Sample records for computer-mediated collaborative environments

  1. Designing Collaborative Learning Environments Mediated by Computer Conferencing: Issues and Challenges in the Asian Socio-Cultural Context.

    ERIC Educational Resources Information Center

    Gunawardena, Charlotte N.

    1998-01-01

    Explores issues related to the design of collaborative-learning environments mediated by computer conferencing from the perspective of challenges faced in the sociocultural context of the Indian sub-continent. Examines the impact of online features on social cohesiveness, group dynamics, interaction, communication anxiety, and participation.…

  2. Learning and Teaching in a Synchronous Collaborative Environment.

    ERIC Educational Resources Information Center

    Marjanovic, Olivera

    1999-01-01

    Describes a new synchronous collaborative environment that combines interactive learning and Group Support Systems for computer-mediated collaboration. Illustrates its potential to improve critical thinking, problem solving, and communication skills, and describes how teachers' roles are changed. (Author/LRW)

  3. Elearn: A Collaborative Educational Virtual Environment.

    ERIC Educational Resources Information Center

    Michailidou, Anna; Economides, Anastasios A.

    Virtual Learning Environments (VLEs) that support collaboration are one of the new technologies that have attracted great interest. VLEs are learning management software systems composed of computer-mediated communication software and online methods of delivering course material. This paper presents ELearn, a collaborative VLE for teaching…

  4. Employing a Structured Interface to Advance Primary Students' Communicative Competence in a Text-Based Computer Mediated Environment

    ERIC Educational Resources Information Center

    Chiu, Chiung-Hui; Wu, Chiu-Yi; Hsieh, Sheng-Jieh; Cheng, Hsiao-Wei; Huang, Chung-Kai

    2013-01-01

    This study investigated whether a structured communication interface fosters primary students' communicative competence in a synchronous typewritten computer-mediated collaborative learning environment. The structured interface provided a set of predetermined utterance patterns for elementary students to use or imitate to develop communicative…

  5. Improving Communicative Competence through Synchronous Communication in Computer-Supported Collaborative Learning Environments: A Systematic Review

    ERIC Educational Resources Information Center

    Huang, Xi

    2018-01-01

    Computer-supported collaborative learning facilitates the extension of second language acquisition into social practice. Studies on its achievement effects speak directly to the pedagogical notion of treating communicative practice in synchronous computer-mediated communication (SCMC): real-time communication that takes place between human beings…

  6. Interaction Forms in Successful Collaborative Learning in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Vuopala, Essi; Hyvönen, Pirkko; Järvelä, Sanna

    2016-01-01

    Despite the numerous studies on social interaction in collaborative learning, little is known about interaction forms in successful computer-supported collaborative learning situations. The purpose of this study was to explore and understand student interaction in successful collaborative learning during a university course which was mediated by…

  7. Peripheral Social Awareness Information in Collaborative Work.

    ERIC Educational Resources Information Center

    Spring, Michael B.; Vathanophas, Vichita

    2003-01-01

    Discusses being aware of other members of a team in a collaborative environment and reports on a study that examined group performance on a task that was computer mediated with and without awareness information. Examines how an awareness tool impacts the quality of a collaborative work effort and the communications between group members.…

  8. Museum Informatics and Collaborative Technologies: The Emerging Socio-Technological Dimension of Information Science in Museum Environments.

    ERIC Educational Resources Information Center

    Marty, Paul F.

    1999-01-01

    Examines the sociotechnological impact of introducing advanced information technology into the Spurlock Museum, a museum of world history and culture at the University of Illinois. Addresses implementation of such methodologies as computer-supported cooperative work and computer-mediated communication in the museum environment. Emphasizes the…

  9. Analysis of Cross-Cultural Online Collaborative Learning with Social Software

    ERIC Educational Resources Information Center

    Law, Effie Lai-Chong; Nguyen-Ngoc, Anh Vu

    2010-01-01

    Purpose: The rising popularity of social software poses challenges to the design and evaluation of pedagogically sound cross-cultural online collaborative learning environments (OCLEs). In the literature of computer-mediated communications, there exist only a limited number of related empirical studies, indicating that it is still an emergent…

  10. The AstroVR Collaboratory, an On-line Multi-User Environment for Research in Astrophysics

    NASA Astrophysics Data System (ADS)

    van Buren, D.; Curtis, P.; Nichols, D. A.; Brundage, M.

    We describe our experiment with an on-line collaborative environment where users share the execution of programs and communicate via audio, video, and typed text. Collaborative environments represent the next step in computer-mediated conferencing, combining powerful compute engines, data persistence, shared applications, and teleconferencing tools. As proof of concept, we have implemented a shared image analysis tool, allowing geographically distinct users to analyze FITS images together. We anticipate that \\htmllink{AstroVR}{http://astrovr.ipac.caltech.edu:8888} and similar systems will become an important part of collaborative work in the next decade, including with applications in remote observing, spacecraft operations, on-line meetings, as well as and day-to-day research activities. The technology is generic and promises to find uses in business, medicine, government, and education.

  11. Sharing Solutions: Persistence and Grounding in Multimodal Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre; Traum, David

    2006-01-01

    This article reports on an exploratory study of the relationship between grounding and problem solving in multimodal computer-mediated collaboration. This article examines two different media, a shared whiteboard and a MOO environment that includes a text chat facility. A study was done on how the acknowledgment rate (how often partners give…

  12. Assessing collaborative computing: development of the Collaborative-Computing Observation Instrument (C-COI)

    NASA Astrophysics Data System (ADS)

    Israel, Maya; Wherfel, Quentin M.; Shehab, Saadeddine; Ramos, Evan A.; Metzger, Adam; Reese, George C.

    2016-07-01

    This paper describes the development, validation, and uses of the Collaborative Computing Observation Instrument (C-COI), a web-based analysis instrument that classifies individual and/or collaborative behaviors of students during computing problem-solving (e.g. coding, programming). The C-COI analyzes data gathered through video and audio screen recording software that captures students' computer screens as they program, and their conversations with their peers or adults. The instrument allows researchers to organize and quantify these data to track behavioral patterns that could be further analyzed for deeper understanding of persistence and/or collaborative interactions. The article provides a rationale for the C-COI including the development of a theoretical framework for measuring collaborative interactions in computer-mediated environments. This theoretical framework relied on the computer-supported collaborative learning literature related to adaptive help seeking, the joint problem-solving space in which collaborative computing occurs, and conversations related to outcomes and products of computational activities. Instrument development and validation also included ongoing advisory board feedback from experts in computer science, collaborative learning, and K-12 computing as well as classroom observations to test out the constructs in the C-COI. These processes resulted in an instrument with rigorous validation procedures and a high inter-rater reliability.

  13. Modelling Learners' Cognitive, Affective, and Social Processes through Language and Discourse

    ERIC Educational Resources Information Center

    Dowell, Nia M. M.; Graesser, Arthur C.

    2014-01-01

    An emerging trend toward computer-mediated collaborative learning environments promotes lively exchanges between learners in order to facilitate learning. Discourse can play an important role in enhancing epistemology, pedagogy, and assessments in these environments. In this paper, we highlight some of our recent work showing the advantages using…

  14. Exploring Lake Ecology in a Computer-Supported Learning Environment

    ERIC Educational Resources Information Center

    Ergazaki, Marida; Zogza, Vassiliki

    2008-01-01

    This study highlights the computer-mediated discursive activity of two dyads of first year educational sciences students, each collaboratively exploring several options for increasing the equilibrium size of a fish population in a lake. Our focus is on peers' attempts to come up with justified predictions about the adequacy of several options for…

  15. Exploring the Complex Computer-Mediated Communication Needs of Learners in a Multilingual, Multicultural Online Learning Environment

    ERIC Educational Resources Information Center

    Burger, William Peter

    2013-01-01

    The purpose of this study was to understand student perceptions of social presence that resulted from communicating and collaborating via different forms of Internet-based communication technologies in a diverse, multicultural, multilingual online learning environment. In that it describes how non-native English speaking students from different…

  16. Teaching an Interdisciplinary Graduate-Level Methods Course in an Openly-Networked Connected Learning Environment: A Glass Half-Full

    ERIC Educational Resources Information Center

    Secret, Mary; Bryant, Nita L.; Cummings, Cory R.

    2017-01-01

    Our paper describes the design and delivery of an online interdisciplinary social science research methods course (ISRM) for graduate students in sociology, education, social work, and public administration. Collaborative activities and learning took place in two types of computer-mediated learning environments: a closed Blackboard course…

  17. Collaboration, Reflection and Selective Neglect: Campus-Based Marketing Students' Experiences of Using a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Molesworth, Mike

    2004-01-01

    Previous studies have suggested significant benefits to using computer-mediated communication in higher education and the development of the relevant skills may also be important for preparing students for their working careers. This study is a review of the introduction of a virtual learning environment to support a group of 60 campus-based,…

  18. Encouraging Greater Student Inquiry Engagement in Science through Motivational Support by Online Scientist-Mentors

    ERIC Educational Resources Information Center

    Scogin, Stephen C.; Stuessy, Carol L.

    2015-01-01

    Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…

  19. Oral Conversations Online: Redefining Oral Competence in Synchronous Environments

    ERIC Educational Resources Information Center

    Lamy, Marie-Noelle

    2004-01-01

    In this article the focus is on methodology for analysing learner-learner oral conversations mediated by computers. With the increasing availability of synchronous voice-based groupware and the additional facilities offered by audio-graphic tools, language learners have opportunities for collaborating on oral tasks, supported by visual and textual…

  20. Collaborative Dialogue in Synchronous Computer-Mediated Communication and Face-to-Face Communication

    ERIC Educational Resources Information Center

    Zeng, Gang

    2017-01-01

    Previous research has documented that collaborative dialogue promotes L2 learning in both face-to-face (F2F) and synchronous computer-mediated communication (SCMC) modalities. However, relatively little research has explored modality effects on collaborative dialogue. Thus, motivated by sociocultual theory, this study examines how F2F compares…

  1. Computer Supported Cooperative Work in Information Search and Retrieval.

    ERIC Educational Resources Information Center

    Twidale, Michael B.; Nichols, David M.

    1998-01-01

    Considers how research in collaborative technologies can inform research and development in library and information science. Topics include computer supported collaborative work; shared drawing; collaborative writing; MUDs; MOOs; workflow; World Wide Web; collaborative learning; computer mediated communication; ethnography; evaluation; remote…

  2. Computer-Mediated Collaborative Projects: Processes for Enhancing Group Development

    ERIC Educational Resources Information Center

    Dupin-Bryant, Pamela A.

    2008-01-01

    Groups are a fundamental part of the business world. Yet, as companies continue to expand internationally, a major challenge lies in promoting effective communication among employees who work in varying time zones. Global expansion often requires group collaboration through computer systems. Computer-mediated groups lead to different communicative…

  3. Exploring Collaboratively Written L2 Texts among First-Year Learners of German in Google Docs

    ERIC Educational Resources Information Center

    Abrams, Zsuzsanna

    2016-01-01

    Grounded in research on collaborative writing and computer-mediated writing the present study examines the computer-mediated collaborative writing process among first-year learners of German as a second language (L2) at a US university. The data come from 28 first-year learners of German at a US university, who wrote hypothesized endings to a…

  4. Flexibility in Macro-Scripts for Computer-Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Dillenbourg, P.; Tchounikine, P.

    2007-01-01

    In the field of computer-supported collaborative learning (CSCL), scripts are designed to support collaboration among distant learners or co-present learners whose interactions are (at least partially) mediated by a computer. The rationale of scripts is to structure collaborative learning processes in order to trigger group interactions that may…

  5. Developing Understanding of Image Formation by Lenses through Collaborative Learning Mediated by Multimedia Computer-Assisted Learning Programs

    ERIC Educational Resources Information Center

    Tao, Ping-Kee

    2004-01-01

    This article reports the use of a computer-based collaborative learning instruction designed to help students develop understanding of image formation by lenses. The study aims to investigate how students, working in dyads and mediated by multimedia computer-assisted learning (CAL) programs, construct shared knowledge and understanding. The…

  6. The Differential Effects of Collaborative vs. Individual Prewriting Planning on Computer-Mediated L2 Writing: Transferability of Task-Based Linguistic Skills in Focus

    ERIC Educational Resources Information Center

    Amiryousefi, Mohammad

    2017-01-01

    The current study aimed at investigating the effects of three types of prewriting planning conditions, namely teacher-monitored collaborative planning (TMCP), student-led collaborative planning (SLCP), and individual planning (IP) on EFL learners' computer-mediated L2 written production and learning transfer from a pedagogic task to a new task of…

  7. ComPLuS Model: A New Insight in Pupils' Collaborative Talk, Actions and Balance during a Computer-Mediated Music Task

    ERIC Educational Resources Information Center

    Nikolaidou, Georgia N.

    2012-01-01

    This exploratory work describes and analyses the collaborative interactions that emerge during computer-based music composition in the primary school. The study draws on socio-cultural theories of learning, originated within Vygotsky's theoretical context, and proposes a new model, namely Computer-mediated Praxis and Logos under Synergy (ComPLuS).…

  8. Lay Theories Regarding Computer-Mediated Communication in Remote Collaboration

    ERIC Educational Resources Information Center

    Parke, Karl; Marsden, Nicola; Connolly, Cornelia

    2017-01-01

    Computer-mediated communication and remote collaboration has become an unexceptional norm as an educational modality for distance and open education, therefore the need to research and analyze students' online learning experience is necessary. This paper seeks to examine the assumptions and expectations held by students in regard to…

  9. Classic Conversational Norms in Modern Computer-Mediated Collaboration

    ERIC Educational Resources Information Center

    Oeberst, Aileen; Moskaliuk, Johannes

    2016-01-01

    This paper examines whether conversational norms that have been observed for face-to-face communication also hold in the context of a specific type of computer-mediated communication: collaboration (such as in Wikipedia). Specifically, we tested adherence to Grice's (1975) maxim of relation--the implicit demand to contribute information that is…

  10. Computer Mediated Communication and Student Learning in Large Introductory Sociology Classes

    ERIC Educational Resources Information Center

    Wright, Eric R.; Lawson, Anthony H.

    2005-01-01

    Over the past several years, scholars of teaching and learning have demonstrated the potential of collaborative learning strategies for improving student learning. This paper examines the use of computer-mediated communication to promote collaborative student learning in large introductory sociology courses. Specifically, we summarize a project we…

  11. Transformed Telepresence and Its Association with Learning in Computer-Supported Collaborative Learning: A Case Study in English Learning and Its Evaluation

    ERIC Educational Resources Information Center

    Ting, Yu-Liang; Tai, Yaming; Chen, Jun-Horng

    2017-01-01

    Telepresence has been playing an important role in a mediated learning environment. However, the current design of telepresence seems to be dominated by the emulation of physical human presence. With reference to social constructivism learning and the recognition of individuals as intelligent entities, this study explored the transformation of…

  12. Virtual microscopy: merging of computer mediated communication and intuitive interfacing

    NASA Astrophysics Data System (ADS)

    de Ridder, Huib; de Ridder-Sluiter, Johanna G.; Kluin, Philip M.; Christiaans, Henri H. C. M.

    2009-02-01

    Ubiquitous computing (or Ambient Intelligence) is an upcoming technology that is usually associated with futuristic smart environments in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. However spectacular the corresponding scenarios may be, it is equally challenging to consider how this technology may enhance existing situations. This is illustrated by a case study from the Dutch medical field: central quality reviewing for pathology in child oncology. The main goal of the review is to assess the quality of the diagnosis based on patient material. The sharing of knowledge in social face-to-face interaction during such meeting is an important advantage. At the same time there is the disadvantage that the experts from the seven Dutch academic medical centers have to travel to the review meeting and that the required logistics to collect and bring patient material and data to the meeting is cumbersome and time-consuming. This paper focuses on how this time-consuming, nonefficient way of reviewing can be replaced by a virtual collaboration system by merging technology supporting Computer Mediated Collaboration and intuitive interfacing. This requires insight in the preferred way of communication and collaboration as well as knowledge about preferred interaction style with a virtual shared workspace.

  13. The influence of multiple trials and computer-mediated communication on collaborative and individual semantic recall.

    PubMed

    Hinds, Joanne M; Payne, Stephen J

    2018-04-01

    Collaborative inhibition is a phenomenon where collaborating groups experience a decrement in recall when interacting with others. Despite this, collaboration has been found to improve subsequent individual recall. We explore these effects in semantic recall, which is seldom studied in collaborative retrieval. We also examine "parallel CMC", a synchronous form of computer-mediated communication that has previously been found to improve collaborative recall [Hinds, J. M., & Payne, S. J. (2016). Collaborative inhibition and semantic recall: Improving collaboration through computer-mediated communication. Applied Cognitive Psychology, 30(4), 554-565]. Sixty three triads completed a semantic recall task, which involved generating words beginning with "PO" or "HE" across three recall trials, in one of three retrieval conditions: Individual-Individual-Individual (III), Face-to-face-Face-to-Face-Individual (FFI) and Parallel-Parallel-Individual (PPI). Collaborative inhibition was present across both collaborative conditions. Individual recall in Recall 3 was higher when participants had previously collaborated in comparison to recalling three times individually. There was no difference between face-to-face and parallel CMC recall, however subsidiary analyses of instance repetitions and subjective organisation highlighted differences in group members' approaches to recall in terms of organisation and attention to others' contributions. We discuss the implications of these findings in relation to retrieval strategy disruption.

  14. Co-Regulation of Learning in Computer-Supported Collaborative Learning Environments: A Discussion

    ERIC Educational Resources Information Center

    Chan, Carol K. K.

    2012-01-01

    This discussion paper for this special issue examines co-regulation of learning in computer-supported collaborative learning (CSCL) environments extending research on self-regulated learning in computer-based environments. The discussion employs a socio-cognitive perspective focusing on social and collective views of learning to examine how…

  15. Preservice Science Teachers' Collaborative Knowledge Building through Argumentation on Healthy Eating in a Computer Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Namdar, Bahadir

    2017-01-01

    The purpose of this study was to investigate preservice science teachers' collaborative knowledge building through socioscientific argumentation on healthy eating in a multiple representation-rich computer supported collaborative learning (CSCL) environment. This study was conducted with a group of preservice science teachers (n = 18) enrolled in…

  16. Collaboration Scripts--A Conceptual Analysis

    ERIC Educational Resources Information Center

    Kollar, Ingo; Fischer, Frank; Hesse, Friedrich W.

    2006-01-01

    This article presents a conceptual analysis of collaboration scripts used in face-to-face and computer-mediated collaborative learning. Collaboration scripts are scaffolds that aim to improve collaboration through structuring the interactive processes between two or more learning partners. Collaboration scripts consist of at least five components:…

  17. Computer Applications in Counselor Education: Developing Cultural Competencies through Online Collaboration of Future School Counselors

    ERIC Educational Resources Information Center

    Ilieva, Vessela; Erguner-Tekinalp, Bengu

    2012-01-01

    This study examined the applications of computer-mediated student collaboration in a graduate multicultural counseling course. The course work included a reflective cultural competency building assignment that utilized online communication and collaboration using a wiki to extend and improve students' multicultural counseling and social justice…

  18. Method and apparatus for managing transactions with connected computers

    DOEpatents

    Goldsmith, Steven Y.; Phillips, Laurence R.; Spires, Shannon V.

