitive abilities in older adults, and future studies could further investigate the role of cognitive control in working memory training.

  4. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns.

    PubMed

    Jeunet, Camille; N'Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien

    2015-01-01

    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.

  5. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns

    PubMed Central

    Jeunet, Camille; N’Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien

    2015-01-01

    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user. PMID:26625261

  6. Evidence for Narrow Transfer after Short-Term Cognitive Training in Older Adults.

    PubMed

    Souders, Dustin J; Boot, Walter R; Blocker, Kenneth; Vitale, Thomas; Roque, Nelson A; Charness, Neil

    2017-01-01

    The degree to which "brain training" can improve general cognition, resulting in improved performance on tasks dissimilar from the trained tasks (transfer of training), is a controversial topic. Here, we tested the degree to which cognitive training, in the form of gamified training activities that have demonstrated some degree of success in the past, might result in broad transfer. Sixty older adults were randomly assigned to a gamified cognitive training intervention or to an active control condition that involved playing word and number puzzle games. Participants were provided with tablet computers and asked to engage in their assigned training for 30 45-min training sessions over the course of 1 month. Although intervention adherence was acceptable, little evidence for transfer was observed except for the performance of one task that most resembled the gamified cognitive training: There was a trend for greater improvement on a version of the corsi block tapping task for the cognitive training group relative to the control group. This task was very similar to one of the training games. Results suggest that participants were learning specific skills and strategies from game training that influenced their performance on a similar task. However, even this near-transfer effect was weak. Although the results were not positive with respect to broad transfer of training, longer duration studies with larger samples and the addition of a retention period are necessary before the benefit of this specific intervention can be ruled out.

  7. 219. Changes in Functional Networks Underlying Social Cognition Following Cognitive Training in Individuals at Risk for Psychosis

    PubMed Central

    Haut, Kristen; Saxena, Abhishek; Yin, Hong; Carol, Emily; Dodell-Feder, David; Lincoln, Sarah Hope; Tully, Laura; Keshavan, Matcheri; Seidman, Larry J.; Nahum, Mor; Hooker, Christine

    2017-01-01

    Abstract Background: Deficits in social cognition are prominent features of schizophrenia that play a large role in functional impairments and disability. Performance deficits in these domains are associated with altered activity in functional networks, including those that support social cognitive abilities such as emotion recognition. These social cognitive deficits and alterations in neural networks are present prior to the onset of frank psychotic symptoms and thus present a potential target for intervention in early phases of the illness, including in individuals at clinical high risk (CHR) for psychosis. This study assessed changes in social cognitive functional networks following targeted cognitive training (TCT) in CHR individuals. Methods: 14 CHR subjects (7 male, mean age = 21.9) showing attenuated psychotic symptoms as assessed by the SIPS were included in the study. Subjects underwent a clinical evaluation and a functional MRI session prior to and subsequent to completing 40 hours (8 weeks) of targeted cognitive and social cognitive training using Lumosity and SocialVille. 14 matched healthy control (HC) subjects also underwent a single fMRI session as a comparison group for functional activity. Resting state fMRI was acquired as well as fMRI during performance of an emotion recognition task. Group level differences in BOLD activity between HC and CHR group before TCT, and CHR group before and after TCT were computed. Changes in social cognitive network functional connectivity at rest and during task performance was evaluated using seed-based connectivity analyses and psychophysiological interaction (PPI). Results: Prior to training, CHR individuals demonstrated hyperactivity in the amygdala, posterior cingulate, and superior temporal sulcus (STS) during emotion recognition, suggesting inefficient processing. This hyperactivity normalized somewhat after training, with CHR individuals showing less hyperactivity in the amygdala in response to emotional faces. In addition, training was associated with increased connectivity in emotion processing networks, including greater STS-medial prefrontal connectivity and normalization of amygdala connectivity patterns. Conclusion: These results suggest that targeted cognitive training produced improvements in emotion recognition and may be effective in altering functional network connectivity in networks associated with psychosis risk. TCT may be a useful tool for early intervention in individuals at risk for psychotic disorders to address behaviors that impact functional outcome.

  8. Individualised training to address variability of radiologists' performance

    NASA Astrophysics Data System (ADS)

    Sun, Shanghua; Taylor, Paul; Wilkinson, Louise; Khoo, Lisanne

    2008-03-01

    Computer-based tools are increasingly used for training and the continuing professional development of radiologists. We propose an adaptive training system to support individualised learning in mammography, based on a set of real cases, which are annotated with educational content by experienced breast radiologists. The system has knowledge of the strengths and weakness of each radiologist's performance: each radiologist is assessed to compute a profile showing how they perform on different sets of cases, classified by type of abnormality, breast density, and perceptual difficulty. We also assess variability in cognitive aspects of image perception, classifying errors made by radiologists as errors of search, recognition or decision. This is a novel element in our approach. The profile is used to select cases to present to the radiologist. The intelligent and flexible presentation of these cases distinguishes our system from existing training tools. The training cases are organised and indexed by an ontology we have developed for breast radiologist training, which is consistent with the radiologists' profile. Hence, the training system is able to select appropriate cases to compose an individualised training path, addressing the variability of the radiologists' performance. A substantial part of the system, the ontology has been evaluated on a large number of cases, and the training system is under implementation for further evaluation.

  9. Computer-enhanced laparoscopic training system (CELTS): bridging the gap.

    PubMed

    Stylopoulos, N; Cotin, S; Maithel, S K; Ottensmeye, M; Jackson, P G; Bardsley, R S; Neumann, P F; Rattner, D W; Dawson, S L

    2004-05-01

    There is a large and growing gap between the need for better surgical training methodologies and the systems currently available for such training. In an effort to bridge this gap and overcome the disadvantages of the training simulators now in use, we developed the Computer-Enhanced Laparoscopic Training System (CELTS). CELTS is a computer-based system capable of tracking the motion of laparoscopic instruments and providing feedback about performance in real time. CELTS consists of a mechanical interface, a customizable set of tasks, and an Internet-based software interface. The special cognitive and psychomotor skills a laparoscopic surgeon should master were explicitly defined and transformed into quantitative metrics based on kinematics analysis theory. A single global standardized and task-independent scoring system utilizing a z-score statistic was developed. Validation exercises were performed. The scoring system clearly revealed a gap between experts and trainees, irrespective of the task performed; none of the trainees obtained a score above the threshold that distinguishes the two groups. Moreover, CELTS provided educational feedback by identifying the key factors that contributed to the overall score. Among the defined metrics, depth perception, smoothness of motion, instrument orientation, and the outcome of the task are major indicators of performance and key parameters that distinguish experts from trainees. Time and path length alone, which are the most commonly used metrics in currently available systems, are not considered good indicators of performance. CELTS is a novel and standardized skills trainer that combines the advantages of computer simulation with the features of the traditional and popular training boxes. CELTS can easily be used with a wide array of tasks and ensures comparability across different training conditions. This report further shows that a set of appropriate and clinically relevant performance metrics can be defined and a standardized scoring system can be designed.

  10. Working memory training in older adults: Bayesian evidence supporting the absence of transfer.

    PubMed

    Guye, Sabrina; von Bastian, Claudia C

    2017-12-01

    The question of whether working memory training leads to generalized improvements in untrained cognitive abilities is a longstanding and heatedly debated one. Previous research provides mostly ambiguous evidence regarding the presence or absence of transfer effects in older adults. Thus, to draw decisive conclusions regarding the effectiveness of working memory training interventions, methodologically sound studies with larger sample sizes are needed. In this study, we investigated whether or not a computer-based working memory training intervention induced near and far transfer in a large sample of 142 healthy older adults (65 to 80 years). Therefore, we randomly assigned participants to either the experimental group, which completed 25 sessions of adaptive, process-based working memory training, or to the active, adaptive visual search control group. Bayesian linear mixed-effects models were used to estimate performance improvements on the level of abilities, using multiple indicator tasks for near (working memory) and far transfer (fluid intelligence, shifting, and inhibition). Our data provided consistent evidence supporting the absence of near transfer to untrained working memory tasks and the absence of far transfer effects to all of the assessed abilities. Our results suggest that working memory training is not an effective way to improve general cognitive functioning in old age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Do you believe in brain training? A questionnaire about expectations of computerised cognitive training.

    PubMed

    Rabipour, Sheida; Davidson, Patrick S R

    2015-12-15

    "Brain training" (i.e., enhancing, rehabilitating, or simply maintaining cognitive function through deliberate cognitive exercise) is growing rapidly in popularity, yet remains highly controversial. Among the greatest problems in current research is the lack of a measure of participants' expectations, which can influence the degree to which they improve over training (i.e., the placebo effect). Here we created a questionnaire to measure the perceived effectiveness of brain-training software. Given the growth in advertising of these programmes, we sought to determine whether even a brief positive (or negative) message about brain training would increase (or decrease) the reported optimism of participants. We measured participants' expectations at baseline, and then following exposure to separate, brief messages that such programmes have either high or low effectiveness. Based on the knowledge they have gleaned from advertising and other real-world sources, people are relatively optimistic about brain training. However, brief messages can influence reported expectations about brain-training results: Reading a brief positive message can increase reported optimism, whereas reading a brief negative message can decrease it. Older adults appear more optimistic about brain training than young adults, especially when they report being knowledgeable about brain training and computers. These data indicate that perceptions of brain training are malleable to at least some extent, and may vary depending on age and other factors. Our questionnaire can serve as a simple, easily-incorporated tool to assess the face validity of brain training interventions and to create a covariate to account for expectations in statistical analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Influence of Sequential vs. Simultaneous Dual-Task Exercise Training on Cognitive Function in Older Adults

    PubMed Central

    Tait, Jamie L.; Duckham, Rachel L.; Milte, Catherine M.; Main, Luana C.; Daly, Robin M.

    2017-01-01

    Emerging research indicates that exercise combined with cognitive training may improve cognitive function in older adults. Typically these programs have incorporated sequential training, where exercise and cognitive training are undertaken separately. However, simultaneous or dual-task training, where cognitive and/or motor training are performed simultaneously with exercise, may offer greater benefits. This review summary provides an overview of the effects of combined simultaneous vs. sequential training on cognitive function in older adults. Based on the available evidence, there are inconsistent findings with regard to the cognitive benefits of sequential training in comparison to cognitive or exercise training alone. In contrast, simultaneous training interventions, particularly multimodal exercise programs in combination with secondary tasks regulated by sensory cues, have significantly improved cognition in both healthy older and clinical populations. However, further research is needed to determine the optimal characteristics of a successful simultaneous training program for optimizing cognitive function in older people. PMID:29163146

  13. Designing a training tool for imaging mental models

    NASA Technical Reports Server (NTRS)

    Dede, Christopher J.; Jayaram, Geetha

    1990-01-01

    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network.

  14. Historical review of computer-assisted cognitive retraining.

    PubMed

    Lynch, Bill

    2002-10-01

    This article details the introduction and development of the use of microcomputers as adjuncts to traditional cognitive rehabilitation of persons with acquired brain injury. The initial application of video games as therapeutic recreation in the late 1970s was soon followed in the early 1980s by the use of the first personal computers and available educational software. By the mid-1980s, both the IBM PC and Macintosh platforms were established, along with simplified programming languages that allowed individuals without extensive technical expertise to develop their own software. Several rehabilitation clinicians began to produce and market specially written cognitive retraining software for one or the other platform. Their work was detailed and reviewed, as was recently released software from commercial sources. The latter discussion included the latest developments in the rehabilitation applications of personal digital assistants and related organizing, reminding, and dictation devices. A summary of research on the general and specific efficacy of computer-assisted cognitive retraining illustrated the lingering controversy and skepticism that have been associated with this field since its inception. Computer-assisted cognitive retraining (CACR) can be an effective adjunct to a comprehensive program of cognitive rehabilitation. Training needs to be focused, structured, monitored, and as ecologically relevant as possible for optimum effect. Transfer or training or generalizability of skills remains a key issue in the field and should be considered the key criterion in evaluating whether to initiate or continue CACR.

  15. How to Train an Injured Brain? A Pilot Feasibility Study of Home-Based Computerized Cognitive Training.

    PubMed

    Verhelst, Helena; Vander Linden, Catharine; Vingerhoets, Guy; Caeyenberghs, Karen

    2017-02-01

    Computerized cognitive training programs have previously shown to be effective in improving cognitive abilities in patients suffering from traumatic brain injury (TBI). These studies often focused on a single cognitive function or required expensive hardware, making it difficult to be used in a home-based environment. This pilot feasibility study aimed to evaluate the feasibility of a newly developed, home-based, computerized cognitive training program for adolescents who suffered from TBI. Additionally, feasibility of study design, procedures, and measurements were examined. Case series, longitudinal, pilot, feasibility intervention study with one baseline and two follow-up assessments. Nine feasibility outcome measures and criteria for success were defined, including accessibility, training motivation/user experience, technical smoothness, training compliance, participation willingness, participation rates, loss to follow-up, assessment timescale, and assessment procedures. Five adolescent patients (four boys, mean age = 16 years 7 months, standard deviation = 9 months) with moderate to severe TBI in the chronic stage were recruited and received 8 weeks of cognitive training with BrainGames. Effect sizes (Cohen's d) were calculated to determine possible training-related effects. The new cognitive training intervention, BrainGames, and study design and procedures proved to be feasible; all nine feasibility outcome criteria were met during this pilot feasibility study. Estimates of effect sizes showed small to very large effects on cognitive measures and questionnaires, which were retained after 6 months. Our pilot study shows that a longitudinal intervention study comprising our novel, computerized cognitive training program and two follow-up assessments is feasible in adolescents suffering from TBI in the chronic stage. Future studies with larger sample sizes will evaluate training-related effects on cognitive functions and underlying brain structures.

  16. Effects of Video Game Training on Behavioral and Electrophysiological Measures of Attention and Memory: Protocol for a Randomized Controlled Trial.

    PubMed

    Ballesteros, Soledad; Mayas, Julia; Ruiz-Marquez, Eloisa; Prieto, Antonio; Toril, Pilar; Ponce de Leon, Laura; de Ceballos, Maria L; Reales Avilés, José Manuel

    2017-01-24

    Neuroplasticity-based approaches seem to offer promising ways of maintaining cognitive health in older adults and postponing the onset of cognitive decline symptoms. Although previous research suggests that training can produce transfer effects, this study was designed to overcome some limitations of previous studies by incorporating an active control group and the assessment of training expectations. The main objectives of this study are (1) to evaluate the effects of a randomized computer-based intervention consisting of training older adults with nonaction video games on brain and cognitive functions that decline with age, including attention and spatial working memory, using behavioral measures and electrophysiological recordings (event-related potentials [ERPs]) just after training and after a 6-month no-contact period; (2) to explore whether motivation, engagement, or expectations might account for possible training-related improvements; and (3) to examine whether inflammatory mechanisms assessed with noninvasive measurement of C-reactive protein in saliva impair cognitive training-induced effects. A better understanding of these mechanisms could elucidate pathways that could be targeted in the future by either behavioral or neuropsychological interventions. A single-blinded randomized controlled trial with an experimental group and an active control group, pretest, posttest, and 6-month follow-up repeated measures design is used in this study. A total of 75 cognitively healthy older adults were randomly distributed into experimental and active control groups. Participants in the experimental group received 16 1-hour training sessions with cognitive nonaction video games selected from Lumosity, a commercial brain training package. The active control group received the same number of training sessions with The Sims and SimCity, a simulation strategy game. We have recruited participants, have conducted the training protocol and pretest assessments, and are currently conducting posttest evaluations. The study will conclude in the first semester of 2017. Data analysis will take place during 2017. The primary outcome is transfer of benefit from training to attention and working memory functions and the neural mechanisms underlying possible cognitive improvements. We expect that mental stimulation with video games will improve attention and memory both at the behavioral level and in ERP components promoting brain and mental health and extending independence among elderly people by avoiding the negative personal and economic consequences of long-term care. Clinicaltrials.gov NCT02796508; https://clinicaltrials.gov/ct2/show/NCT02796508 (archived by WebCite at http://www.webcitation.org/6nFeKeFNB). ©Soledad Ballesteros, Julia Mayas, Eloisa Ruiz-Marquez, Antonio Prieto, Pilar Toril, Laura Ponce de Leon, Maria L de Ceballos, José Manuel Reales Avilés. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 24.01.2017.

  17. [The application of new technologies to solving maths problems for students with learning disabilities: the 'underwater school'].

    PubMed

    Miranda-Casas, A; Marco-Taverner, R; Soriano-Ferrer, M; Melià de Alba, A; Simó-Casañ, P

    2008-01-01

    Different procedures have demonstrated efficacy to teach cognitive and metacognitive strategies to problem solving in mathematics. Some studies have used computer-based problem solving instructional programs. To analyze in students with learning disabilities the efficacy of a cognitive strategies training for problem solving, with three instructional delivery formats: a teacher-directed program (T-D), a computer-assisted instructional (CAI) program, and a combined program (T-D + CAI). Forty-four children with mathematics learning disabilities, between 8 and 10 years old participated in this study. The children were randomly assigned to one of the three instructional formats and a control group without cognitive strategies training. In the three instructional conditions which were compared all the students learnt problems solving linguistic and visual cognitive strategies trough the self-instructional procedure. Several types of measurements were used for analysing the possible differential efficacy of the three instructional methods implemented: solving problems tests, marks in mathematics, internal achievement responsibility scale, and school behaviours teacher ratings. Our findings show that the T-D training group and the T-D + CAI group improved significantly on math word problem solving and on marks in Maths from pre- to post-testing. In addition, the results indicated that the students of the T-D + CAI group solved more real-life problems and developed more internal attributions compared to both control and CAI groups. Finally, with regard to school behaviours, improvements in school adjustment and learning problems were observed in the students of the group with a combined instructional format (T-D + CAI).

  18. Computerized tabletop games as a form of a video game training for old-old.

    PubMed

    Cujzek, Marina; Vranic, Andrea

    2017-11-01

    This research aimed at investigating the utility of a computerized version of a cognitively stimulating activity as a video game intervention for elderly. The study focused on the effect of a 6-week extensive practice intervention on aspects of cognitive functioning (vigilance, working memory (WM), inhibition, reasoning) of old-old participants (N = 29), randomly assigned to trained or active control group. The difference between groups was in the content of the extended video game practice - cognitively complex card game for trained and computerized version of a simple dice-game of chance for control participants. A pretest, posttest and a 4-month follow-up measurement was conducted. Results revealed improvements in both groups, except for improved reasoning found only in trained participants. These results suggest that: (1) improvements are dependent on the complexity of the program, (2) cognitively stimulating activity are a valid training procedure for old-old, (3) novelty of computer use is an important factor in determining training efficacy.

  19. Envisioning future cognitive telerehabilitation technologies: a co-design process with clinicians.

    PubMed

    How, Tuck-Voon; Hwang, Amy S; Green, Robin E A; Mihailidis, Alex

    2017-04-01

    Purpose Cognitive telerehabilitation is the concept of delivering cognitive assessment, feedback, or therapeutic intervention at a distance through technology. With the increase of mobile devices, wearable sensors, and novel human-computer interfaces, new possibilities are emerging to expand the cognitive telerehabilitation paradigm. This research aims to: (1) explore design opportunities and considerations when applying emergent pervasive computing technologies to cognitive telerehabilitation and (2) develop a generative co-design process for use with rehabilitation clinicians. Methods We conducted a custom co-design process that used design cards, probes, and design sessions with traumatic brain injury (TBI) clinicians. All field notes and transcripts were analyzed qualitatively. Results Potential opportunities for TBI cognitive telerehabilitation exist in the areas of communication competency, executive functioning, emotional regulation, energy management, assessment, and skill training. Designers of TBI cognitive telerehabilitation technologies should consider how technologies are adapted to a patient's physical/cognitive/emotional state, their changing rehabilitation trajectory, and their surrounding life context (e.g. social considerations). Clinicians were receptive to our co-design approach. Conclusion Pervasive computing offers new opportunities for life-situated cognitive telerehabilitation. Convivial design methods, such as this co-design process, are a helpful way to explore new design opportunities and an important space for further methodological development. Implications for Rehabilitation Designers of rehabilitation technologies should consider how to extend current design methods in order to facilitate the creative contribution of rehabilitation stakeholders. This co-design approach enables a fuller participation from rehabilitation clinicians at the front-end of design. Pervasive computing has the potential to: extend the duration and intensity of cognitive telerehabilitation training (including the delivery of 'booster' sessions or maintenance therapies); provide assessment and treatment in the context of a traumatic brain injury (TBI) patient's everyday life (thereby enhancing generalization); and permit time-sensitive interventions. Long-term use of pervasive computing for TBI cognitive telerehabilitation should take into account a patient's changing recovery trajectory, their meaningful goals, and their journey from loss to redefinition.

  20. Cognitive training on stroke patients via virtual reality-based serious games.

    PubMed

    Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa

    2017-02-01

    Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.

  1. The effect of cognitive-based training for the healthy older people: A meta-analysis of randomized controlled trials

    PubMed Central

    Chiu, Huei-Ling; Chu, Hsin; Tsai, Jui-Chen; Liu, Doresses; Chen, Ying-Ren; Yang, Hui-Ling

    2017-01-01

    Background From the perspective of disease prevention, the enhancement of cognitive function among the healthy older people has become an important issue in many countries lately. This study aim to investigate the effect of cognitive-based training on the overall cognitive function, memory, attention, executive function, and visual-spatial ability of the healthy older people. Methods Cochrane, PubMed, EMBASE, MEDLINE, PsycINFO, and CINAHL of selected randomized controlled trials (RCTs), and previous systematic reviews were searched for eligible studies. The population focused on this study were healthy older people who participated in randomized controlled trials that investigated the effectiveness of cognitive-based training. The outcomes including change in overall cognitive function, memory, attention, executive function, and visual-spatial ability. Results We collected a total of 31 RCTs, the results showed that cognitive-based training has a moderate effect on overall cognitive function (g = 0.419; 95%CI = 0.205–0.634) and executive function (g = 0.420; 95%CI = 0.239–0.602), and a small effect on the memory (g = 0.354; 95%CI = 0.244–0.465), attention (g = 0.218; 95%CI = 0.125–0.311), and visual-spatial ability (g = 0.183;95%CI = 0.015–0.352) in healthy older people. Subgroup analysis indicated the intervention characteristics of ≧3 times each week (p = 0.042), ≧8 total training weeks (p = 0.003) and ≧24 total training sessions (p = 0.040) yields a greater effect size. Conclusions Cognitive-based training is effective for the healthy older people. This improvement can represent a clinically important benefit, provide information about the use of cognitive-based training in healthy older people, and help the healthy older people obtain the greatest possible benefit in health promotion and disease prevention. PMID:28459873

  2. Combining computerized social cognitive training with neuroplasticity-based auditory training in schizophrenia.

    PubMed

    Sacks, Stephanie; Fisher, Melissa; Garrett, Coleman; Alexander, Phillip; Holland, Christine; Rose, Demian; Hooker, Christine; Vinogradov, Sophia

    2013-01-01

    Social cognitive deficits are an important treatment target in schizophrenia, but it is unclear to what degree they require specialized interventions and which specific components of behavioral interventions are effective. In this pilot study, we explored the effects of a novel computerized neuroplasticity-based auditory training delivered in conjunction with computerized social cognition training (SCT) in patients with schizophrenia. Nineteen clinically stable schizophrenia subjects performed 50 hours of computerized exercises that place implicit, increasing demands on auditory perception, plus 12 hours of computerized training in emotion identification, social perception, and theory of mind tasks. All subjects were assessed with MATRICS-recommended measures of neurocognition and social cognition, plus a measure of self-referential source memory before and after the computerized training. Subjects showed significant improvements on multiple measures of neurocognition. Additionally, subjects showed significant gains on measures of social cognition, including the MSCEIT Perceiving Emotions, MSCEIT Managing Emotions, and self-referential source memory, plus a significant decrease in positive symptoms. Computerized training of auditory processing/verbal learning in schizophrenia results in significant basic neurocognitive gains. Further, addition of computerized social cognition training results in significant gains in several social cognitive outcome measures. Computerized cognitive training that directly targets social cognitive processes can drive improvements in these crucial functions.

  3. Brain computer interface for operating a robot

    NASA Astrophysics Data System (ADS)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  4. Planning and problem-solving training for patients with schizophrenia: a randomized controlled trial

    PubMed Central

    2011-01-01

    Background The purpose of this study was to assess whether planning and problem-solving training is more effective in improving functional capacity in patients with schizophrenia than a training program addressing basic cognitive functions. Methods Eighty-nine patients with schizophrenia were randomly assigned either to a computer assisted training of planning and problem-solving or a training of basic cognition. Outcome variables included planning and problem-solving ability as well as functional capacity, which represents a proxy measure for functional outcome. Results Planning and problem-solving training improved one measure of planning and problem-solving more strongly than basic cognition training, while two other measures of planning did not show a differential effect. Participants in both groups improved over time in functional capacity. There was no differential effect of the interventions on functional capacity. Conclusion A differential effect of targeting specific cognitive functions on functional capacity could not be established. Small differences on cognitive outcome variables indicate a potential for differential effects. This will have to be addressed in further research including longer treatment programs and other settings. Trial registration ClinicalTrials.gov NCT00507988 PMID:21527028

  5. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial.

    PubMed

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p  = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p  < 0.005). Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.

  6. Working memory training and semantic structuring improves remembering future events, not past events.

    PubMed

    Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut

    2015-01-01

    Objectives. Memory training in combination with practice in semantic structuring and word fluency has been shown to improve memory performance. This study investigated the efficacy of a working memory training combined with exercises in semantic structuring and word fluency and examined whether training effects generalize to other cognitive tasks. Methods. In this double-blind randomized control study, 36 patients with memory impairments following brain damage were allocated to either the experimental or the active control condition, with both groups receiving 9 hours of therapy. The experimental group received a computer-based working memory training and exercises in word fluency and semantic structuring. The control group received the standard memory therapy provided in the rehabilitation center. Patients were tested on a neuropsychological test battery before and after therapy, resulting in composite scores for working memory; immediate, delayed, and prospective memory; word fluency; and attention. Results. The experimental group improved significantly in working memory and word fluency. The training effects also generalized to prospective memory tasks. No specific effect on episodic memory could be demonstrated. Conclusion. Combined treatment of working memory training with exercises in semantic structuring is an effective method for cognitive rehabilitation of organic memory impairment. © The Author(s) 2014.

  7. Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training.

    PubMed

    Valk, Sofie L; Bernhardt, Boris C; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D Louis; Singer, Tania

    2017-10-01

    Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation.

  8. Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training

    PubMed Central

    Valk, Sofie L.; Bernhardt, Boris C.; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D. Louis; Singer, Tania

    2017-01-01

    Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation. PMID:28983507

  9. Cognitive Rehabilitation in Bilateral Vestibular Patients: A Computational Perspective.

    PubMed

    Ellis, Andrew W; Schöne, Corina G; Vibert, Dominique; Caversaccio, Marco D; Mast, Fred W

    2018-01-01

    There is evidence that vestibular sensory processing affects, and is affected by, higher cognitive processes. This is highly relevant from a clinical perspective, where there is evidence for cognitive impairments in patients with peripheral vestibular deficits. The vestibular system performs complex probabilistic computations, and we claim that understanding these is important for investigating interactions between vestibular processing and cognition. Furthermore, this will aid our understanding of patients' self-motion perception and will provide useful information for clinical interventions. We propose that cognitive training is a promising way to alleviate the debilitating symptoms of patients with complete bilateral vestibular loss (BVP), who often fail to show improvement when relying solely on conventional treatment methods. We present a probabilistic model capable of processing vestibular sensory data during both passive and active self-motion. Crucially, in our model, knowledge from multiple sources, including higher-level cognition, can be used to predict head motion. This is the entry point for cognitive interventions. Despite the loss of sensory input, the processing circuitry in BVP patients is still intact, and they can still perceive self-motion when the movement is self-generated. We provide computer simulations illustrating self-motion perception of BVP patients. Cognitive training may lead to more accurate and confident predictions, which result in decreased weighting of sensory input, and thus improved self-motion perception. Using our model, we show the possible impact of cognitive interventions to help vestibular rehabilitation in patients with BVP.

  10. Effects of Endurance Training Combined With Cognitive Remediation on Everyday Functioning, Symptoms, and Cognition in Multiepisode Schizophrenia Patients

    PubMed Central

    Malchow, Berend; Keller, Katriona; Hasan, Alkomiet; Dörfler, Sebastian; Schneider-Axmann, Thomas; Hillmer-Vogel, Ursula; Honer, William G.; Schulze, Thomas G.; Niklas, Andree; Wobrock, Thomas; Schmitt, Andrea; Falkai, Peter

    2015-01-01

    Aerobic exercise has been shown to improve symptoms in multiepisode schizophrenia, including cognitive impairments, but results are inconsistent. Therefore, we evaluated the effects of an enriched environment paradigm consisting of bicycle ergometer training and add-on computer-assisted cognitive remediation (CACR) training. To our knowledge, this is the first study to evaluate such an enriched environment paradigm in multiepisode schizophrenia. Twenty-two multiepisode schizophrenia patients and 22 age- and gender-matched healthy controls underwent 3 months of endurance training (30min, 3 times/wk); CACR training (30min, 2 times/wk) was added from week 6. Twenty-one additionally recruited schizophrenia patients played table soccer (known as “foosball” in the United States) over the same period and also received the same CACR training. At baseline and after 6 weeks and 3 months, we measured the Global Assessment of Functioning (GAF), Social Adjustment Scale-II (SAS-II), schizophrenia symptoms (Positive and Negative Syndrome Scale), and cognitive domains (Verbal Learning Memory Test [VLMT], Wisconsin Card Sorting Test [WCST], and Trail Making Test). After 3 months, we observed a significant improvement in GAF and in SAS-II social/leisure activities and household functioning adaptation in the endurance training augmented with cognitive remediation, but not in the table soccer augmented with cognitive remediation group. The severity of negative symptoms and performance in the VLMT and WCST improved significantly in the schizophrenia endurance training augmented with cognitive remediation group from week 6 to the end of the 3-month training period. Future studies should investigate longer intervention periods to show whether endurance training induces stable improvements in everyday functioning. PMID:25782770

  11. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance.

    PubMed

    Kable, Joseph W; Caulfield, M Kathleen; Falcone, Mary; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Hornik, Robert; Diefenbach, Paul; Lee, Frank J; Lerman, Caryn

    2017-08-02

    Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate rewards. Activity in these regions may be enhanced through adaptive cognitive training. Commercial brain training programs claim to improve a broad range of mental processes; however, evidence for transfer beyond trained tasks is mixed. We undertook the first randomized controlled trial of the effects of commercial adaptive cognitive training (Lumosity) on neural activity and decision-making in young adults ( N = 128) compared with an active control (playing on-line video games). We found no evidence for relative benefits of cognitive training with respect to changes in decision-making behavior or brain response, or for cognitive task performance beyond those specifically trained. Copyright © 2017 the authors 0270-6474/17/377390-13$15.00/0.

  12. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance

    PubMed Central

    Caulfield, M. Kathleen; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Lee, Frank J.; Lerman, Caryn

    2017-01-01

    Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate rewards. Activity in these regions may be enhanced through adaptive cognitive training. Commercial brain training programs claim to improve a broad range of mental processes; however, evidence for transfer beyond trained tasks is mixed. We undertook the first randomized controlled trial of the effects of commercial adaptive cognitive training (Lumosity) on neural activity and decision-making in young adults (N = 128) compared with an active control (playing on-line video games). We found no evidence for relative benefits of cognitive training with respect to changes in decision-making behavior or brain response, or for cognitive task performance beyond those specifically trained. PMID:28694338

  13. Cognitive Effects of Mindfulness Training: Results of a Pilot Study Based on a Theory Driven Approach

    PubMed Central

    Wimmer, Lena; Bellingrath, Silja; von Stockhausen, Lisa

    2016-01-01

    The present paper reports a pilot study which tested cognitive effects of mindfulness practice in a theory-driven approach. Thirty-four fifth graders received either a mindfulness training which was based on the mindfulness-based stress reduction approach (experimental group), a concentration training (active control group), or no treatment (passive control group). Based on the operational definition of mindfulness by Bishop et al. (2004), effects on sustained attention, cognitive flexibility, cognitive inhibition, and data-driven as opposed to schema-based information processing were predicted. These abilities were assessed in a pre-post design by means of a vigilance test, a reversible figures test, the Wisconsin Card Sorting Test, a Stroop test, a visual search task, and a recognition task of prototypical faces. Results suggest that the mindfulness training specifically improved cognitive inhibition and data-driven information processing. PMID:27462287

  14. Cognitive Effects of Mindfulness Training: Results of a Pilot Study Based on a Theory Driven Approach.

    PubMed

    Wimmer, Lena; Bellingrath, Silja; von Stockhausen, Lisa

    2016-01-01

    The present paper reports a pilot study which tested cognitive effects of mindfulness practice in a theory-driven approach. Thirty-four fifth graders received either a mindfulness training which was based on the mindfulness-based stress reduction approach (experimental group), a concentration training (active control group), or no treatment (passive control group). Based on the operational definition of mindfulness by Bishop et al. (2004), effects on sustained attention, cognitive flexibility, cognitive inhibition, and data-driven as opposed to schema-based information processing were predicted. These abilities were assessed in a pre-post design by means of a vigilance test, a reversible figures test, the Wisconsin Card Sorting Test, a Stroop test, a visual search task, and a recognition task of prototypical faces. Results suggest that the mindfulness training specifically improved cognitive inhibition and data-driven information processing.

  15. Brain training in older adults: evidence of transfer to memory span performance and pseudo-Matthew effects.

    PubMed

    McDougall, Siné; House, Becky

    2012-01-01

    In this study the effects of 'brain training' using the Nintendo DS Brain Training program were examined in two groups of older adults; the cognitive performance of an experimental group (n = 21) who were asked to use the Nintendo DS regularly over a 6-week period was compared with the control group (n = 20). Groups were matched on age (mean age = 74 years), education, computer experience, daily activities (time spent reading or watching television), and initial scores of Wechsler Adult Intelligence Scale. Analyses revealed that improvements were primarily in the Digit Span Test, specifically Digits Backwards. Although the Brain Training package appeared to have some efficacy, other factors such as perceived quality of life and perceived cognitive functioning were at least equally important in determining training outcomes. The implications of these findings for cognitive training are discussed.

  16. [Alpha power voluntary increasing training for cognition enhancement study].

    PubMed

    Alekseeva, M V; Balioz, N V; Muravleva, K B; Sapina, E V; Bazanova, O M

    2012-01-01

    With the aim simultaneous alpha EEG stimulating and EMG decreasing biofeedback training impact on the alpha-activity and cognitive functions 27 healthy male subjects (18-34 years) were investigated in pre- and post 10 training sessions of the voluntary increasing alpha power in individual upper alpha range. The accuracy of conceptual span task, fluency and flexibility in alternatives use task performance and alpha-activity indices were compared in real (14 participants) and sham (13 participants) biofeedback groups for the discrimination of the feedback role in training. The follow up effect oftrainings was studied through month over the training sessions. Results showed that alpha biofeedback training enhanced the fluency and accuracy in cognitive performance, increased resting frequency, width and power in individual upper alpha range only in participants with low baseline alpha frequency. While mock biofeedback increased resting alpha power only in participants with high baseline resting alpha frequency and did not change the cognitive performance. Biofeedback training eliminated the alpha power decrease in response to arithmetic task in both with high and low alpha frequency participants and this effect was followed up over the month. Mock biofeedback training has no such effect. It could be concluded that alpha-EEG-EMG biofeedback has application not only for cognition enhancement, but also in prognostic aims in clinical practice and brain-computer interface technology.

  17. Multi-domain training in healthy old age: Hotel Plastisse as an iPad-based serious game to systematically compare multi-domain and single-domain training.

    PubMed

    Binder, Julia C; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F; Jäncke, Lutz; Martin, Mike

    2015-01-01

    Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly.

  18. Multi-domain training in healthy old age: Hotel Plastisse as an iPad-based serious game to systematically compare multi-domain and single-domain training

    PubMed Central

    Binder, Julia C.; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F.; Jäncke, Lutz; Martin, Mike

    2015-01-01

    Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly. PMID:26257643

  19. Computerised working-memory focused cognitive remediation therapy for psychosis--A preliminary study.

    PubMed

    Hargreaves, A; Dillon, R; Anderson-Schmidt, H; Corvin, A; Fitzmaurice, B; Castorina, M; Robertson, I H; Donohoe, G

    2015-12-01

    Cognitive deficits are a core feature of schizophrenia and related psychotic disorders and are associated with decreased levels of functioning. Behavioural interventions have shown success in remediating these deficits; determining how best to maximise this benefit while minimising the cost is an important next step in optimising this intervention for clinical use. To examine the effects of a novel working-memory focused cognitive remediation (CR) training on cognitive difficulties based on internet delivery of training and weekly telephone support. Participants with a diagnosis of psychosis (n=56) underwent either 8 weeks of CR (approximately 20 h) or 8 weeks of treatment as usual (TAU). General cognitive ability, working memory and episodic memory were measured both pre and post intervention for all participants. In addition to improvements on trained working memory tasks, CR training was associated with significant improvements in two tests of verbal episodic memory. No association between CR and changes in general cognitive ability was observed. Effect sizes for statistically significant changes in memory were comparable to those reported in the literature based primarily on 1:1 training. The cognitive benefits observed in this non-randomised preliminary study indicate that internet-based working memory training can be an effective cognitive remediation therapy. The successes and challenges of an internet-based treatment are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Family and home in cognitive rehabilitation after brain injury: The importance of family oriented interventions.

    PubMed

    Wulf-Andersen, Camilla; Mogensen, Jesper

    2017-01-01

    Acquired brain injury (ABI) severely affects both the injured patient and her/his family. This fact alone calls for a therapeutic approach addressing not only the individual victim of ABI but also her/his family. Additionally, the optimal outcome of posttraumatic cognitive rehabilitation may be best obtained by supplementing the institution-based cognitive training with home-based training. Moving cognitive training and other therapeutic interventions into the home environment does, however, constitute an additional challenge to the family structure and psychological wellbeing of all family members. We presently argue in favour of an increased utilization of family-based intervention programs for the families of brain injured patients - in general and especially in case of utilization of home-based rehabilitative training.

  1. Implementing cognitive remediation therapy (CRT) in a mental health service: staff training.

    PubMed

    Dark, Frances; Newman, Ellie; Harris, Meredith; Cairns, Alice; Simpson, Michael; Gore-Jones, Victoria; Whiteford, Harvey; Harvey, Carol; Crompton, David

    2016-04-01

    This paper describes the establishment of training in cognitive remediation for psychosis within a community mental health service. Clinical staff working in the community of a mental health service were surveyed to ascertain their interest in cognitive aspects of psychosis and skills training in cognitive remediation (CR). Based on the results of the survey a tiered training programme was established with attendance figures reported for each level of training. Fidelity assessment was conducted on the five CR programmes operating. Of 106 clinical staff working in the community with people diagnosed with a psychotic illness 51 completed the survey (48% response rate). The training needs varied with all 106 staff receiving the fundamental (mandatory) training and 51 staff receiving CR facilitator training. Thirty three percent of staff trained as facilitators were delivering CR. Up skilling the mental health workforce to incorporate an understanding of the cognitive aspects of psychosis into care delivery can be facilitated by a tiered training structure. Fundamental training on the psychosocial aspects of psychosis can act as a platform for focussed CR skills based training. There is also a need for accessible therapy based supervision for staff wishing to develop competencies as CR therapists. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  2. Designing simulator-based training: an approach integrating cognitive task analysis and four-component instructional design.

    PubMed

    Tjiam, Irene M; Schout, Barbara M A; Hendrikx, Ad J M; Scherpbier, Albert J J M; Witjes, J Alfred; van Merriënboer, Jeroen J G

    2012-01-01

    Most studies of simulator-based surgical skills training have focused on the acquisition of psychomotor skills, but surgical procedures are complex tasks requiring both psychomotor and cognitive skills. As skills training is modelled on expert performance consisting partly of unconscious automatic processes that experts are not always able to explicate, simulator developers should collaborate with educational experts and physicians in developing efficient and effective training programmes. This article presents an approach to designing simulator-based skill training comprising cognitive task analysis integrated with instructional design according to the four-component/instructional design model. This theory-driven approach is illustrated by a description of how it was used in the development of simulator-based training for the nephrostomy procedure.

  3. Studying distributed cognition of simulation-based team training with DiCoT.

    PubMed

    Rybing, Jonas; Nilsson, Heléne; Jonson, Carl-Oscar; Bang, Magnus

    2016-03-01

    Health care organizations employ simulation-based team training (SBTT) to improve skill, communication and coordination in a broad range of critical care contexts. Quantitative approaches, such as team performance measurements, are predominantly used to measure SBTTs effectiveness. However, a practical evaluation method that examines how this approach supports cognition and teamwork is missing. We have applied Distributed Cognition for Teamwork (DiCoT), a method for analysing cognition and collaboration aspects of work settings, with the purpose of assessing the methodology's usefulness for evaluating SBTTs. In a case study, we observed and analysed four Emergo Train System® simulation exercises where medical professionals trained emergency response routines. The study suggests that DiCoT is an applicable and learnable tool for determining key distributed cognition attributes of SBTTs that are of importance for the simulation validity of training environments. Moreover, we discuss and exemplify how DiCoT supports design of SBTTs with a focus on transfer and validity characteristics. Practitioner Summary: In this study, we have evaluated a method to assess simulation-based team training environments from a cognitive ergonomics perspective. Using a case study, we analysed Distributed Cognition for Teamwork (DiCoT) by applying it to the Emergo Train System®. We conclude that DiCoT is useful for SBTT evaluation and simulator (re)design.

  4. Cognitive and physical training for the elderly: evaluating outcome efficacy by means of neurophysiological synchronization.

    PubMed

    Frantzidis, Christos A; Ladas, Aristea-Kiriaki I; Vivas, Ana B; Tsolaki, Magda; Bamidis, Panagiotis D

    2014-07-01

    Recent neuroscientific research has demonstrated that both healthy and pathological aging induces alterations in the co-operative capacity of neuronal populations in the brain. Both compensatory and neurodegenerative mechanisms contribute to neurophysiological synchronization patterns, which provide a valuable marker for age-related cognitive decline. In this study, we propose that neuroplasticity-based training may facilitate coherent interaction of distant brain regions and consequently enhance cognitive performance in elderly people. If this is true, this would make neurophysiological synchronization a valid outcome measure to assess the efficacy of non-pharmacological interventions to prevent or delay age-related cognitive decline. The present study aims at providing an objective, synchronization-based tool to assess cognitive and/or physical interventions, adopting the notion of Relative Wavelet Entropy. This mathematical model employs a robust and parameter-free synchronization metric. By using data mining techniques, a distance value was computed for all participants so as to quantify the proximity of their individual profile to the mean group synchronization increase. In support of our hypothesis, results showed a significant increase in synchronization, for four electrode pairs, in the intervention group as compared to the active control group. It is concluded that the novel introduction of neurophysiological synchronization features could be used as a valid and reliable outcome measure; while the distance-based analysis could provide a reliable means of evaluating individual benefits. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Virtual reality-based cognitive training for drug abusers: A randomised controlled trial.

    PubMed

    Man, David W K

    2018-05-08

    Non-pharmacological means are being developed to enhance cognitive abilities in drug abusers. This study evaluated virtual reality (VR) as an intervention tool for enhancing cognitive and vocational outcomes in 90 young ketamine users (KU) randomly assigned to a treatment group (virtual reality group, VRG; tutor-administered group, TAG) or wait-listed control group (CG). Two training programmes with similar content but different delivery modes (VR-based and manual-based) were applied using a virtual boutique as a training scenario. Outcome assessments comprised the Digit Vigilance Test, Rivermead Behavioural Memory Test, Wisconsin Cart Sorting Test, work-site test and self-efficacy pre- and post-test and during 3- and 6-month follow-ups. The VRG exhibited significant improvements in attention and improvements in memory that were maintained after 3 months. Both the VRG and TAG exhibited significantly improved vocational skills after training which were maintained during follow-up, and improved self-efficacy. VR-based cognitive training might target cognitive problems in KU.

  6. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age

    PubMed Central

    Passow, Susanne; Thurm, Franka; Li, Shu-Chen

    2017-01-01

    Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate short- and long-term cognitive and brain plasticity in old age. PMID:28280465

  7. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks

    PubMed Central

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper. PMID:27044001

  8. Investigating the Impact of Hearing Aid Use and Auditory Training on Cognition, Depressive Symptoms, and Social Interaction in Adults With Hearing Loss: Protocol for a Crossover Trial.

    PubMed

    Nkyekyer, Joanna; Meyer, Denny; Blamey, Peter J; Pipingas, Andrew; Bhar, Sunil

    2018-03-23

    Sensorineural hearing loss is the most common sensory deficit among older adults. Some of the psychosocial consequences of this condition include difficulty in understanding speech, depression, and social isolation. Studies have shown that older adults with hearing loss show some age-related cognitive decline. Hearing aids have been proven as successful interventions to alleviate sensorineural hearing loss. In addition to hearing aid use, the positive effects of auditory training-formal listening activities designed to optimize speech perception-are now being documented among adults with hearing loss who use hearing aids, especially new hearing aid users. Auditory training has also been shown to produce prolonged cognitive performance improvements. However, there is still little evidence to support the benefits of simultaneous hearing aid use and individualized face-to-face auditory training on cognitive performance in adults with hearing loss. This study will investigate whether using hearing aids for the first time will improve the impact of individualized face-to-face auditory training on cognition, depression, and social interaction for adults with sensorineural hearing loss. The rationale for this study is based on the hypothesis that, in adults with sensorineural hearing loss, using hearing aids for the first time in combination with individualized face-to-face auditory training will be more effective for improving cognition, depressive symptoms, and social interaction rather than auditory training on its own. This is a crossover trial targeting 40 men and women between 50 and 90 years of age with either mild or moderate symmetric sensorineural hearing loss. Consented, willing participants will be recruited from either an independent living accommodation or via a community database to undergo a 6-month intensive face-to-face auditory training program (active control). Participants will be assigned in random order to receive hearing aid (intervention) for either the first 3 or last 3 months of the 6-month auditory training program. Each participant will be tested at baseline, 3, and 6 months using a neuropsychological battery of computer-based cognitive assessments, together with a depression symptom instrument and a social interaction measure. The primary outcome will be cognitive performance with regard to spatial working memory. Secondary outcome measures include other cognition performance measures, depressive symptoms, social interaction, and hearing satisfaction. Data analysis is currently under way and the first results are expected to be submitted for publication in June 2018. Results from the study will inform strategies for aural rehabilitation, hearing aid delivery, and future hearing loss intervention trials. ClinicalTrials.gov NCT03112850; https://clinicaltrials.gov/ct2/show/NCT03112850 (Archived by WebCite at http://www.webcitation.org/6xz12fD0B). ©Joanna Nkyekyer, Denny Meyer, Peter J Blamey, Andrew Pipingas, Sunil Bhar. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.03.2018.

  9. Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia

    PubMed Central

    Dale, Corby L.; Brown, Ethan G.; Fisher, Melissa; Herman, Alexander B.; Dowling, Anne F.; Hinkley, Leighton B.; Subramaniam, Karuna; Nagarajan, Srikantan S.; Vinogradov, Sophia

    2016-01-01

    Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory. PMID:26152668

  10. Comparison of Cognitive Change after Working Memory Training and Logic and Planning Training in Healthy Older Adults.

