Real-time interactive simulation: using touch panels, graphics tablets, and video-terminal keyboards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1983-01-01
A Simulation Laboratory utilizing only digital computers for interactive computing must rely on CRT based graphics devices for output devices, and keyboards, graphics tablets, and touch panels, etc., for input devices. The devices all work well, with the combination of a CRT with a touch panel mounted on it as the most flexible combination of input/output devices for interactive simulation.
Graphics with Special Interfaces for Disabled People.
ERIC Educational Resources Information Center
Tronconi, A.; And Others
The paper describes new software and special input devices to allow physically impaired children to utilize the graphic capabilities of personal computers. Special input devices for computer graphics access--the voice recognition card, the single switch, or the mouse emulator--can be used either singly or in combination by the disabled to control…
ERIC Educational Resources Information Center
Halpern, Jeanne W.
1970-01-01
Computer graphics have been called the most exciting development in computer technology. At the University of Michigan, three kinds of graphics output equipment are now being used: symbolic printers, line plotters or drafting devices, and cathode-ray tubes (CRT). Six examples are given that demonstrate the range of graphics use at the University.…
General-Purpose Software For Computer Graphics
NASA Technical Reports Server (NTRS)
Rogers, Joseph E.
1992-01-01
NASA Device Independent Graphics Library (NASADIG) is general-purpose computer-graphics package for computer-based engineering and management applications which gives opportunity to translate data into effective graphical displays for presentation. Features include two- and three-dimensional plotting, spline and polynomial interpolation, control of blanking of areas, multiple log and/or linear axes, control of legends and text, control of thicknesses of curves, and multiple text fonts. Included are subroutines for definition of areas and axes of plots; setup and display of text; blanking of areas; setup of style, interpolation, and plotting of lines; control of patterns and of shading of colors; control of legends, blocks of text, and characters; initialization of devices; and setting of mixed alphabets. Written in FORTRAN 77.
The development of an engineering computer graphics laboratory
NASA Technical Reports Server (NTRS)
Anderson, D. C.; Garrett, R. E.
1975-01-01
Hardware and software systems developed to further research and education in interactive computer graphics were described, as well as several of the ongoing application-oriented projects, educational graphics programs, and graduate research projects. The software system consists of a FORTRAN 4 subroutine package, in conjunction with a PDP 11/40 minicomputer as the primary computation processor and the Imlac PDS-1 as an intelligent display processor. The package comprises a comprehensive set of graphics routines for dynamic, structured two-dimensional display manipulation, and numerous routines to handle a variety of input devices at the Imlac.
Computer Graphics Instruction in VizClass
ERIC Educational Resources Information Center
Grimes, Douglas; Warschauer, Mark; Hutchinson, Tara; Kuester, Falko
2005-01-01
"VizClass" is a university classroom environment designed to offer students in computer graphics and engineering courses up-to-date visualization technologies. Three digital whiteboards and a three-dimensional stereoscopic display provide complementary display surfaces. Input devices include touchscreens on the digital whiteboards, remote…
Simulation of Robot Kinematics Using Interactive Computer Graphics.
ERIC Educational Resources Information Center
Leu, M. C.; Mahajan, R.
1984-01-01
Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…
A user's guide for DTIZE an interactive digitizing and graphical editing computer program
NASA Technical Reports Server (NTRS)
Thomas, C. C.
1981-01-01
A guide for DTIZE, a two dimensional digitizing program with graphical editing capability, is presented. DTIZE provides the capability to simultaneously create and display a picture on the display screen. Data descriptions may be permanently saved in three different formats. DTIZE creates the picture graphics in the locator mode, thus inputting one coordinate each time the terminator button is pushed. Graphic input devices (GIN) are also used to select function command menu. These menu commands and the program's interactive prompting sequences provide a complete capability for creating, editing, and permanently recording a graphical picture file. DTIZE is written in FORTRAN IV language for the Tektronix 4081 graphic system utilizing the Plot 80 Distributed Graphics Library (DGL) subroutines. The Tektronix 4953/3954 Graphic Tablet with mouse, pen, or joystick are used as graphics input devices to create picture graphics.
NASA Technical Reports Server (NTRS)
Buckner, J. D.; Council, H. W.; Edwards, T. R.
1974-01-01
Description of the hardware and software implementing the system of time-lapse reproduction of images through interactive graphics (TRIIG). The system produces a quality hard copy of processed images in a fast and inexpensive manner. This capability allows for optimal development of processing software through the rapid viewing of many image frames in an interactive mode. Three critical optical devices are used to reproduce an image: an Optronics photo reader/writer, the Adage Graphics Terminal, and Polaroid Type 57 high speed film. Typical sources of digitized images are observation satellites, such as ERTS or Mariner, computer coupled electron microscopes for high-magnification studies, or computer coupled X-ray devices for medical research.
ARCGRAPH SYSTEM - AMES RESEARCH GRAPHICS SYSTEM
NASA Technical Reports Server (NTRS)
Hibbard, E. A.
1994-01-01
Ames Research Graphics System, ARCGRAPH, is a collection of libraries and utilities which assist researchers in generating, manipulating, and visualizing graphical data. In addition, ARCGRAPH defines a metafile format that contains device independent graphical data. This file format is used with various computer graphics manipulation and animation packages at Ames, including SURF (COSMIC Program ARC-12381) and GAS (COSMIC Program ARC-12379). In its full configuration, the ARCGRAPH system consists of a two stage pipeline which may be used to output graphical primitives. Stage one is associated with the graphical primitives (i.e. moves, draws, color, etc.) along with the creation and manipulation of the metafiles. Five distinct data filters make up stage one. They are: 1) PLO which handles all 2D vector primitives, 2) POL which handles all 3D polygonal primitives, 3) RAS which handles all 2D raster primitives, 4) VEC which handles all 3D raster primitives, and 5) PO2 which handles all 2D polygonal primitives. Stage two is associated with the process of displaying graphical primitives on a device. To generate the various graphical primitives, create and reprocess ARCGRAPH metafiles, and access the device drivers in the VDI (Video Device Interface) library, users link their applications to ARCGRAPH's GRAFIX library routines. Both FORTRAN and C language versions of the GRAFIX and VDI libraries exist for enhanced portability within these respective programming environments. The ARCGRAPH libraries were developed on a VAX running VMS. Minor documented modification of various routines, however, allows the system to run on the following computers: Cray X-MP running COS (no C version); Cray 2 running UNICOS; DEC VAX running BSD 4.3 UNIX, or Ultrix; SGI IRIS Turbo running GL2-W3.5 and GL2-W3.6; Convex C1 running UNIX; Amhdahl 5840 running UTS; Alliant FX8 running UNIX; Sun 3/160 running UNIX (no native device driver); Stellar GS1000 running Stellex (no native device driver); and an SGI IRIS 4D running IRIX (no native device driver). Currently with version 7.0 of ARCGRAPH, the VDI library supports the following output devices: A VT100 terminal with a RETRO-GRAPHICS board installed, a VT240 using the Tektronix 4010 emulation capability, an SGI IRIS turbo using the native GL2 library, a Tektronix 4010, a Tektronix 4105, and the Tektronix 4014. ARCGRAPH version 7.0 was developed in 1988.
Graphics Processing Units for HEP trigger systems
NASA Astrophysics Data System (ADS)
Ammendola, R.; Bauce, M.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Fantechi, R.; Fiorini, M.; Giagu, S.; Gianoli, A.; Lamanna, G.; Lonardo, A.; Messina, A.; Neri, I.; Paolucci, P. S.; Piandani, R.; Pontisso, L.; Rescigno, M.; Simula, F.; Sozzi, M.; Vicini, P.
2016-07-01
General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.
A pilot study comparing mouse and mouse-emulating interface devices for graphic input.
Kanny, E M; Anson, D K
1991-01-01
Adaptive interface devices make it possible for individuals with physical disabilities to use microcomputers and thus perform many tasks that they would otherwise be unable to accomplish. Special equipment is available that purports to allow functional access to the computer for users with disabilities. As technology moves from purely keyboard applications to include graphic input, it will be necessary for assistive interface devices to support graphics as well as text entry. Headpointing systems that emulate the mouse in combination with on-screen keyboards are of particular interest to persons with severe physical impairment such as high level quadriplegia. Two such systems currently on the market are the HeadMaster and the Free Wheel. The authors have conducted a pilot study comparing graphic input speed using the mouse and two headpointing interface systems on the Macintosh computer. The study used a single subject design with six able-bodied subjects, to establish a baseline for comparison with persons with severe disabilities. Results of these preliminary data indicated that the HeadMaster was nearly as effective as the mouse and that it was superior to the Free Wheel for graphics input. This pilot study, however, demonstrated several experimental design problems that need to be addressed to make the study more robust. It also demonstrated the need to include the evaluation of text input so that the effectiveness of the interface devices with text and graphic input could be compared.
Data graphing methods, articles of manufacture, and computing devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Pak Chung; Mackey, Patrick S.; Cook, Kristin A.
Data graphing methods, articles of manufacture, and computing devices are described. In one aspect, a method includes accessing a data set, displaying a graphical representation including data of the data set which is arranged according to a first of different hierarchical levels, wherein the first hierarchical level represents the data at a first of a plurality of different resolutions which respectively correspond to respective ones of the hierarchical levels, selecting a portion of the graphical representation wherein the data of the portion is arranged according to the first hierarchical level at the first resolution, modifying the graphical representation by arrangingmore » the data of the portion according to a second of the hierarchal levels at a second of the resolutions, and after the modifying, displaying the graphical representation wherein the data of the portion is arranged according to the second hierarchal level at the second resolution.« less
CONFIG: Qualitative simulation tool for analyzing behavior of engineering devices
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Basham, Bryan D.; Harris, Richard A.
1987-01-01
To design failure management expert systems, engineers mentally analyze the effects of failures and procedures as they propagate through device configurations. CONFIG is a generic device modeling tool for use in discrete event simulation, to support such analyses. CONFIG permits graphical modeling of device configurations and qualitative specification of local operating modes of device components. Computation requirements are reduced by focussing the level of component description on operating modes and failure modes, and specifying qualitative ranges of variables relative to mode transition boundaries. Simulation processing occurs only when modes change or variables cross qualitative boundaries. Device models are built graphically, using components from libraries. Components are connected at ports by graphical relations that define data flow. The core of a component model is its state transition diagram, which specifies modes of operation and transitions among them.
Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.
2011-01-01
We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276
ERIC Educational Resources Information Center
Moore, John W., Ed.
1986-01-01
Presents six brief articles dealing with the use of computers in teaching various topics in chemistry. Describes hardware and software applications which relate to protein graphics, computer simulated metabolism, interfaces between microcomputers and measurement devices, courseware available for spectrophotometers, and the calculation of elemental…
An u-Service Model Based on a Smart Phone for Urban Computing Environments
NASA Astrophysics Data System (ADS)
Cho, Yongyun; Yoe, Hyun
In urban computing environments, all of services should be based on the interaction between humans and environments around them, which frequently and ordinarily in home and office. This paper propose an u-service model based on a smart phone for urban computing environments. The suggested service model includes a context-aware and personalized service scenario development environment that can instantly describe user's u-service demand or situation information with smart devices. To do this, the architecture of the suggested service model consists of a graphical service editing environment for smart devices, an u-service platform, and an infrastructure with sensors and WSN/USN. The graphic editor expresses contexts as execution conditions of a new service through a context model based on ontology. The service platform deals with the service scenario according to contexts. With the suggested service model, an user in urban computing environments can quickly and easily make u-service or new service using smart devices.
NASA Astrophysics Data System (ADS)
Grzeszczuk, A.; Kowalski, S.
2015-04-01
Compute Unified Device Architecture (CUDA) is a parallel computing platform developed by Nvidia for increase speed of graphics by usage of parallel mode for processes calculation. The success of this solution has opened technology General-Purpose Graphic Processor Units (GPGPUs) for applications not coupled with graphics. The GPGPUs system can be applying as effective tool for reducing huge number of data for pulse shape analysis measures, by on-line recalculation or by very quick system of compression. The simplified structure of CUDA system and model of programming based on example Nvidia GForce GTX580 card are presented by our poster contribution in stand-alone version and as ROOT application.
Pointing Device Performance in Steering Tasks.
Senanayake, Ransalu; Goonetilleke, Ravindra S
2016-06-01
Use of touch-screen-based interactions is growing rapidly. Hence, knowing the maneuvering efficacy of touch screens relative to other pointing devices is of great importance in the context of graphical user interfaces. Movement time, accuracy, and user preferences of four pointing device settings were evaluated on a computer with 14 participants aged 20.1 ± 3.13 years. It was found that, depending on the difficulty of the task, the optimal settings differ for ballistic and visual control tasks. With a touch screen, resting the arm increased movement time for steering tasks. When both performance and comfort are considered, whether to use a mouse or a touch screen for person-computer interaction depends on the steering difficulty. Hence, a input device should be chosen based on the application, and should be optimized to match the graphical user interface. © The Author(s) 2016.
3D Graphics For Interactive Surgical Simulation And Implant Design
NASA Astrophysics Data System (ADS)
Dev, P.; Fellingham, L. L.; Vassiliadis, A.; Woolson, S. T.; White, D. N.; Young, S. L.
1984-10-01
The combination of user-friendly, highly interactive software, 3D graphics, and the high-resolution detailed views of anatomy afforded by X-ray computer tomography and magnetic resonance imaging can provide surgeons with the ability to plan and practice complex surgeries. In addition to providing a realistic and manipulable 3D graphics display, this system can drive a milling machine in order to produce physical models of the anatomy or prosthetic devices and implants which have been designed using its interactive graphics editing facilities.
Graphical tactile displays for visually-impaired people.
Vidal-Verdú, Fernando; Hafez, Moustapha
2007-03-01
This paper presents an up-to-date survey of graphical tactile displays. These devices provide information through the sense of touch. At best, they should display both text and graphics (text may be considered a type of graphic). Graphs made with shapeable sheets result in bulky items awkward to store and transport; their production is expensive and time-consuming and they deteriorate quickly. Research is ongoing for a refreshable tactile display that acts as an output device for a computer or other information source and can present the information in text and graphics. The work in this field has branched into diverse areas, from physiological studies to technological aspects and challenges. Moreover, interest in these devices is now being shown by other fields such as virtual reality, minimally invasive surgery and teleoperation. It is attracting more and more people, research and money. Many proposals have been put forward, several of them succeeding in the task of presenting tactile information. However, most are research prototypes and very expensive to produce commercially. Thus the goal of an efficient low-cost tactile display for visually-impaired people has not yet been reached.
Integrating Commercial Off-The-Shelf (COTS) graphics and extended memory packages with CLIPS
NASA Technical Reports Server (NTRS)
Callegari, Andres C.
1990-01-01
This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory limitations by using the extended memory available in the computer. By adding graphics and extended memory capabilities, CLIPS can be converted into a complete and powerful system development tool, on the other most economical and popular computer platform. New models of PCs have amazing processing capabilities and graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a powerful expert system development tool, but it cannot be complete without the support of a graphics package needed to create user interfaces and general purpose graphics, or without enough memory to handle large knowledge bases. Now, a well known limitation on the PC's is the usage of real memory which limits CLIPS to use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically, all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-configuring graphics package that will automatically detect the graphics hardware and pointing device present in the computer, and we add the availability of the extended memory that exists in the computer (with no special hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the most popular, portable, and economic platform available such as the PC platform.
Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying
2013-12-01
Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.
Graphics processing unit based computation for NDE applications
NASA Astrophysics Data System (ADS)
Nahas, C. A.; Rajagopal, Prabhu; Balasubramaniam, Krishnan; Krishnamurthy, C. V.
2012-05-01
Advances in parallel processing in recent years are helping to improve the cost of numerical simulation. Breakthroughs in Graphical Processing Unit (GPU) based computation now offer the prospect of further drastic improvements. The introduction of 'compute unified device architecture' (CUDA) by NVIDIA (the global technology company based in Santa Clara, California, USA) has made programming GPUs for general purpose computing accessible to the average programmer. Here we use CUDA to develop parallel finite difference schemes as applicable to two problems of interest to NDE community, namely heat diffusion and elastic wave propagation. The implementations are for two-dimensions. Performance improvement of the GPU implementation against serial CPU implementation is then discussed.
Koul, Rajinder; Corwin, Melinda; Hayes, Summer
2005-01-01
The study employed a single-subject multiple baseline design to examine the ability of 9 individuals with severe Broca's aphasia or global aphasia to produce graphic symbol sentences of varying syntactical complexity using a software program that turns a computer into a speech output communication device. The sentences ranged in complexity from simple two-word phrases to those with morphological inflections, transformations, and relative clauses. Overall, results indicated that individuals with aphasia are able to access, manipulate, and combine graphic symbols to produce phrases and sentences of varying degrees of syntactical complexity. The findings are discussed in terms of the clinical and public policy implications.
Smartphones as image processing systems for prosthetic vision.
Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Suaning, Gregg J
2013-01-01
The feasibility of implants for prosthetic vision has been demonstrated by research and commercial organizations. In most devices, an essential forerunner to the internal stimulation circuit is an external electronics solution for capturing, processing and relaying image information as well as extracting useful features from the scene surrounding the patient. The capabilities and multitude of image processing algorithms that can be performed by the device in real-time plays a major part in the final quality of the prosthetic vision. It is therefore optimal to use powerful hardware yet to avoid bulky, straining solutions. Recent publications have reported of portable single-board computers fast enough for computationally intensive image processing. Following the rapid evolution of commercial, ultra-portable ARM (Advanced RISC machine) mobile devices, the authors investigated the feasibility of modern smartphones running complex face detection as external processing devices for vision implants. The role of dedicated graphics processors in speeding up computation was evaluated while performing a demanding noise reduction algorithm (image denoising). The time required for face detection was found to decrease by 95% from 2.5 year old to recent devices. In denoising, graphics acceleration played a major role, speeding up denoising by a factor of 18. These results demonstrate that the technology has matured sufficiently to be considered as a valid external electronics platform for visual prosthetic research.
Graphics processing unit (GPU)-based computation of heat conduction in thermally anisotropic solids
NASA Astrophysics Data System (ADS)
Nahas, C. A.; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2013-01-01
Numerical modeling of anisotropic media is a computationally intensive task since it brings additional complexity to the field problem in such a way that the physical properties are different in different directions. Largely used in the aerospace industry because of their lightweight nature, composite materials are a very good example of thermally anisotropic media. With advancements in video gaming technology, parallel processors are much cheaper today and accessibility to higher-end graphical processing devices has increased dramatically over the past couple of years. Since these massively parallel GPUs are very good in handling floating point arithmetic, they provide a new platform for engineers and scientists to accelerate their numerical models using commodity hardware. In this paper we implement a parallel finite difference model of thermal diffusion through anisotropic media using the NVIDIA CUDA (Compute Unified device Architecture). We use the NVIDIA GeForce GTX 560 Ti as our primary computing device which consists of 384 CUDA cores clocked at 1645 MHz with a standard desktop pc as the host platform. We compare the results from standard CPU implementation for its accuracy and speed and draw implications for simulation using the GPU paradigm.
[Hardware for graphics systems].
Goetz, C
1991-02-01
In all personal computer applications, be it for private or professional use, the decision of which "brand" of computer to buy is of central importance. In the USA Apple computers are mainly used in universities, while in Europe computers of the so-called "industry standard" by IBM (or clones thereof) have been increasingly used for many years. Independently of any brand name considerations, the computer components purchased must meet the current (and projected) needs of the user. Graphic capabilities and standards, processor speed, the use of co-processors, as well as input and output devices such as "mouse", printers and scanners are discussed. This overview is meant to serve as a decision aid. Potential users are given a short but detailed summary of current technical features.
Dennerlein, J T; Yang, M C
2001-01-01
Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p < 0.001). Perceived user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p < 0.001). However, this difference decreased as additional distracting force fields were added to the task environment, simulating a more realistic work situation. These results suggest that for a given task, use of a force-feedback device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.
Employing OpenCL to Accelerate Ab Initio Calculations on Graphics Processing Units.
Kussmann, Jörg; Ochsenfeld, Christian
2017-06-13
We present an extension of our graphics processing units (GPU)-accelerated quantum chemistry package to employ OpenCL compute kernels, which can be executed on a wide range of computing devices like CPUs, Intel Xeon Phi, and AMD GPUs. Here, we focus on the use of AMD GPUs and discuss differences as compared to CUDA-based calculations on NVIDIA GPUs. First illustrative timings are presented for hybrid density functional theory calculations using serial as well as parallel compute environments. The results show that AMD GPUs are as fast or faster than comparable NVIDIA GPUs and provide a viable alternative for quantum chemical applications.
Advanced computer graphic techniques for laser range finder (LRF) simulation
NASA Astrophysics Data System (ADS)
Bedkowski, Janusz; Jankowski, Stanislaw
2008-11-01
This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.
Multimedia CALLware: The Developer's Responsibility.
ERIC Educational Resources Information Center
Dodigovic, Marina
The early computer-assisted-language-learning (CALL) programs were silent and mostly limited to screen or printer supported written text as the prevailing communication resource. The advent of powerful graphics, sound and video combined with AI-based parsers and sound recognition devices gradually turned the computer into a rather anthropomorphic…
Acquisition of ICU data: concepts and demands.
Imhoff, M
1992-12-01
As the issue of data overload is a problem in critical care today, it is of utmost importance to improve acquisition, storage, integration, and presentation of medical data, which appears only feasible with the help of bedside computers. The data originates from four major sources: (1) the bedside medical devices, (2) the local area network (LAN) of the ICU, (3) the hospital information system (HIS) and (4) manual input. All sources differ markedly in quality and quantity of data and in the demands of the interfaces between source of data and patient database. The demands for data acquisition from bedside medical devices, ICU-LAN and HIS concentrate on technical problems, such as computational power, storage capacity, real-time processing, interfacing with different devices and networks and the unmistakable assignment of data to the individual patient. The main problem of manual data acquisition is the definition and configuration of the user interface that must allow the inexperienced user to interact with the computer intuitively. Emphasis must be put on the construction of a pleasant, logical and easy-to-handle graphical user interface (GUI). Short response times will require high graphical processing capacity. Moreover, high computational resources are necessary in the future for additional interfacing devices such as speech recognition and 3D-GUI. Therefore, in an ICU environment the demands for computational power are enormous. These problems are complicated by the urgent need for friendly and easy-to-handle user interfaces. Both facts place ICU bedside computing at the vanguard of present and future workstation development leaving no room for solutions based on traditional concepts of personal computers.(ABSTRACT TRUNCATED AT 250 WORDS)
GPU-based Parallel Application Design for Emerging Mobile Devices
NASA Astrophysics Data System (ADS)
Gupta, Kshitij
A revolution is underway in the computing world that is causing a fundamental paradigm shift in device capabilities and form-factor, with a move from well-established legacy desktop/laptop computers to mobile devices in varying sizes and shapes. Amongst all the tasks these devices must support, graphics has emerged as the 'killer app' for providing a fluid user interface and high-fidelity game rendering, effectively making the graphics processor (GPU) one of the key components in (present and future) mobile systems. By utilizing the GPU as a general-purpose parallel processor, this dissertation explores the GPU computing design space from an applications standpoint, in the mobile context, by focusing on key challenges presented by these devices---limited compute, memory bandwidth, and stringent power consumption requirements---while improving the overall application efficiency of the increasingly important speech recognition workload for mobile user interaction. We broadly partition trends in GPU computing into four major categories. We analyze hardware and programming model limitations in current-generation GPUs and detail an alternate programming style called Persistent Threads, identify four use case patterns, and propose minimal modifications that would be required for extending native support. We show how by manually extracting data locality and altering the speech recognition pipeline, we are able to achieve significant savings in memory bandwidth while simultaneously reducing the compute burden on GPU-like parallel processors. As we foresee GPU computing to evolve from its current 'co-processor' model into an independent 'applications processor' that is capable of executing complex work independently, we create an alternate application framework that enables the GPU to handle all control-flow dependencies autonomously at run-time while minimizing host involvement to just issuing commands, that facilitates an efficient application implementation. Finally, as compute and communication capabilities of mobile devices improve, we analyze energy implications of processing speech recognition locally (on-chip) and offloading it to servers (in-cloud).
1988-03-01
structure of the interface is a mapping from the physical world [for example, the use of icons, which S have inherent meaning to users but represent...design alternatives. Mechanisms for linking the user to the computer include physical devices (keyboards), actions taken with the devices (keystrokes...VALUATION AIDES TEMLATEI IITCOM1I LATOR IACTICAL KNOWLEDGE ACGIUISITION MICNnII t 1 Fig. 9. INTACVAL. * OtJiCTs ARE PHYSICAL ENTITIES OR CONCEPTUAL EN
Linking of the BENSON graph-plotter with the Elektronika-1001 computer
NASA Technical Reports Server (NTRS)
Valtts, I. Y.; Nilolaev, N. Y.; Popov, M. V.; Soglasnov, V. A.
1980-01-01
A device, developed by the Institute of Space Research of the Academy of Sciences of the USSR, for linking the Elektronika-100I computer with the BENSON graph-plotter is described. Programs are compiled which provide display of graphic and alphanumeric information. Instructions for their utilization are given.
ERIC Educational Resources Information Center
Fisher, Patience; And Others
This guide was prepared to help teachers of the Lincoln Public School's introductory computer programming course in BASIC to make the necessary adjustments for changes made in the course since the purchase of microcomputers and such peripheral devices as television monitors and disk drives, and the addition of graphics. Intended to teach a…
Design and Development of a Smart Storytelling Toy
ERIC Educational Resources Information Center
Kara, Nuri; Aydin, Cansu Cigdem; Cagiltay, Kursat
2014-01-01
Because computers generally make children passive listeners, new technological devices need to support children's storytelling activities. This article introduces the StoryTech, a smart toy that includes a virtual space comprised of computer-based graphics and characters as well as a real space that involves stuffed animals, background cards…
Parallel Computer System for 3D Visualization Stereo on GPU
NASA Astrophysics Data System (ADS)
Al-Oraiqat, Anas M.; Zori, Sergii A.
2018-03-01
This paper proposes the organization of a parallel computer system based on Graphic Processors Unit (GPU) for 3D stereo image synthesis. The development is based on the modified ray tracing method developed by the authors for fast search of tracing rays intersections with scene objects. The system allows significant increase in the productivity for the 3D stereo synthesis of photorealistic quality. The generalized procedure of 3D stereo image synthesis on the Graphics Processing Unit/Graphics Processing Clusters (GPU/GPC) is proposed. The efficiency of the proposed solutions by GPU implementation is compared with single-threaded and multithreaded implementations on the CPU. The achieved average acceleration in multi-thread implementation on the test GPU and CPU is about 7.5 and 1.6 times, respectively. Studying the influence of choosing the size and configuration of the computational Compute Unified Device Archi-tecture (CUDA) network on the computational speed shows the importance of their correct selection. The obtained experimental estimations can be significantly improved by new GPUs with a large number of processing cores and multiprocessors, as well as optimized configuration of the computing CUDA network.
Ogawa, K
1992-01-01
This paper proposes a new evaluation and prediction method for computer usability. This method is based on our two previously proposed information transmission measures created from a human-to-computer information transmission model. The model has three information transmission levels: the device, software, and task content levels. Two measures, called the device independent information measure (DI) and the computer independent information measure (CI), defined on the software and task content levels respectively, are given as the amount of information transmitted. Two information transmission rates are defined as DI/T and CI/T, where T is the task completion time: the device independent information transmission rate (RDI), and the computer independent information transmission rate (RCI). The method utilizes the RDI and RCI rates to evaluate relatively the usability of software and device operations on different computer systems. Experiments using three different systems, in this case a graphical information input task, confirm that the method offers an efficient way of determining computer usability.
Computer Assisted Virtual Environment - CAVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Phillip; Podgorney, Robert; Weingartner,
Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.
Computer Assisted Virtual Environment - CAVE
Erickson, Phillip; Podgorney, Robert; Weingartner,
2018-05-30
Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.
Interactive-graphic flowpath plotting for turbine engines
NASA Technical Reports Server (NTRS)
Corban, R. R.
1981-01-01
An engine cycle program capable of simulating the design and off-design performance of arbitrary turbine engines, and a computer code which, when used in conjunction with the cycle code, can predict the weight of the engines are described. A graphics subroutine was added to the code to enable the engineer to visualize the designed engine with more clarity by producing an overall view of the designed engine for output on a graphics device using IBM-370 graphics subroutines. In addition, with the engine drawn on a graphics screen, the program allows for the interactive user to make changes to the inputs to the code for the engine to be redrawn and reweighed. These improvements allow better use of the code in conjunction with the engine program.
BarraCUDA - a fast short read sequence aligner using graphics processing units
2012-01-01
Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497
Orthorectification by Using Gpgpu Method
NASA Astrophysics Data System (ADS)
Sahin, H.; Kulur, S.
2012-07-01
Thanks to the nature of the graphics processing, the newly released products offer highly parallel processing units with high-memory bandwidth and computational power of more than teraflops per second. The modern GPUs are not only powerful graphic engines but also they are high level parallel programmable processors with very fast computing capabilities and high-memory bandwidth speed compared to central processing units (CPU). Data-parallel computations can be shortly described as mapping data elements to parallel processing threads. The rapid development of GPUs programmability and capabilities attracted the attentions of researchers dealing with complex problems which need high level calculations. This interest has revealed the concepts of "General Purpose Computation on Graphics Processing Units (GPGPU)" and "stream processing". The graphic processors are powerful hardware which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips which were standard application hardware have been transformed into modern, powerful and programmable processors to meet the overall needs. Especially in recent years, the phenomenon of the usage of graphics processing units in general purpose computation has led the researchers and developers to this point. The biggest problem is that the graphics processing units use different programming models unlike current programming methods. Therefore, an efficient GPU programming requires re-coding of the current program algorithm by considering the limitations and the structure of the graphics hardware. Currently, multi-core processors can not be programmed by using traditional programming methods. Event procedure programming method can not be used for programming the multi-core processors. GPUs are especially effective in finding solution for repetition of the computing steps for many data elements when high accuracy is needed. Thus, it provides the computing process more quickly and accurately. Compared to the GPUs, CPUs which perform just one computing in a time according to the flow control are slower in performance. This structure can be evaluated for various applications of computer technology. In this study covers how general purpose parallel programming and computational power of the GPUs can be used in photogrammetric applications especially direct georeferencing. The direct georeferencing algorithm is coded by using GPGPU method and CUDA (Compute Unified Device Architecture) programming language. Results provided by this method were compared with the traditional CPU programming. In the other application the projective rectification is coded by using GPGPU method and CUDA programming language. Sample images of various sizes, as compared to the results of the program were evaluated. GPGPU method can be used especially in repetition of same computations on highly dense data, thus finding the solution quickly.
Stone, B N; Griesinger, G L; Modelevsky, J L
1984-01-01
We describe an interactive computational tool, PLASMAP, which allows the user to electronically store, retrieve, and display circular restriction maps. PLASMAP permits users to construct libraries of plasmid restriction maps as a set of files which may be edited in the laboratory at any time. The display feature of PLASMAP quickly generates device-independent, artist-quality, full-color or monochrome, hard copies or CRT screens of complex, conventional circular restriction maps. PMID:6320096
NASA Technical Reports Server (NTRS)
1977-01-01
Integrated set of manual procedures, computer programs, and graphic devices processes multispectral scanner data from orbiting Landsat into precisely registered and formatted maps of surface water and other resources at variety of scales, sheet formats, and tick intervals.
Advanced display object selection methods for enhancing user-computer productivity
NASA Technical Reports Server (NTRS)
Osga, Glenn A.
1993-01-01
The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.
Generating a 2D Representation of a Complex Data Structure
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.
Optimized Laplacian image sharpening algorithm based on graphic processing unit
NASA Astrophysics Data System (ADS)
Ma, Tinghuai; Li, Lu; Ji, Sai; Wang, Xin; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah
2014-12-01
In classical Laplacian image sharpening, all pixels are processed one by one, which leads to large amount of computation. Traditional Laplacian sharpening processed on CPU is considerably time-consuming especially for those large pictures. In this paper, we propose a parallel implementation of Laplacian sharpening based on Compute Unified Device Architecture (CUDA), which is a computing platform of Graphic Processing Units (GPU), and analyze the impact of picture size on performance and the relationship between the processing time of between data transfer time and parallel computing time. Further, according to different features of different memory, an improved scheme of our method is developed, which exploits shared memory in GPU instead of global memory and further increases the efficiency. Experimental results prove that two novel algorithms outperform traditional consequentially method based on OpenCV in the aspect of computing speed.
ERIC Educational Resources Information Center
Miller, Michael J.
1984-01-01
Description of the Macintosh personal, educational, and business computer produced by Apple covers cost; physical characteristics including display devices, circuit boards, and built-in features; company-produced software; third-party produced software; memory and storage capacity; word-processing features; and graphics capabilities. (MBR)
Interaction devices for hands-on desktop design
NASA Astrophysics Data System (ADS)
Ju, Wendy; Madsen, Sally; Fiene, Jonathan; Bolas, Mark T.; McDowall, Ian E.; Faste, Rolf
2003-05-01
Starting with a list of typical hand actions - such as touching or twisting - a collection of physical input device prototypes was created to study better ways of engaging the body and mind in the computer aided design process. These devices were interchangeably coupled with a graphics system to allow for rapid exploration of the interplay between the designer's intent, body motions, and the resulting on-screen design. User testing showed that a number of key considerations should influence the future development of such devices: coupling between the physical and virtual worlds, tactile feedback, and scale. It is hoped that these explorations contribute to the greater goal of creating user interface devices that increase the fluency, productivity and joy of computer-augmented design.
Briel, L.I.
1993-01-01
A computer program was written to produce 6 different types of water-quality diagrams--Piper, Stiff, pie, X-Y, boxplot, and Piper 3-D--from the same file of input data. The Piper 3-D diagram is a new method that projects values from the surface of a Piper plot into a triangular prism to show how variations in chemical composition can be related to variations in other water-quality variables. This program is an analytical tool to aid in the interpretation of data. This program is interactive, and the user can select from a menu the type of diagram to be produced and a large number of individual features. Alternatively, these choices can be specified in the data file, which provides a batch mode for running the program. The program does not display water-quality diagrams directly; plots are written to a file. Four different plot- file formats are available: device-independent metafiles, Adobe PostScript graphics files, and two Hewlett-Packard graphics language formats (7475 and 7586). An ASCII data-table file is also produced to document the computed values. This program is written in Fortran '77 and uses graphics subroutines from either the PRIOR AGTK or the DISSPLA graphics library. The program has been implemented on Prime series 50 and Data General Aviion computers within the USGS; portability to other computing systems depends on the availability of the graphics library.
Augmented Reality Comes to Physics
ERIC Educational Resources Information Center
Buesing, Mark; Cook, Michael
2013-01-01
Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…
Microarthroscopy System With Image Processing Technology Developed for Minimally Invasive Surgery
NASA Technical Reports Server (NTRS)
Steele, Gynelle C.
2001-01-01
In a joint effort, NASA, Micro Medical Devices, and the Cleveland Clinic have developed a microarthroscopy system with digital image processing. This system consists of a disposable endoscope the size of a needle that is aimed at expanding the use of minimally invasive surgery on the knee, ankle, and other small joints. This device not only allows surgeons to make smaller incisions (by improving the clarity and brightness of images), but it gives them a better view of the injured area to make more accurate diagnoses. Because of its small size, the endoscope helps reduce physical trauma and speeds patient recovery. The faster recovery rate also makes the system cost effective for patients. The digital image processing software used with the device was originally developed by the NASA Glenn Research Center to conduct computer simulations of satellite positioning in space. It was later modified to reflect lessons learned in enhancing photographic images in support of the Center's microgravity program. Glenn's Photovoltaic Branch and Graphics and Visualization Lab (G-VIS) computer programmers and software developers enhanced and speed up graphic imaging for this application. Mary Vickerman at Glenn developed algorithms that enabled Micro Medical Devices to eliminate interference and improve the images.
Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)
NASA Astrophysics Data System (ADS)
Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.
2016-05-01
This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.
NASA Astrophysics Data System (ADS)
Mack, Ian W.; Potts, Stephen; McMenemy, Karen R.; Ferguson, R. S.
2006-02-01
The laparoscopic technique for performing abdominal surgery requires a very high degree of skill in the medical practitioner. Much interest has been focused on using computer graphics to provide simulators for training surgeons. Unfortunately, these tend to be complex and have a very high cost, which limits availability and restricts the length of time over which individuals can practice their skills. With computer game technology able to provide the graphics required for a surgical simulator, the cost does not have to be high. However, graphics alone cannot serve as a training simulator. Human interface hardware, the equivalent of the force feedback joystick for a flight simulator game, is required to complete the system. This paper presents a design for a very low cost device to address this vital issue. The design encompasses: the mechanical construction, the electronic interfaces and the software protocols to mimic a laparoscopic surgical set-up. Thus the surgeon has the capability of practicing two-handed procedures with the possibility of force feedback. The force feedback and collision detection algorithms allow surgeons to practice realistic operating theatre procedures with a good degree of authenticity.
Accelerating image recognition on mobile devices using GPGPU
NASA Astrophysics Data System (ADS)
Bordallo López, Miguel; Nykänen, Henri; Hannuksela, Jari; Silvén, Olli; Vehviläinen, Markku
2011-01-01
The future multi-modal user interfaces of battery-powered mobile devices are expected to require computationally costly image analysis techniques. The use of Graphic Processing Units for computing is very well suited for parallel processing and the addition of programmable stages and high precision arithmetic provide for opportunities to implement energy-efficient complete algorithms. At the moment the first mobile graphics accelerators with programmable pipelines are available, enabling the GPGPU implementation of several image processing algorithms. In this context, we consider a face tracking approach that uses efficient gray-scale invariant texture features and boosting. The solution is based on the Local Binary Pattern (LBP) features and makes use of the GPU on the pre-processing and feature extraction phase. We have implemented a series of image processing techniques in the shader language of OpenGL ES 2.0, compiled them for a mobile graphics processing unit and performed tests on a mobile application processor platform (OMAP3530). In our contribution, we describe the challenges of designing on a mobile platform, present the performance achieved and provide measurement results for the actual power consumption in comparison to using the CPU (ARM) on the same platform.
Exploiting current-generation graphics hardware for synthetic-scene generation
NASA Astrophysics Data System (ADS)
Tanner, Michael A.; Keen, Wayne A.
2010-04-01
Increasing seeker frame rate and pixel count, as well as the demand for higher levels of scene fidelity, have driven scene generation software for hardware-in-the-loop (HWIL) and software-in-the-loop (SWIL) testing to higher levels of parallelization. Because modern PC graphics cards provide multiple computational cores (240 shader cores for a current NVIDIA Corporation GeForce and Quadro cards), implementation of phenomenology codes on graphics processing units (GPUs) offers significant potential for simultaneous enhancement of simulation frame rate and fidelity. To take advantage of this potential requires algorithm implementation that is structured to minimize data transfers between the central processing unit (CPU) and the GPU. In this paper, preliminary methodologies developed at the Kinetic Hardware In-The-Loop Simulator (KHILS) will be presented. Included in this paper will be various language tradeoffs between conventional shader programming, Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL), including performance trades and possible pathways for future tool development.
ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft
NASA Technical Reports Server (NTRS)
Jayaram, S.; Myklebust, A.; Gelhausen, P.
1992-01-01
A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.
PC-CUBE: A Personal Computer Based Hypercube
NASA Technical Reports Server (NTRS)
Ho, Alex; Fox, Geoffrey; Walker, David; Snyder, Scott; Chang, Douglas; Chen, Stanley; Breaden, Matt; Cole, Terry
1988-01-01
PC-CUBE is an ensemble of IBM PCs or close compatibles connected in the hypercube topology with ordinary computer cables. Communication occurs at the rate of 115.2 K-band via the RS-232 serial links. Available for PC-CUBE is the Crystalline Operating System III (CrOS III), Mercury Operating System, CUBIX and PLOTIX which are parallel I/O and graphics libraries. A CrOS performance monitor was developed to facilitate the measurement of communication and computation time of a program and their effects on performance. Also available are CXLISP, a parallel version of the XLISP interpreter; GRAFIX, some graphics routines for the EGA and CGA; and a general execution profiler for determining execution time spent by program subroutines. PC-CUBE provides a programming environment similar to all hypercube systems running CrOS III, Mercury and CUBIX. In addition, every node (personal computer) has its own graphics display monitor and storage devices. These allow data to be displayed or stored at every processor, which has much instructional value and enables easier debugging of applications. Some application programs which are taken from the book Solving Problems on Concurrent Processors (Fox 88) were implemented with graphics enhancement on PC-CUBE. The applications range from solving the Mandelbrot set, Laplace equation, wave equation, long range force interaction, to WaTor, an ecological simulation.
2014-06-01
in large-scale datasets such as might be obtained by monitoring a corporate network or social network. Identifying guilty actors, rather than payload...by monitoring a corporate network or social network. Identifying guilty actors, rather than payload-carrying objects, is entirely novel in steganalysis...implementation using Compute Unified Device Architecture (CUDA) on NVIDIA graphics cards. The key to good performance is to combine computations so that
Span graphics display utilities handbook, first edition
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Green, J. L.; Newman, R.
1985-01-01
The Space Physics Analysis Network (SPAN) is a computer network connecting scientific institutions throughout the United States. This network provides an avenue for timely, correlative research between investigators, in a multidisciplinary approach to space physics studies. An objective in the development of SPAN is to make available direct and simplified procedures that scientists can use, without specialized training, to exchange information over the network. Information exchanges include raw and processes data, analysis programs, correspondence, documents, and graphite images. This handbook details procedures that can be used to exchange graphic images over SPAN. The intent is to periodically update this handbook to reflect the constantly changing facilities available on SPAN. The utilities described within reflect an earnest attempt to provide useful descriptions of working utilities that can be used to transfer graphic images across the network. Whether graphic images are representative of satellite servations or theoretical modeling and whether graphics images are of device dependent or independent type, the SPAN graphics display utilities handbook will be the users guide to graphic image exchange.
Code of Federal Regulations, 2012 CFR
2012-01-01
... graphical image of a handwritten signature, usually created using a special computer input device, such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means... folder across the Government. Electronic retirement and insurance processing system means the new...
Code of Federal Regulations, 2011 CFR
2011-01-01
... graphical image of a handwritten signature, usually created using a special computer input device, such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means... folder across the Government. Electronic retirement and insurance processing system means the new...
Code of Federal Regulations, 2013 CFR
2013-01-01
... graphical image of a handwritten signature, usually created using a special computer input device, such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means... folder across the Government. Electronic retirement and insurance processing system means the new...
GPU acceleration of Runge Kutta-Fehlberg and its comparison with Dormand-Prince method
NASA Astrophysics Data System (ADS)
Seen, Wo Mei; Gobithaasan, R. U.; Miura, Kenjiro T.
2014-07-01
There is a significant reduction of processing time and speedup of performance in computer graphics with the emergence of Graphic Processing Units (GPUs). GPUs have been developed to surpass Central Processing Unit (CPU) in terms of performance and processing speed. This evolution has opened up a new area in computing and researches where highly parallel GPU has been used for non-graphical algorithms. Physical or phenomenal simulations and modelling can be accelerated through General Purpose Graphic Processing Units (GPGPU) and Compute Unified Device Architecture (CUDA) implementations. These phenomena can be represented with mathematical models in the form of Ordinary Differential Equations (ODEs) which encompasses the gist of change rate between independent and dependent variables. ODEs are numerically integrated over time in order to simulate these behaviours. The classical Runge-Kutta (RK) scheme is the common method used to numerically solve ODEs. The Runge Kutta Fehlberg (RKF) scheme has been specially developed to provide an estimate of the principal local truncation error at each step, known as embedding estimate technique. This paper delves into the implementation of RKF scheme for GPU devices and compares its result with Dorman Prince method. A pseudo code is developed to show the implementation in detail. Hence, practitioners will be able to understand the data allocation in GPU, formation of RKF kernels and the flow of data to/from GPU-CPU upon RKF kernel evaluation. The pseudo code is then written in C Language and two ODE models are executed to show the achievable speedup as compared to CPU implementation. The accuracy and efficiency of the proposed implementation method is discussed in the final section of this paper.
Diagnostic abilities of three-dimensional electronic axiography on the basis of ARCUSdigma device.
Bakalczuk, Magdalena; Bozyk, Andrzej; Iwanek, Michał; Borowicz, Janusz; Sykut, Janusz; Kleinrok, Janusz
2004-01-01
The ARCUSdigma is an electronic facebow enabling presentation and graphic analysis of mandibular movements on the computer screen. A kinematic hinge axis of the mandible can be determined using this device. The paper presents the diagnostic potential of the ARCUSdigma in relation to programming an articulator according to individual parameters of mandibular movements of the patient and its application in the diagnosis of temporo-mandibular joints.
Drajsajtl, Tomáš; Struk, Petr; Bednárová, Alice
2013-01-01
AsTeRICS - "The Assistive Technology Rapid Integration & Construction Set" is a construction set for assistive technologies which can be adapted to the motor abilities of end-users. AsTeRICS allows access to different devices such as PCs, cell phones and smart home devices, with all of them integrated in a platform adapted as much as possible to each user. People with motor disabilities in the upper limbs, with no cognitive impairment, no perceptual limitations (neither visual nor auditory) and with basic skills in using technologies such as PCs, cell phones, electronic agendas, etc. have available a flexible and adaptable technology which enables them to access the Human-Machine-Interfaces (HMI) on the standard desktop and beyond. AsTeRICS provides graphical model design tools, a middleware and hardware support for the creation of tailored AT-solutions involving bioelectric signal acquisition, Brain-/Neural Computer Interfaces, Computer-Vision techniques and standardized actuator and device controls and allows combining several off-the-shelf AT-devices in every desired combination. Novel, end-user ready solutions can be created and adapted via a graphical editor without additional programming efforts. The AsTeRICS open-source framework provides resources for utilization and extension of the system to developers and researches. AsTeRICS was developed by the AsTeRICS project and was partially funded by EC.
Detection And Mapping (DAM) package. Volume 4B: Software System Manual, part 2
NASA Technical Reports Server (NTRS)
Schlosser, E. H.
1980-01-01
Computer programs, graphic devices, and an integrated set of manual procedures designed for efficient production of precisely registered and formatted maps from digital data are presented. The software can be used on any Univac 1100 series computer. The software includes pre-defined spectral limits for use in classifying and mapping surface water for LANDSAT-1, LANDSAT-2, and LANDSAT-3.
Guigas, Bruno
2017-09-01
SpecPad is a new device-independent software program for the visualization and processing of one-dimensional and two-dimensional nuclear magnetic resonance (NMR) time domain (FID) and frequency domain (spectrum) data. It is the result of a project to investigate whether the novel programming language DART, in combination with Html5 Web technology, forms a suitable base to write an NMR data evaluation software which runs on modern computing devices such as Android, iOS, and Windows tablets as well as on Windows, Linux, and Mac OS X desktop PCs and notebooks. Another topic of interest is whether this technique also effectively supports the required sophisticated graphical and computational algorithms. SpecPad is device-independent because DART's compiled executable code is JavaScript and can, therefore, be run by the browsers of PCs and tablets. Because of Html5 browser cache technology, SpecPad may be operated off-line. Network access is only required during data import or export, e.g. via a Cloud service, or for software updates. A professional and easy to use graphical user interface consistent across all hardware platforms supports touch screen features on mobile devices for zooming and panning and for NMR-related interactive operations such as phasing, integration, peak picking, or atom assignment. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Luskin, Bernard J.; Krinsky, Ira W.
1994-01-01
The growing number of mergers, takeovers, and joint ventures has dramatic implications for communications, publishing, and education worldwide. Apple Computer and IBM have created Kaleida, a standard for software used in devices that combine text, sound, video, and graphics. Apple, AT&T, Matsushita, Motorola, Philips, and Sony are developing a…
GRAPHIC INPUT TABLETS FOR PROGRAMMED INSTRUCTION.
ERIC Educational Resources Information Center
BOOKER, C.A., JR.; AND OTHERS
TO FACILITATE STUDENT-COMPUTER COMMUNICATION IN PROGRAMED INSTRUCTION, A MODIFICATION OF THE RAND TABLET, WHICH CONVERTS POSITION INFORMATION INTO ELECTRICAL SIGNALS, IS PROPOSED. MANUFACTURE OF THE DEVICE WOULD BE MORE ECONOMICAL, AND THE ELECTRONICS PACKAGE, REDESIGNED WITH INTEGRATED CIRCUITS, WOULD BE SMALLER AND MORE FLEXIBLE. MODIFICATION OF…
Code of Federal Regulations, 2014 CFR
2014-01-01
...) ELECTRONIC RETIREMENT PROCESSING General Provisions § 850.103 Definitions. In this part— Agency means an... graphical image of a handwritten signature usually created using a special computer input device (such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means...
NASA Astrophysics Data System (ADS)
Le, Minh Tuan; Nguyen, Congdu; Yoon, Dae-Il; Jung, Eun Ku; Kim, Hae-Kwang
2007-12-01
In this paper, we introduce a graphics to Scalable Vector Graphics (SVG) adaptation framework with a mechanism of vector graphics transmission to overcome the shortcoming of real-time representation and interaction experiences of 3D graphics application running on mobile devices. We therefore develop an interactive 3D visualization system based on the proposed framework for rapidly representing a 3D scene on mobile devices without having to download it from the server. Our system scenario is composed of a client viewer and a graphic to SVG adaptation server. The client viewer offers the user to access to the same 3D contents with different devices according to consumer interactions.
NASADIG - NASA DEVICE INDEPENDENT GRAPHICS LIBRARY (AMDAHL VERSION)
NASA Technical Reports Server (NTRS)
Rogers, J. E.
1994-01-01
The NASA Device Independent Graphics Library, NASADIG, can be used with many computer-based engineering and management applications. The library gives the user the opportunity to translate data into effective graphic displays for presentation. The software offers many features which allow the user flexibility in creating graphics. These include two-dimensional plots, subplot projections in 3D-space, surface contour line plots, and surface contour color-shaded plots. Routines for three-dimensional plotting, wireframe surface plots, surface plots with hidden line removal, and surface contour line plots are provided. Other features include polar and spherical coordinate plotting, world map plotting utilizing either cylindrical equidistant or Lambert equal area projection, plot translation, plot rotation, plot blowup, splines and polynomial interpolation, area blanking control, multiple log/linear axes, legends and text control, curve thickness control, and multiple text fonts (18 regular, 4 bold). NASADIG contains several groups of subroutines. Included are subroutines for plot area and axis definition; text set-up and display; area blanking; line style set-up, interpolation, and plotting; color shading and pattern control; legend, text block, and character control; device initialization; mixed alphabets setting; and other useful functions. The usefulness of many routines is dependent on the prior definition of basic parameters. The program's control structure uses a serial-level construct with each routine restricted for activation at some prescribed level(s) of problem definition. NASADIG provides the following output device drivers: Selanar 100XL, VECTOR Move/Draw ASCII and PostScript files, Tektronix 40xx, 41xx, and 4510 Rasterizer, DEC VT-240 (4014 mode), IBM AT/PC compatible with SmartTerm 240 emulator, HP Lasergrafix Film Recorder, QMS 800/1200, DEC LN03+ Laserprinters, and HP LaserJet (Series III). NASADIG is written in FORTRAN and is available for several platforms. NASADIG 5.7 is available for DEC VAX series computers running VMS 5.0 or later (MSC-21801), Cray X-MP and Y-MP series computers running UNICOS (COS-10049), and Amdahl 5990 mainframe computers running UTS (COS-10050). NASADIG 5.1 is available for UNIX-based operating systems (MSC-22001). The UNIX version has been successfully implemented on Sun4 series computers running SunOS, SGI IRIS computers running IRIX, Hewlett Packard 9000 computers running HP-UX, and Convex computers running Convex OS (MSC-22001). The standard distribution medium for MSC-21801 is a set of two 6250 BPI 9-track magnetic tapes in DEC VAX BACKUP format. It is also available on a set of two TK50 tape cartridges in DEC VAX BACKUP format. The standard distribution medium for COS-10049 and COS-10050 is a 6250 BPI 9-track magnetic tape in UNIX tar format. Other distribution media and formats may be available upon request. The standard distribution medium for MSC-22001 is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. Alternate distribution media and formats are available upon request. With minor modification, the UNIX source code can be ported to other platforms including IBM PC/AT series computers and compatibles. NASADIG is also available bundled with TRASYS, the Thermal Radiation Analysis System (COS-10026, DEC VAX version; COS-10040, CRAY version).
NASADIG - NASA DEVICE INDEPENDENT GRAPHICS LIBRARY (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Rogers, J. E.
1994-01-01
The NASA Device Independent Graphics Library, NASADIG, can be used with many computer-based engineering and management applications. The library gives the user the opportunity to translate data into effective graphic displays for presentation. The software offers many features which allow the user flexibility in creating graphics. These include two-dimensional plots, subplot projections in 3D-space, surface contour line plots, and surface contour color-shaded plots. Routines for three-dimensional plotting, wireframe surface plots, surface plots with hidden line removal, and surface contour line plots are provided. Other features include polar and spherical coordinate plotting, world map plotting utilizing either cylindrical equidistant or Lambert equal area projection, plot translation, plot rotation, plot blowup, splines and polynomial interpolation, area blanking control, multiple log/linear axes, legends and text control, curve thickness control, and multiple text fonts (18 regular, 4 bold). NASADIG contains several groups of subroutines. Included are subroutines for plot area and axis definition; text set-up and display; area blanking; line style set-up, interpolation, and plotting; color shading and pattern control; legend, text block, and character control; device initialization; mixed alphabets setting; and other useful functions. The usefulness of many routines is dependent on the prior definition of basic parameters. The program's control structure uses a serial-level construct with each routine restricted for activation at some prescribed level(s) of problem definition. NASADIG provides the following output device drivers: Selanar 100XL, VECTOR Move/Draw ASCII and PostScript files, Tektronix 40xx, 41xx, and 4510 Rasterizer, DEC VT-240 (4014 mode), IBM AT/PC compatible with SmartTerm 240 emulator, HP Lasergrafix Film Recorder, QMS 800/1200, DEC LN03+ Laserprinters, and HP LaserJet (Series III). NASADIG is written in FORTRAN and is available for several platforms. NASADIG 5.7 is available for DEC VAX series computers running VMS 5.0 or later (MSC-21801), Cray X-MP and Y-MP series computers running UNICOS (COS-10049), and Amdahl 5990 mainframe computers running UTS (COS-10050). NASADIG 5.1 is available for UNIX-based operating systems (MSC-22001). The UNIX version has been successfully implemented on Sun4 series computers running SunOS, SGI IRIS computers running IRIX, Hewlett Packard 9000 computers running HP-UX, and Convex computers running Convex OS (MSC-22001). The standard distribution medium for MSC-21801 is a set of two 6250 BPI 9-track magnetic tapes in DEC VAX BACKUP format. It is also available on a set of two TK50 tape cartridges in DEC VAX BACKUP format. The standard distribution medium for COS-10049 and COS-10050 is a 6250 BPI 9-track magnetic tape in UNIX tar format. Other distribution media and formats may be available upon request. The standard distribution medium for MSC-22001 is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. Alternate distribution media and formats are available upon request. With minor modification, the UNIX source code can be ported to other platforms including IBM PC/AT series computers and compatibles. NASADIG is also available bundled with TRASYS, the Thermal Radiation Analysis System (COS-10026, DEC VAX version; COS-10040, CRAY version).
Brumberg, Jonathan S; Nguyen, Anh; Pitt, Kevin M; Lorenz, Sean D
2018-01-31
We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access to language and literacy for individuals with neuromotor impairment. Comprehensive assessments are needed to fully understand the sensory, motor, and cognitive abilities of individuals who may use brain-computer interfaces for proper feature matching as selection of the most appropriate device including optimization device layouts and control paradigms. Oculomotor impairments negatively impact brain-computer interfaces that use the steady state visually evoked potential, but modifications to place interface stimuli and communication items in the intact visual field can improve successful outcomes.
NASA Astrophysics Data System (ADS)
Hui, L.; Behr, F.-J.; Schröder, D.
2006-10-01
The dissemination of digital geospatial data is available now on mobile devices such as PDAs (personal digital assistants) and smart-phones etc. The mobile devices which support J2ME (Java 2 Micro Edition) offer users and developers one open interface, which they can use to develop or download the software according their own demands. Currently WMS (Web Map Service) can afford not only traditional raster image, but also the vector image. SVGT (Scalable Vector Graphics Tiny) is one subset of SVG (Scalable Vector Graphics) and because of its precise vector information, original styling and small file size, SVGT format is fitting well for the geographic mapping purpose, especially for the mobile devices which has bandwidth net connection limitation. This paper describes the development of a cartographic client for the mobile devices, using SVGT and J2ME technology. Mobile device will be simulated on the desktop computer for a series of testing with WMS, for example, send request and get the responding data from WMS and then display both vector and raster format image. Analyzing and designing of System structure such as user interface and code structure are discussed, the limitation of mobile device should be taken into consideration for this applications. The parsing of XML document which is received from WMS after the GetCapabilities request and the visual realization of SVGT and PNG (Portable Network Graphics) image are important issues in codes' writing. At last the client was tested on Nokia S40/60 mobile phone successfully.
NASA Astrophysics Data System (ADS)
Laracuente, Nicholas; Grossman, Carl
2013-03-01
We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College
Distributed GPU Computing in GIScience
NASA Astrophysics Data System (ADS)
Jiang, Y.; Yang, C.; Huang, Q.; Li, J.; Sun, M.
2013-12-01
Geoscientists strived to discover potential principles and patterns hidden inside ever-growing Big Data for scientific discoveries. To better achieve this objective, more capable computing resources are required to process, analyze and visualize Big Data (Ferreira et al., 2003; Li et al., 2013). Current CPU-based computing techniques cannot promptly meet the computing challenges caused by increasing amount of datasets from different domains, such as social media, earth observation, environmental sensing (Li et al., 2013). Meanwhile CPU-based computing resources structured as cluster or supercomputer is costly. In the past several years with GPU-based technology matured in both the capability and performance, GPU-based computing has emerged as a new computing paradigm. Compare to traditional computing microprocessor, the modern GPU, as a compelling alternative microprocessor, has outstanding high parallel processing capability with cost-effectiveness and efficiency(Owens et al., 2008), although it is initially designed for graphical rendering in visualization pipe. This presentation reports a distributed GPU computing framework for integrating GPU-based computing within distributed environment. Within this framework, 1) for each single computer, computing resources of both GPU-based and CPU-based can be fully utilized to improve the performance of visualizing and processing Big Data; 2) within a network environment, a variety of computers can be used to build up a virtual super computer to support CPU-based and GPU-based computing in distributed computing environment; 3) GPUs, as a specific graphic targeted device, are used to greatly improve the rendering efficiency in distributed geo-visualization, especially for 3D/4D visualization. Key words: Geovisualization, GIScience, Spatiotemporal Studies Reference : 1. Ferreira de Oliveira, M. C., & Levkowitz, H. (2003). From visual data exploration to visual data mining: A survey. Visualization and Computer Graphics, IEEE Transactions on, 9(3), 378-394. 2. Li, J., Jiang, Y., Yang, C., Huang, Q., & Rice, M. (2013). Visualizing 3D/4D Environmental Data Using Many-core Graphics Processing Units (GPUs) and Multi-core Central Processing Units (CPUs). Computers & Geosciences, 59(9), 78-89. 3. Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE, 96(5), 879-899.
Solar physics applications of computer graphics and image processing
NASA Technical Reports Server (NTRS)
Altschuler, M. D.
1985-01-01
Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.
Integrated computer-aided design using minicomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.
1980-01-01
Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.
The Effect of Feedback on the Accuracy of Checklist Completion during Instrument Flight Training
ERIC Educational Resources Information Center
Rantz, William G.; Dickinson, Alyce M.; Sinclair, Gilbert A.; Van Houten, Ron
2009-01-01
This study examined whether pilots completed airplane checklists more accurately when they receive postflight graphic and verbal feedback. Participants were 8 college students who are pilots with an instrument rating. The task consisted of flying a designated flight pattern using a personal computer aviation training device (PCATD). The dependent…
Electronic Presentations in the Corporation: How Are They Being Used.
ERIC Educational Resources Information Center
Griffin, Robert E.; And Others
This study measured the impact of electronic presentations on the business presenter. An electronic presentation was defined as a presentation which made use of a computer, presentation graphics software, and a projection device. A questionnaire was sent to 560 subjects (40% returned) randomly selected from a training and development consortium…
ERIC Educational Resources Information Center
Ivy, Diana K.; And Others
Continuous Attitudinal Response Technology (CART) is an alternative approach to testing students' instantaneous response to teacher behaviors in the classroom. The system uses a microcomputer and video technology device that allows researchers to measure subjects' instantaneous responses to static and continuous stimuli, graphic or verbal. A…
Computer graphics and the graphic artist
NASA Technical Reports Server (NTRS)
Taylor, N. L.; Fedors, E. G.; Pinelli, T. E.
1985-01-01
A centralized computer graphics system is being developed at the NASA Langley Research Center. This system was required to satisfy multiuser needs, ranging from presentation quality graphics prepared by a graphic artist to 16-mm movie simulations generated by engineers and scientists. While the major thrust of the central graphics system was directed toward engineering and scientific applications, hardware and software capabilities to support the graphic artists were integrated into the design. This paper briefly discusses the importance of computer graphics in research; the central graphics system in terms of systems, software, and hardware requirements; the application of computer graphics to graphic arts, discussed in terms of the requirements for a graphic arts workstation; and the problems encountered in applying computer graphics to the graphic arts. The paper concludes by presenting the status of the central graphics system.
High performance hybrid functional Petri net simulations of biological pathway models on CUDA.
Chalkidis, Georgios; Nagasaki, Masao; Miyano, Satoru
2011-01-01
Hybrid functional Petri nets are a wide-spread tool for representing and simulating biological models. Due to their potential of providing virtual drug testing environments, biological simulations have a growing impact on pharmaceutical research. Continuous research advancements in biology and medicine lead to exponentially increasing simulation times, thus raising the demand for performance accelerations by efficient and inexpensive parallel computation solutions. Recent developments in the field of general-purpose computation on graphics processing units (GPGPU) enabled the scientific community to port a variety of compute intensive algorithms onto the graphics processing unit (GPU). This work presents the first scheme for mapping biological hybrid functional Petri net models, which can handle both discrete and continuous entities, onto compute unified device architecture (CUDA) enabled GPUs. GPU accelerated simulations are observed to run up to 18 times faster than sequential implementations. Simulating the cell boundary formation by Delta-Notch signaling on a CUDA enabled GPU results in a speedup of approximately 7x for a model containing 1,600 cells.
NASA Astrophysics Data System (ADS)
Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide
2015-09-01
The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.
NASA Technical Reports Server (NTRS)
Panthaki, Malcolm J.
1987-01-01
Three general tasks on general-purpose, interactive color graphics postprocessing for three-dimensional computational mechanics were accomplished. First, the existing program (POSTPRO3D) is ported to a high-resolution device. In the course of this transfer, numerous enhancements are implemented in the program. The performance of the hardware was evaluated from the point of view of engineering postprocessing, and the characteristics of future hardware were discussed. Second, interactive graphical tools implemented to facilitate qualitative mesh evaluation from a single analysis. The literature was surveyed and a bibliography compiled. Qualitative mesh sensors were examined, and the use of two-dimensional plots of unaveraged responses on the surface of three-dimensional continua was emphasized in an interactive color raster graphics environment. Finally, a postprocessing environment was designed for state-of-the-art workstation technology. Modularity, personalization of the environment, integration of the engineering design processes, and the development and use of high-level graphics tools are some of the features of the intended environment.
NASA Astrophysics Data System (ADS)
Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian
2018-01-01
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.
gpuSPHASE-A shared memory caching implementation for 2D SPH using CUDA
NASA Astrophysics Data System (ADS)
Winkler, Daniel; Meister, Michael; Rezavand, Massoud; Rauch, Wolfgang
2017-04-01
Smoothed particle hydrodynamics (SPH) is a meshless Lagrangian method that has been successfully applied to computational fluid dynamics (CFD), solid mechanics and many other multi-physics problems. Using the method to solve transport phenomena in process engineering requires the simulation of several days to weeks of physical time. Based on the high computational demand of CFD such simulations in 3D need a computation time of years so that a reduction to a 2D domain is inevitable. In this paper gpuSPHASE, a new open-source 2D SPH solver implementation for graphics devices, is developed. It is optimized for simulations that must be executed with thousands of frames per second to be computed in reasonable time. A novel caching algorithm for Compute Unified Device Architecture (CUDA) shared memory is proposed and implemented. The software is validated and the performance is evaluated for the well established dambreak test case.
NMF-mGPU: non-negative matrix factorization on multi-GPU systems.
Mejía-Roa, Edgardo; Tabas-Madrid, Daniel; Setoain, Javier; García, Carlos; Tirado, Francisco; Pascual-Montano, Alberto
2015-02-13
In the last few years, the Non-negative Matrix Factorization ( NMF ) technique has gained a great interest among the Bioinformatics community, since it is able to extract interpretable parts from high-dimensional datasets. However, the computing time required to process large data matrices may become impractical, even for a parallel application running on a multiprocessors cluster. In this paper, we present NMF-mGPU, an efficient and easy-to-use implementation of the NMF algorithm that takes advantage of the high computing performance delivered by Graphics-Processing Units ( GPUs ). Driven by the ever-growing demands from the video-games industry, graphics cards usually provided in PCs and laptops have evolved from simple graphics-drawing platforms into high-performance programmable systems that can be used as coprocessors for linear-algebra operations. However, these devices may have a limited amount of on-board memory, which is not considered by other NMF implementations on GPU. NMF-mGPU is based on CUDA ( Compute Unified Device Architecture ), the NVIDIA's framework for GPU computing. On devices with low memory available, large input matrices are blockwise transferred from the system's main memory to the GPU's memory, and processed accordingly. In addition, NMF-mGPU has been explicitly optimized for the different CUDA architectures. Finally, platforms with multiple GPUs can be synchronized through MPI ( Message Passing Interface ). In a four-GPU system, this implementation is about 120 times faster than a single conventional processor, and more than four times faster than a single GPU device (i.e., a super-linear speedup). Applications of GPUs in Bioinformatics are getting more and more attention due to their outstanding performance when compared to traditional processors. In addition, their relatively low price represents a highly cost-effective alternative to conventional clusters. In life sciences, this results in an excellent opportunity to facilitate the daily work of bioinformaticians that are trying to extract biological meaning out of hundreds of gigabytes of experimental information. NMF-mGPU can be used "out of the box" by researchers with little or no expertise in GPU programming in a variety of platforms, such as PCs, laptops, or high-end GPU clusters. NMF-mGPU is freely available at https://github.com/bioinfo-cnb/bionmf-gpu .
Digital Waveguide Architectures for Virtual Musical Instruments
NASA Astrophysics Data System (ADS)
Smith, Julius O.
Digital sound synthesis has become a standard staple of modern music studios, videogames, personal computers, and hand-held devices. As processing power has increased over the years, sound synthesis implementations have evolved from dedicated chip sets, to single-chip solutions, and ultimately to software implementations within processors used primarily for other tasks (such as for graphics or general purpose computing). With the cost of implementation dropping closer and closer to zero, there is increasing room for higher quality algorithms.
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-02-12
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.
Miao, Yipu; Merz, Kenneth M
2015-04-14
We present an efficient implementation of ab initio self-consistent field (SCF) energy and gradient calculations that run on Compute Unified Device Architecture (CUDA) enabled graphical processing units (GPUs) using recurrence relations. We first discuss the machine-generated code that calculates the electron-repulsion integrals (ERIs) for different ERI types. Next we describe the porting of the SCF gradient calculation to GPUs, which results in an acceleration of the computation of the first-order derivative of the ERIs. However, only s, p, and d ERIs and s and p derivatives could be executed simultaneously on GPUs using the current version of CUDA and generation of NVidia GPUs using a previously described algorithm [Miao and Merz J. Chem. Theory Comput. 2013, 9, 965-976.]. Hence, we developed an algorithm to compute f type ERIs and d type ERI derivatives on GPUs. Our benchmarks shows the performance GPU enable ERI and ERI derivative computation yielded speedups of 10-18 times relative to traditional CPU execution. An accuracy analysis using double-precision calculations demonstrates that the overall accuracy is satisfactory for most applications.
Partitioning of Function in a Distributed Graphics System.
1985-03-01
Interface specification ( VDI ) is yet another graphi:s standardization effort of ANSI committee X31133 [7]. As shown in figure 2-2, the Virtual Device... VDI specification could be realized in a real device, or at least a "black box" which the user treats as a hardware device. ’he device drivers would...be written by the manufacturer of the graphics device, instead of the author of the graphics system. Since the VDI specification is precisely defined
A Research Program in Computer Technology. Volume 1
1981-08-01
rigidity, sensor networks 10. command and control, digital voice communication, graphic input device for terminal, multimedia communications, portable...satellite channel in the internetwork environment; Distributed Sensor Networks - formulation of algorithms and communication protocols to support the...operation of geographically distributed sensors ; Personal Communicator - work intended to result in a demonstration-level portable terminal to test and
Optimization Techniques for 3D Graphics Deployment on Mobile Devices
NASA Astrophysics Data System (ADS)
Koskela, Timo; Vatjus-Anttila, Jarkko
2015-03-01
3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.
Detection And Mapping (DAM) package. Volume 4A: Software System Manual, part 1
NASA Technical Reports Server (NTRS)
Schlosser, E. H.
1980-01-01
The package is an integrated set of manual procedures, computer programs, and graphic devices designed for efficient production of precisely registered and formatted maps from digital LANDSAT multispectral scanner (MSS) data. The software can be readily implemented on any Univac 1100 series computer with standard peripheral equipment. This version of the software includes predefined spectral limits for use in classifying and mapping surface water for LANDSAT-1, LANDSAT-2, and LANDSAT-3. Tape formats supported include X, AM, and PM.
Integrated IMA (Information Mission Areas) IC (Information Center) Guide
1989-06-01
COMPUTER AIDED DESIGN / COMPUTER AIDED MANUFACTURE 8-8 8.3.7 LIQUID CRYSTAL DISPLAY PANELS 8-8 8.3.8 ARTIFICIAL INTELLIGENCE APPLIED TO VI 8-9 8.4...2 10.3.1 DESKTOP PUBLISHING 10-3 10.3.2 INTELLIGENT COPIERS 10-5 10.3.3 ELECTRONIC ALTERNATIVES TO PRINTED DOCUMENTS 10-5 10.3.4 ELECTRONIC FORMS...Optical Disk LCD Units Storage Image Scanners Graphics Forms Output Generation Copiers Devices Software Optical Disk Intelligent Storage Copiers Work Group
NASA Astrophysics Data System (ADS)
Lang, Sherman Y. T.; Brooks, Martin; Gauthier, Marc; Wein, Marceli
1993-05-01
A data display system for embedded realtime systems has been developed for use as an operator's user interface and debugging tool. The motivation for development of the On-Line Data Display (ODD) have come from several sources. In particular the design reflects the needs of researchers developing an experimental mobile robot within our laboratory. A proliferation of specialized user interfaces revealed a need for a flexible communications and graphical data display system. At the same time the system had to be readily extensible for arbitrary graphical display formats which would be required for data visualization needs of the researchers. The system defines a communication protocol transmitting 'datagrams' between tasks executing on the realtime system and virtual devices displaying the data in a meaningful way on a graphical workstation. The communication protocol multiplexes logical channels on a single data stream. The current implementation consists of a server for the Harmony realtime operating system and an application written for the Macintosh computer. Flexibility requirements resulted in a highly modular server design, and a layered modular object- oriented design for the Macintosh part of the system. Users assign data types to specific channels at run time. Then devices are instantiated by the user and connected to channels to receive datagrams. The current suite of device types do not provide enough functionality for most users' specialized needs. Instead the system design allows the creation of new device types with modest programming effort. The protocol, design and use of the system are discussed.
DeviceEditor visual biological CAD canvas
2012-01-01
Background Biological Computer Aided Design (bioCAD) assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. Results We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. Conclusions DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs. PMID:22373390
Ahamed, Nizam U; Sundaraj, Kenneth; Poo, Tarn S
2013-03-01
This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.
Evaluating Texts for Graphical Literacy Instruction: The Graphic Rating Tool
ERIC Educational Resources Information Center
Roberts, Kathryn L.; Brugar, Kristy A.; Norman, Rebecca R.
2015-01-01
In this article, we present the Graphical Rating Tool (GRT), which is designed to evaluate the graphical devices that are commonly found in content-area, non-fiction texts, in order to identify books that are well suited for teaching about those devices. We also present a "best of" list of science and social studies books, which includes…
An interactive computer program for sizing spacecraft momentum storage devices
NASA Technical Reports Server (NTRS)
Wilcox, F. J., Jr.
1980-01-01
An interactive computer program was developed which computes the sizing requirements for nongimbled reaction wheels, control moment gyros (CMG), and dual momentum control devices (DMCD) used in Earth-orbiting spacecraft. The program accepts as inputs the spacecraft's environmental disturbance torques, rotational inertias, maneuver rates, and orbital data. From these inputs, wheel weights are calculated for a range of radii and rotational speeds. The shape of the momentum wheel may be chosen to be either a hoop, solid cylinder, or annular cylinder. The program provides graphic output illustrating the trade-off potential between the weight, radius, and wheel speed. A number of the intermediate calculations such as the X-, Y-, and Z-axis total momentum, the momentum absorption requirements for reaction wheels, CMG's, DMCD's, and basic orbit analysis information are also provided as program output.
Wide-angle display developments by computer graphics
NASA Technical Reports Server (NTRS)
Fetter, William A.
1989-01-01
Computer graphics can now expand its new subset, wide-angle projection, to be as significant a generic capability as computer graphics itself. Some prior work in computer graphics is presented which leads to an attractive further subset of wide-angle projection, called hemispheric projection, to be a major communication media. Hemispheric film systems have long been present and such computer graphics systems are in use in simulators. This is the leading edge of capabilities which should ultimately be as ubiquitous as CRTs (cathode-ray tubes). These assertions are not from degrees in science or only from a degree in graphic design, but in a history of computer graphics innovations, laying groundwork by demonstration. The author believes that it is timely to look at several development strategies, since hemispheric projection is now at a point comparable to the early stages of computer graphics, requiring similar patterns of development again.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Errion, S.M.; Thommes, M.M. Caruthers, C.M.
Using the Apple LaserWriter at ANL (ANL/TM 452) explains how Argonne computer users (with CMS, MVS, or VAX/VMS accounts) can print quality text and graphics on the Apple LaserWriter. Currently, applications at Argonne that are compatible with the Apple LaserWriter include Waterloo Script, CA/ISSCO graphics software (i.e., Cuechart, Tellagraf, and Disspla), SAS/Graph, ANSYS (version 4.2), and some personal computer test and graphics software. This manual does not attempt to cover use of the Apple LaserWriter with other applications, though some information on the handling of PostScript-compatible files may be valid for other applications. Refer to the documentation of those applicationsmore » to learn how they work with the Apple LaserWriter. Most of the information in this manual applies to the Allied Linotype L300P typesetter in Building 222. However, the typesetter is not a high volume output device and should be used primarily for high quality (1250 and 2500 dots per inch) final copy output for Laboratory publications prior to making printing plates. You should print all drafts and proof pages on LaserWriers or other printers compatible with the PostScript page description language. Consult with Graphic Arts (at extension 2-5603) to determine the availability of the typesetter for printing the final copy of your document or graphics application. Since the Apple LaserWriter itself produces good quality output (300 dots per inch), we expect that most internal documents consisting of test or graphics will continue to be printed at LaserWriters distributed throughout the Laboratory. 5 figs., 2 tabs.« less
Pulse Code Modulation (PCM) data storage and analysis using a microcomputer
NASA Technical Reports Server (NTRS)
Massey, D. E.
1986-01-01
A PCM storage device/data analyzer is described. This instrument is a peripheral plug-in board especially built to enable a personal computer to store and analyze data from a PCM source. This board and custom written software turns a computer into a snapshot PCM decommutator. This instrument will take in and store many hundreds or thousands of PCM telemetry data frames, then sift through them over and over again. The data can be converted to any number base and displayed, examined for any bit dropouts or changes in particular words or frames, graphically plotted, or statistically analyzed. This device was designed and built for use on the NASA Sounding Rocket Program for PCM encoder configuration and testing.
NASA Technical Reports Server (NTRS)
Duncan, K. M.; Harm, D. L.; Crosier, W. G.; Worthington, J. W.
1993-01-01
A unique training device is being developed at the Johnson Space Center Neurosciences Laboratory to help reduce or eliminate Space Motion Sickness (SMS) and spatial orientation disturbances that occur during spaceflight. The Device for Orientation and Motion Environments Preflight Adaptation Trainer (DOME PAT) uses virtual reality technology to simulate some sensory rearrangements experienced by astronauts in microgravity. By exposing a crew member to this novel environment preflight, it is expected that he/she will become partially adapted, and thereby suffer fewer symptoms inflight. The DOME PAT is a 3.7 m spherical dome, within which a 170 by 100 deg field of view computer-generated visual database is projected. The visual database currently in use depicts the interior of a Shuttle spacelab. The trainee uses a six degree-of-freedom, isometric force hand controller to navigate through the virtual environment. Alternatively, the trainee can be 'moved' about within the virtual environment by the instructor, or can look about within the environment by wearing a restraint that controls scene motion in response to head movements. The computer system is comprised of four personal computers that provide the real time control and user interface, and two Silicon Graphics computers that generate the graphical images. The image generator computers use custom algorithms to compensate for spherical image distortion, while maintaining a video update rate of 30 Hz. The DOME PAT is the first such system known to employ virtual reality technology to reduce the untoward effects of the sensory rearrangement associated with exposure to microgravity, and it does so in a very cost-effective manner.