    2003-01-01

    The present invention provides a method and apparatus that make use of existing computer and communication resources and that reduce the errors and delays common to complex transactions such as international shipping. The present invention comprises an agent-based collaborative work environment that assists geographically distributed commercial and government users in the management of complex transactions such as the transshipment of goods across the U.S.-Mexico border. Software agents can mediate the creation, validation and secure sharing of shipment information and regulatory documentation over the Internet, using the World-Wide Web to interface with human users.

  19. Monitoring Collaborative Activities in Computer Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Persico, Donatella; Pozzi, Francesca; Sarti, Luigi

    2010-01-01

    Monitoring the learning process in computer supported collaborative learning (CSCL) environments is a key element for supporting the efficacy of tutor actions. This article proposes an approach for analysing learning processes in a CSCL environment to support tutors in their monitoring tasks. The approach entails tracking the interactions within…

  20. Using Wikis as a Support and Assessment Tool in Collaborative Digital Game-Based Learning Environments

    ERIC Educational Resources Information Center

    Samur, Yavuz

    2011-01-01

    In computer-supported collaborative learning (CSCL) environments, there are many researches done on collaborative learning activities; however, in game-based learning environments, more research and literature on collaborative learning activities are required. Actually, both game-based learning environments and wikis enable us to use new chances…

  1. A study on haptic collaborative game in shared virtual environment

    NASA Astrophysics Data System (ADS)

    Lu, Keke; Liu, Guanyang; Liu, Lingzhi

    2013-03-01

    A study on collaborative game in shared virtual environment with haptic feedback over computer networks is introduced in this paper. A collaborative task was used where the players located at remote sites and played the game together. The player can feel visual and haptic feedback in virtual environment compared to traditional networked multiplayer games. The experiment was desired in two conditions: visual feedback only and visual-haptic feedback. The goal of the experiment is to assess the impact of force feedback on collaborative task performance. Results indicate that haptic feedback is beneficial for performance enhancement for collaborative game in shared virtual environment. The outcomes of this research can have a powerful impact on the networked computer games.

  2. Methodological Issues in Mobile Computer-Supported Collaborative Learning (mCSCL): What Methods, What to Measure and When to Measure?

    ERIC Educational Resources Information Center

    Song, Yanjie

    2014-01-01

    This study aims to investigate (1) methods utilized in mobile computer-supported collaborative learning (mCSCL) research which focuses on studying, learning and collaboration mediated by mobile devices; (2) whether these methods have examined mCSCL effectively; (3) when the methods are administered; and (4) what methodological issues exist in…

  3. Detecting and Understanding the Impact of Cognitive and Interpersonal Conflict in Computer Supported Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Prata, David Nadler; Baker, Ryan S. J. d.; Costa, Evandro d. B.; Rose, Carolyn P.; Cui, Yue; de Carvalho, Adriana M. J. B.

    2009-01-01

    This paper presents a model which can automatically detect a variety of student speech acts as students collaborate within a computer supported collaborative learning environment. In addition, an analysis is presented which gives substantial insight as to how students' learning is associated with students' speech acts, knowledge that will…

  4. Environment-Mediated Drug Resistance in Neuroblastoma

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-12-1-0572 TITLE: Environment-Mediated Drug Resistance in Neuroblastoma PRINCIPAL INVESTIGATOR: Yu...Resistance in Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0572 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yu, Hua E 5d. PROJECT...collaborative experiments have demonstrated that monocytes collaborate with MSC in inducing STAT3-dependent drug resistance in neuroblastoma (Task 1), that S1P

  5. Mathematical Language Development and Talk Types in Computer Supported Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Symons, Duncan; Pierce, Robyn

    2015-01-01

    In this study we examine the use of cumulative and exploratory talk types in a year 5 computer supported collaborative learning environment. The focus for students in this environment was to participate in mathematical problem solving, with the intention of developing the proficiencies of problem solving and reasoning. Findings suggest that…

  6. An Analysis of Collaborative Problem-Solving Activities Mediated by Individual-Based and Collaborative Computer Simulations

    ERIC Educational Resources Information Center

    Chang, C.-J.; Chang, M.-H.; Liu, C.-C.; Chiu, B.-C.; Fan Chiang, S.-H.; Wen, C.-T.; Hwang, F.-K.; Chao, P.-Y.; Chen, Y.-L.; Chai, C.-S.

    2017-01-01

    Researchers have indicated that the collaborative problem-solving space afforded by the collaborative systems significantly impact the problem-solving process. However, recent investigations into collaborative simulations, which allow a group of students to jointly manipulate a problem in a shared problem space, have yielded divergent results…

  7. Co-"Lab"oration: A New Paradigm for Building a Management Information Systems Course

    ERIC Educational Resources Information Center

    Breimer, Eric; Cotler, Jami; Yoder, Robert

    2010-01-01

    We propose a new paradigm for building a Management Information Systems course that focuses on laboratory activities developed collaboratively using Computer-Mediated Communication and Collaboration tools. A highlight of our paradigm is the "practice what you preach" concept where the computer communication tools and collaboration…

  8. Virtual collaboration: face-to-face versus videoconference, audioconference, and computer-mediated communications

    NASA Astrophysics Data System (ADS)

    Wainfan, Lynne; Davis, Paul K.

    2004-08-01

    As we increase our reliance on mediated communication, it is important to be aware the media's influence on group processes and outcomes. A review of 40+ years of research shows that all media-videoconference, audioconference, and computer-mediated communication--change the context of the communication to some extent, reducing cues used to regulate and understand conversation, indicate participants' power and status, and move the group towards agreement. Text-based computer-mediated communication, the "leanest" medum, reduces status effects, domination, and consensus. This has been shown useful in broadening the range of inputs and ideas. However, it has also been shown to increase polarization, deindividuation, and disinhibition, and the time to reach a conclusion. For decision-making tasks, computer-mediated communication can increase choice shift and the likelihood of more risky or extreme decisions. In both videoconference and audioconference, participants cooperate less with linked collaborators, and shift their opinions toward extreme options, compared with face-to-face collaboration. In videoconference and audioconference, local coalitions can form where participants tend to agree more with those in the same room than those on the other end of the line. There is also a tendency in audioconference to disagree with those on the other end of the phone. This paper is a summary of a much more extensive forthcoming report; it reviews the research literature and proposes strategies to leverage the benefits of mediated communication while mitigating its adverse effects.

  9. Scaffolding Collaborative Technical Writing with Procedural Facilitation and Synchronous Discussion

    ERIC Educational Resources Information Center

    Yeh, Shiou-Wen; Lo, Jia-Jiunn; Huang, Jeng-Jia

    2011-01-01

    With the advent of computer technology, researchers and instructors are attempting to devise computer support for effective collaborative technical writing. In this study, a computer-supported environment for collaborative technical writing was developed. This system (Process-Writing Wizard) provides process-oriented scaffolds and a synchronous…

  10. Computer-Supported Collaborative Learning in Higher Education

    ERIC Educational Resources Information Center

    Roberts, Tim, Ed.

    2005-01-01

    "Computer-Supported Collaborative Learning in Higher Education" provides a resource for researchers and practitioners in the area of computer-supported collaborative learning (also known as CSCL); particularly those working within a tertiary education environment. It includes articles of relevance to those interested in both theory and practice in…

  11. Fluid Centrality: A Social Network Analysis of Social-Technical Relations in Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Enriquez, Judith Guevarra

    2010-01-01

    In this article, centrality is explored as a measure of computer-mediated communication (CMC) in networked learning. Centrality measure is quite common in performing social network analysis (SNA) and in analysing social cohesion, strength of ties and influence in CMC, and computer-supported collaborative learning research. It argues that measuring…

  12. Mediated Activity in the Primary Classroom: Girls, Boys and Computers.

    ERIC Educational Resources Information Center

    Fitzpatrick, Helen; Hardman, Margaret

    2000-01-01

    Studied the social interaction of 7- and 9-year-olds working in the same or mixed gender pairs on language-based computer and noncomputer tasks. At both ages, mixed gender pairs showed more assertive and less transactive (collaborative) interaction than same gender pairs on both tasks. Discusses the mediational role of the computer and the social…

  13. Use of an Interculturally Enriched Collaboration Script in Computer-Supported Collaborative Learning in Higher Education

    ERIC Educational Resources Information Center

    Popov, Vitaliy; Biemans, Harm J. A.; Kuznetsov, Andrei N.; Mulder, Martin

    2014-01-01

    In this exploratory study, the authors introduced an interculturally enriched collaboration script (IECS) for working in culturally diverse groups within a computer-supported collaborative learning (CSCL) environment and then assessed student online collaborative behaviour, learning performance and experiences. The question was if and how these…

  14. When Feedback Harms and Collaboration Helps in Computer Simulation Environments: An Expertise Reversal Effect

    ERIC Educational Resources Information Center

    Nihalani, Priya K.; Mayrath, Michael; Robinson, Daniel H.

    2011-01-01

    We investigated the effects of feedback and collaboration on undergraduates' transfer performance when using a computer networking training simulation. In Experiment 1, 65 computer science "novices" worked through an instructional protocol individually (control), individually with feedback, or collaboratively with feedback. Unexpectedly,…

  15. [Web-ring of sites for pathologists in the internet: a computer-mediated communication environment].

    PubMed

    Khramtsov, A I; Isianov, N N; Khorzhevskiĭ, V A

    2009-01-01

    The recently developed Web-ring of pathology-related Web-sites has transformed computer-mediated communications for Russian-speaking pathologists. Though the pathologists may be geographically dispersed, the network provides a complex of asynchronous and synchronous conferences for the purposes of diagnosis, consultations, education, communication, and collaboration in the field of pathology. This paper describes approaches to be used by participants of the pathology-related Web-ring. The approaches are analogous to the tools employed in telepathology and digital microscopy. One of the novel methodologies is the use of Web-based conferencing systems, in which the whole slide digital images of tissue microarrays were jointly reviewed online by pathologists at distant locations. By using ImageScope (Aperio Technologies) and WebEx connect desktop management technology, they shared presentations and images and communicated in realtime. In this manner, the Web-based forums and conferences will be a powerful addition to a telepathology.

  16. Knowledge Organization through Multiple Representations in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Namdar, Bahadir; Shen, Ji

    2018-01-01

    Computer-supported collaborative learning (CSCL) environments provide learners with multiple representational tools for storing, sharing, and constructing knowledge. However, little is known about how learners organize knowledge through multiple representations about complex socioscientific issues. Therefore, the purpose of this study was to…

  17. ARL Collaborative Research Alliance Materials in Extreme Dynamic Environments (MEDE)

    DTIC Science & Technology

    2010-11-19

    Program Internal to the CRA Staff Rotation Lectures, Workshops, and Research Reviews Education Opportunities for Government Personnel Student ... Engagement with ARL Research Environment Industry Partnership + Collaboration Other Collaboration Opportunities High Performance Computing DoD

  18. Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Wax, Allan; Lam, Ray; Baldwin, John; Borden, Chet

    2006-01-01

    A viewgraph presentation to demonstrate collaborative scheduling using Java Message Service (JMS) in a mixed Java and .Net environment is given. The topics include: 1) NASA Deep Space Network scheduling; 2) Collaborative scheduling concept; 3) Distributed computing environment; 4) Platform concerns in a distributed environment; 5) Messaging and data synchronization; and 6) The prototype.

  19. Maintaining Pedagogical Integrity of a Computer Mediated Course Delivery in Social Foundations

    ERIC Educational Resources Information Center

    Stewart, Shelley; Cobb-Roberts, Deirdre; Shircliffe, Barbara J.

    2013-01-01

    Transforming a face to face course to a computer mediated format in social foundations (interdisciplinary field in education), while maintaining pedagogical integrity, involves strategic collaboration between instructional technologists and content area experts. This type of planned partnership requires open dialogue and a mutual respect for prior…

  20. Patterns of Computer-Mediated Interaction in Small Writing Groups Using Wikis

    ERIC Educational Resources Information Center

    Li, Mimi; Zhu, Wei

    2013-01-01

    Informed by sociocultural theory and guided especially by "collective scaffolding", this study investigated the nature of computer-mediated interaction of three groups of English as a Foreign Language students when they performed collaborative writing tasks using wikis. Nine college students from a Chinese university participated in the…

  1. Successful Implementation of a Computer-Supported Collaborative Learning System in Teaching E-Commerce

    ERIC Educational Resources Information Center

    Ngai, E. W. T.; Lam, S. S.; Poon, J. K. L.

    2013-01-01

    This paper describes the successful application of a computer-supported collaborative learning system in teaching e-commerce. The authors created a teaching and learning environment for 39 local secondary schools to introduce e-commerce using a computer-supported collaborative learning system. This system is designed to equip students with…

  2. Trajectories of collaborative scientific conceptual change: Middle school students learning about ecosystems in a CSCL environment

    NASA Astrophysics Data System (ADS)

    Liu, Lei

    The dissertation aims to achieve two goals. First, it attempts to establish a new theoretical framework---the collaborative scientific conceptual change model, which explicitly attends to social factor and epistemic practices of science, to understand conceptual change. Second, it report the findings of a classroom study to investigate how to apply this theoretical framework to examine the trajectories of collaborative scientific conceptual change in a CSCL environment and provide pedagogical implications. Two simulations were designed to help students make connections between the macroscopic substances and the aperceptual microscopic entities and underlying processes. The reported study was focused on analyzing the aggregated data from all participants and the video and audio data from twenty focal groups' collaborative activities and the process of their conceptual development in two classroom settings. Mixed quantitative and qualitative analyses were applied to analyze the video/audio data. The results found that, overall participants showed significant improvements from pretest to posttest on system understanding. Group and teacher effect as well as group variability were detected in both students' posttest performance and their collaborative activities, and variability emerged in group interaction. Multiple data analyses found that attributes of collaborative discourse and epistemic practices made a difference in student learning. Generating warranted claims in discourse as well as the predicting, coordinating theory-evidence, and modifying knowledge in epistemic practices had an impact on student's conceptual understanding. However, modifying knowledge was found negatively related to students' learning effect. The case studies show how groups differed in using the computer tools as a medium to conduct collaborative discourse and epistemic practices. Only with certain combination of discourse features and epistemic practices can the group interaction lead to successful convergent understanding. The results of the study imply that the collaborative scientific conceptual change model is an effective framework to study conceptual change and the simulation environment may mediate the development of successful collaborative interactions (including collaborative discourse and epistemic practices) that lead to collaborative scientific conceptual change.

  3. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  4. VBOT: Motivating computational and complex systems fluencies with constructionist virtual/physical robotics

    NASA Astrophysics Data System (ADS)

    Berland, Matthew W.

    As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?

  5. Effects of Online Mentoring in Computer-Supported Collaborative Learning Environments: Mentor Presence and Cognitive Engagement

    ERIC Educational Resources Information Center

    Dorner, Helga

    2012-01-01

    This study examines online mentor roles and effects with the online mentoring process in computer-supported collaborative learning environments in communities of in-service teachers. Interest in the online mentors' activity encompassed their participation in the online interactions, the influence of their activity on participants' patterns of…

  6. Examining the Effect of Problem Type in a Synchronous Computer-Supported Collaborative Learning (CSCL) Environment

    ERIC Educational Resources Information Center

    Kapur, Manu; Kinzer, Charles K.

    2007-01-01

    This study investigated the effect of well- vs. ill-structured problem types on: (a) group interactional activity, (b) evolution of group participation inequities, (c) group discussion quality, and (d) group performance in a synchronous, computer-supported collaborative learning (CSCL) environment. Participants were 60 11th-grade science students…

  7. Pattern of Non-Task Interactions in Asynchronous Computer-Supported Collaborative Learning Courses

    ERIC Educational Resources Information Center

    Abedin, Babak; Daneshgar, Farhad; D'Ambra, John

    2014-01-01

    Despite the importance of the non-task interactions in computer-supported collaborative learning (CSCL) environments as emphasized in the literature, few studies have investigated online behavior of people in the CSCL environments. This paper studies the pattern of non-task interactions among postgraduate students in an Australian university. The…

  8. "Small Talk Is Not Cheap": Phatic Computer-Mediated Communication in Intercultural Classes

    ERIC Educational Resources Information Center

    Maíz-Arévalo, Carmen

    2017-01-01

    The present study aims to analyse the phatic exchanges performed by a class of nine intercultural Master's students during a collaborative assignment which demanded online discussion using English as a lingua franca (ELF). Prior studies on the use of phatic communication in computer-mediated communication have concentrated on social networking…

  9. Computer-Mediated Communication and a Cautionary Tale of Two Cities

    ERIC Educational Resources Information Center

    Sadler, Randall

    2007-01-01

    This paper describes an action research project that investigated the pedagogical applicability of computer-mediated communication (CMC) tools for collaborative projects. The research involved two groups of students studying to become ESL/EFL teachers, one group at a university located in the US Midwest and the other in the Catalan region of…

  10. Does the Medium Matter in Collaboration? Using Visually Supported Collaboration Technology in an Interior Design Studio

    ERIC Educational Resources Information Center

    Cho, Ji Young; Cho, Moon-Heum; Kozinets, Nadya

    2016-01-01

    With the recognition of the importance of collaboration in a design studio and the advancement of technology, increasing numbers of design students collaborate with others in a technology-mediated learning environment (TMLE); however, not all students have positive experiences in TMLEs. One possible reason for unsatisfactory collaboration…

  11. Web-based continuing medical education. (II): Evaluation study of computer-mediated continuing medical education.

    PubMed

    Curran, V R; Hoekman, T; Gulliver, W; Landells, I; Hatcher, L

    2000-01-01

    Over the years, various distance learning technologies and methods have been applied to the continuing medical education needs of rural and remote physicians. They have included audio teleconferencing, slow scan imaging, correspondence study, and compressed videoconferencing. The recent emergence and growth of Internet, World Wide Web (Web), and compact disk read-only-memory (CD-ROM) technologies have introduced new opportunities for providing continuing education to the rural medical practitioner. This evaluation study assessed the instructional effectiveness of a hybrid computer-mediated courseware delivery system on dermatologic office procedures. A hybrid delivery system merges Web documents, multimedia, computer-mediated communications, and CD-ROMs to enable self-paced instruction and collaborative learning. Using a modified pretest to post-test control group study design, several evaluative criteria (participant reaction, learning achievement, self-reported performance change, and instructional transactions) were assessed by various qualitative and quantitative data collection methods. This evaluation revealed that a hybrid computer-mediated courseware system was an effective means for increasing knowledge (p < .05) and improving self-reported competency (p < .05) in dermatologic office procedures, and that participants were very satisfied with the self-paced instruction and use of asynchronous computer conferencing for collaborative information sharing among colleagues.

  12. Computer-mediated interdisciplinary teams: theory and reality.

    PubMed

    Vroman, Kerryellen; Kovacich, Joann

    2002-05-01

    The benefit of experience, tempered with the wisdom of hindsight and 5 years of text-based, asynchronous, computer-mediated, interdisciplinary team communications, provides the energy, insights and data shared in this article. Through the theoretical lens of group dynamics and the epistemology of interdisciplinary teaming, we analyze the interactions of a virtual interdisciplinary team to provide an understanding and appreciation of collaborative interdisciplinary communication in the context of interactive technologies. Whilst interactive technologies may require new patterns of language similar to that of learning a foreign language, what is communicated in the interdisciplinary team process does not change. Most important is the recognition that virtual teams, similar to their face-to-face counterparts, undergo the same challenges of interdisciplinary teaming and group developmental processes of formation: forming, storming, norming, performing, and transforming. After examining these dynamics of communication and collaboration in the context of the virtual team, the article concludes with guidelines facilitating interdisciplinary team computer-mediated communication.