    PubMed

    Goghari, Vina M; Lawlor-Savage, Linette

    2017-01-01

    Recent attention has focused on the benefits of cognitive training in healthy adults. Many commercial cognitive training programs are available given the attraction of not only bettering one's cognitive capacity, but also potentially preventing age-related declines, which is of particular interest to older adults. The issue of whether cognitive training can improve performance within cognitive domains not trained (i.e., far transfer) is controversial, with meta-analyses of cognitive training both supporting and falsifying this claim. More support is present for the near transfer (i.e., transfer in cognitive domain trained) of cognitive training; however, not in all studies. To date, no studies have compared working memory training to training higher-level processes themselves, namely logic and planning. We studied 97 healthy older adults above the age of 65. Healthy older adults completed either an 8-week web-based cognitive training program on working memory or logic and planning. An additional no-training control group completed two assessments 8-weeks apart. Participants were assessed on cognitive measures of near and far transfer, including working memory, planning, reasoning, processing speed, verbal fluency, cognitive flexibility, and creativity. Participants improved on the trained tasks from the first day to last day of training. Bayesian analyses demonstrated no near or far transfer effects after cognitive training. These results support the conclusion that performance-adaptive computerized cognitive training may not enhance cognition in healthy older adults. Our lack of findings could be due to a variety of reasons, including studying a cohort of healthy older adults that were performing near their cognitive ceiling, employing a training protocol that was not sufficient to produce a change, or that no true findings exist. Research suggests numerous study factors that can moderate the results. In addition, the role of psychological variables, such as expectations and motivation to train, are critical in understanding the effects of cognitive training.

  11. A Cognitive Computing Approach for Classification of Complaints in the Insurance Industry

    NASA Astrophysics Data System (ADS)

    Forster, J.; Entrup, B.

    2017-10-01

    In this paper we present and evaluate a cognitive computing approach for classification of dissatisfaction and four complaint specific complaint classes in correspondence documents between insurance clients and an insurance company. A cognitive computing approach includes the combination classical natural language processing methods, machine learning algorithms and the evaluation of hypothesis. The approach combines a MaxEnt machine learning algorithm with language modelling, tf-idf and sentiment analytics to create a multi-label text classification model. The result is trained and tested with a set of 2500 original insurance communication documents written in German, which have been manually annotated by the partnering insurance company. With a F1-Score of 0.9, a reliable text classification component has been implemented and evaluated. A final outlook towards a cognitive computing insurance assistant is given in the end.

  12. Enabling computer decisions based on EEG input.

    PubMed

    Culpepper, Benjamin J; Keller, Robert M

    2003-12-01

    Multilayer neural networks were successfully trained to classify segments of 12-channel electroencephalogram (EEG) data into one of five classes corresponding to five cognitive tasks performed by a subject. Independent component analysis (ICA) was used to segregate obvious artifact EEG components from other sources, and a frequency-band representation was used to represent the sources computed by ICA. Examples of results include an 85% accuracy rate on differentiation between two tasks, using a segment of EEG only 0.05 s long and a 95% accuracy rate using a 0.5-s-long segment.

  13. Enabling computer decisions based on EEG input

    NASA Technical Reports Server (NTRS)

    Culpepper, Benjamin J.; Keller, Robert M.

    2003-01-01

    Multilayer neural networks were successfully trained to classify segments of 12-channel electroencephalogram (EEG) data into one of five classes corresponding to five cognitive tasks performed by a subject. Independent component analysis (ICA) was used to segregate obvious artifact EEG components from other sources, and a frequency-band representation was used to represent the sources computed by ICA. Examples of results include an 85% accuracy rate on differentiation between two tasks, using a segment of EEG only 0.05 s long and a 95% accuracy rate using a 0.5-s-long segment.

  14. High User Control in Game Design Elements Increases Compliance and In-game Performance in a Memory Training Game.

    PubMed

    Nagle, Aniket; Riener, Robert; Wolf, Peter

    2015-01-01

    Computer games are increasingly being used for training cognitive functions like working memory and attention among the growing population of older adults. While cognitive training games often include elements like difficulty adaptation, rewards, and visual themes to make the games more enjoyable and effective, the effect of different degrees of afforded user control in manipulating these elements has not been systematically studied. To address this issue, two distinct implementations of the three aforementioned game elements were tested among healthy older adults (N = 21, 69.9 ± 6.4 years old) playing a game-like version of the n-back task on a tablet at home for 3 weeks. Two modes were considered, differentiated by the afforded degree of user control of the three elements: user control of difficulty vs. automatic difficulty adaptation, difficulty-dependent rewards vs. automatic feedback messages, and user choice of visual theme vs. no choice. The two modes ("USER-CONTROL" and "AUTO") were compared for frequency of play, duration of play, and in-game performance. Participants were free to play the game whenever and for however long they wished. Participants in USER-CONTROL exhibited significantly higher frequency of playing, total play duration, and in-game performance than participants in AUTO. The results of the present study demonstrate the efficacy of providing user control in the three game elements, while validating a home-based study design in which participants were not bound by any training regimen, and could play the game whenever they wished. The results have implications for designing cognitive training games that elicit higher compliance and better in-game performance, with an emphasis on home-based training.

  15. High User Control in Game Design Elements Increases Compliance and In-game Performance in a Memory Training Game

    PubMed Central

    Nagle, Aniket; Riener, Robert; Wolf, Peter

    2015-01-01

    Computer games are increasingly being used for training cognitive functions like working memory and attention among the growing population of older adults. While cognitive training games often include elements like difficulty adaptation, rewards, and visual themes to make the games more enjoyable and effective, the effect of different degrees of afforded user control in manipulating these elements has not been systematically studied. To address this issue, two distinct implementations of the three aforementioned game elements were tested among healthy older adults (N = 21, 69.9 ± 6.4 years old) playing a game-like version of the n-back task on a tablet at home for 3 weeks. Two modes were considered, differentiated by the afforded degree of user control of the three elements: user control of difficulty vs. automatic difficulty adaptation, difficulty-dependent rewards vs. automatic feedback messages, and user choice of visual theme vs. no choice. The two modes (“USER-CONTROL” and “AUTO”) were compared for frequency of play, duration of play, and in-game performance. Participants were free to play the game whenever and for however long they wished. Participants in USER-CONTROL exhibited significantly higher frequency of playing, total play duration, and in-game performance than participants in AUTO. The results of the present study demonstrate the efficacy of providing user control in the three game elements, while validating a home-based study design in which participants were not bound by any training regimen, and could play the game whenever they wished. The results have implications for designing cognitive training games that elicit higher compliance and better in-game performance, with an emphasis on home-based training. PMID:26635681

  16. The Longitudinal Impact of Cognitive Speed of Processing Training on Driving Mobility

    PubMed Central

    Edwards, Jerri D.; Myers, Charlsie; Ross, Lesley A.; Roenker, Daniel L.; Cissell, Gayla M.; McLaughlin, Alexis M.; Ball, Karlene K.

    2009-01-01

    Purpose: To examine how cognitive speed of processing training affects driving mobility across a 3-year period among older drivers. Design and Methods: Older drivers with poor Useful Field of View (UFOV) test performance (indicating greater risk for subsequent at-fault crashes and mobility declines) were randomly assigned to either a speed of processing training or a social and computer contact control group. Driving mobility of these 2 groups was compared with a group of older adults who did not score poorly on the UFOV test (reference group) across a 3-year period. Results: Older drivers with poor UFOV test scores who did not receive training experienced greater mobility declines as evidenced by decreased driving exposure and space and increased driving difficulty at 3 years. Those at risk for mobility decline who received training did not differ across the 3-year period from older adults in the reference group with regard to driving exposure, space, and most aspects of driving difficulty. Implications: Cognitive speed of processing training can not only improve cognitive performance but also protect against mobility declines among older drivers. Scientifically proven cognitive training regimens have the potential to enhance the everyday lives of older adults. PMID:19491362

  17. Effects of bottom-up and top-down intervention principles in emergent literacy in children at risk of developmental dyslexia: a longitudinal study.

    PubMed

    Helland, Turid; Tjus, Tomas; Hovden, Marit; Ofte, Sonja; Heimann, Mikael

    2011-01-01

    This longitudinal study focused on the effects of two different principles of intervention in children at risk of developing dyslexia from 5 to 8 years old. The children were selected on the basis of a background questionnaire given to parents and preschool teachers, with cognitive and functional magnetic resonance imaging results substantiating group differences in neuropsychological processes associated with phonology, orthography, and phoneme-grapheme correspondence (i.e., alphabetic principle). The two principles of intervention were bottom-up (BU), "from sound to meaning", and top-down (TD), "from meaning to sound." Thus, four subgroups were established: risk/BU, risk/TD, control/BU, and control/TD. Computer-based training took place for 2 months every spring, and cognitive assessments were performed each fall of the project period. Measures of preliteracy skills for reading and spelling were phonological awareness, working memory, verbal learning, and letter knowledge. Literacy skills were assessed by word reading and spelling. At project end the control group scored significantly above age norm, whereas the risk group scored within the norm. In the at-risk group, training based on the BU principle had the strongest effects on phonological awareness and working memory scores, whereas training based on the TD principle had the strongest effects on verbal learning, letter knowledge, and literacy scores. It was concluded that appropriate, specific, data-based intervention starting in preschool can mitigate literacy impairment and that interventions should contain BU training for preliteracy skills and TD training for literacy training.

  18. Report of the first annual airborne weapons training technology review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, C.E.; Payne, G.B.; Treitler, I.E.

    1990-01-01

    This report documents the First Annual Airborne Weapons Training Technology Review. The Review was held at Oak Ridge Associated Universities from March 29 to 31, 1989. It was an exchange of ideas and information among the members of the network supporting the Naval Air Systems Command's (NAVAIR's) PMA205-11, Program Manager for Ordnance Training. This report describes the briefings and demonstrations presented at the Review, and summarizes the discussion at the informal caucus where significant issues were raised from the first two days' presentations. The report also contains the meeting agenda, a participant list with addresses and telephone numbers, a listmore » of the Department of Defense activities represented, NAVAIR's follow-up communication, and a brief description of Martin Marietta Energy Systems, Inc.'s training technology project support. A broad range of topics related to training systems and training support was covered during the Review. Synopses of the presentations and demonstrations included here cover computer-based and interactive systems, portability of software, reuse of training systems for different weapons, standardization of trainers, instructional systems design, cognitive task analysis, tracking of training resources, and the application of Computer-aided Acquisition and Logistic Support.« less

  19. Less is more: Patient-level meta-analysis reveals paradoxical dose-response effects of a computer-based social anxiety intervention targeting attentional bias.

    PubMed

    Price, Rebecca B; Kuckertz, Jennie M; Amir, Nader; Bar-Haim, Yair; Carlbring, Per; Wallace, Meredith L

    2017-12-01

    The past decade of research has seen considerable interest in computer-based approaches designed to directly target cognitive mechanisms of anxiety, such as attention bias modification (ABM). By pooling patient-level datasets from randomized controlled trials of ABM that utilized a dot-probe training procedure, we assessed the impact of training "dose" on relevant outcomes among a pooled sample of 693 socially anxious adults. A paradoxical effect of the number of training trials administered was observed for both posttraining social anxiety symptoms and behavioral attentional bias (AB) toward threat (the target mechanism of ABM). Studies administering a large (>1,280) number of training trials showed no benefit of ABM over control conditions, while those administering fewer training trials showed significant benefit for ABM in reducing social anxiety (P = .02). These moderating effects of dose were not better explained by other examined variables and previously identified moderators, including patient age, training setting (laboratory vs. home), or type of anxiety assessment (clinician vs. self-report). Findings inform the optimal dosing for future dot-probe style ABM applications in both research and clinical settings, and suggest several novel avenues for further research. © 2017 Wiley Periodicals, Inc.

  20. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination ( PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading ( Raz-Kids ( RK )). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  1. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory

    PubMed Central

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading (Raz-Kids (RK)). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:28555097

  2. SimCenter Hawaii: Virtual Reality Applications for Health Care Education and Training

    DTIC Science & Technology

    2008-12-01

    systems can provide realistic, procedural skills training,(12) the scenarios developed for triage would primarily develop and assess cognitive skill...Education and Training Conclusions Simulator-based training has been shown to improve outcomes for both cognitive as well as motor-skills...training.(7) Cognitive modules can be distributed through advanced learning networks.(4) This has significant implications, because enterprise wide

  3. Cognitive Training for Improving Executive Function in Chemotherapy-Treated Breast Cancer Survivors

    PubMed Central

    Kesler, Shelli; Hosseini, S. M. Hadi; Heckler, Charles; Janelsins, Michelle; Palesh, Oxana; Mustian, Karen; Morrow, Gary

    2013-01-01

    Difficulties with thinking and problem solving are very common among breast cancer survivors. We tested a computerized cognitive training program for 41 breast cancer survivors. The training program was associated with significant improvements in thinking and problem-solving skills. Our findings demonstrate potential for our online, home-based cognitive training program to improve cognitive difficulties among breast cancer survivors. Background A majority of breast cancer (BC) survivors, particularly those treated with chemotherapy, experience long-term cognitive deficits that significantly reduce quality of life. Among the cognitive domains most commonly affected include executive functions (EF), such as working memory, cognitive flexibility, multitasking, planning, and attention. Previous studies in other populations have shown that cognitive training, a behavioral method for treating cognitive deficits, can result in significant improvements in a number of cognitive skills, including EF. Materials and Methods In this study, we conducted a randomized controlled trial to investigate the feasibility and preliminary effectiveness of a novel, online EF training program in long-term BC survivors. A total of 41 BC survivors (21 active, 20 wait list) completed the 48 session training program over 12 weeks. The participants were, on average, 6 years after therapy. Results Cognitive training led to significant improvements in cognitive flexibility, verbal fluency and processing speed, with marginally significant downstream improvements in verbal memory as assessed via standardized measures. Self-ratings of EF skills, including planning, organizing, and task monitoring, also were improved in the active group compared with the wait list group. Conclusions Our findings suggest that EF skills may be improved even in long-term survivors by using a computerized, home-based intervention program. These improvements may potentially include subjective EF skills, which suggest a transfer of the training program to real-world behaviors. PMID:23647804

  4. Feasibility and effectiveness of a cognitive remediation programme with original computerised cognitive training and group intervention for schizophrenia: a multicentre randomised trial.

    PubMed

    Matsuda, Yasuhiro; Morimoto, Tsubasa; Furukawa, Shunichi; Sato, Sayaka; Hatsuse, Norifumi; Iwata, Kazuhiko; Kimura, Mieko; Kishimoto, Toshifumi; Ikebuchi, Emi

    2018-04-01

    Devising new methods to improve neurocognitive impairment through cognitive remediation is an important research goal. We developed an original computer programme termed the Japanese Cognitive Rehabilitation Programme for Schizophrenia (JCORES) that provides cognitive practice across a broad range of abilities. The current study examined for the first time whether a cognitive remediation programme, including both computerised cognitive training using JCORES and group intervention such as enhancing meta-cognition and teaching strategies, is more effective than treatment as usual for improving neurocognitive and social functioning. Sixty-two outpatients with schizophrenia were randomised to either a cognitive remediation group or a control group. Participants engaged in two computerised cognitive training sessions and one group meeting per week for 12 weeks. The average number of total sessions attended (computerised cognitive practice + group intervention) was 32.3 (89.7%). The cognitive remediation group showed significantly more improvements in verbal memory, composite score of the Brief Assessment of Cognition in Schizophrenia, Japanese version (BACS-J), and general psychopathology on the Positive and Negative Syndrome Scale (PANSS) than the control group. These findings demonstrate that a cognitive remediation programme is feasible in Japan and is a more effective way to improve neurocognitive functioning and psychiatric symptoms.

  5. Limitations of subjective cognitive load measures in simulation-based procedural training.

    PubMed

    Naismith, Laura M; Cheung, Jeffrey J H; Ringsted, Charlotte; Cavalcanti, Rodrigo B

    2015-08-01

    The effective implementation of cognitive load theory (CLT) to optimise the instructional design of simulation-based training requires sensitive and reliable measures of cognitive load. This mixed-methods study assessed relationships between commonly used measures of total cognitive load and the extent to which these measures reflected participants' experiences of cognitive load in simulation-based procedural skills training. Two groups of medical residents (n = 38) completed three questionnaires after participating in simulation-based procedural skills training sessions: the Paas Cognitive Load Scale; the NASA Task Load Index (TLX), and a cognitive load component (CLC) questionnaire we developed to assess total cognitive load as the sum of intrinsic load (how complex the task is), extraneous load (how the task is presented) and germane load (how the learner processes the task for learning). We calculated Pearson's correlation coefficients to assess agreement among these instruments. Group interviews explored residents' perceptions about how the simulation sessions contributed to their total cognitive load. Interviews were audio-recorded, transcribed and subjected to qualitative content analysis. Total cognitive load scores differed significantly according to the instrument used to assess them. In particular, there was poor agreement between the Paas Scale and the TLX. Quantitative and qualitative findings supported intrinsic cognitive load as synonymous with mental effort (Paas Scale), mental demand (TLX) and task difficulty and complexity (CLC questionnaire). Additional qualitative themes relating to extraneous and germane cognitive loads were not reflected in any of the questionnaires. The Paas Scale, TLX and CLC questionnaire appear to be interchangeable as measures of intrinsic cognitive load, but not of total cognitive load. A more complete understanding of the sources of extraneous and germane cognitive loads in simulation-based training contexts is necessary to determine how best to measure and assess their effects on learning and performance outcomes. © 2015 John Wiley & Sons Ltd.

  6. Neuropsychological benefits of computer-assisted cognitive rehabilitation (using FORAMENRehab program) in children with mild traumatic brain injury or partial epilepsy: A pilot study.

    PubMed

    Kaldoja, Mari-Liis; Saard, Marianne; Lange, Kirsi; Raud, Triin; Teeveer, Ott-Kaarel; Kolk, Anneli

    2015-01-01

    The number of children with different cognitive difficulties is constantly increasing. Still, too few evidence-based pediatric neurocognitive rehabilitation programs exist. The main aim of the study was to assess the efficiency and usability of computer-assisted FORAMENRehab program for training specific components of attention in children with mild traumatic brain injury (mTBI) and partial epilepsy (PE). The second aim was to specify short- and long-term effects of the intervention. Eight children between the ages of 9-12 years with attention impairment (3 with PE and 5 with mTBI) and 18 healthy controls participated. FORAMENRehab Attention software, adapted by the authors, was used for intervention. Strict intervention protocol consisting of patients completing 10 sessions over a 6-week-period to train four components of attention (sustaining, focusing, dividing, tracking) was designed and applied. Follow-up assessments were conducted after the end of the last training and 1.63 years later. After the intervention patients' sustained and complex attention improved. Long-term follow-up revealed continuing positive rehabilitation effects. 100% compliance suggested that the used method is attractive for children. These preliminary results of the pilot study give reason to presume that the method is effective in attention impairment remediation. However, more thorough research is needed.

  7. Improved Visual Cognition through Stroboscopic Training

    PubMed Central

    Appelbaum, L. Gregory; Schroeder, Julia E.; Cain, Matthew S.; Mitroff, Stephen R.

    2011-01-01

    Humans have a remarkable capacity to learn and adapt, but surprisingly little research has demonstrated generalized learning in which new skills and strategies can be used flexibly across a range of tasks and contexts. In the present work we examined whether generalized learning could result from visual–motor training under stroboscopic visual conditions. Individuals were assigned to either an experimental condition that trained with stroboscopic eyewear or to a control condition that underwent identical training with non-stroboscopic eyewear. The training consisted of multiple sessions of athletic activities during which participants performed simple drills such as throwing and catching. To determine if training led to generalized benefits, we used computerized measures to assess perceptual and cognitive abilities on a variety of tasks before and after training. Computer-based assessments included measures of visual sensitivity (central and peripheral motion coherence thresholds), transient spatial attention (a useful field of view – dual task paradigm), and sustained attention (multiple-object tracking). Results revealed that stroboscopic training led to significantly greater re-test improvement in central visual field motion sensitivity and transient attention abilities. No training benefits were observed for peripheral motion sensitivity or peripheral transient attention abilities, nor were benefits seen for sustained attention during multiple-object tracking. These findings suggest that stroboscopic training can effectively improve some, but not all aspects of visual perception and attention. PMID:22059078

  8. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial.

    PubMed

    Mirelman, Anat; Rochester, Lynn; Maidan, Inbal; Del Din, Silvia; Alcock, Lisa; Nieuwhof, Freek; Rikkert, Marcel Olde; Bloem, Bastiaan R; Pelosin, Elisa; Avanzino, Laura; Abbruzzese, Giovanni; Dockx, Kim; Bekkers, Esther; Giladi, Nir; Nieuwboer, Alice; Hausdorff, Jeffrey M

    2016-09-17

    Age-associated motor and cognitive deficits increase the risk of falls, a major cause of morbidity and mortality. Because of the significant ramifications of falls, many interventions have been proposed, but few have aimed to prevent falls via an integrated approach targeting both motor and cognitive function. We aimed to test the hypothesis that an intervention combining treadmill training with non-immersive virtual reality (VR) to target both cognitive aspects of safe ambulation and mobility would lead to fewer falls than would treadmill training alone. We carried out this randomised controlled trial at five clinical centres across five countries (Belgium, Israel, Italy, the Netherlands, and the UK). Adults aged 60-90 years with a high risk of falls based on a history of two or more falls in the 6 months before the study and with varied motor and cognitive deficits were randomly assigned by use of computer-based allocation to receive 6 weeks of either treadmill training plus VR or treadmill training alone. Randomisation was stratified by subgroups of patients (those with a history of idiopathic falls, those with mild cognitive impairment, and those with Parkinson's disease) and sex, with stratification per clinical site. Group allocation was done by a third party not involved in onsite study procedures. Both groups aimed to train three times per week for 6 weeks, with each session lasting about 45 min and structured training progression individualised to the participant's level of performance. The VR system consisted of a motion-capture camera and a computer-generated simulation projected on to a large screen, which was specifically designed to reduce fall risk in older adults by including real-life challenges such as obstacles, multiple pathways, and distracters that required continual adjustment of steps. The primary outcome was the incident rate of falls during the 6 months after the end of training, which was assessed in a modified intention-to-treat population. Safety was assessed in all patients who were assigned a treatment. This study is registered with ClinicalTrials.gov, NCT01732653. Between Jan 6, 2013, and April 3, 2015, 302 adults were randomly assigned to either the treadmill training plus VR group (n=154) or treadmill training alone group (n=148). Data from 282 (93%) participants were included in the prespecified, modified intention-to-treat analysis. Before training, the incident rate of falls was similar in both groups (10·7 [SD 35·6] falls per 6 months for treadmill training alone vs 11·9 [39·5] falls per 6 months for treadmill training plus VR). In the 6 months after training, the incident rate was significantly lower in the treadmill training plus VR group than it had been before training (6·00 [95% CI 4·36-8·25] falls per 6 months; p<0·0001 vs before training), whereas the incident rate did not decrease significantly in the treadmill training alone group (8·27 [5·55-12·31] falls per 6 months; p=0·49). 6 months after the end of training, the incident rate of falls was also significantly lower in the treadmill training plus VR group than in the treadmill training group (incident rate ratio 0·58, 95% CI 0·36-0·96; p=0·033). No serious training-related adverse events occurred. In a diverse group of older adults at high risk for falls, treadmill training plus VR led to reduced fall rates compared with treadmill training alone. European Commission. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Short- and long-term benefits of cognitive training.

    PubMed

    Jaeggi, Susanne M; Buschkuehl, Martin; Jonides, John; Shah, Priti

    2011-06-21

    Does cognitive training work? There are numerous commercial training interventions claiming to improve general mental capacity; however, the scientific evidence for such claims is sparse. Nevertheless, there is accumulating evidence that certain cognitive interventions are effective. Here we provide evidence for the effectiveness of cognitive (often called "brain") training. However, we demonstrate that there are important individual differences that determine training and transfer. We trained elementary and middle school children by means of a videogame-like working memory task. We found that only children who considerably improved on the training task showed a performance increase on untrained fluid intelligence tasks. This improvement was larger than the improvement of a control group who trained on a knowledge-based task that did not engage working memory; further, this differential pattern remained intact even after a 3-mo hiatus from training. We conclude that cognitive training can be effective and long-lasting, but that there are limiting factors that must be considered to evaluate the effects of this training, one of which is individual differences in training performance. We propose that future research should not investigate whether cognitive training works, but rather should determine what training regimens and what training conditions result in the best transfer effects, investigate the underlying neural and cognitive mechanisms, and finally, investigate for whom cognitive training is most useful.

  10. Investigating the Impact of Hearing Aid Use and Auditory Training on Cognition, Depressive Symptoms, and Social Interaction in Adults With Hearing Loss: Protocol for a Crossover Trial

    PubMed Central

    Meyer, Denny; Blamey, Peter J; Pipingas, Andrew; Bhar, Sunil

    2018-01-01

    Background Sensorineural hearing loss is the most common sensory deficit among older adults. Some of the psychosocial consequences of this condition include difficulty in understanding speech, depression, and social isolation. Studies have shown that older adults with hearing loss show some age-related cognitive decline. Hearing aids have been proven as successful interventions to alleviate sensorineural hearing loss. In addition to hearing aid use, the positive effects of auditory training—formal listening activities designed to optimize speech perception—are now being documented among adults with hearing loss who use hearing aids, especially new hearing aid users. Auditory training has also been shown to produce prolonged cognitive performance improvements. However, there is still little evidence to support the benefits of simultaneous hearing aid use and individualized face-to-face auditory training on cognitive performance in adults with hearing loss. Objective This study will investigate whether using hearing aids for the first time will improve the impact of individualized face-to-face auditory training on cognition, depression, and social interaction for adults with sensorineural hearing loss. The rationale for this study is based on the hypothesis that, in adults with sensorineural hearing loss, using hearing aids for the first time in combination with individualized face-to-face auditory training will be more effective for improving cognition, depressive symptoms, and social interaction rather than auditory training on its own. Methods This is a crossover trial targeting 40 men and women between 50 and 90 years of age with either mild or moderate symmetric sensorineural hearing loss. Consented, willing participants will be recruited from either an independent living accommodation or via a community database to undergo a 6-month intensive face-to-face auditory training program (active control). Participants will be assigned in random order to receive hearing aid (intervention) for either the first 3 or last 3 months of the 6-month auditory training program. Each participant will be tested at baseline, 3, and 6 months using a neuropsychological battery of computer-based cognitive assessments, together with a depression symptom instrument and a social interaction measure. The primary outcome will be cognitive performance with regard to spatial working memory. Secondary outcome measures include other cognition performance measures, depressive symptoms, social interaction, and hearing satisfaction. Results Data analysis is currently under way and the first results are expected to be submitted for publication in June 2018. Conclusions Results from the study will inform strategies for aural rehabilitation, hearing aid delivery, and future hearing loss intervention trials. Trial Registration ClinicalTrials.gov NCT03112850; https://clinicaltrials.gov/ct2/show/NCT03112850 (Archived by WebCite at http://www.webcitation.org/6xz12fD0B). PMID:29572201

  11. Potential of Cognitive Computing and Cognitive Systems

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2015-01-01

    Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp

  12. Cognitive Changes among Institutionalized Elderly People

    ERIC Educational Resources Information Center

    Navarro, Jose I.; Menacho, Inmaculada; Alcalde, Concepcion; Marchena, Esperanza; Ruiz, Gonzalo; Aguilar, Manuel

    2009-01-01

    The efficiency of different cognitive training procedures in elderly people was studied. Two types of methods to train cognitive and memory functions were compared. One method was based on new technologies and the other one on pencil-and-paper activities. Thirty-six elderly institutionalized people aged 68-94 were trained. Quantitative and memory…

  13. Associations between cognitively stimulating leisure activities, cognitive function and age-related cognitive decline.

    PubMed

    Ferreira, Nicola; Owen, Adrian; Mohan, Anita; Corbett, Anne; Ballard, Clive

    2015-04-01

    Emerging literature suggests that lifestyle factors may play an important role in reducing age-related cognitive decline. There have, however, been few studies investigating the role of cognitively stimulating leisure activities in maintaining cognitive health. This study sought to identify changes in cognitive performance with age and to investigate associations of cognitive performance with several key cognitively stimulating leisure activities. Over 65,000 participants provided demographic and lifestyle information and completed tests of grammatical reasoning, spatial working memory, verbal working memory and episodic memory. Regression analyses suggested that frequency of engaging in Sudoku or similar puzzles was significantly positively associated with grammatical reasoning, spatial working memory and episodic memory scores. Furthermore, for participants aged under 65 years, frequency of playing non-cognitive training computer games was also positively associated with performance in the same cognitive domains. The results also suggest that grammatical reasoning and episodic memory are particularly vulnerable to age-related decline. Further investigation to determine the potential benefits of participating in Sudoku puzzles and non-cognitive computer games is indicated, particularly as they are associated with grammatical reasoning and episodic memory, cognitive domains found to be strongly associated with age-related cognitive decline. Results of this study have implications for developing improved guidance for the public regarding the potential value of cognitively stimulating leisure activities. The results also suggest that grammatical reasoning and episodic memory should be targeted in developing appropriate outcome measures to assess efficacy of future interventions, and in developing cognitive training programmes to prevent or delay cognitive decline. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Measuring cognitive load: performance, mental effort and simulation task complexity.

    PubMed

    Haji, Faizal A; Rojas, David; Childs, Ruth; de Ribaupierre, Sandrine; Dubrowski, Adam

    2015-08-01

    Interest in applying cognitive load theory in health care simulation is growing. This line of inquiry requires measures that are sensitive to changes in cognitive load arising from different instructional designs. Recently, mental effort ratings and secondary task performance have shown promise as measures of cognitive load in health care simulation. We investigate the sensitivity of these measures to predicted differences in intrinsic load arising from variations in task complexity and learner expertise during simulation-based surgical skills training. We randomly assigned 28 novice medical students to simulation training on a simple or complex surgical knot-tying task. Participants completed 13 practice trials, interspersed with computer-based video instruction. On trials 1, 5, 9 and 13, knot-tying performance was assessed using time and movement efficiency measures, and cognitive load was assessed using subjective rating of mental effort (SRME) and simple reaction time (SRT) on a vibrotactile stimulus-monitoring secondary task. Significant improvements in knot-tying performance (F(1.04,24.95)  = 41.1, p < 0.001 for movements; F(1.04,25.90)  = 49.9, p < 0.001 for time) and reduced cognitive load (F(2.3,58.5)  = 57.7, p < 0.001 for SRME; F(1.8,47.3)  = 10.5, p < 0.001 for SRT) were observed in both groups during training. The simple-task group demonstrated superior knot tying (F(1,24)  = 5.2, p = 0.031 for movements; F(1,24)  = 6.5, p = 0.017 for time) and a faster decline in SRME over the first five trials (F(1,26)  = 6.45, p = 0.017) compared with their peers. Although SRT followed a similar pattern, group differences were not statistically significant. Both secondary task performance and mental effort ratings are sensitive to changes in intrinsic load among novices engaged in simulation-based learning. These measures can be used to track cognitive load during skills training. Mental effort ratings are also sensitive to small differences in intrinsic load arising from variations in the physical complexity of a simulation task. The complementary nature of these subjective and objective measures suggests their combined use is advantageous in simulation instructional design research. © 2015 John Wiley & Sons Ltd.

  15. Training versus engagement as paths to cognitive enrichment with aging.

    PubMed

    Stine-Morrow, Elizabeth A L; Payne, Brennan R; Roberts, Brent W; Kramer, Arthur F; Morrow, Daniel G; Payne, Laura; Hill, Patrick L; Jackson, Joshua J; Gao, Xuefei; Noh, Soo Rim; Janke, Megan C; Parisi, Jeanine M

    2014-12-01

    While a training model of cognitive intervention targets the improvement of particular skills through instruction and practice, an engagement model is based on the idea that being embedded in an intellectually and socially complex environment can impact cognition, perhaps even broadly, without explicit instruction. We contrasted these 2 models of cognitive enrichment by randomly assigning healthy older adults to a home-based inductive reasoning training program, a team-based competitive program in creative problem solving, or a wait-list control. As predicted, those in the training condition showed selective improvement in inductive reasoning. Those in the engagement condition, on the other hand, showed selective improvement in divergent thinking, a key ability exercised in creative problem solving. On average, then, both groups appeared to show ability-specific effects. However, moderators of change differed somewhat for those in the engagement and training interventions. Generally, those who started either intervention with a more positive cognitive profile showed more cognitive growth, suggesting that cognitive resources enabled individuals to take advantage of environmental enrichment. Only in the engagement condition did initial levels of openness and social network size moderate intervention effects on cognition, suggesting that comfort with novelty and an ability to manage social resources may be additional factors contributing to the capacity to take advantage of the environmental complexity associated with engagement. Collectively, these findings suggest that training and engagement models may offer alternative routes to cognitive resilience in late life. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  16. Training versus Engagement as Paths to Cognitive Enrichment with Aging

    PubMed Central

    Stine-Morrow, Elizabeth A. L.; Payne, Brennan R.; Roberts, Brent W.; Kramer, Arthur F.; Morrow, Daniel G.; Payne, Laura; Hill, Patrick L.; Jackson, Joshua J.; Gao, Xuefei; Noh, Soo Rim; Janke, Megan C.; Parisi, Jeanine M.

    2015-01-01

    While a training model of cognitive intervention targets the improvement of particular skills through instruction and practice, an engagement model is based on the idea that being embedded in an intellectually and socially complex environment can impact cognition, perhaps even broadly, without explicit instruction. We contrasted these two models of cognitive enrichment by randomly assigning healthy older adults to a home-based inductive reasoning training program, a team-based competitive program in creative problem solving, or to a wait-list control. As predicted, those in the training condition showed selective improvement in inductive reasoning. Those in the engagement condition, on the other hand, showed selective improvement in divergent thinking, a key ability exercised in creative problem solving. On average, then, both groups appeared to show ability-specific effects. However, moderators of change differed somewhat for those in the engagement and training interventions. Generally, those who started either intervention with a more positive cognitive profile showed more cognitive growth, suggesting that cognitive resources enabled individuals to take advantage of environmental enrichment. Only in the engagement condition did initial levels of openness and social network size moderate intervention effects on cognition, suggesting that comfort with novelty and an ability to manage social resources may be additional factors contributing to the capacity to take advantage of the environmental complexity associated with engagement. Collectively, these findings suggest that training and engagement models may offer alternative routes to cognitive resilience in late life. PMID:25402337

  17. Embedded assessment algorithms within home-based cognitive computer game exercises for elders.

    PubMed

    Jimison, Holly; Pavel, Misha

    2006-01-01

    With the recent consumer interest in computer-based activities designed to improve cognitive performance, there is a growing need for scientific assessment algorithms to validate the potential contributions of cognitive exercises. In this paper, we present a novel methodology for incorporating dynamic cognitive assessment algorithms within computer games designed to enhance cognitive performance. We describe how this approach works for variety of computer applications and describe cognitive monitoring results for one of the computer game exercises. The real-time cognitive assessments also provide a control signal for adapting the difficulty of the game exercises and providing tailored help for elders of varying abilities.

  18. The MUSOS (MUsic SOftware System) Toolkit: A computer-based, open source application for testing memory for melodies.

    PubMed

    Rainsford, M; Palmer, M A; Paine, G

    2018-04-01

    Despite numerous innovative studies, rates of replication in the field of music psychology are extremely low (Frieler et al., 2013). Two key methodological challenges affecting researchers wishing to administer and reproduce studies in music cognition are the difficulty of measuring musical responses, particularly when conducting free-recall studies, and access to a reliable set of novel stimuli unrestricted by copyright or licensing issues. In this article, we propose a solution for these challenges in computer-based administration. We present a computer-based application for testing memory for melodies. Created using the software Max/MSP (Cycling '74, 2014a), the MUSOS (Music Software System) Toolkit uses a simple modular framework configurable for testing common paradigms such as recall, old-new recognition, and stem completion. The program is accompanied by a stimulus set of 156 novel, copyright-free melodies, in audio and Max/MSP file formats. Two pilot tests were conducted to establish the properties of the accompanying stimulus set that are relevant to music cognition and general memory research. By using this software, a researcher without specialist musical training may administer and accurately measure responses from common paradigms used in the study of memory for music.

  19. Cognitively and physically demanding exergaming to improve executive functions of children with attention deficit hyperactivity disorder: a randomised clinical trial.

    PubMed

    Benzing, Valentin; Schmidt, Mirko

    2017-01-10

    Attention deficit hyperactivity disorder (ADHD) is one of the most common mental disorders observed in childhood and adolescence. Its key symptoms - reduced attention, poor control of impulses as well as increased motor activity - are associated with decreased executive functions performance, finally affecting academic achievement. Although drug treatments usually show some effect, alternative treatments are continually being sought, due to lack of commitment and possible side effects. Cognitive trainings are frequently used with the objectives of increasing executive function performance. However, since transfer effects are limited and novelty and diversity are frequently ignored, interventions combining physical and cognitive demands targeting a broader range of cognitive processes are demanded. The aim of the study is to examine the effects of a cognitively and physically demanding exergame on executive functions of children with ADHD. In a randomised clinical trial, 66 girls and boys diagnosed with ADHD (age 8-12) will be assigned either to an 8-week exergame intervention group (three training sessions per week à 30 min) or a waiting-list control group. Before and afterwards, the executive function performance (computer-based tests), the sport motor performance and ADHD symptoms will be assessed. The current study will offer insights into the effectiveness of a combination of cognitive and physical training using exergaming. Positive effects on the executive functions, sport motor performance and ADHD symptoms are hypothesized. Beneficial effects would mean a large degree of scalability (simple and cost-effective) and high utility for patients with ADHD. KEK BE 393/15 (March 8, 2016); DRKS00010171 (March 14, 2016).

  20. Imagining Instructions: Mental Practice in Highly Cognitive Domains

    ERIC Educational Resources Information Center

    Ginns, Paul

    2005-01-01

    This article reviews recent empirical investigations of imagination or mental practice in highly cognitive, realistic educational domains such as mathematics or learning computer applications. While mental practice has been a standard tool in training schedules devised by sports psychologists for several decades, with its efficacy studied…

  1. Game-based training of flexibility and attention improves task-switch performance: near and far transfer of cognitive training in an EEG study.

    PubMed

    Olfers, Kerwin J F; Band, Guido P H

    2018-01-01

    There is a demand for ways to enhance cognitive flexibility, as it can be a limiting factor for performance in daily life. Video game training has been linked to advantages in cognitive functioning, raising the question if training with video games can promote cognitive flexibility. In the current study, we investigated if game-based computerized cognitive training (GCCT) could enhance cognitive flexibility in a healthy young adult sample (N = 72), as measured by task-switch performance. Three GCCT schedules were contrasted, which targeted: (1) cognitive flexibility and task switching, (2) attention and working memory, or (3) an active control involving basic math games, in twenty 45-min sessions across 4-6 weeks. Performance on an alternating-runs task-switch paradigm during pretest and posttest sessions indicated greater overall reaction time improvements after both flexibility and attention training as compared to control, although not related to local switch cost. Flexibility training enhanced performance in the presence of distractor-related interference. In contrast, attention training was beneficial when low task difficulty undermined sustained selective attention. Furthermore, flexibility training improved response selection as indicated by a larger N2 amplitude after training as compared to control, and more efficient conflict monitoring as indicated by reduced Nc/CRN and larger Pe amplitude after training. These results provide tentative support for the efficacy of GCCT and suggest that an ideal training might include both task switching and attention components, with maximal task diversity both within and between training games.

  2. Interventional radiology virtual simulator for liver biopsy.

    PubMed

    Villard, P F; Vidal, F P; ap Cenydd, L; Holbrey, R; Pisharody, S; Johnson, S; Bulpitt, A; John, N W; Bello, F; Gould, D

    2014-03-01

    Training in Interventional Radiology currently uses the apprenticeship model, where clinical and technical skills of invasive procedures are learnt during practice in patients. This apprenticeship training method is increasingly limited by regulatory restrictions on working hours, concerns over patient risk through trainees' inexperience and the variable exposure to case mix and emergencies during training. To address this, we have developed a computer-based simulation of visceral needle puncture procedures. A real-time framework has been built that includes: segmentation, physically based modelling, haptics rendering, pseudo-ultrasound generation and the concept of a physical mannequin. It is the result of a close collaboration between different universities, involving computer scientists, clinicians, clinical engineers and occupational psychologists. The technical implementation of the framework is a robust and real-time simulation environment combining a physical platform and an immersive computerized virtual environment. The face, content and construct validation have been previously assessed, showing the reliability and effectiveness of this framework, as well as its potential for teaching visceral needle puncture. A simulator for ultrasound-guided liver biopsy has been developed. It includes functionalities and metrics extracted from cognitive task analysis. This framework can be useful during training, particularly given the known difficulties in gaining significant practice of core skills in patients.

  3. Our experience with informative and communication technologies (ICT) in dementia.

    PubMed

    Tsolaki, Magda; Zygouris, Stelios; Lazarou, Ioulietta; Kompatsiaris, Ioannis; Chatzileontiadis, Leontios; Votis, Constantinos; Tzovaras, Dimitrios; Karakostas, Anastasios; Karagkiozi, Constantina; Dimitriou, Tatianna; Tsiatsios, Thasyvoulos; Dimitriadis, Stavros; Tarnanas, Ioannis; Dranidis, Dimitris; Bamidis, Panagiotis

    2015-01-01

    Our research is implementing high quality next generation services for the Prediction, Early Diagnosis, Monitoring, and Support of patients with Cognitive Impairment (Subjective Cognitive Impairment -SCI-, Mild Cognitive Impairment -MCI-, Mild Dementia) and Education and Training for all stakeholders. Prediction, Early Diagnosis and Monitoring: The first idea was to Research and Develop a novel System using motion detection devices, depth cameras, and intelligent objects of everyday use (ranging from cooking implements such as kitchen to furniture (e.g. sofa, bed, etc.) which are appropriately adapted in order to capture changes of subject's Activities of Daily Living -ADL- and behavioural patterns (including mobility, nutrition, exercising and medication schedule). We also demonstrated the potential of a virtual supermarket (VSM) cognitive training game as a screening tool for patients with MCI in a sample of older adults. We have indicated that this VSM application displayed a correct classification rate (CCR) of 87.30%, achieving a level of diagnostic accuracy similar to standardized neuropsychological tests, which are the gold standard for MCI screening http://www.en-noisis.gr/ Support of patients: Cognitive tasks and cognitive exercises for patients suffering from Alzheimer's Disease (AD) through web-based applications. These exercises have been developed in such a way in order to exploit rich interactive multimedia interfaces (including music) based on human computer interaction principles. To this direction we are implementing a web based portal with supportive services such as (a) on-line monitoring of patient's progress by health care professionals, (b) statistical representation of patients' progress. Multimedia enriched cognitive exercises in virtual reality form (i.e. 3D Serious Games) use suitable modalities for such activities through the creation probable of new brain cells and by assisting the brain to find out alternative methods to execute functions, which are controlled by damaged brain regions. Another program the "robot-programming-as-cognitive-training" approach aims to explore the impact that the activity of programming a friendly robot might have on AD and MCI patients' condition. http://aspad.csd.auth.gr. Another study aimed at investigating the benefits of combined physical and cognitive training on global cognition while assessing the effect of training dosage and exploring the role of several potential effect modifiers. The results indicate that combined physical and cognitive training improves global cognition in a dose-responsive manner but these benefits may be less pronounced in older adults with mild dementia. The long-lasting impact of combined training on the incidence and trajectory of cognitive disorders in relation to its severity should be assessed in future long-term trials. www.longlastingmemories.eu. Finally, Symbiosis is a revolutionary system aiming at providing integrated solutions to a series of problems related with MCI and AD. It is the first integrated AD support system that takes into account patient's response in an adaptive way that fulfills each patient's special needs and provides to caregivers and doctors considerable facilitations, unlocking the potential of innovative supporting role. www.youtube.com/watch?v=BDkLz-T-jYE. Education and training for all stakeholders (i.e. health professionals and informal and formal caregivers) through distance education platforms and e-collaboration services. To augment this effort, the research team integrates biofeedback modules for stress measurement in teleconferences in order to support the emotional awareness of the participants. The depression, anxiety and burden of caregivers were reduced significantly in the same way as in a face to face intervention. http://aspad.csd.auth.gr. In conclusion ICT can help health professionals and caregivers to support in a better way the patients with cognitive, functional and behavioral problems.

  4. The Design of Model-Based Training Programs

    NASA Technical Reports Server (NTRS)

    Polson, Peter; Sherry, Lance; Feary, Michael; Palmer, Everett; Alkin, Marty; McCrobie, Dan; Kelley, Jerry; Rosekind, Mark (Technical Monitor)

    1997-01-01

    This paper proposes a model-based training program for the skills necessary to operate advance avionics systems that incorporate advanced autopilots and fight management systems. The training model is based on a formalism, the operational procedure model, that represents the mission model, the rules, and the functions of a modem avionics system. This formalism has been defined such that it can be understood and shared by pilots, the avionics software, and design engineers. Each element of the software is defined in terms of its intent (What?), the rationale (Why?), and the resulting behavior (How?). The Advanced Computer Tutoring project at Carnegie Mellon University has developed a type of model-based, computer aided instructional technology called cognitive tutors. They summarize numerous studies showing that training times to a specified level of competence can be achieved in one third the time of conventional class room instruction. We are developing a similar model-based training program for the skills necessary to operation the avionics. The model underlying the instructional program and that simulates the effects of pilots entries and the behavior of the avionics is based on the operational procedure model. Pilots are given a series of vertical flightpath management problems. Entries that result in violations, such as failure to make a crossing restriction or violating the speed limits, result in error messages with instruction. At any time, the flightcrew can request suggestions on the appropriate set of actions. A similar and successful training program for basic skills for the FMS on the Boeing 737-300 was developed and evaluated. The results strongly support the claim that the training methodology can be adapted to the cockpit.

  5. Synergistic effects of aerobic exercise and cognitive training on cognition, physiological markers, daily function, and quality of life in stroke survivors with cognitive decline: study protocol for a randomized controlled trial.

    PubMed

    Yeh, Ting-Ting; Wu, Ching-Yi; Hsieh, Yu-Wei; Chang, Ku-Chou; Lee, Lin-Chien; Hung, Jen-Wen; Lin, Keh-Chung; Teng, Ching-Hung; Liao, Yi-Han

    2017-08-31

    Aerobic exercise and cognitive training have been effective in improving cognitive functions; however, whether the combination of these two can further enhance cognition and clinical outcomes in stroke survivors with cognitive decline remains unknown. This study aimed to determine the treatment effects of a sequential combination of aerobic exercise and cognitive training on cognitive function and clinical outcomes. Stroke survivors (n = 75) with cognitive decline will be recruited and randomly assigned to cognitive training, aerobic exercise, and sequential combination of aerobic exercise and cognitive training groups. All participants will receive training for 60 minutes per day, 3 days per week for 12 weeks. The aerobic exercise group will receive stationary bicycle training, the cognitive training group will receive cognitive-based training, and the sequential group will first receive 30 minutes of aerobic exercise, followed by 30 minutes of cognitive training. The outcome measures involve cognitive functions, physiological biomarkers, daily function and quality of life, physical functions, and social participation. Participants will be assessed before and immediately after the interventions, and 6 months after the interventions. Repeated measures of analysis of variance will be used to evaluate the changes in outcome measures at the three assessments. This trial aims to explore the benefits of innovative intervention approaches to improve the cognitive function, physiological markers, daily function, and quality of life in stroke survivors with cognitive decline. The findings will provide evidence to advance post-stroke cognitive rehabilitation. ClinicalTrials.gov, NCT02550990 . Registered on 6 September 2015.

  6. Do cognitive training strategies improve motor and positive psychological skills development in soccer players? Insights from a systematic review.