A methodology to emulate and evaluate a productive virtual workstation
NASA Technical Reports Server (NTRS)
Krubsack, David; Haberman, David
1992-01-01
The Advanced Display and Computer Augmented Control (ADCACS) Program at ACT is sponsored by NASA Ames to investigate the broad field of technologies which must be combined to design a 'virtual' workstation for the Space Station Freedom. This program is progressing in several areas and resulted in the definition of requirements for a workstation. A unique combination of technologies at the ACT Laboratory have been networked to effectively create an experimental environment. This experimental environment allows the integration of nonconventional input devices with a high power graphics engine within the framework of an expert system shell which coordinates the heterogeneous inputs with the 'virtual' presentation. The flexibility of the workstation is evolved as experiments are designed and conducted to evaluate the condition descriptions and rule sets of the expert system shell and its effectiveness in driving the graphics engine. Workstation productivity has been defined by the achievable performance in the emulator of the calibrated 'sensitivity' of input devices, the graphics presentation, the possible optical enhancements to achieve a wide field of view color image and the flexibility of conditional descriptions in the expert system shell in adapting to prototype problems.
Triaxial Probe Magnetic Data Analysis
NASA Technical Reports Server (NTRS)
Shultz, Kimberly; Whittlesey, Albert; Narvaez, Pablo
2007-01-01
The Triaxial Magnetic Moment Analysis software uses measured magnetic field test data to compute dipole and quadrupole moment information from a hardware element. It is used to support JPL projects needing magnetic control and an understanding of the spacecraft-generated magnetic fields. Evaluation of the magnetic moment of an object consists of three steps: acquisition, conditioning, and analysis. This version of existing software was extensively rewritten for easier data acquisition, data analysis, and report presentation, including immediate feedback to the test operator during data acquisition. While prior JPL computer codes provided the same data content, this program has a better graphic display including original data overlaid with reconstructed results to show goodness of fit accuracy and better appearance of the report graphic page. Data are acquired using three magnetometers and two rotations of the device under test. A clean acquisition user interface presents required numeric data and graphic summaries, and the analysis module yields the best fit (least squares) for the magnetic dipole and/or quadrupole moment of a device. The acquisition module allows the user to record multiple data sets, selecting the best data to analyze, and is repeated three times for each of the z-axial and y-axial rotations. In this update, the y-axial rotation starting position has been changed to an option, allowing either the x- or z-axis to point towards the magnetometer. The code has been rewritten to use three simultaneous axes of magnetic data (three probes), now using two "rotations" of the device under test rather than the previous three rotations, thus reducing handling activities on the device under test. The present version of the software gathers data in one-degree increments, which permits much better accuracy of the fit ted data than the coarser data acquisition of the prior software. The data-conditioning module provides a clean data set for the analysis module. For multiple measurements at a given degree, the first measurement is used. For omitted measurements, the missing field is estimated by linear interpolation between the two nearest measurements. The analysis module was rewritten for the dual rotation, triaxial probe measurement process and now has better moment estimation accuracy, based on the finer one degree of data acquisition resolution. The magnetic moments thus computed are used as an input to summarize the total spacecraft field.
Kin, Taichi; Nakatomi, Hirofumi; Shojima, Masaaki; Tanaka, Minoru; Ino, Kenji; Mori, Harushi; Kunimatsu, Akira; Oyama, Hiroshi; Saito, Nobuhito
2012-07-01
In this study, the authors used preoperative simulation employing 3D computer graphics (interactive computer graphics) to fuse all imaging data for brainstem cavernous malformations. The authors evaluated whether interactive computer graphics or 2D imaging correlated better with the actual operative field, particularly in identifying a developmental venous anomaly (DVA). The study population consisted of 10 patients scheduled for surgical treatment of brainstem cavernous malformations. Data from preoperative imaging (MRI, CT, and 3D rotational angiography) were automatically fused using a normalized mutual information method, and then reconstructed by a hybrid method combining surface rendering and volume rendering methods. With surface rendering, multimodality and multithreshold techniques for 1 tissue were applied. The completed interactive computer graphics were used for simulation of surgical approaches and assumed surgical fields. Preoperative diagnostic rates for a DVA associated with brainstem cavernous malformation were compared between conventional 2D imaging and interactive computer graphics employing receiver operating characteristic (ROC) analysis. The time required for reconstruction of 3D images was 3-6 hours for interactive computer graphics. Observation in interactive mode required approximately 15 minutes. Detailed anatomical information for operative procedures, from the craniotomy to microsurgical operations, could be visualized and simulated three-dimensionally as 1 computer graphic using interactive computer graphics. Virtual surgical views were consistent with actual operative views. This technique was very useful for examining various surgical approaches. Mean (±SEM) area under the ROC curve for rate of DVA diagnosis was significantly better for interactive computer graphics (1.000±0.000) than for 2D imaging (0.766±0.091; p<0.001, Mann-Whitney U-test). The authors report a new method for automatic registration of preoperative imaging data from CT, MRI, and 3D rotational angiography for reconstruction into 1 computer graphic. The diagnostic rate of DVA associated with brainstem cavernous malformation was significantly better using interactive computer graphics than with 2D images. Interactive computer graphics was also useful in helping to plan the surgical access corridor.
PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The UNIX/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.
Peuquet, D.J.
1981-01-01
Current graphic devices suitable for high-speed computer input and output of cartographic data are tending more and more to be raster-oriented, such as the rotating drum scanner and the color raster display. However, the majority of commonly used manipulative techniques in computer-assisted cartography and automated spatial data handling continue to require that the data be in vector format. The current article is the second part of a two-part paper that examines the state of the art in these conversion techniques. - from Author
ERIC Educational Resources Information Center
Tung, Ting-Chun; Chen, Hung-Yuan
2017-01-01
With the advance of mobile computing and wireless technology, a user's intent to interact with the interface of a mobile device is motivated not only by its intuitional operation, but also by the emotional perception induced by its aesthetic appeal. A graphical interface employing icons with suitable visual effect based on the users' emotional…
Abdellah, Marwan; Eldeib, Ayman; Owis, Mohamed I
2015-01-01
This paper features an advanced implementation of the X-ray rendering algorithm that harnesses the giant computing power of the current commodity graphics processors to accelerate the generation of high resolution digitally reconstructed radiographs (DRRs). The presented pipeline exploits the latest features of NVIDIA Graphics Processing Unit (GPU) architectures, mainly bindless texture objects and dynamic parallelism. The rendering throughput is substantially improved by exploiting the interoperability mechanisms between CUDA and OpenGL. The benchmarks of our optimized rendering pipeline reflect its capability of generating DRRs with resolutions of 2048(2) and 4096(2) at interactive and semi interactive frame-rates using an NVIDIA GeForce 970 GTX device.
Human sense utilization method on real-time computer graphics
NASA Astrophysics Data System (ADS)
Maehara, Hideaki; Ohgashi, Hitoshi; Hirata, Takao
1997-06-01
We are developing an adjustment method of real-time computer graphics, to obtain effective ones which give audience various senses intended by producer, utilizing human sensibility technologically. Generally, production of real-time computer graphics needs much adjustment of various parameters, such as 3D object models/their motions/attributes/view angle/parallax etc., in order that the graphics gives audience superior effects as reality of materials, sense of experience and so on. And it is also known it costs much to adjust such various parameters by trial and error. A graphics producer often evaluates his graphics to improve it. For example, it may lack 'sense of speed' or be necessary to be given more 'sense of settle down,' to improve it. On the other hand, we can know how the parameters in computer graphics affect such senses by means of statistically analyzing several samples of computer graphics which provide different senses. We paid attention to these two facts, so that we designed an adjustment method of the parameters by inputting phases of sense into a computer. By the way of using this method, it becomes possible to adjust real-time computer graphics more effectively than by conventional way of trial and error.
Ink Jet For Business Graphic Application
NASA Astrophysics Data System (ADS)
Hooper, Dana H.
1987-04-01
This talk covers the use of Computer generated color output in the preparation of professional, memorable presentations. The focus is on this application and today's business graphic marketplace. To provide a background, on overview of the factors and trends influencing the market for color hard copy output is essential. The availability of lower cost computing technology, improved graphic software and user interfaces and the availability of color copiers is combining with the latest generation of color ink jet printers to cause a strong growth in the use of color hardcopy devices in the business graphics marketplace. The market is expected to grow at a compound annual growth rate in excess of 25% and reach a level of 5 Billion by 1990. Color lasography and ink jet technology based products are expected to increase share significantly primarily at the expense of pen plotters. Essential to the above mentioned growth is the latest generation of products. The Xerox 4020 Color Ink Jet Printer embodies the latest ink jet technology and is a good example of this new generation of products. The printer brings highly reliable color to a broad range of business users. The 4020 is driven by over 50 software packages allowing users compatibility and supporting a variety of applications. The 4020 is easy to operate and maintain and capable of producing excellent hardcopy and transparencies at an attractive price point. Several specific applications areas were discussed. Images were typically created on an IBM PC or compatible with a graphics application package and output to the Xerox 4020 Color Ink Jet Printer. Bar charts, line graphs, pie charts, integrated text and graphics, reports and maps were displayed with a brief description. Additionally, the use of color in brainscanning to discern and communicate information and in computer generated Art demonstrate the wide variety of potential applications. Images may be output to paper or to transparency for overhead presentation. The future of color in the business graphics market looks bright and will continue to be strongly influenced by future product introductions.
EMG amplifier with wireless data transmission
NASA Astrophysics Data System (ADS)
Kowalski, Grzegorz; Wildner, Krzysztof
2017-08-01
Wireless medical diagnostics is a trend in modern technology used in medicine. This paper presents a concept of realization, architecture of hardware and software implementation of an elecromyography signal (EMG) amplifier with wireless data transmission. This amplifier consists of three components: analogue processing of bioelectric signal module, micro-controller circuit and an application enabling data acquisition via a personal computer. The analogue bioelectric signal processing circuit receives electromyography signals from the skin surface, followed by initial analogue processing and preparation of the signals for further digital processing. The second module is a micro-controller circuit designed to wirelessly transmit the electromyography signals from the analogue signal converter to a personal computer. Its purpose is to eliminate the need for wired connections between the patient and the data logging device. The third block is a computer application designed to display the transmitted electromyography signals, as well as data capture and analysis. Its purpose is to provide a graphical representation of the collected data. The entire device has been thoroughly tested to ensure proper functioning. In use, the device displayed the captured electromyography signal from the arm of the patient. Amplitude- frequency characteristics were set in order to investigate the bandwidth and the overall gain of the device.
Color graphics, interactive processing, and the supercomputer
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen
1987-01-01
The development of a common graphics environment for the NASA Langley Research Center user community and the integration of a supercomputer into this environment is examined. The initial computer hardware, the software graphics packages, and their configurations are described. The addition of improved computer graphics capability to the supercomputer, and the utilization of the graphic software and hardware are discussed. Consideration is given to the interactive processing system which supports the computer in an interactive debugging, processing, and graphics environment.
Usability analysis of 2D graphics software for designing technical clothing.
Teodoroski, Rita de Cassia Clark; Espíndola, Edilene Zilma; Silva, Enéias; Moro, Antônio Renato Pereira; Pereira, Vera Lucia D V
2012-01-01
With the advent of technology, the computer became a working tool increasingly present in companies. Its purpose is to increase production and reduce the inherent errors in manual production. The aim of this study was to analyze the usability of 2D graphics software in creating clothing designs by a professional during his work. The movements of the mouse, keyboard and graphical tools were monitored in real time by software Camtasia 7® installed on the user's computer. To register the use of mouse and keyboard we used auxiliary software called MouseMeter®, which quantifies the number of times they pressed the right, middle and left mouse's buttons, the keyboard and also the distance traveled in meters by the cursor on the screen. Data was collected in periods of 15 minutes, 1 hour and 8 hours, consecutively. The results showed that the job is considered repetitive and high demands physical efforts, which can lead to the appearance of repetitive strain injuries. Thus, the goal of minimizing operator efforts and thereby enhance the usability of the examined tool, becomes imperative to replace the mouse by a device called tablet, which also offers an electronic pen and a drawing platform for design development.
ERIC Educational Resources Information Center
Prosise, Jeff
This document presents the principles behind modern computer graphics without straying into the arcane languages of mathematics and computer science. Illustrations accompany the clear, step-by-step explanations that describe how computers draw pictures. The 22 chapters of the book are organized into 5 sections. "Part 1: Computer Graphics in…
General aviation design synthesis utilizing interactive computer graphics
NASA Technical Reports Server (NTRS)
Galloway, T. L.; Smith, M. R.
1976-01-01
Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.
Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G.
2012-01-01
In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids. The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable. In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation. We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards. PMID:22347787
Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G
2011-07-01
In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids.The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable.In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation.We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.
COSMIC monthly progress report
NASA Technical Reports Server (NTRS)
1994-01-01
Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of May 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Nine articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) WFI - Windowing System for Test and Simulation; (2) HZETRN - A Free Space Radiation Transport and Shielding Program; (3) COMGEN-BEM - Composite Model Generation-Boundary Element Method; (4) IDDS - Interactive Data Display System; (5) CET93/PC - Chemical Equilibrium with Transport Properties, 1993; (6) SDVIC - Sub-pixel Digital Video Image Correlation; (7) TRASYS - Thermal Radiation Analyzer System (HP9000 Series 700/800 Version without NASADIG); (8) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (VAX VMS Version); and (9) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (UNIX Version). Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.
Design and evaluation of nonverbal sound-based input for those with motor handicapped.
Punyabukkana, Proadpran; Chanjaradwichai, Supadaech; Suchato, Atiwong
2013-03-01
Most personal computing interfaces rely on the users' ability to use their hand and arm movements to interact with on-screen graphical widgets via mainstream devices, including keyboards and mice. Without proper assistive devices, this style of input poses difficulties for motor-handicapped users. We propose a sound-based input scheme enabling users to operate Windows' Graphical User Interface by producing hums and fricatives through regular microphones. Hierarchically arranged menus are utilized so that only minimal numbers of different actions are required at a time. The proposed scheme was found to be accurate and capable of responding promptly compared to other sound-based schemes. Being able to select from multiple item-selecting modes helps reducing the average time duration needed for completing tasks in the test scenarios almost by half the time needed when the tasks were performed solely through cursor movements. Still, improvements on facilitating users to select the most appropriate modes for desired tasks should improve the overall usability of the proposed scheme.
Low-cost compact ECG with graphic LCD and phonocardiogram system design.
Kara, Sadik; Kemaloğlu, Semra; Kirbaş, Samil
2006-06-01
Till today, many different ECG devices are made in developing countries. In this study, low cost, small size, portable LCD screen ECG device, and phonocardiograph were designed. With designed system, heart sounds that take synchronously with ECG signal are heard as sensitive. Improved system consist three units; Unit 1, ECG circuit, filter and amplifier structure. Unit 2, heart sound acquisition circuit. Unit 3, microcontroller, graphic LCD and ECG signal sending unit to computer. Our system can be used easily in different departments of the hospital, health institution and clinics, village clinic and also in houses because of its small size structure and other benefits. In this way, it is possible that to see ECG signal and hear heart sounds as synchronously and sensitively. In conclusion, heart sounds are heard on the part of both doctor and patient because sounds are given to environment with a tiny speaker. Thus, the patient knows and hears heart sounds him/herself and is acquainted by doctor about healthy condition.
A streaming-based solution for remote visualization of 3D graphics on mobile devices.
Lamberti, Fabrizio; Sanna, Andrea
2007-01-01
Mobile devices such as Personal Digital Assistants, Tablet PCs, and cellular phones have greatly enhanced user capability to connect to remote resources. Although a large set of applications are now available bridging the gap between desktop and mobile devices, visualization of complex 3D models is still a task hard to accomplish without specialized hardware. This paper proposes a system where a cluster of PCs, equipped with accelerated graphics cards managed by the Chromium software, is able to handle remote visualization sessions based on MPEG video streaming involving complex 3D models. The proposed framework allows mobile devices such as smart phones, Personal Digital Assistants (PDAs), and Tablet PCs to visualize objects consisting of millions of textured polygons and voxels at a frame rate of 30 fps or more depending on hardware resources at the server side and on multimedia capabilities at the client side. The server is able to concurrently manage multiple clients computing a video stream for each one; resolution and quality of each stream is tailored according to screen resolution and bandwidth of the client. The paper investigates in depth issues related to latency time, bit rate and quality of the generated stream, screen resolutions, as well as frames per second displayed.
Li, Xiangrui; Lu, Zhong-Lin
2012-02-29
Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect to external events. Both VideoSwitcher and RTbox are available for users to purchase. The relevant information and many demonstration programs can be found at http://lobes.usc.edu/.
Parallel computation with molecular-motor-propelled agents in nanofabricated networks.
Nicolau, Dan V; Lard, Mercy; Korten, Till; van Delft, Falco C M J M; Persson, Malin; Bengtsson, Elina; Månsson, Alf; Diez, Stefan; Linke, Heiner; Nicolau, Dan V
2016-03-08
The combinatorial nature of many important mathematical problems, including nondeterministic-polynomial-time (NP)-complete problems, places a severe limitation on the problem size that can be solved with conventional, sequentially operating electronic computers. There have been significant efforts in conceiving parallel-computation approaches in the past, for example: DNA computation, quantum computation, and microfluidics-based computation. However, these approaches have not proven, so far, to be scalable and practical from a fabrication and operational perspective. Here, we report the foundations of an alternative parallel-computation system in which a given combinatorial problem is encoded into a graphical, modular network that is embedded in a nanofabricated planar device. Exploring the network in a parallel fashion using a large number of independent, molecular-motor-propelled agents then solves the mathematical problem. This approach uses orders of magnitude less energy than conventional computers, thus addressing issues related to power consumption and heat dissipation. We provide a proof-of-concept demonstration of such a device by solving, in a parallel fashion, the small instance {2, 5, 9} of the subset sum problem, which is a benchmark NP-complete problem. Finally, we discuss the technical advances necessary to make our system scalable with presently available technology.
Optimization Model for Web Based Multimodal Interactive Simulations.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2015-07-15
This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.
Badal, Andreu; Badano, Aldo
2009-11-01
It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDATM programming model (NVIDIA Corporation, Santa Clara, CA). An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.
Optimization Model for Web Based Multimodal Interactive Simulations
Halic, Tansel; Ahn, Woojin; De, Suvranu
2015-01-01
This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713
Kwon, Min-Woo; Kim, Seung-Cheol; Kim, Eun-Soo
2016-01-20
A three-directional motion-compensation mask-based novel look-up table method is proposed and implemented on graphics processing units (GPUs) for video-rate generation of digital holographic videos of three-dimensional (3D) scenes. Since the proposed method is designed to be well matched with the software and memory structures of GPUs, the number of compute-unified-device-architecture kernel function calls can be significantly reduced. This results in a great increase of the computational speed of the proposed method, allowing video-rate generation of the computer-generated hologram (CGH) patterns of 3D scenes. Experimental results reveal that the proposed method can generate 39.8 frames of Fresnel CGH patterns with 1920×1080 pixels per second for the test 3D video scenario with 12,088 object points on dual GPU boards of NVIDIA GTX TITANs, and they confirm the feasibility of the proposed method in the practical application fields of electroholographic 3D displays.
A User Modelling Approach for Computer-Based Critiquing
1990-01-01
example a CAD/CAM system). Com- puters are good for simulating in circumstances where training on the actual equip- 13 ment (for example a power plant or...system. It is an environment in which simulated devices, such as steam plant controllers, can be assembled and operated. Students can assemble a...Con- cordia hypermedia system, graphics can be integrated easily. Concordia is a hy- permedia development and presentation system available on the
Android Based Behavioral Biometric Authentication via Multi-Modal Fusion
2014-06-12
such as the way he or she uses the mouse, or interacts with the Graphical User Interface (GUI) [9]. Described simply, standard biometrics is determined...as a login screen on a standard computer. Active authentication is authentication that occurs dynamically throughout interaction with the device. A...because they are higher level constructs in themselves. The Android framework was specifically used for capturing the multitouch gestures: pinch and zoom
Computer-generated graphical presentations: use of multimedia to enhance communication.
Marks, L S; Penson, D F; Maller, J J; Nielsen, R T; deKernion, J B
1997-01-01
Personal computers may be used to create, store, and deliver graphical presentations. With computer-generated combinations of the five media (text, images, sound, video, and animation)--that is, multimedia presentations--the effectiveness of message delivery can be greatly increased. The basic tools are (1) a personal computer; (2) presentation software; and (3) a projector to enlarge the monitor images for audience viewing. Use of this new method has grown rapidly in the business-conference world, but has yet to gain widespread acceptance at medical meetings. We review herein the rationale for multimedia presentations in medicine (vis-à-vis traditional slide shows) as an improved means for increasing audience attention, comprehension, and retention. The evolution of multimedia is traced from earliest times to the present. The steps involved in making a multimedia presentation are summarized, emphasizing advances in technology that bring the new method within practical reach of busy physicians. Specific attention is given to software, digital image processing, storage devices, and delivery methods. Our development of a urology multimedia presentation--delivered May 4, 1996, before the Society for Urology and Engineering and now Internet-accessible at http://www.usrf.org--was the impetus for this work.
Graphics Processors in HEP Low-Level Trigger Systems
NASA Astrophysics Data System (ADS)
Ammendola, Roberto; Biagioni, Andrea; Chiozzi, Stefano; Cotta Ramusino, Angelo; Cretaro, Paolo; Di Lorenzo, Stefano; Fantechi, Riccardo; Fiorini, Massimiliano; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Neri, Ilaria; Paolucci, Pier Stanislao; Pastorelli, Elena; Piandani, Roberto; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Vicini, Piero
2016-11-01
Usage of Graphics Processing Units (GPUs) in the so called general-purpose computing is emerging as an effective approach in several fields of science, although so far applications have been employing GPUs typically for offline computations. Taking into account the steady performance increase of GPU architectures in terms of computing power and I/O capacity, the real-time applications of these devices can thrive in high-energy physics data acquisition and trigger systems. We will examine the use of online parallel computing on GPUs for the synchronous low-level trigger, focusing on tests performed on the trigger system of the CERN NA62 experiment. To successfully integrate GPUs in such an online environment, latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Furthermore, it is assessed how specific trigger algorithms can be parallelized and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen Large Hadron Collider (LHC) luminosity upgrade where highly selective algorithms will be essential to maintain sustainable trigger rates with very high pileup.
Big system: Interactive graphics for the engineer
NASA Technical Reports Server (NTRS)
Quenneville, C. E.
1975-01-01
The BCS Interactive Graphics System (BIG System) approach to graphics was presented, along with several significant engineering applications. The BIG System precompiler, the graphics support library, and the function requirements of graphics applications are discussed. It was concluded that graphics standardization and a device independent code can be developed to assure maximum graphic terminal transferability.
Computer graphics application in the engineering design integration system
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.
1975-01-01
The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.
Eghtesad, Adnan; Germaschewski, Kai; Beyerlein, Irene J.; ...
2017-10-14
We present the first high-performance computing implementation of the meso-scale phase field dislocation dynamics (PFDD) model on a graphics processing unit (GPU)-based platform. The implementation takes advantage of the portable OpenACC standard directive pragmas along with Nvidia's compute unified device architecture (CUDA) fast Fourier transform (FFT) library called CUFFT to execute the FFT computations within the PFDD formulation on the same GPU platform. The overall implementation is termed ACCPFDD-CUFFT. The package is entirely performance portable due to the use of OPENACC-CUDA inter-operability, in which calls to CUDA functions are replaced with the OPENACC data regions for a host central processingmore » unit (CPU) and device (GPU). A comprehensive benchmark study has been conducted, which compares a number of FFT routines, the Numerical Recipes FFT (FOURN), Fastest Fourier Transform in the West (FFTW), and the CUFFT. The last one exploits the advantages of the GPU hardware for FFT calculations. The novel ACCPFDD-CUFFT implementation is verified using the analytical solutions for the stress field around an infinite edge dislocation and subsequently applied to simulate the interaction and motion of dislocations through a bi-phase copper-nickel (Cu–Ni) interface. It is demonstrated that the ACCPFDD-CUFFT implementation on a single TESLA K80 GPU offers a 27.6X speedup relative to the serial version and a 5X speedup relative to the 22-multicore Intel Xeon CPU E5-2699 v4 @ 2.20 GHz version of the code.« less
Graphic-based musculoskeletal model for biomechanical analyses and animation.
Chao, Edmund Y S
2003-04-01
The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eghtesad, Adnan; Germaschewski, Kai; Beyerlein, Irene J.
We present the first high-performance computing implementation of the meso-scale phase field dislocation dynamics (PFDD) model on a graphics processing unit (GPU)-based platform. The implementation takes advantage of the portable OpenACC standard directive pragmas along with Nvidia's compute unified device architecture (CUDA) fast Fourier transform (FFT) library called CUFFT to execute the FFT computations within the PFDD formulation on the same GPU platform. The overall implementation is termed ACCPFDD-CUFFT. The package is entirely performance portable due to the use of OPENACC-CUDA inter-operability, in which calls to CUDA functions are replaced with the OPENACC data regions for a host central processingmore » unit (CPU) and device (GPU). A comprehensive benchmark study has been conducted, which compares a number of FFT routines, the Numerical Recipes FFT (FOURN), Fastest Fourier Transform in the West (FFTW), and the CUFFT. The last one exploits the advantages of the GPU hardware for FFT calculations. The novel ACCPFDD-CUFFT implementation is verified using the analytical solutions for the stress field around an infinite edge dislocation and subsequently applied to simulate the interaction and motion of dislocations through a bi-phase copper-nickel (Cu–Ni) interface. It is demonstrated that the ACCPFDD-CUFFT implementation on a single TESLA K80 GPU offers a 27.6X speedup relative to the serial version and a 5X speedup relative to the 22-multicore Intel Xeon CPU E5-2699 v4 @ 2.20 GHz version of the code.« less
Engineering computer graphics in gas turbine engine design, analysis and manufacture
NASA Technical Reports Server (NTRS)
Lopatka, R. S.
1975-01-01
A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.
PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P. G.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The VAX/VMS/DISSPLA implementation of PLOT3D supports 2-D polygons as well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.
Historical perspective on computer development and glossary of terms.
Honeyman, J C; Dwyer, S J
1993-01-01
This article contains a concise history of the development of mechanical and electronic computers, descriptions of the milestones in software development, discussion of the introduction and adoption of computers in radiology, and a glossary of computer terms used frequently in radiology. One of the earliest devices designed to mechanize calculations was the calculating clock, built in 1623. The first programmable electronic computer, the ENIAC (electronic numerical integration and computer), was completed in 1945 at the University of Pennsylvania. Software has developed from early machine language through fourth-generation languages and graphic user interfaces used today. The computer was introduced to radiology initially in the 1960s in nuclear medicine and is now incorporated in many digital imaging modalities throughout radiology. The development of picture archiving and communication systems has resulted in the implementation of several totally digital departments of radiology.
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1995-03-01
Mounting a lenticular lens in front of a flat panel display is a well known, inexpensive, and easy way to create an autostereoscopic system. Such a lens produces half resolution 3D images because half the pixels on the LCD are seen by the left eye and half by the right eye. This may be acceptable for graphics, but it makes full resolution text, as displayed by common software, nearly unreadable. Very fine alignment tolerances normally preclude the possibility of removing and replacing the lens in order to switch between 2D and 3D applications. Lenticular lens based displays are therefore limited to use as dedicated 3D devices. DTI has devised a technique which removes this limitation, allowing switching between full resolution 2D and half resolution 3D imaging modes. A second element, in the form of a concave lenticular lens array whose shape is exactly the negative of the first lens, is mounted on a hinge so that it can be swung down over the first lens array. When so positioned the two lenses cancel optically, allowing the user to see full resolution 2D for text or numerical applications. The two lenses, having complementary shapes, naturally tend to nestle together and snap into perfect alignment when pressed together--thus obviating any need for user operated alignment mechanisms. This system represents an ideal solution for laptop and notebook computer applications. It was devised to meet the stringent requirements of a laptop computer manufacturer including very compact size, very low cost, little impact on existing manufacturing or assembly procedures, and compatibility with existing full resolution 2D text- oriented software as well as 3D graphics. Similar requirements apply to high and electronic calculators, several models of which now use LCDs for the display of graphics.
A modern approach to storing of 3D geometry of objects in machine engineering industry
NASA Astrophysics Data System (ADS)
Sokolova, E. A.; Aslanov, G. A.; Sokolov, A. A.
2017-02-01
3D graphics is a kind of computer graphics which has absorbed a lot from the vector and raster computer graphics. It is used in interior design projects, architectural projects, advertising, while creating educational computer programs, movies, visual images of parts and products in engineering, etc. 3D computer graphics allows one to create 3D scenes along with simulation of light conditions and setting up standpoints.
Distributed computation of graphics primitives on a transputer network
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1988-01-01
A method is developed for distributing the computation of graphics primitives on a parallel processing network. Off-the-shelf transputer boards are used to perform the graphics transformations and scan-conversion tasks that would normally be assigned to a single transputer based display processor. Each node in the network performs a single graphics primitive computation. Frequently requested tasks can be duplicated on several nodes. The results indicate that the current distribution of commands on the graphics network shows a performance degradation when compared to the graphics display board alone. A change to more computation per node for every communication (perform more complex tasks on each node) may cause the desired increase in throughput.
An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.
1994-01-01
An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.
1982-06-01
no other. is the field of computer grapnIcs expanded, such limitations became a real liability. The inability to use one program at more tnan one...terms of these environmental factors. For example, some programs may be portable from one device to another as long as the computing environment is not...PemPOMMIN OROANI&ATIO NAMI AND A00RESS IQ. PROGRAM CLEMENT. PROJECT. TASK AREA a WORK UNiT muN9ERS Naval Postgraduate School Monterey, California 93940
Augmented Reality Comes to Physics
NASA Astrophysics Data System (ADS)
Buesing, Mark; Cook, Michael
2013-04-01
Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as Tagwhat and Star Chart (a must for astronomy class). The yellow line marking first downs in a televised football game2 and the enhanced puck that makes televised hockey easier to follow3 both use augmented reality to do the job.
THE EFFECT OF FEEDBACK ON THE ACCURACY OF CHECKLIST COMPLETION DURING INSTRUMENT FLIGHT TRAINING
Rantz, William G; Dickinson, Alyce M; Sinclair, Gilbert A; Van Houten, Ron
2009-01-01
This study examined whether pilots completed airplane checklists more accurately when they receive postflight graphic and verbal feedback. Participants were 8 college students who are pilots with an instrument rating. The task consisted of flying a designated flight pattern using a personal computer aviation training device (PCATD). The dependent variables were the number of checklist items completed correctly. A multiple baseline design across pairs of participants with withdrawal of treatment was employed in this study. During baseline, participants were given postflight technical feedback. During intervention, participants were given postflight graphic feedback on checklist use and praise for improvements along with technical feedback. The intervention produced near perfect checklist performance, which was maintained following a return to the baseline conditions. PMID:20190914
NASA Technical Reports Server (NTRS)
Ozsoy, T.; Ochs, J. B.
1984-01-01
The development of a general link between three dimensional wire frame models and rigid solid models is discussed. An interactive computer graphics program was developed to serve as a front end to an algorithm (COSMIC Program No. ARC-11446) which offers a general solution to the hidden line problem where the input data is either line segments of n-sided planar polygons of the most general type with internal boundaries. The program provides a general interface to CAD/CAM data bases and is implemented for models created on the Unigraphics VAX 11/780-based CAD/CAM systems with the display software written for DEC's VS11 color graphics devices.
Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.
ERIC Educational Resources Information Center
Parkland Coll., Champaign, IL.
A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…
A study of computer graphics technology in application of communication resource management
NASA Astrophysics Data System (ADS)
Li, Jing; Zhou, Liang; Yang, Fei
2017-08-01
With the development of computer technology, computer graphics technology has been widely used. Especially, the success of object-oriented technology and multimedia technology promotes the development of graphics technology in the computer software system. Therefore, the computer graphics theory and application technology have become an important topic in the field of computer, while the computer graphics technology becomes more and more extensive in various fields of application. In recent years, with the development of social economy, especially the rapid development of information technology, the traditional way of communication resource management cannot effectively meet the needs of resource management. In this case, the current communication resource management is still using the original management tools and management methods, resource management equipment management and maintenance, which brought a lot of problems. It is very difficult for non-professionals to understand the equipment and the situation in communication resource management. Resource utilization is relatively low, and managers cannot quickly and accurately understand the resource conditions. Aimed at the above problems, this paper proposes to introduce computer graphics technology into the communication resource management. The introduction of computer graphics not only makes communication resource management more vivid, but also reduces the cost of resource management and improves work efficiency.
Mechatronics Interface for Computer Assisted Prostate Surgery Training
NASA Astrophysics Data System (ADS)
Altamirano del Monte, Felipe; Padilla Castañeda, Miguel A.; Arámbula Cosío, Fernando
2006-09-01
In this work is presented the development of a mechatronics device to simulate the interaction of the surgeon with the surgical instrument (resectoscope) used during a Transurethral Resection of the Prostate (TURP). Our mechatronics interface is part of a computer assisted system for training in TURP, which is based on a 3D graphics model of the prostate which can be deformed and resected interactively by the user. The mechatronics interface, is the device that the urology residents will manipulate to simulate the movements performed during surgery. Our current prototype has five degrees of freedom, which are enough to have a realistic simulation of the surgery movements. Two of these degrees of freedom are linear, to determinate the linear displacement of the resecting loop and the other three are rotational to determinate three directions and amounts of rotation.
GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Desjardins, M. L.
1994-01-01
GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.
Scientific work environments in the next decade
NASA Technical Reports Server (NTRS)
Gomez, Julian E.
1989-01-01
The applications of contemporary computer graphics to scientific visualization is described, with emphasis on the nonintuitive problems. A radically different approach is proposed which centers on the idea of the scientist being in the simulation display space rather than observing it on a screen. Interaction is performed with nonstandard input devices to preserve the feeling of being immersed in the three-dimensional display space. Construction of such a system could begin now with currently available technology.
Colucci, G; Giabbani, E; Barizzi, G; Urwyler, N; Alberio, L
2011-08-01
ROTEM(®) is considered a helpful point-of-care device to monitor blood coagulation. Centrally performed analysis is desirable but rapid transport of blood samples and real-time transmission of graphic results are an important prerequisite. The effect of sample transport through a pneumatic tube system on ROTEM(®) results is unknown. The aims of the present work were (i) to determine the influence of blood sample transport through a pneumatic tube system on ROTEM(®) parameters compared to manual transportation, and (ii) to verify whether graphic results can be transmitted on line via virtual network computing using local area network to the physician in charge of the patient. Single centre study with 30 normal volunteers. Two whole blood samples were transferred to the central haematology laboratory by either normal transport or pneumatic delivery. EXTEM, INTEM, FIBTEM and APTEM were analysed in parallel with two ROTEM(®) devices and compared. Connection between central laboratory, emergency and operating rooms was established using local area network. All collected ROTEM(®) parameters were within normal limits. No statistically significant differences between normal transport and pneumatic delivery were observed. Real-time transmission of the original ROTEM(®) curves using local area network is feasible and easy to establish. At our institution, transport of blood samples by pneumatic delivery does not influence ROTEM(®) parameters. Blood samples can be analysed centrally, and results transmitted live via virtual network computing to emergency or operating rooms. Prior to analyse blood samples centrally, the type of sample transport should be tested to exclude in vitro blood activation by local pneumatic transport system. © 2011 Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
Dewdney, A. K.
1989-01-01
Discussed are three examples of computer graphics including biomorphs, Truchet tilings, and fractal popcorn. The graphics are shown and the basic algorithm using multiple iteration of a particular function or mathematical operation is described. An illustration of a snail shell created by computer graphics is presented. (YP)
Is There Computer Graphics after Multimedia?
ERIC Educational Resources Information Center
Booth, Kellogg S.
Computer graphics has been driven by the desire to generate real-time imagery subject to constraints imposed by the human visual system. The future of computer graphics, when off-the-shelf systems have full multimedia capability and when standard computing engines render imagery faster than real-time, remains to be seen. A dedicated pipeline for…
INCA- INTERACTIVE CONTROLS ANALYSIS
NASA Technical Reports Server (NTRS)
Bauer, F. H.
1994-01-01
The Interactive Controls Analysis (INCA) program was developed to provide a user friendly environment for the design and analysis of linear control systems, primarily feedback control systems. INCA is designed for use with both small and large order systems. Using the interactive graphics capability, the INCA user can quickly plot a root locus, frequency response, or time response of either a continuous time system or a sampled data system. The system configuration and parameters can be easily changed, allowing the INCA user to design compensation networks and perform sensitivity analysis in a very convenient manner. A journal file capability is included. This stores an entire sequence of commands, generated during an INCA session into a file which can be accessed later. Also included in INCA are a context-sensitive help library, a screen editor, and plot windows. INCA is robust to VAX-specific overflow problems. The transfer function is the basic unit of INCA. Transfer functions are automatically saved and are available to the INCA user at any time. A powerful, user friendly transfer function manipulation and editing capability is built into the INCA program. The user can do all transfer function manipulations and plotting without leaving INCA, although provisions are made to input transfer functions from data files. By using a small set of commands, the user may compute and edit transfer functions, and then examine these functions by using the ROOT_LOCUS, FREQUENCY_RESPONSE, and TIME_RESPONSE capabilities. Basic input data, including gains, are handled as single-input single-output transfer functions. These functions can be developed using the function editor or by using FORTRAN- like arithmetic expressions. In addition to the arithmetic functions, special functions are available to 1) compute step, ramp, and sinusoid functions, 2) compute closed loop transfer functions, 3) convert from S plane to Z plane with optional advanced Z transform, and 4) convert from Z plane to W plane and back. These capabilities allow the INCA user to perform block diagram algebraic manipulations quickly for functions in the S, Z, and W domains. Additionally, a versatile digital control capability has been included in INCA. Special plane transformations allow the user to easily convert functions from one domain to another. Other digital control capabilities include: 1) totally independent open loop frequency response analyses on a continuous plant, discrete control system with a delay, 2) advanced Z-transform capability for systems with delays, and 3) multirate sampling analyses. The current version of INCA includes Dynamic Functions (which change when a parameter changes), standard filter generation, PD and PID controller generation, incorporation of the QZ-algorithm (function addition, inverse Laplace), and describing functions that allow the user to calculate the gain and phase characteristics of a nonlinear device. The INCA graphic modes provide the user with a convenient means to document and study frequency response, time response, and root locus analyses. General graphics features include: 1) zooming and dezooming, 2) plot documentation, 3) a table of analytic computation results, 4) multiple curves on the same plot, and 5) displaying frequency and gain information for a specific point on a curve. Additional capabilities in the frequency response mode include: 1) a full complement of graphical methods Bode magnitude, Bode phase, Bode combined magnitude and phase, Bode strip plots, root contour plots, Nyquist, Nichols, and Popov plots; 2) user selected plot scaling; and 3) gain and phase margin calculation and display. In the time response mode, additional capabilities include: 1) support for inverse Laplace and inverse Z transforms, 2) support for various input functions, 3) closed loop response evaluation, 4) loop gain sensitivity analyses, 5) intersample time response for discrete systems using the advanced Z transform, and 6) closed loop time response using mixed plane (S, Z, W) operations with delay. A Graphics mode command was added to the current version of INCA, version 3.13, to produce Metafiles (graphic files) of the currently displayed plot. The metafile can be displayed and edited using the QPLOT Graphics Editor and Replotter for Metafiles (GERM) program included with the INCA package. The INCA program is written in Pascal and FORTRAN for interactive or batch execution and has been implemented on a DEC VAX series computer under VMS. Both source code and executable code are supplied for INCA. Full INCA graphics capabilities are supported for various Tektronix 40xx and 41xx terminals; DEC VT graphics terminals; many PC and Macintosh terminal emulators; TEK014 hardcopy devices such as the LN03 Laserprinter; and bit map graphics external hardcopy devices. Also included for the TEK4510 rasterizer users are a multiple copy feature, a wide line feature, and additional graphics fonts. The INCA program was developed in 1985, Version 2.04 was released in 1986, Version 3.00 was released in 1988, and Version 3.13 was released in 1989. An INCA version 2.0X conversion program is included.