  13. The Design and Development of a Collaborative mLearning Prototype for Malaysian Secondary School Science

    ERIC Educational Resources Information Center

    DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah

    2014-01-01

    Collaborative problem-solving in science instruction allows learners to build their knowledge and understanding through interaction, using the language of science. Computer-mediated communication (CMC) tools facilitate collaboration and may provide the opportunity for interaction when using the language of science in learning. There seems to be…

  14. Peer Collaboration: The Relation of Regulatory Behaviors to Learning with Hypermedia

    ERIC Educational Resources Information Center

    Winters, Fielding I.; Alexander, Patricia A.

    2011-01-01

    Peer collaboration is a pedagogical method currently used to facilitate learning in classrooms. Similarly, computer-learning environments (CLEs) are often used to promote student learning in science classrooms, in particular. However, students often have difficulty utilizing these environments effectively. Does peer collaboration help students…

  15. Learning Opportunities in Synchronous Computer-Mediated Communication and Face-to-Face Interaction

    ERIC Educational Resources Information Center

    Kim, Hye Yeong

    2014-01-01

    This study investigated how synchronous computer-mediated communication (SCMC) and face-to-face (F2F) oral interaction influence the way in which learners collaborate in language learning and how they solve their communicative problems. The findings suggest that output modality may affect how learners produce language, attend to linguistic forms,…

  16. Computer Mediated Communication in the Universal Design for Learning Framework for Preparation of Special Education Teachers

    ERIC Educational Resources Information Center

    Basham, James D.; Lowrey, K. Alisa; deNoyelles, Aimee

    2010-01-01

    This study investigated the Universal Design for Learning (UDL) framework as a basis for a bi-university computer mediated communication (CMC) collaborative project. Participants in the research included 78 students from two special education programs enrolled in teacher education courses. The focus of the investigation was on exploring the…

  17. Learners' Reflections on and Perceptions of Computer-Mediated Communication in a Language Classroom: A Vietnamese Perspective

    ERIC Educational Resources Information Center

    Nguyen, Long V.

    2011-01-01

    The paper examines Vietnamese learners' reflections on and perceptions of the application of computer-mediated communication (CMC) into collaborative learning. Data for analysis included an evaluation questionnaire, consisting of 24 4-point Likert scale items, appended with six open-ended questions, and transcripts of 15, out of 30, teacher…

  18. Preservice Teacher Sense-Making as They Learn to Teach Reading as Seen through Computer-Mediated Discourse

    ERIC Educational Resources Information Center

    Stefanski, Angela J.; Leitze, Amy; Fife-Demski, Veronica M.

    2018-01-01

    This collective case study used methods of discourse analysis to consider what computer-mediated collaboration might reveal about preservice teachers' sense-making in a field-based practicum as they learn to teach reading to children identified as struggling readers. Researchers agree that field-based experiences coupled with time for reflection…

  19. Developing Collaborative Autonomous Learning Abilities in Computer Mediated Language Learning: Attention to Meaning among Students in Wiki Space

    ERIC Educational Resources Information Center

    Kessler, Greg; Bikowski, Dawn

    2010-01-01

    This study reports on attention to meaning among 40 NNS pre-service EFL teachers as they collaboratively constructed a wiki in a 16-week online course. Focus is placed upon the nature of individual and group behavior when attending to meaning in a long-term wiki-based collaborative activity as well as the students' collaborative autonomous…

  20. Analysing Students' Shared Activity while Modeling a Biological Process in a Computer-Supported Educational Environment

    ERIC Educational Resources Information Center

    Ergazaki, M.; Zogza, V.; Komis, V.

    2007-01-01

    This paper reports on a case study with three dyads of high school students (age 14 years) each collaborating on a plant growth modeling task in the computer-supported educational environment "ModelsCreator". Following a qualitative line of research, the present study aims at highlighting the ways in which the collaborating students as well as the…

  1. Examining the Roles of Blended Learning Approaches in Computer-Supported Collaborative Learning (CSCL) Environments: A Delphi Study

    ERIC Educational Resources Information Center

    So, Hyo-Jeong; Bonk, Curtis J.

    2010-01-01

    In this study, a Delphi method was used to identify and predict the roles of blended learning approaches in computer-supported collaborative learning (CSCL) environments. The Delphi panel consisted of experts in online learning from different geographic regions of the world. This study discusses findings related to (a) pros and cons of blended…

  2. A Framework for Collaborative and Convenient Learning on Cloud Computing Platforms

    ERIC Educational Resources Information Center

    Sharma, Deepika; Kumar, Vikas

    2017-01-01

    The depth of learning resides in collaborative work with more engagement and fun. Technology can enhance collaboration with a higher level of convenience and cloud computing can facilitate this in a cost effective and scalable manner. However, to deploy a successful online learning environment, elementary components of learning pedagogy must be…

  3. Pair Interactions and Mode of Communication: Comparing Face-to-Face and Computer Mediated Communication

    ERIC Educational Resources Information Center

    Tan, Lan Liana; Wigglesworth, Gillian; Storch, Neomy

    2010-01-01

    In today's second language classrooms, students are often asked to work in pairs or small groups. Such collaboration can take place face-to-face, but now more often via computer mediated communication. This paper reports on a study which investigated the effect of the medium of communication on the nature of pair interaction. The study involved…

  4. The Effect of Social Grounding on Collaboration in a Computer-Mediated Small Group Discussion

    ERIC Educational Resources Information Center

    Ahern, Terence C.; Thomas, Julie A.; Tallent-Runnels, Mary K.; Lan, William Y.; Cooper, Sandra; Lu, Xiaoming; Cyrus, Jacqui

    2006-01-01

    There is a tremendous amount of pressure on educators to incorporate highly advanced computer-mediated communication (CMC) into the classroom, but the research shows that this is not an easy task. Part of the difficulty learners experience within current network applications is a lack of support from the design of the software for the development…

  5. Small-Group, Computer-Mediated Argumentation in Middle-School Classrooms: The Effects of Gender and Different Types of Online Teacher Guidance

    ERIC Educational Resources Information Center

    Asterhan, Christa S. C.; Schwarz, Baruch B.; Gil, Julia

    2012-01-01

    CoBackground: Research has shown the importance of careful teacher support during collaborative group work to promote productive discourse between students (Webb, 2009). However, this research has traditionally focused on face-to-face communication. The role of online teacher guidance of small-group computer-mediated discussions has received…

  6. Social Play at the Computer: Preschoolers Scaffold and Support Peers' Computer Competence.

    ERIC Educational Resources Information Center

    Freeman, Nancy K.; Somerindyke, Jennifer

    2001-01-01

    Describes preschoolers' collaboration during free play in a computer lab, focusing on the computer's contribution to active, peer-mediated learning. Discusses these observations in terms of Parten's insights on children's social play and Vygotsky's socio-cultural learning theory, noting that the children scaffolded each other's growing computer…

  7. On Mediation in Virtual Learning Environments.

    ERIC Educational Resources Information Center

    Davies, Larry; Hassan, W. Shukry

    2001-01-01

    Discusses concepts of mediation and focuses on the importance of implementing comprehensive virtual learning environments. Topics include education and technology as they relate to cultural change, social institutions, the Internet and computer-mediated communication, software design and human-computer interaction, the use of MOOs, and language.…

  8. NOSTOS: a paper-based ubiquitous computing healthcare environment to support data capture and collaboration.

    PubMed

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2003-01-01

    In this paper, we present a new approach to clinical workplace computerization that departs from the window-based user interface paradigm. NOSTOS is an experimental computer-augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk-up displays, headsets, a smart desk, and sensors to enhance an existing paper-based practice with computer power. The physical interfaces allow clinicians to retain mobile paper-based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper-based clinical work environment.

  9. Supporting Distance Learners for Collaborative Problem Solving.

    ERIC Educational Resources Information Center

    Verdejo, M. F.; Barros, B.; Abad, M. T.

    This paper describes a computer-supported environment designed to facilitate distance learning through collaborative problem-solving. The goal is to encourage distance learning students to work together, in order to promote both learning of collaboration and learning through collaboration. Collaboration is defined as working together on a common…

  10. A collaborative molecular modeling environment using a virtual tunneling service.

    PubMed

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.

  11. Wearable Learning Tools.

    ERIC Educational Resources Information Center

    Bowskill, Jerry; Dyer, Nick

    1999-01-01

    Describes wearable computers, or information and communication technology devices that are designed to be mobile. Discusses how such technologies can enhance computer-mediated communications, focusing on collaborative working for learning. Describes an experimental system, MetaPark, which explores communications, data retrieval and recording, and…

  12. Communication and cooperation in networked environments: an experimental analysis.

    PubMed

    Galimberti, C; Ignazi, S; Vercesi, P; Riva, G

    2001-02-01

    Interpersonal communication and cooperation do not happen exclusively face to face. In work contexts, as in private life, there are more and more situations of mediated communication and cooperation in which new online tools are used. However, understanding how to use the Internet to support collaborative interaction presents a substantial challenge for the designers and users of this emerging technology. First, collaborative Internet environments are designed to serve a purpose, so must be designed with intended users' tasks and goals explicitly considered. Second, in cooperative activities the key content of communication is the interpretation of the situations in which actors are involved. So, the most effective way of clarifying the meaning of messages is to connect them to a shared context of meaning. However, this is more difficult in the Internet than in other computer-based activities. This paper tries to understand the characteristics of cooperative activities in networked environments--shared 3D virtual worlds--through two different studies. The first used the analysis of conversations to explore the characteristics of the interaction during the cooperative task; the second analyzed whether and how the level of immersion in the networked environments influenced the performance and the interactional process. The results are analyzed to identify the psychosocial roots used to support cooperation in a digital interactive communication.

  13. Developing Collaborative Cyber Communities to Prepare Tomorrow's Teachers

    ERIC Educational Resources Information Center

    Lord, Gillian; Lomicka, Lara L.

    2004-01-01

    Computer-mediated exchange and interaction have become topics of debate and discussion in the past several years due to the growing interest in synchronous and asynchronous communication and their role in language acquisition, learning, and teaching (Liu, Moore, Graham, & Lee, 2002). This article offers a model for a collaborative course on…

  14. From boring to scoring - a collaborative serious game for learning and practicing mathematical logic for computer science education

    NASA Astrophysics Data System (ADS)

    Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina

    2013-06-01

    In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."

  15. Presence in Video-Mediated Interactions: Case Studies at CSIRO

    NASA Astrophysics Data System (ADS)

    Alem, Leila

    Although telepresence and a sense of connectedness with others are frequently mentioned in media space studies, as far as we know, none of these studies report attempts at assessing this critical aspect of user experience. While some attempts have been made to measure presence in virtual reality or augmented reality, (a comprehensive review of existing measures is available in Baren and Ijsselsteijn [2004]), very little work has been reported in measuring presence in video-mediated collaboration systems. Traditional studies of video-mediated collaboration have mostly focused their evaluation on measures of task performance and user satisfaction. Videoconferencing systems can be seen as a type of media space; they rely on technologies of audio, video, and computing put together to create an environment extending the embodied mind. This chapter reports on a set of video-mediated collaboration studies conducted at CSIRO in which different aspects of presence are being investigated. The first study reports the sense of physical presence a specialist doctor experiences when engaged in a remote consultation of a patient using the virtual critical care unit (Alem et al., 2006). The Viccu system is an “always-on” system connecting two hospitals (Li et al., 2006). The presence measure focuses on the extent to which users of videoconferencing systems feel physically present in the remote location. The second study reports the sense of social presence users experience when playing a game of charades with remote partners using a video conference link (Kougianous et al., 2006). In this study the presence measure focuses on the extent to which users feel connected with their remote partners. The third study reports the sense of copresence users experience when building collaboratively a piece of Lego toy (Melo and Alem, 2007). The sense of copresence is the extent to which users feel present with their remote partner. In this final study the sense of copresence is investigated by looking at the word used by users when referring to the physical objects they are manipulating during their interaction as well as when referring to locations in the collaborative workspace. We believe that such efforts provide a solid stepping stone for evaluating and analyzing future media spaces.

  16. Online Collaborative Learning: Theory and Practice

    ERIC Educational Resources Information Center

    Roberts, Tim, Ed.

    2004-01-01

    "Online Collaborative Learning: Theory and Practice" provides a resource for researchers and practitioners in the area of online collaborative learning (also known as CSCL, computer-supported collaborative learning), particularly those working within a tertiary education environment. It includes articles of relevance to those interested in both…

  17. NOSTOS: A Paper–Based Ubiquitous Computing Healthcare Environment to Support Data Capture and Collaboration

    PubMed Central

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2003-01-01

    In this paper, we present a new approach to clinical workplace computerization that departs from the window–based user interface paradigm. NOSTOS is an experimental computer–augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk–up displays, headsets, a smart desk, and sensors to enhance an existing paper–based practice with computer power. The physical interfaces allow clinicians to retain mobile paper–based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper–based clinical work environment. PMID:14728131

  18. A Collaborative Molecular Modeling Environment Using a Virtual Tunneling Service

    PubMed Central

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments. PMID:22927721

  19. Application of a Novel Collaboration Engineering Method for Learning Design: A Case Study

    ERIC Educational Resources Information Center

    Cheng, Xusen; Li, Yuanyuan; Sun, Jianshan; Huang, Jianqing

    2016-01-01

    Collaborative case studies and computer-supported collaborative learning (CSCL) play an important role in the modern education environment. A number of researchers have given significant attention to learning design in order to improve the satisfaction of collaborative learning. Although collaboration engineering (CE) is a mature method widely…

  20. Languaging in Cyberspace: A Case Study of the Effects of Peer-Peer Collaborative Dialogue on the Acquisition of English Idioms in Task-Based Synchronous Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Teng, Xuan

    2015-01-01

    Despite the growing interest in examining the link between peer-peer collaborative dialogue and second language (L2) development in recent years (Swain, Brooks, & Tocalli-Beller, 2002), much of the empirical work in this regard focused on face-to-face communication, leaving the operationalization of collaborative dialogue in text-based…

  1. Asynchronous CMC, Collaboration and the Development of Critical Thinking in a Graduate Seminar in Applied Linguistics

    ERIC Educational Resources Information Center

    Abrams, Zsuzsanna I.

    2005-01-01

    A primary objective of graduate education, and often promoted by peer collaboration tasks, is the development of critical thinking skills. The present study compares how graduate students enrolled in a qualitative research design course in applied linguistics utilized asynchronous computer-mediated communication (ACMC) and face-to-face…

  2. Collaborative Design Practices in Technology Mediated Learning

    ERIC Educational Resources Information Center

    Seitamaa-Hakkarainen, Pirita; Kangas, Kaiju; Raunio, Anna-Mari; Hakkarainen, Kai

    2012-01-01

    The present article examines how practices of computer-supported collaborative designing may be implemented in an elementary classroom. We present a case study in which 12-year-old students engaged in architectural design under the guidance of their teacher and a professional designer. The students were engaged in all aspects of design processes,…

  3. Retrospective Evaluation of a Collaborative LearningScience Module: The Users' Perspective

    ERIC Educational Resources Information Center

    DeWitt, Dorothy; Siraj, Saedah; Alias, Norlidah; Leng, Chin Hai

    2013-01-01

    This study focuses on the retrospective evaluation of collaborative mLearning (CmL) Science module for teaching secondary school science which was designed based on social constructivist learning theories and Merrill's First Principle of Instruction. This study is part of a developmental research in which computer-mediated communication (CMC)…

  4. Group Formation in Mobile Computer Supported Collaborative Learning Contexts: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Amara, Sofiane; Macedo, Joaquim; Bendella, Fatima; Santos, Alexandre

    2016-01-01

    Learners are becoming increasingly divers. They may have much personal, social, cultural, psychological, and cognitive diversity. Forming suitable learning groups represents, therefore, a hard and time-consuming task. In Mobile Computer Supported Collaborative Learning (MCSCL) environments, this task is more difficult. Instructors need to consider…

  5. Collaboration and Computer-Assisted Acquisition of a Second Language.

    ERIC Educational Resources Information Center

    Renie, Delphine; Chanier, Thierry

    1995-01-01

    Discusses how collaborative learning (CL) can be used in a computer-assisted learning (CAL) environment for language learning, reviewing research in the fields of applied linguistics, educational psychology, and artificial intelligence. An application of CL and CAL in the learning of French as a Second Language, focusing on interrogative…

  6. Students Assessing Their Own Collaborative Knowledge Building

    ERIC Educational Resources Information Center

    Lee, Eddy Y. C.; Chan, Carol K. K.; van Aalst, Jan

    2006-01-01

    We describe the design of a knowledge-building environment and examine the role of knowledge-building portfolios in characterizing and scaffolding collaborative inquiry. Our goal is to examine collaborative knowledge building in the context of exploring the alignment of learning, collaboration, and assessment in computer forums. The key design…

  7. Collaborative training with a more experienced partner: remediating low pretraining self-efficacy in complex skill acquisition.

    PubMed

    Day, Eric Anthony; Boatman, Paul R; Kowollik, Vanessa; Espejo, Jazmine; McEntire, Lauren E; Sherwin, Rachel E

    2007-12-01

    This study examined the effectiveness of collaborative training for individuals with low pretraining self-efficacy versus individuals with high pretraining self-efficacy regarding the acquisition of a complex skill that involved strong cognitive and psychomotor demands. Despite support for collaborative learning from the educational literature and the similarities between collaborative learning and interventions designed to remediate low self-efficacy, no research has addressed how self-efficacy and collaborative learning interact in contexts concerning complex skills and human-machine interactions. One hundred fifty-five young male adults trained either individually or collaboratively with a more experienced partner on a complex computer task that simulated the demands of a dynamic aviation environment. Participants also completed a task-specific measure of self-efficacy before, during, and after training. Collaborative training enhanced skill acquisition significantly more for individuals with low pretraining self-efficacy than for individuals with high pretraining self-efficacy. However, collaborative training did not bring the skill acquisition levels of those persons with low pretraining self-efficacy to the levels found for persons with high pretraining self-efficacy. Moreover, tests of mediation suggested that collaborative training may have enhanced appropriate skill development strategies without actually raising self-efficacy. Although collaborative training can facilitate the skill acquisition process for trainees with low self-efficacy, future research is needed that examines how the negative effects of low pretraining self-efficacy on complex skill acquisition can be more fully remediated. The differential effects of collaborative training as a function of self-efficacy highlight the importance of person analysis and tailoring training to meet differing trainee needs.