    PubMed

    Slimani, Maamer; Bragazzi, Nicola Luigi; Tod, David; Dellal, Alexandre; Hue, Olivier; Cheour, Foued; Taylor, Lee; Chamari, Karim

    2016-12-01

    Soccer players are required to have well-developed physical, technical and cognitive abilities. The present systematic review, adhering to Preferred Reporting Items for Systematic reviews and Meta-Analysis guidelines, examined the effects of cognitive training strategies on motor and positive psychological skills development in soccer performance and identified the potential moderators of the "cognitive training-soccer performance" relationship. Thirteen databases were systematically searched using keywords related to psychological or cognitive training in soccer players. The review is based on 18 studies, employing 584 soccer players aged 7-39 years. Cognitive strategies, particularly imagery, appear to improve sports performance in soccer players. Regarding imagery, the combination of two different types of cognitive imagery training (i.e., cognitive general and cognitive specific) has a positive influence on soccer performance during training, whereas motivational imagery (i.e., motivational general-arousal, motivational general-mastery and motivational specific) enhance competition performance. Younger soccer players employ cognitive general and cognitive specific imagery techniques to a greater extent than older soccer players. Combined cognitive training strategies were more beneficial than a single cognitive strategy relative to motor skills enhancement in elite (particularly midfielders) and amateur (i.e., when practising complex and specific soccer skills in precompetitive period) soccer players. In conclusion, it appears that there are differences in cognitive/psychological training interventions, and their efficacy, according to whether they are directed towards training or competition, and the age, standard and playing position of the players.

  7. Benefits of phoneme discrimination training in a randomized controlled trial of 50- to 74-year-olds with mild hearing loss.

    PubMed

    Ferguson, Melanie A; Henshaw, Helen; Clark, Daniel P A; Moore, David R

    2014-01-01

    The aims of this study were to (i) evaluate the efficacy of phoneme discrimination training for hearing and cognitive abilities of adults aged 50 to 74 years with mild sensorineural hearing loss who were not users of hearing aids, and to (ii) determine participant compliance with a self-administered, computer-delivered, home- and game-based auditory training program. This study was a randomized controlled trial with repeated measures and crossover design. Participants were trained and tested over an 8- to 12-week period. One group (Immediate Training) trained during weeks 1 and 4. A second waitlist group (Delayed Training) did no training during weeks 1 and 4, but then trained during weeks 5 and 8. On-task (phoneme discrimination) and transferable outcome measures (speech perception, cognition, self-report of hearing disability) for both groups were obtained during weeks 0, 4, and 8, and for the Delayed Training group only at week 12. Robust phoneme discrimination learning was found for both groups, with the largest improvements in threshold shown for those with the poorest initial thresholds. Between weeks 1 and 4, the Immediate Training group showed moderate, significant improvements on self-report of hearing disability, divided attention, and working memory, specifically for conditions or situations that were more complex and therefore more challenging. Training did not result in consistent improvements in speech perception in noise. There was no evidence of any test-retest effects between weeks 1 and 4 for the Delayed Training group. Retention of benefit at 4 weeks post-training was shown for phoneme discrimination, divided attention, working memory, and self-report of hearing disability. Improved divided attention and reduced self-reported hearing difficulties were highly correlated. It was observed that phoneme discrimination training benefits some but not all people with mild hearing loss. Evidence presented here, together with that of other studies that used different training stimuli, suggests that auditory training may facilitate cognitive skills that index executive function and the self-perception of hearing difficulty in challenging situations. The development of cognitive skills may be more important than the development of sensory skills for improving communication and speech perception in everyday life. However, improvements were modest. Outcome measures need to be appropriately challenging to be sensitive to the effects of the relatively small amount of training performed.

  8. Investigating Visual Literacy: Selected Readings from the Annual Conference of the International Visual Literacy Association (22nd, Bloomington/Normal, Illinois, October 1990).

    ERIC Educational Resources Information Center

    Beauchamp, Darrell G., Ed.; And Others

    This volume contains 53 articles grouped under five headings: (1) Research (14 papers on such topics as cognitive style and cognitive strategies, visual literacy training, and the impact of diagrams, type styles, and computer graphics on learning); (2) Theory (nine papers on such topics as the development of visual literacy concepts, cognition and…

  9. Self-Motion Perception: Assessment by Real-Time Computer Generated Animations

    NASA Technical Reports Server (NTRS)

    Parker, Donald E.

    1999-01-01

    Our overall goal is to develop materials and procedures for assessing vestibular contributions to spatial cognition. The specific objective of the research described in this paper is to evaluate computer-generated animations as potential tools for studying self-orientation and self-motion perception. Specific questions addressed in this study included the following. First, does a non- verbal perceptual reporting procedure using real-time animations improve assessment of spatial orientation? Are reports reliable? Second, do reports confirm expectations based on stimuli to vestibular apparatus? Third, can reliable reports be obtained when self-motion description vocabulary training is omitted?

  10. The Effects of Embedded Generative Learning Strategies and Collaboration on Knowledge Acquisition in a Cognitive Flexibility-Based Computer Learning Environment

    DTIC Science & Technology

    1998-08-07

    cognitive flexibility theory and generative learning theory which focus primarily on the individual student’s cognitive development , collaborative... develop "Handling Transfusion Hazards," a computer program based upon cognitive flexibility theory principles. The Program: Handling Transfusion Hazards...computer program was developed according to cognitive flexibility theory principles. A generative version was then developed by embedding

  11. Cognition and asynchronous distribution between human and machine building accidents.

    PubMed

    Martins, Edgard; Soares, Marcelo; Augusto, Lia; Laura, Laura

    2012-01-01

    The creation of meaning in communication is a trading activity, resulting from the construction that is born of the interaction between subjects. That is, the meaning is not inherent to the relationship between words, signs and symbols that arise from negotiating a necessary and unavoidable. As the concepts of sense as discrete and static representations imply a notion of classical computing and design of a cognitive system corresponding conceptions of meaning construction as located and shared among agents implies notions of different computing and cognition. Several efforts have been developed to meet these demands. Among them are the Connectionism (also known as neural networks. Records on aspects of mental health and stress of flight professionals are present in the official reports of the organs of investigation of aviation accidents worldwide since its inception. Problems related to health physical and mental health of pilots (fatigue, stress, physiological and psychosocial problems) account for 19% of causal factors in aircraft accidents. The training seems a paradox when we know that these professionals receive regular training, have high education and technical training of high level. However, problems arise related to the implementation of learning that can be influenced to reduce their cognitive capacity, making it in practice, relatively unable to exercise its functions effectively and safely.

  12. Biomedical wellness challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  13. Keep it simple - A case study of model development in the context of the Dynamic Stocks and Flows (DSF) task

    NASA Astrophysics Data System (ADS)

    Halbrügge, Marc

    2010-12-01

    This paper describes the creation of a cognitive model submitted to the ‘Dynamic Stocks and Flows’ (DSF) modeling challenge. This challenge aims at comparing computational cognitive models for human behavior during an open ended control task. Participants in the modeling competition were provided with a simulation environment and training data for benchmarking their models while the actual specification of the competition task was withheld. To meet this challenge, the cognitive model described here was designed and optimized for generalizability. Only two simple assumptions about human problem solving were used to explain the empirical findings of the training data. In-depth analysis of the data set prior to the development of the model led to the dismissal of correlations or other parametric statistics as goodness-of-fit indicators. A new statistical measurement based on rank orders and sequence matching techniques is being proposed instead. This measurement, when being applied to the human sample, also identifies clusters of subjects that use different strategies for the task. The acceptability of the fits achieved by the model is verified using permutation tests.

  14. Outcomes from a pilot study using computer-based rehabilitative tools in a military population.

    PubMed

    Sullivan, Katherine W; Quinn, Julia E; Pramuka, Michael; Sharkey, Laura A; French, Louis M

    2012-01-01

    Novel therapeutic approaches and outcome data are needed for cognitive rehabilitation for patients with a traumatic brain injury; computer-based programs may play a critical role in filling existing knowledge gaps. Brain-fitness computer programs can complement existing therapies, maximize neuroplasticity, provide treatment beyond the clinic, and deliver objective efficacy data. However, these approaches have not been extensively studied in the military and traumatic brain injury population. Walter Reed National Military Medical Center established its Brain Fitness Center (BFC) in 2008 as an adjunct to traditional cognitive therapies for wounded warriors. The BFC offers commercially available "brain-training" products for military Service Members to use in a supportive, structured environment. Over 250 Service Members have utilized this therapeutic intervention. Each patient receives subjective assessments pre and post BFC participation including the Mayo-Portland Adaptability Inventory-4 (MPAI-4), the Neurobehavioral Symptom Inventory (NBSI), and the Satisfaction with Life Scale (SWLS). A review of the first 29 BFC participants, who finished initial and repeat measures, was completed to determine the effectiveness of the BFC program. Two of the three questionnaires of self-reported symptom change completed before and after participation in the BFC revealed a statistically significant reduction in symptom severity based on MPAI and NBSI total scores (p < .05). There were no significant differences in the SWLS score. Despite the typical limitations of a retrospective chart review, such as variation in treatment procedures, preliminary results reveal a trend towards improved self-reported cognitive and functional symptoms.

  15. Sensor-based balance training with motion feedback in people with mild cognitive impairment.

    PubMed

    Schwenk, Michael; Sabbagh, Marwan; Lin, Ivy; Morgan, Pharah; Grewal, Gurtej S; Mohler, Jane; Coon, David W; Najafi, Bijan

    2016-01-01

    Some individuals with mild cognitive impairment (MCI) experience not only cognitive deficits but also a decline in motor function, including postural balance. This pilot study sought to estimate the feasibility, user experience, and effects of a novel sensor-based balance training program. Patients with amnestic MCI (mean age 78.2 yr) were randomized to an intervention group (IG, n = 12) or control group (CG, n = 10). The IG underwent balance training (4 wk, twice a week) that included weight shifting and virtual obstacle crossing. Real-time visual/audio lower-limb motion feedback was provided from wearable sensors. The CG received no training. User experience was measured by a questionnaire. Postintervention effects on balance (center of mass sway during standing with eyes open [EO] and eyes closed), gait (speed, variability), cognition, and fear of falling were measured. Eleven participants (92%) completed the training and expressed fun, safety, and helpfulness of sensor feedback. Sway (EO, p = 0.04) and fear of falling (p = 0.02) were reduced in the IG compared to the CG. Changes in other measures were nonsignificant. Results suggest that the sensor-based training paradigm is well accepted in the target population and beneficial for improving postural control. Future studies should evaluate the added value of the sensor-based training compared to traditional training.

  16. Cognitive and Neural Effects of Vision-Based Speed-of-Processing Training in Older Adults with Amnestic Mild Cognitive Impairment: A Pilot Study.

    PubMed

    Lin, Feng; Heffner, Kathi L; Ren, Ping; Tivarus, Madalina E; Brasch, Judith; Chen, Ding-Geng; Mapstone, Mark; Porsteinsson, Anton P; Tadin, Duje

    2016-06-01

    To examine the cognitive and neural effects of vision-based speed-of-processing (VSOP) training in older adults with amnestic mild cognitive impairment (aMCI) and contrast those effects with an active control (mental leisure activities (MLA)). Randomized single-blind controlled pilot trial. Academic medical center. Individuals with aMCI (N = 21). Six-week computerized VSOP training. Multiple cognitive processing measures, instrumental activities of daily living (IADLs), and two resting state neural networks regulating cognitive processing: central executive network (CEN) and default mode network (DMN). VSOP training led to significantly greater improvements in trained (processing speed and attention: F1,19  = 6.61, partial η(2)  = 0.26, P = .02) and untrained (working memory: F1,19  = 7.33, partial η(2)  = 0.28, P = .01; IADLs: F1,19  = 5.16, partial η(2)  = 0.21, P = .03) cognitive domains than MLA and protective maintenance in DMN (F1, 9  = 14.63, partial η(2)  = 0.62, P = .004). VSOP training, but not MLA, resulted in a significant improvement in CEN connectivity (Z = -2.37, P = .02). Target and transfer effects of VSOP training were identified, and links between VSOP training and two neural networks associated with aMCI were found. These findings highlight the potential of VSOP training to slow cognitive decline in individuals with aMCI. Further delineation of mechanisms underlying VSOP-induced plasticity is necessary to understand in which populations and under what conditions such training may be most effective. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  17. C-Speak Aphasia Alternative Communication Program for People with Severe Aphasia: Importance of Executive Functioning and Semantic Knowledge

    PubMed Central

    Nicholas, Marjorie; Sinotte, Michele P.; Helm-Estabrooks, Nancy

    2011-01-01

    Learning how to use a computer-based communication system can be challenging for people with severe aphasia even if the system is not word-based. This study explored cognitive and linguistic factors relative to how they affected individual patients’ ability to communicate expressively using C-Speak Aphasia, (CSA), an alternative communication computer program that is primarily picture-based. Ten individuals with severe non-fluent aphasia received at least six months of training with CSA. To assess carryover of training, untrained functional communication tasks (i.e., answering autobiographical questions, describing pictures, making telephone calls, describing a short video, and two writing tasks) were repeatedly probed in two conditions: 1) using CSA in addition to natural forms of communication, and 2) using only natural forms of communication, e.g., speaking, writing, gesturing, drawing. Four of the ten participants communicated more information on selected probe tasks using CSA than they did without the computer. Response to treatment also was examined in relation to baseline measures of non-linguistic executive function skills, pictorial semantic abilities, and auditory comprehension. Only nonlinguistic executive function skills were significantly correlated with treatment response. PMID:21506045

  18. Cognitive enhancement therapy for adult autism spectrum disorder: Results of an 18-month randomized clinical trial.

    PubMed

    Eack, Shaun M; Hogarty, Susan S; Greenwald, Deborah P; Litschge, Maralee Y; Porton, Shannondora A; Mazefsky, Carla A; Minshew, Nancy J

    2018-03-01

    Cognitive remediation is a promising approach to treating core cognitive deficits in adults with autism, but rigorously controlled trials of comprehensive interventions that target both social and non-social cognition over a sufficient period of time to impact functioning are lacking. This study examined the efficacy of cognitive enhancement therapy (CET) for improving core cognitive and employment outcomes in adult autism. Verbal adult outpatients with autism spectrum disorder (N = 54) were randomized to an 18-month, single-blind trial of CET, a cognitive remediation approach that integrates computer-based neurocognitive training with group-based training in social cognition, or an active enriched supportive therapy (EST) comparison focused on psychoeducation and condition management. Primary outcomes were composite indexes of neurocognitive and social-cognitive change. Competitive employment was a secondary outcome. Intent-to-treat analyses indicated that CET produced significant differential increases in neurocognitive function relative to EST (d = .46, P = .013). Both CET and EST were associated with large social-cognitive improvements, with CET demonstrating an advantage at 9 (d = .58, P = 0.020), but not 18 months (d = .27, P = 0.298). Effects on employment indicated that participants treated with CET were significantly more likely to gain competitive employment than those in EST, OR = 6.21, P = 0.023, which was mediated by cognitive improvement. CET is a feasible and potentially effective treatment for core cognitive deficits in adult autism spectrum disorder. The treatment of cognitive impairments in this population can contribute to meaningful improvements in adult outcomes. Autism Res 2018, 11: 519-530. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Cognitive enhancement therapy (CET), an 18-month cognitive remediation intervention designed to improve thinking and social understanding, was found to be more effective than supportive therapy at improving mental quickness, attention, and employment in adults living with autism. Social understanding was equally improved in CET and supportive therapy. Cognitive remediation interventions are feasible and may confer significant functional benefits to adults with autism. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  19. Effect of elastic band-based high-speed power training on cognitive function, physical performance and muscle strength in older women with mild cognitive impairment.

    PubMed

    Yoon, Dong Hyun; Kang, Dongheon; Kim, Hee-Jae; Kim, Jin-Soo; Song, Han Sol; Song, Wook

    2017-05-01

    The effectiveness of resistance training in improving cognitive function in older adults is well demonstrated. In particular, unconventional high-speed resistance training can improve muscle power development. In the present study, the effectiveness of 12 weeks of elastic band-based high-speed power training (HSPT) was examined. Participants were randomly assigned into a HSPT group (n = 14, age 75.0 ± 0.9 years), a low-speed strength training (LSST) group (n = 9, age 76.0 ± 1.3 years) and a control group (CON; n = 7, age 78.0 ± 1.0 years). A 1-h exercise program was provided twice a week for 12 weeks for the HSPT and LSST groups, and balance and tone exercises were carried out by the CON group. Significant increases in levels of cognitive function, physical function, and muscle strength were observed in both the HSPT and LSST groups. In cognitive function, significant improvements in the Mini-Mental State Examination and Montreal Cognitive Assessment were seen in both the HSPT and LSST groups compared with the CON group. In physical functions, Short Physical Performance Battery scores were increased significantly in the HSPT and LSST groups compared with the CON group. In the 12 weeks of elastic band-based training, the HSPT group showed greater improvements in older women with mild cognitive impairment than the LSST group, although both regimens were effective in improving cognitive function, physical function and muscle strength. We conclude that elastic band-based HSPT, as compared with LSST, is more efficient in helping older women with mild cognitive impairment to improve cognitive function, physical performance and muscle strength. Geriatr Gerontol Int 2017; 17: 765-772. © 2016 Japan Geriatrics Society.

  20. The influence of cognitive load on transfer with error prevention training methods: a meta-analysis.

    PubMed

    Hutchins, Shaun D; Wickens, Christopher D; Carolan, Thomas F; Cumming, John M

    2013-08-01

    The objective was to conduct research synthesis for the U.S.Army on the effectiveness of two error prevention training strategies (training wheels and scaffolding) on the transfer of training. Motivated as part of an ongoing program of research on training effectiveness, the current work presents some of the program's research into the effects on transfer of error prevention strategies during training from a cognitive load perspective. Based on cognitive load theory, two training strategies were hypothesized to reduce intrinsic load by supporting learners early in acquisition during schema development. A transfer ratio and Hedges' g were used in the two meta-analyses conducted on transfer studies employing the two training strategies. Moderators relevant to cognitive load theory and specific to the implemented strategies were examined.The transfer ratio was the ratio of treatment transfer performance to control transfer. Hedges' g was used in comparing treatment and control group standardized mean differences. Both effect sizes were analyzed with versions of sample weighted fixed effect models. Analysis of the training wheels strategy suggests a transfer benefit. The observed benefit was strongest when the training wheels were a worked example coupled with a principle-based prompt. Analysis of the scaffolding data also suggests a transfer benefit for the strategy. Both training wheels and scaffolding demonstrated positive transfer as training strategies.As error prevention techniques, both support the intrinsic load--reducing implications of cognitive load theory. The findings are applicable to the development of instructional design guidelines in professional skill-based organizations such as the military.

  1. Behavioral, Cognitive, or Brain-Based Training?

    ERIC Educational Resources Information Center

    Whitmore, Paul G.

    2004-01-01

    Most trainers believe there are just two scientific approaches on which to base a training technology: behavioral psychology and cognitive psychology. There is a third scientific approach currently emerging that does deal with every kind of skill, and it comes from biology rather than psychology. This new approach is based on findings from…

  2. Measurement of cognitive performance in computer programming concept acquisition: interactive effects of visual metaphors and the cognitive style construct.

    PubMed

    McKay, E

    2000-01-01

    An innovative research program was devised to investigate the interactive effect of instructional strategies enhanced with text-plus-textual metaphors or text-plus-graphical metaphors, and cognitive style on the acquisition of programming concepts. The Cognitive Styles Analysis (CSA) program (Riding,1991) was used to establish the participants' cognitive style. The QUEST Interactive Test Analysis System (Adams and Khoo,1996) provided the cognitive performance measuring tool, which ensured an absence of error measurement in the programming knowledge testing instruments. Therefore, reliability of the instrumentation was assured through the calibration techniques utilized by the QUEST estimate; providing predictability of the research design. A means analysis of the QUEST data, using the Cohen (1977) approach to size effect and statistical power further quantified the significance of the findings. The experimental methodology adopted for this research links the disciplines of instructional science, cognitive psychology, and objective measurement to provide reliable mechanisms for beneficial use in the evaluation of cognitive performance by the education, training and development sectors. Furthermore, the research outcomes will be of interest to educators, cognitive psychologists, communications engineers, and computer scientists specializing in computer-human interactions.

  3. Can masses of non-experts train highly accurate image classifiers? A crowdsourcing approach to instrument segmentation in laparoscopic images.

    PubMed

    Maier-Hein, Lena; Mersmann, Sven; Kondermann, Daniel; Bodenstedt, Sebastian; Sanchez, Alexandro; Stock, Christian; Kenngott, Hannes Gotz; Eisenmann, Mathias; Speidel, Stefanie

    2014-01-01

    Machine learning algorithms are gaining increasing interest in the context of computer-assisted interventions. One of the bottlenecks so far, however, has been the availability of training data, typically generated by medical experts with very limited resources. Crowdsourcing is a new trend that is based on outsourcing cognitive tasks to many anonymous untrained individuals from an online community. In this work, we investigate the potential of crowdsourcing for segmenting medical instruments in endoscopic image data. Our study suggests that (1) segmentations computed from annotations of multiple anonymous non-experts are comparable to those made by medical experts and (2) training data generated by the crowd is of the same quality as that annotated by medical experts. Given the speed of annotation, scalability and low costs, this implies that the scientific community might no longer need to rely on experts to generate reference or training data for certain applications. To trigger further research in endoscopic image processing, the data used in this study will be made publicly available.

  4. The impact of intrinsic motivation on session attendance and reliable cognitive improvement in cognitive remediation in schizophrenia.

    PubMed

    Bryce, S D; Lee, S J; Ponsford, J L; Lawrence, R J; Tan, E J; Rossell, S L

    2018-06-20

    Cognitive remediation (CR) is considered a potentially effective method of improving cognitive function in people with schizophrenia. Few studies, however, have explored the role of intrinsic motivation on treatment utilization or training outcomes in CR in this population. This study explored the impact of task-specific intrinsic motivation on attendance and reliable cognitive improvement in a controlled trial comparing CR with a computer game (CG) playing control. Forty-nine participants with schizophrenia or schizoaffective disorder, allocated to 10 weeks of group-based CR (n = 25) or CG control (n = 24), provided complete outcome data at baseline. Forty-three participants completed their assigned intervention. Cognition, psychopathology and intrinsic motivation were measured at baseline and end-treatment. Regression analyses explored the relative contribution of baseline motivation and other clinical factors to session attendance as well as the association of baseline and change in intrinsic motivation with the odds of reliable cognitive improvement (calculated using reliable change indices). Baseline reports of perceived program value were the only significant multivariable predictor of session attendance when including global cognition and psychiatric symptomatology. The odds of reliable cognitive improvement significantly increased with greater improvements in program interest and value from baseline to end-treatment. Motivational changes over time were highly variable between participants. Task-specific intrinsic motivation in schizophrenia may represent an important patient-related factor that contributes to session attendance and cognitive improvements in CR. Regular evaluation and enhancement of intrinsic motivation in cognitively enhancing interventions may optimize treatment engagement and the likelihood of meaningful training outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Computerized cognitive training in survivors of childhood cancer: a pilot study.

    PubMed

    Hardy, Kristina K; Willard, Victoria W; Bonner, Melanie J

    2011-01-01

    The objective of the current study was to pilot a computerized cognitive training program, Captain's Log, in a small sample of survivors of childhood cancer. A total of 9 survivors of acute lymphoblastic leukemia and brain tumors with attention and working memory deficits were enrolled in a home-based 12-week cognitive training program. Survivors returned for follow-up assessments postintervention and 3 months later. The intervention was associated with good feasibility and acceptability. Participants exhibited significant increases in working memory and decreases in parent-rated attention problems following the intervention. Findings indicate that home-based, computerized cognitive intervention is a promising intervention for survivors with cognitive late effects; however, further study is warranted with a larger sample.

  6. A comparison of text and technology based training tools to improve cognitive skills in older adults.

    PubMed

    Power, Kevin; Kirwan, Grainne; Palmer, Marion

    2011-01-01

    Research has indicated that use of cognitive skills training tools can produce positive benefits with older adults. However, little research has compared the efficacy of technology-based interventions and more traditional, text-based interventions which are also available. This study aimed to investigate cognitive skills improvements experienced by 40 older adults using cognitive skills training tools. A Solomon 4 group design was employed to determine which intervention demonstrated the greatest improvement. Participants were asked to use the interventions for 5-10 minutes per day, over a period of 60 days. Pre and post-tests consisted of measures of numerical ability, self-reported memory and intelligence. Following training, older adults indicated significant improvements on numerical ability and intelligence regardless of intervention type. No improvement in selfreported memory was observed. This research provides a critical appraisal of brain training tools and can help point the way for future improvements in the area. Brain training improvements could lead to improved quality of life, and perhaps, have financial and independent living ramifications for older adults.

  7. Gray matter responsiveness to adaptive working memory training: a surface-based morphometry study

    PubMed Central

    Román, Francisco J.; Lewis, Lindsay B.; Chen, Chi-Hua; Karama, Sherif; Burgaleta, Miguel; Martínez, Kenia; Lepage, Claude; Jaeggi, Susanne M.; Evans, Alan C.; Kremen, William S.

    2016-01-01

    Here we analyze gray matter indices before and after completing a challenging adaptive cognitive training program based on the n-back task. The considered gray matter indices were cortical thickness (CT) and cortical surface area (CSA). Twenty-eight young women (age range 17–22 years) completed 24 training sessions over the course of 3 months (12 weeks, 24 sessions), showing expected performance improvements. CT and CSA values for the training group were compared with those of a matched control group. Statistical analyses were computed using a ROI framework defined by brain areas distinguished by their genetic underpinning. The interaction between group and time was analyzed. Middle temporal, ventral frontal, inferior parietal cortices, and pars opercularis were the regions where the training group showed conservation of gray matter with respect to the control group. These regions support working memory, resistance to interference, and inhibition. Furthermore, an interaction with baseline intelligence differences showed that the expected decreasing trend at the biological level for individuals showing relatively low intelligence levels at baseline was attenuated by the completed training. PMID:26701168

  8. An Economic Evaluation of Resistance Training and Aerobic Training versus Balance and Toning Exercises in Older Adults with Mild Cognitive Impairment

    PubMed Central

    Davis, Jennifer C.; Bryan, Stirling; Marra, Carlo A.; Sharma, Devika; Chan, Alison; Beattie, B. Lynn; Graf, Peter; Liu-Ambrose, Teresa

    2013-01-01

    Background Mild cognitive impairment (MCI) represents a critical window to intervene against dementia. Exercise training is a promising intervention strategy, but the efficiency (i.e., relationship of costs and consequences) of such types of training remains unknown. Thus, we estimated the incremental cost-effectiveness of resistance training or aerobic training compared with balance and tone exercises in terms of changes in executive cognitive function among senior women with probable MCI. Methods Economic evaluation conducted concurrently with a six-month three arm randomized controlled trial including eighty-six community dwelling women aged 70 to 80 years living in Vancouver, Canada. Participants received twice-weekly resistance training (n = 28), twice weekly aerobic training (n = 30) or twice-weekly balance and tone (control group) classes (n = 28) for 6 months. The primary outcome measure of the Exercise for Cognition and Everyday Living (EXCEL) study assessed executive cognitive function, a test of selective attention and conflict resolution (i.e., Stroop Test). We collected healthcare resource utilization costs over six months. Results Based on the bootstrapped estimates from our base case analysis, we found that both the aerobic training and resistance training interventions were less costly than twice weekly balance and tone classes. Compared with the balance and tone group, the resistance-training group had significantly improved performance on the Stroop Test (p = 0.04). Conclusions Resistance training and aerobic training result in health care cost saving and are more effective than balance and tone classes after only 6 months of intervention. Resistance training is a promising strategy to alter the trajectory of cognitive decline in seniors with MCI. Trial Registration ClinicalTrials.gov NCT00958867. PMID:23690976

  9. Virtual reality training to enhance behavior and cognitive function among children with attention-deficit/hyperactivity disorder: brief report.

    PubMed

    Shema-Shiratzky, Shirley; Brozgol, Marina; Cornejo-Thumm, Pablo; Geva-Dayan, Karen; Rotstein, Michael; Leitner, Yael; Hausdorff, Jeffrey M; Mirelman, Anat

    2018-05-17

    To examine the feasibility and efficacy of a combined motor-cognitive training using virtual reality to enhance behavior, cognitive function and dual-tasking in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Fourteen non-medicated school-aged children with ADHD, received 18 training sessions during 6 weeks. Training included walking on a treadmill while negotiating virtual obstacles. Behavioral symptoms, cognition and gait were tested before and after the training and at 6-weeks follow-up. Based on parental report, there was a significant improvement in children's social problems and psychosomatic behavior after the training. Executive function and memory were improved post-training while attention was unchanged. Gait regularity significantly increased during dual-task walking. Long-term training effects were maintained in memory and executive function. Treadmill-training augmented with virtual-reality is feasible and may be an effective treatment to enhance behavior, cognitive function and dual-tasking in children with ADHD.

  10. Effects of a Memory Training Program in Older People with Severe Memory Loss

    ERIC Educational Resources Information Center

    Mateos, Pedro M.; Valentin, Alberto; González-Tablas, Maria del Mar; Espadas, Verónica; Vera, Juan L.; Jorge, Inmaculada García

    2016-01-01

    Strategies based memory training programs are widely used to enhance the cognitive abilities of the elderly. Participants in these training programs are usually people whose mental abilities remain intact. Occasionally, people with cognitive impairment also participate. The aim of this study was to test if memory training designed specifically for…

  11. The Effects of Home-Based Cognitive Training on Verbal Working Memory and Language Comprehension in Older Adulthood

    PubMed Central

    Payne, Brennan R.; Stine-Morrow, Elizabeth A. L.

    2017-01-01

    Effective language understanding is crucial to maintaining cognitive abilities and learning new information through adulthood. However, age-related declines in working memory (WM) have a robust negative influence on multiple aspects of language comprehension and use, potentially limiting communicative competence. In the current study (N = 41), we examined the effects of a novel home-based computerized cognitive training program targeting verbal WM on changes in verbal WM and language comprehension in healthy older adults relative to an active component-control group. Participants in the WM training group showed non-linear improvements in performance on trained verbal WM tasks. Relative to the active control group, WM training participants also showed improvements on untrained verbal WM tasks and selective improvements across untrained dimensions of language, including sentence memory, verbal fluency, and comprehension of syntactically ambiguous sentences. Though the current study is preliminary in nature, it does provide initial promising evidence that WM training may influence components of language comprehension in adulthood and suggests that home-based training of WM may be a viable option for probing the scope and limits of cognitive plasticity in older adults. PMID:28848421

  12. The Effects of Home-Based Cognitive Training on Verbal Working Memory and Language Comprehension in Older Adulthood.

    PubMed

    Payne, Brennan R; Stine-Morrow, Elizabeth A L

    2017-01-01

    Effective language understanding is crucial to maintaining cognitive abilities and learning new information through adulthood. However, age-related declines in working memory (WM) have a robust negative influence on multiple aspects of language comprehension and use, potentially limiting communicative competence. In the current study ( N = 41), we examined the effects of a novel home-based computerized cognitive training program targeting verbal WM on changes in verbal WM and language comprehension in healthy older adults relative to an active component-control group. Participants in the WM training group showed non-linear improvements in performance on trained verbal WM tasks. Relative to the active control group, WM training participants also showed improvements on untrained verbal WM tasks and selective improvements across untrained dimensions of language, including sentence memory, verbal fluency, and comprehension of syntactically ambiguous sentences. Though the current study is preliminary in nature, it does provide initial promising evidence that WM training may influence components of language comprehension in adulthood and suggests that home-based training of WM may be a viable option for probing the scope and limits of cognitive plasticity in older adults.

  13. Effectiveness of computerized cognitive rehabilitation training on symptomatological, neuropsychological and work function in patients with schizophrenia.

    PubMed

    Lee, Woo Kyeong

    2013-06-01

    There has been plenty of interest in cognitive rehabilitation for schizophrenia here in Korea since the year 2000. But the efficacy studies of cognitive remediation intervention are still deficient. The primary purpose of this study was to develop a computer-assisted cognitive remediation program and conduct a clinical trial in a group of schizophrenic patients. Sixty patients with schizophrenia were randomly assigned to a computerized cognitive rehabilitation (Cog-trainer) group plus usual rehabilitation (UR) or to a usual rehabilitation (UR) group only. Clinical, neuropsychological and functional outcome variables were assessed at baseline and after intervention. The Cog-trainer group received 20 sessions of computerized cognitive remediation training over 3 months. This training program consists of 10 units, with each unit being divided into three stages: (i) practice; (ii) application; and (iii) advanced. Compared to the UR group, the Cog-trainer exhibited a significant improvement in attention, concentration and working memory. The Cog-trainer group also showed improvement in the work quality subscale of the work behavior inventory. However, there were no significant benefits of computerized cognitive remediation where symptoms were concerned. These results indicate that computerized cognitive rehabilitation training can contribute to an improvement in the cognitive function of people with schizophrenia. The changes in cognitive outcomes can also contribute to improvement in job functioning. Further study of generalization to other functional outcome measures will be necessary. Long-term follow-up studies are needed to confirm the maintenance of such improvements. Copyright © 2013 Wiley Publishing Asia Pty Ltd.

  14. Training cognitive flexibility in patients with anorexia nervosa: a pilot randomized controlled trial of cognitive remediation therapy.

    PubMed

    Brockmeyer, Timo; Ingenerf, Katrin; Walther, Stephan; Wild, Beate; Hartmann, Mechthild; Herzog, Wolfgang; Bents, Hinrich; Friederich, Hans-Christoph

    2014-01-01

    Inefficient cognitive flexibility is considered a neurocognitive trait marker involved in the development and maintenance of anorexia nervosa (AN). Cognitive Remediation Therapy (CRT) is a specific treatment targeting this cognitive style. The aim of this study was to investigate the feasibility and efficacy (by estimating the effect size) of specifically tailored CRT for AN, compared to non-specific cognitive training. A prospective, randomized controlled, superiority pilot trial was conducted. Forty women with AN receiving treatment as usual (TAU) were randomized to receive either CRT or non-specific neurocognitive therapy (NNT) as an add-on. Both conditions comprised 30 sessions of computer-assisted (21 sessions) and face-to-face (9 sessions) training over a 3-week period. CRT focused specifically on cognitive flexibility. NNT was comprised of tasks designed to improve attention and memory. The primary outcome was performance on a neuropsychological post-treatment assessment of cognitive set-shifting. Data available from 25 treatment completers were analyzed. Participants in the CRT condition outperformed participants in the NNT condition in cognitive set-shifting at the end of the treatment (p = 0.027; between-groups effect size d = 0.62). Participants in both conditions showed high treatment acceptance. This study confirms the feasibility of CRT for AN, and provides a first estimate of the effect size that can be achieved using CRT for AN. Furthermore, the present findings corroborate that neurocognitive training for AN should be tailored to the specific cognitive inefficiencies of this patient group. Copyright © 2013 Wiley Periodicals, Inc.

  15. Cost-effectiveness of computer-assisted training in cognitive-behavioral therapy as an adjunct to standard care for addiction.

    PubMed

    Olmstead, Todd A; Ostrow, Cary D; Carroll, Kathleen M

    2010-08-01

    To determine the cost-effectiveness, from clinic and patient perspectives, of a computer-based version of cognitive-behavioral therapy (CBT4CBT) as an addition to regular clinical practice for substance dependence. PARTICIPANTS, DESIGN AND MEASUREMENTS: This cost-effectiveness study is based on a randomized clinical trial in which 77 individuals seeking treatment for substance dependence at an outpatient community setting were randomly assigned to treatment as usual (TAU) or TAU plus biweekly access to computer-based training in CBT (TAU plus CBT4CBT). The primary patient outcome measure was the total number of drug-free specimens provided during treatment. Incremental cost-effectiveness ratios (ICERs) and cost-effectiveness acceptability curves (CEACs) were used to determine the cost-effectiveness of TAU plus CBT4CBT relative to TAU alone. Results are presented from both the clinic and patient perspectives and are shown to be robust to (i) sensitivity analyses and (ii) a secondary objective patient outcome measure. The per patient cost of adding CBT4CBT to standard care was $39 ($27) from the clinic (patient) perspective. From the clinic (patient) perspective, TAU plus CBT4CBT is likely to be cost-effective when the threshold value to decision makers of an additional drug-free specimen is greater than approximately $21 ($15), and TAU alone is likely to be cost-effective when the threshold value is less than approximately $21 ($15). The ICERs for TAU plus CBT4CBT also compare favorably to ICERs reported elsewhere for other empirically validated therapies, including contingency management. TAU plus CBT4CBT appears to be a good value from both the clinic and patient perspectives. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Neurocognitive enhancement in older adults: comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity.

    PubMed

    Strenziok, Maren; Parasuraman, Raja; Clarke, Ellen; Cisler, Dean S; Thompson, James C; Greenwood, Pamela M

    2014-01-15

    The ultimate goal of cognitive enhancement as an intervention for age-related cognitive decline is transfer to everyday cognitive functioning. Development of training methods that transfer broadly to untrained cognitive tasks (far transfer) requires understanding of the neural bases of training and far transfer effects. We used cognitive training to test the hypothesis that far transfer is associated with altered attentional control demands mediated by the dorsal attention network and trained sensory cortex. In an exploratory study, we randomly assigned 42 healthy older adults to six weeks of training on Brain Fitness (BF-auditory perception), Space Fortress (SF-visuomotor/working memory), or Rise of Nations (RON-strategic reasoning). Before and after training, cognitive performance, diffusion-derived white matter integrity, and functional connectivity of the superior parietal cortex (SPC) were assessed. We found the strongest effects from BF training, which transferred to everyday problem solving and reasoning and selectively changed integrity of occipito-temporal white matter associated with improvement on untrained everyday problem solving. These results show that cognitive gain from auditory perception training depends on heightened white matter integrity in the ventral attention network. In BF and SF (which also transferred positively), a decrease in functional connectivity between SPC and inferior temporal lobe (ITL) was observed compared to RON-which did not transfer to untrained cognitive function. These findings highlight the importance for cognitive training of top-down control of sensory processing by the dorsal attention network. Altered brain connectivity - observed in the two training tasks that showed far transfer effects - may be a marker for training success. © 2013 Elsevier Inc. All rights reserved.

  17. Computer-aided vs. tutor-delivered teaching of exposure therapy for phobia/panic: randomized controlled trial with pre-registration nursing students.

    PubMed

    Gega, L; Norman, I J; Marks, I M

    2007-03-01

    Exposure therapy is effective for phobic anxiety disorders (specific phobias, agoraphobia, social phobia) and panic disorder. Despite their high prevalence in the community, sufferers often get no treatment or if they do, it is usually after a long delay. This is largely due to the scarcity of healthcare professionals trained in exposure therapy, which is due, in part, to the high cost of training. Traditional teaching methods employed are labour intensive, being based mainly on role-play in small groups with feedback and coaching from experienced trainers. In an attempt to increase knowledge and skills in exposure therapy, there is now some interest in providing relevant teaching as part of pre-registration nurse education. Computers have been developed to teach terminology and simulate clinical scenarios for health professionals, and offer a potentially cost effective alternative to traditional teaching methods. To test whether student nurses would learn about exposure therapy for phobia/panic as well by computer-aided self-instruction as by face-to-face teaching, and to compare the individual and combined effects of two educational methods, traditional face-to-face teaching comprising a presentation with discussion and questions/answers by a specialist cognitive behaviour nurse therapist, and a computer-aided self-instructional programme based on a self-help programme for patients with phobia/panic called FearFighter, on students' knowledge, skills and satisfaction. Randomised controlled trial, with a crossover, completed in 2 consecutive days over a period of 4h per day. Ninety-two mental health pre-registration nursing students, of mixed gender, age and ethnic origin, with no previous training in cognitive behaviour therapy studying at one UK university. The two teaching methods led to similar improvements in knowledge and skills, and to similar satisfaction, when used alone. Using them in tandem conferred no added benefit. Computer-aided self-instruction was more efficient as it saved teacher preparation and delivery time, and needed no specialist tutor. Computer-aided self-instruction saved almost all preparation time and delivery effort for the expert teacher. When added to past results in medical students, the present results in nurses justify the use of computer-aided self-instruction for learning about exposure therapy and phobia/panic and of research into its value for other areas of health education.

  18. Effects of a computer-based cognitive exercise program on age-related cognitive decline.

    PubMed

    Bozoki, Andrea; Radovanovic, Mirjana; Winn, Brian; Heeter, Carrie; Anthony, James C

    2013-01-01

    We developed a 'senior friendly' suite of online 'games for learning' with interactive calibration for increasing difficulty, and evaluated the feasibility of a randomized clinical trial to test the hypothesis that seniors aged 60-80 can improve key aspects of cognitive ability with the aid of such games. Sixty community-dwelling senior volunteers were randomized to either an online game suite designed to train multiple cognitive abilities, or to a control arm with online activities that simulated the look and feel of the games but with low level interactivity and no calibration of difficulty. Study assessment included measures of recruitment, retention and play-time. Cognitive change was measured with a computerized assessment battery administered just before and within two weeks after completion of the six-week intervention. Impediments to feasibility included: limited access to in-home high-speed internet, large variations in the amount of time devoted to game play, and a reluctance to pursue more challenging levels. Overall analysis was negative for assessed performance (transference effects) even though subjects improved on the games themselves. Post hoc analyses suggest that some types of games may have more value than others, but these effects would need to be replicated in a study designed for that purpose. We conclude that a six-week, moderate-intensity computer game-based cognitive intervention can be implemented with high-functioning seniors, but the effect size is relatively small. Our findings are consistent with Owen et al. (2010), but there are open questions about whether more structured, longer duration or more intensive 'games for learning' interventions might yield more substantial cognitive improvement in seniors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. [Adding the perspective of emotion on cognitive rehabilitation].

    PubMed

    Nakagome, Kazuyuki

    2011-01-01

    Cognitive rehabilitation has been gradually disseminated in Japan lately. Cognitive rehabilitation is distinct from other psychosocial rehabilitation methods, which aims to enhance cognitive function per se, by various training tools, using paper and pencil tasks, computer games, etc. It stands on the hypothesis that enhancing cognitive function should lead to improvement in social functioning. However, it is becoming clear that cognitive rehabilitation on its own is not strongly effective on social functioning, but rather it appears effective when combined with other methods of rehabilitation. Moreover, it does not treat the emotional problems, which is essential considering the treatment endpoint, to enhance "subjective well-being". Emotional problems arise much often at social interaction in patients with schizophrenia, which can be amended by improving their social cognition as well as social skills. Recently, one of the social cognition training programs has been developed in USA by Penn and his colleagues, named SCIT (Social Cognition and Interaction Training) . The program treats a number of factors involved in social cognition, a) emotion perception, b) attributional style, and c) theory of mind, using various techniques such as Socrates quotes. In previous studies, SCIT showed good effectiveness in various aspects of social cognition for inpatients, whereas the finding was not as clear for outpatients. It may be assumed that integrating SCIT into a cognitive rehabilitation program should alleviate emotional stress the patients often encounter at social interaction in their daily activities. Presumably the next candidate target for psychosocial treatments coming after cognition and emotion should be "intrinsic motivation".

  20. The fog of war: decrements in cognitive performance and mood associated with combat-like stress.

    PubMed

    Lieberman, Harris R; Bathalon, Gaston P; Falco, Christina M; Morgan, Charles A; Niro, Philip J; Tharion, William J

    2005-07-01

    Anecdotal reports from military conflicts suggest cognitive performance and mood are severely degraded by the stress of combat. However, little objective information is available to confirm these observations. Our laboratory had several unique opportunities to study cognitive function in warfighters engaged in exercises designed to simulate the stress of combat. These studies were conducted in different environments with two different types of military volunteers. In one study, subjects were officers, with an average 9 yr of military service, who were members of an elite U.S. Army unit, the Rangers. In the other study, participants were younger, mostly enlisted, trainees with only 3 yr of military experience on average, in training to determine if they would qualify for an elite U.S. Navy unit, the SEALS. We administered a variety of identical, computer-based cognitive tests to both groups. In both groups, during stressful combat-like training, every aspect of cognitive function assessed was severely degraded compared with baseline, pre-stress performance. Relatively simple cognitive functions such as reaction time and vigilance were significantly impaired, as were more complex functions, including memory and logical reasoning. The deficits observed were greater than those typically produced by alcohol intoxication, treatment with sedating drugs, or clinical hypoglycemia. Undoubtedly, such decrements would severely degrade operational effectiveness. Furthermore, it is likely such cognitive decrements would be greater during actual combat. War planners, doctrine developers, and warfighters, especially leaders, need to be aware that combat stress will result in extensive and severe deficits in cognitive performance.

  1. Early Life Cognitive Abilities and Body Weight: Cross-Sectional Study of the Association of Inhibitory Control, Cognitive Flexibility, and Sustained Attention with BMI Percentiles in Primary School Children

    PubMed Central

    Wirt, Tamara; Schreiber, Anja; Kesztyüs, Dorothea; Steinacker, Jürgen M.

    2015-01-01

    The objective of this study was to investigate the association of different cognitive abilities with children's body weight adjusted for further weight influencing sociodemographic, family, and lifestyle factors. Cross-sectional data of 498 primary school children (7.0 ± 0.6 years; 49.8% boys) participating in a health promotion programme in southwest Germany were used. Children performed a computer-based test battery (KiTAP) including an inhibitory control task (Go-Nogo paradigm), a cognitive flexibility task, and a sustained attention task. Height and weight were measured in a standardized manner and converted to BMI percentiles based on national standards. Sociodemographic features (migration background and parental education), family characteristics (parental body weight), and children's lifestyle (TV consumption, physical activity, consumption of sugar-sweetened beverages and breakfast habits) were assessed via parental questionnaire. A hierarchical regression analysis revealed inhibitory control and cognitive flexibility to be significant cognitive predictors for children's body weight. There was no association concerning sustained attention. The findings suggest that especially cognitive abilities known as executive functions (inhibitory control and cognitive flexibility) are associated with children's body weight. Future longitudinal and intervention studies are necessary to investigate the directionality of the association and the potential of integrating cognitive training in obesity prevention strategies. This trial is registered with ClinicalTrials.gov DRKS00000494. PMID:25874122

  2. Early life cognitive abilities and body weight: cross-sectional study of the association of inhibitory control, cognitive flexibility, and sustained attention with BMI percentiles in primary school children.

    PubMed

    Wirt, Tamara; Schreiber, Anja; Kesztyüs, Dorothea; Steinacker, Jürgen M

    2015-01-01

    The objective of this study was to investigate the association of different cognitive abilities with children's body weight adjusted for further weight influencing sociodemographic, family, and lifestyle factors. Cross-sectional data of 498 primary school children (7.0 ± 0.6 years; 49.8% boys) participating in a health promotion programme in southwest Germany were used. Children performed a computer-based test battery (KiTAP) including an inhibitory control task (Go-Nogo paradigm), a cognitive flexibility task, and a sustained attention task. Height and weight were measured in a standardized manner and converted to BMI percentiles based on national standards. Sociodemographic features (migration background and parental education), family characteristics (parental body weight), and children's lifestyle (TV consumption, physical activity, consumption of sugar-sweetened beverages and breakfast habits) were assessed via parental questionnaire. A hierarchical regression analysis revealed inhibitory control and cognitive flexibility to be significant cognitive predictors for children's body weight. There was no association concerning sustained attention. The findings suggest that especially cognitive abilities known as executive functions (inhibitory control and cognitive flexibility) are associated with children's body weight. Future longitudinal and intervention studies are necessary to investigate the directionality of the association and the potential of integrating cognitive training in obesity prevention strategies. This trial is registered with ClinicalTrials.gov DRKS00000494.