Laserprinter applications in a medical graphics department.
Lynch, P J
1987-01-01
Our experience with the Apple Macintosh and LaserWriter equipment has convinced us that lasergraphics holds much current and future promise in the creation of line graphics and typography for the biomedical community. Although we continue to use other computer graphics equipment to produce color slides and an occasional pen-plotter graphic, the most rapidly growing segment of our graphics workload is in material well-suited to production on the Macintosh/LaserWriter system. At present our goal is to integrate all of our computer graphics production (color slides, video paint graphics and monochrome print graphics) into a single Macintosh-based system within the next two years. The software and hardware currently available are capable of producing a wide range of science graphics very quickly and inexpensively. The cost-effectiveness, versatility and relatively low initial investment required to install this equipment make it an attractive alternative for cost-recovery departments just entering the field of computer graphics.
Bix, Laura; Seo, Do Chan; Ladoni, Moslem; Brunk, Eric; Becker, Mark W
2016-01-01
Effective standardization of medical device labels requires objective study of varied designs. Insufficient empirical evidence exists regarding how practitioners utilize and view labeling. Measure the effect of graphic elements (boxing information, grouping information, symbol use and color-coding) to optimize a label for comparison with those typical of commercial medical devices. Participants viewed 54 trials on a computer screen. Trials were comprised of two labels that were identical with regard to graphics, but differed in one aspect of information (e.g., one had latex, the other did not). Participants were instructed to select the label along a given criteria (e.g., latex containing) as quickly as possible. Dependent variables were binary (correct selection) and continuous (time to correct selection). Eighty-nine healthcare professionals were recruited at Association of Surgical Technologists (AST) conferences, and using a targeted e-mail of AST members. Symbol presence, color coding and grouping critical pieces of information all significantly improved selection rates and sped time to correct selection (α = 0.05). Conversely, when critical information was graphically boxed, probability of correct selection and time to selection were impaired (α = 0.05). Subsequently, responses from trials containing optimal treatments (color coded, critical information grouped with symbols) were compared to two labels created based on a review of those commercially available. Optimal labels yielded a significant positive benefit regarding the probability of correct choice ((P<0.0001) LSM; UCL, LCL: 97.3%; 98.4%, 95.5%)), as compared to the two labels we created based on commercial designs (92.0%; 94.7%, 87.9% and 89.8%; 93.0%, 85.3%) and time to selection. Our study provides data regarding design factors, namely: color coding, symbol use and grouping of critical information that can be used to significantly enhance the performance of medical device labels.
Nameda, N
1988-01-01
Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.
Graphic artist in computerland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolberg, K.M.
1983-01-01
The field of computer graphics is rapidly opening up to the graphic artist. It is not necessary to be a programming expert to enter this fascinating world. The capabilities of the medium are astounding: neon and metallic effects, translucent plastic and clear glass effects, sensitive 3-D shadings, limitless textures, and above all color. As with any medium, computer graphics has its advantages, such as speed, ease of form manipulation, and a variety of type fonts and alphabets. It also has its limitations, such as data input time, final output turnaround time, and not necessarily being the right medium for themore » job at hand. And finally, it is the time- and cost-saving characteristics of computer-generated visuals, opposed to original artwork, that make computer graphics a viable alternative. This paper focuses on parts of the computer graphics system in use at the Los Alamos National Laboratory to provide specific examples.« less
Gist: A scientific graphics package for Python
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busby, L.E.
1996-05-08
{open_quotes}Gist{close_quotes} is a scientific graphics library written by David H. Munro of Lawrence Livermore National Laboratory (LLNL). It features support for three common graphics output devices: X Windows, (Color) PostScript, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small (written directly to Xlib), portable, efficient, and full-featured. It produces X versus Y plots with {open_quotes}good{close_quotes} tick marks and tick labels, 2-dimensional quadrilateral mesh plots with contours, vector fields, or pseudo color maps on such meshes, with 3-dimensional plots on the way. The Python Gist module utilizes the new {open_quotes}Numeric{close_quotes} module due to J. Hugunin and others. It ismore » therefore fast and able to handle large datasets. The Gist module includes an X Windows event dispatcher which can be dynamically added (e.g., via importing a dynamically loaded module) to the Python interpreter after a simple two-line modification to the Python core. This makes fast mouse-controlled zoom, pan, and other graphic operations available to the researcher while maintaining the usual Python command-line interface. Munro`s Gist library is already freely available. The Python Gist module is currently under review and is also expected to qualify for unlimited release.« less
Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task
NASA Astrophysics Data System (ADS)
Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.
2014-12-01
Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.
Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.
Revechkis, Boris; Aflalo, Tyson N S; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A
2014-12-01
To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisenauer, A.E.
1979-12-01
A system of computer codes to aid in the preparation and evaluation of ground-water model input, as well as in the computer codes and auxillary programs developed and adapted for use in modeling major ground-water aquifers is described. The ground-water model is interactive, rather than a batch-type model. Interactive models have been demonstrated to be superior to batch in the ground-water field. For example, looking through reams of numerical lists can be avoided with the much superior graphical output forms or summary type numerical output. The system of computer codes permits the flexibility to develop rapidly the model-required data filesmore » from engineering data and geologic maps, as well as efficiently manipulating the voluminous data generated. Central to these codes is the Ground-water Model, which given the boundary value problem, produces either the steady-state or transient time plane solutions. A sizeable part of the codes available provide rapid evaluation of the results. Besides contouring the new water potentials, the model allows graphical review of streamlines of flow, travel times, and detailed comparisons of surfaces or points at designated wells. Use of the graphics scopes provide immediate, but temporary displays which can be used for evaluation of input and output and which can be reproduced easily on hard copy devices, such as a line printer, Calcomp plotter and image photographs.« less
Orthodontics: computer-aided diagnosis and treatment planning
NASA Astrophysics Data System (ADS)
Yi, Yaxing; Li, Zhongke; Wei, Suyuan; Deng, Fanglin; Yao, Sen
2000-10-01
The purpose of this article is to introduce the outline of our newly developed computer-aided 3D dental cast analyzing system with laser scanning, and its preliminary clinical applications. The system is composed of a scanning device and a personal computer as a scanning controller and post processor. The scanning device is composed of a laser beam emitter, two sets of linear CCD cameras and a table which is rotatable by two-degree-of-freedom. The rotating is controlled precisely by a personal computer. The dental cast is projected and scanned with a laser beam. Triangulation is applied to determine the location of each point. Generation of 3D graphics of the dental cast takes approximately 40 minutes. About 170,000 sets of X,Y,Z coordinates are store for one dental cast. Besides the conventional linear and angular measurements of the dental cast, we are also able to demonstrate the size of the top surface area of each molar. The advantage of this system is that it facilitates the otherwise complicated and time- consuming mock surgery necessary for treatment planning in orthognathic surgery.
Multi-tasking computer control of video related equipment
NASA Technical Reports Server (NTRS)
Molina, Rod; Gilbert, Bob
1989-01-01
The flexibility, cost-effectiveness and widespread availability of personal computers now makes it possible to completely integrate the previously separate elements of video post-production into a single device. Specifically, a personal computer, such as the Commodore-Amiga, can perform multiple and simultaneous tasks from an individual unit. Relatively low cost, minimal space requirements and user-friendliness, provides the most favorable environment for the many phases of video post-production. Computers are well known for their basic abilities to process numbers, text and graphics and to reliably perform repetitive and tedious functions efficiently. These capabilities can now apply as either additions or alternatives to existing video post-production methods. A present example of computer-based video post-production technology is the RGB CVC (Computer and Video Creations) WorkSystem. A wide variety of integrated functions are made possible with an Amiga computer existing at the heart of the system.
An introduction to real-time graphical techniques for analyzing multivariate data
NASA Astrophysics Data System (ADS)
Friedman, Jerome H.; McDonald, John Alan; Stuetzle, Werner
1987-08-01
Orion I is a graphics system used to study applications of computer graphics - especially interactive motion graphics - in statistics. Orion I is the newest of a family of "Prim" systems, whose most striking common feature is the use of real-time motion graphics to display three dimensional scatterplots. Orion I differs from earlier Prim systems through the use of modern and relatively inexpensive raster graphics and microprocessor technology. It also delivers more computing power to its user; Orion I can perform more sophisticated real-time computations than were possible on previous such systems. We demonstrate some of Orion I's capabilities in our film: "Exploring data with Orion I".
Interactive graphical computer-aided design system
NASA Technical Reports Server (NTRS)
Edge, T. M.
1975-01-01
System is used for design, layout, and modification of large-scale-integrated (LSI) metal-oxide semiconductor (MOS) arrays. System is structured around small computer which provides real-time support for graphics storage display unit with keyboard, slave display unit, hard copy unit, and graphics tablet for designer/computer interface.
SIGMA--A Graphical Approach to Teaching Simulation.
ERIC Educational Resources Information Center
Schruben, Lee W.
1992-01-01
SIGMA (Simulation Graphical Modeling and Analysis) is a computer graphics environment for building, testing, and experimenting with discrete event simulation models on personal computers. It uses symbolic representations (computer animation) to depict the logic of large, complex discrete event systems for easier understanding and has proven itself…
Development of a Traditional/Computer-aided Graphics Course for Engineering Technology.
ERIC Educational Resources Information Center
Anand, Vera B.
1985-01-01
Describes a two-semester-hour freshman course in engineering graphics which uses both traditional and computerized instruction. Includes course description, computer graphics topics, and recommendations. Indicates that combining interactive graphics software with development of simple programs gave students a better foundation for upper-division…
GPUs: An Emerging Platform for General-Purpose Computation
2007-08-01
programming; real-time cinematic quality graphics Peak stream (26) License required (limited time no- cost evaluation program) Commercially...folding.stanford.edu (accessed 30 March 2007). 2. Fan, Z.; Qiu, F.; Kaufman, A.; Yoakum-Stover, S. GPU Cluster for High Performance Computing. ACM/IEEE...accessed 30 March 2007). 8. Goodnight, N.; Wang, R.; Humphreys, G. Computation on Programmable Graphics Hardware. IEEE Computer Graphics and
Graphical User Interface Programming in Introductory Computer Science.
ERIC Educational Resources Information Center
Skolnick, Michael M.; Spooner, David L.
Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…
DOT National Transportation Integrated Search
1981-01-01
This report describes a method for locating historic site information using a computer graphics program. If adopted for use by the Virginia Department of Highways and Transportation, this method should significantly reduce the time now required to de...
Oklahoma's Mobile Computer Graphics Laboratory.
ERIC Educational Resources Information Center
McClain, Gerald R.
This Computer Graphics Laboratory houses an IBM 1130 computer, U.C.C. plotter, printer, card reader, two key punch machines, and seminar-type classroom furniture. A "General Drafting Graphics System" (GDGS) is used, based on repetitive use of basic coordinate and plot generating commands. The system is used by 12 institutions of higher education…
Traditional Engineering Graphics versus Computer-Aided Drafting: A View from Academe.
ERIC Educational Resources Information Center
Foster, Robert J.
1987-01-01
Argues for a legitimate role of manually expressed engineering graphics within engineering education as a needed support for computer-assisted drafting work. Discusses what and how students should learn as well as trends in engineering graphics education. Compares and contrasts manual and computer drafting methods. (CW)
1981-12-01
CGS Funtional Requirements and System Configuration Introduction The first phase of any system development is to define requirements. The development of...between any two devices and the bus is in a master/slave relationship . During any bus operation, the bus master controls the bus when communicating with...illustrate the CASE statement of the PASCAL language. These extensions are mentioned to illustrate the relationships that the Warnier-Orr diagrams exhibit
DTD Creation for the Software Technology for Adaptable, Reliable Systems (STARS) Program
1990-06-23
developed to store documents in a format peculiar to the program’s design . Editing the document became easy since word processors adjust all spacing and...descriptive markup may be output to a 3 CDRL 1810 January 26, 1990 variety of devices ranging from high quality typography printers through laser printers...provision for non-SGML material, such as graphics , to be inserted in a document. For these reasons the Computer-Aided Acquisition and Logistics Support
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)
2001-01-01
This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.
Building the Joint Battlespace Infosphere. Volume 1: Summary
1999-12-17
portable devices , including wearable computer technology for mobile or field application 7.1.4.4.3 The Far Term (2009) The technology will be...graphic on a 2-D map image, or change the list of weapons to be loaded on an F/A-18, or sound an audible alarm in conjunction with flashing red...information automatically through a subscribe process. (3) At the same time, published information can be automatically changed into a new representation or
1991-03-01
test cases are gathered, studied, and evaluated; industry and other national European programs are studied; and experience is gained. This evolution ...application callable layer. The CGM Generator can be used to record device-independent picture descriptions. conceptually in parallel with the...contributors: I Organization Peter R. Bono Associates, Inc. Secretarial Support Susan Bonde , Diane Bono, E!aine Bono, Brenda Carson, Gillian Hall
A Program of Continuing Research on Representing, Manipulating, and Reasoning about Physical Objects
1991-09-30
graphics with the goal of automatically converting complex graphics models into forms more appropriate for radiosity computation. 2.4 Least Constraint We...to computer graphics with the goal of automatically 7 converting complex graphics models into forms more appropriate for radiosity com- putation. 8 4
Engineering Graphics Educational Outcomes for the Global Engineer: An Update
ERIC Educational Resources Information Center
Barr, R. E.
2012-01-01
This paper discusses the formulation of educational outcomes for engineering graphics that span the global enterprise. Results of two repeated faculty surveys indicate that new computer graphics tools and techniques are now the preferred mode of engineering graphical communication. Specifically, 3-D computer modeling, assembly modeling, and model…
GPU-computing in econophysics and statistical physics
NASA Astrophysics Data System (ADS)
Preis, T.
2011-03-01
A recent trend in computer science and related fields is general purpose computing on graphics processing units (GPUs), which can yield impressive performance. With multiple cores connected by high memory bandwidth, today's GPUs offer resources for non-graphics parallel processing. This article provides a brief introduction into the field of GPU computing and includes examples. In particular computationally expensive analyses employed in financial market context are coded on a graphics card architecture which leads to a significant reduction of computing time. In order to demonstrate the wide range of possible applications, a standard model in statistical physics - the Ising model - is ported to a graphics card architecture as well, resulting in large speedup values.
NASA Astrophysics Data System (ADS)
Derkachov, G.; Jakubczyk, T.; Jakubczyk, D.; Archer, J.; Woźniak, M.
2017-07-01
Utilising Compute Unified Device Architecture (CUDA) platform for Graphics Processing Units (GPUs) enables significant reduction of computation time at a moderate cost, by means of parallel computing. In the paper [Jakubczyk et al., Opto-Electron. Rev., 2016] we reported using GPU for Mie scattering inverse problem solving (up to 800-fold speed-up). Here we report the development of two subroutines utilising GPU at data preprocessing stages for the inversion procedure: (i) A subroutine, based on ray tracing, for finding spherical aberration correction function. (ii) A subroutine performing the conversion of an image to a 1D distribution of light intensity versus azimuth angle (i.e. scattering diagram), fed from a movie-reading CPU subroutine running in parallel. All subroutines are incorporated in PikeReader application, which we make available on GitHub repository. PikeReader returns a sequence of intensity distributions versus a common azimuth angle vector, corresponding to the recorded movie. We obtained an overall ∼ 400 -fold speed-up of calculations at data preprocessing stages using CUDA codes running on GPU in comparison to single thread MATLAB-only code running on CPU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badal, Andreu; Badano, Aldo
Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-raymore » imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.« less
Parallel design of JPEG-LS encoder on graphics processing units
NASA Astrophysics Data System (ADS)
Duan, Hao; Fang, Yong; Huang, Bormin
2012-01-01
With recent technical advances in graphic processing units (GPUs), GPUs have outperformed CPUs in terms of compute capability and memory bandwidth. Many successful GPU applications to high performance computing have been reported. JPEG-LS is an ISO/IEC standard for lossless image compression which utilizes adaptive context modeling and run-length coding to improve compression ratio. However, adaptive context modeling causes data dependency among adjacent pixels and the run-length coding has to be performed in a sequential way. Hence, using JPEG-LS to compress large-volume hyperspectral image data is quite time-consuming. We implement an efficient parallel JPEG-LS encoder for lossless hyperspectral compression on a NVIDIA GPU using the computer unified device architecture (CUDA) programming technology. We use the block parallel strategy, as well as such CUDA techniques as coalesced global memory access, parallel prefix sum, and asynchronous data transfer. We also show the relation between GPU speedup and AVIRIS block size, as well as the relation between compression ratio and AVIRIS block size. When AVIRIS images are divided into blocks, each with 64×64 pixels, we gain the best GPU performance with 26.3x speedup over its original CPU code.
Schwartz, Christopher; Sarlette, Ralf; Weinmann, Michael; Rump, Martin; Klein, Reinhard
2014-04-28
Understanding as well as realistic reproduction of the appearance of materials play an important role in computer graphics, computer vision and industry. They enable applications such as digital material design, virtual prototyping and faithful virtual surrogates for entertainment, marketing, education or cultural heritage documentation. A particularly fruitful way to obtain the digital appearance is the acquisition of reflectance from real-world material samples. Therefore, a great variety of devices to perform this task has been proposed. In this work, we investigate their practical usefulness. We first identify a set of necessary attributes and establish a general categorization of different designs that have been realized. Subsequently, we provide an in-depth discussion of three particular implementations by our work group, demonstrating advantages and disadvantages of different system designs with respect to the previously established attributes. Finally, we survey the existing literature to compare our implementation with related approaches.
Intellectual system of identification of Arabic graphics
NASA Astrophysics Data System (ADS)
Abdoullayeva, Gulchin G.; Aliyev, Telman A.; Gurbanova, Nazakat G.
2001-08-01
The studies made by using the domain of graphic images allowed creating facilities of the artificial intelligence for letters, letter combinations etc. for various graphics and prints. The work proposes a system of recognition and identification of symbols of the Arabic graphics, which has its own specificity as compared to Latin and Cyrillic ones. The starting stage of the recognition and the identification is coding with further entry of information into a computer. Here the problem of entry is one of the essentials. For entry of a large volume of information in the unit of time a scanner is usually employed. Along with the scanner the authors suggest their elaboration of technical facilities for effective input and coding of the information. For refinement of symbols not identified from the scanner mostly for a small bulk of information the developed coding devices are used directly in the process of writing. The functional design of the software is elaborated on the basis of the heuristic model of the creative activity of a researcher and experts in the description and estimation of states of the weakly formalizable systems on the strength of the methods of identification and of selection of geometric features.
Computer-Controlled System for Plasma Ion Energy Auto-Analyzer
NASA Astrophysics Data System (ADS)
Wu, Xian-qiu; Chen, Jun-fang; Jiang, Zhen-mei; Zhong, Qing-hua; Xiong, Yu-ying; Wu, Kai-hua
2003-02-01
A computer-controlled system for plasma ion energy auto-analyzer was technically studied for rapid and online measurement of plasma ion energy distribution. The system intelligently controls all the equipments via a RS-232 port, a printer port and a home-built circuit. The software designed by Lab VIEW G language automatically fulfils all of the tasks such as system initializing, adjustment of scanning-voltage, measurement of weak-current, data processing, graphic export, etc. By using the system, a few minutes are taken to acquire the whole ion energy distribution, which rapidly provides important parameters of plasma process techniques based on semiconductor devices and microelectronics.
Program Aids Specification Of Multiple-Block Grids
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Mccann, K. M.
1993-01-01
3DPREP computer program aids specification of multiple-block computational grids. Highly interactive graphical preprocessing program designed for use on powerful graphical scientific computer workstation. Divided into three main parts, each corresponding to principal graphical-and-alphanumerical display. Relieves user of some burden of collecting and formatting many data needed to specify blocks and grids, and prepares input data for NASA's 3DGRAPE grid-generating computer program.
Current And Future Directions Of Lens Design Software
NASA Astrophysics Data System (ADS)
Gustafson, Darryl E.
1983-10-01
The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
NASA Astrophysics Data System (ADS)
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
COINGRAD; Control Oriented Interactive Graphical Analysis and Design.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
The computer is currently a vital tool in engineering analysis and design. With the introduction of moderately priced graphics terminals, it will become even more important in the future as rapid graphic interaction between the engineer and the computer becomes more feasible in computer-aided design (CAD). To provide a vehicle for introducing…
Design and Curriculum Considerations for a Computer Graphics Program in the Arts.
ERIC Educational Resources Information Center
Leeman, Ruedy W.
This history and state-of-the-art review of computer graphics describes computer graphics programs and proposed programs at Sheridan College (Canada), the Rhode Island School of Design, the University of Oregon, Northern Illinois University, and Ohio State University. These programs are discussed in terms of their philosophy, curriculum, student…
VTGRAPH - GRAPHIC SOFTWARE TOOL FOR VT TERMINALS
NASA Technical Reports Server (NTRS)
Wang, C.
1994-01-01
VTGRAPH is a graphics software tool for DEC/VT or VT compatible terminals which are widely used by government and industry. It is a FORTRAN or C-language callable library designed to allow the user to deal with many computer environments which use VT terminals for window management and graphic systems. It also provides a PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. The program is transportable to many different computers which use VT terminals. With this graphics package, the user can easily design more friendly user interface programs and design PLOT10 programs on VT terminals with different computer systems. VTGRAPH was developed using the ReGis Graphics set which provides a full range of graphics capabilities. The basic VTGRAPH capabilities are as follows: window management, PLOT10 compatible drawing, generic program routines for two and three dimensional plotting, and color graphics or shaded graphics capability. The program was developed in VAX FORTRAN in 1988. VTGRAPH requires a ReGis graphics set terminal and a FORTRAN compiler. The program has been run on a DEC MicroVAX 3600 series computer operating under VMS 5.0, and has a virtual memory requirement of 5KB.
NASA Technical Reports Server (NTRS)
Apodaca, Tony; Porter, Tom
1989-01-01
The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.
Algorithmic support for graphic images rotation in avionics
NASA Astrophysics Data System (ADS)
Kniga, E. V.; Gurjanov, A. V.; Shukalov, A. V.; Zharinov, I. O.
2018-05-01
The avionics device designing has an actual problem of development and research algorithms to rotate the images which are being shown in the on-board display. The image rotation algorithms are a part of program software of avionics devices, which are parts of the on-board computers of the airplanes and helicopters. Images to be rotated have the flight location map fragments. The image rotation in the display system can be done as a part of software or mechanically. The program option is worse than the mechanic one in its rotation speed. The comparison of some test images of rotation several algorithms is shown which are being realized mechanically with the program environment Altera QuartusII.
The use of graphics in the design of the human-telerobot interface
NASA Technical Reports Server (NTRS)
Stuart, Mark A.; Smith, Randy L.
1989-01-01
The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.
ERIC Educational Resources Information Center
Roberts, Kathryn L.; Norman, Rebecca R.; Cocco, Jaime
2015-01-01
This study examined relationships between reading comprehension, known predictors of reading comprehension (i.e., cognitive flexibility, fluency, reading motivation and attitude, vocabulary), and graphical device comprehension. One-hundred fifty-six third graders completed assessments of known predictor variables and an assessment tapping…
Interplay of Computer and Paper-Based Sketching in Graphic Design
ERIC Educational Resources Information Center
Pan, Rui; Kuo, Shih-Ping; Strobel, Johannes
2013-01-01
The purpose of this study is to investigate student designers' attitude and choices towards the use of computers and paper sketches when involved in a graphic design process. 65 computer graphic technology undergraduates participated in this research. A mixed method study with survey and in-depth interviews was applied to answer the research…
Graphical Man/Machine Communications
Progress is reported concerning the use of computer controlled graphical displays in the areas of radiaton diffusion and hydrodynamics, general...ventricular dynamics. Progress is continuing on the use of computer graphics in architecture. Some progress in halftone graphics is reported with no basic...developments presented. Colored halftone perspective pictures are being used to represent multivariable situations. Nonlinear waveform processing is
Inertial Manifolds for Navier-Stokes Equations and Related Dynamical Systems
1991-05-31
Graphics IRIS (SGI). The RLE files for the animation are loaded to an Abekas and recorded to tape by Betacam . This computational work was done by using the...scripts and comments, are loaded to the Abekas-A60 digital image storage device, and then recorded to the Betacam BVW-75 analog tape recorder. Static...interfacing, huge data files are output to the Data Vault parallelly with little cost. In addition to the SGIs, Abekas, Betacam and Solitaire, the
2012-08-01
UNCLASSIFIED: Distribution Statement A. Approved for public release. DISCLAIMER: Reference herein to any specific commercial company , product...FunctionBay, S. Korea – NVIDIA – Caterpillar – MSC.Software – Advanced Micro Devices (AMD) 14-16 AUG 2012 Aaron Bartholomew Makarand Datar...16GB DDR2 Graphics: 4x NVIDIA Tesla C1060 Power supply 1: 1000W Power supply 2: 750W Assembled Quad GPU Machine 14-16 AUG 2012 30
An Interactive System For Fourier Analysis Of Artichoke Flower Shape.
NASA Astrophysics Data System (ADS)
Impedovo, Sebastiano; Fanelli, Anna M.; Ligouras, Panagiotis
1984-06-01
In this paper we present an interactive system which allows the Fourier analysis of the artichoke flower-head profile. The system consistsof a DEC pdp 11/34 computer with both a a track-following device and a Tektronix 4010/1 graphic and alpha numeric display on-line. Some experiments have been carried out taking into account some different parental types of artichoke flower-head samples. It is shown here that a narrow band of only eight harmonics is sufficient to classify different artichoke flower shapes.
DAM package version 7807: Software fixes and enhancements
NASA Technical Reports Server (NTRS)
Schlosser, E.
1979-01-01
The Detection and Mapping package is an integrated set of manual procedures, computer programs, and graphic devices designed for efficient production of precisely registered, formatted, and interpreted maps from digital LANDSAT multispectral scanner data. This report documents changes to the DAM package in support of its use by the Corps of Engineers for inventorying impounded surface water. Although these changes are presented in terms of their application to detecting and mapping surface water, they are equally relevant to other land surface materials.
Computer-Graphics Emulation of Chemical Instrumentation: Absorption Spectrophotometers.
ERIC Educational Resources Information Center
Gilbert, D. D.; And Others
1982-01-01
Describes interactive, computer-graphics program emulating behavior of high resolution, ultraviolet-visible analog recording spectrophotometer. Graphics terminal behaves as recording absorption spectrophotometer. Objective of the emulation is study of optimization of the instrument to yield accurate absorption spectra, including…
Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL
NASA Technical Reports Server (NTRS)
Dumas, Joseph D., II
2002-01-01
The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.
Ideas for Use of an IPad in Introductory Physics Education
NASA Astrophysics Data System (ADS)
Aurora, Tarlok S.
2014-03-01
Mobile devices such as an IPad, tablet computers and smartphones offer an opportunity to collect information to facilitate physics teaching and learning. The data collected with built-in sensors, such as a video camera, may be analyzed on the mobile device itself or on a desktop computer. In this work, first, the circular motion of a steel ball rolling in a cereal bowl was analyzed to show that it consisted of two simple harmonic motions, in perpendicular directions. Secondly, motion of two balls-one dropped vertically down, and the other one launched as a projectile - was analyzed. Data was analyzed with Logger Pro software, and value of g was determined graphically. Details of the work, its limitations and additional examples will be described. The material so obtained may be used as a demonstration, in a classroom, to clarify physics concepts. In a school, where students are required to have such portable devices, one may assign such activities as homework, to enhance student engagement in learning physics. The author is thankful to USciences for the IPad; and Rich Cosgriff, Phyllis Blumberg and Elia Eschenazi for useful discussions.
GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Des, Jardins M. L.
1994-01-01
GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.
NASA Astrophysics Data System (ADS)
Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.
2017-07-01
Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).
Development of a Computer Writing System Based on EOG
López, Alberto; Ferrero, Francisco; Yangüela, David; Álvarez, Constantina; Postolache, Octavian
2017-01-01
The development of a novel computer writing system based on eye movements is introduced herein. A system of these characteristics requires the consideration of three subsystems: (1) A hardware device for the acquisition and transmission of the signals generated by eye movement to the computer; (2) A software application that allows, among other functions, data processing in order to minimize noise and classify signals; and (3) A graphical interface that allows the user to write text easily on the computer screen using eye movements only. This work analyzes these three subsystems and proposes innovative and low cost solutions for each one of them. This computer writing system was tested with 20 users and its efficiency was compared to a traditional virtual keyboard. The results have shown an important reduction in the time spent on writing, which can be very useful, especially for people with severe motor disorders. PMID:28672863
Development of a Computer Writing System Based on EOG.
López, Alberto; Ferrero, Francisco; Yangüela, David; Álvarez, Constantina; Postolache, Octavian
2017-06-26
The development of a novel computer writing system based on eye movements is introduced herein. A system of these characteristics requires the consideration of three subsystems: (1) A hardware device for the acquisition and transmission of the signals generated by eye movement to the computer; (2) A software application that allows, among other functions, data processing in order to minimize noise and classify signals; and (3) A graphical interface that allows the user to write text easily on the computer screen using eye movements only. This work analyzes these three subsystems and proposes innovative and low cost solutions for each one of them. This computer writing system was tested with 20 users and its efficiency was compared to a traditional virtual keyboard. The results have shown an important reduction in the time spent on writing, which can be very useful, especially for people with severe motor disorders.
The analysis of optical-electro collimated light tube measurement system
NASA Astrophysics Data System (ADS)
Li, Zhenhui; Jiang, Tao; Cao, Guohua; Wang, Yanfei
2005-12-01
A new type of collimated light tube (CLT) is mentioned in this paper. The analysis and structure of CLT are described detail. The reticle and discrimination board are replaced by a optical-electro graphics generator, or DLP-Digital Light Processor. DLP gives all kinds of graphics controlled by computer, the lighting surface lies on the focus of the CLT. The rays of light pass through the CLT, and the tested products, the image of aim is received by variant focus objective CCD camera, the image can be processed by computer, then, some basic optical parameters will be obtained, such as optical aberration, image slope, etc. At the same time, motorized translation stage carry the DLP moving to simulate the limited distance. The grating ruler records the displacement of the DLP. The key technique is optical-electro auto-focus, the best imaging quality can be gotten by moving 6-D motorized positioning stage. Some principal questions can be solved in this device, for example, the aim generating, the structure of receiving system and optical matching.
Drawing Nomograms with R: applications to categorical outcome and survival data.
Zhang, Zhongheng; Kattan, Michael W
2017-05-01
Outcome prediction is a major task in clinical medicine. The standard approach to this work is to collect a variety of predictors and build a model of appropriate type. The model is a mathematical equation that connects the outcome of interest with the predictors. A new patient with given clinical characteristics can be predicted for outcome with this model. However, the equation describing the relationship between predictors and outcome is often complex and the computation requires software for practical use. There is another method called nomogram which is a graphical calculating device allowing an approximate graphical computation of a mathematical function. In this article, we describe how to draw nomograms for various outcomes with nomogram() function. Binary outcome is fit by logistic regression model and the outcome of interest is the probability of the event of interest. Ordinal outcome variable is also discussed. Survival analysis can be fit with parametric model to fully describe the distributions of survival time. Statistics such as the median survival time, survival probability up to a specific time point are taken as the outcome of interest.
Parallel Implementation of MAFFT on CUDA-Enabled Graphics Hardware.
Zhu, Xiangyuan; Li, Kenli; Salah, Ahmad; Shi, Lin; Li, Keqin
2015-01-01
Multiple sequence alignment (MSA) constitutes an extremely powerful tool for many biological applications including phylogenetic tree estimation, secondary structure prediction, and critical residue identification. However, aligning large biological sequences with popular tools such as MAFFT requires long runtimes on sequential architectures. Due to the ever increasing sizes of sequence databases, there is increasing demand to accelerate this task. In this paper, we demonstrate how graphic processing units (GPUs), powered by the compute unified device architecture (CUDA), can be used as an efficient computational platform to accelerate the MAFFT algorithm. To fully exploit the GPU's capabilities for accelerating MAFFT, we have optimized the sequence data organization to eliminate the bandwidth bottleneck of memory access, designed a memory allocation and reuse strategy to make full use of limited memory of GPUs, proposed a new modified-run-length encoding (MRLE) scheme to reduce memory consumption, and used high-performance shared memory to speed up I/O operations. Our implementation tested in three NVIDIA GPUs achieves speedup up to 11.28 on a Tesla K20m GPU compared to the sequential MAFFT 7.015.
Global magnetohydrodynamic simulations on multiple GPUs
NASA Astrophysics Data System (ADS)
Wong, Un-Hong; Wong, Hon-Cheng; Ma, Yonghui
2014-01-01
Global magnetohydrodynamic (MHD) models play the major role in investigating the solar wind-magnetosphere interaction. However, the huge computation requirement in global MHD simulations is also the main problem that needs to be solved. With the recent development of modern graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA), it is possible to perform global MHD simulations in a more efficient manner. In this paper, we present a global magnetohydrodynamic (MHD) simulator on multiple GPUs using CUDA 4.0 with GPUDirect 2.0. Our implementation is based on the modified leapfrog scheme, which is a combination of the leapfrog scheme and the two-step Lax-Wendroff scheme. GPUDirect 2.0 is used in our implementation to drive multiple GPUs. All data transferring and kernel processing are managed with CUDA 4.0 API instead of using MPI or OpenMP. Performance measurements are made on a multi-GPU system with eight NVIDIA Tesla M2050 (Fermi architecture) graphics cards. These measurements show that our multi-GPU implementation achieves a peak performance of 97.36 GFLOPS in double precision.
Real-time scalable visual analysis on mobile devices
NASA Astrophysics Data System (ADS)
Pattath, Avin; Ebert, David S.; May, Richard A.; Collins, Timothy F.; Pike, William
2008-02-01
Interactive visual presentation of information can help an analyst gain faster and better insight from data. When combined with situational or context information, visualization on mobile devices is invaluable to in-field responders and investigators. However, several challenges are posed by the form-factor of mobile devices in developing such systems. In this paper, we classify these challenges into two broad categories - issues in general mobile computing and issues specific to visual analysis on mobile devices. Using NetworkVis and Infostar as example systems, we illustrate some of the techniques that we employed to overcome many of the identified challenges. NetworkVis is an OpenVG-based real-time network monitoring and visualization system developed for Windows Mobile devices. Infostar is a flash-based interactive, real-time visualization application intended to provide attendees access to conference information. Linked time-synchronous visualization, stylus/button-based interactivity, vector graphics, overview-context techniques, details-on-demand and statistical information display are some of the highlights of these applications.
ERIC Educational Resources Information Center
McKee, Richard Lee
This master's thesis reports the results of a survey submitted to over 30 colleges and universities that currently offer computer graphics courses or are in the planning stage of curriculum design. Intended to provide a profile of the computer graphics programs and insight into the process of curriculum design, the survey gathered data on program…
Interactive computer graphics and its role in control system design of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.
1985-01-01
This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.
Chikkagoudar, Satish; Wang, Kai; Li, Mingyao
2011-05-26
Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.
2011-01-01
Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/. PMID:21615923
Key Issues in Instructional Computer Graphics.
ERIC Educational Resources Information Center
Wozny, Michael J.
1981-01-01
Addresses key issues facing universities which plan to establish instructional computer graphics facilities, including computer-aided design/computer aided manufacturing systems, role in curriculum, hardware, software, writing instructional software, faculty involvement, operations, and research. Thirty-seven references and two appendices are…
NASA Astrophysics Data System (ADS)
McKenna, Kyra; McMenemy, Karen; Ferguson, R. S.; Dick, Alistair; Potts, Stephen
2008-02-01
Computer simulators are a popular method of training surgeons in the techniques of laparoscopy. However, for the trainee to feel totally immersed in the process, the graphical display should be as lifelike as possible and two-handed force feedback interaction is required. This paper reports on how a compelling immersive experience can be delivered at low cost using commonly available hardware components. Three specific themes are brought together. Firstly, programmable shaders executing in standard PC graphics adapter's deliver the appearance of anatomical realism, including effects of: translucent tissue surfaces, semi-transparent membranes, multilayer image texturing and real-time shadowing. Secondly, relatively inexpensive 'off the shelf' force feedback devices contribute to a holistic immersive experience. The final element described is the custom software that brings these together with hierarchically organized and optimized polygonal models for abdominal anatomy.
Interactive computer graphics - Why's, wherefore's and examples
NASA Technical Reports Server (NTRS)
Gregory, T. J.; Carmichael, R. L.
1983-01-01
The benefits of using computer graphics in design are briefly reviewed. It is shown that computer graphics substantially aids productivity by permitting errors in design to be found immediately and by greatly reducing the cost of fixing the errors and the cost of redoing the process. The possibilities offered by computer-generated displays in terms of information content are emphasized, along with the form in which the information is transferred. The human being is ideally and naturally suited to dealing with information in picture format, and the content rate in communication with pictures is several orders of magnitude greater than with words or even graphs. Since science and engineering involve communicating ideas, concepts, and information, the benefits of computer graphics cannot be overestimated.