  8. Touch in Computer-Mediated Environments: An Analysis of Online Shoppers' Touch-Interface User Experiences

    ERIC Educational Resources Information Center

    Chung, Sorim

    2016-01-01

    Over the past few years, one of the most fundamental changes in current computer-mediated environments has been input devices, moving from mouse devices to touch interfaces. However, most studies of online retailing have not considered device environments as retail cues that could influence users' shopping behavior. In this research, I examine the…

  9. Use of FirstClass as a Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Persico, Donatella; Manca, Stefania

    2000-01-01

    Describes the use of SoftArc Intranet FirstClass, a collaborative learning environment that uses computer conferencing, and discusses pros and cons of choosing this system for running online courses from a distance. Presents case studies from Italy and presents viewpoints of students, tutors, designers and administrators. (Author/LRW)

  10. The social computing room: a multi-purpose collaborative visualization environment

    NASA Astrophysics Data System (ADS)

    Borland, David; Conway, Michael; Coposky, Jason; Ginn, Warren; Idaszak, Ray

    2010-01-01

    The Social Computing Room (SCR) is a novel collaborative visualization environment for viewing and interacting with large amounts of visual data. The SCR consists of a square room with 12 projectors (3 per wall) used to display a single 360-degree desktop environment that provides a large physical real estate for arranging visual information. The SCR was designed to be cost-effective, collaborative, configurable, widely applicable, and approachable for naive users. Because the SCR displays a single desktop, a wide range of applications is easily supported, making it possible for a variety of disciplines to take advantage of the room. We provide a technical overview of the room and highlight its application to scientific visualization, arts and humanities projects, research group meetings, and virtual worlds, among other uses.

  11. Using the iPlant collaborative discovery environment.

    PubMed

    Oliver, Shannon L; Lenards, Andrew J; Barthelson, Roger A; Merchant, Nirav; McKay, Sheldon J

    2013-06-01

    The iPlant Collaborative is an academic consortium whose mission is to develop an informatics and social infrastructure to address the "grand challenges" in plant biology. Its cyberinfrastructure supports the computational needs of the research community and facilitates solving major challenges in plant science. The Discovery Environment provides a powerful and rich graphical interface to the iPlant Collaborative cyberinfrastructure by creating an accessible virtual workbench that enables all levels of expertise, ranging from students to traditional biology researchers and computational experts, to explore, analyze, and share their data. By providing access to iPlant's robust data-management system and high-performance computing resources, the Discovery Environment also creates a unified space in which researchers can access scalable tools. Researchers can use available Applications (Apps) to execute analyses on their data, as well as customize or integrate their own tools to better meet the specific needs of their research. These Apps can also be used in workflows that automate more complicated analyses. This module describes how to use the main features of the Discovery Environment, using bioinformatics workflows for high-throughput sequence data as examples. © 2013 by John Wiley & Sons, Inc.

  12. Engaging Students in a Service-Learning Community through Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Bair, Beth Teagarden

    2017-01-01

    In 2015, a university in rural Maryland offered an undergraduate service-learning leadership course, which collaborated with a service-learning community of practice. This interdisciplinary leadership course initiated and sustained personal and critical reflection and social interactions by integrating Computer-Medicated Communication (CMC)…

  13. Toward Effective Group Formation in Computer-Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Sadeghi, Hamid; Kardan, Ahmad A.

    2016-01-01

    Group formation task as a starting point for computer-supported collaborative learning plays a key role in achieving pedagogical goals. Various approaches have been reported in the literature to address this problem, but none have offered an optimal solution. In this research, an online learning environment was modeled as a weighted undirected…

  14. Perception of Democracy in Computer-Mediated Communication: Participation, Responsibility, Collaboration, and Reflection

    ERIC Educational Resources Information Center

    Gallego-Arrufat, Maria-Jesus; Gutiérrez-Santiuste, Elba

    2015-01-01

    We present a case study to analyze how higher education students attending a Spanish University (N = 100) democratize the virtual classroom by assuming responsibility for their learning and that of the other members of the class; participate actively in social, cognitive, and teaching issues; and collaborate by creating a learning community and…

  15. Users' Attitudes towards Web 2.0 Communication Tools in Collaborative Settings: A Case Study with Early Childhood Education Students

    ERIC Educational Resources Information Center

    Bratitsis, Tharrenos

    2012-01-01

    This paper examines the utilization of Computer Mediated Communication tools within collaborative learning activities. By examining the participants' attitudes and behavior, issues related to performance improvement are being discussed. Through a comparative study using a Blog, a Wiki and a Discussion Forum, students' perception of collaboration…

  16. Learning from Listservs: Collaboration, Knowledge Exchange, and the Formation of Distributed Leadership for Farmers' Markets and the Food Movement

    ERIC Educational Resources Information Center

    Quintana, Maclovia; Morales, Alfonso

    2015-01-01

    Computer-mediated communications, in particular listservs, can be powerful tools for creating social change--namely, shifting our food system to a more healthy, just, and localised model. They do this by creating the conditions--collaborations, interaction, self-reflection, and personal empowerment--that cultivate distributed leadership. In this…

  17. Social interaction in type 2 diabetes computer-mediated environments: How inherent features of the channels influence peer-to-peer interaction.

    PubMed

    Lewinski, Allison A; Fisher, Edwin B

    2016-06-01

    Interventions via the internet provide support to individuals managing chronic illness. The purpose of this integrative review was to determine how the features of a computer-mediated environment influence social interactions among individuals with type 2 diabetes. A combination of MeSH and keyword terms, based on the cognates of three broad groupings: social interaction, computer-mediated environments, and chronic illness, was used to search the PubMed, PsychInfo, Sociology Research Database, and Cumulative Index to Nursing and Allied Health Literature databases. Eleven articles met the inclusion criteria. Computer-mediated environments enhance an individual's ability to interact with peers while increasing the convenience of obtaining personalized support. A matrix, focused on social interaction among peers, identified themes across all articles, and five characteristics emerged: (1) the presence of synchronous and asynchronous communication, (2) the ability to connect with similar peers, (3) the presence or absence of a moderator, (4) personalization of feedback regarding individual progress and self-management, and (5) the ability of individuals to maintain choice during participation. Individuals interact with peers to obtain relevant, situation-specific information and knowledge about managing their own care. Computer-mediated environments facilitate the ability of individuals to exchange this information despite temporal or geographical barriers that may be present, thus improving T2D self-management. © The Author(s) 2015.

  18. Scripting for Construction of a Transactive Memory System in Multidisciplinary CSCL Environments

    ERIC Educational Resources Information Center

    Noroozi, Omid; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin; Chizari, Mohammad

    2013-01-01

    Establishing a Transactive Memory System (TMS) is essential for groups of learners, when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) could be designed to facilitate the TMS. This study investigates how various aspects of a TMS (i.e., specialization, coordination, and trust)…

  19. The Brink of Change: Gender in Technology-Rich Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Goldstein, Jessica; Puntambeka, Sadhana

    2004-01-01

    This study was designed to contribute to a small but growing body of knowledge on the influence of gender in technology-rich collaborative learning environments. The study examined middle school students attitudes towards using computers and working in groups during scientific inquiry. Students attitudes towards technology and group work were…

  20. Video-Mediated Teacher Collaborative Inquiry: Focus on English Language Learners

    ERIC Educational Resources Information Center

    Baecher, Laura; Rorimer, Sarah; Smith, Leonore

    2012-01-01

    High school teachers today work in challenging, high-accountability instructional environments, striving to meet the needs of upwards of 100 learners per day. Rapidly growing numbers of English-language learners (ELLs) in U.S. classrooms have added to these pressures. Rather than using collaborative structures to face these challenges, the…

  1. Using a Cloud-Based Computing Environment to Support Teacher Training on Common Core Implementation

    ERIC Educational Resources Information Center

    Robertson, Cory

    2013-01-01

    A cloud-based computing environment, Google Apps for Education (GAFE), has provided the Anaheim City School District (ACSD) a comprehensive and collaborative avenue for creating, sharing, and editing documents, calendars, and social networking communities. With this environment, teachers and district staff at ACSD are able to utilize the deep…

  2. Patterns of Scaffolding in Computer-Mediated Collaborative Inquiry

    ERIC Educational Resources Information Center

    Lakkala, Minna; Muukkonen, Hanni; Hakkarainen, Kai

    2005-01-01

    There is wide agreement on the importance of scaffolding for student learning. Yet, models of individual and face-to-face scaffolding are not necessarily applicable to educational settings in which a group of learners is pursuing a process of inquiry mediated by technology. The scaffolding needed for such a process may be examined from three…

  3. Facilitating Learning in Multidisciplinary Groups with Transactive CSCL Scripts

    ERIC Educational Resources Information Center

    Noroozi, Omid; Teasley, Stephanie D.; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin

    2013-01-01

    Knowledge sharing and transfer are essential for learning in groups, especially when group members have different disciplinary expertise and collaborate online. Computer-Supported Collaborative Learning (CSCL) environments have been designed to facilitate transactive knowledge sharing and transfer in collaborative problem-solving settings. This…

  4. The Effects of Embedded Generative Learning Strategies and Collaboration on Knowledge Acquisition in a Cognitive Flexibility-Based Computer Learning Environment

    DTIC Science & Technology

    1998-08-07

    cognitive flexibility theory and generative learning theory which focus primarily on the individual student’s cognitive development , collaborative... develop "Handling Transfusion Hazards," a computer program based upon cognitive flexibility theory principles. The Program: Handling Transfusion Hazards...computer program was developed according to cognitive flexibility theory principles. A generative version was then developed by embedding

  5. Toward a framework for computer-mediated collaborative design in medical informatics.

    PubMed

    Patel, V L; Kaufman, D R; Allen, V G; Shortliffe, E H; Cimino, J J; Greenes, R A

    1999-09-01

    The development and implementation of enabling tools and methods that provide ready access to knowledge and information are among the central goals of medical informatics. The need for multi-institutional collaboration in the development of such tools and methods is increasingly being recognized. Collaboration involves communication, which typically involves individuals who work together at the same location. With the evolution of electronic modalities for communication, we seek to understand the role that such technologies can play in supporting collaboration, especially when the participants are geographically separated. Using the InterMed Collaboratory as a subject of study, we have analyzed their activities as an exercise in computer- and network-mediated collaborative design. We report on the cognitive, sociocultural, and logistical issues encountered when scientists from diverse organizations and backgrounds use communications technologies while designing and implementing shared products. Results demonstrate that it is important to match carefully the content with the mode of communication, identifying, for example, suitable uses of E-mail, conference calls, and face-to-face meetings. The special role of leaders in guiding and facilitating the group activities can also be seen, regardless of the communication setting in which the interactions occur. Most important is the proper use of technology to support the evolution of a shared vision of group goals and methods, an element that is clearly necessary before successful collaborative designs can proceed.

  6. Comparing Computer-Supported Dynamic Modeling and "Paper & Pencil" Concept Mapping Technique in Students' Collaborative Activity

    ERIC Educational Resources Information Center

    Komis, Vassilis; Ergazaki, Marida; Zogza, Vassiliki

    2007-01-01

    This study aims at highlighting the collaborative activity of two high school students (age 14) in the cases of modeling the complex biological process of plant growth with two different tools: the "paper & pencil" concept mapping technique and the computer-supported educational environment "ModelsCreator". Students' shared activity in both cases…

  7. Representational Tools in Computer-Supported Collaborative Argumentation-Based Learning: How Dyads Work with Constructed and Inspected Argumentative Diagrams

    ERIC Educational Resources Information Center

    van Amelsvoort, Marije; Andriessen, Jerry; Kanselaar, Gellof

    2007-01-01

    This article investigates the conditions under which diagrammatic representations support collaborative argumentation-based learning in a computer environment. Thirty dyads of 15- to 18-year-old students participated in a writing task consisting of 3 phases. Students prepared by constructing a representation (text or diagram) individually. Then…

  8. Development of a Peer-Assisted Learning Strategy in Computer-Supported Collaborative Learning Environments for Elementary School Students

    ERIC Educational Resources Information Center

    Tsuei, Mengping

    2011-01-01

    This study explores the effects of Electronic Peer-Assisted Learning for Kids (EPK), on the quality and development of reading skills, peer interaction and self-concept in elementary students. The EPK methodology uses a well-developed, synchronous computer-supported, collaborative learning system to facilitate students' learning in Chinese. We…

  9. An Effective Online Teaching Method: The Combination of Collaborative Learning with Initiation and Self-Regulation Learning with Feedback

    ERIC Educational Resources Information Center

    Tsai, Chia-Wen

    2013-01-01

    In modern business environments, work and tasks have become more complex and require more interdisciplinary skills to complete, including collaborative and computing skills for website design. However, the computing education in Taiwan can hardly be recognised as effective in developing and transforming students into competitive employees. In this…

  10. The Impact of Computer Supported Collaborative Learning on Internship Outcomes of Pharmacy Students

    ERIC Educational Resources Information Center

    Timmers, S.; Valcke, M.; de Mil, K.; Baeyens, W. R. G.

    2008-01-01

    This article focuses on an evaluation of the impact of an innovative instructional design of internships in view of a new integrated pharmaceutical curriculum. A key innovative element was the implementation of a computer-supported collaborative learning environment. Students were, as part of their formal curriculum, expected to work in a…

  11. Computer-Supported Collaborative Inquiry on Buoyancy: A Discourse Analysis Supporting the "Pieces" Position on Conceptual Change

    ERIC Educational Resources Information Center

    Turcotte, Sandrine

    2012-01-01

    This article describes in detail a conversation analysis of conceptual change in a computer-supported collaborative learning environment. Conceptual change is an essential learning process in science education that has yet to be fully understood. While many models and theories have been developed over the last three decades, empirical data to…

  12. Internal and External Scripts in Computer-Supported Collaborative Inquiry Learning

    ERIC Educational Resources Information Center

    Kollar, Ingo; Fischer, Frank; Slotta, James D.

    2007-01-01

    We investigated how differently structured external scripts interact with learners' internal scripts with respect to individual knowledge acquisition in a Web-based collaborative inquiry learning environment. Ninety students from two secondary schools participated. Two versions of an external collaboration script (high vs. low structured)…

  13. Bridging the Gap between Students and Computers: Supporting Activity Awareness for Network Collaborative Learning with GSM Network

    ERIC Educational Resources Information Center

    Liu, C.-C.; Tao, S.-Y.; Nee, J.-N.

    2008-01-01

    The internet has been widely used to promote collaborative learning among students. However, students do not always have access to the system, leading to doubt in the interaction among the students, and reducing the effectiveness of collaborative learning, since the web-based collaborative learning environment relies entirely on the availability…

  14. The Effects of Different Computer-Supported Collaboration Scripts on Students' Learning Processes and Outcome in a Simulation-Based Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Wieland, Kristina

    2010-01-01

    Students benefit from collaborative learning activities, but they do not automatically reach desired learning outcomes when working together (Fischer, Kollar, Mandl, & Haake, 2007; King, 2007). Learners need instructional support to increase the quality of collaborative processes and individual learning outcomes. The core challenge is to find…

  15. Why Virtual, Why Environments? Implementing Virtual Reality Concepts in Computer-Assisted Language Learning.

    ERIC Educational Resources Information Center

    Schwienhorst, Klaus

    2002-01-01

    Discussion of computer-assisted language learning focuses on the benefits of virtual reality environments, particularly for foreign language contexts. Topics include three approaches to learner autonomy; supporting reflection, including self-awareness; supporting interaction, including collaboration; and supporting experimentation, including…

  16. A Unified Theory of Trust and Collaboration

    NASA Astrophysics Data System (ADS)

    Cai, Guoray; Squicciarini, Anna

    We consider a type of applications where collaboration and trust are tightly coupled with the need to protect sensitive information. Existing trust management technologies have been limited to offering generic mechanisms for enforcing access control policies based on exchanged credentials, and rarely deal with the situated meaning of trust in a specific collaborative context. Towards trust management for highly dynamic and collaborative activities, this paper describes a theory of trust intention and semantics that makes explicit connections between collaborative activities and trust. The model supports inferring trust state based on knowledge about state of collaborative activity. It is the first step towards a unified approach for computer-mediated trust communication in the context of collaborative work.

  17. New project to support scientific collaboration electronically

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Rasmussen, C. E.; Niciejewski, R. J.; Killeen, T. L.; Kelly, J. D.; Zambre, Y.; Rosenberg, T. J.; Stauning, P.; Friis-Christensen, E.; Mende, S. B.; Weymouth, T. E.; Prakash, A.; McDaniel, S. E.; Olson, G. M.; Finholt, T. A.; Atkins, D. E.

    A new multidisciplinary effort is linking research in the upper atmospheric and space, computer, and behavioral sciences to develop a prototype electronic environment for conducting team science worldwide. A real-world electronic collaboration testbed has been established to support scientific work centered around the experimental operations being conducted with instruments from the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland. Such group computing environments will become an important component of the National Information Infrastructure initiative, which is envisioned as the high-performance communications infrastructure to support national scientific research.

  18. Computer-Mediated Communication in a High School: The Users Shape the Medium--Part 1.

    ERIC Educational Resources Information Center

    Bresler, Liora

    1990-01-01

    This field study represents a departure from structured, or directed, computer-mediated communication as used in its natural environment, the computer lab. Using observations, interviews, and the computer medium itself, the investigators report how high school students interact with computers and create their own agendas for computer usage and…

  19. The Role of Collective Efficacy, Cognitive Quality, and Task Cohesion in Computer-Supported Collaborative Learning (CSCL)

    ERIC Educational Resources Information Center

    Wang, Shu-Ling; Hwang, Gwo-Jen

    2012-01-01

    Research has suggested that CSCL environments contain fewer social context clues, resulting in various group processes, performance or motivation. This study thus attempts to explore the relationship among collective efficacy, group processes (i.e. task cohesion, cognitive quality) and collaborative performance in a CSCL environment. A total of 75…

  20. Online Computer Games as Collaborative Learning Environments: Prospects and Challenges for Tertiary Education

    ERIC Educational Resources Information Center

    Papastergiou, Marina

    2009-01-01

    This study is aimed at presenting a critical overview of recent research studies on the use of educational online games as collaborative learning environments in Tertiary Education (TE), namely higher education and vocational training, with a view to identifying: a) the elements that online games should include in order to support fruitful and…

  1. Finnish Upper Secondary Students' Collaborative Processes in Learning Statistics in a CSCL Environment

    ERIC Educational Resources Information Center

    Oikarinen, Juho Kaleva; Järvelä, Sanna; Kaasila, Raimo

    2014-01-01

    This design-based research project focuses on documenting statistical learning among 16-17-year-old Finnish upper secondary school students (N = 78) in a computer-supported collaborative learning (CSCL) environment. One novel value of this study is in reporting the shift from teacher-led mathematical teaching to autonomous small-group learning in…

  2. Students' Views of Collaboration and Online Participation in Knowledge Forum

    ERIC Educational Resources Information Center

    Chan, Carol K. K.; Chan, Yuen-Yan

    2011-01-01

    This study examined students- views of collaboration and learning, and investigated how these predict students- online participation in a computer-supported learning environment. The participants were 521 secondary school students in Hong Kong, who took part in online collaborative inquiry conducted using Knowledge Forum[TM]. We developed a…

  3. The Impact of Using Synchronous Collaborative Virtual Tangram in Children's Geometric

    ERIC Educational Resources Information Center

    Lin, Chiu-Pin; Shao, Yin-juan; Wong, Lung-Hsiang; Li, Yin-Jen; Niramitranon, Jitti

    2011-01-01

    This study aimed to develop a collaborative and manipulative virtual Tangram puzzle to facilitate children to learn geometry in the computer-supported collaborative learning environment with Tablet PCs. In promoting peer interactions and stimulating students' higher-order thinking and creativity toward geometric problem-solving, we designed a…