  3. Educating Executive Function

    PubMed Central

    Blair, Clancy

    2016-01-01

    Executive functions are thinking skills that assist with reasoning, planning, problem solving, and managing one’s life. The brain areas that underlie these skills are interconnected with and influenced by activity in many different brain areas, some of which are associated with emotion and stress. One consequence of the stress-specific connections is that executive functions, which help us to organize our thinking, tend to be disrupted when stimulation is too high and we are stressed out, or too low when we are bored and lethargic. Given their central role in reasoning and also in managing stress and emotion, scientists have conducted studies, primarily with adults, to determine whether executive functions can be improved by training. By and large, results have shown that they can be, in part through computer-based videogame-like activities. Evidence of wider, more general benefits from such computer-based training, however, is mixed. Accordingly, scientists have reasoned that training will have wider benefits if it is implemented early, with very young children as the neural circuitry of executive functions is developing, and that it will be most effective if embedded in children’s everyday activities. Evidence produced by this research, however, is also mixed. In sum, much remains to be learned about executive function training. Without question, however, continued research on this important topic will yield valuable information about cognitive development. PMID:27906522

  4. A brain-computer interface based cognitive training system for healthy elderly: a randomized control pilot study for usability and preliminary efficacy.

    PubMed

    Lee, Tih-Shih; Goh, Siau Juinn Alexa; Quek, Shin Yi; Phillips, Rachel; Guan, Cuntai; Cheung, Yin Bun; Feng, Lei; Teng, Stephanie Sze Wei; Wang, Chuan Chu; Chin, Zheng Yang; Zhang, Haihong; Ng, Tze Pin; Lee, Jimmy; Keefe, Richard; Krishnan, K Ranga Rama

    2013-01-01

    Cognitive decline in aging is a pressing issue associated with significant healthcare costs and deterioration in quality of life. Previously, we reported the successful use of a novel brain-computer interface (BCI) training system in improving symptoms of attention deficit hyperactivity disorder. Here, we examine the feasibility of the BCI system with a new game that incorporates memory training in improving memory and attention in a pilot sample of healthy elderly. This study investigates the safety, usability and acceptability of our BCI system to elderly, and obtains an efficacy estimate to warrant a phase III trial. Thirty-one healthy elderly were randomized into intervention (n = 15) and waitlist control arms (n = 16). Intervention consisted of an 8-week training comprising 24 half-hour sessions. A usability and acceptability questionnaire was administered at the end of training. Safety was investigated by querying users about adverse events after every session. Efficacy of the system was measured by the change of total score from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) before and after training. Feedback on the usability and acceptability questionnaire was positive. No adverse events were reported for all participants across all sessions. Though the median difference in the RBANS change scores between arms was not statistically significant, an effect size of 0.6SD was obtained, which reflects potential clinical utility according to Simon's randomized phase II trial design. Pooled data from both arms also showed that the median change in total scores pre and post-training was statistically significant (Mdn = 4.0; p<0.001). Specifically, there were significant improvements in immediate memory (p = 0.038), visuospatial/constructional (p = 0.014), attention (p = 0.039), and delayed memory (p<0.001) scores. Our BCI-based system shows promise in improving memory and attention in healthy elderly, and appears to be safe, user-friendly and acceptable to senior users. Given the efficacy signal, a phase III trial is warranted. ClinicalTrials.gov NCT01661894.

  5. PERFORMANCE OF A COMPUTER-BASED ASSESSMENT OF COGNITIVE FUNCTION MEASURES IN TWO COHORTS OF SENIORS

    PubMed Central

    Espeland, Mark A.; Katula, Jeffrey A.; Rushing, Julia; Kramer, Arthur F.; Jennings, Janine M.; Sink, Kaycee M.; Nadkarni, Neelesh K.; Reid, Kieran F.; Castro, Cynthia M.; Church, Timothy; Kerwin, Diana R.; Williamson, Jeff D.; Marottoli, Richard A.; Rushing, Scott; Marsiske, Michael; Rapp, Stephen R.

    2013-01-01

    Background Computer-administered assessment of cognitive function is being increasingly incorporated in clinical trials, however its performance in these settings has not been systematically evaluated. Design The Seniors Health and Activity Research Program (SHARP) pilot trial (N=73) developed a computer-based tool for assessing memory performance and executive functioning. The Lifestyle Interventions and Independence for Seniors (LIFE) investigators incorporated this battery in a full scale multicenter clinical trial (N=1635). We describe relationships that test scores have with those from interviewer-administered cognitive function tests and risk factors for cognitive deficits and describe performance measures (completeness, intra-class correlations). Results Computer-based assessments of cognitive function had consistent relationships across the pilot and full scale trial cohorts with interviewer-administered assessments of cognitive function, age, and a measure of physical function. In the LIFE cohort, their external validity was further demonstrated by associations with other risk factors for cognitive dysfunction: education, hypertension, diabetes, and physical function. Acceptable levels of data completeness (>83%) were achieved on all computer-based measures, however rates of missing data were higher among older participants (odds ratio=1.06 for each additional year; p<0.001) and those who reported no current computer use (odds ratio=2.71; p<0.001). Intra-class correlations among clinics were at least as low (ICC≤0.013) as for interviewer measures (ICC≤0.023), reflecting good standardization. All cognitive measures loaded onto the first principal component (global cognitive function), which accounted for 40% of the overall variance. Conclusion Our results support the use of computer-based tools for assessing cognitive function in multicenter clinical trials of older individuals. PMID:23589390

  6. Cognitive mapping based on synthetic vision?

    NASA Astrophysics Data System (ADS)

    Helmetag, Arnd; Halbig, Christian; Kubbat, Wolfgang; Schmidt, Rainer

    1999-07-01

    The analysis of accidents focused our work on the avoidance of 'Controlled Flight Into Terrain' caused by insufficient situation awareness. Analysis of safety concepts led us to the design of the proposed synthetic vision system that will be described. Since most information on these 3D-Displays is shown in a graphical way, it can intuitively be understood by the pilot. What are the new possibilities using SVS enhancing situation awareness? First, detection of ground collision hazard is possible by monitoring a perspective Primary Flight Display. Under the psychological point of view it is based on the perception of expanding objects in the visual flow field. Supported by a Navigation Display a local conflict resolution can be mentally worked out very fast. Secondly, it is possible to follow a 3D flight path visualized as a 'Tunnel in the sky.' This can further be improved by using a flight path prediction. These are the prerequisites for a safe and adequate movement in any kind of spatial environment. However situation awareness requires the ability of navigation and spatial problem solving. Both abilities are based on higher cognitive functions in real as well as in a synthetic environment. In this paper the current training concept will be analyzed. Advantages resulting from the integration of a SVS concerning pilot training will be discussed and necessary requirements in terrain depiction will be pinpointed. Finally a modified Computer Based Training for the familiarization with Salzburg Airport for a SVS equipped aircraft will be presented. It is developed by Darmstadt University of Technology in co-operation with Lufthansa Flight Training.

  7. Effect of a Combined Tai Chi, Resistance Training and Dietary Intervention on Cognitive Function in Obese Older Women.

    PubMed

    Xu, F; Delmonico, M J; Lofgren, I E; Uy, K M; Maris, S A; Quintanilla, D; Taetzsch, A G; Letendre, J; Mahler, L

    2017-01-01

    Cognitive decline in older adults is a major public health problem and can compromise independence and quality of life. Exercise and diet have been studied independently and have shown to be beneficial for cognitive function, however, a combined Tai Chi, resistance training, and diet intervention and its influence on cognitive function has not been undertaken. The current study used a 12-week non-randomized research design with experiment and control groups to examine the effect of a combined Tai Chi, resistance training, and diet intervention on cognitive function in 25 older obese women. Results revealed improvements in domain specific cognitive function in our sample. Baseline cognitive function was correlated with changes in dietary quality. These findings suggest that Tai Chi and resistance training combined with diet intervention might be beneficial for community-based programs aiming to improve cognitive function.

  8. Task-Based Neurofeedback Training: A Novel Approach Toward Training Executive Functions

    PubMed Central

    Hosseini, SM Hadi; Pritchard-Berman, Mika; Sosa, Natasha; Ceja, Angelica; Kesler, Shelli R.

    2016-01-01

    Cognitive training is an emergent approach to improve cognitive functions in various neurodevelopmental and neurodegenerative diseases. However, current training programs can be relatively lengthy, making adherence potentially difficult for patients with cognitive difficulties. Previous studies suggest that providing individuals with real-time feedback about the level of brain activity (neurofeedback) can potentially help them learn to control the activation of specific brain regions. In the present study, we developed a novel task-based neurofeedback training paradigm that benefits from the effects of neurofeedback in parallel with computerized training. We focused on executive function training given its core involvement in various developmental and neurodegenerative diseases. Near-infrared spectroscopy (NIRS) was employed for providing neurofeedback by measuring changes in oxygenated hemoglobin in the prefrontal cortex. Of the twenty healthy adult participants, ten received real neurofeedback (NFB) on prefrontal activity during cognitive training, and ten were presented with sham feedback (SHAM). Compared with SHAM, the NFB group showed significantly improved executive function performance including measures of working memory after four sessions of training (100 minutes total). The NFB group also showed significantly reduced training-related brain activity in the executive function network including right middle frontal and inferior frontal regions compared with SHAM. Our data suggest that providing neurofeedback along with cognitive training can enhance executive function after a relatively short period of training. Similar designs could potentially be used for patient populations with known neuropathology, potentially helping them to boost/recover the activity in the affected brain regions. PMID:27015711

  9. A Usability Study of a Serious Game in Cognitive Rehabilitation: A Compensatory Navigation Training in Acquired Brain Injury Patients

    PubMed Central

    van der Kuil, Milan N. A.; Visser-Meily, Johanna M. A.; Evers, Andrea W. M.; van der Ham, Ineke J. M.

    2018-01-01

    Acquired brain injury patients often report navigation impairments. A cognitive rehabilitation therapy has been designed in the form of a serious game. The aim of the serious game is to aid patients in the development of compensatory navigation strategies by providing exercises in 3D virtual environments on their home computers. The objective of this study was to assess the usability of three critical gaming attributes: movement control in 3D virtual environments, instruction modality and feedback timing. Thirty acquired brain injury patients performed three tasks in which objective measures of usability were obtained. Mouse controlled movement was compared to keyboard controlled movement in a navigation task. Text-based instructions were compared to video-based instructions in a knowledge acquisition task. The effect of feedback timing on performance and motivation was examined in a navigation training game. Subjective usability ratings of all design options were assessed using questionnaires. Results showed that mouse controlled interaction in 3D environments is more effective than keyboard controlled interaction. Patients clearly preferred video-based instructions over text-based instructions, even though video-based instructions were not more effective in context of knowledge acquisition and comprehension. No effect of feedback timing was found on performance and motivation in games designed to train navigation abilities. Overall appreciation of the serious game was positive. The results provide valuable insights in the design choices that facilitate the transfer of skills from serious games to real-life situations. PMID:29922196

  10. A Usability Study of a Serious Game in Cognitive Rehabilitation: A Compensatory Navigation Training in Acquired Brain Injury Patients.

    PubMed

    van der Kuil, Milan N A; Visser-Meily, Johanna M A; Evers, Andrea W M; van der Ham, Ineke J M

    2018-01-01

    Acquired brain injury patients often report navigation impairments. A cognitive rehabilitation therapy has been designed in the form of a serious game. The aim of the serious game is to aid patients in the development of compensatory navigation strategies by providing exercises in 3D virtual environments on their home computers. The objective of this study was to assess the usability of three critical gaming attributes: movement control in 3D virtual environments, instruction modality and feedback timing. Thirty acquired brain injury patients performed three tasks in which objective measures of usability were obtained. Mouse controlled movement was compared to keyboard controlled movement in a navigation task. Text-based instructions were compared to video-based instructions in a knowledge acquisition task. The effect of feedback timing on performance and motivation was examined in a navigation training game. Subjective usability ratings of all design options were assessed using questionnaires. Results showed that mouse controlled interaction in 3D environments is more effective than keyboard controlled interaction. Patients clearly preferred video-based instructions over text-based instructions, even though video-based instructions were not more effective in context of knowledge acquisition and comprehension. No effect of feedback timing was found on performance and motivation in games designed to train navigation abilities. Overall appreciation of the serious game was positive. The results provide valuable insights in the design choices that facilitate the transfer of skills from serious games to real-life situations.

  11. Student Modeling in Orthopedic Surgery Training: Exploiting Symbiosis between Temporal Bayesian Networks and Fine-Grained Didactic Analysis

    ERIC Educational Resources Information Center

    Chieu, Vu Minh; Luengo, Vanda; Vadcard, Lucile; Tonetti, Jerome

    2010-01-01

    Cognitive approaches have been used for student modeling in intelligent tutoring systems (ITSs). Many of those systems have tackled fundamental subjects such as mathematics, physics, and computer programming. The change of the student's cognitive behavior over time, however, has not been considered and modeled systematically. Furthermore, the…

  12. Assessing the Impact of Meta-Cognitive Training on Students' Understanding of Introductory Programming Concepts

    ERIC Educational Resources Information Center

    Cetin, Ibrahim; Sendurur, Emine; Sendurur, Polat

    2014-01-01

    Students' difficulties in learning computer programming are well documented in the literature and have been studied from different perspectives by the researchers. However, studies that have been conducted from the meta-cognition perspective are rare in the context of programming education. The current study aimed to (i) investigate the effects of…

  13. Virtual Reality Social Cognition Training for Young Adults with High-Functioning Autism

    ERIC Educational Resources Information Center

    Kandalaft, Michelle R.; Didehbani, Nyaz; Krawczyk, Daniel C.; Allen, Tandra T.; Chapman, Sandra B.

    2013-01-01

    Few evidence-based social interventions exist for young adults with high-functioning autism, many of whom encounter significant challenges during the transition into adulthood. The current study investigated the feasibility of an engaging Virtual Reality Social Cognition Training intervention focused on enhancing social skills, social cognition,…

  14. Correlating Trainee Attributes to Performance in 3D CAD Training

    ERIC Educational Resources Information Center

    Hamade, Ramsey F.; Artail, Hassan A.; Sikstrom, Sverker

    2007-01-01

    Purpose: The purpose of this exploratory study is to identify trainee attributes relevant for development of skills in 3D computer-aided design (CAD). Design/methodology/approach: Participants were trained to perform cognitive tasks of comparable complexity over time. Performance data were collected on the time needed to construct test models, and…

  15. Social Skills Training for Young Adolescents.

    ERIC Educational Resources Information Center

    Wise, Kathryn L.; And Others

    1991-01-01

    Six-session systematic assertiveness training program based on social cognitive theory and focusing on peer interactions and social responsibility was presented to 22 sixth graders. Compared to control group, students who received training performed significantly better on test of cognitive acquisition of the information at posttest and six-month…

  16. A randomised controlled trial of adjunctive yoga and adjunctive physical exercise training for cognitive dysfunction in schizophrenia.

    PubMed

    Bhatia, Triptish; Mazumdar, Sati; Wood, Joel; He, Fanyin; Gur, Raquel E; Gur, Ruben C; Nimgaonkar, Vishwajit L; Deshpande, Smita N

    2017-04-01

    Yoga and physical exercise have been used as adjunctive intervention for cognitive dysfunction in schizophrenia (SZ), but controlled comparisons are lacking. Aims A single-blind randomised controlled trial was designed to evaluate whether yoga training or physical exercise training enhance cognitive functions in SZ, based on a prior pilot study. Consenting, clinically stable, adult outpatients with SZ (n=286) completed baseline assessments and were randomised to treatment as usual (TAU), supervised yoga training with TAU (YT) or supervised physical exercise training with TAU (PE). Based on the pilot study, the primary outcome measure was speed index for the cognitive domain of 'attention' in the Penn computerised neurocognitive battery. Using mixed models and contrasts, cognitive functions at baseline, 21 days (end of training), 3 and 6 months post-training were evaluated with intention-to-treat paradigm. Speed index of attention domain in the YT group showed greater improvement than PE at 6 months follow-up (p<0.036, effect size 0.51). In the PE group, 'accuracy index of attention domain showed greater improvement than TAU alone at 6-month follow-up (p<0.025, effect size 0.61). For several other cognitive domains, significant improvements were observed with YT or PE compared with TAU alone (p<0.05, effect sizes 0.30-1.97). Both YT and PE improved attention and additional cognitive domains well past the training period, supporting our prior reported beneficial effect of YT on speed index of attention domain. As adjuncts, YT or PE can benefit individuals with SZ.

  17. A Role of the Parasympathetic Nervous System in Cognitive Training.

    PubMed

    Lin, Feng; Heffner, Kathi L; Ren, Ping; Tadin, Duje

    2017-01-01

    Vision-based speed of processing (VSOP) training can result in broad cognitive improvements in older adults with amnestic mild cognitive impairment (aMCI). What remains unknown, however, is what neurophysiological mechanisms account for the observed training effect. Much of the work in this area has focused on the central nervous system, neglecting the fact that the peripheral system can contributes to changes of the central nervous system and vice versa. We examined the prospective relationship between an adaptive parasympathetic nervous system response to cognitive stimuli and VSOP training-induced plasticity. Twenty-one participants with aMCI (10 for VSOP training, and 11 for mental leisure activities (MLA) control) were enrolled. We assessed high-frequency heart rate variability (HF-HRV) during training sessions, and striatum-related neural networks and cognition at baseline and post-training. Compared to MLA, the VSOP group showed a significant U-shaped pattern of HF-HRV response during training, as well as decreases in connectivity strength between bilateral striatal and prefrontal regions. These two effects were associated with training-induced improvements in both the trained (attention and processing speed) and transferred (working memory) cognitive domains. This work provides novel support for interactions between the central and the peripheral nervous systems in relation to cognitive training, and motivates further studies to elucidate the causality of the observed link. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Screening for cognitive impairment in older individuals. Validation study of a computer-based test.

    PubMed

    Green, R C; Green, J; Harrison, J M; Kutner, M H

    1994-08-01

    This study examined the validity of a computer-based cognitive test that was recently designed to screen the elderly for cognitive impairment. Criterion-related validity was examined by comparing test scores of impaired patients and normal control subjects. Construct-related validity was computed through correlations between computer-based subtests and related conventional neuropsychological subtests. University center for memory disorders. Fifty-two patients with mild cognitive impairment by strict clinical criteria and 50 unimpaired, age- and education-matched control subjects. Control subjects were rigorously screened by neurological, neuropsychological, imaging, and electrophysiological criteria to identify and exclude individuals with occult abnormalities. Using a cut-off total score of 126, this computer-based instrument had a sensitivity of 0.83 and a specificity of 0.96. Using a prevalence estimate of 10%, predictive values, positive and negative, were 0.70 and 0.96, respectively. Computer-based subtests correlated significantly with conventional neuropsychological tests measuring similar cognitive domains. Thirteen (17.8%) of 73 volunteers with normal medical histories were excluded from the control group, with unsuspected abnormalities on standard neuropsychological tests, electroencephalograms, or magnetic resonance imaging scans. Computer-based testing is a valid screening methodology for the detection of mild cognitive impairment in the elderly, although this particular test has important limitations. Broader applications of computer-based testing will require extensive population-based validation. Future studies should recognize that normal control subjects without a history of disease who are typically used in validation studies may have a high incidence of unsuspected abnormalities on neurodiagnostic studies.

  19. Auditory training and challenges associated with participation and compliance.

    PubMed

    Sweetow, Robert W; Sabes, Jennifer Henderson

    2010-10-01

    When individuals have hearing loss, physiological changes in their brain interact with relearning of sound patterns. Some individuals utilize compensatory strategies that may result in successful hearing aid use. Others, however, are not so fortunate. Modern hearing aids can provide audibility but may not rectify spectral and temporal resolution, susceptibility to noise interference, or degradation of cognitive skills, such as declining auditory memory and slower speed of processing associated with aging. Frequently, these deficits are not identified during a typical "hearing aid evaluation." Aural rehabilitation has long been advocated to enhance communication but has not been considered time or cost-effective. Home-based, interactive adaptive computer therapy programs are available that are designed to engage the adult hearing-impaired listener in the hearing aid fitting process, provide listening strategies, build confidence, and address cognitive changes. Despite the availability of these programs, many patients and professionals are reluctant to engage in and complete therapy. The purposes of this article are to discuss the need for identifying auditory and nonauditory factors that may adversely affect the overall audiological rehabilitation process, to discuss important features that should be incorporated into training, and to examine reasons for the lack of compliance with therapeutic options. Possible solutions to maximizing compliance are explored. Only a small portion of audiologists (fewer than 10%) offer auditory training to patients with hearing impairment, even though auditory training appears to lower the rate of hearing aid returns for credit. Patients to whom auditory training programs are recommended often do not complete the training, however. Compliance for a cohort of home-based auditory therapy trainees was less than 30%. Activities to increase patient compliance to auditory training protocols are proposed. American Academy of Audiology.

  20. Protocol for Fit Bodies, Fine Minds: a randomized controlled trial on the affect of exercise and cognitive training on cognitive functioning in older adults

    PubMed Central

    O'Dwyer, Siobhan T; Burton, Nicola W; Pachana, Nancy A; Brown, Wendy J

    2007-01-01

    Background Declines in cognitive functioning are a normal part of aging that can affect daily functioning and quality of life. This study will examine the impact of an exercise training program, and a combined exercise and cognitive training program, on the cognitive and physical functioning of older adults. Methods/Design Fit Bodies, Fine Minds is a randomized, controlled trial. Community-dwelling adults, aged between 65 and 75 years, are randomly allocated to one of three groups for 16 weeks. The exercise-only group do three 60-minute exercise sessions per week. The exercise and cognitive training group do two 60-minute exercise sessions and one 60-minute cognitive training session per week. A no-training control group is contacted every 4 weeks. Measures of cognitive functioning, physical fitness and psychological well-being are taken at baseline (0 weeks), post-test (16 weeks) and 6-month follop (40 weeks). Qualitative responses to the program are taken at post-test. Discussion With an increasingly aged population, interventions to improve the functioning and quality of life of older adults are particularly important. Exercise training, either alone or in combination with cognitive training, may be an effective means of optimizing cognitive functioning in older adults. This study will add to the growing evidence base on the effectiveness of these interventions. Trial Registration Australian Clinical Trials Register: ACTRN012607000151437 PMID:17915035

  1. The Methods of Cognitive Visualization for the Astronomical Databases Analyzing Tools Development

    NASA Astrophysics Data System (ADS)

    Vitkovskiy, V.; Gorohov, V.

    2008-08-01

    There are two kinds of computer graphics: the illustrative one and the cognitive one. Appropriate the cognitive pictures not only make evident and clear the sense of complex and difficult scientific concepts, but promote, --- and not so very rarely, --- a birth of a new knowledge. On the basis of the cognitive graphics concept, we worked out the SW-system for visualization and analysis. It allows to train and to aggravate intuition of researcher, to raise his interest and motivation to the creative, scientific cognition, to realize process of dialogue with the very problems simultaneously.

  2. Transfer after Working Memory Updating Training

    PubMed Central

    Waris, Otto; Soveri, Anna; Laine, Matti

    2015-01-01

    During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures. PMID:26406319

  3. Transfer after Working Memory Updating Training.

    PubMed

    Waris, Otto; Soveri, Anna; Laine, Matti

    2015-01-01

    During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures.

  4. Web-based cognitive behavior therapy: analysis of site usage and changes in depression and anxiety scores.

    PubMed

    Christensen, Helen; Griffiths, Kathleen M; Korten, Ailsa

    2002-01-01

    Cognitive behavior therapy is well recognized as an effective treatment and prevention for depression when delivered face-to-face, via self-help books (bibliotherapy), and through computer administration. The public health impact of cognitive behavior therapy has been limited by cost and the lack of trained practitioners. We have developed a free Internet-based cognitive behavior therapy intervention (MoodGYM, http://moodgym.anu.edu.au) designed to treat and prevent depression in young people, available to all Internet users, and targeted to those who may have no formal contact with professional help services. To document site usage, visitor characteristics, and changes in depression and anxiety symptoms among users of MoodGYM, a Web site delivering a cognitive-behavioral-based preventive intervention to the general public. All visitors to the MoodGYM site over about 6 months were investigated, including 2909 registrants of whom 1503 had completed at least one online assessment. Outcomes for 71 university students enrolled in an Abnormal Psychology course who visited the site for educational training were included and examined separately. The main outcome measures were (1) site-usage measures including number of sessions, hits and average time on the server, and number of page views; (2) visitor characteristics including age, gender, and initial Goldberg self-report anxiety and depression scores; and (3) symptom change measures based on Goldberg anxiety and depression scores recorded on up to 5 separate occasions. Over the first almost-6-month period of operation, the server recorded 817284 hits and 17646 separate sessions. Approximately 20% of sessions lasted more than 16 minutes. Registrants who completed at least one assessment reported initial symptoms of depression and anxiety that exceeded those found in population-based surveys and those characterizing a sample of University students. For the Web-based population, both anxiety and depression scores decreased significantly as individuals progressed through the modules. CONCLUSIONS Web sites are a practical and promising means of delivering cognitive behavioral interventions for preventing depression and anxiety to the general public. However, randomized controlled trials are required to establish the effectiveness of these interventions.

  5. Arthur C. Graesser: Award for Distinguished Contributions of Applications of Psychology to Education and Training.

    PubMed

    2011-11-01

    Presents Arthur C. Graesser as the 2011 winner of the American Psychological Association Award for Distinguished Contributions of Applications of Psychology to Education and Training. "As a multifaceted psychologist, cognitive engineer of useful education and training technologies, and mentor of new talent for the world of applied and translational cognitive science, Arthur C. Graesser is the perfect role model, showing how a strong scholar and intellect can shape both research and practice. His work is a mix of top-tier scholarship in psychology, education, intelligent systems, and computational linguistics. He combines cognitive science excellence with bold use of psychological knowledge and intelligent systems to design new generations of learning opportunities and to help lay the foundation for a translational science of learning." (PsycINFO Database Record (c) 2011 APA, all rights reserved). 2011 APA, all rights reserved

  6. Effects of feedback-based balance and core resistance training vs. Pilates training on cognitive functions in older women with mild cognitive impairment: a pilot randomized controlled trial.

    PubMed

    Greblo Jurakic, Zrinka; Krizanic, Valerija; Sarabon, Nejc; Markovic, Goran

    2017-12-01

    There is limited research about beneficial effects of physical activity in older adults suffering from mild cognitive impairment (MCI). The aim of the study was to provide preliminary evidence on the effects of two types of non-aerobic training on cognitive functions in older women suffering from MCI. Twenty-eight participants aged 66-78 years with MCI were randomly assigned to a combined balance and core resistance training group (n = 14) or to a Pilates group (n = 14). Following completion of the 8-week exercise programme, both groups showed significant improvements in global and specific cognitive domains. Findings suggest that non-aerobic training should be further explored as a beneficial intervention for older adults suffering from MCI.

  7. Exercise and cognition in multiple sclerosis: The importance of acute exercise for developing better interventions.

    PubMed

    Sandroff, Brian M

    2015-12-01

    Cognitive dysfunction is highly prevalent, disabling, and poorly-managed in persons with multiple sclerosis (MS). Exercise training represents a promising approach for managing this clinical symptom of the disease. However, results from early randomized controlled trials of exercise on cognition in MS are equivocal, perhaps due to methodological concerns. This underscores the importance of considering the well-established literature in the general population that documents robust, beneficial effects of exercise training on cognition across the lifespan. The development of such successful interventions is based on examinations of fitness, physical activity, and acute exercise effects on cognition. Applying such an evidence-based approach in MS serves as a way of better informing exercise training interventions for improving cognition in this population. To that end, this paper provides a focused, updated review on the evidence describing exercise effects on cognition in MS, and develops a rationale and framework for examining acute exercise on cognitive outcomes in this population. This will provide keen insight for better developing exercise interventions for managing cognitive impairment in MS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Resting-state global functional connectivity as a biomarker of cognitive reserve in mild cognitive impairment.

    PubMed

    Franzmeier, N; Caballero, M Á Araque; Taylor, A N W; Simon-Vermot, L; Buerger, K; Ertl-Wagner, B; Mueller, C; Catak, C; Janowitz, D; Baykara, E; Gesierich, B; Duering, M; Ewers, M

    2017-04-01

    Cognitive reserve (CR) shows protective effects in Alzheimer's disease (AD) and reduces the risk of dementia. Despite the clinical significance of CR, a clinically useful diagnostic biomarker of brain changes underlying CR in AD is not available yet. Our aim was to develop a fully-automated approach applied to fMRI to produce a biomarker associated with CR in subjects at increased risk of AD. We computed resting-state global functional connectivity (GFC), i.e. the average connectivity strength, for each voxel within the cognitive control network, which may sustain CR due to its central role in higher cognitive function. In a training sample including 43 mild cognitive impairment (MCI) subjects and 24 healthy controls (HC), we found that MCI subjects with high CR (> median of years of education, CR+) showed increased frequency of high GFC values compared to MCI-CR- and HC. A summary index capturing such a surplus frequency of high GFC was computed (called GFC reserve (GFC-R) index). GFC-R discriminated MCI-CR+ vs. MCI-CR-, with the area under the ROC = 0.84. Cross-validation in an independently recruited test sample of 23 MCI subjects showed that higher levels of the GFC-R index predicted higher years of education and an alternative questionnaire-based proxy of CR, controlled for memory performance, gray matter of the cognitive control network, white matter hyperintensities, age, and gender. In conclusion, the GFC-R index that captures GFC changes within the cognitive control network provides a biomarker candidate of functional brain changes of CR in patients at increased risk of AD.

  9. We Don't Train in Vain: A Dissemination Trial of Three Strategies of Training Clinicians in Cognitive-Behavioral Therapy

    ERIC Educational Resources Information Center

    Sholomskas, Diane E.; Syracuse-Siewert, Gia; Rounsaville, Bruce J.; Ball, Samuel A.; Nuro, Kathryn F.; Carroll, Kathleen M.

    2005-01-01

    There has been little research on the effectiveness of different training strategies or the impact of exposure to treatment manuals alone on clinicians' ability to effectively implement empirically supported therapies. Seventy-eight community-based clinicians were assigned to 1 of 3 training conditions: review of a cognitive-behavioral therapy…

  10. Computer-Based Training Development and Guidance for the Army’s Unmanned Aviation Systems Maintenance Training Division

    DTIC Science & Technology

    2017-08-01

    principles for effective Computer-Based Training (CBT) that can be applied broadly to Army courses to build and evaluate exemplar CBT for Army advanced...individual training courses. To assist cadre who do not have a dedicated instructional design team, the Computer-Based Training Principles Guide was...document is the resulting contents, organization, and presentation style of the Computer- Based Training Principles Guide and its companion User’s Guide

  11. Does Combined Physical and Cognitive Training Improve Dual-Task Balance and Gait Outcomes in Sedentary Older Adults?

    PubMed Central

    Fraser, Sarah A.; Li, Karen Z.-H.; Berryman, Nicolas; Desjardins-Crépeau, Laurence; Lussier, Maxime; Vadaga, Kiran; Lehr, Lora; Minh Vu, Thien Tuong; Bosquet, Laurent; Bherer, Louis

    2017-01-01

    Everyday activities like walking and talking can put an older adult at risk for a fall if they have difficulty dividing their attention between motor and cognitive tasks. Training studies have demonstrated that both cognitive and physical training regimens can improve motor and cognitive task performance. Few studies have examined the benefits of combined training (cognitive and physical) and whether or not this type of combined training would transfer to walking or balancing dual-tasks. This study examines the dual-task benefits of combined training in a sample of sedentary older adults. Seventy-two older adults (≥60 years) were randomly assigned to one of four training groups: Aerobic + Cognitive training (CT), Aerobic + Computer lessons (CL), Stretch + CT and Stretch + CL. It was expected that the Aerobic + CT group would demonstrate the largest benefits and that the active placebo control (Stretch + CL) would show the least benefits after training. Walking and standing balance were paired with an auditory n-back with two levels of difficulty (0- and 1-back). Dual-task walking and balance were assessed with: walk speed (m/s), cognitive accuracy (% correct) and several mediolateral sway measures for pre- to post-test improvements. All groups demonstrated improvements in walk speed from pre- (M = 1.33 m/s) to post-test (M = 1.42 m/s, p < 0.001) and in accuracy from pre- (M = 97.57%) to post-test (M = 98.57%, p = 0.005).They also increased their walk speed in the more difficult 1-back (M = 1.38 m/s) in comparison to the 0-back (M = 1.36 m/s, p < 0.001) but reduced their accuracy in the 1-back (M = 96.39%) in comparison to the 0-back (M = 99.92%, p < 0.001). Three out of the five mediolateral sway variables (Peak, SD, RMS) demonstrated significant reductions in sway from pre to post test (p-values < 0.05). With the exception of a group difference between Aerobic + CT and Stretch + CT in accuracy, there were no significant group differences after training. Results suggest that there can be dual-task benefits from training but that in this sedentary sample Aerobic + CT training was not more beneficial than other types of combined training. PMID:28149274

  12. Transfer of Cognitive Training across Magnitude Dimensions Achieved with Concurrent Brain Stimulation of the Parietal Lobe

    PubMed Central

    Gessaroli, Erica; Hithersay, Rosalyn; Mitolo, Micaela; Didino, Daniele; Kanai, Ryota; Cohen Kadosh, Roi; Walsh, Vincent

    2013-01-01

    Improvement in performance following cognitive training is known to be further enhanced when coupled with brain stimulation. Here we ask whether training-induced changes can be maintained long term and, crucially, whether they can extend to other related but untrained skills. We trained overall 40 human participants on a simple and well established paradigm assessing the ability to discriminate numerosity–or the number of items in a set–which is thought to rely on an “approximate number sense” (ANS) associated with parietal lobes. We coupled training with parietal stimulation in the form of transcranial random noise stimulation (tRNS), a noninvasive technique that modulates neural activity. This yielded significantly better and longer lasting improvement (up to 16 weeks post-training) of the precision of the ANS compared with cognitive training in absence of stimulation, stimulation in absence of cognitive training, and cognitive training coupled to stimulation to a control site (motor areas). Critically, only ANS improvement induced by parietal tRNS + Training transferred to proficiency in other parietal lobe-based quantity judgment, i.e., time and space discrimination, but not to quantity-unrelated tasks measuring attention, executive functions, and visual pattern recognition. These results indicate that coupling intensive cognitive training with tRNS to critical brain regions resulted not only in the greatest and longer lasting improvement of numerosity discrimination, but importantly in this enhancement being transferable when trained and untrained abilities are carefully chosen to share common cognitive and neuronal components. PMID:24027289

  13. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe.

    PubMed

    Cappelletti, Marinella; Gessaroli, Erica; Hithersay, Rosalyn; Mitolo, Micaela; Didino, Daniele; Kanai, Ryota; Cohen Kadosh, Roi; Walsh, Vincent

    2013-09-11

    Improvement in performance following cognitive training is known to be further enhanced when coupled with brain stimulation. Here we ask whether training-induced changes can be maintained long term and, crucially, whether they can extend to other related but untrained skills. We trained overall 40 human participants on a simple and well established paradigm assessing the ability to discriminate numerosity--or the number of items in a set--which is thought to rely on an "approximate number sense" (ANS) associated with parietal lobes. We coupled training with parietal stimulation in the form of transcranial random noise stimulation (tRNS), a noninvasive technique that modulates neural activity. This yielded significantly better and longer lasting improvement (up to 16 weeks post-training) of the precision of the ANS compared with cognitive training in absence of stimulation, stimulation in absence of cognitive training, and cognitive training coupled to stimulation to a control site (motor areas). Critically, only ANS improvement induced by parietal tRNS + Training transferred to proficiency in other parietal lobe-based quantity judgment, i.e., time and space discrimination, but not to quantity-unrelated tasks measuring attention, executive functions, and visual pattern recognition. These results indicate that coupling intensive cognitive training with tRNS to critical brain regions resulted not only in the greatest and longer lasting improvement of numerosity discrimination, but importantly in this enhancement being transferable when trained and untrained abilities are carefully chosen to share common cognitive and neuronal components.

  14. The potential of virtual reality and gaming to assist successful aging with disability.

    PubMed

    Lange, B S; Requejo, P; Flynn, S M; Rizzo, A A; Valero-Cuevas, F J; Baker, L; Winstein, C

    2010-05-01

    Using the advances in computing power, software and hardware technologies, virtual reality (VR), and gaming applications have the potential to address clinical challenges for a range of disabilities. VR-based games can potentially provide the ability to assess and augment cognitive and motor rehabilitation under a range of stimulus conditions that are not easily controllable and quantifiable in the real world. This article discusses an approach for maximizing function and participation for those aging with and into a disability by combining task-specific training with advances in VR and gaming technologies to enable positive behavioral modifications for independence in the home and community. There is potential for the use of VR and game applications for rehabilitating, maintaining, and enhancing those processes that are affected by aging with and into disability, particularly the need to attain a balance in the interplay between sensorimotor function and cognitive demands and to reap the benefits of task-specific training and regular physical activity and exercise.

  15. Task-based neurofeedback training: A novel approach toward training executive functions.

    PubMed

    Hosseini, S M Hadi; Pritchard-Berman, Mika; Sosa, Natasha; Ceja, Angelica; Kesler, Shelli R

    2016-07-01

    Cognitive training is an emergent approach to improve cognitive functions in various neurodevelopmental and neurodegenerative diseases. However, current training programs can be relatively lengthy, making adherence potentially difficult for patients with cognitive difficulties. Previous studies suggest that providing individuals with real-time feedback about the level of brain activity (neurofeedback) can potentially help them learn to control the activation of specific brain regions. In the present study, we developed a novel task-based neurofeedback training paradigm that benefits from the effects of neurofeedback in parallel with computerized training. We focused on executive function training given its core involvement in various developmental and neurodegenerative diseases. Near-infrared spectroscopy (NIRS) was employed for providing neurofeedback by measuring changes in oxygenated hemoglobin in the prefrontal cortex. Of the twenty healthy adult participants, ten received real neurofeedback (NFB) on prefrontal activity during cognitive training, and ten were presented with sham feedback (SHAM). Compared with SHAM, the NFB group showed significantly improved executive function performance including measures of working memory after four sessions of training (100min total). The NFB group also showed significantly reduced training-related brain activity in the executive function network including right middle frontal and inferior frontal regions compared with SHAM. Our data suggest that providing neurofeedback along with cognitive training can enhance executive function after a relatively short period of training. Similar designs could potentially be used for patient populations with known neuropathology, potentially helping them to boost/recover the activity in the affected brain regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Human Skill in a Computerized Society: Complex Skills and Their Acquisition.

    ERIC Educational Resources Information Center

    Lesgold, Alan M.

    1986-01-01

    This paper discusses some of the issues raised for cognitive psychologists by the computer revolution together with the role that psychologists with computer training ought to play, especially in the study of how people acquire complex skills. The issues addressed include: (1) the competition between humans and intelligent machines; (2) the…

  17. Measuring Spatial Ability with a Computer Managed Task.

    ERIC Educational Resources Information Center

    McDaniel, Ernest; And Others

    This study presents data augmenting the validity studies of the Wheatley Cube (McDaniel and Kroll, 1984), a computer managed test of spatial visualization. Twenty-one students in pilot training are administered several instruments designed to measure the ability to construct a cognitive three-dimensional space, including: (1) the Wheatley Cube,…

  18. Cognitive training-induced short-term functional and long-term structural plastic change is related to gains in global cognition in healthy older adults: a pilot study.

    PubMed

    Lampit, Amit; Hallock, Harry; Suo, Chao; Naismith, Sharon L; Valenzuela, Michael

    2015-01-01

    Computerized cognitive training (CCT) is a safe and inexpensive intervention to enhance cognitive performance in the elderly. However, the neural underpinning of CCT-induced effects and the timecourse by which such neural changes occur are unknown. Here, we report on results from a pilot study of healthy older adults who underwent three 1-h weekly sessions of either multidomain CCT program (n = 7) or an active control intervention (n = 5) over 12 weeks. Multimodal magnetic resonance imaging (MRI) scans and cognitive assessments were performed at baseline and after 9 and 36 h of training. Voxel-based structural analysis revealed a significant Group × Time interaction in the right post-central gyrus indicating increased gray matter density in the CCT group compared to active control at both follow-ups. Across the entire sample, there were significant positive correlations between changes in the post-central gyrus and change in global cognition after 36 h of training. A post-hoc vertex-based analysis found a significant between-group difference in rate of thickness change between baseline and post-training in the left fusiform gyrus, as well as a large cluster in the right parietal lobe covering the supramarginal and post-central gyri. Resting-state functional connectivity between the posterior cingulate and the superior frontal gyrus, and between the right hippocampus and the superior temporal gyrus significantly differed between the two groups after 9 h of training and correlated with cognitive change post-training. No significant interactions were found for any of the spectroscopy and diffusion tensor imaging data. Though preliminary, our results suggest that functional change may precede structural and cognitive change, and that about one-half of the structural change occurs within the first 9 h of training. Future studies are required to determine the role of these brain changes in the mechanisms underlying CCT-induced cognitive effects.

  19. Technology-Based Training in Cognitive Behavioral Therapy for Substance Abuse Counselors

    ERIC Educational Resources Information Center

    Weingardt, Kenneth R.; Villafranca, Steven W.; Levin, Cindy

    2006-01-01

    This study compared the learning outcomes achieved by 166 practicing substance abuse counselors who were randomized to one of three conditions: (1) a Web-Based Training (WBT) module designed to familiarize practitioners with the "Coping with Craving" module from the NIDA treatment manual, "A Cognitive-Behavioral Approach: Treating Cocaine…

  20. Partial maintenance of auditory-based cognitive training benefits in older adults

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Choi, Hee Jae; Kraus, Nina

    2014-01-01

    The potential for short-term training to improve cognitive and sensory function in older adults has captured the public’s interest. Initial results have been promising. For example, eight weeks of auditory-based cognitive training decreases peak latencies and peak variability in neural responses to speech presented in a background of noise and instills gains in speed of processing, speech-in-noise recognition, and short-term memory in older adults. But while previous studies have demonstrated short-term plasticity in older adults, we must consider the long-term maintenance of training gains. To evaluate training maintenance, we invited participants from an earlier training study to return for follow-up testing six months after the completion of training. We found that improvements in response peak timing to speech in noise and speed of processing were maintained, but the participants did not maintain speech-in-noise recognition or memory gains. Future studies should consider factors that are important for training maintenance, including the nature of the training, compliance with the training schedule, and the need for booster sessions after the completion of primary training. PMID:25111032

  1. Comparison of computer based instruction to behavior skills training for teaching staff implementation of discrete-trial instruction with an adult with autism.

    PubMed

    Nosik, Melissa R; Williams, W Larry; Garrido, Natalia; Lee, Sarah

    2013-01-01

    In the current study, behavior skills training (BST) is compared to a computer based training package for teaching discrete trial instruction to staff, teaching an adult with autism. The computer based training package consisted of instructions, video modeling and feedback. BST consisted of instructions, modeling, rehearsal and feedback. Following training, participants were evaluated in terms of their accuracy on completing critical skills for running a discrete trial program. Six participants completed training; three received behavior skills training and three received the computer based training. Participants in the BST group performed better overall after training and during six week probes than those in the computer based training group. There were differences across both groups between research assistant and natural environment competency levels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The Application of Timing in Therapy of Children and Adults with Language Disorders

    PubMed Central

    Szelag, Elzbieta; Dacewicz, Anna; Szymaszek, Aneta; Wolak, Tomasz; Senderski, Andrzej; Domitrz, Izabela; Oron, Anna

    2015-01-01

    A number of evidence revealed a link between temporal information processing (TIP) and language. Both literature data and results of our studies indicated an overlapping of deficient TIP and disordered language, pointing to the existence of an association between these two functions. On this background the new approach is to apply such knowledge in therapy of patients suffering from language disorders. In two studies we asked the following questions: (1) can the temporal training reduce language deficits in aphasic patients (Study 1) or in children with specific language impairment (SLI, Study 2)? (2) can such training ameliorate also the other cognitive functions? Each of these studies employed pre-training assessment, training application, post-training and follow-up assessment. In Study 1 we tested 28 patients suffering from post-stroke aphasia. They were assigned either to the temporal training (Group A, n = 15) in milliseconds range, or to the non-temporal training (Group B, n = 13). Following the training we found only in Group A improved TIP, accompanied by a transfer of improvement to language and working memory functions. In Study 2 we tested 32 children aged from 5 to 8 years, affected by SLI who were classified into the temporal training (Group A, n = 17) or non-temporal training (Group B, n = 15). Group A underwent the multileveled audio-visual computer training Dr. Neuronowski®, recently developed in our laboratory. Group B performed the computer speech therapy exercises extended by playing computer games. Similarly as in Study 1, in Group A we found significant improvements of TIP, auditory comprehension and working memory. These results indicated benefits of temporal training for amelioration of language and other cognitive functions in both aphasic patients and children with SLI. The novel powerful therapy tools provide evidence for future promising clinical applications. PMID:26617547

  3. Reversal of age-related neural timing delays with training

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  4. A Randomized Controlled ERP Study on the Effects of Multi-Domain Cognitive Training and Task Difficulty on Task Switching Performance in Older Adults.

    PubMed

    Küper, Kristina; Gajewski, Patrick D; Frieg, Claudia; Falkenstein, Michael

    2017-01-01

    Executive functions are subject to a marked age-related decline, but have been shown to benefit from cognitive training interventions. As of yet, it is, however, still relatively unclear which neural mechanism can mediate training-related performance gains. In the present electrophysiological study, we examined the effects of multi-domain cognitive training on performance in an untrained cue-based task switch paradigm featuring Stroop color words: participants either had to indicate the word meaning of Stroop stimuli (word task) or perform the more difficult task of color naming (color task). One-hundred and three older adults (>65 years old) were randomly assigned to a training group receiving a 4-month multi-domain cognitive training, a passive no-contact control group or an active (social) control group receiving a 4-month relaxation training. For all groups, we recorded performance and EEG measures before and after the intervention. For the cognitive training group, but not for the two control groups, we observed an increase in response accuracy at posttest, irrespective of task and trial type. No training-related effects on reaction times were found. Cognitive training was also associated with an overall increase in N2 amplitude and a decrease of P2 latency on single trials. Training-related performance gains were thus likely mediated by an enhancement of response selection and improved access to relevant stimulus-response mappings. Additionally, cognitive training was associated with an amplitude decrease in the time window of the target-locked P3 at fronto-central electrodes. An increase in the switch positivity during advance task preparation emerged after both cognitive and relaxation training. Training-related behavioral and event-related potential (ERP) effects were not modulated by task difficulty. The data suggest that cognitive training increased slow negative potentials during target processing which enhanced the N2 and reduced a subsequent P3-like component on both switch and non-switch trials and irrespective of task difficulty. Our findings further corroborate the effectiveness of multi-domain cognitive training in older adults and indicate that ERPs can be instrumental in uncovering the neural processes underlying training-related performance gains.

  5. A double-blind randomized pilot trial comparing computerized cognitive exercises to Tetris in adolescents with attention-deficit/hyperactivity disorder.

    PubMed

    Bikic, Aida; Christensen, Torben Østergaard; Leckman, James F; Bilenberg, Niels; Dalsgaard, Søren

    2017-08-01

    The purpose of this trial was to examine the feasibility and efficacy of computerized cognitive exercises from Scientific Brain Training (SBT), compared to the computer game Tetris as an active placebo, in a pilot study of adolescents with attention-deficit/hyperactivity disorder (ADHD). Eighteen adolescents with ADHD were randomized to treatment or control intervention for 7 weeks. Outcome measures were cognitive test, symptom, and motivation questionnaires. SBT and Tetris were feasible as home-based interventions, and participants' compliance was high, but participants perceived both interventions as not very interesting or helpful. There were no significant group differences on cognitive and ADHD-symptom measures after intervention. Pre-post intra-group measurement showed that the SBT had a significant beneficial effect on sustained attention, while the active placebo had significant beneficial effects on working memory, both with large effect sizes. Although no significant differences were found between groups on any measure, there were significant intra-group changes for each group.