A System for Generating Instructional Computer Graphics.
ERIC Educational Resources Information Center
Nygard, Kendall E.; Ranganathan, Babusankar
1983-01-01
Description of the Tektronix-Based Interactive Graphics System for Instruction (TIGSI), which was developed for generating graphics displays in computer-assisted instruction materials, discusses several applications (e.g., reinforcing learning of concepts, principles, rules, and problem-solving techniques) and presents advantages of the TIGSI…
Optimization of Microelectronic Devices for Sensor Applications
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
2000-01-01
The NASA/JPL goal to reduce payload in future space missions while increasing mission capability demands miniaturization of active and passive sensors, analytical instruments and communication systems among others. Currently, typical system requirements include the detection of particular spectral lines, associated data processing, and communication of the acquired data to other systems. Advances in lithography and deposition methods result in more advanced devices for space application, while the sub-micron resolution currently available opens a vast design space. Though an experimental exploration of this widening design space-searching for optimized performance by repeated fabrication efforts-is unfeasible, it does motivate the development of reliable software design tools. These tools necessitate models based on fundamental physics and mathematics of the device to accurately model effects such as diffraction and scattering in opto-electronic devices, or bandstructure and scattering in heterostructure devices. The software tools must have convenient turn-around times and interfaces that allow effective usage. The first issue is addressed by the application of high-performance computers and the second by the development of graphical user interfaces driven by properly developed data structures. These tools can then be integrated into an optimization environment, and with the available memory capacity and computational speed of high performance parallel platforms, simulation of optimized components can proceed. In this paper, specific applications of the electromagnetic modeling of infrared filtering, as well as heterostructure device design will be presented using genetic algorithm global optimization methods.
Summoning Prior Knowledge through Metaphorical Graphics: An Example in Chemistry Instruction
ERIC Educational Resources Information Center
Stroud, Michael J.; Schwartz, Neil H.
2010-01-01
The present investigation was designed to determine if the learning benefits of metaphors and graphics could be combined into one instructional device--a metaphorical graphic--to aid in the acquisition of difficult concepts of chemistry. The authors further sought to determine if metaphorical graphics could foster greater retention of the basic…
Reader Use and Understanding of Newspaper Informational Graphics.
ERIC Educational Resources Information Center
Pasternack, Steve; Utt, Sandra H.
While the use of informational graphics in newspapers is increasing, little is known regarding how well readers can understand them and how readers use them. A study investigated whether readers of newspapers read graphics before or after they read the headline/text, and whether people decide to read a graphic device for appearance-related or…
Graphics Software For VT Terminals
NASA Technical Reports Server (NTRS)
Wang, Caroline
1991-01-01
VTGRAPH graphics software tool for DEC/VT computer terminal or terminals compatible with it, widely used by government and industry. Callable in FORTRAN or C language, library program enabling user to cope with many computer environments in which VT terminals used for window management and graphic systems. Provides PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. User can easily design more-friendly user-interface programs and design PLOT10 programs on VT terminals with different computer systems. Requires ReGis graphics set terminal and FORTRAN compiler.
An application of interactive computer graphics technology to the design of dispersal mechanisms
NASA Technical Reports Server (NTRS)
Richter, B. J.; Welch, B. H.
1977-01-01
Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems.
Living Color Frame System: PC graphics tool for data visualization
NASA Technical Reports Server (NTRS)
Truong, Long V.
1993-01-01
Living Color Frame System (LCFS) is a personal computer software tool for generating real-time graphics applications. It is highly applicable for a wide range of data visualization in virtual environment applications. Engineers often use computer graphics to enhance the interpretation of data under observation. These graphics become more complicated when 'run time' animations are required, such as found in many typical modern artificial intelligence and expert systems. Living Color Frame System solves many of these real-time graphics problems.
GPU accelerated fuzzy connected image segmentation by using CUDA.
Zhuge, Ying; Cao, Yong; Miller, Robert W
2009-01-01
Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.
General rigid motion correction for computed tomography imaging based on locally linear embedding
NASA Astrophysics Data System (ADS)
Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge
2018-02-01
The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.
Computer soundcard as an AC signal generator and oscilloscope for the physics laboratory
NASA Astrophysics Data System (ADS)
Sinlapanuntakul, Jinda; Kijamnajsuk, Puchong; Jetjamnong, Chanthawut; Chotikaprakhan, Sutharat
2018-01-01
The purpose of this paper is to develop both an AC signal generator and a dual-channel oscilloscope based on standard personal computer equipped with sound card as parts of the laboratory of the fundamental physics and the introduction to electronics classes. The setup turns the computer into the two channel measured device which can provides sample rate, simultaneous sampling, frequency range, filters and others essential capabilities required to perform amplitude, phase and frequency measurements of AC signal. The AC signal also generate from the same computer sound card output simultaneously in any waveform such as sine, square, triangle, saw-toothed pulsed, swept sine and white noise etc. These can convert an inexpensive PC sound card into powerful device, which allows the students to measure physical phenomena with their own PCs either at home or at university attendance. A graphic user interface software was developed for control and analysis, including facilities for data recording, signal processing and real time measurement display. The result is expanded utility of self-learning for the students in the field of electronics both AC and DC circuits, including the sound and vibration experiments.
Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Zamanyan, Alen; Torri, Federica; Macciardi, Fabio; Hobel, Sam; Moon, Seok Woo; Sung, Young Hee; Jiang, Zhiguo; Labus, Jennifer; Kurth, Florian; Ashe-McNalley, Cody; Mayer, Emeran; Vespa, Paul M.; Van Horn, John D.; Toga, Arthur W.
2013-01-01
The volume, diversity and velocity of biomedical data are exponentially increasing providing petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands of computational algorithms are developed and reported in the literature along with thousands of software tools and services. Users demand intuitive, quick and platform-agnostic access to data, software tools, and infrastructure from millions of hardware devices. This explosion of information, scientific techniques, computational models, and technological advances leads to enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of findings. The Pipeline workflow environment provides a crowd-based distributed solution for consistent management of these heterogeneous resources. The Pipeline allows multiple (local) clients and (remote) servers to connect, exchange protocols, control the execution, monitor the states of different tools or hardware, and share complete protocols as portable XML workflows. In this paper, we demonstrate several advanced computational neuroimaging and genetics case-studies, and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic (SNP) data. PMID:23975276
Graphical Requirements for Force Level Planning. Volume 2
1991-09-01
technology review includes graphics algorithms, computer hardware, computer software, and design methodologies. The technology can either exist today or...level graphics language. 7.4 User Interface Design Tools As user interfaces have become more sophisticated, they have become harder to develop. Xl...Setphen M. Pizer, editors. Proceedings 1986 Workshop on Interactive 31) Graphics , October 1986. 18 J. S. Dumas. Designing User Interface Software. Prentice
The Graphical User Interface: Crisis, Danger, and Opportunity.
ERIC Educational Resources Information Center
Boyd, L. H.; And Others
1990-01-01
This article describes differences between the graphical user interface and traditional character-based interface systems, identifies potential problems posed by graphic computing environments for blind computer users, and describes some programs and strategies that are being developed to provide access to those environments. (Author/JDD)
The use of computer graphics in the visual analysis of the proposed Sunshine Ski Area expansion
Mark Angelo
1979-01-01
This paper describes the use of computer graphics in designing part of the Sunshine Ski Area in Banff National Park. The program used was capable of generating perspective landscape drawings from a number of different viewpoints. This allowed managers to predict, and subsequently reduce, the adverse visual impacts of ski-run development. Computer graphics have proven,...
2017-08-01
access to the GPU for general purpose processing .5 CUDA is designed to work easily with multiple programming languages , including Fortran. CUDA is a...Using Graphics Processing Unit (GPU) Computing by Leelinda P Dawson Approved for public release; distribution unlimited...The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing by Leelinda
Computer Corner: Computer Graphics for the Vibrating String.
ERIC Educational Resources Information Center
Smith, David A.; Cunningham, R. Stephen
1986-01-01
Computer graphics are used to display the sum of the first few terms of the series solution for the problem of the vibrating string frequently discussed in introductory courses on differential equations. (MNS)
NASA Technical Reports Server (NTRS)
Adams, Richard J.
2015-01-01
The patent-pending Glove-Enabled Computer Operations (GECO) design leverages extravehicular activity (EVA) glove design features as platforms for instrumentation and tactile feedback, enabling the gloves to function as human-computer interface devices. Flexible sensors in each finger enable control inputs that can be mapped to any number of functions (e.g., a mouse click, a keyboard strike, or a button press). Tracking of hand motion is interpreted alternatively as movement of a mouse (change in cursor position on a graphical user interface) or a change in hand position on a virtual keyboard. Programmable vibro-tactile actuators aligned with each finger enrich the interface by creating the haptic sensations associated with control inputs, such as recoil of a button press.
NASA Astrophysics Data System (ADS)
Doronin, Alexander; Rushmeier, Holly E.; Meglinski, Igor; Bykov, Alexander V.
2016-03-01
We present a new Monte Carlo based approach for the modelling of Bidirectional Scattering-Surface Reflectance Distribution Function (BSSRDF) for accurate rendering of human skin appearance. The variations of both skin tissues structure and the major chromophores are taken into account correspondingly to the different ethnic and age groups. The computational solution utilizes HTML5, accelerated by the graphics processing units (GPUs), and therefore is convenient for the practical use at the most of modern computer-based devices and operating systems. The results of imitation of human skin reflectance spectra, corresponding skin colours and examples of 3D faces rendering are presented and compared with the results of phantom studies.
Voice and gesture-based 3D multimedia presentation tool
NASA Astrophysics Data System (ADS)
Fukutake, Hiromichi; Akazawa, Yoshiaki; Okada, Yoshihiro
2007-09-01
This paper proposes a 3D multimedia presentation tool that allows the user to manipulate intuitively only through the voice input and the gesture input without using a standard keyboard or a mouse device. The authors developed this system as a presentation tool to be used in a presentation room equipped a large screen like an exhibition room in a museum because, in such a presentation environment, it is better to use voice commands and the gesture pointing input rather than using a keyboard or a mouse device. This system was developed using IntelligentBox, which is a component-based 3D graphics software development system. IntelligentBox has already provided various types of 3D visible, reactive functional components called boxes, e.g., a voice input component and various multimedia handling components. IntelligentBox also provides a dynamic data linkage mechanism called slot-connection that allows the user to develop 3D graphics applications by combining already existing boxes through direct manipulations on a computer screen. Using IntelligentBox, the 3D multimedia presentation tool proposed in this paper was also developed as combined components only through direct manipulations on a computer screen. The authors have already proposed a 3D multimedia presentation tool using a stage metaphor and its voice input interface. This time, we extended the system to make it accept the user gesture input besides voice commands. This paper explains details of the proposed 3D multimedia presentation tool and especially describes its component-based voice and gesture input interfaces.
Architectures for single-chip image computing
NASA Astrophysics Data System (ADS)
Gove, Robert J.
1992-04-01
This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.
Parallel Calculations in LS-DYNA
NASA Astrophysics Data System (ADS)
Vartanovich Mkrtychev, Oleg; Aleksandrovich Reshetov, Andrey
2017-11-01
Nowadays, structural mechanics exhibits a trend towards numeric solutions being found for increasingly extensive and detailed tasks, which requires that capacities of computing systems be enhanced. Such enhancement can be achieved by different means. E.g., in case a computing system is represented by a workstation, its components can be replaced and/or extended (CPU, memory etc.). In essence, such modification eventually entails replacement of the entire workstation, i.e. replacement of certain components necessitates exchange of others (faster CPUs and memory devices require buses with higher throughput etc.). Special consideration must be given to the capabilities of modern video cards. They constitute powerful computing systems capable of running data processing in parallel. Interestingly, the tools originally designed to render high-performance graphics can be applied for solving problems not immediately related to graphics (CUDA, OpenCL, Shaders etc.). However, not all software suites utilize video cards’ capacities. Another way to increase capacity of a computing system is to implement a cluster architecture: to add cluster nodes (workstations) and to increase the network communication speed between the nodes. The advantage of this approach is extensive growth due to which a quite powerful system can be obtained by combining not particularly powerful nodes. Moreover, separate nodes may possess different capacities. This paper considers the use of a clustered computing system for solving problems of structural mechanics with LS-DYNA software. To establish a range of dependencies a mere 2-node cluster has proven sufficient.
NASA Astrophysics Data System (ADS)
Sewell, Stephen
This thesis introduces a software framework that effectively utilizes low-cost commercially available Graphic Processing Units (GPUs) to simulate complex scientific plasma phenomena that are modeled using the Particle-In-Cell (PIC) paradigm. The software framework that was developed conforms to the Compute Unified Device Architecture (CUDA), a standard for general purpose graphic processing that was introduced by NVIDIA Corporation. This framework has been verified for correctness and applied to advance the state of understanding of the electromagnetic aspects of the development of the Aurora Borealis and Aurora Australis. For each phase of the PIC methodology, this research has identified one or more methods to exploit the problem's natural parallelism and effectively map it for execution on the graphic processing unit and its host processor. The sources of overhead that can reduce the effectiveness of parallelization for each of these methods have also been identified. One of the novel aspects of this research was the utilization of particle sorting during the grid interpolation phase. The final representation resulted in simulations that executed about 38 times faster than simulations that were run on a single-core general-purpose processing system. The scalability of this framework to larger problem sizes and future generation systems has also been investigated.
A CAMAC display module for fast bit-mapped graphics
NASA Astrophysics Data System (ADS)
Abdel-Aal, R. E.
1992-10-01
In many data acquisition and analysis facilities for nuclear physics research, utilities for the display of two-dimensional (2D) images and spectra on graphics terminals suffer from low speed, poor resolution, and limited accuracy. Development of CAMAC bit-mapped graphics modules for this purpose has been discouraged in the past by the large device count needed and the long times required to load the image data from the host computer into the CAMAC hardware; particularly since many such facilities have been designed to support fast DMA block transfers only for data acquisition into the host. This paper describes the design and implementation of a prototype CAMAC graphics display module with a resolution of 256×256 pixels at eight colours for which all components can be easily accommodated in a single-width package. Employed is a hardware technique which reduces the number of programmed CAMAC data transfer operations needed for writing 2D images into the display memory by approximately an order of magnitude, with attendant improvements in the display speed and CPU time consumption. Hardware and software details are given together with sample results. Information on the performance of the module in a typical VAX/MBD data acquisition environment is presented, including data on the mutual effects of simultaneous data acquisition traffic. Suggestions are made for further improvements in performance.
Özcan, Alpay; Christoforou, Eftychios; Brown, Daniel; Tsekos, Nikolaos
2011-01-01
The graphical user interface for an MR compatible robotic device has the capability of displaying oblique MR slices in 2D and a 3D virtual environment along with the representation of the robotic arm in order to swiftly complete the intervention. Using the advantages of the MR modality the device saves time and effort, is safer for the medical staff and is more comfortable for the patient. PMID:17946067
A Graphical Approach to Quantitative Structural Geology.
ERIC Educational Resources Information Center
De Paor, Declan G.
1986-01-01
Describes how computer graphic methods can be used in teaching structural geology. Describes the design of a graphics workstation for the Apple microcomputer. Includes a listing of commands used with software to plot structures in a digitized form. Argues for the establishment of computer laboratories for structural geology classes. (TW)
A Laboratory Application of Microcomputer Graphics.
ERIC Educational Resources Information Center
Gehring, Kalle B.; Moore, John W.
1983-01-01
A PASCAL graphics and instrument interface program for a Z80/S-100 based microcomputer was developed. The computer interfaces to a stopped-flow spectrophotometer replacing a storage oscilloscope and polaroid camera. Applications of this system are discussed, indicating that graphics and analog-to-digital boards have transformed the computer into…
Computer Graphics and Physics Teaching.
ERIC Educational Resources Information Center
Bork, Alfred M.; Ballard, Richard
New, more versatile and inexpensive terminals will make computer graphics more feasible in science instruction than before. This paper describes the use of graphics in physics teaching at the University of California at Irvine. Commands and software are detailed in established programs, which include a lunar landing simulation and a program which…
Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom
ERIC Educational Resources Information Center
Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.
2014-01-01
Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of…
Inexpensive Timeshared Graphics on the SIGMA 7.
ERIC Educational Resources Information Center
Bork, Alfred M.
This paper gives a technical description of various computer graphics programs developed on the Sigma 7 computer. Terminals used are the Adage 100 and the Tektronix 4002-4010. Commands are Metasymbol procedures which access Metasymbol library subroutines; programs can also be coupled with FORTRAN programs. Available, inexpensive graphic terminals…
Computer Graphics and Metaphorical Elaboration for Learning Science Concepts.
ERIC Educational Resources Information Center
ChanLin, Lih-Juan; Chan, Kung-Chi
This study explores the instructional impact of using computer multimedia to integrate metaphorical verbal information into graphical representations of biotechnology concepts. The combination of text and graphics into a single metaphor makes concepts dual-coded, and therefore more comprehensible and memorable for the student. Visual stimuli help…
NASA Technical Reports Server (NTRS)
Russo, Massimo; Tadros, Alfred; Flowers, Woodie; Zeltzer, David
1991-01-01
The advent of high resolution, physical model based computer graphics has left a gap in the design of input/output technology appropriate for interacting with such complex virtual world models. Since virtual worlds consist of physical models, it is appropriate to output the inherent force information necessary for the simulation to the user. The detailed design, construction, and control of a three degree freedom force output joystick will be presented. A novel kinematic design allows all three axes to be uncoupled, so that the system inertia matrix is diagonal. The two planar axes are actuated through an offset gimbal, and the third through a sleeved cable. To compensate for friction and inertia effects, this transmission is controlled by a force feedforward and a closed force feedback proportional loop. Workspace volume is a cone of 512 cubic inches, and the device bandwidth is maximized at 60 Hz for the two planar and 30 Hz for the third axis. Each axis is controlled by a motor/proportional magnetic particle brake combination fixed to the base. The innovative use of motors and brakes allows objects with high resistive torque requirements to be simulated without the stability and related safety issues involved with high torque, energy storing motors alone. Position, velocity, and applied endpoint force are sensed directly. Different control strategies are discussed and implemented, with an emphasis on how virtual environment force information, generated by the MIT Media Lab Computer Graphics and Animation Group BOLIO system, is transmitted to the device controller. The design constraints for a kinesthetic force feedback device can be summarized as: How can the symbiosis between the sense of presence in the virtual environment be maximized without compromising the interaction task under the constraints of the mechanical device limitations? Research in this field will yield insights to the optimal human sensory feedback mix for a wide spectrum of control and interaction problems. A flexible research tool that is designed as an easily reproducible product prototype has been constructed to explore the variety of possible force interaction.
Graphics supercomputer for computational fluid dynamics research
NASA Astrophysics Data System (ADS)
Liaw, Goang S.
1994-11-01
The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.
NQS - NETWORK QUEUING SYSTEM, VERSION 2.0 (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Walter, H.
1994-01-01
The Network Queuing System, NQS, is a versatile batch and device queuing facility for a single Unix computer or a group of networked computers. With the Unix operating system as a common interface, the user can invoke the NQS collection of user-space programs to move batch and device jobs freely around the different computer hardware tied into the network. NQS provides facilities for remote queuing, request routing, remote status, queue status controls, batch request resource quota limits, and remote output return. This program was developed as part of an effort aimed at tying together diverse UNIX based machines into NASA's Numerical Aerodynamic Simulator Processing System Network. This revision of NQS allows for creating, deleting, adding and setting of complexes that aid in limiting the number of requests to be handled at one time. It also has improved device-oriented queues along with some revision of the displays. NQS was designed to meet the following goals: 1) Provide for the full support of both batch and device requests. 2) Support all of the resource quotas enforceable by the underlying UNIX kernel implementation that are relevant to any particular batch request and its corresponding batch queue. 3) Support remote queuing and routing of batch and device requests throughout the NQS network. 4) Support queue access restrictions through user and group access lists for all queues. 5) Enable networked output return of both output and error files to possibly remote machines. 6) Allow mapping of accounts across machine boundaries. 7) Provide friendly configuration and modification mechanisms for each installation. 8) Support status operations across the network, without requiring a user to log in on remote target machines. 9) Provide for file staging or copying of files for movement to the actual execution machine. To support batch and device requests, NQS v.2 implements three queue types--batch, device and pipe. Batch queues hold and prioritize batch requests; device queues hold and prioritize device requests; pipe queues transport both batch and device requests to other batch, device, or pipe queues at local or remote machines. Unique to batch queues are resource quota limits that restrict the amounts of different resources that a batch request can consume during execution. Unique to each device queue is a set of one or more devices, such as a line printer, to which requests can be sent for execution. Pipe queues have associated destinations to which they route and deliver requests. If the proper destination machine is down or unreachable, pipe queues are able to requeue the request and deliver it later when the destination is available. All NQS network conversations are performed using the Berkeley socket mechanism as ported into the respective vendor kernels. NQS is written in C language. The generic UNIX version (ARC-13179) has been successfully implemented on a variety of UNIX platforms, including Sun3 and Sun4 series computers, SGI IRIS computers running IRIX 3.3, DEC computers running ULTRIX 4.1, AMDAHL computers running UTS 1.3 and 2.1, platforms running BSD 4.3 UNIX. The IBM RS/6000 AIX version (COS-10042) is a vendor port. NQS 2.0 will also communicate with the Cray Research, Inc. and Convex, Inc. versions of NQS. The standard distribution medium for either machine version of NQS 2.0 is a 60Mb, QIC-24, .25 inch streaming magnetic tape cartridge in UNIX tar format. Upon request the generic UNIX version (ARC-13179) can be provided in UNIX tar format on alternate media. Please contact COSMIC to discuss the availability and cost of media to meet your specific needs. An electronic copy of the NQS 2.0 documentation is included on the program media. NQS 2.0 was released in 1991. The IBM RS/6000 port of NQS was developed in 1992. IRIX is a trademark of Silicon Graphics Inc. IRIS is a registered trademark of Silicon Graphics Inc. UNIX is a registered trademark of UNIX System Laboratories Inc. Sun3 and Sun4 are trademarks of Sun Microsystems Inc. DEC and ULTRIX are trademarks of Digital Equipment Corporation.
Program Aids Visualization Of Data
NASA Technical Reports Server (NTRS)
Truong, L. V.
1995-01-01
Living Color Frame System (LCFS) computer program developed to solve some problems that arise in connection with generation of real-time graphical displays of numerical data and of statuses of systems. Need for program like LCFS arises because computer graphics often applied for better understanding and interpretation of data under observation and these graphics become more complicated when animation required during run time. Eliminates need for custom graphical-display software for application programs. Written in Turbo C++.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Song
CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less
Adaptive-optics optical coherence tomography processing using a graphics processing unit.
Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T
2014-01-01
Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.
For Drafting Programs--Computer Graphics in Industrial Tech.
ERIC Educational Resources Information Center
Sutliff, Ron
1980-01-01
Posits that computer-aided drafting and design should be introduced to students in industrial technology programs. Discusses ways the technical educator can get involved in computer graphics to familiarize students with it without a large outlay of money. (JOW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Wangda; McNeil, Andrew; Wetter, Michael
2013-05-23
Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can take hours or even days using a personal computer. This paper describes how to accelerate the matrix multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was implemented in parallel using OpenCL. The speed of new approach wasmore » evaluated using various daylighting simulation cases on a multicore central processing unit and a graphics processing unit. Based on the measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be achieved by using fast I/O devices and storing the data in a binary format.« less
Schwartz, Christopher; Sarlette, Ralf; Weinmann, Michael; Rump, Martin; Klein, Reinhard
2014-01-01
Understanding as well as realistic reproduction of the appearance of materials play an important role in computer graphics, computer vision and industry. They enable applications such as digital material design, virtual prototyping and faithful virtual surrogates for entertainment, marketing, education or cultural heritage documentation. A particularly fruitful way to obtain the digital appearance is the acquisition of reflectance from real-world material samples. Therefore, a great variety of devices to perform this task has been proposed. In this work, we investigate their practical usefulness. We first idey a set of necessary attributes and establish a general categorization of different designs that have been realized. Subsequently, we provide an in-depth discussion of three particular implementations by our work group, demonstrating advantages and disadvantages of different system designs with respect to the previously established attributes. Finally, we survey the existing literature to compare our implementation with related approaches. PMID:24787638
High-Temperature RF Probe Station For Device Characterization Through 500 deg C and 50 GHz
NASA Technical Reports Server (NTRS)
Schwartz, Zachary D.; Downey, Alan N.; Alterovitz, Samuel A.; Ponchak, George E.; Williams, W. D. (Technical Monitor)
2003-01-01
A high-temperature measurement system capable of performing on-wafer microwave testing of semiconductor devices has been developed. This high temperature probe station can characterize active and passive devices and circuits at temperatures ranging from room temperature to above 500 C. The heating system uses a ceramic heater mounted on an insulating block of NASA shuttle tile material. The temperature is adjusted by a graphical computer interface and is controlled by the software-based feedback loop. The system is used with a Hewlett-Packard 8510C Network Analyzer to measure scattering parameters over a frequency range of 1 to 50 GHz. The microwave probes, cables, and inspection microscope are all shielded to protect from heat damage. The high temperature probe station has been successfully used to characterize gold transmission lines on silicon carbide at temperatures up to 540 C.
Development of a novel SCADA system for laboratory testing.
Patel, M; Cole, G R; Pryor, T L; Wilmot, N A
2004-07-01
This document summarizes the supervisory control and data acquisition (SCADA) system that allows communication with, and controlling the output of, various I/O devices in the renewable energy systems and components test facility RESLab. This SCADA system differs from traditional SCADA systems in that it supports a continuously changing operating environment depending on the test to be performed. The SCADA System is based on the concept of having one Master I/O Server and multiple client computer systems. This paper describes the main features and advantages of this dynamic SCADA system, the connections of various field devices to the master I/O server, the device servers, and numerous software features used in the system. The system is based on the graphical programming language "LabVIEW" and its "Datalogging and Supervisory Control" (DSC) module. The DSC module supports a real-time database called the "tag engine," which performs the I/O operations with all field devices attached to the master I/O server and communications with the other tag engines running on the client computers connected via a local area network. Generic and detailed communication block diagrams illustrating the hierarchical structure of this SCADA system are presented. The flow diagram outlining a complete test performed using this system in one of its standard configurations is described.
Computer Instructional Aids for Undergraduate Control Education.
ERIC Educational Resources Information Center
Volz, Richard A.; And Others
Engineering is coming to rely more and more heavily upon the computer for computations, analyses, and graphic displays which aid the design process. A general purpose simulation system, the Time-shared Automatic Control Laboratory (TACL), and a set of computer-aided design programs, Control Oriented Interactive Graphic Analysis and Design…
Accelerating atomistic calculations of quantum energy eigenstates on graphic cards
NASA Astrophysics Data System (ADS)
Rodrigues, Walter; Pecchia, A.; Lopez, M.; Auf der Maur, M.; Di Carlo, A.
2014-10-01
Electronic properties of nanoscale materials require the calculation of eigenvalues and eigenvectors of large matrices. This bottleneck can be overcome by parallel computing techniques or the introduction of faster algorithms. In this paper we report a custom implementation of the Lanczos algorithm with simple restart, optimized for graphical processing units (GPUs). The whole algorithm has been developed using CUDA and runs entirely on the GPU, with a specialized implementation that spares memory and reduces at most machine-to-device data transfers. Furthermore parallel distribution over several GPUs has been attained using the standard message passing interface (MPI). Benchmark calculations performed on a GaN/AlGaN wurtzite quantum dot with up to 600,000 atoms are presented. The empirical tight-binding (ETB) model with an sp3d5s∗+spin-orbit parametrization has been used to build the system Hamiltonian (H).
General purpose graphic processing unit implementation of adaptive pulse compression algorithms
NASA Astrophysics Data System (ADS)
Cai, Jingxiao; Zhang, Yan
2017-07-01
This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.
Multimodal browsing using VoiceXML
NASA Astrophysics Data System (ADS)
Caccia, Giuseppe; Lancini, Rosa C.; Peschiera, Giuseppe
2003-06-01
With the increasing development of devices such as personal computers, WAP and personal digital assistants connected to the World Wide Web, end users feel the need to browse the Internet through multiple modalities. We intend to investigate on how to create a user interface and a service distribution platform granting the user access to the Internet through standard I/O modalities and voice simultaneously. Different architectures are evaluated suggesting the more suitable for each client terminal (PC o WAP). In particular the design of the multimodal usermachine interface considers the synchronization issue between graphical and voice contents.
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.
2003-08-01
In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.
NASA Technical Reports Server (NTRS)
1985-01-01
Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.
NASA Astrophysics Data System (ADS)
Moon, Hye Sun
Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition exhibited more positive attitudes toward instruction than those in other treatment conditions (2D static, 2D animated, and 3D static conditions). No group differences were found in the posttest scores among four treatment conditions. However, students in the 3D animated condition took less time for information retrieval on posttest than those in other treatment conditions.
Exploring Novel Crystals and Designs for Acousto-Optic Devices
NASA Astrophysics Data System (ADS)
Pfeiffer, Jonathan B.
Acousto-optic devices are a versatile technology that are driven electronically to precisely and rapidly control the intensity, frequency, and propagation direction of a laser beam. Applications include acousto-optic scanners, filters, mode lockers, and modulators. Despite the popularity of acousto-optic devices, there currently is no UV transparent device that can satisfy the requirements of the atomic clock and quantum computing communities. In this thesis, I describe my experimental efforts for discovering a new UV transparent, acousto-optic crystal that can meet the experimental requirements. I also present my graphical representations for locating practical and efficient acousto-optic designs in a given medium. The first part of this thesis describes how to measure the elastic-stiffness and photoelastic coefficients of a given crystal. The elastic-stiffness coefficients are essential for designing acousto-optic devices because they determine the velocity, diffraction, and polarization of acoustic waves in a given medium. I used both resonant ultrasound spectroscopy and a modified version of Schaefer-Bergman diffraction to measure elastic coefficients. I discuss in detail the strengths, differences, and similarities of the two experiments. The photoelastic coefficients are necessary for determining the diffraction efficiency of a given acousto-optic geometry. Similar to the elastic coefficients, I employ a modified version of the Schaefer-Bergmann experiment to measure the photoelastic coefficients. I corroborate the measured results with the well established Dixon experiment. The second part of this thesis describes four different graphical representations that help locate practical and efficient acousto-optic designs. I describe in detail each algorithm and how to interpret the calculated results. Several examples are provided for commonly used acosuto-optic materials. The thesis concludes by describing the design and performance of an acousto-optic frequency shifter that was designed based on the culmination my research effort.
Specialized Computer Systems for Environment Visualization
NASA Astrophysics Data System (ADS)
Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.
2018-06-01
The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.
Light reflection models for computer graphics.
Greenberg, D P
1989-04-14
During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.
Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company
NASA Technical Reports Server (NTRS)
Radovcich, N. A.
1975-01-01
An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.
ERM TLB Teaching-Learning Behavior News
ERIC Educational Resources Information Center
LeBold, William K., Ed.
1978-01-01
Describes a graduate electrical engineering mini-course, computer graphics gaming and simulation, classroom management and student progress records, student reaction to instruction, and computer graphics in undergraduate education. (SL)
Sheriff, Kelli A; Boon, Richard T
2014-08-01
The purpose of this study was to examine the effects of computer-based graphic organizers, using Kidspiration 3© software, to solve one-step word problems. Participants included three students with mild intellectual disability enrolled in a functional academic skills curriculum in a self-contained classroom. A multiple probe single-subject research design (Horner & Baer, 1978) was used to evaluate the effectiveness of computer-based graphic organizers to solving mathematical one-step word problems. During the baseline phase, the students completed a teacher-generated worksheet that consisted of nine functional word problems in a traditional format using a pencil, paper, and a calculator. In the intervention and maintenance phases, the students were instructed to complete the word problems using a computer-based graphic organizer. Results indicated that all three of the students improved in their ability to solve the one-step word problems using computer-based graphic organizers compared to traditional instructional practices. Limitations of the study and recommendations for future research directions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Case Study: Audio-Guided Learning, with Computer Graphics.
ERIC Educational Resources Information Center
Koumi, Jack; Daniels, Judith
1994-01-01
Describes teaching packages which involve the use of audiotape recordings with personal computers in Open University (United Kingdom) mathematics courses. Topics addressed include software development; computer graphics; pedagogic principles for distance education; feedback, including course evaluations and student surveys; and future plans.…
ERIC Educational Resources Information Center
Cheng, Wan-Lee
This instructional manual contains 12 learning activity packets for use in a workshop in computer-aided design and drafting (CADD). The lessons cover the following topics: introduction to computer graphics and computer-aided design/drafting; coordinate systems; advance space graphics hardware configuration and basic features of the IBM PC…
Toward a Singleton Undergraduate Computer Graphics Course in Small and Medium-Sized Colleges
ERIC Educational Resources Information Center
Shesh, Amit
2013-01-01
This article discusses the evolution of a single undergraduate computer graphics course over five semesters, driven by a primary question: if one could offer only one undergraduate course in graphics, what would it include? This constraint is relevant to many small and medium-sized colleges that lack resources, adequate expertise, and enrollment…
RADIK: An Interactive Graphics and Text Editor.
RADIK is an interactive graphics and text editing system designed for use with an ADAGE AGT/10 graphics computer, either in a stand-alone mode, or in...designing RADIK . A brief summary of results and applications is presented and implementation of RADIK is proposed. Assembly language computer programs developed during the work are appended for reference. (Author)
Young Children and Turtle Graphics Programming: Generating and Debugging Simple Turtle Programs.
ERIC Educational Resources Information Center
Cuneo, Diane O.
Turtle graphics is a popular vehicle for introducing children to computer programming. Children combine simple graphic commands to get a display screen cursor (called a turtle) to draw designs on the screen. The purpose of this study was to examine young children's abilities to function in a simple computer programming environment. Four- and…
Visual Debugging of Object-Oriented Systems With the Unified Modeling Language
2004-03-01
to be “the systematic and imaginative use of the technology of interactive computer graphics and the disciplines of graphic design , typography ... Graphics volume 23 no 6, pp893-901, 1999. [SHN98] Shneiderman, B. Designing the User Interface. Strategies for Effective Human-Computer Interaction...System Design Objectives ................................................................................ 44 3.3 System Architecture
Computer graphics for management: An abstract of capabilities and applications of the EIS system
NASA Technical Reports Server (NTRS)
Solem, B. J.
1975-01-01
The Executive Information Services (EIS) system, developed as a computer-based, time-sharing tool for making and implementing management decisions, and including computer graphics capabilities, was described. The following resources are available through the EIS languages: centralized corporate/gov't data base, customized and working data bases, report writing, general computational capability, specialized routines, modeling/programming capability, and graphics. Nearly all EIS graphs can be created by a single, on-line instruction. A large number of options are available, such as selection of graphic form, line control, shading, placement on the page, multiple images on a page, control of scaling and labeling, plotting of cum data sets, optical grid lines, and stack charts. The following are examples of areas in which the EIS system may be used: research, estimating services, planning, budgeting, and performance measurement, national computer hook-up negotiations.
Peuquet, D.J.
1981-01-01
Current graphic devices suitable for high-speed computer input and output of cartographic data are tending more and more to be raster-oriented, such as the rotating drum scanner and the color raster display. However, the majority of commonly used manipulative techniques in computer-assisted cartography and automated spatial data handling continue to require that the data be in vector format. This situation has recently precipitated the requirement for very fast techniques for converting digital cartographic data from raster to vector format for processing, and then back into raster format for plotting. The current article is part 1 of a 2 part paper concerned with examining the state-of-the-art in these conversion techniques. -from Author
Exploration of Mars by Mariner 9 - Television sensors and image processing.
NASA Technical Reports Server (NTRS)
Cutts, J. A.
1973-01-01
Two cameras equipped with selenium sulfur slow scan vidicons were used in the orbital reconnaissance of Mars by the U.S. Spacecraft Mariner 9 and the performance characteristics of these devices are presented. Digital image processing techniques have been widely applied in the analysis of images of Mars and its satellites. Photometric and geometric distortion corrections, image detail enhancement and transformation to standard map projection have been routinely employed. More specializing applications included picture differencing, limb profiling, solar lighting corrections, noise removal, line plots and computer mosaics. Information on enhancements as well as important picture geometric information was stored in a master library. Display of the library data in graphic or numerical form was accomplished by a data management computer program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, Michael; Adams, Paul
2006-09-05
The L3 system is a computational steering environment for image processing and scientific computing. It consists of an interactive graphical language and interface. Its purpose is to help advanced users in controlling their computational software and assist in the management of data accumulated during numerical experiments. L3 provides a combination of features not found in other environments; these are: - textual and graphical construction of programs - persistence of programs and associated data - direct mapping between the scripts, the parameters, and the produced data - implicit hierarchial data organization - full programmability, including conditionals and functions - incremental executionmore » of programs The software includes the l3 language and the graphical environment. The language is a single-assignment functional language; the implementation consists of lexer, parser, interpreter, storage handler, and editing support, The graphical environment is an event-driven nested list viewer/editor providing graphical elements corresponding to the language. These elements are both the represenation of a users program and active interfaces to the values computed by that program.« less
NASA Astrophysics Data System (ADS)
Hur, Min Young; Verboncoeur, John; Lee, Hae June
2014-10-01
Particle-in-cell (PIC) simulations have high fidelity in the plasma device requiring transient kinetic modeling compared with fluid simulations. It uses less approximation on the plasma kinetics but requires many particles and grids to observe the semantic results. It means that the simulation spends lots of simulation time in proportion to the number of particles. Therefore, PIC simulation needs high performance computing. In this research, a graphic processing unit (GPU) is adopted for high performance computing of PIC simulation for low temperature discharge plasmas. GPUs have many-core processors and high memory bandwidth compared with a central processing unit (CPU). NVIDIA GeForce GPUs were used for the test with hundreds of cores which show cost-effective performance. PIC code algorithm is divided into two modules which are a field solver and a particle mover. The particle mover module is divided into four routines which are named move, boundary, Monte Carlo collision (MCC), and deposit. Overall, the GPU code solves particle motions as well as electrostatic potential in two-dimensional geometry almost 30 times faster than a single CPU code. This work was supported by the Korea Institute of Science Technology Information.
VIEW-Station software and its graphical user interface
NASA Astrophysics Data System (ADS)
Kawai, Tomoaki; Okazaki, Hiroshi; Tanaka, Koichiro; Tamura, Hideyuki
1992-04-01
VIEW-Station is a workstation-based image processing system which merges the state-of-the- art software environment of Unix with the computing power of a fast image processor. VIEW- Station has a hierarchical software architecture, which facilitates device independence when porting across various hardware configurations, and provides extensibility in the development of application systems. The core image computing language is V-Sugar. V-Sugar provides a set of image-processing datatypes and allows image processing algorithms to be simply expressed, using a functional notation. VIEW-Station provides a hardware independent window system extension called VIEW-Windows. In terms of GUI (Graphical User Interface) VIEW-Station has two notable aspects. One is to provide various types of GUI as visual environments for image processing execution. Three types of interpreters called (mu) V- Sugar, VS-Shell and VPL are provided. Users may choose whichever they prefer based on their experience and tasks. The other notable aspect is to provide facilities to create GUI for new applications on the VIEW-Station system. A set of widgets are available for construction of task-oriented GUI. A GUI builder called VIEW-Kid is developed for WYSIWYG interactive interface design.