  4. A Mixed-Methods Exploration of an Environment for Learning Computer Programming

    ERIC Educational Resources Information Center

    Mather, Richard

    2015-01-01

    A mixed-methods approach is evaluated for exploring collaborative behaviour, acceptance and progress surrounding an interactive technology for learning computer programming. A review of literature reveals a compelling case for using mixed-methods approaches when evaluating technology-enhanced-learning environments. Here, ethnographic approaches…

  5. Collaboration amidst Disagreement and Moral Judgment: The Dynamics of Jewish and Arab Students' Collaborative Inquiry of Their Joint Past

    ERIC Educational Resources Information Center

    Pollack, Sarah; Kolikant, Yifat Ben-David

    2012-01-01

    We present an instructional model involving a computer-supported collaborative learning environment, in which students from two conflicting groups collaboratively investigate an event relevant to their past using historical texts. We traced one enactment of the model by a group comprised of two Israeli Jewish and two Israeli Arab students. Our…

  6. Intertextuality and Multimodal Meanings in High School Physics: Written and Spoken Language in Computer-Supported Collaborative Student Discourse

    ERIC Educational Resources Information Center

    Tang, Kok-Sing; Tan, Seng-Chee

    2017-01-01

    The study in this article examines and illustrates the intertextual meanings made by a group of high school science students as they embarked on a knowledge building discourse to solve a physics problem. This study is situated in a computer-supported collaborative learning (CSCL) environment designed to support student learning through a science…

  7. PERKAM: Personalized Knowledge Awareness Map for Computer Supported Ubiquitous Learning

    ERIC Educational Resources Information Center

    El-Bishouty, Moushir M.; Ogata, Hiroaki; Yano, Yoneo

    2007-01-01

    This paper introduces a ubiquitous computing environment in order to support the learners while doing tasks; this environment is called PERKAM (PERsonalized Knowledge Awareness Map). PERKAM allows the learners to share knowledge, interact, collaborate, and exchange individual experiences. It utilizes the RFID ubiquities technology to detect the…

  8. The Impact of Computer-Mediated Communication Environments on Foreign Language Learning: A Review of the Literature

    ERIC Educational Resources Information Center

    Mahdi, Hassan Saleh

    2014-01-01

    This article reviews the literature on the implementation of computer-mediated communication (CMC) in language learning, aiming at understanding how CMC environments have been implemented to foster language learning. The paper draws on 40 recent research articles selected from 10 peer-reviewed journals, 2 book chapters and one conference…

  9. Establishing an Empirical Link between Computer-Mediated Communication (CMC) and SLA: A Meta-Analysis of the Research

    ERIC Educational Resources Information Center

    Lin, Huifen

    2014-01-01

    Drawing on interactionist and socio-cultural theories, tools provided in computer-mediated communication (CMC) environments have long been considered able to create an environment that shares many communicative features with face-to-face communication. Over the past two decades, researchers have employed a variety of strategies to examine the…

  10. Using an Online Collaborative Project between American and Chinese Students to Develop ESL Teaching Skills, Cross-Cultural Awareness and Language Skills

    ERIC Educational Resources Information Center

    Angelova, Maria; Zhao, Ying

    2016-01-01

    The purpose of this study was to explore the potential of computer-mediated communication (CMC) tools to facilitate second language acquisition and develop English as a second language (ESL) teaching skills and cultural awareness. The paper describes a collaborative online project between students from China and the USA, who communicated using the…

  11. The Impact of Integrated Coaching and Collaboration within an Inquiry Learning Environment

    ERIC Educational Resources Information Center

    Dragon, Toby

    2013-01-01

    This thesis explores the design and evaluation of a collaborative, inquiry learning Intelligent Tutoring System for ill-defined problem spaces. The common ground in the fields of Artificial Intelligence in Education and Computer-Supported Collaborative Learning is investigated to identify ways in which tutoring systems can employ both automated…

  12. Computer-Supported Collaborative Learning: Best Practices and Principles for Instructors

    ERIC Educational Resources Information Center

    Orvis, Kara L., Ed.; Lassiter, Andrea L. R., Ed.

    2008-01-01

    Decades of research have shown that student collaboration in groups doesn't just happen; rather it needs to be a deliberate process facilitated by the instructor. Promoting collaboration in virtual learning environments presents a variety of challenges. This book answers the demand for a thorough resource on techniques to facilitate effective …

  13. AMOEBA: Designing for Collaboration in Computer Science Classrooms through Live Learning Analytics

    ERIC Educational Resources Information Center

    Berland, Matthew; Davis, Don; Smith, Carmen Petrick

    2015-01-01

    AMOEBA is a unique tool to support teachers' orchestration of collaboration among novice programmers in a non-traditional programming environment. The AMOEBA tool was designed and utilized to facilitate collaboration in a classroom setting in real time among novice middle school and high school programmers utilizing the IPRO programming…

  14. The Proposed Model of Collaborative Virtual Learning Environment for Introductory Programming Course

    ERIC Educational Resources Information Center

    Othman, Mahfudzah; Othman, Muhaini

    2012-01-01

    This paper discusses the proposed model of the collaborative virtual learning system for the introductory computer programming course which uses one of the collaborative learning techniques known as the "Think-Pair-Share". The main objective of this study is to design a model for an online learning system that facilitates the…

  15. The Role of Context in a Collaborative Problem-Solving Task during Professional Development

    ERIC Educational Resources Information Center

    Ritella, Giuseppe; Ligorio, Maria Beatrice; Hakkarainen, Kai

    2016-01-01

    This article analyses how a group of teachers managed the resources available while performing computer-supported collaborative problem-solving tasks in the context of professional development. The authors video-recorded and analysed collaborative sessions during which the group of teachers used a digital environment to prepare a pedagogical…

  16. Recent Advances and Issues in Computers. Oryx Frontiers of Science Series.

    ERIC Educational Resources Information Center

    Gay, Martin K.

    Discussing recent issues in computer science, this book contains 11 chapters covering: (1) developments that have the potential for changing the way computers operate, including microprocessors, mass storage systems, and computing environments; (2) the national computational grid for high-bandwidth, high-speed collaboration among scientists, and…

  17. Discussing Course Literature Online: Analysis of Macro Speech Acts in an Asynchronous Computer Conference

    ERIC Educational Resources Information Center

    Kosunen, Riitta

    2009-01-01

    This paper presents a macro speech act analysis of computer-mediated conferencing on a university course on language pedagogy. Students read scholarly articles on language learning and discussed them online, in order to make sense of them collaboratively in preparation for a reflective essay. The study explores how the course participants made use…

  18. Cloud hosting of the IPython Notebook to Provide Collaborative Research Environments for Big Data Analysis

    NASA Astrophysics Data System (ADS)

    Kershaw, Philip; Lawrence, Bryan; Gomez-Dans, Jose; Holt, John

    2015-04-01

    We explore how the popular IPython Notebook computing system can be hosted on a cloud platform to provide a flexible virtual research hosting environment for Earth Observation data processing and analysis and how this approach can be expanded more broadly into a generic SaaS (Software as a Service) offering for the environmental sciences. OPTIRAD (OPTImisation environment for joint retrieval of multi-sensor RADiances) is a project funded by the European Space Agency to develop a collaborative research environment for Data Assimilation of Earth Observation products for land surface applications. Data Assimilation provides a powerful means to combine multiple sources of data and derive new products for this application domain. To be most effective, it requires close collaboration between specialists in this field, land surface modellers and end users of data generated. A goal of OPTIRAD then is to develop a collaborative research environment to engender shared working. Another significant challenge is that of data volume and complexity. Study of land surface requires high spatial and temporal resolutions, a relatively large number of variables and the application of algorithms which are computationally expensive. These problems can be addressed with the application of parallel processing techniques on specialist compute clusters. However, scientific users are often deterred by the time investment required to port their codes to these environments. Even when successfully achieved, it may be difficult to readily change or update. This runs counter to the scientific process of continuous experimentation, analysis and validation. The IPython Notebook provides users with a web-based interface to multiple interactive shells for the Python programming language. Code, documentation and graphical content can be saved and shared making it directly applicable to OPTIRAD's requirements for a shared working environment. Given the web interface it can be readily made into a hosted service with Wakari and Microsoft Azure being notable examples. Cloud-hosting of the Notebook allows the same familiar Python interface to be retained but backed by Cloud Computing attributes of scalability, elasticity and resource pooling. This combination makes it a powerful solution to address the needs of long-tail science users of Big Data: an intuitive interactive interface with which to access powerful compute resources. IPython Notebook can be hosted as a single user desktop environment but the recent development by the IPython community of JupyterHub enables it to be run as a multi-user hosting environment. In addition, IPython.parallel allows the exposition of parallel compute infrastructure through a Python interface. Applying these technologies in combination, a collaborative research environment has been developed for OPTIRAD on the UK JASMIN/CEMS facility's private cloud (http://jasmin.ac.uk). Based on this experience, a generic virtualised solution is under development suitable for use by the wider environmental science community - on both JASMIN and portable to third party cloud platforms.

  19. Effect of a workplace design and training intervention on individual performance, group effectiveness and collaboration: the role of environmental control.

    PubMed

    Robertson, Michelle M; Huang, Yueng-Hsiang

    2006-01-01

    The effects of a workplace design and training intervention and the relationships between perceived satisfaction of office workplace design factors (layout and storage) and work performance measures (individual performance, group collaboration and effectiveness) were studied with 120 office workers using the Workplace Environment Questionnaire. Further, we examined whether environmental control had a direct effect on work performance, and then explored whether environmental control mediated or moderated the relationship between workplace design factors and work performance. Results showed a significant, positive impact of the intervention on environmental satisfaction for workstation layout. Satisfaction with workstation layout had a significant relationship with individual performance, group collaboration and effectiveness; and satisfaction with workstation storage had a significant relationship with individual performance and group collaboration. Environmental control had a direct impact on individual performance and group collaboration; whereas, the mediating and moderating effects of environmental control on the relationship between workplace design factors and outcome variables were not significant.

  20. HEPLIB `91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  1. HEPLIB 91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  2. A new security model for collaborative environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Deborah; Lorch, Markus; Thompson, Mary

    Prevalent authentication and authorization models for distributed systems provide for the protection of computer systems and resources from unauthorized use. The rules and policies that drive the access decisions in such systems are typically configured up front and require trust establishment before the systems can be used. This approach does not work well for computer software that moderates human-to-human interaction. This work proposes a new model for trust establishment and management in computer systems supporting collaborative work. The model supports the dynamic addition of new users to a collaboration with very little initial trust placed into their identity and supportsmore » the incremental building of trust relationships through endorsements from established collaborators. It also recognizes the strength of a users authentication when making trust decisions. By mimicking the way humans build trust naturally the model can support a wide variety of usage scenarios. Its particular strength lies in the support for ad-hoc and dynamic collaborations and the ubiquitous access to a Computer Supported Collaboration Workspace (CSCW) system from locations with varying levels of trust and security.« less

  3. The Construction of Knowledge through Social Interaction via Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Saritas, Tuncay

    2008-01-01

    With the advance in information and communication technologies, computer-mediated communication--more specifically computer conferencing systems (CCS)--has captured the interest of educators as an ideal tool to create a learning environment featuring active, participative, and reflective learning. Educators are increasingly adapting the features…

  4. Achievement of Joint Perception in a Computer Supported Collaborative Learning Environment: A Case Study

    ERIC Educational Resources Information Center

    Afacan Adanir, Gulgun

    2017-01-01

    The case study focuses on the interactional mechanisms through which online collaborative teams co-construct a shared understanding of an analytical geometry problem by using dynamic geometry representations. The collaborative study consisted of an assignment on which the learners worked together in groups to solve a ship navigation problem as…

  5. Collaborative Multimedia Learning: Influence of a Social Regulatory Support on Learning Performance and on Collaboration

    ERIC Educational Resources Information Center

    Acuña, Santiago Roger; López-Aymes, Gabriela

    2016-01-01

    This paper analyzes the effects of a support aimed at favoring the social regulatory processes in a computer-supported collaborative learning (CSCL) environment, specifically in a comprehension task of a multimedia text about Psychology of Communication. This support, named RIDE (Saab, van Joolingen, & van Hout-Wolters, 2007; 2012), consists…

  6. Collaborative Learning Environments: Exploring Student Attitudes and Satisfaction in Face-to-Face and Asynchronous Computer Conferencing Settings

    ERIC Educational Resources Information Center

    Ocker, Rosalie J.; Yaverbaum, Gayle J.

    2004-01-01

    Although collaborative learning techniques have been shown to enhance the learning experience, it is difficult to incorporate these concepts into courses without requiring students to collaborate outside of class. There is an ever increasing number of nontraditional university students who find it difficult to schedule the necessary meetings with…

  7. A Working Model for Intercultural Learning and Engagement in Collaborative Online Language Learning Environments

    ERIC Educational Resources Information Center

    Lawrence, Geoff

    2013-01-01

    Given the emerging focus on the intercultural dimension in language teaching and learning, language educators have been exploring the use of information and communications technology ICT-mediated language learning environments to link learners in intercultural language learning communities around the globe. Despite the potential promise of…

  8. Development of L2 Interactional Resources for Online Collaborative Task Accomplishment

    ERIC Educational Resources Information Center

    Balaman, Ufuk; Sert, Olcay

    2017-01-01

    Technology-mediated task environments have long been considered integral parts of L2 learning and teaching processes. However, the interactional resources that the learners deploy to complete tasks in these environments have remained largely unexplored due to an overall focus on task design and outcomes rather than task engagement processes. With…

  9. Dynamic Collaboration Infrastructure for Hydrologic Science

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.

    2016-12-01

    Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the results of this proof-of-concept prototype which enabled HydroShare users to readily instantiate virtual infrastructure marshaling arbitrary combinations, varieties, and quantities of distributed data and computing infrastructure in addressing big problems in hydrology.

  10. Ubiquitous computing to support co-located clinical teams: using the semiotics of physical objects in system design.

    PubMed

    Bang, Magnus; Timpka, Toomas

    2007-06-01

    Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.

  11. Emerging CAE technologies and their role in Future Ambient Intelligence Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2011-03-01

    Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.

  12. A collaborative environment for developing and validating predictive tools for protein biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Johnston, Michael A.; Farrell, Damien; Nielsen, Jens Erik

    2012-04-01

    The exchange of information between experimentalists and theoreticians is crucial to improving the predictive ability of theoretical methods and hence our understanding of the related biology. However many barriers exist which prevent the flow of information between the two disciplines. Enabling effective collaboration requires that experimentalists can easily apply computational tools to their data, share their data with theoreticians, and that both the experimental data and computational results are accessible to the wider community. We present a prototype collaborative environment for developing and validating predictive tools for protein biophysical characteristics. The environment is built on two central components; a new python-based integration module which allows theoreticians to provide and manage remote access to their programs; and PEATDB, a program for storing and sharing experimental data from protein biophysical characterisation studies. We demonstrate our approach by integrating PEATSA, a web-based service for predicting changes in protein biophysical characteristics, into PEATDB. Furthermore, we illustrate how the resulting environment aids method development using the Potapov dataset of experimentally measured ΔΔGfold values, previously employed to validate and train protein stability prediction algorithms.

  13. Integrated instrumentation & computation environment for GRACE

    NASA Astrophysics Data System (ADS)

    Dhekne, P. S.

    2002-03-01

    The project GRACE (Gamma Ray Astrophysics with Coordinated Experiments) aims at setting up a state of the art Gamma Ray Observatory at Mt. Abu, Rajasthan for undertaking comprehensive scientific exploration over a wide spectral window (10's keV - 100's TeV) from a single location through 4 coordinated experiments. The cumulative data collection rate of all the telescopes is expected to be about 1 GB/hr, necessitating innovations in the data management environment. As real-time data acquisition and control as well as off-line data processing, analysis and visualization environment of these systems is based on the us cutting edge and affordable technologies in the field of computers, communications and Internet. We propose to provide a single, unified environment by seamless integration of instrumentation and computations by taking advantage of the recent advancements in Web based technologies. This new environment will allow researchers better acces to facilities, improve resource utilization and enhance collaborations by having identical environments for online as well as offline usage of this facility from any location. We present here a proposed implementation strategy for a platform independent web-based system that supplements automated functions with video-guided interactive and collaborative remote viewing, remote control through virtual instrumentation console, remote acquisition of telescope data, data analysis, data visualization and active imaging system. This end-to-end web-based solution will enhance collaboration among researchers at the national and international level for undertaking scientific studies, using the telescope systems of the GRACE project.

  14. Authenticity and Authorship in the Computer-Mediated Acquisition of L2 Literacy.

    ERIC Educational Resources Information Center

    Kramsch, Claire

    2000-01-01

    Examines two tenets of communicative language teaching--authenticity of the input and authorship of the language user--in an electronic environment. Reviews research in textually-mediated second language acquisition and analyzes two cases of computer-mediated language learning: the construction of a multimedia CD-ROM by American college learners…

  15. The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications

    NASA Technical Reports Server (NTRS)

    Johnston, William E.

    2002-01-01

    With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.

  16. Computer Networks as Instructional and Collaborative Distance Learning Environments.

    ERIC Educational Resources Information Center

    Schrum, Lynne; Lamb, Theodore A.

    1997-01-01

    Reports on the early stages of a project at the U.S. Air Force Academy, in which the instructional applications of a networked classroom laboratory, an intranet, and the Internet are explored as well as the effectiveness and efficiency of groupware and computer networks as instructional environments. Presents the results of the first pilot tests.…

  17. The Brink of Change: Gender in Technology-Rich Collaborative Learning Environments

    NASA Astrophysics Data System (ADS)

    Goldstein, Jessica; Puntambekar, Sadhana

    2004-12-01

    This study was designed to contribute to a small but growing body of knowledge on the influence of gender in technology-rich collaborative learning environments. The study examined middle school students' attitudes towards using computers and working in groups during scientific inquiry. Students' attitudes towards technology and group work were analyzed using questionnaires. To add depth to the findings from the survey research, the role of gender was also investigated through the analysis of student conversations in the context of two activities: exploring science information on a hypertext text and conducting hands-on investigations. The data suggest that not only are girls and boys are similar with regard to attitudes about computers and group work, but that during collaborative learning activities, girls may actually participate more actively and persistently regardless of the nature of the task.