  6. Topological Schemas of Cognitive Maps and Spatial Learning.

    PubMed

    Babichev, Andrey; Cheng, Sen; Dabaghian, Yuri A

    2016-01-01

    Spatial navigation in mammals is based on building a mental representation of their environment-a cognitive map. However, both the nature of this cognitive map and its underpinning in neural structures and activity remains vague. A key difficulty is that these maps are collective, emergent phenomena that cannot be reduced to a simple combination of inputs provided by individual neurons. In this paper we suggest computational frameworks for integrating the spiking signals of individual cells into a spatial map, which we call schemas. We provide examples of four schemas defined by different types of topological relations that may be neurophysiologically encoded in the brain and demonstrate that each schema provides its own large-scale characteristics of the environment-the schema integrals. Moreover, we find that, in all cases, these integrals are learned at a rate which is faster than the rate of complete training of neural networks. Thus, the proposed schema framework differentiates between the cognitive aspect of spatial learning and the physiological aspect at the neural network level.

  7. Monitoring Physical and Cognitive Overload During a Training Camp in Professional Female Cyclists.

    PubMed

    Decroix, Lieselot; Piacentini, Maria Francesca; Rietjens, Gerard; Meeusen, Romain

    2016-10-01

    High training loads combined with other stressors can lead to performance decrements. The time needed to recover determines the diagnosis of (non)-functional overreaching or the overtraining syndrome. The aim of this study was to describe the effects of an 8-day (intensified) training camp of professional female cyclists on physical and cognitive performance. Nine subjects performed a 30-min time trial (TT), cognitive test, and Profile of Mood States questionnaire before, during, and after a training camp (49% increased training volume). On data collection, cyclists were classified as "overreached" (OR) or "adapted" (A) based on TT performance. Two-way repeated-measures analysis of variance was used to detect changes in physical and cognitive parameters. Five cyclists were described as OR based on decreased mean power output (MPO) (-7.03%) on day 8. Four cyclists were classified as A (increased MPO: +1.72%). MPO and maximal heart rate were significantly different between A and OR groups. A significant slower reaction time (RT) (+3.35%) was found in OR subjects, whereas RT decreased (-4.59%) in A subjects. The change in MPO was negatively correlated with change in RT in the cognitive test (R 2 = .52). This study showed that the use of objective, inexpensive, and easy-to-interpret physical and cognitive tests can facilitate the monitoring of training adaptations in professional female athletes.

  8. Battling the challenges of training nurses to use information systems through theory-based training material design.

    PubMed

    Galani, Malatsi; Yu, Ping; Paas, Fred; Chandler, Paul

    2014-01-01

    The attempts to train nurses to effectively use information systems have had mixed results. One problem is that training materials are not adequately designed to guide trainees to gradually learn to use a system without experiencing a heavy cognitive load. This is because training design often does not take into consideration a learner's cognitive ability to absorb new information in a short training period. Given the high cost and difficulty of organising training in healthcare organisations, there is an urgent need for information system trainers to be aware of how cognitive overload or information overload affect a trainee's capability to acquire new knowledge and skills, and what instructional techniques can be used to facilitate effective learning. This paper introduces the concept of cognitive load and how it affects nurses when learning to use a new health information system. This is followed by the relevant strategies for instructional design, underpinned by the principles of cognitive load theory, which may be helpful for the development of effective instructional materials and activities for training nurses to use information systems.

  9. Cognitive Support for Learning Computer-Based Tasks Using Animated Demonstration

    ERIC Educational Resources Information Center

    Chen, Chun-Ying

    2016-01-01

    This study investigated the influence of cognitive support for learning computer-based tasks using animated demonstration (AD) on instructional efficiency. Cognitive support included (1) segmentation and learner control introducing interactive devices that allow content sequencing through a navigational menu, and content pacing through stop and…

  10. Cognitive-Based Interventions to Improve Mobility: A Systematic Review and Meta-analysis.

    PubMed

    Marusic, Uros; Verghese, Joe; Mahoney, Jeannette R

    2018-06-01

    A strong relation between cognition and mobility has been identified in aging, supporting a role for enhancement mobility through cognitive-based interventions. However, a critical evaluation of the consistency of treatment effects of cognitive-based interventions is currently lacking. The objective of this study was 2-fold: (1) to review the existing literature on cognitive-based interventions aimed at improving mobility in older adults and (2) to assess the clinical effectiveness of cognitive interventions on gait performance. A systematic review of randomized controlled trials (RCT) of cognitive training interventions for improving simple (normal walking) and complex (dual task walking) gait was conducted in February 2018. Older adults without major cognitive, psychiatric, neurologic, and/or sensory impairments were included. Random effect meta-analyses and a subsequent meta-regression were performed to generate overall cognitive intervention effects on single- and dual-task walking conditions. Ten RCTs met inclusion criteria, with a total of 351 participants included in this meta-analysis. Cognitive training interventions revealed a small effect of intervention on complex gait [effect size (ES) = 0.47, 95% confidence interval (CI) 0.13 to 0.81, P = .007, I 2  = 15.85%], but not simple gait (ES = 0.35, 95% CI -0.01 to 0.71, P = .057, I 2  = 57.32%). Moreover, a meta-regression analysis revealed that intervention duration, training frequency, total number of sessions, and total minutes spent in intervention were not significant predictors of improvement in dual-task walking speed, though there was a suggestive trend toward a negative association between dual-task walking speed improvements and individual training session duration (P = .067). This meta-analysis provides support for the fact that cognitive training interventions can improve mobility-related outcomes, especially during challenging walking conditions requiring higher-order executive functions. Additional evidence from well-designed large-scale randomized clinical trials is warranted to confirm the observed effects. Copyright © 2018 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  11. The Implications of Cognitive Psychology for Computer-Based Learning Tools.

    ERIC Educational Resources Information Center

    Kozma, Robert B.

    1987-01-01

    Defines cognitive computer tools as software programs that use the control capabilities of computers to amplify, extend, or enhance human cognition; suggests seven ways in which computers can aid learning; and describes the "Learning Tool," a software package for the Apple Macintosh microcomputer that is designed to aid learning of…

  12. PROspective MEmory Training to improve HEart failUre Self-care (PROMETHEUS): study protocol for a randomised controlled trial.

    PubMed

    Cameron, Jan; Rendell, Peter G; Ski, Chantal F; Kure, Christina E; McLennan, Skye N; Rose, Nathan S; Prior, David L; Thompson, David R

    2015-04-29

    Cognitive impairment is seen in up to three quarters of heart failure (HF) patients and has a significant negative impact on patients' health outcomes. Prospective memory, which is defined as memory to carry out future intentions, is important for functional independence in older adults and involves application of multiple cognitive processes that are often impaired in HF patients. The objective of this study is to examine the effects of prospective memory training on patients' engagement in HF self-care and health outcomes, carer strain and quality of life. The proposed study is a randomised, controlled trial in which 200 patients diagnosed with HF, and their carers will be recruited from 3 major hospitals across Melbourne. Eligible patients with HF will be randomised to receive either: 1) The Virtual Week Training Program - a computerised prospective memory (PM) training program (intervention) or 2) non-adaptive computer-based word puzzles (active control). HF patients' baseline cognitive function will be compared to a healthy control group (n = 60) living independently in the community. Patients will undergo a comprehensive assessment of PM, neuropsychological functioning, self-care, physical, and emotional functioning. Assessments will take place at baseline, 4 weeks and 12 months following intervention. Carers will complete measures assessing quality of life, strain, perceived control in the management of the patients' HF symptoms, and ratings of the patients' level of engagement in HF self-care behaviours. If the Virtual Week Training Program is effective in improving: 1) prospective memory; 2) self-care behaviours, and 3) wellbeing in HF patients, this study will enhance our understanding of impaired cognitive processes in HF and potentially is a mechanism to reduce healthcare costs. Australian New Zealand Clinical Trials Registry #366376; 27 May 2014. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366376&isClinicalTrial=False .

  13. Understanding the Effects of Databases as Cognitive Tools in a Problem-Based Multimedia Learning Environment

    ERIC Educational Resources Information Center

    Li, Rui; Liu, Min

    2007-01-01

    The purpose of this study is to examine the potential of using computer databases as cognitive tools to share learners' cognitive load and facilitate learning in a multimedia problem-based learning (PBL) environment designed for sixth graders. Two research questions were: (a) can the computer database tool share sixth-graders' cognitive load? and…

  14. The Influence of Functional Fitness and Cognitive Training of Physical Disabilities of Institutions

    PubMed Central

    Yeh, I-Chen; Chang, Chia-Ming; Chen, Ko-Chia; Hong, Wei-Chin; Lu, Yu-Hsiung

    2015-01-01

    According to an investigation done by Taiwan Ministry of the Interior in 2013, there was more than 90% of the disability care institutions mainly based on life care. Previous studies have shown that individuals can effectively improve physical and cognitive training, improved in independent living and everyday competence. The purpose of the study was to investigate influence of the intervention program applying functional fitness and cognitive training to disabled residents in the institution. The subjects were disabled persons of a care institution in southern Taiwan and were randomly divided into training and control groups, both having 17 subjects. The age of the subjects was between 56 and 98 years with a mean age of 79.08 ± 10.04 years; the subjects of training group implemented 12 weeks of training on physical and cognitive training, while the control group subjects did not have any training program. The results revealed that subjects of the training group have significantly improved their functional shoulder rotation flexibility of left and right anterior hip muscle group flexibility of right, sitting functional balance of left and right, naming, attention, delayed recall, orientation, and Montreal cognitive assessment (MOCA). The study suggested developing physical fitness programs and physical and cognitive prescriptions for the disabled people of the institutions. PMID:25756064

  15. The influence of functional fitness and cognitive training of physical disabilities of institutions.

    PubMed

    Yeh, I-Chen; Chang, Chia-Ming; Chen, Ko-Chia; Hong, Wei-Chin; Lu, Yu-Hsiung

    2015-01-01

    According to an investigation done by Taiwan Ministry of the Interior in 2013, there was more than 90% of the disability care institutions mainly based on life care. Previous studies have shown that individuals can effectively improve physical and cognitive training, improved in independent living and everyday competence. The purpose of the study was to investigate influence of the intervention program applying functional fitness and cognitive training to disabled residents in the institution. The subjects were disabled persons of a care institution in southern Taiwan and were randomly divided into training and control groups, both having 17 subjects. The age of the subjects was between 56 and 98 years with a mean age of 79.08 ± 10.04 years; the subjects of training group implemented 12 weeks of training on physical and cognitive training, while the control group subjects did not have any training program. The results revealed that subjects of the training group have significantly improved their functional shoulder rotation flexibility of left and right anterior hip muscle group flexibility of right, sitting functional balance of left and right, naming, attention, delayed recall, orientation, and Montreal cognitive assessment (MOCA). The study suggested developing physical fitness programs and physical and cognitive prescriptions for the disabled people of the institutions.

  16. Effects of WOE Presentation Types Used in Pre-Training on the Cognitive Load and Comprehension of Content in Animation-Based Learning Environments

    ERIC Educational Resources Information Center

    Jung, Jung,; Kim, Dongsik; Na, Chungsoo

    2016-01-01

    This study investigated the effectiveness of various types of worked-out examples used in pre-training to optimize the cognitive load and enhance learners' comprehension of the content in an animation-based learning environment. An animation-based learning environment was developed specifically for this study. The participants were divided into…

  17. Enhancing cognition with video games: a multiple game training study.

    PubMed

    Oei, Adam C; Patterson, Michael D

    2013-01-01

    Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.

  18. Effect of Cognitive-Behavioral-Theory-Based Skill Training on Academic Procrastination Behaviors of University Students

    ERIC Educational Resources Information Center

    Toker, Betül; Avci, Rasit

    2015-01-01

    This study examined the effectiveness of a cognitive-behavioral theory (CBT) psycho-educational group program on the academic procrastination behaviors of university students and the persistence of any training effect. This was a quasi-experimental research based on an experimental and control group pretest, posttest, and followup test model.…

  19. The educational effectiveness of computer-based instruction

    NASA Astrophysics Data System (ADS)

    Renshaw, Carl E.; Taylor, Holly A.

    2000-07-01

    Although numerous studies have shown that computer-based education is effective for enhancing rote memorization, the impact of these tools on higher-order cognitive skills, such as critical thinking, is less clear. Existing methods for evaluating educational effectiveness, such as surveys, quizzes and pre- or post-interviews, may not be effective for evaluating impact on critical thinking skills because students are not always aware of the effects the software has on their thought processes. We review an alternative evaluation strategy whereby the student's mastery of a specific cognitive skill is directly assessed both before and after participating in a computer-based exercise. Methodologies for assessing cognitive skill are based on recent advances in the fields of cognitive science. Results from two studies show that computer-based exercises can positively impact the higher-order cognitive skills of some students. However, a given exercise will not impact all students equally. This suggests that further work is needed to understand how and why CAI software is more or less effective within a given population.

  20. Computer-aided cognitive rehabilitation improves cognitive performances and induces brain functional connectivity changes in relapsing remitting multiple sclerosis patients: an exploratory study.

    PubMed

    Bonavita, S; Sacco, R; Della Corte, M; Esposito, S; Sparaco, M; d'Ambrosio, A; Docimo, R; Bisecco, A; Lavorgna, L; Corbo, D; Cirillo, S; Gallo, A; Esposito, F; Tedeschi, G

    2015-01-01

    To better understand the effects of short-term computer-based cognitive rehabilitation (cCR) on cognitive performances and default mode network (DMN) intrinsic functional connectivity (FC) in cognitively impaired relapsing remitting (RR) multiple sclerosis (MS) patients. Eighteen cognitively impaired RRMS patients underwent neuropsychological evaluation by the Rao's brief repeatable battery and resting-state functional magnetic resonance imaging to evaluate FC of the DMN before and after a short-term (8 weeks, twice a week) cCR. A control group of 14 cognitively impaired RRMS patients was assigned to an aspecific cognitive training (aCT), and underwent the same study protocol. Correlations between DMN and cognitive performances were also tested. After cCR, there was a significant improvement of the following tests: SDMT (p < 0.01), PASAT 3" (p < 0.00), PASAT 2" (p < 0.03), SRT-D (p < 0.02), and 10/36 SPART-D (p < 0.04); as well as a significant increase of the FC of the DMN in the posterior cingulate cortex (PCC) and bilateral inferior parietal cortex (IPC). After cCR, a significant negative correlation between Stroop Color-Word Interference Test and FC in the PCC emerged. After aCT, the control group did not show any significant effect either on FC or neuropsychological tests. No significant differences were found in brain volumes and lesion load in both groups when comparing data acquired at baseline and after cCR or aCT. In cognitively impaired RRMS patients, cCR improves cognitive performances (i.e., processing speed and visual and verbal sustained memory), and increases FC in the PCC and IPC of the DMN. This exploratory study suggests that cCR may induce adaptive cortical reorganization favoring better cognitive performances, thus strengthening the value of cognitive exercise in the general perspective of building either cognitive or brain reserve.

  1. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    PubMed

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  2. Basic life support skills training in a first year medical curriculum: six years' experience with two cognitive-constructivist designs.

    PubMed

    Durak, Halil Ibrahim; Certuğ, Agah; Calişkan, Ayhan; van Dalen, Jan

    2006-03-01

    Although the Basic Life Support (BLS) ability of a medical student is a crucial competence, poor BLS training programs have been documented worldwide. Better training designs are needed. This study aims to share detailed descriptions and the test results of two cognitive-constructivist training models for the BLS skills in the first year of medical curriculum. A BLS skills training module was implemented in the first year curriculum in the course of 6 years (1997-2003). The content was derived from the European Resuscitation Council Guidelines. Initially, a competence-based model was used and was upgraded to a cognitive apprenticeship model in 2000. The main performance-content type that was expected at the end of the course was: competent application of BLS procedures on manikins and peers at an OSCE as well as 60% achievement in a test consisting of 25 MCQ items. A retrospective cohort survey design using exam results and a self-completed anonymous student ratings' questionnaire were used in order to test models. Training time for individual students varied from 21 to 29 hours. One thousand seven hundred and sixty students were trained. Fail rates were very low (1.0-2.2%). The students were highly satisfied with the module during the 6 years. In the first year of the medical curriculum, a competence-based or cognitive apprenticeship model using cognitive-constructivist designs of skills training with 9 hours theoretical and 12-20 hours long practical sessions took place in groups of 12-17 students; medical students reached a degree of competence to sufficiently perform BLS skills on the manikins and their peers. The cognitive-constructivist designs for skills training are associated with high student satisfaction. However, the lack of controls limits the extrapolation of this conclusion.

  3. Neural Correlates of Changes in a Visual Search Task due to Cognitive Training in Seniors

    PubMed Central

    Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.

    2012-01-01

    This study aimed to elucidate the underlying neural sources of near transfer after a multidomain cognitive training in older participants in a visual search task. Participants were randomly assigned to a social control, a no-contact control and a training group, receiving a 4-month paper-pencil and PC-based trainer guided cognitive intervention. All participants were tested in a before and after session with a conjunction visual search task. Performance and event-related potentials (ERPs) suggest that the cognitive training improved feature processing of the stimuli which was expressed in an increased rate of target detection compared to the control groups. This was paralleled by enhanced amplitudes of the frontal P2 in the ERP and by higher activation in lingual and parahippocampal brain areas which are discussed to support visual feature processing. Enhanced N1 and N2 potentials in the ERP for nontarget stimuli after cognitive training additionally suggest improved attention and subsequent processing of arrays which were not immediately recognized as targets. Possible test repetition effects were confined to processes of stimulus categorisation as suggested by the P3b potential. The results show neurocognitive plasticity in aging after a broad cognitive training and allow pinpointing the functional loci of effects induced by cognitive training. PMID:23029625

  4. Cyberpsychology: a human-interaction perspective based on cognitive modeling.

    PubMed

    Emond, Bruno; West, Robert L

    2003-10-01

    This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.

  5. Neuropsychological Assessment and Training of Cognitive Processing Strategies for Reading Recognition and Comprehension: A Computer Assisted Program for Learning Disabled Students. Final Report.

    ERIC Educational Resources Information Center

    Teeter, Phyllis Anne; Smith, Philip L.

    The final report of the 2-year project describes the development and validation of microcomputer software to help assess reading disabled elementary grade children and to provide basic reading instruction. Accomplishments of the first year included: design of the STAR Neuro-Cognitive Assessment Program which includes a reproduction of…

  6. Game-Based Community Cognitive Health Intervention for Minority and Lower Socioeconomic Status Older Adults: A Feasibility Pilot Study.

    PubMed

    Overman, Amy A; Robbins, Ruth E

    2014-10-01

    The purpose of this pilot study was to investigate the feasibility of implementing a noncomputerized, game-based, community cognitive health intervention with minority and/or lower socioeconomic status (SES) older adults in order to improve cognitive performance and quality of life. Through partnerships with community organizations, we implemented an innovative pilot 10-week cognitive training intervention. Noncomputerized games were used to combine social interaction and cognitive training that challenged attentional and memory function for 1 hour each week over the span of 10 weeks. One game used in the intervention program was created by adapting a working memory training task into a fun and competitive card game; the other two games were commercially available. The intervention and pre/post assessments were able to be delivered in a community setting. Overall retention was satisfactory, but it dropped in later weeks of the intervention. Older adult participants reported enjoying the games and being invested in their performance. They also reported playing the games with family and friends at home. Older adult participants complied with game rules but were reluctant to comply with instructions to rotate game partners and game types. They preferred their first partners, and they preferred the card game over the existing commercial games. This intervention has the potential to improve quality of life and reduce disparities in cognitive health in older adults because it is an accessible game-based intervention program that motivates older adult participants to engage cognitively and to continue this engagement beyond the formal training sessions. However, in order to carry this out on a larger scale, particular attention must be paid to recruitment, retention, and training procedures. This article discusses the critical need for cognitive training interventions in minority and lower SES older adults, the intended benefits, and the best approaches to conducting this type of intervention.

  7. Virtual reality social cognition training for young adults with high-functioning autism.

    PubMed

    Kandalaft, Michelle R; Didehbani, Nyaz; Krawczyk, Daniel C; Allen, Tandra T; Chapman, Sandra B

    2013-01-01

    Few evidence-based social interventions exist for young adults with high-functioning autism, many of whom encounter significant challenges during the transition into adulthood. The current study investigated the feasibility of an engaging Virtual Reality Social Cognition Training intervention focused on enhancing social skills, social cognition, and social functioning. Eight young adults diagnosed with high-functioning autism completed 10 sessions across 5 weeks. Significant increases on social cognitive measures of theory of mind and emotion recognition, as well as in real life social and occupational functioning were found post-training. These findings suggest that the virtual reality platform is a promising tool for improving social skills, cognition, and functioning in autism.

  8. Gesture therapy: a vision-based system for upper extremity stroke rehabilitation.

    PubMed

    Sucar, L; Luis, Roger; Leder, Ron; Hernandez, Jorge; Sanchez, Israel

    2010-01-01

    Stroke is the main cause of motor and cognitive disabilities requiring therapy in the world. Therefor it is important to develop rehabilitation technology that allows individuals who had suffered a stroke to practice intensive movement training without the expense of an always-present therapist. We have developed a low-cost vision-based system that allows stroke survivors to practice arm movement exercises at home or at the clinic, with periodic interactions with a therapist. The system integrates a virtual environment for facilitating repetitive movement training, with computer vision algorithms that track the hand of a patient, using an inexpensive camera and a personal computer. This system, called Gesture Therapy, includes a gripper with a pressure sensor to include hand and finger rehabilitation; and it tracks the head of the patient to detect and avoid trunk compensation. It has been evaluated in a controlled clinical trial at the National Institute for Neurology and Neurosurgery in Mexico City, comparing it with conventional occupational therapy. In this paper we describe the latest version of the Gesture Therapy System and summarize the results of the clinical trail.

  9. The effects of video-game training on broad cognitive transfer in multiple sclerosis: A pilot randomized controlled trial.

    PubMed

    Janssen, Alisha; Boster, Aaron; Lee, HyunKyu; Patterson, Beth; Prakash, Ruchika Shaurya

    2015-01-01

    Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system that results in diffuse nerve damage and associated physical and cognitive impairments. Of the few comprehensive rehabilitation options that exist for populations with lower baseline cognitive functioning, those that have been successful at eliciting broad cognitive improvements have focused on a multimodal training approach, emphasizing complex cognitive processing that utilizes multiple domains simultaneously. The current study sought to determine the feasibility of an 8-week, hybrid-variable priority training (HVT) program, with a secondary aim to assess the success of this training paradigm at eliciting broad cognitive transfer effects. Capitalizing on the multimodal training modalities offered by the Space Fortress platform, we compared the HVT strategy-based intervention with a waitlist control group, to primarily assess skill acquisition and secondarily determine presence of cognitive transfer. Twenty-eight participants met inclusionary criteria for the study and were randomized to either training or waitlist control groups. To assess broad transfer effects, a battery of neuropsychological tests was administered pre- and post-intervention. The results indicated an overall improvement in skill acquisition and evidence for the feasibility of the intervention, but a lack of broad transfer to tasks of cognitive functioning. Participants in the training group, however, did show improvements on a measure of spatial short-term memory. The current investigation provided support for the feasibility of a multimodal training approach, using the HVT strategy, within the MS population, but lacked broad transfer to multiple domains of cognitive functioning. Future improvements to obtain greater cognitive transfer efficacy would include a larger sample size, a longer course of training to evoke greater game score improvement, the inclusion of only cognitively impaired individuals, and integration of subjective measures of improvement in addition to objective tests of cognitive performance.

  10. Stress Inoculation through Cognitive and Biofeedback Training

    DTIC Science & Technology

    2010-12-01

    based on Heart Rate Variability ( HRV ) with innovative simulation game-based training tools. The training system described here will be implemented on a...Variability ( HRV ) with innovative simulation game-based training tools. The training system described here will be implemented on a mobile device...and studies (e.g. Fletcher & Tobias, 2006; Thayer, 2009). HRV Coherence Training for Stress Resilience Satisfactory performance in stressful

  11. A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity

    PubMed Central

    Hass, Joachim; Hertäg, Loreen; Durstewitz, Daniel

    2016-01-01

    The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition. PMID:27203563

  12. Using cognitive task analysis to develop simulation-based training for medical tasks.

    PubMed

    Cannon-Bowers, Jan; Bowers, Clint; Stout, Renee; Ricci, Katrina; Hildabrand, Annette

    2013-10-01

    Pressures to increase the efficacy and effectiveness of medical training are causing the Department of Defense to investigate the use of simulation technologies. This article describes a comprehensive cognitive task analysis technique that can be used to simultaneously generate training requirements, performance metrics, scenario requirements, and simulator/simulation requirements for medical tasks. On the basis of a variety of existing techniques, we developed a scenario-based approach that asks experts to perform the targeted task multiple times, with each pass probing a different dimension of the training development process. In contrast to many cognitive task analysis approaches, we argue that our technique can be highly cost effective because it is designed to accomplish multiple goals. The technique was pilot tested with expert instructors from a large military medical training command. These instructors were employed to generate requirements for two selected combat casualty care tasks-cricothyroidotomy and hemorrhage control. Results indicated that the technique is feasible to use and generates usable data to inform simulation-based training system design. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  13. A randomized study of internet parent training accessed from community technology centers.

    PubMed

    Irvine, A Blair; Gelatt, Vicky A; Hammond, Michael; Seeley, John R

    2015-05-01

    Behavioral parent training (BPT) has been shown to be efficacious to improve parenting skills for problematic interactions with adolescents displaying oppositional and antisocial behaviors. Some research suggests that support group curricula might be transferred to the Internet, and some studies suggest that other curriculum designs might also be effective. In this research, a BPT program for parents of at-risk adolescents was tested on the Internet in a randomized trial (N = 307) from computer labs at six community technology centers in or near large metropolitan areas. The instructional design was based on asynchronous scenario-based e-learning, rather than a traditional parent training model where presentation of course material builds content sequentially over multiple class sessions. Pretest to 30-day follow-up analyses indicated significant treatment effects on parent-reported discipline style (Parenting Scale, Adolescent version), child behavior (Eyberg Child Behavior Inventory), and on social cognitive theory constructs of intentions and self-efficacy. The effect sizes were small to medium. These findings suggest the potential to provide effective parent training programs on the Internet.

  14. The feasibility of implementing cognitive remediation for work in community based psychiatric rehabilitation programs.

    PubMed

    McGurk, Susan R; Mueser, Kim T; Watkins, Melanie A; Dalton, Carline M; Deutsch, Heather

    2017-03-01

    Adding cognitive remediation to vocational rehabilitation services improves cognitive and work functioning in people with serious mental illness, but despite interest, the uptake of cognitive programs into community services has been slow. This study evaluated the feasibility of implementing an empirically supported cognitive remediation program in routine rehabilitation services at 2 sites. The Thinking Skills for Work (TSW) program was adapted for implementation at 2 sites of a large psychiatric rehabilitation agency providing prevocational services, but not community-based vocational services, which were provided off-site. Agency staff were trained to deliver TSW to clients with work or educational goals. Cognitive assessments were conducted at baseline and posttreatment, with work and school activity tracked for 2 years. Eighty-three participants enrolled in TSW, of whom 79.5% completed at least 6 of the 24 computer cognitive exercise sessions (M = 16.7) over an average of 18 weeks. Participants improved significantly from baseline to posttreatment in verbal learning and memory, speed of processing, and overall cognitive functioning. Over the follow-up, 25.3% of participants worked and 47.0% were involved in work or school activity. Higher work rates were observed at the site where participants had easier access to vocational services. The results support the feasibility of implementing the TSW program by frontline staff in agencies providing psychiatric rehabilitation, and suggest that ease of access to vocational services may influence work outcomes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Effects of varenicline and cognitive bias modification on neural response to smoking-related cues: study protocol for a randomized controlled study.

    PubMed

    Attwood, Angela S; Williams, Tim; Adams, Sally; McClernon, Francis J; Munafò, Marcus R

    2014-10-07

    Smoking-related cues can trigger drug-seeking behaviors, and computer-based interventions that reduce cognitive biases towards such cues may be efficacious and cost-effective cessation aids. In order to optimize such interventions, there needs to be better understanding of the mechanisms underlying the effects of cognitive bias modification (CBM). Here we present a protocol for an investigation of the neural effects of CBM and varenicline in non-quitting daily smokers. We will recruit 72 daily smokers who report smoking at least 10 manufactured cigarettes or 15 roll-ups per day and who smoke within one hour of waking. Participants will attend two sessions approximately one week apart. At the first session participants will be screened for eligibility and randomized to receive either varenicline or a placebo over a seven-day period. On the final drug-taking day (day seven) participants will attend a second session and be further randomized to one of three CBM conditions (training towards smoking cues, training away from smoking cues, or control training). Participants will then undergo a functional magnetic resonance imaging scan during which they will view smoking-related pictorial cues. Primary outcome measures are changes in cognitive bias as measured by the visual dot-probe task, and neural responses to smoking-related cues. Secondary outcome measures will be cognitive bias as measured by a transfer task (modified Stroop test of smoking-related cognitive bias) and subjective mood and cigarette craving. This study will add to the relatively small literature examining the effects of CBM in addictions. It will address novel questions regarding the neural effects of CBM. It will also investigate whether varenicline treatment alters neural response to smoking-related cues. These findings will inform future research that can develop behavioral treatments that target relapse prevention. Registered with Current Controlled Trials: ISRCTN65690030. Registered on 30 January 2014.

  16. Neuro-Cognitive Assessment, Symptoms of Attention Deficit and Hyperactivity Disorder, and Soldier Performance during 68W Advanced Individual Training

    DTIC Science & Technology

    2007-10-01

    Disorder ( ADHD ). When distinctions are made, they are clearly identified by type: inattentive or hyperactive-impulsive. A third grouping of symptoms...and emergency medical training, followed by nine weeks of classroom lecture, interactive computer training, and life-sized patient simulation, to...his seat in the classroom or in other situations in which remaining seated is expected. Often runs about or climbs in situations when it is

  17. Exploring Elements of Fun to Motivate Youth to Do Cognitive Bias Modification.

    PubMed

    Boendermaker, Wouter J; Boffo, Marilisa; Wiers, Reinout W

    2015-12-01

    Heavy drinking among young adults poses severe health risks, including development of later addiction problems. Cognitive retraining of automatic appetitive processes related to alcohol (so-called cognitive bias modification [CBM]) may help to prevent escalation of use. Although effective as a treatment in clinical patients, the use of CBM in youth proves more difficult, as motivation in this group is typically low, and the paradigms used are often viewed as boring and tedious. This article presents two separate studies that focused on three approaches that may enhance user experience and motivation to train: a serious game, a serious game in a social networking context, and a mobile application. In the Game Study, 77 participants performed a regular CBM training, aimed at response matching, a gamified version, or a placebo version of that training. The gamified version was presented as a stand-alone game or in the context of a social network. In the Mobile Study, 64 participants completed a different CBM training, aimed at approach bias, either on a computer or on their mobile device. Although no training effects were found in the Game Study, adding (social) game elements did increase aspects of the user experience and motivation to train. The mobile training appeared to increase motivation to train in terms how often participants trained, but this effect disappeared after controlling for baseline motivation to train. Adding (social) game elements can increase motivation to train, and mobile training did not underperform compared with the regular training in this sample, which warrants more research into motivational elements for CBM training in younger audiences.

  18. Differential effect of motivational features on training improvements in school-based cognitive training

    PubMed Central

    Katz, Benjamin; Jaeggi, Susanne; Buschkuehl, Martin; Stegman, Alyse; Shah, Priti

    2014-01-01

    Cognitive training often utilizes game-like motivational features to keep participants engaged. It is unclear how these elements, such as feedback, reward, and theming impact player performance during training. Recent research suggests that motivation and engagement are closely related to improvements following cognitive training. We hypothesized that training paradigms featuring game-like motivational elements would be more effective than a version with no motivational elements. Five distinct motivational features were chosen for examination: a real-time scoring system, theme changes, prizes, end-of-session certificates, and scaffolding to explain the lives and leveling system included in the game. One version of the game was created with all these motivational elements included, and one was created with all of them removed. Other versions removed a single element at a time. Seven versions of a game-like n-back working memory task were then created and administered to 128 students in second through eight grade at school-based summer camps in southeastern Michigan. The inclusion of real-time scoring during play, a popular motivational component in both entertainment games and cognitive training, was found to negatively impact training improvements over the three day period. Surprisingly, scaffolding to explain lives and levels also negatively impacted training gains. The other game adjustments did not significantly impact training improvement compared to the original version of the game with all features included. These findings are preliminary and are limited by both the small sample size and the brevity of the intervention. Nonetheless, these findings suggest that certain motivational elements may distract from the core cognitive training task, reducing task improvement, especially at the initial stage of learning. PMID:24795603

  19. Implementation and Outcomes of a Collaborative Multi-Center Network Aimed at Web-Based Cognitive Training - COGWEB Network.

    PubMed

    Tedim Cruz, Vítor; Pais, Joana; Ruano, Luis; Mateus, Cátia; Colunas, Márcio; Alves, Ivânia; Barreto, Rui; Conde, Eduardo; Sousa, Andreia; Araújo, Isabel; Bento, Virgílio; Coutinho, Paula; Rocha, Nelson

    2014-01-01

    Cognitive care for the most prevalent neurologic and psychiatric conditions will only improve through the implementation of new sustainable approaches. Innovative cognitive training methodologies and collaborative professional networks are necessary evolutions in the mental health sector. The objective of the study was to describe the implementation process and early outcomes of a nationwide multi-organizational network supported on a Web-based cognitive training system (COGWEB). The setting for network implementation was the Portuguese mental health system and the hospital-, academic-, community-based institutions and professionals providing cognitive training. The network started in August 2012, with 16 centers, and was monitored until September 2013 (inclusions were open). After onsite training, all were allowed to use COGWEB in their clinical or research activities. For supervision and maintenance were implemented newsletters, questionnaires, visits and webinars. The following outcomes were prospectively measured: (1) number, (2) type, (3) time to start, and (4) activity state of centers; age, gender, level of education, and medical diagnosis of patients enrolled. The network included 68 professionals from 41 centers, (33/41) 80% clinical, (8/41) 19% nonclinical. A total of 298 patients received cognitive training; 45.3% (n=135) female, mean age 54.4 years (SD 18.7), mean educational level 9.8 years (SD 4.8). The number enrolled each month increased significantly (r=0.6; P=.031). At 12 months, 205 remained on treatment. The major causes of cognitive impairment were: (1) neurodegenerative (115/298, 38.6%), (2) structural brain lesions (63/298, 21.1%), (3) autoimmune (40/298, 13.4%), (4) schizophrenia (30/298, 10.1%), and (5) others (50/298, 16.8%). The comparison of the patient profiles, promoter versus all other clinical centers, showed significant increases in the diversity of causes and spectrums of ages and education. Over its first year, there was a major increase in the number of new centers and professionals, as well as of the clinical diversity of patients treated. The consolidation of such a national collaborative network represents an innovative step in mental health care evolution. Furthermore, it may contribute to translational processes in the field of cognitive training and reduce disease burden.

  20. Evaluating young children's cognitive capacities through computer versus hand drawings.

    PubMed

    Olsen, J

    1992-09-01

    Young normal and handicapped children, aged 3 to 6 years, were taught to draw a scene of a house, garden and a sky with a computer drawing program that uses icons and is operated by a mouse. The drawings were rated by a team of experts on a 7-category scale. The children's computer- and hand-produced drawings were compared with one another and with results on cognitive, visual and fine motor tests. The computer drawing program made it possible for the children to accurately draw closed shapes, to get instant feedback on the adequacy of the drawing, and to make corrections with ease. It was hypothesized that these features would compensate for the young children's limitations in such cognitive skills, as memory, concentration, planning and accomplishment, as well as their weak motor skills. In addition, it was hypothesized that traditional cognitive ratings of hand drawings may underestimate young children's intellectual ability, because drawing by hand demands motor skills and memory, concentration and planning skills that are more developed than that actually shown by young children. To test the latter hypothesis, the children completed a training program in using a computer to make drawings. The results show that cognitive processes such as planning, analysis and synthesis can be investigated by means of a computer drawing program in a way not possible using traditional pencil and paper drawings. It can be said that the method used here made it possible to measure cognitive abilities "under the floor" of what is ordinarily possible by means of traditionally hand drawings.

  1. The Effects of the Combination of Cognitive Training and Supported Employment on Improving Clinical and Working Outcomes for People with Schizophrenia in Japan

    PubMed Central

    Sato, Sayaka; Iwata, Kazuhiko; Furukawa, Shun-Ichi; Matsuda, Yasuhiro; Hatsuse, Norifumi; Ikebuchi, Emi

    2014-01-01

    Background: In Japan, Job assistance for SMI have been not active. Compared with mental retardation, employment rate of SMI was low. The needs of the effective job assistance for SMI are growing. The purpose of this study was to determine the effectiveness of the combination approach of Cognitive Remediation (CR) and Supported Employment (SE) in clinical outcomes, including cognitive functioning and psychiatric symptoms besides vocational outcomes. Methods: The participants diagnosed with schizophrenia or schizoaffective disorder were assigned to CR+SE group (n=52) and SE group (n=57). CR comprised computer based trainings using COGPACK and group works. SE was individualized vocational support provided by employment specialists. Outcome measures included cognitive functioning, psychiatric symptoms, social functioning, performance of tasks as clinical outcomes, employment rate, duration of employment, and earned wage as vocational outcome. Results: CR+SE group displayed significantly better psychiatric symptoms (F=3.490, p<.10), interpersonal relations (F=11.695, p<.01), and social and cognitive functioning including verbal memory (F=9.439, p<.01), digit sequencing (F=5.544, p<.05), token motor tasks (F=6.685, p<.05), and overall cognitive functioning (F=8.136, p<.01). We did not find any significant difference between two groups in terms of employment rate and earned wage. Discussions: This is the first controlled study to determine the effectiveness of CR on vocational outcomes in Japan. The results showed that CR and SE programs were feasible in Japan and that CR using COGPACK had favorable effects on cognitive functioning, psychiatric symptoms, and social functioning, which is consistent with previous researches. PMID:24600481

  2. Chinese Calligraphy Writing for Augmenting Attentional Control and Working Memory of Older Adults at Risk of Mild Cognitive Impairment: A Randomized Controlled Trial.

    PubMed

    Chan, Sam C C; Chan, Chetwyn C H; Derbie, Abiot Y; Hui, Irene; Tan, Davynn G H; Pang, Marco Y C; Lau, Stephen C L; Fong, Kenneth N K

    2017-01-01

    Nonpharmacological intervention for individuals with mild cognitive impairment (MCI) needs further investigation. Test efficacy of an eight-week Chinese calligraphy writing training course in improving attentional control and working memory. Ninety-nine participants with MCI were randomized into the eight-week calligraphy writing (n = 48) or control (tablet computer) training (n = 51). Outcomes of the interventions were attentional control, working memory, visual scan and processing speed. They were measured at baseline, post-training, and six-month follow-up. Calligraphy writing, when compared with control, significantly improved working memory as reflected from DST-Backward sequence (p = 0.009) and span scores (p = 0.002), and divided attention as reflected from CTT2 (p < 0.001), and at the post-training. The unique improvement in working memory (span: p < 0.001; sequence: p = 0.008) of the intervention group was also found at follow-up when comparing with those at baseline. Changes in the other outcome measures were not statistically significant. The findings provide support that Chinese calligraphy writing training for eight weeks using a cognitive approach would improve working memory and to a lesser extent attentional control functions of patients with early MCI. They also demonstrate the usefulness of using mind-and-body practice for improving specific cognitive functions.

  3. Computer-based evaluation of Alzheimer's disease and mild cognitive impairment patients during a picture description task.

    PubMed

    Hernández-Domínguez, Laura; Ratté, Sylvie; Sierra-Martínez, Gerardo; Roche-Bergua, Andrés

    2018-01-01

    We present a methodology to automatically evaluate the performance of patients during picture description tasks. Transcriptions and audio recordings of the Cookie Theft picture description task were used. With 25 healthy elderly control (HC) samples and an information coverage measure, we automatically generated a population-specific referent. We then assessed 517 transcriptions (257 Alzheimer's disease [AD], 217 HC, and 43 mild cognitively impaired samples) according to their informativeness and pertinence against this referent. We extracted linguistic and phonetic metrics which previous literature correlated to early-stage AD. We trained two learners to distinguish HCs from cognitively impaired individuals. Our measures significantly ( P  < .001) correlated with the severity of the cognitive impairment and the Mini-Mental State Examination score. The classification sensitivity was 81% (area under the curve of receiver operating characteristics = 0.79) and 85% (area under the curve of receiver operating characteristics = 0.76) between HCs and AD and between HCs and AD and mild cognitively impaired, respectively. An automated assessment of a picture description task could assist clinicians in the detection of early signs of cognitive impairment and AD.

  4. A Randomized Controlled ERP Study on the Effects of Multi-Domain Cognitive Training and Task Difficulty on Task Switching Performance in Older Adults

    PubMed Central

    Küper, Kristina; Gajewski, Patrick D.; Frieg, Claudia; Falkenstein, Michael

    2017-01-01

    Executive functions are subject to a marked age-related decline, but have been shown to benefit from cognitive training interventions. As of yet, it is, however, still relatively unclear which neural mechanism can mediate training-related performance gains. In the present electrophysiological study, we examined the effects of multi-domain cognitive training on performance in an untrained cue-based task switch paradigm featuring Stroop color words: participants either had to indicate the word meaning of Stroop stimuli (word task) or perform the more difficult task of color naming (color task). One-hundred and three older adults (>65 years old) were randomly assigned to a training group receiving a 4-month multi-domain cognitive training, a passive no-contact control group or an active (social) control group receiving a 4-month relaxation training. For all groups, we recorded performance and EEG measures before and after the intervention. For the cognitive training group, but not for the two control groups, we observed an increase in response accuracy at posttest, irrespective of task and trial type. No training-related effects on reaction times were found. Cognitive training was also associated with an overall increase in N2 amplitude and a decrease of P2 latency on single trials. Training-related performance gains were thus likely mediated by an enhancement of response selection and improved access to relevant stimulus-response mappings. Additionally, cognitive training was associated with an amplitude decrease in the time window of the target-locked P3 at fronto-central electrodes. An increase in the switch positivity during advance task preparation emerged after both cognitive and relaxation training. Training-related behavioral and event-related potential (ERP) effects were not modulated by task difficulty. The data suggest that cognitive training increased slow negative potentials during target processing which enhanced the N2 and reduced a subsequent P3-like component on both switch and non-switch trials and irrespective of task difficulty. Our findings further corroborate the effectiveness of multi-domain cognitive training in older adults and indicate that ERPs can be instrumental in uncovering the neural processes underlying training-related performance gains. PMID:28446870

  5. Performance of a computer-based assessment of cognitive function measures in two cohorts of seniors

    USDA-ARS?s Scientific Manuscript database

    Computer-administered assessment of cognitive function is being increasingly incorporated in clinical trials, however its performance in these settings has not been systematically evaluated. The Seniors Health and Activity Research Program (SHARP) pilot trial (N=73) developed a computer-based tool f...

  6. Modifying interpretation biases: Effects on symptomatology, behavior, and physiological reactivity in social anxiety.

    PubMed

    Nowakowski, Matilda E; Antony, Martin M; Koerner, Naomi

    2015-12-01

    The present study investigated the effects of computerized interpretation training and cognitive restructuring on symptomatology, behavior, and physiological reactivity in an analogue social anxiety sample. Seventy-two participants with elevated social anxiety scores were randomized to one session of computerized interpretation training (n = 24), cognitive restructuring (n = 24), or an active placebo control condition (n = 24). Participants completed self-report questionnaires focused on interpretation biases and social anxiety symptomatology at pre and posttraining and a speech task at posttraining during which subjective, behavioral, and physiological measures of anxiety were assessed. Only participants in the interpretation training condition endorsed significantly more positive than negative interpretations of ambiguous social situations at posttraining. There was no evidence of generalizability of interpretation training effects to self-report measures of interpretation biases and symptomatology or the anxiety response during the posttraining speech task. Participants in the cognitive restructuring condition were rated as having higher quality speeches and showing fewer signs of anxiety during the posttraining speech task compared to participants in the interpretation training condition. The present study did not include baseline measures of speech performance or computer assessed interpretation biases. The results of the present study bring into question the generalizability of computerized interpretation training as well as the effectiveness of a single session of cognitive restructuring in modifying the full anxiety response. Clinical and theoretical implications are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Biological Factors Contributing to the Response to Cognitive Training in Mild Cognitive Impairment.

    PubMed

    Peter, Jessica; Schumacher, Lena V; Landerer, Verena; Abdulkadir, Ahmed; Kaller, Christoph P; Lahr, Jacob; Klöppel, Stefan

    2018-01-01

    In mild cognitive impairment (MCI), small benefits from cognitive training were observed for memory functions but there appears to be great variability in the response to treatment. Our study aimed to improve the characterization and selection of those participants who will benefit from cognitive intervention. We evaluated the predictive value of disease-specific biological factors for the outcome after cognitive training in MCI (n = 25) and also considered motivation of the participants. We compared the results of the cognitive intervention group with two independent control groups of MCI patients (local memory clinic, n = 20; ADNI cohort, n = 302). The primary outcome measure was episodic memory as measured by verbal delayed recall of a 10-word list. Episodic memory remained stable after treatment and slightly increased 6 months after the intervention. In contrast, in MCI patients who did not receive an intervention, episodic memory significantly decreased during the same time interval. A larger left entorhinal cortex predicted more improvement in episodic memory after treatment and so did higher levels of motivation. Adding disease-specific biological factors significantly improved the prediction of training-related change compared to a model based simply on age and baseline performance. Bootstrapping with resampling (n = 1000) verified the stability of our finding. Cognitive training might be particularly helpful in individuals with a bigger left entorhinal cortex as individuals who did not benefit from intervention showed 17% less volume in this area. When extended to alternative treatment options, stratification based on disease-specific biological factors is a useful step towards individualized medicine.

  8. Computer-based simulation training in emergency medicine designed in the light of malpractice cases.

    PubMed

    Karakuş, Akan; Duran, Latif; Yavuz, Yücel; Altintop, Levent; Calişkan, Fatih

    2014-07-27

    Using computer-based simulation systems in medical education is becoming more and more common. Although the benefits of practicing with these systems in medical education have been demonstrated, advantages of using computer-based simulation in emergency medicine education are less validated. The aim of the present study was to assess the success rates of final year medical students in doing emergency medical treatment and evaluating the effectiveness of computer-based simulation training in improving final year medical students' knowledge. Twenty four Students trained with computer-based simulation and completed at least 4 hours of simulation-based education between the dates Feb 1, 2010 - May 1, 2010. Also a control group (traditionally trained, n =24) was chosen. After the end of training, students completed an examination about 5 randomized medical simulation cases. In 5 cases, an average of 3.9 correct medical approaches carried out by computer-based simulation trained students, an average of 2.8 correct medical approaches carried out by traditionally trained group (t = 3.90, p < 0.005). We found that the success of students trained with simulation training in cases which required complicated medical approach, was statistically higher than the ones who didn't take simulation training (p ≤ 0.05). Computer-based simulation training would be significantly effective in learning of medical treatment algorithms. We thought that these programs can improve the success rate of students especially in doing adequate medical approach to complex emergency cases.

  9. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.