Analysis of the Optimum Receiver Design Problem Using Interactive Computer Graphics.
1981-12-01
7 _AD A115 498A l AR FORCE INST OF TECH WR16HT-PATTERSON AF8 OH SCHOO--ETC F/6 9/2 ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTI...ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTIVE COMPUTER GRAPHICS THESIS AFIT/GE/EE/81D-39 Michael R. Mazzuechi Cpt USA Approved for...public release; distribution unlimited AFIT/GE/EE/SlD-39 ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTIVE COMPUTER GRAPHICS THESIS
Bridges, N.J.; McCammon, R.B.
1980-01-01
DISCRIM is an interactive computer graphics program that dissects mixtures of normal or lognormal distributions. The program was written in an effort to obtain a more satisfactory solution to the dissection problem than that offered by a graphical or numerical approach alone. It combines graphic and analytic techniques using a Tektronix1 terminal in a time-share computing environment. The main program and subroutines were written in the FORTRAN language. ?? 1980.
NASA Technical Reports Server (NTRS)
Marshall, S. E.; Bernhard, R.
1984-01-01
A survey of the most widely used methods for visualizing acoustic phenomena is presented. Emphasis is placed on acoustic processes in the audible frequencies. Many visual problems are analyzed on computer graphic systems. A brief description of the current technology in computer graphics is included. The visualization technique survey will serve as basis for recommending an optimum scheme for displaying acoustic fields on computer graphic systems.
INSTRUMENTATION AND CONTROLS DIVISION, ELECTRICAL DESIGN STANDARDS AND GRAPHICAL SYMBOLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, A.E.G.; Bowelle, M.M.; Horton, J.L.
1960-10-01
Recommendations of the Instrumentation and Controls Division Committee on Electrical and Electronic Symbols and Drawings are presented. The American Standards Associrtion Graphical Symbols for Electrical Diagrams are given, with certain variations or additions recommended by the Committee to clarify or more positively identify the device or element symbolized. Recommendations regarding electrical elementary diagram 1ayout, device coding, etc., are included. (W.D.M.)
ERIC Educational Resources Information Center
Valiquette, Christine; Sutton, Ann; Ska, Bernadette
2010-01-01
This article reports on the views of individuals with learning disability (LD) on their use of their speech generating devices (SGDs), their satisfaction about their communication, and their priorities. The development of an interview tool made of graphic symbols and entitled Communication, Satisfaction and Priorities of SGD Users (CSPU) is…
X based interactive computer graphics applications for aerodynamic design and education
NASA Technical Reports Server (NTRS)
Benson, Thomas J.; Higgs, C. Fred, III
1995-01-01
Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.
NASA Astrophysics Data System (ADS)
Figl, Michael; Birkfellner, Wolfgang; Watzinger, Franz; Wanschitz, Felix; Hummel, Johann; Hanel, Rudolf A.; Ewers, Rolf; Bergmann, Helmar
2002-05-01
Two main concepts of Head Mounted Displays (HMD) for augmented reality (AR) visualization exist, the optical and video-see through type. Several research groups have pursued both approaches for utilizing HMDs for computer aided surgery. While the hardware requirements for a video see through HMD to achieve acceptable time delay and frame rate seem to be enormous the clinical acceptance of such a device is doubtful from a practical point of view. Starting from previous work in displaying additional computer-generated graphics in operating microscopes, we have adapted a miniature head mounted operating microscope for AR by integrating two very small computer displays. To calibrate the projection parameters of this so called Varioscope AR we have used Tsai's Algorithm for camera calibration. Connection to a surgical navigation system was performed by defining an open interface to the control unit of the Varioscope AR. The control unit consists of a standard PC with a dual head graphics adapter to render and display the desired augmentation of the scene. We connected this control unit to a computer aided surgery (CAS) system by the TCP/IP interface. In this paper we present the control unit for the HMD and its software design. We tested two different optical tracking systems, the Flashpoint (Image Guided Technologies, Boulder, CO), which provided about 10 frames per second, and the Polaris (Northern Digital, Ontario, Canada) which provided at least 30 frames per second, both with a time delay of one frame.
An interactive adaptive remeshing algorithm for the two-dimensional Euler equations
NASA Technical Reports Server (NTRS)
Slack, David C.; Walters, Robert W.; Lohner, R.
1990-01-01
An interactive adaptive remeshing algorithm utilizing a frontal grid generator and a variety of time integration schemes for the two-dimensional Euler equations on unstructured meshes is presented. Several device dependent interactive graphics interfaces have been developed along with a device independent DI-3000 interface which can be employed on any computer that has the supporting software including the Cray-2 supercomputers Voyager and Navier. The time integration methods available include: an explicit four stage Runge-Kutta and a fully implicit LU decomposition. A cell-centered finite volume upwind scheme utilizing Roe's approximate Riemann solver is developed. To obtain higher order accurate results a monotone linear reconstruction procedure proposed by Barth is utilized. Results for flow over a transonic circular arc and flow through a supersonic nozzle are examined.
Measuring Cognitive Load in Test Items: Static Graphics versus Animated Graphics
ERIC Educational Resources Information Center
Dindar, M.; Kabakçi Yurdakul, I.; Inan Dönmez, F.
2015-01-01
The majority of multimedia learning studies focus on the use of graphics in learning process but very few of them examine the role of graphics in testing students' knowledge. This study investigates the use of static graphics versus animated graphics in a computer-based English achievement test from a cognitive load theory perspective. Three…
Integrated Computer Controlled Glow Discharge Tube
NASA Astrophysics Data System (ADS)
Kaiser, Erik; Post-Zwicker, Andrew
2002-11-01
An "Interactive Plasma Display" was created for the Princeton Plasma Physics Laboratory to demonstrate the characteristics of plasma to various science education outreach programs. From high school students and teachers, to undergraduate students and visitors to the lab, the plasma device will be a key component in advancing the public's basic knowledge of plasma physics. The device is fully computer controlled using LabVIEW, a touchscreen Graphical User Interface [GUI], and a GPIB interface. Utilizing a feedback loop, the display is fully autonomous in controlling pressure, as well as in monitoring the safety aspects of the apparatus. With a digital convectron gauge continuously monitoring pressure, the computer interface analyzes the input signals, while making changes to a digital flow controller. This function works independently of the GUI, allowing the user to simply input and receive a desired pressure; quickly, easily, and intuitively. The discharge tube is a 36" x 4"id glass cylinder with 3" side port. A 3000 volt, 10mA power supply, is used to breakdown the plasma. A 300 turn solenoid was created to demonstrate the magnetic pinching of a plasma. All primary functions of the device are controlled through the GUI digital controllers. This configuration allows for operators to safely control the pressure (100mTorr-1Torr), magnetic field (0-90Gauss, 7amps, 10volts), and finally, the voltage applied across the electrodes (0-3000v, 10mA).
Mobile Devices and GPU Parallelism in Ionospheric Data Processing
NASA Astrophysics Data System (ADS)
Mascharka, D.; Pankratius, V.
2015-12-01
Scientific data acquisition in the field is often constrained by data transfer backchannels to analysis environments. Geoscientists are therefore facing practical bottlenecks with increasing sensor density and variety. Mobile devices, such as smartphones and tablets, offer promising solutions to key problems in scientific data acquisition, pre-processing, and validation by providing advanced capabilities in the field. This is due to affordable network connectivity options and the increasing mobile computational power. This contribution exemplifies a scenario faced by scientists in the field and presents the "Mahali TEC Processing App" developed in the context of the NSF-funded Mahali project. Aimed at atmospheric science and the study of ionospheric Total Electron Content (TEC), this app is able to gather data from various dual-frequency GPS receivers. It demonstrates parsing of full-day RINEX files on mobile devices and on-the-fly computation of vertical TEC values based on satellite ephemeris models that are obtained from NASA. Our experiments show how parallel computing on the mobile device GPU enables fast processing and visualization of up to 2 million datapoints in real-time using OpenGL. GPS receiver bias is estimated through minimum TEC approximations that can be interactively adjusted by scientists in the graphical user interface. Scientists can also perform approximate computations for "quickviews" to reduce CPU processing time and memory consumption. In the final stage of our mobile processing pipeline, scientists can upload data to the cloud for further processing. Acknowledgements: The Mahali project (http://mahali.mit.edu) is funded by the NSF INSPIRE grant no. AGS-1343967 (PI: V. Pankratius). We would like to acknowledge our collaborators at Boston College, Virginia Tech, Johns Hopkins University, Colorado State University, as well as the support of UNAVCO for loans of dual-frequency GPS receivers for use in this project, and Intel for loans of smartphones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allada, Veerendra, Benjegerdes, Troy; Bode, Brett
Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as themore » workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.« less
Phase quality map based on local multi-unwrapped results for two-dimensional phase unwrapping.
Zhong, Heping; Tang, Jinsong; Zhang, Sen
2015-02-01
The efficiency of a phase unwrapping algorithm and the reliability of the corresponding unwrapped result are two key problems in reconstructing the digital elevation model of a scene from its interferometric synthetic aperture radar (InSAR) or interferometric synthetic aperture sonar (InSAS) data. In this paper, a new phase quality map is designed and implemented in a graphic processing unit (GPU) environment, which greatly accelerates the unwrapping process of the quality-guided algorithm and enhances the correctness of the unwrapped result. In a local wrapped phase window, the center point is selected as the reference point, and then two unwrapped results are computed by integrating in two different simple ways. After the two local unwrapped results are computed, the total difference of the two unwrapped results is regarded as the phase quality value of the center point. In order to accelerate the computing process of the new proposed quality map, we have implemented it in a GPU environment. The wrapped phase data are first uploaded to the memory of a device, and then the kernel function is called in the device to compute the phase quality in parallel by blocks of threads. Unwrapping tests performed on the simulated and real InSAS data confirm the accuracy and efficiency of the proposed method.
Graphics and composite material computer program enhancements for SPAR
NASA Technical Reports Server (NTRS)
Farley, G. L.; Baker, D. J.
1980-01-01
User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.
Concept Learning through Image Processing.
ERIC Educational Resources Information Center
Cifuentes, Lauren; Yi-Chuan, Jane Hsieh
This study explored computer-based image processing as a study strategy for middle school students' science concept learning. Specifically, the research examined the effects of computer graphics generation on science concept learning and the impact of using computer graphics to show interrelationships among concepts during study time. The 87…
Acceleration for 2D time-domain elastic full waveform inversion using a single GPU card
NASA Astrophysics Data System (ADS)
Jiang, Jinpeng; Zhu, Peimin
2018-05-01
Full waveform inversion (FWI) is a challenging procedure due to the high computational cost related to the modeling, especially for the elastic case. The graphics processing unit (GPU) has become a popular device for the high-performance computing (HPC). To reduce the long computation time, we design and implement the GPU-based 2D elastic FWI (EFWI) in time domain using a single GPU card. We parallelize the forward modeling and gradient calculations using the CUDA programming language. To overcome the limitation of relatively small global memory on GPU, the boundary saving strategy is exploited to reconstruct the forward wavefield. Moreover, the L-BFGS optimization method used in the inversion increases the convergence of the misfit function. A multiscale inversion strategy is performed in the workflow to obtain the accurate inversion results. In our tests, the GPU-based implementations using a single GPU device achieve >15 times speedup in forward modeling, and about 12 times speedup in gradient calculation, compared with the eight-core CPU implementations optimized by OpenMP. The test results from the GPU implementations are verified to have enough accuracy by comparing the results obtained from the CPU implementations.
Deconstruction and Graphic Design: History Meets Theory.
ERIC Educational Resources Information Center
Lupton, Ellen; Miller, J. Abbott
1994-01-01
Considers the reception and use of deconstruction in the recent history of graphic design. Considers the place of graphics within the theory of deconstruction in the work of philosopher Jacques Derrida. Argues that deconstruction is not a style but a mode of questioning through and about the technologies, formal devices, social institutions and…
Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.
ERIC Educational Resources Information Center
Morris, J. Richard
This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…
Computer Art--A New Tool in Advertising Graphics.
ERIC Educational Resources Information Center
Wassmuth, Birgit L.
Using computers to produce art began with scientists, mathematicians, and individuals with strong technical backgrounds who used the graphic material as visualizations of data in technical fields. People are using computer art in advertising, as well as in painting; sculpture; music; textile, product, industrial, and interior design; architecture;…
The Use of Computer Graphics in the Design Process.
ERIC Educational Resources Information Center
Palazzi, Maria
This master's thesis examines applications of computer technology to the field of industrial design and ways in which technology can transform the traditional process. Following a statement of the problem, the history and applications of the fields of computer graphics and industrial design are reviewed. The traditional industrial design process…
Computer-based desktop system for surgical videotape editing.
Vincent-Hamelin, E; Sarmiento, J M; de la Puente, J M; Vicente, M
1997-05-01
The educational role of surgical video presentations should be optimized by linking surgical images to graphic evaluation of indications, techniques, and results. We describe a PC-based video production system for personal editing of surgical tapes, according to the objectives of each presentation. The hardware requirement is a personal computer (100 MHz processor, 1-Gb hard disk, 16 Mb RAM) with a PC-to-TV/video transfer card plugged into a slot. Computer-generated numerical data, texts, and graphics are transformed into analog signals displayed on TV/video. A Genlock interface (a special interface card) synchronizes digital and analog signals, to overlay surgical images to electronic illustrations. The presentation is stored as digital information or recorded on a tape. The proliferation of multimedia tools is leading us to adapt presentations to the objectives of lectures and to integrate conceptual analyses with dynamic image-based information. We describe a system that handles both digital and analog signals, production being recorded on a tape. Movies may be managed in a digital environment, with either an "on-line" or "off-line" approach. System requirements are high, but handling a single device optimizes editing without incurring such complexity that management becomes impractical to surgeons. Our experience suggests that computerized editing allows linking surgical scientific and didactic messages on a single communication medium, either a videotape or a CD-ROM.
Transforming Polar Research with Google Glass Augmented Reality (Invited)
NASA Astrophysics Data System (ADS)
Ruthkoski, T.
2013-12-01
Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device
Transforming Polar Research with Google Glass Augmented Reality (Invited)
NASA Astrophysics Data System (ADS)
Ramachandran, R.; McEniry, M.; Maskey, M.
2011-12-01
Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device
A Preliminary Study of a Spanish Graphic Novella Targeting Hearing Loss Prevention.
Guiberson, Mark; Wakefield, Emily
2017-09-18
This preliminary study developed a digital graphic novella targeting hearing protection beliefs of Spanish-speaking agricultural workers. Researchers used pretest-posttest interview surveys to establish if the novella had an immediate influence on the participants' beliefs about noise-induced hearing loss and usage of hearing protection devices. Researchers developed a digital graphic novella directed to increase knowledge about noise-induced hearing loss and increase the proper use of hearing protection devices. The novella was tailored to meet the specific linguistic and literacy needs of Spanish-speaking agricultural workers. Thirty-one Spanish-speaking farmworkers of Mexican nationality participated. This study included an interview survey with specific questions on noise-induced hearing loss, myths, and hearing protection device usage. A pretest-posttest design was applied to measure the graphic novella's immediate influence on workers. The posttest scores on Hearing Protection Beliefs statements were significantly better than pretest scores, with a large effect size observed. Digital media may be an effective way to overcome language and literacy barriers with Spanish-speaking workers when providing health education and prevention efforts.
A Preliminary Study of a Spanish Graphic Novella Targeting Hearing Loss Prevention
Wakefield, Emily
2017-01-01
Purpose This preliminary study developed a digital graphic novella targeting hearing protection beliefs of Spanish-speaking agricultural workers. Researchers used pretest–posttest interview surveys to establish if the novella had an immediate influence on the participants' beliefs about noise-induced hearing loss and usage of hearing protection devices. Method Researchers developed a digital graphic novella directed to increase knowledge about noise-induced hearing loss and increase the proper use of hearing protection devices. The novella was tailored to meet the specific linguistic and literacy needs of Spanish-speaking agricultural workers. Thirty-one Spanish-speaking farmworkers of Mexican nationality participated. This study included an interview survey with specific questions on noise-induced hearing loss, myths, and hearing protection device usage. A pretest–posttest design was applied to measure the graphic novella's immediate influence on workers. Results The posttest scores on Hearing Protection Beliefs statements were significantly better than pretest scores, with a large effect size observed. Conclusion Digital media may be an effective way to overcome language and literacy barriers with Spanish-speaking workers when providing health education and prevention efforts. PMID:28651254
Graphic Design Is Not a Medium.
ERIC Educational Resources Information Center
Gruber, John Edward, Jr.
2001-01-01
Discusses graphic design and reviews its development from analog processes to a digital tool with the use of computers. Topics include graphical user interfaces; the need for visual communication concepts; transmedia as opposed to repurposing; and graphic design instruction in higher education. (LRW)
A graphics subsystem retrofit design for the bladed-disk data acquisition system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Carney, R. R.
1983-01-01
A graphics subsystem retrofit design for the turbojet blade vibration data acquisition system is presented. The graphics subsystem will operate in two modes permitting the system operator to view blade vibrations on an oscilloscope type of display. The first mode is a real-time mode that displays only gross blade characteristics, such as maximum deflections and standing waves. This mode is used to aid the operator in determining when to collect detailed blade vibration data. The second mode of operation is a post-processing mode that will animate the actual blade vibrations using the detailed data collected on an earlier data collection run. The operator can vary the rate of payback to view differring characteristics of blade vibrations. The heart of the graphics subsystem is a modified version of AMD's ""super sixteen'' computer, called the graphics preprocessor computer (GPC). This computer is based on AMD's 2900 series of bit-slice components.
DDP-516 Computer Graphics System Capabilities
DOT National Transportation Integrated Search
1972-06-01
This report describes the capabilities of the DDP-516 Computer Graphics System. One objective of this report is to acquaint DOT management and project planners with the system's current capabilities, applications hardware and software. The Appendix i...
An Interactive Version of MULR04 With Enhanced Graphic Capability
ERIC Educational Resources Information Center
Burkholder, Joel H.
1978-01-01
An existing computer program for computing multiple regression analyses is made interactive in order to alleviate core storage requirements. Also, some improvements in the graphics aspects of the program are included. (JKS)
Three varieties of realism in computer graphics
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2003-06-01
This paper describes three varieties of realism that need to be considered in evaluating computer graphics images and defines the criteria that need to be met if each kind of realism is to be achieved. The paper introduces a conceptual framework for thinking about realism in images, and describes a set of research tools for measuring image realism and assessing its value in graphics applications.
The Triangle: a Multiprocessor Architecture for Fast Curve and Surface Generation.
1987-08-01
design , curves and surfaces, graphics hardware. 20...curves, B-splines, computer-aided geometric design ; curves and sur- faces, graphics hardware. (k 12). -/ .... This work was supported in part by the...34 Electronic Design , October 30, 1986. 21. M. A. Penna and R. R. Patterson, Projective Geometry and its Applications to Computer Graphics , Prentice-Hall, Englewood Cliffs, N.J., 1985. 70,e, 41100vr -~ ~ - -- --
Engineering Design Graphics: Into the 21st Century
ERIC Educational Resources Information Center
Harris, La Verne Abe; Meyers, Frederick
2007-01-01
Graphical plans for construction of machinery and architecture have evolved over the last 6,000 years beginning from hieroglyphics to drawings on printable media, from the "Golden Age" of engineering graphics to the innovation of computer graphics and prototyping. The evolution of engineering design graphics as a profession has also evolved. Years…
Program Helps Generate And Manage Graphics
NASA Technical Reports Server (NTRS)
Truong, L. V.
1994-01-01
Living Color Frame Maker (LCFM) computer program generates computer-graphics frames. Graphical frames saved as text files, in readable and disclosed format, easily retrieved and manipulated by user programs for wide range of real-time visual information applications. LCFM implemented in frame-based expert system for visual aids in management of systems. Monitoring, diagnosis, and/or control, diagrams of circuits or systems brought to "life" by use of designated video colors and intensities to symbolize status of hardware components (via real-time feedback from sensors). Status of systems can be displayed. Written in C++ using Borland C++ 2.0 compiler for IBM PC-series computers and compatible computers running MS-DOS.
The use of computer graphic simulation in the development of on-orbit tele-robotic systems
NASA Technical Reports Server (NTRS)
Fernandez, Ken; Hinman, Elaine
1987-01-01
This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.
Krummenauer, Frank; Storkebaum, Kristin; Dick, H Burkhard
2003-01-01
The evaluation of new diagnostic measurement devices allows intraindividual comparison with an established standard method. However, reports in journal articles often omit the adequate incorporation of the intraindividual design into the graphic representation. This article illustrates the drawbacks and the possible erroneous conclusions caused by this misleading practice in terms of recent method comparison data resulting from axial length measurement in 220 consecutive patients by both applanation ultrasound and partial coherence interferometry. Graphic representation of such method comparison data should be based on boxplots for intraindividual differences or on Bland-Altman plots. Otherwise, severe deviations between the measurement devices could be erroneously ignored and false-positive conclusions on the concordance of the instruments could result. Graphic representation of method comparison data should sensitively incorporate the underlying study design for intraindividual comparison.
Massive parallelization of serial inference algorithms for a complex generalized linear model
Suchard, Marc A.; Simpson, Shawn E.; Zorych, Ivan; Ryan, Patrick; Madigan, David
2014-01-01
Following a series of high-profile drug safety disasters in recent years, many countries are redoubling their efforts to ensure the safety of licensed medical products. Large-scale observational databases such as claims databases or electronic health record systems are attracting particular attention in this regard, but present significant methodological and computational concerns. In this paper we show how high-performance statistical computation, including graphics processing units, relatively inexpensive highly parallel computing devices, can enable complex methods in large databases. We focus on optimization and massive parallelization of cyclic coordinate descent approaches to fit a conditioned generalized linear model involving tens of millions of observations and thousands of predictors in a Bayesian context. We find orders-of-magnitude improvement in overall run-time. Coordinate descent approaches are ubiquitous in high-dimensional statistics and the algorithms we propose open up exciting new methodological possibilities with the potential to significantly improve drug safety. PMID:25328363
Thermal Transfer Compared To The Fourteen Other Imaging Technologies
NASA Astrophysics Data System (ADS)
O'Leary, John W.
1989-07-01
A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.
Virtual reality in anxiety disorders: the past and the future.
Gorini, Alessandra; Riva, Giuseppe
2008-02-01
One of the most effective treatments of anxiety is exposure therapy: a person is exposed to specific feared situations or objects that trigger anxiety. This exposure process may be done through actual exposure, with visualization, by imagination or using virtual reality (VR), that provides users with computer simulated environments with and within which they can interact. VR is made possible by the capability of computers to synthesize a 3D graphical environment from numerical data. Furthermore, because input devices sense the subject's reactions and motions, the computer can modify the synthetic environment accordingly, creating the illusion of interacting with, and thus being immersed within the environment. Starting from 1995, different experimental studies have been conducted in order to investigate the effect of VR exposure in the treatment of subclinical fears and anxiety disorders. This review will discuss their outcome and provide guidelines for the use of VR exposure for the treatment of anxious patients.
Computer Generated Diffraction Patterns Of Rough Surfaces
NASA Astrophysics Data System (ADS)
Rakels, Jan H.
1989-03-01
It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been devised which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned surfaces is straightforward, and indeed the theoretically calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real surface profiles into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation.
NASA Technical Reports Server (NTRS)
Coles, W. A.
1975-01-01
The CAD/CAM interactive computer graphics system was described; uses to which it has been put were shown, and current developments of the system were outlined. The system supports batch, time sharing, and fully interactive graphic processing. Engineers using the system may switch between these methods of data processing and problem solving to make the best use of the available resources. It is concluded that the introduction of on-line computing in the form of teletypes, storage tubes, and fully interactive graphics has resulted in large increases in productivity and reduced timescales in the geometric computing, numerical lofting and part programming areas, together with a greater utilization of the system in the technical departments.
Fundamentals of computer graphics for artists and designers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, B.A.
1986-01-01
This tutorial provides introductory information about computer graphics slanted towards novice users from artist/designer backgrounds. The goal is to describe the applications and terminology sufficiently to provide a base of knowledge for discussions with vendors.
Peng, Fei; Li, Jiao-ting; Long, Min
2015-03-01
To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the differences between them are investigated from the view of statistics and texture, and 31 dimensions of feature are acquired for identification. Then, LIBSVM is used for the classification. Finally, the experimental results are presented. The results show that it can achieve an identification accuracy of 97.89% for computer-generated graphics, and an identification accuracy of 97.75% for natural images. The analyses also demonstrate the proposed method has excellent performance, compared with some existing methods based only on statistical features or other features. The method has a great potential to be implemented for the identification of natural images and computer-generated graphics. © 2014 American Academy of Forensic Sciences.
Formalization, equivalence and generalization of basic resonance electrical circuits
NASA Astrophysics Data System (ADS)
Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay
2017-12-01
In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.
Ray tracing for inhomogeneous media applied to the human eye
NASA Astrophysics Data System (ADS)
Diaz-Gonzalez, G.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.
2017-08-01
Inhomogeneous or gradient index media exhibit a refractive index varying with the position. This kind of media are very interesting because they can be found in both synthetic as well as real life optical devices such as the human lens. In this work we present the development of a computational tool for ray tracing in refractive optical systems. Particularly, the human eye is used as the optical system under study. An inhomogeneous medium with similar characteristics to the human lens is introduced and modeled by the so-called slices method. The useful of our proposal is illustrated by several graphical results.
NASA Astrophysics Data System (ADS)
Dawson, P.; Gage, J.; Takatsuka, M.; Goyette, S.
2009-02-01
To compete with other digital images, holograms must go beyond the current range of source-image types, such as sequences of photographs, laser scans, and 3D computer graphics (CG) scenes made with software designed for other applications. This project develops a set of innovative techniques for creating 3D digital content specifically for digital holograms, with virtual tools which enable the direct hand-crafting of subjects, mark by mark, analogous to Michelangelo's practice in drawing, painting and sculpture. The haptic device, the Phantom Premium 1.5 is used to draw against three-dimensional laser- scan templates of Michelangelo's sculpture placed within the holographic viewing volume.
Clinical Application Of The Direct Measurement Of Human Shape
NASA Astrophysics Data System (ADS)
Anderson, J.; Vincent, R.; Marks, P.; English, M. J.
1980-07-01
A system is described for the recording and measurement of human body shape by a series of circular ultrasound scans. Computer manipulation of the echo data provides a graphic display of body contour, and a measurement of total body surface area and volume. The theoretical resolution for distance measurements using this device is 2.5 mm, a figure achieved in practical calibration experiments using a metal test object. Measurements from the body surface, although less precise, are sufficiently accurate and reproducible to enable useful clinical information to be obtained, particularly in recording the morphological changes associated with obesity and malnutrition.
Virtual reality applications to automated rendezvous and capture
NASA Technical Reports Server (NTRS)
Hale, Joseph; Oneil, Daniel
1991-01-01
Virtual Reality (VR) is a rapidly developing Human/Computer Interface (HCI) technology. The evolution of high-speed graphics processors and development of specialized anthropomorphic user interface devices, that more fully involve the human senses, have enabled VR technology. Recently, the maturity of this technology has reached a level where it can be used as a tool in a variety of applications. This paper provides an overview of: VR technology, VR activities at Marshall Space Flight Center (MSFC), applications of VR to Automated Rendezvous and Capture (AR&C), and identifies areas of VR technology that requires further development.
Real-time motion artifacts compensation of ToF sensors data on GPU
NASA Astrophysics Data System (ADS)
Lefloch, Damien; Hoegg, Thomas; Kolb, Andreas
2013-05-01
Over the last decade, ToF sensors attracted many computer vision and graphics researchers. Nevertheless, ToF devices suffer from severe motion artifacts for dynamic scenes as well as low-resolution depth data which strongly justifies the importance of a valid correction. To counterbalance this effect, a pre-processing approach is introduced to greatly improve range image data on dynamic scenes. We first demonstrate the robustness of our approach using simulated data to finally validate our method using sensor range data. Our GPU-based processing pipeline enhances range data reliability in real-time.
Computer Graphics in Research: Some State -of-the-Art Systems
ERIC Educational Resources Information Center
Reddy, R.; And Others
1975-01-01
A description is given of the structure and functional characteristics of three types of interactive computer graphic systems, developed by the Department of Computer Science at Carnegie-Mellon; a high-speed programmable display capable of displaying 50,000 short vectors, flicker free; a shaded-color video display for the display of gray-scale…
NASA Technical Reports Server (NTRS)
Truong, L. V.
1994-01-01
Computer graphics are often applied for better understanding and interpretation of data under observation. These graphics become more complicated when animation is required during "run-time", as found in many typical modern artificial intelligence and expert systems. Living Color Frame Maker is a solution to many of these real-time graphics problems. Living Color Frame Maker (LCFM) is a graphics generation and management tool for IBM or IBM compatible personal computers. To eliminate graphics programming, the graphic designer can use LCFM to generate computer graphics frames. The graphical frames are then saved as text files, in a readable and disclosed format, which can be easily accessed and manipulated by user programs for a wide range of "real-time" visual information applications. For example, LCFM can be implemented in a frame-based expert system for visual aids in management of systems. For monitoring, diagnosis, and/or controlling purposes, circuit or systems diagrams can be brought to "life" by using designated video colors and intensities to symbolize the status of hardware components (via real-time feedback from sensors). Thus status of the system itself can be displayed. The Living Color Frame Maker is user friendly with graphical interfaces, and provides on-line help instructions. All options are executed using mouse commands and are displayed on a single menu for fast and easy operation. LCFM is written in C++ using the Borland C++ 2.0 compiler for IBM PC series computers and compatible computers running MS-DOS. The program requires a mouse and an EGA/VGA display. A minimum of 77K of RAM is also required for execution. The documentation is provided in electronic form on the distribution medium in WordPerfect format. A sample MS-DOS executable is provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The Living Color Frame Maker tool was developed in 1992.
A microbased shared virtual world prototype
NASA Technical Reports Server (NTRS)
Pitts, Gerald; Robinson, Mark; Strange, Steve
1993-01-01
Virtual reality (VR) allows sensory immersion and interaction with a computer-generated environment. The user adopts a physical interface with the computer, through Input/Output devices such as a head-mounted display, data glove, mouse, keyboard, or monitor, to experience an alternate universe. What this means is that the computer generates an environment which, in its ultimate extension, becomes indistinguishable from the real world. 'Imagine a wraparound television with three-dimensional programs, including three-dimensional sound, and solid objects that you can pick up and manipulate, even feel with your fingers and hands.... 'Imagine that you are the creator as well as the consumer of your artificial experience, with the power to use a gesture or word to remold the world you see and hear and feel. That part is not fiction... three-dimensional computer graphics, input/output devices, computer models that constitute a VR system make it possible, today, to immerse yourself in an artificial world and to reach in and reshape it.' Our research's goal was to propose a feasibility experiment in the construction of a networked virtual reality system, making use of current personal computer (PC) technology. The prototype was built using Borland C compiler, running on an IBM 486 33 MHz and a 386 33 MHz. Each game currently is represented as an IPX client on a non-dedicated Novell server. We initially posed the two questions: (1) Is there a need for networked virtual reality? (2) In what ways can the technology be made available to the most people possible?
1987-12-01
definition 33., below). 7. Commercial VI Production. A completed VI production, purchased off-the- shelf; i.e., from the stocks of a vendor. 8. Computer ...Generated Graphics. The production of graphics through an electronic medium based on a computer or computer techniques. 9. Contract VI Production. A VI...displays, presentations, and exhibits prepared manually, by machine, or by computer . 16. Indirect Costs. An item of cost (or the aggregate thereof) that is
Space Spurred Computer Graphics
NASA Technical Reports Server (NTRS)
1983-01-01
Dicomed Corporation was asked by NASA in the early 1970s to develop processing capabilities for recording images sent from Mars by Viking spacecraft. The company produced a film recorder which increased the intensity levels and the capability for color recording. This development led to a strong technology base resulting in sophisticated computer graphics equipment. Dicomed systems are used to record CAD (computer aided design) and CAM (computer aided manufacturing) equipment, to update maps and produce computer generated animation.
A Theoretical Analysis of Learning with Graphics--Implications for Computer Graphics Design.
ERIC Educational Resources Information Center
ChanLin, Lih-Juan
This paper reviews the literature pertinent to learning with graphics. The dual coding theory provides explanation about how graphics are stored and precessed in semantic memory. The level of processing theory suggests how graphics can be employed in learning to encourage deeper processing. In addition to dual coding theory and level of processing…
Pulse Code Modulation (PCM) data storage and analysis using a microcomputer
NASA Technical Reports Server (NTRS)
Massey, D. E.
1986-01-01
The current widespread use of microcomputers has led to the creation of some very low-cost instrumentation. A Pulse Code Modulation (PCM) storage device/data analyzer -- a peripheral plug-in board especially constructed to enable a personal computer to store and analyze data from a PCM source -- was designed and built for use on the NASA Sounding Rocket Program for PMC encoder configuration and testing. This board and custom-written software turns a computer into a snapshot PCM decommutator which will accept and store many hundreds or thousands of PCM telemetry data frames, then sift through them repeatedly. These data can be converted to any number base and displayed, examined for any bit dropouts or changes (in particular, words or frames), graphically plotted, or statistically analyzed.
User interfaces for computational science: A domain specific language for OOMMF embedded in Python
NASA Astrophysics Data System (ADS)
Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans
2017-05-01
Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.
Symplectic multi-particle tracking on GPUs
NASA Astrophysics Data System (ADS)
Liu, Zhicong; Qiang, Ji
2018-05-01
A symplectic multi-particle tracking model is implemented on the Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) language. The symplectic tracking model can preserve phase space structure and reduce non-physical effects in long term simulation, which is important for beam property evaluation in particle accelerators. Though this model is computationally expensive, it is very suitable for parallelization and can be accelerated significantly by using GPUs. In this paper, we optimized the implementation of the symplectic tracking model on both single GPU and multiple GPUs. Using a single GPU processor, the code achieves a factor of 2-10 speedup for a range of problem sizes compared with the time on a single state-of-the-art Central Processing Unit (CPU) node with similar power consumption and semiconductor technology. It also shows good scalability on a multi-GPU cluster at Oak Ridge Leadership Computing Facility. In an application to beam dynamics simulation, the GPU implementation helps save more than a factor of two total computing time in comparison to the CPU implementation.
Data Processing Aspects of MEDLARS
Austin, Charles J.
1964-01-01
The speed and volume requirements of MEDLARS necessitate the use of high-speed data processing equipment, including paper-tape typewriters, a digital computer, and a special device for producing photo-composed output. Input to the system is of three types: variable source data, including citations from the literature and search requests; changes to such master files as the medical subject headings list and the journal record file; and operating instructions such as computer programs and procedures for machine operators. MEDLARS builds two major stores of data on magnetic tape. The Processed Citation File includes bibliographic citations in expanded form for high-quality printing at periodic intervals. The Compressed Citation File is a coded, time-sequential citation store which is used for high-speed searching against demand request input. Major design considerations include converting variable-length, alphanumeric data to mechanical form quickly and accurately; serial searching by the computer within a reasonable period of time; high-speed printing that must be of graphic quality; and efficient maintenance of various complex computer files. PMID:14119287
DATA PROCESSING ASPECTS OF MEDLARS.
AUSTIN, C J
1964-01-01
The speed and volume requirements of MEDLARS necessitate the use of high-speed data processing equipment, including paper-tape typewriters, a digital computer, and a special device for producing photo-composed output. Input to the system is of three types: variable source data, including citations from the literature and search requests; changes to such master files as the medical subject headings list and the journal record file; and operating instructions such as computer programs and procedures for machine operators. MEDLARS builds two major stores of data on magnetic tape. The Processed Citation File includes bibliographic citations in expanded form for high-quality printing at periodic intervals. The Compressed Citation File is a coded, time-sequential citation store which is used for high-speed searching against demand request input. Major design considerations include converting variable-length, alphanumeric data to mechanical form quickly and accurately; serial searching by the computer within a reasonable period of time; high-speed printing that must be of graphic quality; and efficient maintenance of various complex computer files.
GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy
NASA Astrophysics Data System (ADS)
Yamanaka, Akinori; Aoki, Takayuki; Ogawa, Satoi; Takaki, Tomohiro
2011-03-01
The phase-field simulation for dendritic solidification of a binary alloy has been accelerated by using a graphic processing unit (GPU). To perform the phase-field simulation of the alloy solidification on GPU, a program code was developed with computer unified device architecture (CUDA). In this paper, the implementation technique of the phase-field model on GPU is presented. Also, we evaluated the acceleration performance of the three-dimensional solidification simulation by using a single NVIDIA TESLA C1060 GPU and the developed program code. The results showed that the GPU calculation for 5763 computational grids achieved the performance of 170 GFLOPS by utilizing the shared memory as a software-managed cache. Furthermore, it can be demonstrated that the computation with the GPU is 100 times faster than that with a single CPU core. From the obtained results, we confirmed the feasibility of realizing a real-time full three-dimensional phase-field simulation of microstructure evolution on a personal desktop computer.
Commercial Off-The-Shelf (COTS) Graphics Processing Board (GPB) Radiation Test Evaluation Report
NASA Technical Reports Server (NTRS)
Salazar, George A.; Steele, Glen F.
2013-01-01
Large round trip communications latency for deep space missions will require more onboard computational capabilities to enable the space vehicle to undertake many tasks that have traditionally been ground-based, mission control responsibilities. As a result, visual display graphics will be required to provide simpler vehicle situational awareness through graphical representations, as well as provide capabilities never before done in a space mission, such as augmented reality for in-flight maintenance or Telepresence activities. These capabilities will require graphics processors and associated support electronic components for high computational graphics processing. In an effort to understand the performance of commercial graphics card electronics operating in the expected radiation environment, a preliminary test was performed on five commercial offthe- shelf (COTS) graphics cards. This paper discusses the preliminary evaluation test results of five COTS graphics processing cards tested to the International Space Station (ISS) low earth orbit radiation environment. Three of the five graphics cards were tested to a total dose of 6000 rads (Si). The test articles, test configuration, preliminary results, and recommendations are discussed.