  18. Framework for Deploying a Virtualized Computing Environment for Collaborative and Secure Data Analytics

    PubMed Central

    Meyer, Adrian; Green, Laura; Faulk, Ciearro; Galla, Stephen; Meyer, Anne-Marie

    2016-01-01

    Introduction: Large amounts of health data generated by a wide range of health care applications across a variety of systems have the potential to offer valuable insight into populations and health care systems, but robust and secure computing and analytic systems are required to leverage this information. Framework: We discuss our experiences deploying a Secure Data Analysis Platform (SeDAP), and provide a framework to plan, build and deploy a virtual desktop infrastructure (VDI) to enable innovation, collaboration and operate within academic funding structures. It outlines 6 core components: Security, Ease of Access, Performance, Cost, Tools, and Training. Conclusion: A platform like SeDAP is not simply successful through technical excellence and performance. It’s adoption is dependent on a collaborative environment where researchers and users plan and evaluate the requirements of all aspects. PMID:27683665

  19. "I'm Keeping Those There, Are You?": The Role of a New User Interface Paradigm--Separate Control of Shared Space (SCOSS)--in the Collaborative Decision-Making Process

    ERIC Educational Resources Information Center

    Kerawalla, Lucinda; Pearce, Darren; Yuill, Nicola; Luckin, Rosemary; Harris, Amanda

    2008-01-01

    We take a socio-cultural approach to comparing how dual control of a new user interface paradigm--Separate Control of Shared Space (SCOSS)--and dual control of a single user interface can work to mediate the collaborative decision-making process between pairs of children carrying out a multiple categorisation word task on a shared computer.…

  20. Multi-Agent Framework for Virtual Learning Spaces.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Nunez, Gustavo

    1999-01-01

    Discussion of computer-supported collaborative learning, distributed artificial intelligence, and intelligent tutoring systems focuses on the concept of agents, and describes a virtual learning environment that has a multi-agent system. Describes a model of interactions in collaborative learning and discusses agents for Web-based virtual…

  1. Facilitating Argumentative Knowledge Construction through a Transactive Discussion Script in CSCL

    ERIC Educational Resources Information Center

    Noroozi, Omid; Weinberger, Armin; Biemans, Harm J. A.; Mulder, Martin; Chizari, Mohammad

    2013-01-01

    Learning to argue is prerequisite to solving complex problems in groups, especially when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) can be designed to facilitate argumentative knowledge construction. This study investigates how argumentative knowledge construction in…

  2. Ultrascale collaborative visualization using a display-rich global cyberinfrastructure.

    PubMed

    Jeong, Byungil; Leigh, Jason; Johnson, Andrew; Renambot, Luc; Brown, Maxine; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung

    2010-01-01

    The scalable adaptive graphics environment (SAGE) is high-performance graphics middleware for ultrascale collaborative visualization using a display-rich global cyberinfrastructure. Dozens of sites worldwide use this cyberinfrastructure middleware, which connects high-performance-computing resources over high-speed networks to distributed ultraresolution displays.

  3. Computers for Cognitive Development in Early Childhood--The Teacher's Role in the Computer Learning Environment

    ERIC Educational Resources Information Center

    Nir-Gal, Ofra; Klein, Pnina S.

    2004-01-01

    This study was designed to examine the effect of different kinds of adult mediation on the cognitive performance of young children who used computers. The study sample included 150 kindergarten children aged 5-6. The findings indicate that children who engaged in adult-mediated computer activity improved the level of their cognitive performance on…

  4. Computer-Mediated Glosses in Second Language Reading Comprehension and Vocabulary Learning: A Meta-Analysis

    ERIC Educational Resources Information Center

    Abraham, Lee B.

    2008-01-01

    Language learners have unprecedented opportunities for developing second language literacy skills and intercultural understanding by reading authentic texts on the Internet and in multimedia computer-assisted language learning environments. This article presents findings from a meta-analysis of 11 studies of computer-mediated glosses in second…

  5. The Effects of Computer-Mediated Communication Anxiety on Student Perceptions of Instructor Behaviors, Perceived Learning, and Quiz Performance

    ERIC Educational Resources Information Center

    Wombacher, Kevin A.; Harris, Christina J.; Buckner, Marjorie M.; Frisby, Brandi; Limperos, Anthony M.

    2017-01-01

    Online environments increasingly serve as contexts for learning. Hence, it is important to understand how student characteristics, such as student computer-mediated communication anxiety (CMCA) affects learning outcomes in mediated classrooms. To better understand how student CMCA may influence student online learning experiences, we tested a…

  6. Learning from Multiple Collaborating Intelligent Tutors: An Agent-based Approach.

    ERIC Educational Resources Information Center

    Solomos, Konstantinos; Avouris, Nikolaos

    1999-01-01

    Describes an open distributed multi-agent tutoring system (MATS) and discusses issues related to learning in such open environments. Topics include modeling a one student-many teachers approach in a computer-based learning context; distributed artificial intelligence; implementation issues; collaboration; and user interaction. (Author/LRW)

  7. Awareware: Narrowcasting Attributes for Selective Attention, Privacy, and Multipresence

    NASA Astrophysics Data System (ADS)

    Cohen, Michael; Newton Fernando, Owen Noel

    The domain of cscw, computer-supported collaborative work, and DSC, distributed synchronous collaboration, spans real-time interactive multiuser systems, shared information spaces, and applications for teleexistence and artificial reality, including collaborative virtual environments ( cves) (Benford et al., 2001). As presence awareness systems emerge, it is important to develop appropriate interfaces and architectures for managing multimodal multiuser systems. Especially in consideration of the persistent connectivity enabled by affordable networked communication, shared distributed environments require generalized control of media streams, techniques to control source → sink transmissions in synchronous groupware, including teleconferences and chatspaces, online role-playing games, and virtual concerts.

  8. Cognitive Collaboration Found in Cardiac Physiology: Study in Classroom Environment

    PubMed Central

    Cowley, Benjamin; Torniainen, Jari; Ukkonen, Antti; Vihavainen, Arto; Puolamäki, Kai

    2016-01-01

    It is known that periods of intense social interaction result in shared patterns in collaborators’ physiological signals. However, applied quantitative research on collaboration is hindered due to scarcity of objective metrics of teamwork effectiveness. Indeed, especially in the domain of productive, ecologically-valid activity such as programming, there is a lack of evidence for the most effective, affordable and reliable measures of collaboration quality. In this study we investigate synchrony in physiological signals between collaborating computer science students performing pair-programming exercises in a class room environment. We recorded electrocardiography over the course of a 60 minute programming session, using lightweight physiological sensors. We employ correlation of heart-rate variability features to study social psychophysiological compliance of the collaborating students. We found evident physiological compliance in collaborating dyads’ heart-rate variability signals. Furthermore, dyads’ self-reported workload was associated with the physiological compliance. Our results show viability of a novel approach to field measurement using lightweight devices in an uncontrolled environment, and suggest that self-reported collaboration quality can be assessed via physiological signals. PMID:27416036

  9. Louisiana: a model for advancing regional e-Research through cyberinfrastructure.

    PubMed

    Katz, Daniel S; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-06-28

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date.

  10. A Spatial Faithful Cooperative System Based on Mixed Presence Groupware Model

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Xiangyu; Wang, Rui

    Traditional groupware platforms are found restrained and cumbersome for supporting geographically dispersed design collaboration. This paper starts with two groupware models, which are Single Display Groupware and Mixed Presence Groupware, and then discusses some of the limitations and argues how these limitations could possibly impair efficient communication among remote designers. Next, it suggests that the support for spatial faithfulness and Tangible User Interface (TUI) could help fill the gap between Face-to-Face (F2F) collaboration and computer-mediated remote collaboration. A spatial faithful groupware with TUI support is then developed to illustrate this concept.

  11. Synchronized Pair Configuration in Virtualization-Based Lab for Learning Computer Networks

    ERIC Educational Resources Information Center

    Kongcharoen, Chaknarin; Hwang, Wu-Yuin; Ghinea, Gheorghita

    2017-01-01

    More studies are concentrating on using virtualization-based labs to facilitate computer or network learning concepts. Some benefits are lower hardware costs and greater flexibility in reconfiguring computer and network environments. However, few studies have investigated effective mechanisms for using virtualization fully for collaboration.…

  12. Analysing a Web-Based E-Commerce Learning Community: A Case Study in Brazil.

    ERIC Educational Resources Information Center

    Joia, Luiz Antonio

    2002-01-01

    Demonstrates the use of a Web-based participative virtual learning environment for graduate students in Brazil enrolled in an electronic commerce course in a Masters in Business Administration program. Discusses learning communities; computer-supported collaborative work and collaborative learning; influences on student participation; the role of…

  13. Successfully Carrying out Complex Learning-Tasks through Guiding Teams' Qualitative and Quantitative Reasoning

    ERIC Educational Resources Information Center

    Slof, B.; Erkens, G.; Kirschner, P. A.; Janssen, J.; Jaspers, J. G. M.

    2012-01-01

    This study investigated whether and how scripting learners' use of representational tools in a computer supported collaborative learning (CSCL)-environment fostered their collaborative performance on a complex business-economics task. Scripting the problem-solving process sequenced and made its phase-related part-task demands explicit, namely…

  14. Empirical Data Collection and Analysis Using Camtasia and Transana

    ERIC Educational Resources Information Center

    Thorsteinsson, Gisli; Page, Tom

    2009-01-01

    One of the possible techniques for collecting empirical data is video recordings of a computer screen with specific screen capture software. This method for collecting empirical data shows how students use the BSCWII (Be Smart Cooperate Worldwide--a web based collaboration/groupware environment) to coordinate their work and collaborate in…

  15. Promoting Critical, Elaborative Discussions through a Collaboration Script and Argument Diagrams

    ERIC Educational Resources Information Center

    Scheuer, Oliver; McLaren, Bruce M.; Weinberger, Armin; Niebuhr, Sabine

    2014-01-01

    During the past two decades a variety of approaches to support argumentation learning in computer-based learning environments have been investigated. We present an approach that combines argumentation diagramming and collaboration scripts, two methods successfully used in the past individually. The rationale for combining the methods is to…

  16. Differences in Electronic Exchanges in Synchronous and Asynchronous Computer-Mediated Communication: The Effect of Culture as a Mediating Variable

    ERIC Educational Resources Information Center

    Angeli, Charoula; Schwartz, Neil H.

    2016-01-01

    Two hundred and eighty undergraduates from universities in two countries were asked to read didactic material, and then think and write about potential solutions to an ill-defined problem. The writing was conducted within a synchronous or asynchronous computer-mediated communication (CMC) environment. Asynchronous CMC took the form of email…

  17. The Prototype of the Virtual Classroom.

    ERIC Educational Resources Information Center

    Wilson, Jack M.; Mosher, David N.

    1994-01-01

    Introduces an interactive distance learning environment prototype developed jointly by Rensselaer Polytechnic Institute (RPI) and AT&T which allows students to participate in virtual classroom environments by using computer teleconferencing. Student collaboration, note taking, question answering capabilities, project background, learning…

  18. Learning Strategies in Web-Supported Collaborative Project

    ERIC Educational Resources Information Center

    ChanLin, Lih-Juan

    2012-01-01

    Web-based learning promotes computer-mediated interaction and student-centred learning in most higher education institutions. To fulfil their academic requirements, students develop appropriate strategies to support learning. Purposes of this study were to: (1) examine the relationship between students study strategies (assessed by Learning and…

  19. Networking Foundations for Collaborative Computing at Internet Scope

    DTIC Science & Technology

    2006-01-01

    network-supported synchronous multime- dia groupwork at Internet scope and for large user groups. Contributions entail an novel classification for...multimedia resources in interactive groupwork , generalized to the domain of CSCW from the “right to speak” [26]. A floor control protocol mediates access to

  20. Teachers and Electronic Mail: Networking on the Network.

    ERIC Educational Resources Information Center

    Broholm, John R.; Aust, Ronald

    1994-01-01

    Describes a study that examined the communication patterns of teachers who used UNITE (Unified Network for Informatics in Teacher Education), an electronic mail system designed to encourage curricular collaboration and resource sharing. Highlights include computer-mediated communication, use of UNITE by librarians, and recommendations for…

  1. Agent-Based Learning Environments as a Research Tool for Investigating Teaching and Learning.

    ERIC Educational Resources Information Center

    Baylor, Amy L.

    2002-01-01

    Discusses intelligent learning environments for computer-based learning, such as agent-based learning environments, and their advantages over human-based instruction. Considers the effects of multiple agents; agents and research design; the use of Multiple Intelligent Mentors Instructing Collaboratively (MIMIC) for instructional design for…

  2. Computational Tools and Facilities for the Next-Generation Analysis and Design Environment

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.

  3. Interfacing Email Tutoring: Shaping an Emergent Literate Practice.

    ERIC Educational Resources Information Center

    Anderson, Dana

    2002-01-01

    Presents a descriptive analysis of 29 online writing lab sites for email tutoring, currently the most popular mode of computer-mediated collaboration. Considers how email tutoring interfaces represent the literate practice of email tutoring, shaping expectations and experiences consistent with its literate aims. Suggests that email tutoring…

  4. Construction, Categorization, and Consensus: Student Generated Computational Artifacts as a Context for Disciplinary Reflection

    ERIC Educational Resources Information Center

    Wilkerson-Jerde, Michelle Hoda

    2014-01-01

    There are increasing calls to prepare K-12 students to use computational tools and principles when exploring scientific or mathematical phenomena. The purpose of this paper is to explore whether and how constructionist computer-supported collaborative environments can explicitly engage students in this practice. The Categorizer is a…

  5. Layout and Design in "Real Life"

    ERIC Educational Resources Information Center

    Bremer, Janet; Stocker, Donald

    2004-01-01

    Educators are required to combine their expertise and allow students to explore the different areas by using the method of collaboration in which teachers from different disciplines will create an environment where each will use their expert skills. The collaboration of a computer teacher with an art teacher resulted in the creation of Layout and…

  6. Modeling Peer Assessment as Agent Negotiation in a Computer Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Lai, K. Robert; Lan, Chung Hsien

    2006-01-01

    This work presents a novel method for modeling collaborative learning as multi-issue agent negotiation using fuzzy constraints. Agent negotiation is an iterative process, through which, the proposed method aggregates student marks to reduce personal bias. In the framework, students define individual fuzzy membership functions based on their…

  7. The Relationships among Group Size, Participation, and Performance of Programming Language Learning Supported with Online Forums

    ERIC Educational Resources Information Center

    Shaw, Ruey-Shiang

    2013-01-01

    This study examined the relationships among group size, participation, and learning performance factors when learning a programming language in a computer-supported collaborative learning (CSCL) context. An online forum was used as the CSCL environment for learning the Microsoft ASP.NET programming language. The collaborative-learning experiment…

  8. Collaborative Practice of Science Construction in a Computer-Based Multimedia Environment.

    ERIC Educational Resources Information Center

    Kumpulainen, Kristiina; Mutanen, Mika

    1998-01-01

    Examines the ways in which the collaborative use of a multimedia-based CD-ROM encyclopedia in a sixth-grade Finnish classroom fosters science learning. Results show that students' activities during task-processing were highly procedural and product-oriented. Students had inefficient skills in accessing and retrieving information from the…

  9. Promoting Individual and Group Regulated Learning in Collaborative Settings: An Experience in Higher Education

    ERIC Educational Resources Information Center

    Onrubia, Javier; Rochera, Maria José; Engel, Anna

    2015-01-01

    We present a teaching innovation intervention aimed at promoting individual and group learning regulation in undergraduate students working in a computer supported collaborative learning environment. Participants were 127 students and three teachers of a compulsory course on Educational Psychology at the University of Barcelona (Spain). As a…

  10. Teaching Teamwork: Electronics Instruction in a Collaborative Environment

    ERIC Educational Resources Information Center

    Horwitz, Paul; von Davier, Alina; Chamberlain, John; Koon, Al; Andrews, Jessica; McIntyre, Cynthia

    2017-01-01

    The Teaching Teamwork Project is using an online simulated electronic circuit, running on multiple computers, to assess students' abilities to work together as a team. We pose problems that must be tackled collaboratively, and log students' actions as they attempt to solve them. Team members are isolated from one another and can communicate only…

  11. Advanced engineering environment collaboration project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weaponsmore » project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.« less

  12. Learner Perceptions of Realism and Magic in Computer Simulations.

    ERIC Educational Resources Information Center

    Hennessy, Sara; O'Shea, Tim

    1993-01-01

    Discusses the possible lack of credibility in educational interactive computer simulations. Topics addressed include "Shopping on Mars," a collaborative adventure game for arithmetic calculation that uses direct manipulation in the microworld; the Alternative Reality Kit, a graphical animated environment for creating interactive…

  13. Small-group, computer-mediated argumentation in middle-school classrooms: the effects of gender and different types of online teacher guidance.

    PubMed

    Asterhan, Christa S C; Schwarz, Baruch B; Gil, Julia

    2012-09-01

    Research has shown the importance of careful teacher support during collaborative group work to promote productive discourse between students (Webb, 2009). However, this research has traditionally focused on face-to-face communication. The role of online teacher guidance of small-group computer-mediated discussions has received little attention, especially in secondary school classroom settings. Researchers of computer-supported collaborative learning (CSCL), on the other hand, have traditionally focused on software-embedded features, such as scripts, to support a-synchronous peer dialogue, and less so on human guidance of synchronous group discussions. The main aim of the present in vivo, experimental study is to examine whether online teacher guidance can improve the quality of small-group synchronous discussions, and whether different types of guidance (epistemic or interaction guidance) affect these discussions differently, when compared to an unguided condition. The second goal of this study is to explore potential differences between all-female and all-male discussion groups. Eighty-two 9th graders (three classrooms) and six teachers from a rural high school in Israel. Whereas epistemic guidance only improved aspects of the argumentative quality of the discussion, interaction guidance only improved aspects of collaboration. Discussions of all-girls groups scored higher on aspects of collaboration and argumentative quality, compared to all-boys groups. The findings show that teacher guidance of synchronous, online discussions in classrooms is realizable and reasonably reaches its intended goals. Training should be focused on acquiring various guidance strategies to augment their beneficial effects. Furthermore, future research should pay more attention to potential gender differences in peer-to-peer argumentation. ©2011 The British Psychological Society.

  14. Illuminating Practice: Two Recent Outstanding Studies.

    ERIC Educational Resources Information Center

    Saba, Farhad

    1998-01-01

    Highlights two recent studies in the field of distance education. C.N. Gunawardena and F.J. Zittle found a high degree of variation between learner satisfaction and social presence in a computer-mediated communication environment. J. McDonald and C. Campbell-Gibson study demonstrated that groups meeting in a synchronous computer-mediated course…

  15. Applying Synchronous Computer-Mediated Communication into Course Design: Some Considerations and Practical Guides

    ERIC Educational Resources Information Center

    Olaniran, Bolanle A.

    2006-01-01

    Purpose: The increased pressure to incorporate communication technologies into learning environments has intensified the attention given to the role of computer-mediated communication (CMC) in academic settings. However, the issue of how and why these technologies, especially synchronous CMC applications, has been given less attention in…

  16. Interpersonal Presence in Computer-Mediated Conferencing Courses.

    ERIC Educational Resources Information Center

    Herod, L.

    Interpersonal presence refers to the cues individuals use to form impressions of one another and form/maintain relationships. The physical cues used to convey interpersonal presence in face-to-face learning environments are absent in text-based computer-mediated conferencing (CMC) courses. Learners' perceptions of interpersonal presence in CMC…

  17. Louisiana: a model for advancing regional e-Research through cyberinfrastructure

    PubMed Central

    Katz, Daniel S.; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D.; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-01-01

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date. PMID:19451102

  18. You Use! I Use! We Use! Questioning the Orthodoxy of One-to-One Computing in Primary Schools

    ERIC Educational Resources Information Center

    Larkin, Kevin

    2012-01-01

    The current orthodoxy regarding computer use in schools appears to be that one-to-one (1:1) computing, wherein each child owns or has sole access to a computing device, is the most efficacious way to achieve a range of desirable educational outcomes, including individualised learning, collaborative environments, or constructivist pedagogies. This…

  19. Collaborative workbench for cyberinfrastructure to accelerate science algorithm development

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Maskey, M.; Kuo, K.; Lynnes, C.