    PubMed

    Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva

    2016-01-01

    Children with auditory processing disorder (APD) typically present with "listening difficulties,"' including problems understanding speech in noisy environments. The authors examined, in a group of such children, whether a 12-week computer-based auditory training program with speech material improved the perception of speech-in-noise test performance, and functional listening skills as assessed by parental and teacher listening and communication questionnaires. The authors hypothesized that after the intervention, (1) trained children would show greater improvements in speech-in-noise perception than untrained controls; (2) this improvement would correlate with improvements in observer-rated behaviors; and (3) the improvement would be maintained for at least 3 months after the end of training. This was a prospective randomized controlled trial of 39 children with normal nonverbal intelligence, ages 7 to 11 years, all diagnosed with APD. This diagnosis required a normal pure-tone audiogram and deficits in at least two clinical auditory processing tests. The APD children were randomly assigned to (1) a control group that received only the current standard treatment for children diagnosed with APD, employing various listening/educational strategies at school (N = 19); or (2) an intervention group that undertook a 3-month 5-day/week computer-based auditory training program at home, consisting of a wide variety of speech-based listening tasks with competing sounds, in addition to the current standard treatment. All 39 children were assessed for language and cognitive skills at baseline and on three outcome measures at baseline and immediate postintervention. Outcome measures were repeated 3 months postintervention in the intervention group only, to assess the sustainability of treatment effects. The outcome measures were (1) the mean speech reception threshold obtained from the four subtests of the listening in specialized noise test that assesses sentence perception in various configurations of masking speech, and in which the target speakers and test materials were unrelated to the training materials; (2) the Children's Auditory Performance Scale that assesses listening skills, completed by the children's teachers; and (3) the Clinical Evaluation of Language Fundamental-4 pragmatic profile that assesses pragmatic language use, completed by parents. All outcome measures significantly improved at immediate postintervention in the intervention group only, with effect sizes ranging from 0.76 to 1.7. Improvements in speech-in-noise performance correlated with improved scores in the Children's Auditory Performance Scale questionnaire in the trained group only. Baseline language and cognitive assessments did not predict better training outcome. Improvements in speech-in-noise performance were sustained 3 months postintervention. Broad speech-based auditory training led to improved auditory processing skills as reflected in speech-in-noise test performance and in better functional listening in real life. The observed correlation between improved functional listening with improved speech-in-noise perception in the trained group suggests that improved listening was a direct generalization of the auditory training.

  10. Introduction: philosophy in and philosophy of cognitive science.

    PubMed

    Brook, Andrew

    2009-04-01

    Despite being there from the beginning, philosophical approaches have never had a settled place in cognitive research and few cognitive researchers not trained in philosophy have a clear sense of what its role has been or should be. We distinguish philosophy in cognitive research and philosophy of cognitive research. Concerning philosophy in cognitive research, after exploring some standard reactions to this work by nonphilosophers, we will pay particular attention to the methods that philosophers use. Being neither experimental nor computational, they can leave others bewildered. Thought experiments are the most striking example but not the only one. Concerning philosophy of cognitive research, we will pay particular attention to its power to generate and test normative claims, claims about what should and should not be done. Copyright © 2009 Cognitive Science Society, Inc.

  11. The effect of cognitive training on the subjective perception of well-being in older adults

    PubMed Central

    Bureš, Vladimír; Mikulecká, Jaroslava; Ponce, Daniela; Kuca, Kamil

    2016-01-01

    Background There is a growing number of studies indicating the major consequences of the subjective perception of well-being on mental health and healthcare use. However, most of the cognitive training research focuses more on the preservation of cognitive function than on the implications of the state of well-being. This secondary analysis of data from a randomised controlled trial investigated the effects of individualised television-based cognitive training on self-rated well-being using the WHO-5 index while considering gender and education as influencing factors. The effects of cognitive training were compared with leisure activities that the elderly could be engaged in to pass time. Methods Cognitively healthy participants aged 60 years or above screened using the Mini-Mental State Examination (MMSE) and Major Depression Inventory (MDI) were randomly allocated to a cognitive training group or to an active control group in a single-blind controlled two-group design and underwent 24 training sessions. Data acquired from the WHO-5 questionnaire administered before and after intervention were statistically analysed using a mixed design model for repeated measures. The effect of individualised cognitive training was compared with leisure activities while the impact of gender and education was explored using estimated marginal means. Results A total of 81 participants aged 67.9 ± 5.59 [60–84] without cognitive impairments and absent of depression symptoms underwent the study. Participants with leisure time activities declared significantly higher scores compared to participants with cognitive training M = 73.48 ± 2.88, 95% CI [67.74–79.22] vs M = 64.13 ± 3.034, 95% CI [58.09–70.17] WHO-5 score. Gender and education were found to moderate the effect of cognitive training on well-being when compared to leisure activities. Females engaged in leisure activities in the control group reported higher by M = 9.77 ± 5.4, 95% CI [−0.99–20.54] WHO-5 scores than females with the cognitive training regimen. Participants with high school education declared leisure activities to increase WHO-5 scores by M = 14.59 ± 5.39, 95% CI [3.85–25.34] compared to individualised cognitive training. Discussion The findings revealed that individualised cognitive training was not directly associated with improvements in well-being. Changes in the control group indicated that involvement in leisure time activities, in which participants were partly free to choose from, represented more favourable stimulation to a self-perceived sense of well-being than individualised cognitive training. Results also supported the fact that gender and education moderated the effect of cognitive training on well-being. Females and participants with high school education were found to be negatively impacted in well-being when performance connected with cognitive training was expected. PMID:28028465

  12. Mild Cognitive Impairment: What Do We Do Now?

    MedlinePlus

    ... in studies that focus on individual health, computer use and technology, family relationships and caregiving, community services, housing, and ... Reserve Officer Training Corps Navy Research Centers Science, Technology, and ... of Education School of Performing Arts College Office of the ...

  13. Annotated Bibliography on the Teaching of Psychology: 1999.

    ERIC Educational Resources Information Center

    Johnson, David E.; Schroder, Simone I.

    2000-01-01

    Presents an annotated bibliography covering awards, computers and technology, critical thinking, developmental psychology and aging, ethics, graduate education and training issues, high school psychology, history, introductory psychology, learning and cognition, perception/physiological/comparative psychology, research methods and research-related…

  14. No Evidence That Short-Term Cognitive or Physical Training Programs or Lifestyles Are Related to Changes in White Matter Integrity in Older Adults at Risk of Dementia

    PubMed Central

    Fissler, Patrick; Müller, Hans-Peter; Küster, Olivia C.; Laptinskaya, Daria; Thurm, Franka; Woll, Alexander; Elbert, Thomas; Kassubek, Jan; von Arnim, Christine A. F.; Kolassa, Iris-Tatjana

    2017-01-01

    Cognitive and physical activities can benefit cognition. However, knowledge about the neurobiological mechanisms underlying these activity-induced cognitive benefits is still limited, especially with regard to the role of white matter integrity (WMI), which is affected in cognitive aging and Alzheimer’s disease. To address this knowledge gap, we investigated the immediate and long-term effects of cognitive or physical training on WMI, as well as the association between cognitive and physical lifestyles and changes in WMI over a 6-month period. Additionally, we explored whether changes in WMI underlie activity-related cognitive changes, and estimated the potential of both trainings to improve WMI by correlating training outcomes with WMI. In an observational and interventional pretest, posttest, 3-month follow-up design, we assigned 47 community-dwelling older adults at risk of dementia to 50 sessions of auditory processing and working memory training (n = 13), 50 sessions of cardiovascular, strength, coordination, balance and flexibility exercises (n = 14), or a control group (n = 20). We measured lifestyles trough self-reports, cognitive training skills through training performance, functional physical fitness through the Senior Fitness Test, and global cognition through a cognitive test battery. WMI was assessed via a composite score of diffusion tensor imaging-based fractional anisotropy (FA) of three regions of interest shown to be affected in aging and Alzheimer’s disease: the genu of corpus callosum, the fornix, and the hippocampal cingulum. Effects for training interventions on FA outcomes, as well as associations between lifestyles and changes in FA outcomes were not significant. Additional analyses did show associations between cognitive lifestyle and global cognitive changes at the posttest and the 3-month follow-up (β ≥ 0.40, p ≤ 0.02) and accounting for changes in WMI did not affect these relationships. The targeted training outcomes were related to FA scores at baseline (cognitive training skills and FA composite score, rs = 0.68, p = 0.05; functional physical fitness and fornix FA, r = 0.35, p = 0.03). Overall, we found no evidence of a link between short-term physical or cognitive activities and WMI changes, despite activity-related cognitive changes in older adults at risk of dementia. However, we found positive associations between the two targeted training outcomes and WMI, hinting at a potential of long-term activities to affect WMI. PMID:28373835

  15. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    ERIC Educational Resources Information Center

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  16. The Outcome of a Social Cognitive Training for Mainstream Adolescents with Social Communication Deficits in a Chinese Community

    ERIC Educational Resources Information Center

    Lee, Kathy Y. S.; Crooke, Pamela J.; Lui, Aster L. Y.; Kan, Peggy P. K.; Mark, Yuen-mai; van Hasselt, Charles Andrew; Tong, Michael C. F.

    2016-01-01

    The use of cognitive-based strategies for improving social communication behaviours for individuals who have solid language and cognition is an important question. This study investigated the outcome of teaching Social Thinking®, a framework based in social-cognition, to Chinese adolescents with social communication deficits. Thirty-nine students…

  17. Absence of Widespread Psychosocial and Cognitive Effects of School-Based Music Instruction in 10-13-Year-Old Students

    ERIC Educational Resources Information Center

    Rickard, Nikki S.; Bambrick, Caroline J.; Gill, Anneliese

    2012-01-01

    Previous studies demonstrate that private music training has benefits which may transfer to other domains, including verbal memory, intelligence and self-esteem. The current paper reports on the impact of an increase in school-based music training on a range of cognitive and psychosocial measures for 10-13-year-olds in two independent studies. In…

  18. Dual N-Back Working Memory Training in Healthy Adults: A Randomized Comparison to Processing Speed Training

    PubMed Central

    Lawlor-Savage, Linette; Goghari, Vina M.

    2016-01-01

    Enhancing cognitive ability is an attractive concept, particularly for middle-aged adults interested in maintaining cognitive functioning and preventing age-related declines. Computerized working memory training has been investigated as a safe method of cognitive enhancement in younger and older adults, although few studies have considered the potential impact of working memory training on middle-aged adults. This study investigated dual n-back working memory training in healthy adults aged 30–60. Fifty-seven adults completed measures of working memory, processing speed, and fluid intelligence before and after a 5-week web-based dual n-back or active control (processing speed) training program. Results: Repeated measures multivariate analysis of variance failed to identify improvements across the three cognitive composites, working memory, processing speed, and fluid intelligence, after training. Follow-up Bayesian analyses supported null findings for training effects for each individual composite. Findings suggest that dual n-back working memory training may not benefit working memory or fluid intelligence in healthy adults. Further investigation is necessary to clarify if other forms of working memory training may be beneficial, and what factors impact training-related benefits, should they occur, in this population. PMID:27043141

  19. Real-time strategy game training: emergence of a cognitive flexibility trait.

    PubMed

    Glass, Brian D; Maddox, W Todd; Love, Bradley C

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function.

  20. Real-Time Strategy Game Training: Emergence of a Cognitive Flexibility Trait

    PubMed Central

    Glass, Brian D.; Maddox, W. Todd; Love, Bradley C.

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function. PMID:23950921

  1. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.

    PubMed

    Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M

    2006-01-01

    Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults.

  2. Cognitive load predicts point-of-care ultrasound simulator performance.

    PubMed

    Aldekhyl, Sara; Cavalcanti, Rodrigo B; Naismith, Laura M

    2018-02-01

    The ability to maintain good performance with low cognitive load is an important marker of expertise. Incorporating cognitive load measurements in the context of simulation training may help to inform judgements of competence. This exploratory study investigated relationships between demographic markers of expertise, cognitive load measures, and simulator performance in the context of point-of-care ultrasonography. Twenty-nine medical trainees and clinicians at the University of Toronto with a range of clinical ultrasound experience were recruited. Participants answered a demographic questionnaire then used an ultrasound simulator to perform targeted scanning tasks based on clinical vignettes. Participants were scored on their ability to both acquire and interpret ultrasound images. Cognitive load measures included participant self-report, eye-based physiological indices, and behavioural measures. Data were analyzed using a multilevel linear modelling approach, wherein observations were clustered by participants. Experienced participants outperformed novice participants on ultrasound image acquisition. Ultrasound image interpretation was comparable between the two groups. Ultrasound image acquisition performance was predicted by level of training, prior ultrasound training, and cognitive load. There was significant convergence between cognitive load measurement techniques. A marginal model of ultrasound image acquisition performance including prior ultrasound training and cognitive load as fixed effects provided the best overall fit for the observed data. In this proof-of-principle study, the combination of demographic and cognitive load measures provided more sensitive metrics to predict ultrasound simulator performance. Performance assessments which include cognitive load can help differentiate between levels of expertise in simulation environments, and may serve as better predictors of skill transfer to clinical practice.

  3. The screening role of an introductory course in cognitive therapy training.

    PubMed

    Pehlivanidis, Artemios; Papanikolaou, Katerina; Politis, Antonis; Liossi, Angeliki; Daskalopoulou, Evgenia; Gournellis, Rossetos; Soldatos, Marina; Papakosta, Vasiliki Maria; Zervas, Ioannis; Papakostas, Yiannis G

    2006-01-01

    This study examines the role of an introductory course in cognitive therapy and the relative importance of trainees' characteristics in the selection process for an advanced course in cognitive therapy. The authors assessed the files of all trainees who completed one academic year introductory course in cognitive therapy over the last seven consecutive years (N = 203). The authors examined variables such as previous training, overall involvement during the course, performance, and ability to relate to others, as well as the trainer's evaluations of their performance. Interaction skills in group situations and performance in written assignments were better predictors for admission into the advanced course. Trainees' abilities to learn and to successfully relate to others in group situations are critical for entering an advanced cognitive therapy training course. These findings question the policy of full-scale training in cognitive therapy based merely on the candidates' professional background, stressing instead the merits of an introductory course as an appropriate screening procedure.

  4. Virtual reality-based prospective memory training program for people with acquired brain injury.

    PubMed

    Yip, Ben C B; Man, David W K

    2013-01-01

    Acquired brain injuries (ABI) may display cognitive impairments and lead to long-term disabilities including prospective memory (PM) failure. Prospective memory serves to remember to execute an intended action in the future. PM problems would be a challenge to an ABI patient's successful community reintegration. While retrospective memory (RM) has been extensively studied, treatment programs for prospective memory are rarely reported. The development of a treatment program for PM, which is considered timely, can be cost-effective and appropriate to the patient's environment. A 12-session virtual reality (VR)-based cognitive rehabilitation program was developed using everyday PM activities as training content. 37 subjects were recruited to participate in a pretest-posttest control experimental study to evaluate its treatment effectiveness. Results suggest that significantly better changes were seen in both VR-based and real-life PM outcome measures, related cognitive attributes such as frontal lobe functions and semantic fluency. VR-based training may be well accepted by ABI patients as encouraging improvement has been shown. Large-scale studies of a virtual reality-based prospective memory (VRPM) training program are indicated.

  5. The effectiveness of an interactive computer program versus traditional lecture in athletic training education.

    PubMed

    Wiksten, D L; Patterson, P; Antonio, K; De La Cruz, D; Buxton, B P

    1998-07-01

    To evaluate the effectiveness of an interactive athletic training educational curriculum (IATEC) computer program as compared with traditional lecture instruction. Instructions on assessment of the quadriceps angle (Q-angle) were compared. Dependent measures consisted of cognitive knowledge, practical skill assessment, and attitudes toward the 2 methods of instruction. Sixty-six subjects were selected and then randomly assigned to 3 different groups: traditional lecture, IATEC, and control. The traditional lecture group (n = 22) received a 50-minute lecture/demonstration covering the same instructional content as the Q-angle module of the IATEC program. The IATEC group (n = 20; 2 subjects were dropped from this group due to scheduling conflicts) worked independently for 50 to 65 minutes using the Q-angle module of the IATEC program. The control group (n = 22) received no instruction. Subjects were recruited from an undergraduate athletic training education program and were screened for prior knowledge of the Q-angle. A 9-point multiple choice examination was used to determine cognitive knowledge of the Q-angle. A 12-point yes-no checklist was used to determine whether or not the subjects were able to correctly measure the Q-angle. The Allen Attitude Toward Computer-Assisted Instruction Semantic Differential Survey was used to assess student attitudes toward the 2 methods of instruction. The survey examined overall attitudes, in addition to 3 subscales: comfort, creativity, and function. The survey was scored from 1 to 7, with 7 being the most favorable and 1 being the least favorable. Results of a 1-way ANOVA on cognitive knowledge of the Q-angle revealed that the traditional lecture and IATEC groups performed significantly better than the control group, and the traditional lecture group performed significantly better than the IATEC group. Results of a 1-way ANOVA on practical skill performance revealed that the traditional lecture and IATEC groups performed significantly better than the control group, but there were no significant differences between the traditional lecture and IATEC groups on practical skill performance. Results of a t test indicated significantly more favorable attitudes (P < .05) for the traditional lecture group when compared with the IATEC group for comfort, creativity, and function. Our results suggest that use of the IATEC computer module is an effective means of instruction; however, use of the IATEC program alone may not be sufficient for educating students in cognitive knowledge. Further research is needed to determine the effectiveness of the IATEC computer program as a supplement to traditional lecture instruction in athletic training education.

  6. The Effectiveness of an Interactive Computer Program Versus Traditional Lecture in Athletic Training Education

    PubMed Central

    Wiksten, Denise Lebsack; Patterson, Patricia; Antonio, Kimberly; De La Cruz, Daniel; Buxton, Barton P.

    1998-01-01

    Objective: To evaluate the effectiveness of an interactive athletic training educational curriculum (IATEC) computer program as compared with traditional lecture instruction. Instructions on assessment of the quadriceps angle (Q-angle) were compared. Dependent measures consisted of cognitive knowledge, practical skill assessment, and attitudes toward the 2 methods of instruction. Design and Setting: Sixty-six subjects were selected and then randomly assigned to 3 different groups: traditional lecture, IATEC, and control. The traditional lecture group (n = 22) received a 50-minute lecture/demonstration covering the same instructional content as the Q-angle module of the IATEC program. The IATEC group (n = 20; 2 subjects were dropped from this group due to scheduling conflicts) worked independently for 50 to 65 minutes using the Q-angle module of the IATEC program. The control group (n = 22) received no instruction. Subjects: Subjects were recruited from an undergraduate athletic training education program and were screened for prior knowledge of the Q-angle. Measurements: A 9-point multiple choice examination was used to determine cognitive knowledge of the Q-angle. A 12-point yes-no checklist was used to determine whether or not the subjects were able to correctly measure the Q-angle. The Allen Attitude Toward Computer-Assisted Instruction Semantic Differential Survey was used to assess student attitudes toward the 2 methods of instruction. The survey examined overall attitudes, in addition to 3 subscales: comfort, creativity, and function. The survey was scored from 1 to 7, with 7 being the most favorable and 1 being the least favorable. Results: Results of a 1-way ANOVA on cognitive knowledge of the Q-angle revealed that the traditional lecture and IATEC groups performed significantly better than the control group, and the traditional lecture group performed significantly better than the IATEC group. Results of a 1-way ANOVA on practical skill performance revealed that the traditional lecture and IATEC groups performed significantly better than the control group, but there were no significant differences between the traditional lecture and IATEC groups on practical skill performance. Results of a t test indicated significantly more favorable attitudes (P < .05) for the traditional lecture group when compared with the IATEC group for comfort, creativity, and function. Conclusions: Our results suggest that use of the IATEC computer module is an effective means of instruction; however, use of the IATEC program alone may not be sufficient for educating students in cognitive knowledge. Further research is needed to determine the effectiveness of the IATEC computer program as a supplement to traditional lecture instruction in athletic training education. PMID:16558517

  7. Cognitive Requirements for Small Unit Leaders in Military Operations in Urban Terrain

    DTIC Science & Technology

    1998-09-01

    operations specifically. A cognitive task analysis , based on in depth interviews with subject matter experts (n=7), was conducted to expose the...process. The findings of the cognitive task analysis guided the development of training recommendations, particularly the need for a scenario based

  8. A Method for Cognitive Task Analysis

    DTIC Science & Technology

    1992-07-01

    A method for cognitive task analysis is described based on the notion of ’generic tasks’. The method distinguishes three layers of analysis. At the...model for applied areas such as the development of knowledge-based systems and training, are discussed. Problem solving, Cognitive Task Analysis , Knowledge, Strategies.

  9. Making Good Instructors Great: USMC Cognitive Readiness and Instructor Professionalization Initiatives

    DTIC Science & Technology

    2012-01-01

    enhance their classes; these approaches are recom- mended in addition to (not in lieu of) other well-known military scenario-based training methods...Interservice/Industry Training , Simulation, and Education Conference (I/ITSEC) 2012 2012 Paper No. 12185 Making Good Instructors Great: USMC...and ambiguous environments. Each of the US Armed Services is addressing cognitive readiness training differently. The Marine Corps, for in- stance

  10. Frame-of-Reference Training Effectiveness: Effects of Goal Orientation and Self-Efficacy on Affective, Cognitive, Skill-Based, and Transfer Outcomes

    ERIC Educational Resources Information Center

    Dierdorff, Erich C.; Surface, Eric A.; Brown, Kenneth G.

    2010-01-01

    Empirical evidence supporting frame-of-reference (FOR) training as an effective intervention for calibrating raters is convincing. Yet very little is known about who does better or worse in FOR training. We conducted a field study of how motivational factors influence affective, cognitive, and behavioral learning outcomes, as well as near transfer…

  11. Cognitive benefits of computer games for older adults.

    PubMed

    Zelinski, Elizabeth M; Reyes, Ricardo

    2009-01-01

    The purpose of this paper is to develop a basis for the hypothesis that digital action games may produce cognitive benefits for older adults. First, a discussion of the relationship between cognitive and physical health shows the increasing weight given to the role of declines in cognition in the development of dependency in older adult population studies. Second, evidence that cognitive training produces 'far transfer' in elders is presented. The key issue is that one approach, known as extended practice training, has been successful in producing far transfer to memory and other processes. Its principles, which are consistent with those associated with positive brain plasticity effects, are identified. Those principles are then related to the mechanics of digital action games, which also have the important added feature of producing the experiences of presence, engagement, and flow, the subjective elements of game play that are likely to sustain interest and emotional investment in the skills practiced so that the play produces cognitive benefits. The specific cognitive abilities proposed to be improved by different types of game genres are outlined, and recent developments in game and interface design that may affect the willingness of older adults to play are described.

  12. Cognitive benefits of computer games for older adults

    PubMed Central

    Zelinski, Elizabeth M.; Reyes, Ricardo

    2010-01-01

    The purpose of this paper is to develop a basis for the hypothesis that digital action games may produce cognitive benefits for older adults. First, a discussion of the relationship between cognitive and physical health shows the increasing weight given to the role of declines in cognition in the development of dependency in older adult population studies. Second, evidence that cognitive training produces ‘far transfer’ in elders is presented. The key issue is that one approach, known as extended practice training, has been successful in producing far transfer to memory and other processes. Its principles, which are consistent with those associated with positive brain plasticity effects, are identified. Those principles are then related to the mechanics of digital action games, which also have the important added feature of producing the experiences of presence, engagement, and flow, the subjective elements of game play that are likely to sustain interest and emotional investment in the skills practiced so that the play produces cognitive benefits. The specific cognitive abilities proposed to be improved by different types of game genres are outlined, and recent developments in game and interface design that may affect the willingness of older adults to play are described. PMID:25126043

  13. A neuropsychological rehabilitation program for patients with Multiple Sclerosis based on the model of the ICF.

    PubMed

    Pusswald, Gisela; Mildner, Christa; Zebenholzer, Karin; Auff, Eduard; Lehrner, Johann

    2014-01-01

    Forty to sixty percent of MS patients suffer from cognitive impairments. Cognitive deficits are a great burden for patients affected. In particular they may lead to a reduced quality of life, loss of work and problems with the social environment. The aim of this study was to evaluate a specific neuropsychological rehabilitation program for MS patients according to the ICF to be able to meet more properly individual requirements on the therapy level of function as well as of activities and participation. Forty patients with MS were randomised in an intervention (IG) - and a control group (CG). The outcome measure of the IG, who started an intensive computer based home training of attention and attended psychological counselling was compared to the untrained CG. In specific domains of attention (simple and cued alertness and divided attention) significant group differences between CG and IG could be found. The IG reported an improvement of mental fatigue and retardation. These findings support the idea that a neuropsychological rehabilitation program, which based on the model of ICF, could improve cognitive impairment and could also have a positive influence of activities and participation.

  14. Limited Effects of Set Shifting Training in Healthy Older Adults

    PubMed Central

    Grönholm-Nyman, Petra; Soveri, Anna; Rinne, Juha O.; Ek, Emilia; Nyholm, Alexandra; Stigsdotter Neely, Anna; Laine, Matti

    2017-01-01

    Our ability to flexibly shift between tasks or task sets declines in older age. As this decline may have adverse effects on everyday life of elderly people, it is of interest to study whether set shifting ability can be trained, and if training effects generalize to other cognitive tasks. Here, we report a randomized controlled trial where healthy older adults trained set shifting with three different set shifting tasks. The training group (n = 17) performed adaptive set shifting training for 5 weeks with three training sessions a week (45 min/session), while the active control group (n = 16) played three different computer games for the same period. Both groups underwent extensive pre- and post-testing and a 1-year follow-up. Compared to the controls, the training group showed significant improvements on the trained tasks. Evidence for near transfer in the training group was very limited, as it was seen only on overall accuracy on an untrained computerized set shifting task. No far transfer to other cognitive functions was observed. One year later, the training group was still better on the trained tasks but the single near transfer effect had vanished. The results suggest that computerized set shifting training in the elderly shows long-lasting effects on the trained tasks but very little benefit in terms of generalization. PMID:28386226

  15. Enhancing Cognition with Video Games: A Multiple Game Training Study

    PubMed Central

    Oei, Adam C.; Patterson, Michael D.

    2013-01-01

    Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects. PMID:23516504

  16. Enhancing Innovation and Underlying Neural Mechanisms Via Cognitive Training in Healthy Older Adults

    PubMed Central

    Chapman, Sandra B.; Spence, Jeffrey S.; Aslan, Sina; Keebler, Molly W.

    2017-01-01

    Non-invasive interventions, such as cognitive training (CT) and physical exercise, are gaining momentum as ways to augment both cognitive and brain function throughout life. One of the most fundamental yet little studied aspects of human cognition is innovative thinking, especially in older adults. In this study, we utilize a measure of innovative cognition that examines both the quantity and quality of abstracted interpretations. This randomized pilot trial in cognitively normal adults (56–75 years) compared the effect of cognitive reasoning training (SMART) on innovative cognition as measured by Multiple Interpretations Measure (MIM). We also examined brain changes in relation to MIM using two MRI-based measurement of arterial spin labeling (ASL) to measure cerebral blood flow (CBF) and functional connectivity MRI (fcMRI) to measure default mode and central executive network (CEN) synchrony at rest. Participants (N = 58) were randomized to the CT, physical exercise (physical training, PT) or control (CN) group where CT and PT groups received training for 3 h/week over 12 weeks. They were assessed at baseline-, mid- and post-training using innovative cognition and MRI measures. First, the CT group showed significant gains pre- to post-training on the innovation measure whereas the physical exercise and control groups failed to show significant gains. Next, the CT group showed increased CBF in medial orbitofrontal cortex (mOFC) and bilateral posterior cingulate cortex (PCC), two nodes within the Default Mode Network (DMN) compared to physical exercise and control groups. Last, significant correlations were found between innovation performance and connectivity of two major networks: CEN (positive correlation) and DMN (negative correlation). These results support the view that both the CEN and DMN are important for enhancement of innovative cognition. We propose that neural mechanisms in healthy older adults can be modified through reasoning training to better subserve enhanced innovative cognition. PMID:29062276

  17. Cognitive Somatic Behavioral Interventions for Maximizing Gymnastic Performance.

    ERIC Educational Resources Information Center

    Ravizza, Kenneth; Rotella, Robert

    Psychological training programs developed and implemented for gymnasts of a wide range of age and varying ability levels are examined. The programs utilized strategies based on cognitive-behavioral intervention. The approach contends that mental training plays a crucial role in maximizing performance for most gymnasts. The object of the training…

  18. Cognitive Correlates of Performance in Algorithms in a Computer Science Course for High School

    ERIC Educational Resources Information Center

    Avancena, Aimee Theresa; Nishihara, Akinori

    2014-01-01

    Computer science for high school faces many challenging issues. One of these is whether the students possess the appropriate cognitive ability for learning the fundamentals of computer science. Online tests were created based on known cognitive factors and fundamental algorithms and were implemented among the second grade students in the…

  19. Psychosocial treatments for schizophrenia.

    PubMed

    Mueser, Kim T; Deavers, Frances; Penn, David L; Cassisi, Jeffrey E

    2013-01-01

    The current state of the literature regarding psychosocial treatments for schizophrenia is reviewed within the frameworks of the recovery model of mental health and the expanded stress-vulnerability model. Interventions targeting specific domains of functioning, age groups, stages of illness, and human service system gaps are classified as evidence-based practices or promising practices according to the extent to which their efficacy is currently supported by meta-analyses and individual randomized controlled trials (RCTs). Evidence-based practices include assertive community treatment (ACT), cognitive behavior therapy (CBT) for psychosis, cognitive remediation, family psychoeducation, illness self-management training, social skills training, and supported employment. Promising practices include cognitive adaptive therapy, CBT for posttraumatic stress disorder, first-episode psychosis intervention, healthy lifestyle interventions, integrated treatment for co-occurring disorders, interventions targeting older individuals, peer support services, physical disease management, prodromal stage intervention, social cognition training, supported education, and supported housing. Implications and future directions are discussed.

  20. Serious Games and Gamification for Mental Health: Current Status and Promising Directions

    PubMed Central

    Fleming, Theresa M.; Bavin, Lynda; Stasiak, Karolina; Hermansson-Webb, Eve; Merry, Sally N.; Cheek, Colleen; Lucassen, Mathijs; Lau, Ho Ming; Pollmuller, Britta; Hetrick, Sarah

    2017-01-01

    Computer games are ubiquitous and can be utilized for serious purposes such as health and education. “Applied games” including serious games (in brief, computerized games for serious purposes) and gamification (gaming elements used outside of games) have the potential to increase the impact of mental health internet interventions via three processes. First, by extending the reach of online programs to those who might not otherwise use them. Second, by improving engagement through both game-based and “serious” motivational dynamics. Third, by utilizing varied mechanisms for change, including therapeutic processes and gaming features. In this scoping review, we aim to advance the field by exploring the potential and opportunities available in this area. We review engagement factors which may be exploited and demonstrate that there is promising evidence of effectiveness for serious games for depression from contemporary systematic reviews. We illustrate six major categories of tested applied games for mental health (exergames, virtual reality, cognitive behavior therapy-based games, entertainment games, biofeedback, and cognitive training games) and demonstrate that it is feasible to translate traditional evidence-based interventions into computer gaming formats and to exploit features of computer games for therapeutic change. Applied games have considerable potential for increasing the impact of online interventions for mental health. However, there are few independent trials, and direct comparisons of game-based and non-game-based interventions are lacking. Further research, faster iterations, rapid testing, non-traditional collaborations, and user-centered approaches are needed to respond to diverse user needs and preferences in rapidly changing environments. PMID:28119636

  1. Serious Games and Gamification for Mental Health: Current Status and Promising Directions.

    PubMed

    Fleming, Theresa M; Bavin, Lynda; Stasiak, Karolina; Hermansson-Webb, Eve; Merry, Sally N; Cheek, Colleen; Lucassen, Mathijs; Lau, Ho Ming; Pollmuller, Britta; Hetrick, Sarah

    2016-01-01

    Computer games are ubiquitous and can be utilized for serious purposes such as health and education. "Applied games" including serious games (in brief, computerized games for serious purposes) and gamification (gaming elements used outside of games) have the potential to increase the impact of mental health internet interventions via three processes. First, by extending the reach of online programs to those who might not otherwise use them. Second, by improving engagement through both game-based and "serious" motivational dynamics. Third, by utilizing varied mechanisms for change, including therapeutic processes and gaming features. In this scoping review, we aim to advance the field by exploring the potential and opportunities available in this area. We review engagement factors which may be exploited and demonstrate that there is promising evidence of effectiveness for serious games for depression from contemporary systematic reviews. We illustrate six major categories of tested applied games for mental health (exergames, virtual reality, cognitive behavior therapy-based games, entertainment games, biofeedback, and cognitive training games) and demonstrate that it is feasible to translate traditional evidence-based interventions into computer gaming formats and to exploit features of computer games for therapeutic change. Applied games have considerable potential for increasing the impact of online interventions for mental health. However, there are few independent trials, and direct comparisons of game-based and non-game-based interventions are lacking. Further research, faster iterations, rapid testing, non-traditional collaborations, and user-centered approaches are needed to respond to diverse user needs and preferences in rapidly changing environments.

  2. Teaching Older Adults to Use Computers: Recommendations Based on Cognitive Aging Research.

    ERIC Educational Resources Information Center

    Jones, Brett D.; Bayen, Ute J.

    1998-01-01

    Reviews cognitive aging research that identifies the following effects on older adults: cognitive slowing, limited processing resources, lack of inhibition of irrelevant stimuli, and sensory deficits. Makes recommendations for teaching older adults to use computers. (SK)

  3. Web-based therapist training on cognitive behavior therapy for anxiety disorders: a pilot study.

    PubMed

    Kobak, Kenneth A; Craske, Michelle G; Rose, Raphael D; Wolitsky-Taylor, Kate

    2013-06-01

    The need for clinicians to use evidence-based practices (such as cognitive behavior therapy [CBT]) is now well recognized. However, a gap exists between the need for empirically based treatments and their availability. This is due, in part, to a shortage of clinicians formally trained on CBT. To address this problem, we developed a Web-based therapist CBT training program, to increase accessibility to this training. The program uses a two-step approach: an interactive multimedia online tutorial for didactic training on CBT concepts, followed by live remote observation through a videoconference of trainees conducting CBT, with immediate feedback in real time during critical moments to enhance learning through iterative guidance and practice. Thirty-nine clinicians from around the county completed the online didactic training and 22 completed the live remote training. Results found a significant increase in knowledge of CBT concepts and a significant increase in clinical skills, as judged by a blind rater. User satisfaction was high for both the online tutorial and the videoconference training. Utilization of CBT by trainees increased after training. Results support the acceptability and effectiveness of this Web-based approach to training.

  4. The neural and computational bases of semantic cognition.

    PubMed

    Ralph, Matthew A Lambon; Jefferies, Elizabeth; Patterson, Karalyn; Rogers, Timothy T

    2017-01-01

    Semantic cognition refers to our ability to use, manipulate and generalize knowledge that is acquired over the lifespan to support innumerable verbal and non-verbal behaviours. This Review summarizes key findings and issues arising from a decade of research into the neurocognitive and neurocomputational underpinnings of this ability, leading to a new framework that we term controlled semantic cognition (CSC). CSC offers solutions to long-standing queries in philosophy and cognitive science, and yields a convergent framework for understanding the neural and computational bases of healthy semantic cognition and its dysfunction in brain disorders.

  5. Specific or nonspecific? Evaluation of band, baseline, and cognitive specificity of sensorimotor rhythm- and gamma-based neurofeedback.

    PubMed

    Kober, Silvia Erika; Witte, Matthias; Neuper, Christa; Wood, Guilherme

    2017-10-01

    Neurofeedback (NF) is often criticized because of the lack of empirical evidence of its specificity. Our present study thus focused on the specificity of NF on three levels: band specificity, cognitive specificity, and baseline specificity. Ten healthy middle-aged individuals performed ten sessions of SMR (sensorimotor rhythm, 12-15Hz) NF training. A second group (N=10) received feedback of a narrow gamma band (40-43Hz). Effects of NF on EEG resting measurements (tonic EEG) and cognitive functions (memory, intelligence) were evaluated using a pre-post design. Both training groups were able to linearly increase the target training frequencies (either SMR or gamma), indicating the trainability of these EEG frequencies. Both NF training protocols led to nonspecific changes in other frequency bands during NF training. While SMR NF only led to concomitant changes in slower frequencies, gamma training affected nearly the whole power spectrum. SMR NF specifically improved memory functions. Gamma training showed only marginal effects on cognitive functions. SMR power assessed during resting measurements significantly increased after SMR NF training compared to a pre-assessment, indicating specific effects of SMR NF on baseline/tonic EEG. The gamma group did not show any pre-post changes in their EEG resting activity. In conclusion, SMR NF specifically affects cognitive functions (cognitive specificity) and tonic EEG (baseline specificity), while increasing SMR during NF training nonspecifically affects slower EEG frequencies as well (band non-specificity). Gamma NF was associated with nonspecific effects on the EEG power spectrum during training, which did not lead to considerable changes in cognitive functions or baseline EEG activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Impact of a Home-Based Computerized Cognitive Training Intervention on Fall Risk Measure Performance in Community Dwelling Older Adults, a Pilot Study.

    PubMed

    Blackwood, J; Shubert, T; Fogarty, K; Chase, C

    2016-02-01

    Cognitive intervention studies have reported improvements in various domains of cognition as well as a transfer effect of improved function post training. Despite the availability of web based cognitive training programs, most intervention studies have been performed under the supervision of researchers. Therefore, the purpose of this study was to first, examine the feasibility of a six week home based computerized cognitive training (CCT) program in a group of community dwelling older adults and, second, to determine if a CCT program which focused on set shifting, attention, and visual spatial ability impacted fall risk measure performance. This pilot study used a pretest/posttest experimental design with randomization by testing site to an intervention or control group. Community dwelling older adults (mean age = 74.6 years) participated in either the control (N=25) or the intervention group (N=19). Intervention group subjects participated in 6 weeks of home based CCT 3x/week for an average of 23 minutes/session, using an online CCT program. Comparisons of mean scores on three measures of physical function (usual gait speed, five times sit to stand, timed up and go) were completed at baseline and week 7. Following the completion of an average of 18 sessions of CCT at home with good adherence (86%) and retention (92%) rates, a statistically significant difference in gait speed was found between groups with an average improvement of 0.14 m/s in the intervention group. A home based CCT program is a feasible approach to targeting cognitive impairments known to influence fall risk and changes in gait in older adults.

  7. Learning abstract visual concepts via probabilistic program induction in a Language of Thought.

    PubMed

    Overlan, Matthew C; Jacobs, Robert A; Piantadosi, Steven T

    2017-11-01

    The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A new cognitive rehabilitation programme for patients with multiple sclerosis: the 'MS-line! Project'.

    PubMed

    Gich, Jordi; Freixenet, Jordi; Garcia, Rafael; Vilanova, Joan Carles; Genís, David; Silva, Yolanda; Montalban, Xavier; Ramió-Torrentà, Lluís

    2015-09-01

    Cognitive rehabilitation is often delayed in multiple sclerosis (MS). To develop a free and specific cognitive rehabilitation programme for MS patients to be used from early stages that does not interfere with daily living activities. MS-line!, cognitive rehabilitation materials consisting of written, manipulative and computer-based materials with difficulty levels developed by a multidisciplinary team. Mathematical, problem-solving and word-based exercises were designed. Physical materials included spatial, coordination and reasoning games. Computer-based material included logic and reasoning, working memory and processing speed games. Cognitive rehabilitation exercises that are specific for MS patients have been successfully developed. © The Author(s), 2014.

  9. Computer-Based Simulations for Maintenance Training: Current ARI Research. Technical Report 544.

    ERIC Educational Resources Information Center

    Knerr, Bruce W.; And Others

    Three research efforts that used computer-based simulations for maintenance training were in progress when this report was written: Game-Based Learning, which investigated the use of computer-based games to train electronics diagnostic skills; Human Performance in Fault Diagnosis Tasks, which evaluated the use of context-free tasks to train…

  10. Comparison of Computer Based Instruction to Behavior Skills Training for Teaching Staff Implementation of Discrete-Trial Instruction with an Adult with Autism

    ERIC Educational Resources Information Center

    Nosik, Melissa R.; Williams, W. Larry; Garrido, Natalia; Lee, Sarah

    2013-01-01

    In the current study, behavior skills training (BST) is compared to a computer based training package for teaching discrete trial instruction to staff, teaching an adult with autism. The computer based training package consisted of instructions, video modeling and feedback. BST consisted of instructions, modeling, rehearsal and feedback. Following…

  11. Evaluating a Website to Teach Children Safety with Dogs: A Randomized Controlled Trial

    PubMed Central

    Schwebel, David C.; Li, Peng; McClure, Leslie A.; Severson, Joan

    2016-01-01

    Dog bites represent a significant threat to child health. Theory-driven interventions scalable for broad dissemination are sparse. A website was developed to teach children dog safety via increased knowledge, improved cognitive skills in relevant domains, and increased perception of vulnerability to bites. A randomized controlled trial was conducted with 69 children aged 4–5 randomly assigned to use the dog safety website or a control transportation safety website for ~3 weeks. Assessment of dog safety knowledge and behavior plus skill in three relevant cognitive constructs (impulse control, noticing details, and perspective-taking) was conducted both at baseline and following website use. The dog safety website incorporated interactive games, instructional videos including testimonials, a motivational rewards system, and messaging to parents concerning child lessons. Our results showed that about two-thirds of the intervention sample was not adherent to website use at home, so both intent-to-treat and per-protocol analyses were conducted. Intent-to-treat analyses yielded mostly null results. Per-protocol analyses suggested children compliant to the intervention protocol scored higher on knowledge and recognition of safe behavior with dogs following the intervention compared to the control group. Adherent children also had improved scores post-intervention on the cognitive skill of noticing details compared to the control group. We concluded that young children’s immature cognition can lead to dog bites. Interactive eHealth training on websites shows potential to teach children relevant cognitive and safety skills to reduce risk. Compliance to website use is a challenge, and some relevant cognitive skills (e.g., noticing details) may be more amenable to computer-based training than others (e.g., impulse control). PMID:27918466

  12. Computer-assisted rehabilitation of attention in pediatric multiple sclerosis and ADHD patients: a pilot trial.

    PubMed

    Simone, Marta; Viterbo, Rosa Gemma; Margari, Lucia; Iaffaldano, Pietro

    2018-06-08

    The treatment of cognitive deficits is challenging in pediatric onset multiple sclerosis (POMS) and in patients with attention deficit hyperactivity disorder (ADHD). We performed a pilot double-blind RCT to evaluate the efficacy of a home-based computerized-program for retraining attention in two cohorts of POMS and ADHD patients. POMS and ADHD patients failing in at least 2/4 attention tests on a neuropsychological battery were randomized to specific or nonspecific computerized training (ST, nST), performed in one-hour sessions, twice/week for 3 months. The primary outcome was the effect of the training on global neuropsychological performances measured by the cognitive impairment index (CII). The efficacy of the intervention was evaluated in each disease group by using repeated measures ANOVA. Sixteen POMS (9 females, age 15.75 ± 1.74 years) and 20 ADHD (2 females, age 11.19 ± 2.49 years) patients were enrolled. In POMS patients the ST exposure was associated to a significantly more pronounced improvement of the CII (p < 0.0001) and on cognitive test exploring attention, concentration, planning strategies and visuo-spatial memory performances in comparison to nST exposure. In ADHD patients the difference between the ST and nST on the CII was not statistical significant (p = 0.06), but a greater effect of the ST was found only on cognitive test exploring attention and delayed recall of visuo-spatial memory performances. Our data suggest that a cognitive rehabilitation program that targets attention is a suitable tool for improving global cognitive functioning in POMS patients, whereas it has a less pronounced transfer effect in ADHD patients. ClinicalTrials.gov; NCT03190902 ; registration date: June 15, 2017; retrospectively registered.

  13. Evaluating a Website to Teach Children Safety with Dogs: A Randomized Controlled Trial.

    PubMed

    Schwebel, David C; Li, Peng; McClure, Leslie A; Severson, Joan

    2016-12-02

    Dog bites represent a significant threat to child health. Theory-driven interventions scalable for broad dissemination are sparse. A website was developed to teach children dog safety via increased knowledge, improved cognitive skills in relevant domains, and increased perception of vulnerability to bites. A randomized controlled trial was conducted with 69 children aged 4-5 randomly assigned to use the dog safety website or a control transportation safety website for ~3 weeks. Assessment of dog safety knowledge and behavior plus skill in three relevant cognitive constructs (impulse control, noticing details, and perspective-taking) was conducted both at baseline and following website use. The dog safety website incorporated interactive games, instructional videos including testimonials, a motivational rewards system, and messaging to parents concerning child lessons. Our results showed that about two-thirds of the intervention sample was not adherent to website use at home, so both intent-to-treat and per-protocol analyses were conducted. Intent-to-treat analyses yielded mostly null results. Per-protocol analyses suggested children compliant to the intervention protocol scored higher on knowledge and recognition of safe behavior with dogs following the intervention compared to the control group. Adherent children also had improved scores post-intervention on the cognitive skill of noticing details compared to the control group. We concluded that young children's immature cognition can lead to dog bites. Interactive eHealth training on websites shows potential to teach children relevant cognitive and safety skills to reduce risk. Compliance to website use is a challenge, and some relevant cognitive skills (e.g., noticing details) may be more amenable to computer-based training than others (e.g., impulse control).

  14. Effects of a multidisciplinar cognitive rehabilitation program for patients with mild Alzheimer's disease

    PubMed Central

    Viola, Luciane F.; Nunes, Paula V.; Yassuda, Monica S.; Aprahamian, Ivan; Santos, Franklin S.; Santos, Glenda D.; Brum, Paula S.; Borges, Sheila M.; Oliveira, Alexandra M.; Chaves, Gisele F. S.; Ciasca, Eliane C.; Ferreira, Rita C. R.; de Paula, Vanessa J. R.; Takeda, Oswaldo H.; Mirandez, Roberta M.; Watari, Ricky; Falcão, Deusivania V. S.; Cachioni, Meire; Forlenza, Orestes V.

    2011-01-01

    OBJECTIVE: To evaluate the effects of a multidisciplinary rehabilitation program on cognition, quality of life, and neuropsychiatric symptoms in patients with mild Alzheimer's disease. METHOD: The present study was a single-blind, controlled study that was conducted at a university-based day-hospital memory facility. The study included 25 Alzheimer's patients and their caregivers and involved a 12-week stimulation and psychoeducational program. The comparison group consisted of 16 Alzheimer's patients in waiting lists for future intervention. INTERVENTION: Group sessions were provided by a multiprofessional team and included memory training, computer-assisted cognitive stimulation, expressive activities (painting, verbal expression, writing), physiotherapy, and physical training. Treatment was administered twice a week during 6.5-h gatherings. MEASUREMENTS: The assessment battery comprised the following tests: Mini-Mental State Examination, Short Cognitive Test, Quality of Life in Alzheimer's disease, Neuropsychiatric Inventory, and Geriatric Depression Scale. Test scores were evaluated at baseline and the end of the study by raters who were blinded to the group assignments. RESULTS: Measurements of global cognitive function and performance on attention tasks indicated that patients in the experimental group remained stable, whereas controls displayed mild but significant worsening. The intervention was associated with reduced depression symptoms for patients and caregivers and decreased neuropsychiatric symptoms in Alzheimer's subjects. The treatment was also beneficial for the patients' quality of life. CONCLUSION: This multimodal rehabilitation program was associated with cognitive stability and significant improvements in the quality of life for Alzheimer's patients. We also observed a significant decrease in depressive symptoms and caregiver burden. These results support the notion that structured nonpharmacological interventions can yield adjunct and clinically relevant benefits in dementia treatment. PMID:21915490

  15. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex

    PubMed Central

    Procyk, Emmanuel; Dominey, Peter Ford

    2016-01-01

    Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a pertinent framework to model local cortical dynamics and their contribution to higher cognitive function. PMID:27286251

  16. Beta-Band Functional Connectivity is Reorganized in Mild Cognitive Impairment after Combined Computerized Physical and Cognitive Training

    PubMed Central

    Klados, Manousos A.; Styliadis, Charis; Frantzidis, Christos A.; Paraskevopoulos, Evangelos; Bamidis, Panagiotis D.