Jackin, Boaz Jessie; Watanabe, Shinpei; Ootsu, Kanemitsu; Ohkawa, Takeshi; Yokota, Takashi; Hayasaki, Yoshio; Yatagai, Toyohiko; Baba, Takanobu
2018-04-20
A parallel computation method for large-size Fresnel computer-generated hologram (CGH) is reported. The method was introduced by us in an earlier report as a technique for calculating Fourier CGH from 2D object data. In this paper we extend the method to compute Fresnel CGH from 3D object data. The scale of the computation problem is also expanded to 2 gigapixels, making it closer to real application requirements. The significant feature of the reported method is its ability to avoid communication overhead and thereby fully utilize the computing power of parallel devices. The method exhibits three layers of parallelism that favor small to large scale parallel computing machines. Simulation and optical experiments were conducted to demonstrate the workability and to evaluate the efficiency of the proposed technique. A two-times improvement in computation speed has been achieved compared to the conventional method, on a 16-node cluster (one GPU per node) utilizing only one layer of parallelism. A 20-times improvement in computation speed has been estimated utilizing two layers of parallelism on a very large-scale parallel machine with 16 nodes, where each node has 16 GPUs.
Crespo, Alejandro C.; Dominguez, Jose M.; Barreiro, Anxo; Gómez-Gesteira, Moncho; Rogers, Benedict D.
2011-01-01
Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly used in Computational Fluid Dynamics (CFD) to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs) or Graphics Processor Units (GPUs), a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA) of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability. PMID:21695185
Evaluating virtual hosted desktops for graphics-intensive astronomy
NASA Astrophysics Data System (ADS)
Meade, B. F.; Fluke, C. J.
2018-04-01
Visualisation of data is critical to understanding astronomical phenomena. Today, many instruments produce datasets that are too big to be downloaded to a local computer, yet many of the visualisation tools used by astronomers are deployed only on desktop computers. Cloud computing is increasingly used to provide a computation and simulation platform in astronomy, but it also offers great potential as a visualisation platform. Virtual hosted desktops, with graphics processing unit (GPU) acceleration, allow interactive, graphics-intensive desktop applications to operate co-located with astronomy datasets stored in remote data centres. By combining benchmarking and user experience testing, with a cohort of 20 astronomers, we investigate the viability of replacing physical desktop computers with virtual hosted desktops. In our work, we compare two Apple MacBook computers (one old and one new, representing hardware and opposite ends of the useful lifetime) with two virtual hosted desktops: one commercial (Amazon Web Services) and one in a private research cloud (the Australian NeCTAR Research Cloud). For two-dimensional image-based tasks and graphics-intensive three-dimensional operations - typical of astronomy visualisation workflows - we found that benchmarks do not necessarily provide the best indication of performance. When compared to typical laptop computers, virtual hosted desktops can provide a better user experience, even with lower performing graphics cards. We also found that virtual hosted desktops are equally simple to use, provide greater flexibility in choice of configuration, and may actually be a more cost-effective option for typical usage profiles.
Configurable software for satellite graphics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartzman, P D
An important goal in interactive computer graphics is to provide users with both quick system responses for basic graphics functions and enough computing power for complex calculations. One solution is to have a distributed graphics system in which a minicomputer and a powerful large computer share the work. The most versatile type of distributed system is an intelligent satellite system in which the minicomputer is programmable by the application user and can do most of the work while the large remote machine is used for difficult computations. At New York University, the hardware was configured from available equipment. The levelmore » of system intelligence resulted almost completely from software development. Unlike previous work with intelligent satellites, the resulting system had system control centered in the satellite. It also had the ability to reconfigure software during realtime operation. The design of the system was done at a very high level using set theoretic language. The specification clearly illustrated processor boundaries and interfaces. The high-level specification also produced a compact, machine-independent virtual graphics data structure for picture representation. The software was written in a systems implementation language; thus, only one set of programs was needed for both machines. A user can program both machines in a single language. Tests of the system with an application program indicate that is has very high potential. A major result of this work is the demonstration that a gigantic investment in new hardware is not necessary for computing facilities interested in graphics.« less
Gao, Peng; Liu, Peng; Su, Hongsen; Qiao, Liang
2015-04-01
Integrating visualization toolkit and the capability of interaction, bidirectional communication and graphics rendering which provided by HTML5, we explored and experimented on the feasibility of remote medical image reconstruction and interaction in pure Web. We prompted server-centric method which did not need to download the big medical data to local connections and avoided considering network transmission pressure and the three-dimensional (3D) rendering capability of client hardware. The method integrated remote medical image reconstruction and interaction into Web seamlessly, which was applicable to lower-end computers and mobile devices. Finally, we tested this method in the Internet and achieved real-time effects. This Web-based 3D reconstruction and interaction method, which crosses over internet terminals and performance limited devices, may be useful for remote medical assistant.
Integration of rocket turbine design and analysis through computer graphics
NASA Technical Reports Server (NTRS)
Hsu, Wayne; Boynton, Jim
1988-01-01
An interactive approach with engineering computer graphics is used to integrate the design and analysis processes of a rocket engine turbine into a progressive and iterative design procedure. The processes are interconnected through pre- and postprocessors. The graphics are used to generate the blade profiles, their stacking, finite element generation, and analysis presentation through color graphics. Steps of the design process discussed include pitch-line design, axisymmetric hub-to-tip meridional design, and quasi-three-dimensional analysis. The viscous two- and three-dimensional analysis codes are executed after acceptable designs are achieved and estimates of initial losses are confirmed.
Prototype of haptic device for sole of foot using magnetic field sensitive elastomer
NASA Astrophysics Data System (ADS)
Kikuchi, T.; Masuda, Y.; Sugiyama, M.; Mitsumata, T.; Ohori, S.
2013-02-01
Walking is one of the most popular activities and a healthy aerobic exercise for the elderly. However, if they have physical and / or cognitive disabilities, sometimes it is challenging to go somewhere they don't know well. The final goal of this study is to develop a virtual reality walking system that allows users to walk in virtual worlds fabricated with computer graphics. We focus on a haptic device that can perform various plantar pressures on users' soles of feet as an additional sense in the virtual reality walking. In this study, we discuss a use of a magnetic field sensitive elastomer (MSE) as a working material for the haptic interface on the sole. The first prototype with MSE was developed and evaluated in this work. According to the measurement of planter pressures, it was found that this device can perform different pressures on the sole of a light-weight user by applying magnetic field on the MSE. The result also implied necessities of the improvement of the magnetic circuit and the basic structure of the mechanism of the device.
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2013-03-01
We are developing tangible imaging systems1-4 that enable natural interaction with virtual objects. Tangible imaging systems are based on consumer mobile devices that incorporate electronic displays, graphics hardware, accelerometers, gyroscopes, and digital cameras, in laptop or tablet-shaped form-factors. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of threedimensional objects with complex textures and material properties are rendered to the screen, and tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. Tangible imaging systems thus allow virtual objects to be observed and manipulated as naturally as real ones with the added benefit that object properties can be modified under user control. In this paper we describe four tangible imaging systems we have developed: the tangiBook - our first implementation on a laptop computer; tangiView - a more refined implementation on a tablet device; tangiPaint - a tangible digital painting application; and phantoView - an application that takes the tangible imaging concept into stereoscopic 3D.
ERIC Educational Resources Information Center
Onaral, Banu; And Others
This report describes the development of a Drexel University electrical and computer engineering course on digital filter design that used interactive computing and graphics, and was one of three courses in a senior-level sequence on digital signal processing (DSP). Interactive and digital analysis/design routines and the interconnection of these…
ResidPlots-2: Computer Software for IRT Graphical Residual Analyses
ERIC Educational Resources Information Center
Liang, Tie; Han, Kyung T.; Hambleton, Ronald K.
2009-01-01
This article discusses the ResidPlots-2, a computer software that provides a powerful tool for IRT graphical residual analyses. ResidPlots-2 consists of two components: a component for computing residual statistics and another component for communicating with users and for plotting the residual graphs. The features of the ResidPlots-2 software are…
Methods and apparatus for graphical display and editing of flight plans
NASA Technical Reports Server (NTRS)
Gibbs, Michael J. (Inventor); Adams, Jr., Mike B. (Inventor); Chase, Karl L. (Inventor); Lewis, Daniel E. (Inventor); McCrobie, Daniel E. (Inventor); Omen, Debi Van (Inventor)
2002-01-01
Systems and methods are provided for an integrated graphical user interface which facilitates the display and editing of aircraft flight-plan data. A user (e.g., a pilot) located within the aircraft provides input to a processor through a cursor control device and receives visual feedback via a display produced by a monitor. The display includes various graphical elements associated with the lateral position, vertical position, flight-plan and/or other indicia of the aircraft's operational state as determined from avionics data and/or various data sources. Through use of the cursor control device, the user may modify the flight-plan and/or other such indicia graphically in accordance with feedback provided by the display. In one embodiment, the display includes a lateral view, a vertical profile view, and a hot-map view configured to simplify the display and editing of the aircraft's flight-plan data.
Wireless device connection problems and design solutions
NASA Astrophysics Data System (ADS)
Song, Ji-Won; Norman, Donald; Nam, Tek-Jin; Qin, Shengfeng
2016-09-01
Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.
Weidert, S; Wang, L; von der Heide, A; Navab, N; Euler, E
2012-03-01
The intraoperative application of augmented reality (AR) has so far mainly taken place in the field of endoscopy. Here, the camera image of the endoscope was augmented by computer graphics derived mostly from preoperative imaging. Due to the complex setup and operation of the devices, they have not yet become part of routine clinical practice. The Camera Augmented Mobile C-arm (CamC) that extends a classic C-arm by a video camera and mirror construction is characterized by its uncomplicated handling. It combines its video live stream geometrically correct with the acquired X-ray. The clinical application of the device in 43 cases showed the strengths of the device in positioning for X-ray acquisition, incision placement, K-wire placement, and instrument guidance. With its new function and the easy integration into the OR workflow of any procedure that requires X-ray imaging, the CamC has the potential to become the first widely used AR technology for orthopedic and trauma surgery.
Tangible display systems: bringing virtual surfaces into the real world
NASA Astrophysics Data System (ADS)
Ferwerda, James A.
2012-03-01
We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.
Interactive computer graphics system for structural sizing and analysis of aircraft structures
NASA Technical Reports Server (NTRS)
Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.
1975-01-01
A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.
Iconographic dental typography. A dental character font for computer graphics.
McCormack, J
1991-06-08
The recent massive increase in available memory for microcomputers now allows multiple font faces to be stored in computer RAM memory for instant access to the screen and for printed output. Fonts can be constructed in which the characters are not just letters or numbers, but are miniature graphic icons--in this instance pictures of teeth. When printed on an appropriate laser printer, this produces printed graphics of publishing quality.
Graphics and Flow Visualization of Computer Generated Flow Fields
NASA Technical Reports Server (NTRS)
Kathong, M.; Tiwari, S. N.
1987-01-01
Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.
2014-08-12
Nolan Warner, Mubarak Shah. Tracking in Dense Crowds Using Prominenceand Neighborhood Motion Concurrence, IEEE Transactions on Pattern Analysis...of computer vision, computer graphics and evacuation dynamics by providing a common platform, and provides...areas that includes Computer Vision, Computer Graphics , and Pedestrian Evacuation Dynamics. Despite the
Designer: A Knowledge-Based Graphic Design Assistant.
ERIC Educational Resources Information Center
Weitzman, Louis
This report describes Designer, an interactive tool for assisting with the design of two-dimensional graphic interfaces for instructional systems. The system, which consists of a color graphics interface to a mathematical simulation, provides enhancements to the Graphics Editor component of Steamer (a computer-based training system designed to aid…
CHARGE Image Generator: Theory of Operation and Author Language Support. Technical Report 75-3.
ERIC Educational Resources Information Center
Gunwaldsen, Roger L.
The image generator function and author language software support for the CHARGE (Color Halftone Area Graphics Environment) Interactive Graphics System are described. Designed initially for use in computer-assisted instruction (CAI) systems, the CHARGE Interactive Graphics System can provide graphic displays for various applications including…
Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.
ERIC Educational Resources Information Center
Hamel, Cheryl J.; Ryan-Jones, David L.
1997-01-01
Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…
Investigation of the piezoelectric thimble tactile device operating modes.
Bansevicius, Ramutis; Dragasius, Egidijus; Grigas, Vytautas; Jurenas, Vytautas; Mazeika, Darius; Zvironas, Arunas
2014-01-01
A multifunctional device to transfer graphical or text information for blind or visually impaired is presented. The prototype using tactile perception has been designed where information displayed on the screen of electronic device (mobile phone, PC) is transferred by oscillating needle, touching the fingertip. Having the aim to define optimal parameters of the fingertip excitation by needle, the computational analysis of different excitation modes has been carried out. A 3D solid computational finite element model of the skin segment, comprising four main fingertip skin layers (stratum corneum, epidermis, dermis and hypodermis) was built by using ANSYS Workbench FEA software. Harmonic analysis of its stress-strain state under excitation with different frequency (up to 10000 Hz) and harmonic force (0.01 N), acting outer stratum corneum layer in normal direction at one, two or three points has been performed. The influence of the mode of dynamic loading of skin was evaluated (in terms of the tactile signal level) on the basis of the normal and shear elastic strain in dermis, where mechanoreceptors are placed. It is shown that the tactile perception of information, delivered by three vibrating pins, may be influenced by configuration of excitation points (their number and phase of loading) and the frequency of excitation.
Final report for the DOE Early Career Award #DE-SC0003912
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaraman, Arthi
This DoE supported early career project was aimed at developing computational models, theory and simulation methods that would be then be used to predict assembly and morphology in polymer nanocomposites. In particular, the focus was on composites in active layers of devices, containing conducting polymers that act as electron donors and nanoscale additives that act as electron acceptors. During the course this work, we developed the first of its kind molecular models to represent conducting polymers enabling simulations at the experimentally relevant length and time scales. By comparison with experimentally observed morphologies we validated these models. Furthermore, using these modelsmore » and molecular dynamics simulations on graphical processing units (GPUs) we predicted the molecular level design features in polymers and additive that lead to morphologies with optimal features for charge carrier behavior in solar cells. Additionally, we also predicted computationally new design rules for better dispersion of additives in polymers that have been confirmed through experiments. Achieving dispersion in polymer nanocomposites is valuable to achieve controlled macroscopic properties of the composite. The results obtained during the course of this DOE funded project enables optimal design of higher efficiency organic electronic and photovoltaic devices and improve every day life with engineering of these higher efficiency devices.« less
Breen, P P; O'Keeffe, D T; Conway, R; Lyons, G M
2006-03-01
We describe the design of an intelligent drop foot stimulator unit for use in conjunction with a commercial neuromuscular electrical nerve stimulation (NMES) unit, the NT2000. The developed micro-controller unit interfaces to a personal computer (PC) and a graphical user interface (GUI) allows the clinician to graphically specify the shape of the stimulation intensity envelope required for a subject undergoing drop foot correction. The developed unit is based on the ADuC812S micro-controller evaluation board from Analog Devices and uses two force sensitive resistor (FSR) based foot-switches to control application of stimulus. The unit has the ability to display to the clinician how the stimulus intensity envelope is being delivered during walking using a data capture capability. The developed system has a built-in algorithm to dynamically adjust the delivery of stimulus to reflect changes both within the gait cycle and from cycle to cycle. Thus, adaptive control of stimulus intensity is achieved.
The development of the Canadian Mobile Servicing System Kinematic Simulation Facility
NASA Technical Reports Server (NTRS)
Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.
1989-01-01
Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.
Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570
Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).
Microcomputer Simulated CAD for Engineering Graphics.
ERIC Educational Resources Information Center
Huggins, David L.; Myers, Roy E.
1983-01-01
Describes a simulated computer-aided-graphics (CAD) program at The Pennsylvania State University. Rationale for the program, facilities, microcomputer equipment (Apple) used, and development of a software package for simulating applied engineering graphics are considered. (JN)
Artwork Interactive Design System (AIDS) program description
NASA Technical Reports Server (NTRS)
Johnson, B. T.; Taylor, J. F.
1976-01-01
An artwork interactive design system is described which provides the microelectronic circuit designer/engineer a tool to perform circuit design, automatic layout modification, standard cell design, and artwork verification at a graphics computer terminal using a graphics tablet at the designer/computer interface.
Computer-aided design of large-scale integrated circuits - A concept
NASA Technical Reports Server (NTRS)
Schansman, T. T.
1971-01-01
Circuit design and mask development sequence are improved by using general purpose computer with interactive graphics capability establishing efficient two way communications link between design engineer and system. Interactive graphics capability places design engineer in direct control of circuit development.
Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.
2012-01-01
We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures. PMID:24027616
Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R
2012-02-23
We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.
Combining 3D structure of real video and synthetic objects
NASA Astrophysics Data System (ADS)
Kim, Man-Bae; Song, Mun-Sup; Kim, Do-Kyoon
1998-04-01
This paper presents a new approach of combining real video and synthetic objects. The purpose of this work is to use the proposed technology in the fields of advanced animation, virtual reality, games, and so forth. Computer graphics has been used in the fields previously mentioned. Recently, some applications have added real video to graphic scenes for the purpose of augmenting the realism that the computer graphics lacks in. This approach called augmented or mixed reality can produce more realistic environment that the entire use of computer graphics. Our approach differs from the virtual reality and augmented reality in the manner that computer- generated graphic objects are combined to 3D structure extracted from monocular image sequences. The extraction of the 3D structure requires the estimation of 3D depth followed by the construction of a height map. Graphic objects are then combined to the height map. The realization of our proposed approach is carried out in the following steps: (1) We derive 3D structure from test image sequences. The extraction of the 3D structure requires the estimation of depth and the construction of a height map. Due to the contents of the test sequence, the height map represents the 3D structure. (2) The height map is modeled by Delaunay triangulation or Bezier surface and each planar surface is texture-mapped. (3) Finally, graphic objects are combined to the height map. Because 3D structure of the height map is already known, Step (3) is easily manipulated. Following this procedure, we produced an animation video demonstrating the combination of the 3D structure and graphic models. Users can navigate the realistic 3D world whose associated image is rendered on the display monitor.
Vacuum status-display and sector-conditioning programs
NASA Astrophysics Data System (ADS)
Skelly, J.; Yen, S.
1990-08-01
Two programs have been developed for observation and control of the AGS vacuum system, which include the following notable features: (1) they incorporate a graphical user interface and (2) they are driven by a relational database which describes the vacuum system. The vacuum system comprises some 440 devices organized into 28 vacuum sectors. The status-display program invites menu selection of a sector, interrogates the relational database for relevant vacuum devices, acquires live readbacks and posts a graphical display of their status. The sector-conditioning program likewise invites sector selection, produces the same status display and also implements process control logic on the sector devices to pump the sector down from atmospheric pressure to high vacuum over a period extending several hours. As additional devices are installed in the vacuum system, the devices are added to the relational database; these programs then automatically include the new devices.
Dimensionality of visual complexity in computer graphics scenes
NASA Astrophysics Data System (ADS)
Ramanarayanan, Ganesh; Bala, Kavita; Ferwerda, James A.; Walter, Bruce
2008-02-01
How do human observers perceive visual complexity in images? This problem is especially relevant for computer graphics, where a better understanding of visual complexity can aid in the development of more advanced rendering algorithms. In this paper, we describe a study of the dimensionality of visual complexity in computer graphics scenes. We conducted an experiment where subjects judged the relative complexity of 21 high-resolution scenes, rendered with photorealistic methods. Scenes were gathered from web archives and varied in theme, number and layout of objects, material properties, and lighting. We analyzed the subject responses using multidimensional scaling of pooled subject responses. This analysis embedded the stimulus images in a two-dimensional space, with axes that roughly corresponded to "numerosity" and "material / lighting complexity". In a follow-up analysis, we derived a one-dimensional complexity ordering of the stimulus images. We compared this ordering with several computable complexity metrics, such as scene polygon count and JPEG compression size, and did not find them to be very correlated. Understanding the differences between these measures can lead to the design of more efficient rendering algorithms in computer graphics.
Investigation into the development of computer aided design software for space based sensors
NASA Technical Reports Server (NTRS)
Pender, C. W.; Clark, W. L.
1987-01-01
The described effort is phase one of the development of a Computer Aided Design (CAD) software to be used to perform radiometric sensor design. The software package will be referred to as SCAD and is directed toward the preliminary phase of the design of space based sensor system. The approach being followed is to develop a modern, graphic intensive, user friendly software package using existing software as building blocks. The emphasis will be directed toward the development of a shell containing menus, smart defaults, and interfaces, which can accommodate a wide variety of existing application software packages. The shell will offer expected utilities such as graphics, tailored menus, and a variety of drivers for I/O devices. Following the development of the shell, the development of SCAD is planned as chiefly selection and integration of appropriate building blocks. The phase one development activities have included: the selection of hardware which will be used with SCAD; the determination of the scope of SCAD; the preliminary evaluation of a number of software packages for applicability to SCAD; determination of a method for achieving required capabilities where voids exist; and then establishing a strategy for binding the software modules into an easy to use tool kit.
Tsuchimoto, Masashi; Tanimura, Yoshitaka
2015-08-11
A system with many energy states coupled to a harmonic oscillator bath is considered. To study quantum non-Markovian system-bath dynamics numerically rigorously and nonperturbatively, we developed a computer code for the reduced hierarchy equations of motion (HEOM) for a graphics processor unit (GPU) that can treat the system as large as 4096 energy states. The code employs a Padé spectrum decomposition (PSD) for a construction of HEOM and the exponential integrators. Dynamics of a quantum spin glass system are studied by calculating the free induction decay signal for the cases of 3 × 2 to 3 × 4 triangular lattices with antiferromagnetic interactions. We found that spins relax faster at lower temperature due to transitions through a quantum coherent state, as represented by the off-diagonal elements of the reduced density matrix, while it has been known that the spins relax slower due to suppression of thermal activation in a classical case. The decay of the spins are qualitatively similar regardless of the lattice sizes. The pathway of spin relaxation is analyzed under a sudden temperature drop condition. The Compute Unified Device Architecture (CUDA) based source code used in the present calculations is provided as Supporting Information .
Effective correlator for RadioAstron project
NASA Astrophysics Data System (ADS)
Sergeev, Sergey
This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.
A High Performance VLSI Computer Architecture For Computer Graphics
NASA Astrophysics Data System (ADS)
Chin, Chi-Yuan; Lin, Wen-Tai
1988-10-01
A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, J.K. Jr.
1980-05-01
The advent of large, fast computers has opened the way to modeling more complex physical processes and to handling very large quantities of experimental data. The amount of information that can be processed in a short period of time is so great that use of graphical displays assumes greater importance as a means of displaying this information. Information from dynamical processes can be displayed conveniently by use of animated graphics. This guide presents the basic techniques for generating black and white animated graphics, with consideration of aesthetic, mechanical, and computational problems. The guide is intended for use by someone whomore » wants to make movies on the National Magnetic Fusion Energy Computing Center (NMFECC) CDC-7600. Problems encountered by a geographically remote user are given particular attention. Detailed information is given that will allow a remote user to do some file checking and diagnosis before giving graphics files to the system for processing into film in order to spot problems without having to wait for film to be delivered. Source listings of some useful software are given in appendices along with descriptions of how to use it. 3 figures, 5 tables.« less
Mobile high-performance computing (HPC) for synthetic aperture radar signal processing
NASA Astrophysics Data System (ADS)
Misko, Joshua; Kim, Youngsoo; Qi, Chenchen; Sirkeci, Birsen
2018-04-01
The importance of mobile high-performance computing has emerged in numerous battlespace applications at the tactical edge in hostile environments. Energy efficient computing power is a key enabler for diverse areas ranging from real-time big data analytics and atmospheric science to network science. However, the design of tactical mobile data centers is dominated by power, thermal, and physical constraints. Presently, it is very unlikely to achieve required computing processing power by aggregating emerging heterogeneous many-core processing platforms consisting of CPU, Field Programmable Gate Arrays and Graphic Processor cores constrained by power and performance. To address these challenges, we performed a Synthetic Aperture Radar case study for Automatic Target Recognition (ATR) using Deep Neural Networks (DNNs). However, these DNN models are typically trained using GPUs with gigabytes of external memories and massively used 32-bit floating point operations. As a result, DNNs do not run efficiently on hardware appropriate for low power or mobile applications. To address this limitation, we proposed for compressing DNN models for ATR suited to deployment on resource constrained hardware. This proposed compression framework utilizes promising DNN compression techniques including pruning and weight quantization while also focusing on processor features common to modern low-power devices. Following this methodology as a guideline produced a DNN for ATR tuned to maximize classification throughput, minimize power consumption, and minimize memory footprint on a low-power device.
ERIC Educational Resources Information Center
Abass, Bada Tayo
2012-01-01
This paper focused on the use of computer technology in the teaching and learning of graphic arts in Nigeria colleges of Education. Osun State Colleges of Education Ila-Orangun was used as a case study. The population of the study consisted of all Graphic students in Nigeria colleges of Education. 50 subjects were used for the study while…
Target Information Processing: A Joint Decision and Estimation Approach
2012-03-29
ground targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important...targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important
Computer Graphics Simulations of Sampling Distributions.
ERIC Educational Resources Information Center
Gordon, Florence S.; Gordon, Sheldon P.
1989-01-01
Describes the use of computer graphics simulations to enhance student understanding of sampling distributions that arise in introductory statistics. Highlights include the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions, and the distribution of sample…
PC graphics generation and management tool for real-time applications
NASA Technical Reports Server (NTRS)
Truong, Long V.
1992-01-01
A graphics tool was designed and developed for easy generation and management of personal computer graphics. It also provides methods and 'run-time' software for many common artificial intelligence (AI) or expert system (ES) applications.
Computer graphics in architecture and engineering
NASA Technical Reports Server (NTRS)
Greenberg, D. P.
1975-01-01
The present status of the application of computer graphics to the building profession or architecture and its relationship to other scientific and technical areas were discussed. It was explained that, due to the fragmented nature of architecture and building activities (in contrast to the aerospace industry), a comprehensive, economic utilization of computer graphics in this area is not practical and its true potential cannot now be realized due to the present inability of architects and structural, mechanical, and site engineers to rely on a common data base. Future emphasis will therefore have to be placed on a vertical integration of the construction process and effective use of a three-dimensional data base, rather than on waiting for any technological breakthrough in interactive computing.
Animation graphic interface for the space shuttle onboard computer
NASA Technical Reports Server (NTRS)
Wike, Jeffrey; Griffith, Paul
1989-01-01
Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.
Graphical workstation capability for reliability modeling
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Koppen, Sandra V.; Haley, Pamela J.
1992-01-01
In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages.
Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
Reyes, Ivan; Nazeran, Homer; Franco, Mario; Haltiwanger, Emily
2012-01-01
The photoplethysmographic (PPG) signal has the potential to aid in the acquisition and analysis of heart rate variability (HRV) signal: a non-invasive quantitative marker of the autonomic nervous system that could be used to assess cardiac health and other physiologic conditions. A low-power wireless PPG device was custom-developed to monitor, acquire and analyze the arterial pulse in the finger. The system consisted of an optical sensor to detect arterial pulse as variations in reflected light intensity, signal conditioning circuitry to process the reflected light signal, a microcontroller to control PPG signal acquisition, digitization and wireless transmission, a receiver to collect the transmitted digital data and convert them back to their analog representations. A personal computer was used to further process the captured PPG signals and display them. A MATLAB program was then developed to capture the PPG data, detect the RR peaks, perform spectral analysis of the PPG data, and extract the HRV signal. A user-friendly graphical user interface (GUI) was developed in LabView to display the PPG data and their spectra. The performance of each module (sensing unit, signal conditioning, wireless transmission/reception units, and graphical user interface) was assessed individually and the device was then tested as a whole. Consequently, PPG data were obtained from five healthy individuals to test the utility of the wireless system. The device was able to reliably acquire the PPG signals from the volunteers. To validate the accuracy of the MATLAB codes, RR peak information from each subject was fed into Kubios software as a text file. Kubios was able to generate a report sheet with the time domain and frequency domain parameters of the acquired data. These features were then compared against those calculated by MATLAB. The preliminary results demonstrate that the prototype wireless device could be used to perform HRV signal acquisition and analysis.
Alloy Design Workbench-Surface Modeling Package Developed
NASA Technical Reports Server (NTRS)
Abel, Phillip B.; Noebe, Ronald D.; Bozzolo, Guillermo H.; Good, Brian S.; Daugherty, Elaine S.
2003-01-01
NASA Glenn Research Center's Computational Materials Group has integrated a graphical user interface with in-house-developed surface modeling capabilities, with the goal of using computationally efficient atomistic simulations to aid the development of advanced aerospace materials, through the modeling of alloy surfaces, surface alloys, and segregation. The software is also ideal for modeling nanomaterials, since surface and interfacial effects can dominate material behavior and properties at this level. Through the combination of an accurate atomistic surface modeling methodology and an efficient computational engine, it is now possible to directly model these types of surface phenomenon and metallic nanostructures without a supercomputer. Fulfilling a High Operating Temperature Propulsion Components (HOTPC) project level-I milestone, a graphical user interface was created for a suite of quantum approximate atomistic materials modeling Fortran programs developed at Glenn. The resulting "Alloy Design Workbench-Surface Modeling Package" (ADW-SMP) is the combination of proven quantum approximate Bozzolo-Ferrante-Smith (BFS) algorithms (refs. 1 and 2) with a productivity-enhancing graphical front end. Written in the portable, platform independent Java programming language, the graphical user interface calls on extensively tested Fortran programs running in the background for the detailed computational tasks. Designed to run on desktop computers, the package has been deployed on PC, Mac, and SGI computer systems. The graphical user interface integrates two modes of computational materials exploration. One mode uses Monte Carlo simulations to determine lowest energy equilibrium configurations. The second approach is an interactive "what if" comparison of atomic configuration energies, designed to provide real-time insight into the underlying drivers of alloying processes.
Forward/up directional incompatibilities during cursor placement within graphical user interfaces.
Phillips, James G; Triggs, Thomas J; Meehan, James W
2005-05-15
Within graphical user interfaces, an indirect relationship between display and control may lead to directional incompatibilities when a forward mouse movement codes upward cursor motions. However, this should not occur for left/right movements or direct cursor controllers (e.g. touch sensitive screens). In a four-choice reaction time task, 12 participants performed movements from a central start location to a target situated at one of four cardinal points (top, bottom, left, right). A 2 x 2 x 2 design varied directness of controller (moving cursor on computer screen or pen on graphics tablet), compatibility of orientation of cursor controller with screen (horizontal or vertical) and axis of desired cursor motion (left/right or up/down). Incompatibility between orientation of controller and motion of cursor did not affect response latencies, possibly because both forward and upward movements are away from the midline and go up the visual field. However, directional incompatibilities between display and controller led to slower movement with prolonged accelerative phases. Indirect relationships between display and control led to less efficient movements with prolonged decelerative phases and a tendency to undershoot movements along the bottom/top axis. More direct cursor control devices, such as touch sensitive screens, should enhance the efficiency of aspects of cursor trajectories.
Interactive computer programs for the graphic analysis of nucleotide sequence data.
Luckow, V A; Littlewood, R K; Rownd, R H
1984-01-01
A group of interactive computer programs have been developed which aid in the collection and graphical analysis of nucleotide and protein sequence data. The programs perform the following basic functions: a) enter, edit, list, and rearrange sequence data; b) permit automatic entry of nucleotide sequence data directly from an autoradiograph into the computer; c) search for restriction sites or other specified patterns and plot a linear or circular restriction map, or print their locations; d) plot base composition; e) analyze homology between sequences by plotting a two-dimensional graphic matrix; and f) aid in plotting predicted secondary structures of RNA molecules. PMID:6546437
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.
Textbook Factor Demand Curves.
ERIC Educational Resources Information Center
Davis, Joe C.
1994-01-01
Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)
RIP-REMOTE INTERACTIVE PARTICLE-TRACER
NASA Technical Reports Server (NTRS)
Rogers, S. E.
1994-01-01
Remote Interactive Particle-tracing (RIP) is a distributed-graphics program which computes particle traces for computational fluid dynamics (CFD) solution data sets. A particle trace is a line which shows the path a massless particle in a fluid will take; it is a visual image of where the fluid is going. The program is able to compute and display particle traces at a speed of about one trace per second because it runs on two machines concurrently. The data used by the program is contained in two files. The solution file contains data on density, momentum and energy quantities of a flow field at discrete points in three-dimensional space, while the grid file contains the physical coordinates of each of the discrete points. RIP requires two computers. A local graphics workstation interfaces with the user for program control and graphics manipulation, and a remote machine interfaces with the solution data set and performs time-intensive computations. The program utilizes two machines in a distributed mode for two reasons. First, the data to be used by the program is usually generated on the supercomputer. RIP avoids having to convert and transfer the data, eliminating any memory limitations of the local machine. Second, as computing the particle traces can be computationally expensive, RIP utilizes the power of the supercomputer for this task. Although the remote site code was developed on a CRAY, it is possible to port this to any supercomputer class machine with a UNIX-like operating system. Integration of a velocity field from a starting physical location produces the particle trace. The remote machine computes the particle traces using the particle-tracing subroutines from PLOT3D/AMES, a CFD post-processing graphics program available from COSMIC (ARC-12779). These routines use a second-order predictor-corrector method to integrate the velocity field. Then the remote program sends graphics tokens to the local machine via a remote-graphics library. The local machine interprets the graphics tokens and draws the particle traces. The program is menu driven. RIP is implemented on the silicon graphics IRIS 3000 (local workstation) with an IRIX operating system and on the CRAY2 (remote station) with a UNICOS 1.0 or 2.0 operating system. The IRIS 4D can be used in place of the IRIS 3000. The program is written in C (67%) and FORTRAN 77 (43%) and has an IRIS memory requirement of 4 MB. The remote and local stations must use the same user ID. PLOT3D/AMES unformatted data sets are required for the remote machine. The program was developed in 1988.
Visual design for the user interface, Part 1: Design fundamentals.
Lynch, P J
1994-01-01
Digital audiovisual media and computer-based documents will be the dominant forms of professional communication in both clinical medicine and the biomedical sciences. The design of highly interactive multimedia systems will shortly become a major activity for biocommunications professionals. The problems of human-computer interface design are intimately linked with graphic design for multimedia presentations and on-line document systems. This article outlines the history of graphic interface design and the theories that have influenced the development of today's major graphic user interfaces.
Application of computer graphics in the design of custom orthopedic implants.
Bechtold, J E
1986-10-01
Implementation of newly developed computer modelling techniques and computer graphics displays and software have greatly aided the orthopedic design engineer and physician in creating a custom implant with good anatomic conformity in a short turnaround time. Further advances in computerized design and manufacturing will continue to simplify the development of custom prostheses and enlarge their niche in the joint replacement market.
Wrist display concept demonstration based on 2-in. color AMOLED
NASA Astrophysics Data System (ADS)
Meyer, Frederick M.; Longo, Sam J.; Hopper, Darrel G.
2004-09-01
The wrist watch needs an upgrade. Recent advances in optoelectronics, microelectronics, and communication theory have established a technology base that now make the multimedia Dick Tracy watch attainable during the next decade. As a first step towards stuffing the functionality of an entire personnel computer (PC) and television receiver under a watch face, we have set a goal of providing wrist video capability to warfighters. Commercial sector work on the wrist form factor already includes all the functionality of a personal digital assistant (PDA) and full PC operating system. Our strategy is to leverage these commercial developments. In this paper we describe our use of a 2.2 in. diagonal color active matrix light emitting diode (AMOLED) device as a wrist-mounted display (WMD) to present either full motion video or computer generated graphical image formats.
NASA Astrophysics Data System (ADS)
Fehr, M.; Navarro, V.; Martin, L.; Fletcher, E.
2013-08-01
Space Situational Awareness[8] (SSA) is defined as the comprehensive knowledge, understanding and maintained awareness of the population of space objects, the space environment and existing threats and risks. As ESA's SSA Conjunction Prediction Service (CPS) requires the repetitive application of a processing algorithm against a data set of man-made space objects, it is crucial to exploit the highly parallelizable nature of this problem. Currently the CPS system makes use of OpenMP[7] for parallelization purposes using CPU threads, but only a GPU with its hundreds of cores can fully benefit from such high levels of parallelism. This paper presents the adaptation of several core algorithms[5] of the CPS for general-purpose computing on graphics processing units (GPGPU) using NVIDIAs Compute Unified Device Architecture (CUDA).
Fiber Optic Communication System For Medical Images
NASA Astrophysics Data System (ADS)
Arenson, Ronald L.; Morton, Dan E.; London, Jack W.
1982-01-01
This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.
Exploratory visualization of astronomical data on ultra-high-resolution wall displays
NASA Astrophysics Data System (ADS)
Pietriga, Emmanuel; del Campo, Fernando; Ibsen, Amanda; Primet, Romain; Appert, Caroline; Chapuis, Olivier; Hempel, Maren; Muñoz, Roberto; Eyheramendy, Susana; Jordan, Andres; Dole, Hervé
2016-07-01
Ultra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touchsensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasser, D.W.
1978-03-01
EASI (Estimate of Adversary Sequence Interruption) is an analytical technique for measuring the effectiveness of physical protection systems. EASI Graphics is a computer graphics extension of EASI which provides a capability for performing sensitivity and trade-off analyses of the parameters of a physical protection system. This document reports on the implementation of EASI Graphics and illustrates its application with some examples.
Graphic Design for the Computer Age; Visual Communication for all Media.
ERIC Educational Resources Information Center
Hamilton, Edward A.
Because of the rapid pace of today's world, graphic designs which communicate at a glance are needed in all information areas. The essays in this book deal with various aspects of graphic design. These brief essays, each illustrated with graphics, concern the following topics: a short history of visual communication, information design, the merits…
DISPLAY3D. A Graphics Preprocessor for CHIEF
1990-12-27
graphics devices, the user may write a graphics program th.,.t can read DISPLAY3D output files, or use one of the commercial plotting packages...COMMON/NBPRTC/IRHSPT, NARSPT, NPTBLK FRQPT COMMON/NBPRTS/SYMTPT CHARACTER*3 SYMTPT DIMENSION CC(10), TRNS(3), IELTS (8,300) real xl(1000) ,yl(leee...C Prompt the user for filename. C--- ------------------------------------------------------- WRITE (6,1) ’Enter filename used in CID or
ERIC Educational Resources Information Center
Chandramouli, Magesh; Chittamuru, Siva-Teja
2016-01-01
This paper explains the design of a graphics-based virtual environment for instructing computer hardware concepts to students, especially those at the beginner level. Photorealistic visualizations and simulations are designed and programmed with interactive features allowing students to practice, explore, and test themselves on computer hardware…
Mouse Driven Window Graphics for Network Teaching.
ERIC Educational Resources Information Center
Makinson, G. J.; And Others
Computer enhanced teaching of computational mathematics on a network system driving graphics terminals is being redeveloped for a mouse-driven, high resolution, windowed environment of a UNIX work station. Preservation of the features of networked access by heterogeneous terminals is provided by the use of the X Window environment. A dmonstrator…
KINPLOT: An Interactive Pharmacokinetics Graphics Program for Digital Computers.