    2013-12-01

    There are significant untapped resources for information and knowledge creation within the Earth Science community in the form of data, algorithms, services, analysis workflows or scripts, and the related knowledge about these resources. Despite the huge growth in social networking and collaboration platforms, these resources often reside on an investigator's workstation or laboratory and are rarely shared. A major reason for this is that there are very few scientific collaboration platforms, and those that exist typically require the use of a new set of analysis tools and paradigms to leverage the shared infrastructure. As a result, adoption of these collaborative platforms for science research is inhibited by the high cost to an individual scientist of switching from his or her own familiar environment and set of tools to a new environment and tool set. This presentation will describe an ongoing project developing an Earth Science Collaborative Workbench (CWB). The CWB approach will eliminate this barrier by augmenting a scientist's current research environment and tool set to allow him or her to easily share diverse data and algorithms. The CWB will leverage evolving technologies such as commodity computing and social networking to design an architecture for scalable collaboration that will support the emerging vision of an Earth Science Collaboratory. The CWB is being implemented on the robust and open source Eclipse framework and will be compatible with widely used scientific analysis tools such as IDL. The myScience Catalog built into CWB will capture and track metadata and provenance about data and algorithms for the researchers in a non-intrusive manner with minimal overhead. Seamless interfaces to multiple Cloud services will support sharing algorithms, data, and analysis results, as well as access to storage and computer resources. A Community Catalog will track the use of shared science artifacts and manage collaborations among researchers.

  20. Exploring German Preservice Teachers' Electronic and Professional Literacy Skills

    ERIC Educational Resources Information Center

    Fuchs, Carolin

    2006-01-01

    This article presents findings from an exploratory pilot project which aimed at fostering electronic and professional literacy skills of preservice language teachers through computer-mediated peer collaboration. The research context is a qualitative case study involving cooperation via the email and chat functions of "FirstClass" among…

  1. Computer-Mediated Corrective Feedback and Language Accuracy in Telecollaborative Exchanges

    ERIC Educational Resources Information Center

    Vinagre, Margarita; Munoz, Beatriz

    2011-01-01

    Recent studies illustrate the potential that intercultural telecollaborative exchanges entail for language development through the use of corrective feedback from collaborating partners (Kessler, 2009; Lee, 2008; Sauro, 2009; Ware & O'Dowd, 2008). We build on this growing body of research by presenting the findings of a three-month-long…

  2. Promoting Critical Thinking in Online Intercultural Communication

    ERIC Educational Resources Information Center

    Batardière, Marie-Thérèse

    2015-01-01

    This paper investigates the educational experience arising from the use of an online discussion forum in an undergraduate blended learning language programme; to do this, it focuses on the type of cognitive processes that learners experience during a computer-mediated collaborative task and explores the potential causal relationship between the…

  3. Incentive Styles, Asynchronous Online Discussion, and Vocational Training

    ERIC Educational Resources Information Center

    Lin, Shinyi; Chiu, Chou-Kang

    2008-01-01

    Vocational education and training (VET) is intended to prepare adult learners for careers that are based on practical activities. With the underlying constructivist andragogy, this study intended to examine the effects of computer-mediated group collaboration in vocational education, and how that affects the associated learning outcomes. For…

  4. Networked Learning: Design Considerations for Online Instructors

    ERIC Educational Resources Information Center

    Czerkawski, Betul C.

    2016-01-01

    The considerable increase in web-based knowledge networks in the past two decades is strongly influencing learning environments. Learning entails information retrieval, use, communication, and production, and is strongly enriched by socially mediated discussions, debates, and collaborative activities. It is becoming critical for educators to…

  5. ICCE/ICCAI 2000 Full & Short Papers (Creative Learning).

    ERIC Educational Resources Information Center

    2000

    This document contains the following full and short papers on creative learning from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction): (1) "A Collaborative Learning Support System Based on Virtual Environment Server for Multiple Agents" (Takashi Ohno, Kenji…

  6. Computer-Mediated Group Processes in Distributed Command and Control Systems

    DTIC Science & Technology

    1988-06-01

    Linville, "Michael J. Liebhaber, and Richard W. Obermayer Vreuls Corporation Jon J. Fallesen Army Research Institute DTIC SELECTEr • AUG I 1. 1988 ARI...control staffs who will operate in a computer- mediated environment. The Army Research Institute has initiated research to examine selected issues...computar-mediated group processes is needed. Procedure: The identification and selection of key research issues followed a three- step procedure. Previous

  7. Using Interprofessional Learning for Continuing Education: Development and Evaluation of the Graduate Certificate Program in Health Professional Education for Clinicians.

    PubMed

    Henderson, Saras; Dalton, Megan; Cartmel, Jennifer

    2016-01-01

    Health professionals may be expert clinicians but do not automatically make effective teachers and need educational development. In response, a team of health academics at an Australian university developed and evaluated the continuing education Graduate Certificate in Health Professional Education Program using an interprofessional learning model. The model was informed by Collins interactional expertise and Knowles adult learning theories. The team collaboratively developed and taught four courses in the program. Blended learning methods such as web-based learning, face-to-face workshops, and online discussion forums were used. Twenty-seven multidisciplinary participants enrolled in the inaugural program. Focus group interview, self-report questionnaires, and teacher observations were used to evaluate the program. Online learning motivated participants to learn in a collaborative virtual environment. The workshops conducted in an interprofessional environment promoted knowledge sharing and helped participants to better understand other discipline roles, so they could conduct clinical education within a broader health care team context. Work-integrated assessments supported learning relevance. The teachers, however, observed that some participants struggled because of lack of computer skills. Although the interprofessional learning model promoted collaboration and flexibility, it is important to note that consideration be given to participants who are not computer literate. We therefore conducted a library and computer literacy workshop in orientation week which helped. An interprofessional learning environment can assist health professionals to operate outside their "traditional silos" leading to a more collaborative approach to the provision of care. Our experience may assist other organizations in developing similar programs.

  8. SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research.

    PubMed

    Yaniv, Ziv; Lowekamp, Bradley C; Johnson, Hans J; Beare, Richard

    2018-06-01

    Modern scientific endeavors increasingly require team collaborations to construct and interpret complex computational workflows. This work describes an image-analysis environment that supports the use of computational tools that facilitate reproducible research and support scientists with varying levels of software development skills. The Jupyter notebook web application is the basis of an environment that enables flexible, well-documented, and reproducible workflows via literate programming. Image-analysis software development is made accessible to scientists with varying levels of programming experience via the use of the SimpleITK toolkit, a simplified interface to the Insight Segmentation and Registration Toolkit. Additional features of the development environment include user friendly data sharing using online data repositories and a testing framework that facilitates code maintenance. SimpleITK provides a large number of examples illustrating educational and research-oriented image analysis workflows for free download from GitHub under an Apache 2.0 license: github.com/InsightSoftwareConsortium/SimpleITK-Notebooks .

  9. ARTEMIS: a collaborative framework for health care.

    PubMed

    Reddy, R; Jagannathan, V; Srinivas, K; Karinthi, R; Reddy, S M; Gollapudy, C; Friedman, S

    1993-01-01

    Patient centered healthcare delivery is an inherently collaborative process. This involves a wide range of individuals and organizations with diverse perspectives: primary care physicians, hospital administrators, labs, clinics, and insurance. The key to cost reduction and quality improvement in health care is effective management of this collaborative process. The use of multi-media collaboration technology can facilitate timely delivery of patient care and reduce cost at the same time. During the last five years, the Concurrent Engineering Research Center (CERC), under the sponsorship of DARPA (Defense Advanced Research Projects Agency, recently renamed ARPA) developed a number of generic key subsystems of a comprehensive collaboration environment. These subsystems are intended to overcome the barriers that inhibit the collaborative process. Three subsystems developed under this program include: MONET (Meeting On the Net)--to provide consultation over a computer network, ISS (Information Sharing Server)--to provide access to multi-media information, and PCB (Project Coordination Board)--to better coordinate focussed activities. These systems have been integrated into an open environment to enable collaborative processes. This environment is being used to create a wide-area (geographically distributed) research testbed under DARPA sponsorship, ARTEMIS (Advance Research Testbed for Medical Informatics) to explore the collaborative health care processes. We believe this technology will play a key role in the current national thrust to reengineer the present health-care delivery system.

  10. Development and Assessment of a Chemistry-Based Computer Video Game as a Learning Tool

    ERIC Educational Resources Information Center

    Martinez-Hernandez, Kermin Joel

    2010-01-01

    The chemistry-based computer video game is a multidisciplinary collaboration between chemistry and computer graphics and technology fields developed to explore the use of video games as a possible learning tool. This innovative approach aims to integrate elements of commercial video game and authentic chemistry context environments into a learning…

  11. Finnish upper secondary students' collaborative processes in learning statistics in a CSCL environment

    NASA Astrophysics Data System (ADS)

    Kaleva Oikarinen, Juho; Järvelä, Sanna; Kaasila, Raimo

    2014-04-01

    This design-based research project focuses on documenting statistical learning among 16-17-year-old Finnish upper secondary school students (N = 78) in a computer-supported collaborative learning (CSCL) environment. One novel value of this study is in reporting the shift from teacher-led mathematical teaching to autonomous small-group learning in statistics. The main aim of this study is to examine how student collaboration occurs in learning statistics in a CSCL environment. The data include material from videotaped classroom observations and the researcher's notes. In this paper, the inter-subjective phenomena of students' interactions in a CSCL environment are analysed by using a contact summary sheet (CSS). The development of the multi-dimensional coding procedure of the CSS instrument is presented. Aptly selected video episodes were transcribed and coded in terms of conversational acts, which were divided into non-task-related and task-related categories to depict students' levels of collaboration. The results show that collaborative learning (CL) can facilitate cohesion and responsibility and reduce students' feelings of detachment in our classless, periodic school system. The interactive .pdf material and collaboration in small groups enable statistical learning. It is concluded that CSCL is one possible method of promoting statistical teaching. CL using interactive materials seems to foster and facilitate statistical learning processes.

  12. Leveraging Computer-Mediated Communication Technologies to Enhance Interactions in Online Learning

    ERIC Educational Resources Information Center

    Wright, Linda J.

    2011-01-01

    Computer-mediated communication (CMC) technologies have been an integral part of distance education for many years. They are found in both synchronous and asynchronous platforms and are intended to enhance the learning experience for students. CMC technologies add an interactive element to the online learning environment. The findings from this…

  13. Nonoccurrence of Negotiation of Meaning in Task-Based Synchronous Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Van Der Zwaard, Rose; Bannink, Anne

    2016-01-01

    This empirical study investigated the occurrence of meaning negotiation in an interactive synchronous computer-mediated second language (L2) environment. Sixteen dyads (N = 32) consisting of nonnative speakers (NNSs) and native speakers (NSs) of English performed 2 different tasks using videoconferencing and written chat. The data were coded and…

  14. Negotiation of Meaning in Synchronous Computer-Mediated Communication in Relation to Task Types

    ERIC Educational Resources Information Center

    Cho, Hye-jin

    2011-01-01

    The present study explored how negotiation of meaning occurred in task-based synchronous computer-mediated communication (SCMC) environment among college English learners. Based on the theoretical framework of the interaction hypothesis and negotiation of meaning, four research questions arose: (1) how negotiation of meaning occur in non-native…

  15. Expanding Discourse Options through Computer-Mediated Communication: Guiding Learners toward Autonomy

    ERIC Educational Resources Information Center

    Abraham, Lee B.; Williams, Lawrence

    2011-01-01

    This article proposes a multiliteracies-based pedagogical framework for the analysis of computer-mediated discourse (CMD) in order to give students increased access to expanded discourse options that are available in online communication environments and communities (i.e., beyond the classroom). Through the analysis of excerpts and a corpus of…

  16. How To Achieve Better Impressions in Computer-Mediated Communication?

    ERIC Educational Resources Information Center

    Liu, Yuliang; Ginther, Dean

    This paper presents a review of the literature on impression formation in face-to-face (FtF) and computer-mediated communication (CMC) and provides impression management recommendations for CMC users in a variety of environments. The first section provides an introduction to impression formation. Factors affecting impression formation in FtF and…

  17. ESL Students' Interaction in Second Life: Task-Based Synchronous Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Jee, Min Jung

    2010-01-01

    The purpose of the present study was to explore ESL students' interactions in task-based synchronous computer-mediated communication (SCMC) in Second Life, a virtual environment by which users can interact through representational figures. I investigated Low-Intermediate and High-Intermediate ESL students' interaction patterns before, during, and…

  18. Computing at DESY — current setup, trends and strategic directions

    NASA Astrophysics Data System (ADS)

    Ernst, Michael

    1998-05-01

    Since the HERA experiments H1 and ZEUS started data taking in '92, the computing environment at DESY has changed dramatically. Running a mainframe centred computing for more than 20 years, DESY switched to a heterogeneous, fully distributed computing environment within only about two years in almost every corner where computing has its applications. The computing strategy was highly influenced by the needs of the user community. The collaborations are usually limited by current technology and their ever increasing demands is the driving force for central computing to always move close to the technology edge. While DESY's central computing has a multidecade experience in running Central Data Recording/Central Data Processing for HEP experiments, the most challenging task today is to provide for clear and homogeneous concepts in the desktop area. Given that lowest level commodity hardware draws more and more attention, combined with the financial constraints we are facing already today, we quickly need concepts for integrated support of a versatile device which has the potential to move into basically any computing area in HEP. Though commercial solutions, especially addressing the PC management/support issues, are expected to come to market in the next 2-3 years, we need to provide for suitable solutions now. Buying PC's at DESY currently at a rate of about 30/month will otherwise absorb any available manpower in central computing and still will leave hundreds of unhappy people alone. Though certainly not the only region, the desktop issue is one of the most important one where we need HEP-wide collaboration to a large extent, and right now. Taking into account that there is traditionally no room for R&D at DESY, collaboration, meaning sharing experience and development resources within the HEP community, is a predominant factor for us.

  19. Student participation and interactivity using asynchronous computer-mediated communication for resolution of an undergraduate capstone management case study.

    PubMed

    Miller, Paulette J

    2012-01-01

    Online discussion activities are designed for computer-mediated learning activities in face-to-face, hybrid, and totally online courses. The use of asynchronous computer-mediated communication (A-CMC) coupled with authentic workplace case studies provides students in the protected learning environment with opportunities to practice workplace decision making and communication. In this study, communication behaviors of transmitter and receiver were analyzed to determine participation and interactivity in communication among small-group participants in a health information management capstone management course.

  20. OMOGENIA: A Semantically Driven Collaborative Environment

    NASA Astrophysics Data System (ADS)

    Liapis, Aggelos

    Ontology creation can be thought of as a social procedure. Indeed the concepts involved in general need to be elicited from communities of domain experts and end-users by teams of knowledge engineers. Many problems in ontology creation appear to resemble certain problems in software design, particularly with respect to the setup of collaborative systems. For instance, the resolution of conceptual conflicts between formalized ontologies is a major engineering problem as ontologies move into widespread use on the semantic web. Such conflict resolution often requires human collaboration and cannot be achieved by automated methods with the exception of simple cases. In this chapter we discuss research in the field of computer-supported cooperative work (CSCW) that focuses on classification and which throws light on ontology building. Furthermore, we present a semantically driven collaborative environment called OMOGENIA as a natural way to display and examine the structure of an evolving ontology in a collaborative setting.

  1. ICCE/ICCAI 2000 Full & Short Papers (Virtual Lab/Classroom/School).

    ERIC Educational Resources Information Center

    2000

    This document contains the following full and short papers on virtual laboratories, classrooms, and schools from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction): (1) "A Collaborative Learning Support System Based on Virtual Environment Server for Multiple…

  2. Building an open academic environment – a new approach to empowering students in their learning of anatomy through ‘Shadow Modules’

    PubMed Central

    Scott, Jonathan L; Moxham, Bernard J; Rutherford, Stephen M

    2014-01-01

    Teaching and learning in anatomy is undertaken by a variety of methodologies, yet all of these pedagogies benefit from students discussing and reflecting upon their learning activities. An approach of particular potency is peer-mediated learning, through either peer-teaching or collaborative peer-learning. Collaborative, peer-mediated, learning activities help promote deep learning approaches and foster communities of practice in learning. Students generally flourish in collaborative learning settings but there are limitations to the benefits of collaborative learning undertaken solely within the confines of modular curricula. We describe the development of peer-mediated learning through student-focused and student-led study groups we have termed ‘Shadow Modules’. The ‘Shadow Module’ takes place parallel to the formal academically taught module and facilitates collaboration between students to support their learning for that module. In ‘Shadow Module’ activities, students collaborate towards curating existing online open resources as well as developing learning resources of their own to support their study. Through the use of communication technologies and web 2.0 tools these resources are able to be shared with their peers, thus enhancing the learning experience of all students following the module. The Shadow Module activities have the potential to lead to participants feeling a greater sense of engagement with the subject material, as well as improving their study and group-working skills and developing digital literacy. The outputs from Shadow Module collaborative work are open-source and may be utilised by subsequent student cohorts, thus building up a repository of learning resources designed by and for students. Shadow Module activities would benefit all pedagogies in the study of anatomy, and support students moving from being passive consumers to active participants in learning. PMID:24117249

  3. Building an open academic environment - a new approach to empowering students in their learning of anatomy through 'Shadow Modules'.

    PubMed

    Scott, Jonathan L; Moxham, Bernard J; Rutherford, Stephen M

    2014-03-01

    Teaching and learning in anatomy is undertaken by a variety of methodologies, yet all of these pedagogies benefit from students discussing and reflecting upon their learning activities. An approach of particular potency is peer-mediated learning, through either peer-teaching or collaborative peer-learning. Collaborative, peer-mediated, learning activities help promote deep learning approaches and foster communities of practice in learning. Students generally flourish in collaborative learning settings but there are limitations to the benefits of collaborative learning undertaken solely within the confines of modular curricula. We describe the development of peer-mediated learning through student-focused and student-led study groups we have termed 'Shadow Modules'. The 'Shadow Module' takes place parallel to the formal academically taught module and facilitates collaboration between students to support their learning for that module. In 'Shadow Module' activities, students collaborate towards curating existing online open resources as well as developing learning resources of their own to support their study. Through the use of communication technologies and Web 2.0 tools these resources are able to be shared with their peers, thus enhancing the learning experience of all students following the module. The Shadow Module activities have the potential to lead to participants feeling a greater sense of engagement with the subject material, as well as improving their study and group-working skills and developing digital literacy. The outputs from Shadow Module collaborative work are open-source and may be utilised by subsequent student cohorts, thus building up a repository of learning resources designed by and for students. Shadow Module activities would benefit all pedagogies in the study of anatomy, and support students moving from being passive consumers to active participants in learning. © 2013 Anatomical Society.

  4. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA s advanced visual simulations are essential for analyses associated with life cycle planning, design, training, testing, operations, and evaluation. Kennedy Space Center, in particular, uses simulations for ground services and space exploration planning in an effort to reduce risk and costs while improving safety and performance. However, it has been difficult to circulate and share the results of simulation tools among the field centers, and distance and travel expenses have made timely collaboration even harder. In response, NASA joined with Valador Inc. to develop the Distributed Observer Network (DON), a collaborative environment that leverages game technology to bring 3-D simulations to conventional desktop and laptop computers. DON enables teams of engineers working on design and operations to view and collaborate on 3-D representations of data generated by authoritative tools. DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3-D visual environment. Multiple widely dispersed users, working individually or in groups, can view and analyze simulation results on desktop and laptop computers in real time.