    2016-01-01

    Physical and cognitive idleness constitute significant risk factors for the clinical manifestation of age-related neurodegenerative diseases. In contrast, a physically and cognitively active lifestyle may restructure age-declined neuronal networks enhancing neuroplasticity. The present study, investigated the changes of brain's functional network in a group of elderly individuals at risk for dementia that were induced by a combined cognitive and physical intervention scheme. Fifty seniors meeting Petersen's criteria of Mild Cognitive Impairment were equally divided into an experimental (LLM), and an active control (AC) group. Resting state electroencephalogram (EEG) was measured before and after the intervention. Functional networks were estimated by computing the magnitude square coherence between the time series of all available cortical sources as computed by standardized low resolution brain electromagnetic tomography (sLORETA). A statistical model was used to form groups' characteristic weighted graphs. The introduced modulation was assessed by networks' density and nodes' strength. Results focused on the beta band (12–30 Hz) in which the difference of the two networks' density is maximum, indicating that the structure of the LLM cortical network changes significantly due to the intervention, in contrast to the network of AC. The node strength of LLM participants in the beta band presents a higher number of bilateral connections in the occipital, parietal, temporal and prefrontal regions after the intervention. Our results show that the combined training scheme reorganizes the beta-band functional connectivity of MCI patients. ClinicalTrials.gov Identifier: NCT02313935 https://clinicaltrials.gov/ct2/show/NCT02313935. PMID:26973445

  17. Educating executive function.

    PubMed

    Blair, Clancy

    2017-01-01

    Executive functions are thinking skills that assist with reasoning, planning, problem solving, and managing one's life. The brain areas that underlie these skills are interconnected with and influenced by activity in many different brain areas, some of which are associated with emotion and stress. One consequence of the stress-specific connections is that executive functions, which help us to organize our thinking, tend to be disrupted when stimulation is too high and we are stressed out, or too low when we are bored and lethargic. Given their central role in reasoning and also in managing stress and emotion, scientists have conducted studies, primarily with adults, to determine whether executive functions can be improved by training. By and large, results have shown that they can be, in part through computer-based videogame-like activities. Evidence of wider, more general benefits from such computer-based training, however, is mixed. Accordingly, scientists have reasoned that training will have wider benefits if it is implemented early, with very young children as the neural circuitry of executive functions is developing, and that it will be most effective if embedded in children's everyday activities. Evidence produced by this research, however, is also mixed. In sum, much remains to be learned about executive function training. Without question, however, continued research on this important topic will yield valuable information about cognitive development. WIREs Cogn Sci 2017, 8:e1403. doi: 10.1002/wcs.1403 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  18. Learner Attrition in an Advanced Vocational Online Training: The Role of Computer Attitude, Computer Anxiety, and Online Learning Experience

    ERIC Educational Resources Information Center

    Stiller, Klaus D.; Köster, Annamaria

    2016-01-01

    Online learning has gained importance in education over the last 20 years, but the well-known problem of high dropout rates still persists. According to the multi-dimensional learning tasks model, the cognitive (over)load of learners is essential to attrition when dealing with five challenges (e.g. technology, user interface) of an online training…

  19. The Application of Cognitive Diagnostic Approaches via Neural Network Analysis of Serious Educational Games

    NASA Astrophysics Data System (ADS)

    Lamb, Richard L.

    Serious Educational Games (SEGs) have been a topic of increased popularity within the educational realm since the early millennia. SEGs are generalized form of Serious Games to mean games for purposes other than entertainment but, that also specifically include training, educational purpose and pedagogy within their design. This rise in popularity (for SEGs) has occurred at a time when school systems have increased the type, number, and presentations of student achievement tests for decision-making purposes. These tests often task the form of end of course (year) tests and periodic benchmark testing. As the use of these tests, has increased policymakers have suggested their use as a measure for teacher accountability. The change in testing resulted from a push by school districts and policy makers at various component levels for a data-driven decision-making (D3M) approach. With the data-driven decision making approaches by school districts, there has been an increased focus on the measurement and assessment of student content knowledge with little focus on the contributing factors and cognitive attributes within learning that cross multiple-content areas. One-way to increase the focus on these aspects of learning (factors and attributes) that are additional to content learning is through assessments based in cognitive diagnostics. Cognitive diagnostics are a family of methodological approaches in which tasks tie to specific cognitive attributes for analytical purposes. This study explores data derived from computer data logging (n=158,000) in an observational design, using traditional statistical techniques such as clustering (exploratory and confirmatory), item response theory and through data mining techniques such as artificial neural network analysis. From these analyses, a model of student learning emerges illustrating student thinking and learning while engaged in SEG Design. This study seeks to use cognitive diagnostic type approaches to measure student learning while designing science task based SEGs. In addition, the study suggests that it may be possible to use SEGs to provide a means to administer cognitive diagnostic based assessments in real time. Results of this study suggest the confirmation of four families (factors) of traits illustrating a simple factor loading structure. Item response theory (IRT) results illustrate a 2-parameter logistic model (2PLM) fit allowing for parameterization using the IRT-True Score Method (chi2=1.70, df=1, p=0.19). Finally, fit statistics for the artificial neural network suggest the developed model adequately fits the current data set and provides a means to explore cognitive attributes and their effect on task outcomes. This study has developed a justification for combining and developing two distinct areas of research related to student learning. The first is the use of cognitive diagnostic approaches to assess student learning as it relates to the cognitive attributes used during science processing. The second area is an examination and modeling of the relationship between attributes as propagated in an artificial neural network. Results of the study provide for an ANN model of student cognition while designing science based SEGs (r 2=0.73, RMSE= 0.21) at a convergence of 1000 training iterations. The literature presented in this dissertation work integrates work from multiple field areas. Fields represented in this work range from science education, educational psychology, measurement, and computational psychology.

  20. A 24-Week Multi-Modality Exercise Program Improves Executive Control in Older Adults with a Self-Reported Cognitive Complaint: Evidence from the Antisaccade Task.

    PubMed

    Heath, Matthew; Shellington, Erin; Titheridge, Sam; Gill, Dawn P; Petrella, Robert J

    2017-01-01

    Exercise programs involving aerobic and resistance training (i.e., multiple-modality) have shown promise in improving cognition and executive control in older adults at risk, or experiencing, cognitive decline. It is, however, unclear whether cognitive training within a multiple-modality program elicits an additive benefit to executive/cognitive processes. This is an important question to resolve in order to identify optimal training programs that delay, or ameliorate, executive deficits in persons at risk for further cognitive decline. In the present study, individuals with a self-reported cognitive complaint (SCC) participated in a 24-week multiple-modality (i.e., the M2 group) exercise intervention program. In addition, a separate group of individuals with a SCC completed the same aerobic and resistance training as the M2 group but also completed a cognitive-based stepping task (i.e., multiple-modality, mind-motor intervention: M4 group). Notably, pre- and post-intervention executive control was examined via the antisaccade task (i.e., eye movement mirror-symmetrical to a target). Antisaccades are an ideal tool for the study of individuals with subtle executive deficits because of its hands- and language-free nature and because the task's neural mechanisms are linked to neuropathology in cognitive decline (i.e., prefrontal cortex). Results showed that M2 and M4 group antisaccade reaction times reliably decreased from pre- to post-intervention and the magnitude of the decrease was consistent across groups. Thus, multi-modality exercise training improved executive performance in persons with a SCC independent of mind-motor training. Accordingly, we propose that multiple-modality training provides a sufficient intervention to improve executive control in persons with a SCC.

  1. Working Memory, Reasoning, and Task Switching Training: Transfer Effects, Limitations, and Great Expectations?

    PubMed Central

    Baniqued, Pauline L.; Ward, Nathan; Geyer, Alexandra; Kramer, Arthur F.

    2015-01-01

    Although some studies have shown that cognitive training can produce improvements to untrained cognitive domains (far transfer), many others fail to show these effects, especially when it comes to improving fluid intelligence. The current study was designed to overcome several limitations of previous training studies by incorporating training expectancy assessments, an active control group, and “Mind Frontiers,” a video game-based mobile program comprised of six adaptive, cognitively demanding training tasks that have been found to lead to increased scores in fluid intelligence (Gf) tests. We hypothesize that such integrated training may lead to broad improvements in cognitive abilities by targeting aspects of working memory, executive function, reasoning, and problem solving. Ninety participants completed 20 hour-and-a-half long training sessions over four to five weeks, 45 of whom played Mind Frontiers and 45 of whom completed visual search and change detection tasks (active control). After training, the Mind Frontiers group improved in working memory n-back tests, a composite measure of perceptual speed, and a composite measure of reaction time in reasoning tests. No training-related improvements were found in reasoning accuracy or other working memory tests, nor in composite measures of episodic memory, selective attention, divided attention, and multi-tasking. Perceived self-improvement in the tested abilities did not differ between groups. A general expectancy difference in problem-solving was observed between groups, but this perceived benefit did not correlate with training-related improvement. In summary, although these findings provide modest evidence regarding the efficacy of an integrated cognitive training program, more research is needed to determine the utility of Mind Frontiers as a cognitive training tool. PMID:26555341

  2. Real-Time fMRI in Neuroscience Research and Its Use in Studying the Aging Brain

    PubMed Central

    Rana, Mohit; Varan, Andrew Q.; Davoudi, Anis; Cohen, Ronald A.; Sitaram, Ranganatha; Ebner, Natalie C.

    2016-01-01

    Cognitive decline is a major concern in the aging population. It is normative to experience some deterioration in cognitive abilities with advanced age such as related to memory performance, attention distraction to interference, task switching, and processing speed. However, intact cognitive functioning in old age is important for leading an independent day-to-day life. Thus, studying ways to counteract or delay the onset of cognitive decline in aging is crucial. The literature offers various explanations for the decline in cognitive performance in aging; among those are age-related gray and white matter atrophy, synaptic degeneration, blood flow reduction, neurochemical alterations, and change in connectivity patterns with advanced age. An emerging literature on neurofeedback and Brain Computer Interface (BCI) reports exciting results supporting the benefits of volitional modulation of brain activity on cognition and behavior. Neurofeedback studies based on real-time functional magnetic resonance imaging (rtfMRI) have shown behavioral changes in schizophrenia and behavioral benefits in nicotine addiction. This article integrates research on cognitive and brain aging with evidence of brain and behavioral modification due to rtfMRI neurofeedback. We offer a state-of-the-art description of the rtfMRI technique with an eye towards its application in aging. We present preliminary results of a feasibility study exploring the possibility of using rtfMRI to train older adults to volitionally control brain activity. Based on these first findings, we discuss possible implementations of rtfMRI neurofeedback as a novel technique to study and alleviate cognitive decline in healthy and pathological aging. PMID:27803662

  3. Computer-Based Training: Capitalizing on Lessons Learned

    ERIC Educational Resources Information Center

    Bedwell, Wendy L.; Salas, Eduardo

    2010-01-01

    Computer-based training (CBT) is a methodology for providing systematic, structured learning; a useful tool when properly designed. CBT has seen a resurgence given the serious games movement, which is at the forefront of integrating primarily entertainment computer-based games into education and training. This effort represents a multidisciplinary…

  4. Therapist Training on Cognitive Behavior Therapy for Anxiety Disorders Using Internet-Based Technologies.

    PubMed

    Kobak, Kenneth A; Wolitzky-Taylor, Kate; Craske, Michelle G; Rose, Raphael D

    2017-04-01

    This study investigated a technology-enhanced training protocol to facilitate dissemination of therapist training on cognitive behavior therapy (CBT) for anxiety disorders. Seventy community clinicians received an online tutorial followed by live remote observation of clinical skills via videoconference. Impact of training on patient outcomes was also assessed. Training resulted in a significant increase in both trainee knowledge of CBT concepts and techniques and therapist competence in applying these skills. Patients treated by trainees following training had significant reductions in anxiety and depression. Ratings of user satisfaction were high. Results provide support for the use of these technologies for therapist training in CBT.

  5. Therapist Training on Cognitive Behavior Therapy for Anxiety Disorders Using Internet-Based Technologies

    PubMed Central

    Kobak, Kenneth A.; Wolitzky-Taylor, Kate; Craske, Michelle G.; Rose, Raphael D.

    2016-01-01

    This study investigated a technology-enhanced training protocol to facilitate dissemination of therapist training on cognitive behavior therapy (CBT) for anxiety disorders. Seventy community clinicians received an online tutorial followed by live remote observation of clinical skills via videoconference. Impact of training on patient outcomes was also assessed. Training resulted in a significant increase in both trainee knowledge of CBT concepts and techniques and therapist competence in applying these skills. Patients treated by trainees following training had significant reductions in anxiety and depression. Ratings of user satisfaction were high. Results provide support for the use of these technologies for therapist training in CBT. PMID:28435174

  6. Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task.

    PubMed

    Sachs, Matthew; Kaplan, Jonas; Der Sarkissian, Alissa; Habibi, Assal

    2017-01-01

    Playing a musical instrument engages various sensorimotor processes and draws on cognitive capacities collectively termed executive functions. However, while music training is believed to associated with enhancements in certain cognitive and language abilities, studies that have explored the specific relationship between music and executive function have yielded conflicting results. As part of an ongoing longitudinal study, we investigated the effects of music training on executive function using fMRI and several behavioral tasks, including the Color-Word Stroop task. Children involved in ongoing music training (N = 14, mean age = 8.67) were compared with two groups of comparable general cognitive abilities and socioeconomic status, one involved in sports ("sports" group, N = 13, mean age = 8.85) and another not involved in music or sports ("control" group, N = 17, mean age = 9.05). During the Color-Word Stroop task, children with music training showed significantly greater bilateral activation in the pre-SMA/SMA, ACC, IFG, and insula in trials that required cognitive control compared to the control group, despite no differences in performance on behavioral measures of executive function. No significant differences in brain activation or in task performance were found between the music and sports groups. The results suggest that systematic extracurricular training, particularly music-based training, is associated with changes in the cognitive control network in the brain even in the absence of changes in behavioral performance.

  7. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis.

    PubMed

    Karssemeijer, Esther G A; Aaronson, Justine A; Bossers, Willem J; Smits, Tara; Olde Rikkert, Marcel G M; Kessels, Roy P C

    2017-11-01

    Combined cognitive and physical exercise interventions have potential to elicit cognitive benefits in older adults with mild cognitive impairment (MCI) or dementia. This meta-analysis aims to quantify the overall effect of these interventions on global cognitive functioning in older adults with MCI or dementia. Ten randomized controlled trials that applied a combined cognitive-physical intervention with cognitive function as an outcome measure were included. For each study effect sizes were computed (i.e., post-intervention standardized mean difference (SMD) scores) and pooled, using a random-effects meta-analysis. The primary analysis showed a small-to-medium positive effect of combined cognitive-physical interventions on global cognitive function in older adults with MCI or dementia (SMD[95% confidence interval]=0.32[0.17;0.47], p<0.00). A combined intervention was equally beneficial in patients with dementia (SMD=0.36[0.12;0.60], p<0.00) and MCI (SMD=0.39[0.15;0.63], p<0.05). In addition, the analysis showed a moderate-to-large positive effect after combined cognitive-physical interventions for activities of daily living (ADL) (SMD=0.65[0.09;1.21], p<0.01)and a small-to-medium positive effect for mood (SMD=0.27[0.04;0.50], p<0.01). These functional benefits emphasize the clinical relevance of combined cognitive and physical training strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Concomitant Use of Transcranial Direct Current Stimulation and Computer-Assisted Training for the Rehabilitation of Attention in Traumatic Brain Injured Patients: Behavioral and Neuroimaging Results.

    PubMed

    Sacco, Katiuscia; Galetto, Valentina; Dimitri, Danilo; Geda, Elisabetta; Perotti, Francesca; Zettin, Marina; Geminiani, Giuliano C

    2016-01-01

    Divided attention (DA), the ability to distribute cognitive resources among two or more simultaneous tasks, may be severely compromised after traumatic brain injury (TBI), resulting in problems with numerous activities involved with daily living. So far, no research has investigated whether the use of non-invasive brain stimulation associated with neuropsychological rehabilitation might contribute to the recovery of such cognitive function. The main purpose of this study was to assess the effectiveness of 10 transcranial direct current stimulation (tDCS) sessions combined with computer-assisted training; it also intended to explore the neural modifications induced by the treatment. Thirty-two patients with severe TBI participated in the study: 16 were part of the experimental group, and 16 part of the control group. The treatment included 20' of tDCS, administered twice a day for 5 days. The electrodes were placed on the dorso-lateral prefrontal cortex. Their location varied across patients and it depended on each participant's specific area of damage. The control group received sham tDCS. After each tDCS session, the patient received computer-assisted cognitive training on DA for 40'. The results showed that the experimental group significantly improved in DA performance between pre- and post-treatment, showing faster reaction times (RTs), and fewer omissions. No improvement was detected between the baseline assessment (i.e., 1 month before treatment) and the pre-training assessment, or within the control group. Functional magnetic resonance imaging (fMRI) data, obtained on the experimental group during a DA task, showed post-treatment lower cerebral activations in the right superior temporal gyrus (BA 42), right and left middle frontal gyrus (BA 6), right postcentral gyrus (BA 3) and left inferior frontal gyrus (BA 9). We interpreted such neural changes as normalization of previously abnormal hyperactivations.

  9. Comparison of Knowledge and Attitudes Using Computer-Based and Face-to-Face Personal Hygiene Training Methods in Food Processing Facilities

    ERIC Educational Resources Information Center

    Fenton, Ginger D.; LaBorde, Luke F.; Radhakrishna, Rama B.; Brown, J. Lynne; Cutter, Catherine N.

    2006-01-01

    Computer-based training is increasingly favored by food companies for training workers due to convenience, self-pacing ability, and ease of use. The objectives of this study were to determine if personal hygiene training, offered through a computer-based method, is as effective as a face-to-face method in knowledge acquisition and improved…

  10. Computer-Based Training at a Military Medical Center: Understanding Decreased Participation in Training among Staff and Ways to Improve Completion Rates

    ERIC Educational Resources Information Center

    Lavender, Julie

    2013-01-01

    Military health care facilities make extensive use of computer-based training (CBT) for both clinical and non-clinical staff. Despite evidence identifying various factors that may impact CBT, the problem is unclear as to what factors specifically influence employee participation in computer-based training. The purpose of this mixed method case…

  11. Enhancing the Educational Subject: Cognitive Capitalism, Positive Psychology and Well-Being Training in Schools

    ERIC Educational Resources Information Center

    Reveley, James

    2013-01-01

    Positive psychology is influencing educational policy and practice in Britain and North America. This article reveals how this psychological discourse and its offshoot school-based training programs, which stress happiness, self-improvement and well-being, align with an emergent socio-economic formation: cognitive capitalism. Three key points are…

  12. Controlled Comparison of Family Cognitive Behavioral Therapy and Psychoeducation/Relaxation Training for Child Obsessive-Compulsive Disorder

    ERIC Educational Resources Information Center

    Piacentini, John; Bergman, R. Lindsey; Chang, Susanna; Langley, Audra; Peris, Tara; Wood, Jeffrey J.; McCracken, James

    2011-01-01

    Objective: To examine the efficacy of exposure-based cognitive-behavioral therapy (CBT) plus a structured family intervention (FCBT) versus psychoeducation plus relaxation training (PRT) for reducing symptom severity, functional impairment, and family accommodation in youths with obsessive-compulsive disorder (OCD). Method: A total of 71…

  13. Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS

    NASA Astrophysics Data System (ADS)

    Fomina, Tatiana; Lohmann, Gabriele; Erb, Michael; Ethofer, Thomas; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2016-12-01

    Objective. Electroencephalographic (EEG) brain-computer interfaces (BCIs) hold promise in restoring communication for patients with completely locked-in stage amyotrophic lateral sclerosis (ALS). However, these patients cannot use existing EEG-based BCIs, arguably because such systems rely on brain processes that are impaired in the late stages of ALS. In this work, we introduce a novel BCI designed for patients in late stages of ALS based on high-level cognitive processes that are less likely to be affected by ALS. Approach. We trained two ALS patients via EEG-based neurofeedback to use self-regulation of theta or gamma oscillations in the precuneus for basic communication. Because there is a tight connection between the precuneus and consciousness, precuneus oscillations are arguably generated by high-level cognitive processes, which are less likely to be affected by ALS than processes linked to the peripheral nervous system. Main results. Both patients learned to self-regulate their precuneus oscillations and achieved stable online decoding accuracy over the course of disease progression. One patient achieved a mean online decoding accuracy in a binary decision task of 70.55% across 26 training sessions, and the other patient achieved 59.44% across 16 training sessions. We provide empirical evidence that these oscillations were cortical in nature and originated from the intersection of the precuneus, cuneus, and posterior cingulate. Significance. Our results establish that ALS patients can employ self-regulation of precuneus oscillations for communication. Such a BCI is likely to be available to ALS patients as long as their consciousness supports communication.

  14. Brain Training with Video Games in Covert Hepatic Encephalopathy.

    PubMed

    Bajaj, Jasmohan S; Ahluwalia, Vishwadeep; Thacker, Leroy R; Fagan, Andrew; Gavis, Edith A; Lennon, Michael; Heuman, Douglas M; Fuchs, Michael; Wade, James B

    2017-02-01

    Despite the associated adverse outcomes, pharmacologic intervention for covert hepatic encephalopathy (CHE) is not the standard of care. We hypothesized that a video game-based rehabilitation program would improve white matter integrity and brain connectivity in the visuospatial network on brain magnetic resonance imaging (MRI), resulting in improved cognitive function in CHE subjects on measures consistent with the cognitive skill set emphasized by the two video games (e.g., IQ Boost-visual working memory, and Aim and Fire Challenge-psychomotor speed), but also generalize to thinking skills beyond the focus of the cognitive training (Hopkins verbal learning test (HVLT)-verbal learning/memory) and improve their health-related quality of life (HRQOL). The trial included three phases over 8 weeks; during the learning phase (cognitive tests administered twice over 2 weeks without intervening intervention), training phase (daily video game training for 4 weeks), and post-training phase (testing 2 weeks after the video game training ended). Thirty CHE patients completed all visits with significant daily achievement on the video games. In a subset of 13 subjects that underwent brain MRI, there was a significant decrease in fractional anisotropy, and increased radial diffusivity (suggesting axonal sprouting or increased cross-fiber formation) involving similar brain regions (i.e., corpus callosum, internal capsule, and sections of the corticospinal tract) and improvement in the visuospatial resting-state connectivity corresponding to the video game training domains. No significant corresponding improvement in HRQOL or HVLT performance was noted, but cognitive performance did transiently improve on cognitive tests similar to the video games during training. Although multimodal brain imaging changes suggest reductions in tract edema and improved neural network connectivity, this trial of video game brain training did not improve the HRQOL or produce lasting improvement in cognitive function in patients with CHE.

  15. Guidelines for development of NASA (National Aeronautics and Space Administration) computer security training programs

    NASA Technical Reports Server (NTRS)

    Tompkins, F. G.

    1983-01-01

    The report presents guidance for the NASA Computer Security Program Manager and the NASA Center Computer Security Officials as they develop training requirements and implement computer security training programs. NASA audiences are categorized based on the computer security knowledge required to accomplish identified job functions. Training requirements, in terms of training subject areas, are presented for both computer security program management personnel and computer resource providers and users. Sources of computer security training are identified.

  16. Effects on Training Using Illumination in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Novak, M. S. Jennifer; Mueller, Kristian

    1999-01-01

    Camera based tasks are commonly performed during orbital operations, and orbital lighting conditions, such as high contrast shadowing and glare, are a factor in performance. Computer based training using virtual environments is a common tool used to make and keep CTW members proficient. If computer based training included some of these harsh lighting conditions, would the crew increase their proficiency? The project goal was to determine whether computer based training increases proficiency if one trains for a camera based task using computer generated virtual environments with enhanced lighting conditions such as shadows and glare rather than color shaded computer images normally used in simulators. Previous experiments were conducted using a two degree of freedom docking system. Test subjects had to align a boresight camera using a hand controller with one axis of rotation and one axis of rotation. Two sets of subjects were trained on two computer simulations using computer generated virtual environments, one with lighting, and one without. Results revealed that when subjects were constrained by time and accuracy, those who trained with simulated lighting conditions performed significantly better than those who did not. To reinforce these results for speed and accuracy, the task complexity was increased.

  17. Working memory and executive functions: effects of training on academic achievement.

    PubMed

    Titz, Cora; Karbach, Julia

    2014-11-01

    The aim of this review is to illustrate the role of working memory and executive functions for scholastic achievement as an introduction to the question of whether and how working memory and executive control training may improve academic abilities. The review of current research showed limited but converging evidence for positive effects of process-based complex working-memory training on academic abilities, particularly in the domain of reading. These benefits occurred in children suffering from cognitive and academic deficits as well as in healthy students. Transfer of training to mathematical abilities seemed to be very limited and to depend on the training regime and the characteristics of the study sample. A core issue in training research is whether high- or low-achieving children benefit more from cognitive training. Individual differences in terms of training-related benefits suggested that process-based working memory and executive control training often induced compensation effects with larger benefits in low performing individuals. Finally, we discuss the effects of process-based training in relation to other types of interventions aimed at improving academic achievement.

  18. Efficient Training of Supervised Spiking Neural Network via Accurate Synaptic-Efficiency Adjustment Method.

    PubMed

    Xie, Xiurui; Qu, Hong; Yi, Zhang; Kurths, Jurgen

    2017-06-01

    The spiking neural network (SNN) is the third generation of neural networks and performs remarkably well in cognitive tasks, such as pattern recognition. The temporal neural encode mechanism found in biological hippocampus enables SNN to possess more powerful computation capability than networks with other encoding schemes. However, this temporal encoding approach requires neurons to process information serially on time, which reduces learning efficiency significantly. To keep the powerful computation capability of the temporal encoding mechanism and to overcome its low efficiency in the training of SNNs, a new training algorithm, the accurate synaptic-efficiency adjustment method is proposed in this paper. Inspired by the selective attention mechanism of the primate visual system, our algorithm selects only the target spike time as attention areas, and ignores voltage states of the untarget ones, resulting in a significant reduction of training time. Besides, our algorithm employs a cost function based on the voltage difference between the potential of the output neuron and the firing threshold of the SNN, instead of the traditional precise firing time distance. A normalized spike-timing-dependent-plasticity learning window is applied to assigning this error to different synapses for instructing their training. Comprehensive simulations are conducted to investigate the learning properties of our algorithm, with input neurons emitting both single spike and multiple spikes. Simulation results indicate that our algorithm possesses higher learning performance than the existing other methods and achieves the state-of-the-art efficiency in the training of SNN.

  19. Development and Validation of a Training Program Using a Cognitive Behavioral Therapy Approach with the Purpose of Enabling Community Pharmacists to Provide Empathic Patient Counseling.

    PubMed

    Tanuma, Kazunori; Watanabe, Fumiyuki; Maeda, Hatsuyo; Shiina, Miki; Hara, Kazuo; Kamei, Miwako

    2017-01-01

    To enable community pharmacists to provide empathic patient counseling, we developed and validated a training program based on cognitive reframing, which is one of the cognitive behavioral therapies. We divided 24 community pharmacists into two groups, providing training to the intervention group. The duration of the training program was two hours per session, with a total of eight hours. We conducted a survey of the intervention group to evaluate their training experience. In addition, we performed two role-play scenarios on patient counseling using simulated patients, evaluating the patient counseling alliance scores and the degrees of the psychological distance between the patients and pharmacists. The degree of satisfaction correlated with four training items, including "explanation by comics". When pharmacists felt that the cognitive behavioral therapy approach was successful, no significant differences were found in the patient counseling alliance grades. However, the psychological distance between the patients and pharmacists was smaller. We were able to infer that a cognitive behavioral therapy approach could decrease the psychological distance between patients and pharmacists, thereby enabling empathic patient counseling.

  20. Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing

    PubMed Central

    Invitto, Sara; Faggiano, Chiara; Sammarco, Silvia; De Luca, Valerio; De Paolis, Lucio T.

    2016-01-01

    In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user’s hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects). After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP) components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning. PMID:26999151

  1. Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing.

    PubMed

    Invitto, Sara; Faggiano, Chiara; Sammarco, Silvia; De Luca, Valerio; De Paolis, Lucio T

    2016-03-18

    In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user's hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects). After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP) components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning.

  2. Combining social cognitive treatment, cognitive remediation, and functional skills training in schizophrenia: a randomized controlled trial

    PubMed Central

    Peña, Javier; Ibarretxe-Bilbao, Naroa; Sánchez, Pedro; Iriarte, Maria B; Elizagarate, Edorta; Garay, Maria A; Gutiérrez, Miguel; Iribarren, Aránzazu; Ojeda, Natalia

    2016-01-01

    This study examined the efficacy of an integrative cognitive remediation program (REHACOP) in improving cognition and functional outcome in patients with schizophrenia. The program combines cognitive remediation, social cognitive intervention, and functional skills training. Few studies have attempted this approach. One hundred and eleven patients diagnosed with schizophrenia were randomly assigned to either the cognitive remediation group (REHACOP) or an active control group (occupational activities) for 4 months (three sessions per week, 90 min). Primary outcomes were change on general neurocognitive performance and social cognition, including theory of mind (ToM), emotion perception (EP), attributional style, and social perception (SP). Secondary outcomes included changes on clinical symptoms (Positive and Negative Syndrome Scale) and functional outcome (UCSD Performance-Based Skills Assessment and the Global Assessment of Functioning). The trial was registered with clinicaltrials.gov (NCT02796417). No baseline group differences were found. Significant differences were found in the mean change between the REHACOP group and control group in neurocognition (ηp2=0.138), SP (ηp2=0.082), ToM (ηp2=0.148), EP (ηp2=0.071), negative symptoms (ηp2=0.082), emotional distress (ηp2=0.136), Global Assessment of Functioning (ηp2=0.081), and UCSD Performance-Based Skills Assessment (ηp2=0.154). The combination of cognitive remediation, social cognitive intervention, and functional skills training demonstrated statistically significant and clinically meaningful changes in neurocognition, social cognition, negative, and functional disability. PMID:27868083

  3. A Case Study on Collective Cognition and Operation in Team-Based Computer Game Design by Middle-School Children

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Im, Tami

    2014-01-01

    This case study examined team-based computer-game design efforts by children with diverse abilities to explore the nature of their collective design actions and cognitive processes. Ten teams of middle-school children, with a high percentage of minority students, participated in a 6-weeks, computer-assisted math-game-design program. Essential…

  4. Possible End to an Endless Quest? Cognitive Bias Modification for Excessive Multiplayer Online Gamers.

    PubMed

    Rabinovitz, Sharon; Nagar, Maayan

    2015-10-01

    Cognitive biases have previously been recognized as key mechanisms that contribute to the development, maintenance, and relapse of addictive behaviors. The same mechanisms have been recently found in problematic computer gaming. The present study aims to investigate whether excessive massively multiplayer online role-playing gamers (EG) demonstrate an approach bias toward game-related cues compared to neutral stimuli; to test whether these automatic action tendencies can be implicitly modified in a single session training; and to test whether this training affects game urges and game-seeking behavior. EG (n=38) were randomly assigned to a condition in which they were implicitly trained to avoid or to approach gaming cues by pushing or pulling a joystick, using a computerized intervention (cognitive bias modification via the Approach Avoidance Task). EG demonstrated an approach bias for gaming cues compared with neutral, movie cues. Single session training significantly decreased automatic action tendencies to approach gaming cues. These effects occurred outside subjective awareness. Furthermore, approach bias retraining reduced subjective urges and intentions to play, as well as decreased game-seeking behavior. Retraining automatic processes may be beneficial in changing addictive impulses in EG. Yet, large-scale trials and long-term follow-up are warranted. The results extend the application of cognitive bias modification from substance use disorders to behavioral addictions, and specifically to Internet gaming disorder. Theoretical implications are discussed.

  5. Qualification and Approval of Personal Computer-Based Aviation Training Devices

    DOT National Transportation Integrated Search

    1997-05-12

    This Advisory Circular (AC) provides information and guidance to potential training device manufacturers and aviation training consumers concerning a means, acceptable to the Administrator, by which personal computer-based aviation training devices (...

  6. A pilot study of combined working memory and inhibition training for children with AD/HD.

    PubMed

    Johnstone, Stuart J; Roodenrys, Steven; Phillips, Elise; Watt, Annele J; Mantz, Sharlene

    2010-03-01

    Building on recent favourable outcomes using working memory (WM) training, this study examined the behavioural and physiological effect of concurrent computer-based WM and inhibition training for children with attention-deficit hyperactivity disorder (AD/HD). Using a double-blind active-control design, 29 children with AD/HD completed a 5-week at-home training programme and pre- and post-training sessions which included the assessment of overt behaviour, resting EEG, as well as task performance, skin conductance level and event-related potentials (ERPs) during a Go/Nogo task. Results indicated that after training, children from the high-intensity training condition showed reduced frequency of inattention and hyperactivity symptoms. Although there were trends for improved Go/Nogo performance, increased arousal and specific training effects for the inhibition-related N2 ERP component, they failed to reach standard levels of statistical significance. Both the low- and high-intensity conditions showed resting EEG changes (increased delta, reduced alpha and theta activity) and improved early attention alerting to Go and Nogo stimuli, as indicated by the N1 ERP component, post-training. Despite limitations, this preliminary work indicates the potential for cognitive training that concurrently targets the interrelated processes of WM and inhibition to be used as a treatment for AD/HD.

  7. Data Discovery with IBM Watson

    NASA Astrophysics Data System (ADS)

    Fessler, J.

    2016-12-01

    BM Watson is a cognitive computing system that uses machine learning, statistical analysis, and natural language processing to find and understand the clues in questions posed to it. Watson was made famous when it bested two champions on TV's Jeopardy! show. Since then, Watson has evolved into a platform of cognitive services that can be trained on very granular fields up study. Watson is being used to support a number of subject domains, such as cancer research, public safety, engineering, and the intelligence community. IBM will be providing a presentation and demonstration on the Watson technology and will discuss its capabilities including Natural Language Processing, text analytics and enterprise search, as well as cognitive computing with deep Q&A. The team will also be giving examples of how IBM Watson technology is being used to support real-world problems across a number of public sector agencies

  8. INCOG recommendations for management of cognition following traumatic brain injury, part II: attention and information processing speed.

    PubMed

    Ponsford, Jennie; Bayley, Mark; Wiseman-Hakes, Catherine; Togher, Leanne; Velikonja, Diana; McIntyre, Amanda; Janzen, Shannon; Tate, Robyn

    2014-01-01

    Traumatic brain injury, due to its diffuse nature and high frequency of injury to frontotemporal and midbrain reticular activating systems, may cause disruption in many aspects of attention: arousal, selective attention, speed of information processing, and strategic control of attention, including sustained attention, shifting and dividing of attention, and working memory. An international team of researchers and clinicians (known as INCOG) convened to develop recommendations for the management of attentional problems. The experts selected recommendations from published guidelines and then reviewed literature to ensure that recommendations were current. Decision algorithms incorporating the recommendations based on inclusion and exclusion criteria of published trials were developed. The team then prioritized recommendations for implementation and developed audit criteria to evaluate adherence to these best practices. The recommendations and discussion highlight that metacognitive strategy training focused on functional everyday activities is appropriate. Appropriate use of dual task training, environmental modifications, and cognitive behavioral therapy is also discussed. There is insufficient evidence to support mindfulness meditation and practice on de-contextualized computer-based tasks for attention. Administration of the medication methylphenidate should be considered to improve information-processing speed. The INCOG recommendations for rehabilitation of attention provide up-to-date guidance for clinicians treating people with traumatic brain injury.

  9. Creation and Global Deployment of a Mobile, Application-Based Cognitive Simulator for Cardiac Surgical Procedures.

    PubMed

    Brewer, Zachary E; Ogden, William David; Fann, James I; Burdon, Thomas A; Sheikh, Ahmad Y

    Several modern learning frameworks (eg, cognitive apprenticeship, anchored instruction, and situated cognition) posit the utility of nontraditional methods for effective experiential learning. Thus, development of novel educational tools emphasizing the cognitive framework of operative sequences may be of benefit to surgical trainees. We propose the development and global deployment of an effective, mobile cognitive cardiac surgical simulator. In methods, 16 preclinical medical students were assessed. Overall, 4 separate surgical modules (sternotomy, cannulation, decannulation, and sternal closure) were created utilizing the Touch Surgery (London, UK) platform. Modules were made available to download free of charge for use on mobile devices. Usage data were collected over a 6-month period. Educational efficacy of the modules was evaluated by randomizing a cohort of medical students to either module usage or traditional, reading-based self-study, followed by a multiple-choice learning assessment tool. In results, downloads of the simulator achieved global penetrance, with highest usage in the USA, Brazil, Italy, UK, and India. Overall, 5368 unique users conducted a total of 1971 hours of simulation. Evaluation of the medical student cohort revealed significantly higher assessment scores in those randomized to module use versus traditional reading (75% ± 9% vs 61% ± 7%, respectively; P < 0.05). In conclusion, this study represents the first effort to create a mobile, interactive cognitive simulator for cardiac surgery. Simulators of this type may be effective for the training and assessment of surgical students. We investigated whether an interactive, mobile-computing-based cognitive task simulator for cardiac surgery could be developed, deployed, and validated. Our findings suggest that such simulators may be a useful learning tool. Copyright © 2016. Published by Elsevier Inc.

  10. A pilot study and brief overview of rehabilitation via virtual environment in patients suffering from dementia.

    PubMed

    Fasilis, Th; Patrikelis, P; Siatouni, A; Alexoudi, A; Veretzioti, A; Zachou, L; Gatzonis, S-St

    2018-01-01

    Dementia is one of the increasing problems of modern societies. The immediate cure is not a possible solution, at least at the moment, but science has found a number of new ways to retard and under specific conditions to halt its development. A potential, and constantly evolving scientific field is the use of Computerized Cognitive Rehabilitation (CCR) and Virtual Environments (Vr.E). According to the existing literature, subjecting patients to various neuro-rehabilitative conditions within 3D virtual environments, allows them to obtain significant therapeutic benefits in which both transferability and durations over time are observed, in relation to the training period of the intervention. In the present study we examine whether "Serious Games (SGs)" - (learning and rehabilitating games in virtual and augmented reality) - have utilitarian value in the field of cognitive neurorehabilitation, concerned with demented population. For research purposes, we have conducted a number of case studies, based on 10 elderly patients, suffering from moderate or mild severity impairment of higher cortical functions, attributed to various types of dementias (Vascular, Alzheimer's disease, DLB dementia and mixed dementia). Each participant underwent rehabilitative intervention through our SG for a total of 10 hours within 4-5 weeks period. At the end of the cognitive rehabilitation program, patients' performance was assessed based in standard neuropsychological tests (measuring: working memory, memory retention, attention, problem solving, rigid thinking and executive function) and the results were compared with measurements taken before, during, and at the end of the intervention. Our experimental hypothesis states that there will be a significant difference between the results of cognitive performance of the patients between the pre- and post- rehabilitative period, consequential of the Interactive Computer-based Training (ICT). In conclusion, a review and brief analysis of the relevant literature was carried out in order to investigate the specification of potentially beneficial variables and to appreciate as much as possible the multifactorial causes related to this particular rehabilitation method of the corresponding suffering population. The ultimate purpose of our research is the design and creation of a prospective interactive cognitive rehabilitation training SG, able to combine both the neuro-rehabilitative character of the controlled virtual environment, as well as the potential realism that is also attributed to it (factual validity under high experimental realism). The results showed a relative improvement in the total of the cognitive variables under consideration after the completion of the neuro-rehabilitative program, while a parallel review of the literature on the subject revealed methodological considerations similar to those of the present study.

  11. Effects of Karate Training Versus Mindfulness Training on Emotional Well-Being and Cognitive Performance in Later Life.

    PubMed

    Jansen, Petra; Dahmen-Zimmer, Katharina; Kudielka, Brigitte M; Schulz, Anja

    2017-12-01

    In a randomized controlled trial, we investigated the effects of karate versus a mindfulness-based stress reduction (MBSR) intervention on well-being and cognitive functioning in older adults. Fifty-five adults (52-81 years old) participated in twice-weekly karate versus MBSR sessions or no training for 8 weeks. In pre- and postassessments, subjective well-being, health, cognitive functioning, and chronic stress were measured. Preassessment hair cortisol served as physiological stress marker. The results showed an improvement for the karate group, but not the MBSR and control group, in subjective mental health and anxiety as well as cognitive processing speed. The MBSR group showed by trend as a decrease in stress. No significant correlation between preassessment hair cortisol and postassessment outcomes could be established. But the higher the level of baseline self-reported perceived stress, the higher the increase in depression, anxiety, and chronic stress. Generally, it can be assumed that karate and MBSR showed only small training effects concerning the assessed emotional and cognitive parameters.

  12. Emerging CAE technologies and their role in Future Ambient Intelligence Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2011-03-01

    Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.

  13. Stochastic Approaches to Understanding Dissociations in Inflectional Morphology

    ERIC Educational Resources Information Center

    Plunkett, Kim; Bandelow, Stephan

    2006-01-01

    Computer modelling research has undermined the view that double dissociations in behaviour are sufficient to infer separability in the cognitive mechanisms underlying those behaviours. However, all these models employ "multi-modal" representational schemes, where functional specialisation of processing emerges from the training process.…

  14. Visual Form Perception Can Be a Cognitive Correlate of Lower Level Math Categories for Teenagers.

    PubMed

    Cui, Jiaxin; Zhang, Yiyun; Cheng, Dazhi; Li, Dawei; Zhou, Xinlin

    2017-01-01

    Numerous studies have assessed the cognitive correlates of performance in mathematics, but little research has been conducted to systematically examine the relations between visual perception as the starting point of visuospatial processing and typical mathematical performance. In the current study, we recruited 223 seventh graders to perform a visual form perception task (figure matching), numerosity comparison, digit comparison, exact computation, approximate computation, and curriculum-based mathematical achievement tests. Results showed that, after controlling for gender, age, and five general cognitive processes (choice reaction time, visual tracing, mental rotation, spatial working memory, and non-verbal matrices reasoning), visual form perception had unique contributions to numerosity comparison, digit comparison, and exact computation, but had no significant relation with approximate computation or curriculum-based mathematical achievement. These results suggest that visual form perception is an important independent cognitive correlate of lower level math categories, including the approximate number system, digit comparison, and exact computation.

  15. Can Training Enhance Face Cognition Abilities in Middle-Aged Adults?

    PubMed Central

    Dolzycka, Dominika; Herzmann, Grit; Sommer, Werner; Wilhelm, Oliver

    2014-01-01

    Face cognition is a crucial skill for social interaction and shows large individual differences in healthy adults, suggesting a possibility for improvement in some. We developed and tested specific training procedures for the accuracy of face memory and the speed of face cognition. Two groups each of 20 healthy middle-aged trainees practiced for 29 daily sessions of 15 minutes duration with different computerized home-based training procedures. In addition, 20 matched and 59 non-matched controls were included. Face cognition speed training enhanced performance during the training and transferred to the latent factor level as measured in a pre-post comparison. Persistence of the training effect was evidenced at the manifest level after three months. However, the training procedure influenced the speed of processing object stimuli to the same extent as face stimuli and therefore seems to have affected a more general ability of processing complex visual stimuli and not only faces. No effects of training on the accuracy of face memory were found. This study demonstrates that face-specific abilities may be hard to improve but also shows the plasticity of the speed of processing complex visual stimuli – for the first time in middle-aged, normal adults. PMID:24632743

  16. Developing team cognition: A role for simulation

    PubMed Central

    Fernandez, Rosemarie; Shah, Sachita; Rosenman, Elizabeth D.; Kozlowski, Steve W. J.; Parker, Sarah Henrickson; Grand, James A.

    2016-01-01

    SUMMARY STATEMENT Simulation has had a major impact in the advancement of healthcare team training and assessment. To date, the majority of simulation-based training and assessment focuses on the teamwork behaviors that impact team performance, often ignoring critical cognitive, motivational, and affective team processes. Evidence from team science research demonstrates a strong relationship between team cognition and team performance and suggests a role for simulation in the development of this team-level construct. In this article we synthesize research from the broader team science literature to provide foundational knowledge regarding team cognition and highlight best practices for using simulation to target team cognition. PMID:28704287

  17. Effectiveness of Mindfulness-Based Cognitive Therapy (MBCT) in Reducing Aggression of Individuals at the Juvenile Correction and Rehabilitation Center.

    PubMed

    Milani, Atefeh; Nikmanesh, Zahra; Farnam, Ali

    2013-12-01

    In the present era, delinquency in children and adolescents is undoubtedly a difficult and upsetting issue attracting the attention of many experts such as psychologists, sociologists, and criminologists. These experts often try to answer why a number of children and adolescents engage in various crimes such as aggressive and anti-social crimes. They also try to find out how these crimes can be prevented. The present study investigates the effectiveness of mindfulness-based cognitive therapy training (MBCT) in reducing aggression in a juvenile correction and rehabilitation center of Zahedan province during years 1991 to 1992. This experimental study included an experimental and a control group with a pretest, posttest, and follow-up approach. The Buss and Perry aggression questionnaire (1992) was used for data collection. The sample group included 22 (10 experimental and 12 control groups) adolescent males in a juvenile correction and rehabilitation center of Zahedan province who were selected through a census method. Using a matching method based on the pre-test scores of the aggression questionnaire, they were then divided into two equivalent categories and were randomly assigned to the two groups. Mindfulness-based cognitive training took the group training in 8 sessions administered on experimental group. The follow-up test was conducted two weeks after the end of the posttest sessions. The results were analyzed using ANCOVA. The results of ANCOVA showed that mindfulness-based cognitive training could significantly reduce aggression during posttest and follow-up test phases in the experimental group, compared to the control group (P < 0.01). Moreover, the results indicated the effectiveness of this method in significantly reducing anger, physical aggression, and hostility during posttest and follow-up test phases (P < 0.05). However, no significant reduction was observed in the verbal aggression subscale. According to the results of the present study, mindfulness-based cognitive training seems to be effective for reducing aggressive behaviors.

  18. Working memory training in survivors of pediatric cancer: a randomized pilot study.

    PubMed

    Hardy, Kristina K; Willard, Victoria W; Allen, Taryn M; Bonner, Melanie J

    2013-08-01

    Survivors of pediatric brain tumors and acute lymphoblastic leukemia (ALL) are at increased risk for neurocognitive deficits, but few empirically supported treatment options exist. We examined the feasibility and preliminary efficacy of a home-based, computerized working memory training program, CogmedRM, with survivors of childhood cancer. Survivors of brain tumors or ALL (n = 20) with identified deficits in attention and/or working memory were randomized to either the success-adapted computer intervention or a non-adaptive, active control condition. Specifically, children in the adaptive condition completed exercises that became more challenging with each correct trial, whereas those in the non-adaptive version trained with exercises that never increased in difficulty. All participants were asked to complete 25 training sessions at home, with weekly, phone-based coaching support. Brief assessments were completed pre-intervention and post-intervention; outcome measures included both performance-based and parent-report measures of working memory and attention. Eighty-five percent of survivors were compliant with the intervention, with no adverse events reported. After controlling for baseline intellectual functioning, survivors who completed the intervention program evidenced significant post-training improvements in their visual working memory and in parent-rated learning problems compared with those in the active control group. No differences in verbal working memory functioning were evident between groups, however. Home-based, computerized cognitive training demonstrates good feasibility and acceptability in our sample. Children with higher intellectual functioning at baseline appeared to benefit more from the training, although further study is needed to clarify the strength, scope, and particularly the generalizability of potential treatment effects. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Can social dancing prevent falls in older adults? a protocol of the Dance, Aging, Cognition, Economics (DAnCE) fall prevention randomised controlled trial

    PubMed Central

    2013-01-01

    Background Falls are one of the most common health problems among older people and pose a major economic burden on health care systems. Exercise is an accepted stand-alone fall prevention strategy particularly if it is balance training or regular participation in Tai chi. Dance shares the ‘holistic’ approach of practices such as Tai chi. It is a complex sensorimotor rhythmic activity integrating multiple physical, cognitive and social elements. Small-scale randomised controlled trials have indicated that diverse dance styles can improve measures of balance and mobility in older people, but none of these studies has examined the effect of dance on falls or cognition. This study aims to determine whether participation in social dancing: i) reduces the number of falls; and ii) improves cognitive functions associated with fall risk in older people. Methods/design A single-blind, cluster randomised controlled trial of 12 months duration will be conducted. Approximately 450 participants will be recruited from 24 self-care retirement villages that house at least 60 residents each in Sydney, Australia. Village residents without cognitive impairment and obtain medical clearance will be eligible. After comprehensive baseline measurements including physiological and cognitive tests and self-completed questionnaires, villages will be randomised to intervention sites (ballroom or folk dance) or to a wait-listed control using a computer randomisation method that minimises imbalances between villages based on two baseline fall risk measures. Main outcome measures are falls, prospectively measured, and the Trail Making cognitive function test. Cost-effectiveness and cost-utility analyses will be performed. Discussion This study offers a novel approach to balance training for older people. As a community-based approach to fall prevention, dance offers older people an opportunity for greater social engagement, thereby making a major contribution to healthy ageing. Providing diversity in exercise programs targeting seniors recognises the heterogeneity of multicultural populations and may further increase the number of taking part in exercise. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12612000889853 The trial is now in progress with 12 villages already have been randomised. PMID:23675705

  20. Can social dancing prevent falls in older adults? a protocol of the Dance, Aging, Cognition, Economics (DAnCE) fall prevention randomised controlled trial.