ERIC Educational Resources Information Center
Wilson, Robert C.; And Others
1982-01-01
Inability to see the relevance of mathematics to understanding the time course of drugs in the body may discourage interest in pharmacokinetics. A UNC-developed computer graphics simulation program helps visualize the nature of pharmacokinetic-patient interactions, generates classroom handouts, and is used in the pharmaceuticals industry to…
Using Computer-Assisted Multiple Representations in Learning Geometry Proofs
ERIC Educational Resources Information Center
Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Hsi-Hsun; Cheng, Ying-Hao
2011-01-01
Geometry theorem proving involves skills that are difficult to learn. Instead of working with abstract and complicated representations, students might start with concrete, graphical representations. A proof tree is a graphical representation of a formal proof, with each node representing a proposition or given conditions. A computer-assisted…
Zhang, Baofeng; Kilburg, Denise; Eastman, Peter; Pande, Vijay S; Gallicchio, Emilio
2017-04-15
We present an algorithm to efficiently compute accurate volumes and surface areas of macromolecules on graphical processing unit (GPU) devices using an analytic model which represents atomic volumes by continuous Gaussian densities. The volume of the molecule is expressed by means of the inclusion-exclusion formula, which is based on the summation of overlap integrals among multiple atomic densities. The surface area of the molecule is obtained by differentiation of the molecular volume with respect to atomic radii. The many-body nature of the model makes a port to GPU devices challenging. To our knowledge, this is the first reported full implementation of this model on GPU hardware. To accomplish this, we have used recursive strategies to construct the tree of overlaps and to accumulate volumes and their gradients on the tree data structures so as to minimize memory contention. The algorithm is used in the formulation of a surface area-based non-polar implicit solvent model implemented as an open source plug-in (named GaussVol) for the popular OpenMM library for molecular mechanics modeling. GaussVol is 50 to 100 times faster than our best optimized implementation for the CPUs, achieving speeds in excess of 100 ns/day with 1 fs time-step for protein-sized systems on commodity GPUs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Interactive computer graphics applications for compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.
The design and implementation of CRT displays in the TCV real-time simulation
NASA Technical Reports Server (NTRS)
Leavitt, J. B.; Tariq, S. I.; Steinmetz, G. G.
1975-01-01
The design and application of computer graphics to the Terminal Configured Vehicle (TCV) program were described. A Boeing 737-100 series aircraft was modified with a second flight deck and several computers installed in the passenger cabin. One of the elements in support of the TCV program is a sophisticated simulation system developed to duplicate the operation of the aft flight deck. This facility consists of an aft flight deck simulator, equipped with realistic flight instrumentation, a CDC 6600 computer, and an Adage graphics terminal; this terminal presents to the simulator pilot displays similar to those used on the aircraft with equivalent man-machine interactions. These two displays form the primary flight instrumentation for the pilot and are dynamic images depicting critical flight information. The graphics terminal is a high speed interactive refresh-type graphics system. To support the cockpit display, two remote CRT's were wired in parallel with two of the Adage scopes.
A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery
NASA Astrophysics Data System (ADS)
Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.
2007-03-01
This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.
Broadening the interface bandwidth in simulation based training
NASA Technical Reports Server (NTRS)
Somers, Larry E.
1989-01-01
Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Paterra, Frank; Bailin, Sidney
1993-01-01
The old maxim goes: 'A picture is worth a thousand words'. The objective of the research reported in this paper is to demonstrate this idea as it relates to the knowledge acquisition process and the automated development of an expert system's rule base. A prototype tool, the Knowledge From Pictures (KFP) tool, has been developed which configures an expert system's rule base by an automated analysis of and reasoning about a 'picture', i.e., a graphical representation of some target system to be supported by the diagnostic capabilities of the expert system under development. This rule base, when refined, could then be used by the expert system for target system monitoring and fault analysis in an operational setting. Most people, when faced with the problem of understanding the behavior of a complicated system, resort to the use of some picture or graphical representation of the system as an aid in thinking about it. This depiction provides a means of helping the individual to visualize the bahavior and dynamics of the system under study. An analysis of the picture augmented with the individual's background information, allows the problem solver to codify knowledge about the system. This knowledge can, in turn, be used to develop computer programs to automatically monitor the system's performance. The approach taken is this research was to mimic this knowledge acquisition paradigm. A prototype tool was developed which provides the user: (1) a mechanism for graphically representing sample system-configurations appropriate for the domain, and (2) a linguistic device for annotating the graphical representation with the behaviors and mutual influences of the components depicted in the graphic. The KFP tool, reasoning from the graphical depiction along with user-supplied annotations of component behaviors and inter-component influences, generates a rule base that could be used in automating the fault detection, isolation, and repair of the system.
Discovering epistasis in large scale genetic association studies by exploiting graphics cards.
Chen, Gary K; Guo, Yunfei
2013-12-03
Despite the enormous investments made in collecting DNA samples and generating germline variation data across thousands of individuals in modern genome-wide association studies (GWAS), progress has been frustratingly slow in explaining much of the heritability in common disease. Today's paradigm of testing independent hypotheses on each single nucleotide polymorphism (SNP) marker is unlikely to adequately reflect the complex biological processes in disease risk. Alternatively, modeling risk as an ensemble of SNPs that act in concert in a pathway, and/or interact non-additively on log risk for example, may be a more sensible way to approach gene mapping in modern studies. Implementing such analyzes genome-wide can quickly become intractable due to the fact that even modest size SNP panels on modern genotype arrays (500k markers) pose a combinatorial nightmare, require tens of billions of models to be tested for evidence of interaction. In this article, we provide an in-depth analysis of programs that have been developed to explicitly overcome these enormous computational barriers through the use of processors on graphics cards known as Graphics Processing Units (GPU). We include tutorials on GPU technology, which will convey why they are growing in appeal with today's numerical scientists. One obvious advantage is the impressive density of microprocessor cores that are available on only a single GPU. Whereas high end servers feature up to 24 Intel or AMD CPU cores, the latest GPU offerings from nVidia feature over 2600 cores. Each compute node may be outfitted with up to 4 GPU devices. Success on GPUs varies across problems. However, epistasis screens fare well due to the high degree of parallelism exposed in these problems. Papers that we review routinely report GPU speedups of over two orders of magnitude (>100x) over standard CPU implementations.
Discovering epistasis in large scale genetic association studies by exploiting graphics cards
Chen, Gary K.; Guo, Yunfei
2013-01-01
Despite the enormous investments made in collecting DNA samples and generating germline variation data across thousands of individuals in modern genome-wide association studies (GWAS), progress has been frustratingly slow in explaining much of the heritability in common disease. Today's paradigm of testing independent hypotheses on each single nucleotide polymorphism (SNP) marker is unlikely to adequately reflect the complex biological processes in disease risk. Alternatively, modeling risk as an ensemble of SNPs that act in concert in a pathway, and/or interact non-additively on log risk for example, may be a more sensible way to approach gene mapping in modern studies. Implementing such analyzes genome-wide can quickly become intractable due to the fact that even modest size SNP panels on modern genotype arrays (500k markers) pose a combinatorial nightmare, require tens of billions of models to be tested for evidence of interaction. In this article, we provide an in-depth analysis of programs that have been developed to explicitly overcome these enormous computational barriers through the use of processors on graphics cards known as Graphics Processing Units (GPU). We include tutorials on GPU technology, which will convey why they are growing in appeal with today's numerical scientists. One obvious advantage is the impressive density of microprocessor cores that are available on only a single GPU. Whereas high end servers feature up to 24 Intel or AMD CPU cores, the latest GPU offerings from nVidia feature over 2600 cores. Each compute node may be outfitted with up to 4 GPU devices. Success on GPUs varies across problems. However, epistasis screens fare well due to the high degree of parallelism exposed in these problems. Papers that we review routinely report GPU speedups of over two orders of magnitude (>100x) over standard CPU implementations. PMID:24348518
The mission events graphic generator software: A small tool with big results
NASA Technical Reports Server (NTRS)
Lupisella, Mark; Leibee, Jack; Scaffidi, Charles
1993-01-01
Utilization of graphics has long been a useful methodology for many aspects of spacecraft operations. A personal computer based software tool that implements straight-forward graphics and greatly enhances spacecraft operations is presented. This unique software tool is the Mission Events Graphic Generator (MEGG) software which is used in support of the Hubble Space Telescope (HST) Project. MEGG reads the HST mission schedule and generates a graphical timeline.
Graphics Processing Unit Assisted Thermographic Compositing
NASA Technical Reports Server (NTRS)
Ragasa, Scott; Russell, Samuel S.
2012-01-01
Objective Develop a software application utilizing high performance computing techniques, including general purpose graphics processing units (GPGPUs), for the analysis and visualization of large thermographic data sets. Over the past several years, an increasing effort among scientists and engineers to utilize graphics processing units (GPUs) in a more general purpose fashion is allowing for previously unobtainable levels of computation by individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU which yield significant increases in performance. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Image processing is one area were GPUs are being used to greatly increase the performance of certain analysis and visualization techniques.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Putt, C. W.; Giamati, C. C.
1981-01-01
Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.
NASA Technical Reports Server (NTRS)
Taylor, Nancy L.; Randall, Donald P.; Bowen, John T.; Johnson, Mary M.; Roland, Vincent R.; Matthews, Christine G.; Gates, Raymond L.; Skeens, Kristi M.; Nolf, Scott R.; Hammond, Dana P.
1990-01-01
The computer graphics capabilities available at the Center are introduced and their use is explained. More specifically, the manual identifies and describes the various graphics software and hardware components, details the interfaces between these components, and provides information concerning the use of these components at LaRC.
Alternatives for Saving and Viewing CAD Graphics for the Web.
ERIC Educational Resources Information Center
Harris, La Verne Abe; Sadowski, Mary A.
2001-01-01
Introduces some alternatives for preparing and viewing computer aided design (CAD) graphics for Internet output on a budget, without the fear of copyright infringement, and without having to go back to college to learn a complex graphic application. (Author/YDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faculjak, D.A.
1988-03-01
Graphics Manager (GFXMGR) is menu-driven, user-friendly software designed to interactively create, edit, and delete graphics displays on the Advanced Electronics Design (AED) graphics controller, Model 767. The software runs on the VAX family of computers and has been used successfully in security applications to create and change site layouts (maps) of specific facilities. GFXMGR greatly benefits graphics development by minimizing display-development time, reducing tedium on the part of the user, and improving system performance. It is anticipated that GFXMGR can be used to create graphics displays for many types of applications. 8 figs., 2 tabs.
Human-computer interfaces applied to numerical solution of the Plateau problem
NASA Astrophysics Data System (ADS)
Elias Fabris, Antonio; Soares Bandeira, Ivana; Ramos Batista, Valério
2015-09-01
In this work we present a code in Matlab to solve the Problem of Plateau numerically, and the code will include human-computer interface. The Problem of Plateau has applications in areas of knowledge like, for instance, Computer Graphics. The solution method will be the same one of the Surface Evolver, but the difference will be a complete graphical interface with the user. This will enable us to implement other kinds of interface like ocular mouse, voice, touch, etc. To date, Evolver does not include any graphical interface, which restricts its use by the scientific community. Specially, its use is practically impossible for most of the Physically Challenged People.
NASA Astrophysics Data System (ADS)
Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.
2017-11-01
Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.
Jürgens, Clemens; Grossjohann, Rico; Czepita, Damian; Tost, Frank
2009-01-01
Graphic documentation of retinal examination results in clinical ophthalmological practice is often depicted using pictures or in handwritten form. Popular software products used to describe changes in the fundus do not vary much from simple graphic programs that enable to insert, scale and edit basic graphic elements such as: a circle, rectangle, arrow or text. Displaying the results of retinal examinations in a unified way is difficult to achieve. Therefore, we devised and implemented modern software tools for this purpose. A computer program enabling to quickly and intuitively form graphs of the fundus, that can be digitally archived or printed was created. Especially for the needs of ophthalmological clinics, a set of standard digital symbols used to document the results of retinal examinations was developed and installed in a library of graphic symbols. These symbols are divided into the following categories: preoperative, postoperative, neovascularization, retinopathy of prematurity. The appropriate symbol can be selected with a click of the mouse and dragged-and-dropped on the canvas of the fundus. Current forms of documenting results of retinal examinations are unsatisfactory, due to the fact that they are time consuming and imprecise. Unequivocal interpretation is difficult or in some cases impossible. Using the developed computer program a sketch of the fundus can be created much more quickly than by hand drawing. Additionally the quality of the medica documentation using a system of well described and standardized symbols will be enhanced. (1) Graphic symbols used to document the results of retinal examinations are a part of everyday clinical practice. (2) The designed computer program will allow quick and intuitive graphical creation of fundus sketches that can be either digitally archived or printed.
Volumetric graphics in liquid using holographic femtosecond laser pulse excitations
NASA Astrophysics Data System (ADS)
Kumagai, Kota; Hayasaki, Yoshio
2017-06-01
Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.
Computer-aided light sheet flow visualization using photogrammetry
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1994-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.
Computer-Aided Light Sheet Flow Visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Computer-aided light sheet flow visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme.
Lee, Sheng-Ta; Lin, Chun-Yuan; Hung, Che Lun
2013-01-01
As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets, H1N1 protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection without time constraints.
Acceleration of FDTD mode solver by high-performance computing techniques.
Han, Lin; Xi, Yanping; Huang, Wei-Ping
2010-06-21
A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.
OpenSesame: an open-source, graphical experiment builder for the social sciences.
Mathôt, Sebastiaan; Schreij, Daniel; Theeuwes, Jan
2012-06-01
In the present article, we introduce OpenSesame, a graphical experiment builder for the social sciences. OpenSesame is free, open-source, and cross-platform. It features a comprehensive and intuitive graphical user interface and supports Python scripting for complex tasks. Additional functionality, such as support for eyetrackers, input devices, and video playback, is available through plug-ins. OpenSesame can be used in combination with existing software for creating experiments.
Computer-aided auscultation learning system for nursing technique instruction.
Hou, Chun-Ju; Chen, Yen-Ting; Hu, Ling-Chen; Chuang, Chih-Chieh; Chiu, Yu-Hsien; Tsai, Ming-Shih
2008-01-01
Pulmonary auscultation is a physical assessment skill learned by nursing students for examining the respiratory system. Generally, a sound simulator equipped mannequin is used to group teach auscultation techniques via classroom demonstration. However, nursing students cannot readily duplicate this learning environment for self-study. The advancement of electronic and digital signal processing technologies facilitates simulating this learning environment. This study aims to develop a computer-aided auscultation learning system for assisting teachers and nursing students in auscultation teaching and learning. This system provides teachers with signal recording and processing of lung sounds and immediate playback of lung sounds for students. A graphical user interface allows teachers to control the measuring device, draw lung sound waveforms, highlight lung sound segments of interest, and include descriptive text. Effects on learning lung sound auscultation were evaluated for verifying the feasibility of the system. Fifteen nursing students voluntarily participated in the repeated experiment. The results of a paired t test showed that auscultative abilities of the students were significantly improved by using the computer-aided auscultation learning system.
Kohno, R; Hotta, K; Nishioka, S; Matsubara, K; Tansho, R; Suzuki, T
2011-11-21
We implemented the simplified Monte Carlo (SMC) method on graphics processing unit (GPU) architecture under the computer-unified device architecture platform developed by NVIDIA. The GPU-based SMC was clinically applied for four patients with head and neck, lung, or prostate cancer. The results were compared to those obtained by a traditional CPU-based SMC with respect to the computation time and discrepancy. In the CPU- and GPU-based SMC calculations, the estimated mean statistical errors of the calculated doses in the planning target volume region were within 0.5% rms. The dose distributions calculated by the GPU- and CPU-based SMCs were similar, within statistical errors. The GPU-based SMC showed 12.30-16.00 times faster performance than the CPU-based SMC. The computation time per beam arrangement using the GPU-based SMC for the clinical cases ranged 9-67 s. The results demonstrate the successful application of the GPU-based SMC to a clinical proton treatment planning.
MIGS-GPU: Microarray Image Gridding and Segmentation on the GPU.
Katsigiannis, Stamos; Zacharia, Eleni; Maroulis, Dimitris
2017-05-01
Complementary DNA (cDNA) microarray is a powerful tool for simultaneously studying the expression level of thousands of genes. Nevertheless, the analysis of microarray images remains an arduous and challenging task due to the poor quality of the images that often suffer from noise, artifacts, and uneven background. In this study, the MIGS-GPU [Microarray Image Gridding and Segmentation on Graphics Processing Unit (GPU)] software for gridding and segmenting microarray images is presented. MIGS-GPU's computations are performed on the GPU by means of the compute unified device architecture (CUDA) in order to achieve fast performance and increase the utilization of available system resources. Evaluation on both real and synthetic cDNA microarray images showed that MIGS-GPU provides better performance than state-of-the-art alternatives, while the proposed GPU implementation achieves significantly lower computational times compared to the respective CPU approaches. Consequently, MIGS-GPU can be an advantageous and useful tool for biomedical laboratories, offering a user-friendly interface that requires minimum input in order to run.
A versatile model for soft patchy particles with various patch arrangements.
Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2016-01-21
We propose a simple and general mesoscale soft patchy particle model, which can felicitously describe the deformable and surface-anisotropic characteristics of soft patchy particles. This model can be used in dynamics simulations to investigate the aggregation behavior and mechanism of various types of soft patchy particles with tunable number, size, direction, and geometrical arrangement of the patches. To improve the computational efficiency of this mesoscale model in dynamics simulations, we give the simulation algorithm that fits the compute unified device architecture (CUDA) framework of NVIDIA graphics processing units (GPUs). The validation of the model and the performance of the simulations using GPUs are demonstrated by simulating several benchmark systems of soft patchy particles with 1 to 4 patches in a regular geometrical arrangement. Because of its simplicity and computational efficiency, the soft patchy particle model will provide a powerful tool to investigate the aggregation behavior of soft patchy particles, such as patchy micelles, patchy microgels, and patchy dendrimers, over larger spatial and temporal scales.
Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom
Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.
2014-01-01
Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of adaptive exploration, in which exploration in a high fidelity graphical environment is integrated with immediate testing and feedback in repeated cycles of learning. The results of this study were that students considered the graphical learning environment to be superior to typical classroom materials used for learning neuroanatomy. Students managed the frequency and duration of study, test, and feedback in an efficient and adaptive manner. For example, the number of tests taken before reaching a minimum test performance of 90% correct closely approximated the values seen in more regimented experimental studies. There was a wide range of student opinion regarding the choice between a simpler and a more graphically compelling program for learning sectional anatomy. Course outcomes were predicted by individual differences in the use of the software that reflected general work habits of the students, such as the amount of time committed to testing. The results of this introduction into the classroom are highly encouraging for development of computer-based instruction in biomedical disciplines. PMID:24449123
Chemical Engineering and Instructional Computing: Are They in Step? (Part 2).
ERIC Educational Resources Information Center
Seider, Warren D.
1988-01-01
Describes the use of "CACHE IBM PC Lessons for Courses Other than Design and Control" as open-ended design oriented problems. Presents graphics from some of the software and discusses high-resolution graphics workstations. Concludes that computing tools are in line with design and control practice in chemical engineering. (MVL)
Some research advances in computer graphics that will enhance applications to engineering design
NASA Technical Reports Server (NTRS)
Allan, J. J., III
1975-01-01
Research in man/machine interactions and graphics hardware/software that will enhance applications to engineering design was described. Research aspects of executive systems, command languages, and networking used in the computer applications laboratory are mentioned. Finally, a few areas where little or no research is being done were identified.
Emphasizing Planning for Essay Writing with a Computer-Based Graphic Organizer
ERIC Educational Resources Information Center
Evmenova, Anya S.; Regan, Kelley; Boykin, Andrea; Good, Kevin; Hughes, Melissa; MacVittie, Nichole; Sacco, Donna; Ahn, Soo Y.; Chirinos, David
2016-01-01
The authors conducted a multiple-baseline study to investigate the effects of a computer-based graphic organizer (CBGO) with embedded self-regulated learning strategies on the quantity and quality of persuasive essay writing by students with high-incidence disabilities. Ten seventh- and eighth-grade students with learning disabilities, emotional…
Constructing Stylish Characters on Computer Graphics Systems.
ERIC Educational Resources Information Center
Goldman, Gary S.
1980-01-01
Computer graphics systems typically produce a single, machine-like character font. At most, these systems enable the user to (1) alter the aspect ratio (height-to-width ratio) of the characters, (2) specify a transformation matrix to slant the characters, and (3) define a virtual pen table to change the lineweight of the plotted characters.…
A "Service-Learning Approach" to Teaching Computer Graphics
ERIC Educational Resources Information Center
Hutzel, Karen
2007-01-01
The author taught a computer graphics course through a service-learning framework to undergraduate and graduate students in the spring of 2003 at Florida State University (FSU). The students in this course participated in learning a software program along with youths from a neighboring, low-income, primarily African-American community. Together,…
The Generative Effects of Instructional Organizers with Computer-Based Interactive Video.
ERIC Educational Resources Information Center
Kenny, Richard F.
This study compared the use of three instructional organizers--the advance organizer (AO), the participatory pictorial graphic organizer (PGO), and the final form pictorial graphic organizer (FGO)--in the design and use of computer-based interactive video (CBIV) programs. That is, it attempted to determine whether a less generative or more…
Digital-Computer Processing of Graphical Data. Final Report.
ERIC Educational Resources Information Center
Freeman, Herbert
The final report of a two-year study concerned with the digital-computer processing of graphical data. Five separate investigations carried out under this study are described briefly, and a detailed bibliography, complete with abstracts, is included in which are listed the technical papers and reports published during the period of this program.…
Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang
2011-01-01
An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717
INSTRUMENTATION AND CONTROLS DIVISION ELECTRICAL DESIGN STANDARDS AND GRAPHICAL SYMBOLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-11-01
Copies are presented of the American Standards Association graphical symbols for electrical and electronic equipment and systems. Recommendations are given for electrical elementary design layout, device codings, etc., for permanent type installations. Electrical diagrams copied from American Drafting Standards Manual are presented. (M.C.G.)
Dong, Han; Sharma, Diksha; Badano, Aldo
2014-12-01
Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridmantis, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webmantis and visualmantis to facilitate the setup of computational experiments via hybridmantis. The visualization tools visualmantis and webmantis enable the user to control simulation properties through a user interface. In the case of webmantis, control via a web browser allows access through mobile devices such as smartphones or tablets. webmantis acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridmantis. The users can download the output images and statistics through a zip file for future reference. In addition, webmantis provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. The visualization tools visualmantis and webmantis provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.
Real-time computation of parameter fitting and image reconstruction using graphical processing units
NASA Astrophysics Data System (ADS)
Locans, Uldis; Adelmann, Andreas; Suter, Andreas; Fischer, Jannis; Lustermann, Werner; Dissertori, Günther; Wang, Qiulin
2017-06-01
In recent years graphical processing units (GPUs) have become a powerful tool in scientific computing. Their potential to speed up highly parallel applications brings the power of high performance computing to a wider range of users. However, programming these devices and integrating their use in existing applications is still a challenging task. In this paper we examined the potential of GPUs for two different applications. The first application, created at Paul Scherrer Institut (PSI), is used for parameter fitting during data analysis of μSR (muon spin rotation, relaxation and resonance) experiments. The second application, developed at ETH, is used for PET (Positron Emission Tomography) image reconstruction and analysis. Applications currently in use were examined to identify parts of the algorithms in need of optimization. Efficient GPU kernels were created in order to allow applications to use a GPU, to speed up the previously identified parts. Benchmarking tests were performed in order to measure the achieved speedup. During this work, we focused on single GPU systems to show that real time data analysis of these problems can be achieved without the need for large computing clusters. The results show that the currently used application for parameter fitting, which uses OpenMP to parallelize calculations over multiple CPU cores, can be accelerated around 40 times through the use of a GPU. The speedup may vary depending on the size and complexity of the problem. For PET image analysis, the obtained speedups of the GPU version were more than × 40 larger compared to a single core CPU implementation. The achieved results show that it is possible to improve the execution time by orders of magnitude.
Multiprocessor graphics computation and display using transputers
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1988-01-01
A package of two-dimensional graphics routines was developed to run on a transputer-based parallel processing system. These routines were designed to enable applications programmers to easily generate and display results from the transputer network in a graphic format. The graphics procedures were designed for the lowest possible network communication overhead for increased performance. The routines were designed for ease of use and to present an intuitive approach to generating graphics on the transputer parallel processing system.
Program for Generating Graphs and Charts
NASA Technical Reports Server (NTRS)
Ackerson, C. T.
1986-01-01
Office Automation Pilot (OAP) Graphics Database system offers IBM personal computer user assistance in producing wide variety of graphs and charts and convenient data-base system, called chart base, for creating and maintaining data associated with graphs and charts. Thirteen different graphics packages available. Access graphics capabilities obtained in similar manner. User chooses creation, revision, or chartbase-maintenance options from initial menu; Enters or modifies data displayed on graphic chart. OAP graphics data-base system written in Microsoft PASCAL.
ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (SILICON GRAPHICS VERSION)
NASA Technical Reports Server (NTRS)
Walters, D.
1994-01-01
The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.
Analyzing Sliding Stability of Structures Using the Modified Computer Program GWALL. Revision,
1983-11-01
R136 954 RNRLYZING SLIDING STRBILITY OF STRUCTURES USING THE i/i MODIFIED COMPUTER PRO..(U) ARMY ENGINEER WATERRYS EXPERIMENT STATION VICKSBURG MS...GWALL and/or the graphics software package, Graphics Compati- bility System (GCS). Input Features 4. GWALL is very easy to use because it allows the...Prepared Data File 9. Time-sharing computer systems do not always respond quickly to the userts commands, especially when there are many users
IMP: Interactive mass properties program. Volume 1: Program description
NASA Technical Reports Server (NTRS)
Stewart, W. A.
1976-01-01
A method of computing a weights and center of gravity analysis of a flight vehicle using interactive graphical capabilities of the Adage 340 computer is described. The equations used to calculate area, volume, and mass properties are based on elemental surface characteristics. The input/output methods employ the graphic support of the Adage computer. Several interactive program options are available for analyzing the mass properties of a vehicle. These options are explained.
NASA Technical Reports Server (NTRS)
Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David
1987-01-01
The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris; Tang, Diane L; Hanrahan, Patrick
2014-04-29
In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris [Palo Alto, CA; Tang, Diane L [Palo Alto, CA; Hanrahan, Patrick [Portola Valley, CA
2011-02-01
In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris [Palo Alto, CA; Tang, Diane L [Palo Alto, CA; Hanrahan, Patrick [Portola Valley, CA
2012-03-20
In response to a user request, a computer generates a graphical user interface on a computer display. A schema information region of the graphical user interface includes multiple operand names, each operand name associated with one or more fields of a multi-dimensional database. A data visualization region of the graphical user interface includes multiple shelves. Upon detecting a user selection of the operand names and a user request to associate each user-selected operand name with a respective shelf in the data visualization region, the computer generates a visual table in the data visualization region in accordance with the associations between the operand names and the corresponding shelves. The visual table includes a plurality of panes, each pane having at least one axis defined based on data for the fields associated with a respective operand name.
A real-time spike sorting method based on the embedded GPU.
Zelan Yang; Kedi Xu; Xiang Tian; Shaomin Zhang; Xiaoxiang Zheng
2017-07-01
Microelectrode arrays with hundreds of channels have been widely used to acquire neuron population signals in neuroscience studies. Online spike sorting is becoming one of the most important challenges for high-throughput neural signal acquisition systems. Graphic processing unit (GPU) with high parallel computing capability might provide an alternative solution for increasing real-time computational demands on spike sorting. This study reported a method of real-time spike sorting through computing unified device architecture (CUDA) which was implemented on an embedded GPU (NVIDIA JETSON Tegra K1, TK1). The sorting approach is based on the principal component analysis (PCA) and K-means. By analyzing the parallelism of each process, the method was further optimized in the thread memory model of GPU. Our results showed that the GPU-based classifier on TK1 is 37.92 times faster than the MATLAB-based classifier on PC while their accuracies were the same with each other. The high-performance computing features of embedded GPU demonstrated in our studies suggested that the embedded GPU provide a promising platform for the real-time neural signal processing.
GPU Accelerated Vector Median Filter
NASA Technical Reports Server (NTRS)
Aras, Rifat; Shen, Yuzhong
2011-01-01
Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .
Wearable Devices for Classification of Inadequate Posture at Work Using Neural Networks
Barkallah, Eya; Freulard, Johan; Otis, Martin J. -D.; Ngomo, Suzy; Ayena, Johannes C.; Desrosiers, Christian
2017-01-01
Inadequate postures adopted by an operator at work are among the most important risk factors in Work-related Musculoskeletal Disorders (WMSDs). Although several studies have focused on inadequate posture, there is limited information on its identification in a work context. The aim of this study is to automatically differentiate between adequate and inadequate postures using two wearable devices (helmet and instrumented insole) with an inertial measurement unit (IMU) and force sensors. From the force sensors located inside the insole, the center of pressure (COP) is computed since it is considered an important parameter in the analysis of posture. In a first step, a set of 60 features is computed with a direct approach, and later reduced to eight via a hybrid feature selection. A neural network is then employed to classify the current posture of a worker, yielding a recognition rate of 90%. In a second step, an innovative graphic approach is proposed to extract three additional features for the classification. This approach represents the main contribution of this study. Combining both approaches improves the recognition rate to 95%. Our results suggest that neural network could be applied successfully for the classification of adequate and inadequate posture. PMID:28862665
Description and availability of the SMARTS spectral model for photovoltaic applications
NASA Astrophysics Data System (ADS)
Myers, Daryl R.; Gueymard, Christian A.
2004-11-01
Limited spectral response range of photocoltaic (PV) devices requires device performance be characterized with respect to widely varying terrestrial solar spectra. The FORTRAN code "Simple Model for Atmospheric Transmission of Sunshine" (SMARTS) was developed for various clear-sky solar renewable energy applications. The model is partly based on parameterizations of transmittance functions in the MODTRAN/LOWTRAN band model family of radiative transfer codes. SMARTS computes spectra with a resolution of 0.5 nanometers (nm) below 400 nm, 1.0 nm from 400 nm to 1700 nm, and 5 nm from 1700 nm to 4000 nm. Fewer than 20 input parameters are required to compute spectral irradiance distributions including spectral direct beam, total, and diffuse hemispherical radiation, and up to 30 other spectral parameters. A spreadsheet-based graphical user interface can be used to simplify the construction of input files for the model. The model is the basis for new terrestrial reference spectra developed by the American Society for Testing and Materials (ASTM) for photovoltaic and materials degradation applications. We describe the model accuracy, functionality, and the availability of source and executable code. Applications to PV rating and efficiency and the combined effects of spectral selectivity and varying atmospheric conditions are briefly discussed.
WORM - WINDOWED OBSERVATION OF RELATIVE MOTION
NASA Technical Reports Server (NTRS)
Bauer, F.
1994-01-01
The Windowed Observation of Relative Motion, WORM, program is primarily intended for the generation of simple X-Y plots from data created by other programs. It allows the user to label, zoom, and change the scale of various plots. Three dimensional contour and line plots are provided, although with more limited capabilities. The input data can be in binary or ASCII format, although all data must be in the same format. A great deal of control over the details of the plot is provided, such as gridding, size of tick marks, colors, log/semilog capability, time tagging, and multiple and phase plane plots. Many color and monochrome graphics terminals and hard copy printer/plotters are supported. The WORM executive commands, menu selections and macro files can be used to develop plots and tabular data, query the WORM Help library, retrieve data from input files, and invoke VAX DCL commands. WORM generated plots are displayed on local graphics terminals and can be copied using standard hard copy capabilities. Some of the graphics features of WORM include: zooming and dezooming various portions of the plot; plot documentation including curve labeling and function listing; multiple curves on the same plot; windowing of multiple plots and insets of the same plot; displaying a specific on a curve; and spinning the curve left, right, up, and down. WORM is written in PASCAL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.7 with a virtual memory requirement of approximately 392K of 8 bit bytes. It uses the QPLOT device independent graphics library included with WORM. It was developed in 1988.
ERIC Educational Resources Information Center
Defense Documentation Center, Alexandria, VA.
This unclassified-unlimited bibliography contains 183 references, with abstracts, dealing specifically with optical or graphic information processing. Citations are grouped under three headings: display devices and theory, character recognition, and pattern recognition. Within each group, they are arranged in accession number (AD-number) sequence.…
The View from Here: Emergence of Graphical Literacy
ERIC Educational Resources Information Center
Roberts, Kathryn L.; Brugar, Kristy A.
2017-01-01
The purpose of this study is to describe upper elementary students' understandings of four graphical devices that frequently occur in social studies texts: captioned images, maps, tables, and timelines. Using verbal protocol data collection procedures, we collected information on students' metacognitive processes when they were explicitly asked to…
The Myth of Fair Prices: A Graphical Analysis.
ERIC Educational Resources Information Center
Yanchus, Dennis; de Vanssay, Xavier
2003-01-01
Illustrates how fair price policies can be explained to undergraduate students by applying simple graphical methods normally used in general equilibrium trade theory. Indicates that fair price strategies can be looked upon as a suboptimal device for redistributing the gains from trade as compared with a transfer of funds. (JEH)
Analog-to-digital clinical data collection on networked workstations with graphic user interface.
Lunt, D
1991-02-01
An innovative respiratory examination system has been developed that combines physiological response measurement, real-time graphic displays, user-driven operating sequences, and networked file archiving and review into a scientific research and clinical diagnosis tool. This newly constructed computer network is being used to enhance the research center's ability to perform patient pulmonary function examinations. Respiratory data are simultaneously acquired and graphically presented during patient breathing maneuvers and rapidly transformed into graphic and numeric reports, suitable for statistical analysis or database access. The environment consists of the hardware (Macintosh computer, MacADIOS converters, analog amplifiers), the software (HyperCard v2.0, HyperTalk, XCMDs), and the network (AppleTalk, fileservers, printers) as building blocks for data acquisition, analysis, editing, and storage. System operation modules include: Calibration, Examination, Reports, On-line Help Library, Graphic/Data Editing, and Network Storage.
Process and representation in graphical displays
NASA Technical Reports Server (NTRS)
Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne
1993-01-01
Our initial model of graphic comprehension has focused on statistical graphs. Like other models of human-computer interaction, models of graphical comprehension can be used by human-computer interface designers and developers to create interfaces that present information in an efficient and usable manner. Our investigation of graph comprehension addresses two primary questions: how do people represent the information contained in a data graph?; and how do they process information from the graph? The topics of focus for graphic representation concern the features into which people decompose a graph and the representations of the graph in memory. The issue of processing can be further analyzed as two questions: what overall processing strategies do people use?; and what are the specific processing skills required?
Parametric inference for biological sequence analysis.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.
Simulation of electric vehicles with hybrid power systems
NASA Astrophysics Data System (ADS)
Burke, A. F.; Cole, G. H.
Computer programs for the simulation of the operation of electric vehicles with hybrid power systems are described. These programs treat cases in which high energy density ultracapacitors or high power density pulse batteries are used to load level the main energy storage battery in the vehicle. A generalized control strategy for splitting the power between the main battery and the pulse power devices is implemented such that the user can specify the nominal battery power as a function of the state-of-charge of the ultracapacitor or pulse power battery. The programs display graphically on the screen, as they run, the power from both the main battery and the pulse power device and the state-of-charge of the pulse power device. After each run is completed, a summary is printed out from which the effect of load leveling the battery on vehicle range and energy consumption can be determined. Default input files are provided with the programs so various combinations of vehicles, driveline components, and batteries of special current interest to the EV community can be run with either type of pulse power device. Typical simulation results are shown including cases in which the pulse power devices are connected in parallel with the main battery without interface electronics.
En Route Air Traffic Control Input Devices for the Next Generation
NASA Technical Reports Server (NTRS)
Mainini, Matthew J.
2010-01-01
The purpose of this study was to investigate the usefulness of different input device configurations when trial planning new routes for aircraft in an advanced simulation of the en route workstation. The task of trial planning is one of the futuristic tools that is performed by the graphical manipulation of an aircraft's trajectory to reroute the aircraft without voice communication. In this study with two input devices, the FAA's current trackball and a basic optical computer mouse were evaluated with "pick" button in a click-and-hold state and a click-and-release state while the participant dragged the trial plan line. The trial plan was used for three different conflict types: Aircraft Conflicts, Weather Conflicts, and Aircraft + Weather Conflicts. Speed and accuracy were the primary dependent variables. Results indicate that the mouse conditions were significantly faster than the trackball conditions overall with no significant loss of accuracy. Several performance ratings and preference ratings were analyzed from post-run and post-simulation questionnaires. The release conditions were significantly more useful and likable than the hold conditions. The results suggest that the mouse in the release button state was the fastest and most well liked device configuration for trial planning in the en route workstation. Keywords-input devices, en route, controller, workstation, mouse, trackball, NextGen
HeNCE: A Heterogeneous Network Computing Environment
Beguelin, Adam; Dongarra, Jack J.; Geist, George Al; ...
1994-01-01
Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE) is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM).more » The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.« less
1991-01-24
Molecular Graphics, vol. 6, No. 4 (Dec. 1988), p. 223. Turk, Greg, "Interactive Collision Detection for Molecular Graphics," M.S. thesis , UNC-Chapel Hill...Problem," Master’s thesis , UNC Department of Computer Science Technical Report #TR87-013, May 1987. Pique, ME., "Technical Trends in Molecular Graphics...AD-A236 598 Seventeenth Annual Progress Report and 1992-97 Renewal Proposal Interactive Graphics for Molecular Studies TR91-020 January 24, 1991 red
A computer graphics program for general finite element analyses
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Sawyer, L. M.
1978-01-01
Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.
Applications of Computer Graphics in Engineering
NASA Technical Reports Server (NTRS)
1975-01-01
Various applications of interactive computer graphics to the following areas of science and engineering were described: design and analysis of structures, configuration geometry, animation, flutter analysis, design and manufacturing, aircraft design and integration, wind tunnel data analysis, architecture and construction, flight simulation, hydrodynamics, curve and surface fitting, gas turbine engine design, analysis, and manufacturing, packaging of printed circuit boards, spacecraft design.
A rapid algorithm for realistic human reaching and its use in a virtual reality system
NASA Technical Reports Server (NTRS)
Aldridge, Ann; Pandya, Abhilash; Goldsby, Michael; Maida, James
1994-01-01
The Graphics Analysis Facility (GRAF) at JSC has developed a rapid algorithm for computing realistic human reaching. The algorithm was applied to GRAF's anthropometrically correct human model and used in a 3D computer graphics system and a virtual reality system. The nature of the algorithm and its uses are discussed.