    PubMed

    Merom, Dafna; Cumming, Robert; Mathieu, Erin; Anstey, Kaarin J; Rissel, Chris; Simpson, Judy M; Morton, Rachael L; Cerin, Ester; Sherrington, Catherine; Lord, Stephen R

    2013-05-15

    Falls are one of the most common health problems among older people and pose a major economic burden on health care systems. Exercise is an accepted stand-alone fall prevention strategy particularly if it is balance training or regular participation in Tai chi. Dance shares the 'holistic' approach of practices such as Tai chi. It is a complex sensorimotor rhythmic activity integrating multiple physical, cognitive and social elements. Small-scale randomised controlled trials have indicated that diverse dance styles can improve measures of balance and mobility in older people, but none of these studies has examined the effect of dance on falls or cognition. This study aims to determine whether participation in social dancing: i) reduces the number of falls; and ii) improves cognitive functions associated with fall risk in older people. A single-blind, cluster randomised controlled trial of 12 months duration will be conducted. Approximately 450 participants will be recruited from 24 self-care retirement villages that house at least 60 residents each in Sydney, Australia. Village residents without cognitive impairment and obtain medical clearance will be eligible. After comprehensive baseline measurements including physiological and cognitive tests and self-completed questionnaires, villages will be randomised to intervention sites (ballroom or folk dance) or to a wait-listed control using a computer randomisation method that minimises imbalances between villages based on two baseline fall risk measures. Main outcome measures are falls, prospectively measured, and the Trail Making cognitive function test. Cost-effectiveness and cost-utility analyses will be performed. This study offers a novel approach to balance training for older people. As a community-based approach to fall prevention, dance offers older people an opportunity for greater social engagement, thereby making a major contribution to healthy ageing. Providing diversity in exercise programs targeting seniors recognises the heterogeneity of multicultural populations and may further increase the number of taking part in exercise. Australian New Zealand Clinical Trials Registry ACTRN12612000889853The trial is now in progress with 12 villages already have been randomised.

  1. Cognitive training with action-related verbs induces neural plasticity in the action representation system as assessed by gray matter brain morphometry.

    PubMed

    Ghio, Marta; Locatelli, Matteo; Tettamanti, Andrea; Perani, Daniela; Gatti, Roberto; Tettamanti, Marco

    2018-06-01

    Embodied cognition theories of semantic memory still face the need for multiple sources of converging evidence in support of the involvement of sensory-motor systems in action-related knowledge. Previous studies showed that training manual actions improves semantic processing of verbs referring to the trained actions. The present work aimed to provide complementary evidence by measuring the brain plasticity effects of a cognitive training requiring sustained lexical-semantic processing of action-related verbs. We included two groups of participants, namely the Proximal Group (PG) and the Distal Group (DG), which underwent a 3-week training with verbs referring to actions involving the proximal and the distal upper limb musculature, respectively. Before and after training, we measured gray matter voxel brain morphometry based on T1 structural magnetic resonance imaging. By means of this 2 (Group: PG, DG) × 2 (Time: pre-, post-training) factorial design, we tested whether sustained cognitive experience with specific action-related verbs induces congruent brain plasticity modifications in target regions of interest pertaining to the action representation system. We found significant post- versus pre-training gray matter volume increases, specifically for PG in the left dorsal precentral gyrus, and for DG in the right cerebellar lobule VIIa. These preliminary results suggest that a cognitive training can induce structural plasticity modifications in brain regions specifically coding for the distal and proximal motor actions the trained verbs refer to. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Applied cognitive task analysis (ACTA): a practitioner's toolkit for understanding cognitive task demands.

    PubMed

    Militello, L G; Hutton, R J

    1998-11-01

    Cognitive task analysis (CTA) is a set of methods for identifying cognitive skills, or mental demands, needed to perform a task proficiently. The product of the task analysis can be used to inform the design of interfaces and training systems. However, CTA is resource intensive and has previously been of limited use to design practitioners. A streamlined method of CTA, Applied Cognitive Task Analysis (ACTA), is presented in this paper. ACTA consists of three interview methods that help the practitioner to extract information about the cognitive demands and skills required for a task. ACTA also allows the practitioner to represent this information in a format that will translate more directly into applied products, such as improved training scenarios or interface recommendations. This paper will describe the three methods, an evaluation study conducted to assess the usability and usefulness of the methods, and some directions for future research for making cognitive task analysis accessible to practitioners. ACTA techniques were found to be easy to use, flexible, and to provide clear output. The information and training materials developed based on ACTA interviews were found to be accurate and important for training purposes.

  3. Parkinson's patients' executive profile and goals they set for improvement: Why is cognitive rehabilitation not common practice?

    PubMed

    Vlagsma, T T; Koerts, J; Fasotti, L; Tucha, O; van Laar, T; Dijkstra, H; Spikman, J M

    2016-01-01

    Impairments in executive functions (EF) are the core cognitive impairment in patients with Parkinson's disease (PD). Surprisingly, cognitive rehabilitation is not routinely offered to patients with PD. However, in patients with acquired brain injury (ABI), cognitive rehabilitation, in particular strategic executive training, is common practice and has been shown to be effective. In this study, we determined whether PD patients have different needs and aims with regard to strategic executive training than ABI patients, and whether possible differences might be a reason for not offering this kind of cognitive rehabilitation programme to patients with PD. Patients' needs and aims were operationalised by individually set goals, which were classified into domains of EF and daily life. In addition, patients with PD and ABI were compared on their cognitive, in particular EF, profile. Overall, PD patients' goals and cognitive profile were similar to those of patients with ABI. Therefore, based on the findings of this study, there is no reason to assume that strategic executive training cannot be part of standard therapy in PD. However, when strategic executive training is applied in clinical practice, disease-specific characteristics need to be taken into account.

  4. A Self-Report Measure of Cognitive Processes Associated with Creativity

    ERIC Educational Resources Information Center

    Miller, Angie L.

    2014-01-01

    This study sought to explore creative cognitive processes and the similarities and differences in how descriptions of these processes group together in various self-report subscales. Based on empirical evidence from numerous studies involving the cognitive components of creativity training, the Cognitive Processes Associated with Creativity (CPAC)…

  5. Cognitive Architectures and Human-Computer Interaction. Introduction to Special Issue.

    ERIC Educational Resources Information Center

    Gray, Wayne D.; Young, Richard M.; Kirschenbaum, Susan S.

    1997-01-01

    In this introduction to a special issue on cognitive architectures and human-computer interaction (HCI), editors and contributors provide a brief overview of cognitive architectures. The following four architectures represented by articles in this issue are: Soar; LICAI (linked model of comprehension-based action planning and instruction taking);…

  6. Classifying Cognitive Profiles Using Machine Learning with Privileged Information in Mild Cognitive Impairment.

    PubMed

    Alahmadi, Hanin H; Shen, Yuan; Fouad, Shereen; Luft, Caroline Di B; Bentham, Peter; Kourtzi, Zoe; Tino, Peter

    2016-01-01

    Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalized Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further, we adopted a "Learning with privileged information" approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI) during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants. MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on a probabilistic sequence learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall fMRI signal is used as inputs to the classifier, the post-training session is most relevant; and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session is most relevant. Taken together these results suggest that brain connectivity before training and overall fMRI signal after training are both diagnostic of cognitive skills in MCI.

  7. Intravenous catheter training system: computer-based education versus traditional learning methods.

    PubMed

    Engum, Scott A; Jeffries, Pamela; Fisher, Lisa

    2003-07-01

    Virtual reality simulators allow trainees to practice techniques without consequences, reduce potential risk associated with training, minimize animal use, and help to develop standards and optimize procedures. Current intravenous (IV) catheter placement training methods utilize plastic arms, however, the lack of variability can diminish the educational stimulus for the student. This study compares the effectiveness of an interactive, multimedia, virtual reality computer IV catheter simulator with a traditional laboratory experience of teaching IV venipuncture skills to both nursing and medical students. A randomized, pretest-posttest experimental design was employed. A total of 163 participants, 70 baccalaureate nursing students and 93 third-year medical students beginning their fundamental skills training were recruited. The students ranged in age from 20 to 55 years (mean 25). Fifty-eight percent were female and 68% percent perceived themselves as having average computer skills (25% declaring excellence). The methods of IV catheter education compared included a traditional method of instruction involving a scripted self-study module which involved a 10-minute videotape, instructor demonstration, and hands-on-experience using plastic mannequin arms. The second method involved an interactive multimedia, commercially made computer catheter simulator program utilizing virtual reality (CathSim). The pretest scores were similar between the computer and the traditional laboratory group. There was a significant improvement in cognitive gains, student satisfaction, and documentation of the procedure with the traditional laboratory group compared with the computer catheter simulator group. Both groups were similar in their ability to demonstrate the skill correctly. CONCLUSIONS; This evaluation and assessment was an initial effort to assess new teaching methodologies related to intravenous catheter placement and their effects on student learning outcomes and behaviors. Technology alone is not a solution for stand alone IV catheter placement education. A traditional learning method was preferred by students. The combination of these two methods of education may further enhance the trainee's satisfaction and skill acquisition level.

  8. Integration of cognitive and physical training in a smart home environment for the elderly people.

    PubMed

    Konstantinidis, Evdokimos I; Billis, Antonis; Hlauschek, Walter; Panek, Paul; Bamidis, Panagiotis D

    2010-01-01

    Our research work is towards a service that can support senior citizens towards their independent living and active ageing. As it is suggested, physical and cognitive exercise training can contribute to a significant prolongation of personal autonomy and participation in society across prevailing age-related impairments such as cognitive decline. In the current paper, the approach of combination of both physical and cognitive training--adopted by LLM project--is discussed related to other similar projects that have taken place in the area of elderly home care and training. The aim of this work is to describe the technical design details of the integration process of the LLM service, which is based on a Web service architecture and to discuss alternative interface elements to be included in the LLM platform in terms of enabling user accessibility and acceptance.

  9. Alcohol cognitive bias modification training for problem drinkers over the web.

    PubMed

    Wiers, Reinout W; Houben, Katrijn; Fadardi, Javad S; van Beek, Paul; Rhemtulla, Mijke; Cox, W Miles

    2015-01-01

    Following successful outcomes of cognitive bias modification (CBM) programs for alcoholism in clinical and community samples, the present study investigated whether different varieties of CBM (attention control training and approach-bias re-training) could be delivered successfully in a fully automated web-based way and whether these interventions would help self-selected problem drinkers to reduce their drinking. Participants were recruited through online advertising, which resulted in 697 interested participants, of whom 615 were screened in. Of the 314 who initiated training, 136 completed a pretest, four sessions of computerized training and a posttest. Participants were randomly assigned to one of four experimental conditions (attention control or one of three varieties of approach-bias re-training) or a sham-training control condition. The general pattern of findings was that participants in all conditions (including participants in the control-training condition) reduced their drinking. It is suggested that integrating CBM with online cognitive and motivational interventions could improve results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Cognitive skills training in digital era: A paradigm shift in surgical education using the TaTME model.

    PubMed

    Knol, Joep; Keller, Deborah S

    2018-04-30

    Surgical competence is a complex, multifactorial process, requiring ample time and training. Optimal training is based on acquiring knowledge and psychomotor and cognitive skills. Practicing surgical skills is one of the most crucial tasks for both the novice surgeon learning new procedures and surgeons already in practice learning new techniques. Focus is placed on teaching traditional technical skills, but the importance of cognitive skills cannot be underestimated. Cognitive skills allow recognizing environmental cues to improve technical performance including situational awareness, mental readiness, risk assessment, anticipating problems, decision-making, adaptation, and flexibility, and may also accelerate the trainee's understanding of a procedure, formalize the steps being practiced, and reduce the overall training time to become technically proficient. The introduction and implementation of the transanal total mesorectal excision (TaTME) into practice may be the best demonstration of this new model of teaching and training, including pre-training, course attendance, and post-course guidance on technical and cognitive skills. To date, the TaTME framework has been the ideal model for structured training to ensure safe implementation. Further development of metrics to grade successful learning and assessment of long term outcomes with the new pathway will confirm the success of this training model. Copyright © 2018 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. All rights reserved.

  11. Effects of compensatory cognitive training intervention for breast cancer patients undergoing chemotherapy: a pilot study.

    PubMed

    Park, Jin-Hee; Jung, Yong Sik; Kim, Ku Sang; Bae, Sun Hyoung

    2017-06-01

    Numerous breast cancer patients experience cognitive changes during and after chemotherapy. Chemotherapy-related cognitive impairment can significantly affect quality of life. This pilot study attempted to determine the effects of a compensatory cognitive training on the objective and subjective cognitive functioning of breast cancer patients receiving adjuvant chemotherapy. Fifty-four patients were assigned to either a compensatory cognitive training or waitlist condition. They were assessed at baseline (T1), the completion of the 12-week intervention (T2), and 6 months after intervention completion (T3). Outcomes were assessed using the standardized neuropsychological tests and the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog), version 3. Raw data were converted to T-scores based on baseline scores, and a repeated-measures ANCOVA, adjusting for age, intelligence, depression, and treatment, was used for analysis. The effect sizes for differences in means were calculated. The intervention group improved significantly over time compared to the waitlist group on objective cognitive function. Among ten individual neuropsychological measures, immediate memory, delayed memory, verbal fluency in category, and verbal fluency in letter showed significant group × time interaction. In subjective cognitive function, scores of the waitlist group significantly decrease over time on perceived cognitive impairments, in contrast to those of the intervention group. The 12-week compensatory cognitive training significantly improved the objective and subjective cognitive functioning of breast cancer patients. Because this was a pilot study, further research using a larger sample and longer follow-up durations is necessary.

  12. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    NASA Astrophysics Data System (ADS)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  13. Computerized Cognitive Training in Cognitively Healthy Older Adults: A Systematic Review and Meta-Analysis of Effect Modifiers

    PubMed Central

    Lampit, Amit; Hallock, Harry; Valenzuela, Michael

    2014-01-01

    Background New effective interventions to attenuate age-related cognitive decline are a global priority. Computerized cognitive training (CCT) is believed to be safe and can be inexpensive, but neither its efficacy in enhancing cognitive performance in healthy older adults nor the impact of design factors on such efficacy has been systematically analyzed. Our aim therefore was to quantitatively assess whether CCT programs can enhance cognition in healthy older adults, discriminate responsive from nonresponsive cognitive domains, and identify the most salient design factors. Methods and Findings We systematically searched Medline, Embase, and PsycINFO for relevant studies from the databases' inception to 9 July 2014. Eligible studies were randomized controlled trials investigating the effects of ≥4 h of CCT on performance in neuropsychological tests in older adults without dementia or other cognitive impairment. Fifty-two studies encompassing 4,885 participants were eligible. Intervention designs varied considerably, but after removal of one outlier, heterogeneity across studies was small (I 2 = 29.92%). There was no systematic evidence of publication bias. The overall effect size (Hedges' g, random effects model) for CCT versus control was small and statistically significant, g = 0.22 (95% CI 0.15 to 0.29). Small to moderate effect sizes were found for nonverbal memory, g = 0.24 (95% CI 0.09 to 0.38); verbal memory, g = 0.08 (95% CI 0.01 to 0.15); working memory (WM), g = 0.22 (95% CI 0.09 to 0.35); processing speed, g = 0.31 (95% CI 0.11 to 0.50); and visuospatial skills, g = 0.30 (95% CI 0.07 to 0.54). No significant effects were found for executive functions and attention. Moderator analyses revealed that home-based administration was ineffective compared to group-based training, and that more than three training sessions per week was ineffective versus three or fewer. There was no evidence for the effectiveness of WM training, and only weak evidence for sessions less than 30 min. These results are limited to healthy older adults, and do not address the durability of training effects. Conclusions CCT is modestly effective at improving cognitive performance in healthy older adults, but efficacy varies across cognitive domains and is largely determined by design choices. Unsupervised at-home training and training more than three times per week are specifically ineffective. Further research is required to enhance efficacy of the intervention. Please see later in the article for the Editors' Summary PMID:25405755

  14. Training the Brain: Practical Applications of Neural Plasticity From the Intersection of Cognitive Neuroscience, Developmental Psychology, and Prevention Science

    PubMed Central

    Bryck, Richard L.; Fisher, Philip A.

    2012-01-01

    Prior researchers have shown that the brain has a remarkable ability for adapting to environmental changes. The positive effects of such neural plasticity include enhanced functioning in specific cognitive domains and shifts in cortical representation following naturally occurring cases of sensory deprivation; however, maladaptive changes in brain function and development owing to early developmental adversity and stress have also been well documented. Researchers examining enriched rearing environments in animals have revealed the potential for inducing positive brain plasticity effects and have helped to popularize methods for training the brain to reverse early brain deficits or to boost normal cognitive functioning. In this paper, two classes of empirically based methods of brain training in children are reviewed and critiqued: laboratory-based, mental process training paradigms and ecological interventions based upon neurocognitive conceptual models. Given the susceptibility of executive function disruption, special attention is paid to training programs that emphasize executive function enhancement. In addition, a third approach to brain training, aimed at tapping into compensatory processes, is postulated. Study results showing the effectiveness of this strategy in the field of neurorehabilitation and in terms of naturally occurring compensatory processing in human aging lend credence to the potential of this approach. PMID:21787037

  15. Training the brain: practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science.

    PubMed

    Bryck, Richard L; Fisher, Philip A

    2012-01-01

    Prior researchers have shown that the brain has a remarkable ability for adapting to environmental changes. The positive effects of such neural plasticity include enhanced functioning in specific cognitive domains and shifts in cortical representation following naturally occurring cases of sensory deprivation; however, maladaptive changes in brain function and development owing to early developmental adversity and stress have also been well documented. Researchers examining enriched rearing environments in animals have revealed the potential for inducing positive brain plasticity effects and have helped to popularize methods for training the brain to reverse early brain deficits or to boost normal cognitive functioning. In this article, two classes of empirically based methods of brain training in children are reviewed and critiqued: laboratory-based, mental process training paradigms and ecological interventions based upon neurocognitive conceptual models. Given the susceptibility of executive function disruption, special attention is paid to training programs that emphasize executive function enhancement. In addition, a third approach to brain training, aimed at tapping into compensatory processes, is postulated. Study results showing the effectiveness of this strategy in the field of neurorehabilitation and in terms of naturally occurring compensatory processing in human aging lend credence to the potential of this approach. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  16. Gamification of Cognitive Assessment and Cognitive Training: A Systematic Review of Applications and Efficacy

    PubMed Central

    Edwards, Elizabeth A; Lawrence, Natalia S; Coyle, David; Munafò, Marcus R

    2016-01-01

    Background Cognitive tasks are typically viewed as effortful, frustrating, and repetitive, which often leads to participant disengagement. This, in turn, may negatively impact data quality and/or reduce intervention effects. However, gamification may provide a possible solution. If game design features can be incorporated into cognitive tasks without undermining their scientific value, then data quality, intervention effects, and participant engagement may be improved. Objectives This systematic review aims to explore and evaluate the ways in which gamification has already been used for cognitive training and assessment purposes. We hope to answer 3 questions: (1) Why have researchers opted to use gamification? (2) What domains has gamification been applied in? (3) How successful has gamification been in cognitive research thus far? Methods We systematically searched several Web-based databases, searching the titles, abstracts, and keywords of database entries using the search strategy (gamif* OR game OR games) AND (cognit* OR engag* OR behavi* OR health* OR attention OR motiv*). Searches included papers published in English between January 2007 and October 2015. Results Our review identified 33 relevant studies, covering 31 gamified cognitive tasks used across a range of disorders and cognitive domains. We identified 7 reasons for researchers opting to gamify their cognitive training and testing. We found that working memory and general executive functions were common targets for both gamified assessment and training. Gamified tests were typically validated successfully, although mixed-domain measurement was a problem. Gamified training appears to be highly engaging and does boost participant motivation, but mixed effects of gamification on task performance were reported. Conclusions Heterogeneous study designs and typically small sample sizes highlight the need for further research in both gamified training and testing. Nevertheless, careful application of gamification can provide a way to develop engaging and yet scientifically valid cognitive assessments, and it is likely worthwhile to continue to develop gamified cognitive tasks in the future. PMID:27421244

  17. Gamification of Cognitive Assessment and Cognitive Training: A Systematic Review of Applications and Efficacy.

    PubMed

    Lumsden, Jim; Edwards, Elizabeth A; Lawrence, Natalia S; Coyle, David; Munafò, Marcus R

    2016-07-15

    Cognitive tasks are typically viewed as effortful, frustrating, and repetitive, which often leads to participant disengagement. This, in turn, may negatively impact data quality and/or reduce intervention effects. However, gamification may provide a possible solution. If game design features can be incorporated into cognitive tasks without undermining their scientific value, then data quality, intervention effects, and participant engagement may be improved. This systematic review aims to explore and evaluate the ways in which gamification has already been used for cognitive training and assessment purposes. We hope to answer 3 questions: (1) Why have researchers opted to use gamification? (2) What domains has gamification been applied in? (3) How successful has gamification been in cognitive research thus far? We systematically searched several Web-based databases, searching the titles, abstracts, and keywords of database entries using the search strategy (gamif* OR game OR games) AND (cognit* OR engag* OR behavi* OR health* OR attention OR motiv*). Searches included papers published in English between January 2007 and October 2015. Our review identified 33 relevant studies, covering 31 gamified cognitive tasks used across a range of disorders and cognitive domains. We identified 7 reasons for researchers opting to gamify their cognitive training and testing. We found that working memory and general executive functions were common targets for both gamified assessment and training. Gamified tests were typically validated successfully, although mixed-domain measurement was a problem. Gamified training appears to be highly engaging and does boost participant motivation, but mixed effects of gamification on task performance were reported. Heterogeneous study designs and typically small sample sizes highlight the need for further research in both gamified training and testing. Nevertheless, careful application of gamification can provide a way to develop engaging and yet scientifically valid cognitive assessments, and it is likely worthwhile to continue to develop gamified cognitive tasks in the future.

  18. Training Methods to Build Human Terrain Mapping Skills

    DTIC Science & Technology

    2010-10-01

    confidence in making friends, and talking to strangers. • Language – a few key phrases. • Language training with Arabic teacher (not computer -based...session to evaluate the lesson content and delivery method. Based on your feedback we will make changes and corrections to the content and the computer ...requirement, exemplar training materials were developed. The training materials took the form of a modular computer /web-based and web-deliverable course of

  19. Description of Student’s Metacognitive Ability in Understanding and Solving Mathematics Problem

    NASA Astrophysics Data System (ADS)

    Ahmad, Herlina; Febryanti, Fatimah; Febryanti, Fatimah; Muthmainnah

    2018-01-01

    This research was conducted qualitative which was aim to describe metacognitive ability to understand and solve the problems of mathematics. The subject of the research was the first year students at computer and networking department of SMK Mega Link Majene. The sample was taken by purposive sampling technique. The data obtained used the research instrument based on the form of students achievements were collected by using test of student’s achievement and interview guidance. The technique of collecting data researcher had observation to ascertain the model that used by teacher was teaching model of developing metacognitive. The technique of data analysis in this research was reduction data, presentation and conclusion. Based on the whole findings in this study it was shown that student’s metacognitive ability generally not develops optimally. It was because of limited scope of the materials, and cognitive teaching strategy handled by verbal presentation and trained continuously in facing cognitive tasks, such as understanding and solving problem.

  20. Cognitive control predicts use of model-based reinforcement learning.

    PubMed

    Otto, A Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D

    2015-02-01

    Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information--in the service of overcoming habitual, stimulus-driven responses--in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior.

  1. Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task

    PubMed Central

    2017-01-01

    Playing a musical instrument engages various sensorimotor processes and draws on cognitive capacities collectively termed executive functions. However, while music training is believed to associated with enhancements in certain cognitive and language abilities, studies that have explored the specific relationship between music and executive function have yielded conflicting results. As part of an ongoing longitudinal study, we investigated the effects of music training on executive function using fMRI and several behavioral tasks, including the Color-Word Stroop task. Children involved in ongoing music training (N = 14, mean age = 8.67) were compared with two groups of comparable general cognitive abilities and socioeconomic status, one involved in sports (“sports” group, N = 13, mean age = 8.85) and another not involved in music or sports (“control” group, N = 17, mean age = 9.05). During the Color-Word Stroop task, children with music training showed significantly greater bilateral activation in the pre-SMA/SMA, ACC, IFG, and insula in trials that required cognitive control compared to the control group, despite no differences in performance on behavioral measures of executive function. No significant differences in brain activation or in task performance were found between the music and sports groups. The results suggest that systematic extracurricular training, particularly music-based training, is associated with changes in the cognitive control network in the brain even in the absence of changes in behavioral performance. PMID:29084283

  2. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors.

    PubMed

    Subramaniam, Savitha; Wan-Ying Hui-Chan, Christina; Bhatt, Tanvi

    2014-10-01

    The impaired ability to maintain balance while performing higher-level cognitive tasks (cognitive-motor interference) significantly predisposes stroke survivors to risk of falls. We investigated adherence and intervention-related effects of gaming to improve balance control and decrease cognitive-motor interference in stroke survivors. Community-dwelling individuals with hemiparetic stroke (N = 8) received balance control training using Wii Fit in conjunction with cognitive training for approximately 110 min/d for 5 consecutive days. Changes in balance and cognitive performance were evaluated by the limits of stability test performed under single-task (ST) and dual-task (DT) conditions. The outcome measures from the limits of stability test included reaction time and movement velocity of the center of pressure. The cognitive performance was quantified by the number of errors. The DT cost was computed for the balance and cognitive outcome measures using [(ST - DT)/ST × 100]. Adherence was assessed by change on the Intrinsic Motivation Inventory scores postintervention. No commercial party having a direct financial interest in the research findings reported here has conferred orwill confer. Posttraining, reaction time cost in the forward direction improved from 31 ± 8.02 to ±8.7 ± 6.6. Similarly, movement velocity cost improved from 33.7 ± 12.3 to 11 ± 1. Cognitive cost also decreased from 47.9 ± 13.9 to 20 ± 18.8. There were similar improvements in the backward direction for all the outcome measures. Scores on the Intrinsic Motivation Inventory improved from 16.6 ± 1.3 to 23.5 ± 1.5. The results demonstrate good adherence and evidence of clinical value of this high-intensity, short-duration protocol for reducing cognitive-motor interference and improving balance control in stroke survivors. Future studies should examine the dose-response effects and long-term changes of such DT training paradigm applied to improve fall efficacy.Video Abstract available. See Video (Supplemental Digital Content 1, http://links.lww.com/JNPT/A80) for more insights from the authors.

  3. Treating chronic tinnitus: comparison of cognitive-behavioural and habituation-based treatments.

    PubMed

    Zachriat, Claudia; Kröner-Herwig, Birgit

    2004-01-01

    Using a randomized control group trial the long-term efficacy of a habituation-based treatment as conceived by Jastreboff, and a cognitive-behavioural tinnitus coping training were compared. An educational intervention was administered as a control condition. Both treatments were conducted in a group format (habituation-based treatment, 5 sessions; tinnitus coping training, 11 sessions). Educational intervention was delivered in a single group session. Patients were categorized according to their level of disability due to tinnitus (low, high), age and gender and then randomly allocated to the treatment conditions (habituation-based treatment, n = 30; tinnitus coping training, n = 27; educational intervention, n = 20). Data assessment included follow-ups of up to 21 months. Several outcome variables including disability due to tinnitus were assessed either by questionnaire or diary. Findings reveal highly significant improvements in both tinnitus coping training and habituation-based treatment in comparison with the control group. While tinnitus coping training and habituation-based treatment do not differ significantly in reduction of tinnitus disability, improvement in general well-being and adaptive behaviour is greater in tinnitus coping training than habituation-based treatment. The decrease in disability remains stable throughout the last follow-up in both treatment conditions.

  4. Development of the Ubiquitous Spaced Retrieval-Based Memory Advancement and Rehabilitation Training Program

    PubMed Central

    Han, Ji Won; Oh, Kyusoo; Yoo, Sooyoung; Kim, Eunhye; Ahn, Ki-Hwan; Son, Yeon-Joo; Kim, Tae Hui; Chi, Yeon Kyung

    2014-01-01

    Objective The Ubiquitous Spaced Retrieval-based Memory Advancement and Rehabilitation Training (USMART) program was developed by transforming the spaced retrieval-based memory training which consisted of 24 face-to-face sessions into a self-administered program with an iPAD app. The objective of this study was to evaluate the feasibility and efficacy of USMART in elderly subjects with mild cognitive impairment (MCI). Methods Feasibility was evaluated by checking the satisfaction of the participants with a 5-point Likert scale. The efficacy of the program on cognitive functions was evaluated by the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery before and after USMART. Results Among the 10 participants, 7 completed both pre- and post-USMART assessments. The overall satisfaction score was 8.0±1.0 out of 10. The mean Word List Memory Test (WLMT) scores significantly increased after USMART training after adjusting for age, educational levels, baseline Mini-Mental Status Examination scores, and the number of training sessions (pre-USMART, 16.0±4.1; post-USMART, 17.9±4.5; p=0.014, RM-ANOVA). The magnitude of the improvements in the WLMT scores significantly correlated with the number of training sessions during 4 weeks (r=0.793; p=0.033). Conclusion USMART was effective in improving memory and was well tolerated by most participants with MCI, suggesting that it may be a convenient and cost-effective alternative for the cognitive rehabilitation of elderly subjects with cognitive impairments. Further studies with large numbers of participants are necessary to examine the relationship between the number of training sessions and the improvements in memory function. PMID:24605124

  5. Tangible Landscape: Cognitively Grasping the Flow of Water

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Petrasova, A.; Petras, V.; Mitasova, H.; Meentemeyer, R. K.

    2016-06-01

    Complex spatial forms like topography can be challenging to understand, much less intentionally shape, given the heavy cognitive load of visualizing and manipulating 3D form. Spatiotemporal processes like the flow of water over a landscape are even more challenging to understand and intentionally direct as they are dependent upon their context and require the simulation of forces like gravity and momentum. This cognitive work can be offloaded onto computers through 3D geospatial modeling, analysis, and simulation. Interacting with computers, however, can also be challenging, often requiring training and highly abstract thinking. Tangible computing - an emerging paradigm of human-computer interaction in which data is physically manifested so that users can feel it and directly manipulate it - aims to offload this added cognitive work onto the body. We have designed Tangible Landscape, a tangible interface powered by an open source geographic information system (GRASS GIS), so that users can naturally shape topography and interact with simulated processes with their hands in order to make observations, generate and test hypotheses, and make inferences about scientific phenomena in a rapid, iterative process. Conceptually Tangible Landscape couples a malleable physical model with a digital model of a landscape through a continuous cycle of 3D scanning, geospatial modeling, and projection. We ran a flow modeling experiment to test whether tangible interfaces like this can effectively enhance spatial performance by offloading cognitive processes onto computers and our bodies. We used hydrological simulations and statistics to quantitatively assess spatial performance. We found that Tangible Landscape enhanced 3D spatial performance and helped users understand water flow.

  6. Computer-Based Training for Library Staff: From Demonstration to Continuing Program.

    ERIC Educational Resources Information Center

    Bayne, Pauline S.

    1993-01-01

    Describes a demonstration project developed at the University of Tennessee (Knoxville) libraries to train nonprofessional library staff with computer-based training using HyperCard that was created by librarians rather than by computer programmers. Evaluation methods are discussed, including formative and summative evaluation; and modifications…

  7. Factors Predicting the Use of Technology: Findings From the Center for Research and Education on Aging and Technology Enhancement (CREATE)

    PubMed Central

    Czaja, Sara J.; Charness, Neil; Fisk, Arthur D.; Hertzog, Christopher; Nair, Sankaran N.; Rogers, Wendy A.; Sharit, Joseph

    2006-01-01

    The successful adoption of technology is becoming increasingly important to functional independence. The present article reports findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE) on the use of technology among community-dwelling adults. The sample included 1,204 individuals ranging in age from 18–91 years. All participants completed a battery that included measures of demographic characteristics, self-rated health, experience with technology, attitudes toward computers, and component cognitive abilities. Findings indicate that the older adults were less likely than younger adults to use technology in general, computers, and the World Wide Web. The results also indicate that computer anxiety, fluid intelligence, and crystallized intelligence were important predictors of the use of technology. The relationship between age and adoption of technology was mediated by cognitive abilities, computer self-efficacy, and computer anxiety. These findings are discussed in terms of training strategies to promote technology adoption. PMID:16768579

  8. Effects of simultaneously performed cognitive and physical training in older adults

    PubMed Central

    2013-01-01

    Background While many studies confirm the positive effect of cognitive and physical training on cognitive performance of older adults, only little is known about the effects of simultaneously performed cognitive and physical training. In the current study, older adults simultaneously performed a verbal working memory and a cardiovascular training to improve cognitive and motor-cognitive dual task performance. Twenty training sessions of 30 minutes each were conducted over a period of ten weeks, with a test session before, in the middle, and after the training. Training gains were tested in measures of selective attention, paired-associates learning, executive control, reasoning, memory span, information processing speed, and motor-cognitive dual task performance in the form of walking and simultaneously performing a working memory task. Results Sixty-three participants with a mean age of 71.8 ± 4.9 years (range 65 to 84) either performed the simultaneous training (N = 21), performed a single working memory training (N = 16), or attended no training at all (N = 26). The results indicate similar training progress and larger improvements in the executive control task for both training groups when compared to the passive control group. In addition, the simultaneous training resulted in larger improvements compared to the single cognitive training in the paired-associates task and was able to reduce the step-to-step variability during the motor-cognitive dual task when compared to the single cognitive training and the passive control group. Conclusions The simultaneous training of cognitive and physical abilities presents a promising training concept to improve cognitive and motor-cognitive dual task performance, offering greater potential on daily life functioning, which usually involves the recruitment of multiple abilities and resources rather than a single one. PMID:24053148

  9. Intelligent Tutoring Systems

    NASA Astrophysics Data System (ADS)

    Anderson, John R.; Boyle, C. Franklin; Reiser, Brian J.

    1985-04-01

    Cognitive psychology, artificial intelligence, and computer technology have advanced to the point where it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors based on a set of pedagogical principles derived from the ACT theory of cognition have been developed for teaching students to do proofs in geometry and to write computer programs in the language LISP.

  10. Intelligent tutoring systems.

    PubMed

    Anderson, J R; Boyle, C F; Reiser, B J

    1985-04-26

    Cognitive psychology, artificial intelligence, and computer technology have advanced to the point where it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors based on a set of pedagogical principles derived from the ACT theory of cognition have been developed for teaching students to do proofs in geometry and to write computer programs in the language LISP.

  11. The right time to learn: mechanisms and optimization of spaced learning

    PubMed Central

    Smolen, Paul; Zhang, Yili; Byrne, John H.

    2016-01-01

    For many types of learning, spaced training, which involves repeated long inter-trial intervals, leads to more robust memory formation than does massed training, which involves short or no intervals. Several cognitive theories have been proposed to explain this superiority, but only recently have data begun to delineate the underlying cellular and molecular mechanisms of spaced training, and we review these theories and data here. Computational models of the implicated signalling cascades have predicted that spaced training with irregular inter-trial intervals can enhance learning. This strategy of using models to predict optimal spaced training protocols, combined with pharmacotherapy, suggests novel ways to rescue impaired synaptic plasticity and learning. PMID:26806627

  12. Evolving methods to combine cognitive and physical training for individuals with mild cognitive impairment: study protocol for a randomized controlled study.

    PubMed

    Lee, Ya-Yun; Wu, Ching-Yi; Teng, Ching-Hung; Hsu, Wen-Chuin; Chang, Ku-Chou; Chen, Poyu

    2016-10-28

    Nonpharmacologic interventions, such as cognitive training or physical exercise, are effective in improving cognitive functions for older adults with mild cognitive impairment (MCI). Some researchers have proposed that combining physical exercise with cognitive training may augment the benefits of cognition. However, strong evidence is lacking regarding whether a combined therapy is superior to a single type of training for older adults with MCI. Moreover, which combination approach - combining physical exercise with cognitive training sequentially or simultaneously - is more advantageous for cognitive improvement is not yet clear. This proposed study is designed to clarify these questions. This study is a single-blinded, multicenter, randomized controlled trial. Eighty individuals with MCI will be recruited and randomly assigned to cognitive training (COG), physical exercise training (PE), sequential training (SEQ), and dual-task training (DUAL) groups. The intervention programs will be 90 min/day, 2-3 days/week, for a total of 36 training sessions. The participants in the SEQ group will first perform 45 min of physical exercise followed by 45 min of cognitive training, whereas those in the DUAL group will perform physical exercise and cognitive training simultaneously. Participants will be assessed at baseline, after the intervention, and at 6-month follow-up. The primary cognitive outcome tests will include the Montreal Cognitive Assessment and the color-naming Stroop test. Other outcomes will include assessments that evaluate the cognitive, physical, and daily functions of older adults with MCI. The results of this proposed study will provide important information regarding the feasibility and intervention effects of combining physical exercise and cognitive training for older individuals with MCI. ClinicalTrials.gov Identifier: NCT02512627 , registered on 20 July 2015.

  13. A New Perspective for the Training Assessment: Machine Learning-Based Neurometric for Augmented User's Evaluation

    PubMed Central

    Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Herrero, Maria-Trinidad; Bezerianos, Anastasios; Thakor, Nitish V.; Babiloni, Fabio

    2017-01-01

    Inappropriate training assessment might have either high social costs and economic impacts, especially in high risks categories, such as Pilots, Air Traffic Controllers, or Surgeons. One of the current limitations of the standard training assessment procedures is the lack of information about the amount of cognitive resources requested by the user for the correct execution of the proposed task. In fact, even if the task is accomplished achieving the maximum performance, by the standard training assessment methods, it would not be possible to gather and evaluate information about cognitive resources available for dealing with unexpected events or emergency conditions. Therefore, a metric based on the brain activity (neurometric) able to provide the Instructor such a kind of information should be very important. As a first step in this direction, the Electroencephalogram (EEG) and the performance of 10 participants were collected along a training period of 3 weeks, while learning the execution of a new task. Specific indexes have been estimated from the behavioral and EEG signal to objectively assess the users' training progress. Furthermore, we proposed a neurometric based on a machine learning algorithm to quantify the user's training level within each session by considering the level of task execution, and both the behavioral and cognitive stabilities between consecutive sessions. The results demonstrated that the proposed methodology and neurometric could quantify and track the users' progresses, and provide the Instructor information for a more objective evaluation and better tailoring of training programs. PMID:28659751

  14. A New Perspective for the Training Assessment: Machine Learning-Based Neurometric for Augmented User's Evaluation.

    PubMed

    Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Herrero, Maria-Trinidad; Bezerianos, Anastasios; Thakor, Nitish V; Babiloni, Fabio

    2017-01-01

    Inappropriate training assessment might have either high social costs and economic impacts, especially in high risks categories, such as Pilots, Air Traffic Controllers, or Surgeons. One of the current limitations of the standard training assessment procedures is the lack of information about the amount of cognitive resources requested by the user for the correct execution of the proposed task. In fact, even if the task is accomplished achieving the maximum performance, by the standard training assessment methods, it would not be possible to gather and evaluate information about cognitive resources available for dealing with unexpected events or emergency conditions. Therefore, a metric based on the brain activity ( neurometric ) able to provide the Instructor such a kind of information should be very important. As a first step in this direction, the Electroencephalogram (EEG) and the performance of 10 participants were collected along a training period of 3 weeks, while learning the execution of a new task. Specific indexes have been estimated from the behavioral and EEG signal to objectively assess the users' training progress. Furthermore, we proposed a neurometric based on a machine learning algorithm to quantify the user's training level within each session by considering the level of task execution, and both the behavioral and cognitive stabilities between consecutive sessions. The results demonstrated that the proposed methodology and neurometric could quantify and track the users' progresses, and provide the Instructor information for a more objective evaluation and better tailoring of training programs.

  15. 77 FR 30540 - Proposed Collection; Comment Request; Cognitive Testing of Instrumentation and Materials for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... methods of administration (e.g., computer assisted personal interviews [CAPI], audio computer assisted self-interviews [ACASI], web-based interviews). Cognitive testing of these materials and methods will...

  16. More than one way to see it: Individual heuristics in avian visual computation

    PubMed Central

    Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M.; Fitch, W. Tecumseh

    2015-01-01

    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species’ ability to process pattern classes or different species’ performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally. PMID:26113444

  17. Log in and breathe out: efficacy and cost-effectiveness of an online sleep training for teachers affected by work-related strain--study protocol for a randomized controlled trial.

    PubMed

    Thiart, Hanne; Lehr, Dirk; Ebert, David Daniel; Sieland, Bernhard; Berking, Matthias; Riper, Heleen

    2013-06-11

    Insomnia and work-related stress often co-occur. Both are associated with personal distress and diminished general functioning, as well as substantial socio-economic costs due to, for example, reduced productivity at the work place and absenteeism. Insomnia complaints by people experiencing work-related stress are correlated with a deficient cognitive detachment from work. Diffuse boundaries between work and private life can additionally complicate the use of recreational activities that facilitate cognitive detachment.Cognitive behavioral therapy for insomnia is effective but rarely implemented. Internet-based cognitive behavioral therapy for insomnia could potentially reduce this deficit given its demonstrated effectiveness. Less is known, however, about the efficacy of internet-based cognitive behavioral therapy for insomnia in populations affected by high work stress. Thus, the aim of the present study is to evaluate the efficacy and cost-effectiveness of a newly developed, guided online training which is based on Cognitive Behavioral Therapy for insomnia and tailored to teachers affected by occupational stress. In a two-arm randomized controlled trial (N = 128), the effects of a guided online sleep training will be compared to a waitlist-control condition. German teachers with significant clinical insomnia complaints (Insomnia Severity Index ≥ 15) and work-related rumination (Irritation Scale, subscale Cognitive Irritation ≥ 15) will be included in the study. The primary outcome measure will be insomnia severity. Additionally, an economic evaluation from a societal perspective will be conducted. Data from the intention-to-treat sample will be analyzed two and six months after randomization. To the best of our knowledge, this is the first study to evaluate an online sleep training tailored to a specific population with work stress, that is, teachers. If this type of intervention is effective, it could reduce the paucity of cognitive behavioral therapy for insomnia and augment the support for teachers in coping with their insomnia problems. German Clinical Trial Register (DRKS): DRKS00004700.

  18. Utilizing Computerized Cognitive Training to Improve Working Memory and Encoding: Piloting a School-Based Intervention

    ERIC Educational Resources Information Center

    Wiest, Dudley J.; Wong, Eugene H.; Minero, Laura P.; Pumaccahua, Tessy T.

    2014-01-01

    Working memory has been well documented as a significant predictor of academic outcomes (e.g., reading and math achievement as well as general life outcomes). The purpose of this study was to investigate the effectiveness of computerized cognitive training to improve both working memory and encoding abilities in a school setting. Thirty students…

  19. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: A systematic review of randomized controlled trials of the last 10 years

    PubMed Central

    Iop, Rodrigo da Rosa; de Oliveira, Laiana Cândido; Boll, Alice Mathea; de Alvarenga, José Gustavo Souza; Gutierres Filho, Paulo José Barbosa; de Melo, Lídia Mara Aguiar Bezerra; Xavier, André Junqueira; da Silva, Rudney

    2018-01-01

    Background Given the relative importance of cognitive impairment, there was considerable interest in identifying the cognitive profile of PD patients, in order to ensure specific and appropriate therapeutic interventions. Purpose To determine the effects of physical exercise programs on cognitive function in PD patients, compared with the control group. Data sources Medline, Cochrane, Scopus, PEDro and Web of Science (last searched in September 2016). Study selection Randomized clinical trials examining the effects of physical exercise programs and cognitive function in PD patients. Nine studies fulfilled the selection criteria and were included in this review. Data extraction Characteristics of the publication, characteristics of the participants, test used for cognitive screening, cognitive domain assessed, tools used to assess cognitive function, characteristics of the experimental intervention, characteristics of the control group, mean results and standard deviation of function cognitive. The PEDro score was used to evaluate methodological quality. Data synthesis Most eligible studies showed good methodological quality based on the PEDro scale. Studies have shown that adapted tango for PD patients, cognitive training combined with motor training, and treadmill training promote the preservation or improvement of cognitive function in PD patients. Limitations The diversity of cognitive tests used to assess cognitive function and the high heterogeneity identified between the physical exercise programs. Conclusions Physical exercise programs promote positive and significant effects on global cognitive function, processing speed, sustained attention and mental flexibility in PD patients, at a mild to moderate stage for patients with a 6-year clinical diagnosis of PD. However, treadmill training performed 3 times a week for about 60 minutes and for a period of 24 weeks produced larger improvements in cognition. PMID:29486000

  20. Effects of physical exercise programs on cognitive function in Parkinson's disease patients: A systematic review of randomized controlled trials of the last 10 years.

    PubMed

    da Silva, Franciele Cascaes; Iop, Rodrigo da Rosa; de Oliveira, Laiana Cândido; Boll, Alice Mathea; de Alvarenga, José Gustavo Souza; Gutierres Filho, Paulo José Barbosa; de Melo, Lídia Mara Aguiar Bezerra; Xavier, André Junqueira; da Silva, Rudney

    2018-01-01

    Given the relative importance of cognitive impairment, there was considerable interest in identifying the cognitive profile of PD patients, in order to ensure specific and appropriate therapeutic interventions. To determine the effects of physical exercise programs on cognitive function in PD patients, compared with the control group. Medline, Cochrane, Scopus, PEDro and Web of Science (last searched in September 2016). Randomized clinical trials examining the effects of physical exercise programs and cognitive function in PD patients. Nine studies fulfilled the selection criteria and were included in this review. Characteristics of the publication, characteristics of the participants, test used for cognitive screening, cognitive domain assessed, tools used to assess cognitive function, characteristics of the experimental intervention, characteristics of the control group, mean results and standard deviation of function cognitive. The PEDro score was used to evaluate methodological quality. Most eligible studies showed good methodological quality based on the PEDro scale. Studies have shown that adapted tango for PD patients, cognitive training combined with motor training, and treadmill training promote the preservation or improvement of cognitive function in PD patients. The diversity of cognitive tests used to assess cognitive function and the high heterogeneity identified between the physical exercise programs. Physical exercise programs promote positive and significant effects on global cognitive function, processing speed, sustained attention and mental flexibility in PD patients, at a mild to moderate stage for patients with a 6-year clinical diagnosis of PD. However, treadmill training performed 3 times a week for about 60 minutes and for a period of 24 weeks produced larger improvements in cognition.

Top