  5. Instruction of Computer Supported Collaborative Learning Environment and Students' Contribution Quality

    ERIC Educational Resources Information Center

    Akgün, Ergün; Akkoyunlu, Buket

    2013-01-01

    Along with the integration of network and communication innovations into education, those technology enriched learning environments gained importance both qualitatively and operationally. Using network and communication innovations in the education field, provides diffusion of information and global accessibility, and also allows physically…

  6. Designing Digital Environments for Art Education/Exploration.

    ERIC Educational Resources Information Center

    Milekic, Slavko

    2000-01-01

    Examines the role of digital technology in the context of art education and art exploration. Discusses the development of digital environments as the next step in the evolution of traditional computers, whose main characteristic is support for simultaneous multiple-user interactions and for social and collaborative activities. (LRW)

  7. PC-Based Virtual Reality for CAD Model Viewing

    ERIC Educational Resources Information Center

    Seth, Abhishek; Smith, Shana S.-F.

    2004-01-01

    Virtual reality (VR), as an emerging visualization technology, has introduced an unprecedented communication method for collaborative design. VR refers to an immersive, interactive, multisensory, viewer-centered, 3D computer-generated environment and the combination of technologies required to build such an environment. This article introduces the…

  8. Information Seeking in a Virtual Learning Environment.

    ERIC Educational Resources Information Center

    Byron, Suzanne M.; Young, Jon I.

    2000-01-01

    Examines the applicability of Kuhlthau's Information Search Process Model in the context of a virtual learning environment at the University of North Texas that used virtual collaborative software. Highlights include cognitive and affective aspects of information seeking; computer experience and confidence; and implications for future research.…

  9. VRML and Collaborative Environments: New Tools for Networked Visualization

    NASA Astrophysics Data System (ADS)

    Crutcher, R. M.; Plante, R. L.; Rajlich, P.

    We present two new applications that engage the network as a tool for astronomical research and/or education. The first is a VRML server which allows users over the Web to interactively create three-dimensional visualizations of FITS images contained in the NCSA Astronomy Digital Image Library (ADIL). The server's Web interface allows users to select images from the ADIL, fill in processing parameters, and create renderings featuring isosurfaces, slices, contours, and annotations; the often extensive computations are carried out on an NCSA SGI supercomputer server without the user having an individual account on the system. The user can then download the 3D visualizations as VRML files, which may be rotated and manipulated locally on virtually any class of computer. The second application is the ADILBrowser, a part of the NCSA Horizon Image Data Browser Java package. ADILBrowser allows a group of participants to browse images from the ADIL within a collaborative session. The collaborative environment is provided by the NCSA Habanero package which includes text and audio chat tools and a white board. The ADILBrowser is just an example of a collaborative tool that can be built with the Horizon and Habanero packages. The classes provided by these packages can be assembled to create custom collaborative applications that visualize data either from local disk or from anywhere on the network.

  10. A Grid Infrastructure for Supporting Space-based Science Operations

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Redman, Sandra H.; McNair, Ann R. (Technical Monitor)

    2002-01-01

    Emerging technologies for computational grid infrastructures have the potential for revolutionizing the way computers are used in all aspects of our lives. Computational grids are currently being implemented to provide a large-scale, dynamic, and secure research and engineering environments based on standards and next-generation reusable software, enabling greater science and engineering productivity through shared resources and distributed computing for less cost than traditional architectures. Combined with the emerging technologies of high-performance networks, grids provide researchers, scientists and engineers the first real opportunity for an effective distributed collaborative environment with access to resources such as computational and storage systems, instruments, and software tools and services for the most computationally challenging applications.

  11. Evaluation of social interaction, task management, and trust among dental hygiene students in a collaborative learning environment.

    PubMed

    Saylor, Catherine D; Keselyak, Nancy T; Simmer-Beck, Melanie; Tira, Daniel

    2011-02-01

    The purpose of this study was to evaluate the impact of collaborative learning on the development of social interaction, task management, and trust in dental hygiene students. These three traits were assessed with the Teamwork Assessment Scale in two different learning environments (traditional lecture/lab and collaborative learning environment). A convenience sample of fifty-six entry-level dental hygiene students taking an introductory/preclinic course at two metropolitan area dental hygiene programs provided comparable experimental and control groups. Factor scores were computed for the three traits, and comparisons were conducted using the Ryan-Einot-Gabriel-Welsh multiple comparison procedure among specific cell comparisons generated from a two-factor repeated measures ANOVA. The results indicate that the collaborative learning environment influenced dental hygiene students positively regarding the traits of social interaction, task management, and trust. However, comparing dental hygiene students to undergraduate students overall indicates that dental hygiene students already possess somewhat higher levels of these traits. Future studies on active learning strategies should examine factors such as student achievement and explore other possible active learning methodologies.

  12. Ubiquitous Mobile Knowledge Construction in Collaborative Learning Environments

    PubMed Central

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs). PMID:22969333

  13. Ubiquitous mobile knowledge construction in collaborative learning environments.

    PubMed

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs).

  14. Architectural Aspects of Grid Computing and its Global Prospects for E-Science Community

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq

    2008-05-01

    The paper reviews the imminent Architectural Aspects of Grid Computing for e-Science community for scientific research and business/commercial collaboration beyond physical boundaries. Grid Computing provides all the needed facilities; hardware, software, communication interfaces, high speed internet, safe authentication and secure environment for collaboration of research projects around the globe. It provides highly fast compute engine for those scientific and engineering research projects and business/commercial applications which are heavily compute intensive and/or require humongous amounts of data. It also makes possible the use of very advanced methodologies, simulation models, expert systems and treasure of knowledge available around the globe under the umbrella of knowledge sharing. Thus it makes possible one of the dreams of global village for the benefit of e-Science community across the globe.

  15. High-Performance Compute Infrastructure in Astronomy: 2020 Is Only Months Away

    NASA Astrophysics Data System (ADS)

    Berriman, B.; Deelman, E.; Juve, G.; Rynge, M.; Vöckler, J. S.

    2012-09-01

    By 2020, astronomy will be awash with as much as 60 PB of public data. Full scientific exploitation of such massive volumes of data will require high-performance computing on server farms co-located with the data. Development of this computing model will be a community-wide enterprise that has profound cultural and technical implications. Astronomers must be prepared to develop environment-agnostic applications that support parallel processing. The community must investigate the applicability and cost-benefit of emerging technologies such as cloud computing to astronomy, and must engage the Computer Science community to develop science-driven cyberinfrastructure such as workflow schedulers and optimizers. We report here the results of collaborations between a science center, IPAC, and a Computer Science research institute, ISI. These collaborations may be considered pathfinders in developing a high-performance compute infrastructure in astronomy. These collaborations investigated two exemplar large-scale science-driver workflow applications: 1) Calculation of an infrared atlas of the Galactic Plane at 18 different wavelengths by placing data from multiple surveys on a common plate scale and co-registering all the pixels; 2) Calculation of an atlas of periodicities present in the public Kepler data sets, which currently contain 380,000 light curves. These products have been generated with two workflow applications, written in C for performance and designed to support parallel processing on multiple environments and platforms, but with different compute resource needs: the Montage image mosaic engine is I/O-bound, and the NASA Star and Exoplanet Database periodogram code is CPU-bound. Our presentation will report cost and performance metrics and lessons-learned for continuing development. Applicability of Cloud Computing: Commercial Cloud providers generally charge for all operations, including processing, transfer of input and output data, and for storage of data, and so the costs of running applications vary widely according to how they use resources. The cloud is well suited to processing CPU-bound (and memory bound) workflows such as the periodogram code, given the relatively low cost of processing in comparison with I/O operations. I/O-bound applications such as Montage perform best on high-performance clusters with fast networks and parallel file-systems. Science-driven Cyberinfrastructure: Montage has been widely used as a driver application to develop workflow management services, such as task scheduling in distributed environments, designing fault tolerance techniques for job schedulers, and developing workflow orchestration techniques. Running Parallel Applications Across Distributed Cloud Environments: Data processing will eventually take place in parallel distributed across cyber infrastructure environments having different architectures. We have used the Pegasus Work Management System (WMS) to successfully run applications across three very different environments: TeraGrid, OSG (Open Science Grid), and FutureGrid. Provisioning resources across different grids and clouds (also referred to as Sky Computing), involves establishing a distributed environment, where issues of, e.g, remote job submission, data management, and security need to be addressed. This environment also requires building virtual machine images that can run in different environments. Usually, each cloud provides basic images that can be customized with additional software and services. In most of our work, we provisioned compute resources using a custom application, called Wrangler. Pegasus WMS abstracts the architectures of the compute environments away from the end-user, and can be considered a first-generation tool suitable for scientists to run their applications on disparate environments.

  16. Student Sensemaking with Science Diagrams in a Computer-Based Setting

    ERIC Educational Resources Information Center

    Furberg, Anniken; Kluge, Anders; Ludvigsen, Sten

    2013-01-01

    This paper reports on a study of students' conceptual sensemaking with science diagrams within a computer-based learning environment aimed at supporting collaborative learning. Through the microanalysis of students' interactions in a project about energy and heat transfer, we demonstrate "how" representations become productive social and cognitive…

  17. A Conceptual Framework Based on Activity Theory for Mobile CSCL

    ERIC Educational Resources Information Center

    Zurita, Gustavo; Nussbaum, Miguel

    2007-01-01

    There is a need for collaborative group activities that promote student social interaction in the classroom. Handheld computers interconnected by a wireless network allow people who work on a common task to interact face to face while maintaining the mediation afforded by a technology-based system. Wirelessly interconnected handhelds open up new…

  18. Chinese-French Case Study of English Language Learning via Wikispaces, Animoto and Skype

    ERIC Educational Resources Information Center

    Hartwell, Laura M.; Zou, Bin

    2013-01-01

    This paper reports on the learning experience of Chinese and French students participating in a computer mediated communication (CMC) collaboration conducted in English and supported by Wikispaces, Animoto, and Skype. Several studies have investigated CMC contexts in which at least some participants were native speakers. Here, we address the…

  19. Turning of COGS moves forward findings for hormonally mediated cancers.

    PubMed

    Sakoda, Lori C; Jorgenson, Eric; Witte, John S

    2013-04-01

    The large-scale Collaborative Oncological Gene-environment Study (COGS) presents new findings that further characterize the genetic bases of breast, ovarian and prostate cancers. We summarize and provide insights into this collection of papers from COGS and discuss the implications of the results and future directions for such efforts.

  20. Interfering and Resolving: How Tabletop Interaction Facilitates Co-Construction of Argumentative Knowledge

    ERIC Educational Resources Information Center

    Falcao, Taciana Pontual; Price, Sara

    2011-01-01

    Tangible technologies and shared interfaces create new paradigms for mediating collaboration through dynamic, synchronous environments, where action is as important as speech for participating and contributing to the activity. However, interaction with shared interfaces has been shown to be inherently susceptible to peer interference, potentially…

  1. Synchronous Computer-Mediated Dynamic Assessment: A Case Study of L2 Spanish Past Narration

    ERIC Educational Resources Information Center

    Darhower, Mark Anthony

    2014-01-01

    In this study, dynamic assessment is employed to help understand the developmental processes of two university Spanish learners as they produce a series of past narrations in a synchronous computer mediated environment. The assessments were conducted in six weekly one-hour chat sessions about various scenes of a Spanish language film. The analysis…

  2. Learners' Use of Communication Strategies in Text-Based and Video-Based Synchronous Computer-Mediated Communication Environments: Opportunities for Language Learning

    ERIC Educational Resources Information Center

    Hung, Yu-Wan; Higgins, Steve

    2016-01-01

    This study investigates the different learning opportunities enabled by text-based and video-based synchronous computer-mediated communication (SCMC) from an interactionist perspective. Six Chinese-speaking learners of English and six English-speaking learners of Chinese were paired up as tandem (reciprocal) learning dyads. Each dyad participated…

  3. Content Analysis in Computer-Mediated Communication: Analyzing Models for Assessing Critical Thinking through the Lens of Social Constructivism

    ERIC Educational Resources Information Center

    Buraphadeja, Vasa; Dawson, Kara

    2008-01-01

    This article reviews content analysis studies aimed to assess critical thinking in computer-mediated communication. It also discusses theories and content analysis models that encourage critical thinking skills in asynchronous learning environments and reviews theories and factors that may foster critical thinking skills and new knowledge…

  4. Learners' Willingness to Communicate in Face-to-Face versus Oral Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Yanguas, Íñigo; Flores, Alayne

    2014-01-01

    The present study had two main goals: to explore performance differences in a task-based environment between face-to-face (FTF) and oral computer-mediated communication (OCMC) groups, and to investigate the relationship between trait-like willingness to communicate (WTC) and performance in the FTF and OCMC groups. Students from two intact…

  5. Effects of Online Interaction via Computer-Mediated Communication (CMC) Tools on an E-Mathematics Learning Outcome

    ERIC Educational Resources Information Center

    Okonta, Olomeruom

    2010-01-01

    Recent research studies in open and distance learning have focused on the differences between traditional learning versus online learning, the benefits of computer-mediated communication (CMC) tools in an e-learning environment, and the relationship between online discussion posts and students' achievement. In fact, there is an extant…

  6. Can Synchronous Computer-Mediated Communication (CMC) Help Beginning-Level Foreign Language Learners Speak?

    ERIC Educational Resources Information Center

    Ko, Chao-Jung

    2012-01-01

    This study investigated the possibility that initial-level learners may acquire oral skills through synchronous computer-mediated communication (SCMC). Twelve Taiwanese French as a foreign language (FFL) students, divided into three groups, were required to conduct a variety of tasks in one of the three learning environments (video/audio, audio,…

  7. High-performance integrated virtual environment (HIVE): a robust infrastructure for next-generation sequence data analysis

    PubMed Central

    Simonyan, Vahan; Chumakov, Konstantin; Dingerdissen, Hayley; Faison, William; Goldweber, Scott; Golikov, Anton; Gulzar, Naila; Karagiannis, Konstantinos; Vinh Nguyen Lam, Phuc; Maudru, Thomas; Muravitskaja, Olesja; Osipova, Ekaterina; Pan, Yang; Pschenichnov, Alexey; Rostovtsev, Alexandre; Santana-Quintero, Luis; Smith, Krista; Thompson, Elaine E.; Tkachenko, Valery; Torcivia-Rodriguez, John; Wan, Quan; Wang, Jing; Wu, Tsung-Jung; Wilson, Carolyn; Mazumder, Raja

    2016-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure. The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu PMID:26989153

  8. High-performance integrated virtual environment (HIVE): a robust infrastructure for next-generation sequence data analysis.

    PubMed

    Simonyan, Vahan; Chumakov, Konstantin; Dingerdissen, Hayley; Faison, William; Goldweber, Scott; Golikov, Anton; Gulzar, Naila; Karagiannis, Konstantinos; Vinh Nguyen Lam, Phuc; Maudru, Thomas; Muravitskaja, Olesja; Osipova, Ekaterina; Pan, Yang; Pschenichnov, Alexey; Rostovtsev, Alexandre; Santana-Quintero, Luis; Smith, Krista; Thompson, Elaine E; Tkachenko, Valery; Torcivia-Rodriguez, John; Voskanian, Alin; Wan, Quan; Wang, Jing; Wu, Tsung-Jung; Wilson, Carolyn; Mazumder, Raja

    2016-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a distributed storage and compute environment designed primarily to handle next-generation sequencing (NGS) data. This multicomponent cloud infrastructure provides secure web access for authorized users to deposit, retrieve, annotate and compute on NGS data, and to analyse the outcomes using web interface visual environments appropriately built in collaboration with research and regulatory scientists and other end users. Unlike many massively parallel computing environments, HIVE uses a cloud control server which virtualizes services, not processes. It is both very robust and flexible due to the abstraction layer introduced between computational requests and operating system processes. The novel paradigm of moving computations to the data, instead of moving data to computational nodes, has proven to be significantly less taxing for both hardware and network infrastructure.The honeycomb data model developed for HIVE integrates metadata into an object-oriented model. Its distinction from other object-oriented databases is in the additional implementation of a unified application program interface to search, view and manipulate data of all types. This model simplifies the introduction of new data types, thereby minimizing the need for database restructuring and streamlining the development of new integrated information systems. The honeycomb model employs a highly secure hierarchical access control and permission system, allowing determination of data access privileges in a finely granular manner without flooding the security subsystem with a multiplicity of rules. HIVE infrastructure will allow engineers and scientists to perform NGS analysis in a manner that is both efficient and secure. HIVE is actively supported in public and private domains, and project collaborations are welcomed. Database URL: https://hive.biochemistry.gwu.edu. © The Author(s) 2016. Published by Oxford University Press.

  9. A Collaborative Model for Ubiquitous Learning Environments

    ERIC Educational Resources Information Center

    Barbosa, Jorge; Barbosa, Debora; Rabello, Solon

    2016-01-01

    Use of mobile devices and widespread adoption of wireless networks have enabled the emergence of Ubiquitous Computing. Application of this technology to improving education strategies gave rise to Ubiquitous e-Learning, also known as Ubiquitous Learning. There are several approaches to organizing ubiquitous learning environments, but most of them…

  10. Encouraging Innovativeness through Computer-Assisted Collaborative Learning

    ERIC Educational Resources Information Center

    Thorsteinsson, Gisli; Page, Tom

    2012-01-01

    This article puts forward a three related case study series, using a Virtual Reality Learning Environment (VRLE) with a view to supporting the development of students' ideation skills in conventional primary and secondary education. This learning environment is fairly new and therefore it is necessary to examine its educational uses and determine…

  11. Social Knowledge Awareness Map for Computer Supported Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    El-Bishouty, Moushir M.; Ogata, Hiroaki; Rahman, Samia; Yano, Yoneo

    2010-01-01

    Social networks are helpful for people to solve problems by providing useful information. Therefore, the importance of mobile social software for learning has been supported by many researches. In this research, a model of personalized collaborative ubiquitous learning environment is designed and implemented in order to support learners doing…

  12. The Scratch Programming Language and Environment

    ERIC Educational Resources Information Center

    Maloney, John; Resnick, Mitchel; Rusk, Natalie; Silverman, Brian; Eastmond, Evelyn

    2010-01-01

    Scratch is a visual programming environment that allows users (primarily ages 8 to 16) to learn computer programming while working on personally meaningful projects such as animated stories and games. A key design goal of Scratch is to support self-directed learning through tinkering and collaboration with peers. This article explores how the…

  13. Computer-mediated mobile messaging as collaboration support for nurses.

    PubMed

    Karpati, Peter; Toussaint, Pieter Jelle; Nytrø, Oystein

    2009-01-01

    Collaboration in hospitals is coordinated mainly by communication, which currently happens by face-to-face meetings, phone calls, pagers, notes and the electronic patient record. These habits raise problems e.g., delayed notifications and unnecessary interruptions. Dealing with these problems could save time and improve the care. Therefore we designed and prototyped a mobile messaging solution based on two specific scenarios coming from observations at a cardiology department of a Norwegian hospital. The main focus was on supporting the work of nurses. One prototype supported patient management while another one dealt with messages related to medication planning. The evaluation of the prototypes suggested that messaging-based collaboration support is worth to explore and also gave ideas for improvement.

  14. The Insiders' Perspectives: A Focus Group Study on Gender Issues in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Huynh, Minh Q.; Lee, Jae-Nam; Schuldt, Barbara A.

    2005-01-01

    There is little doubt that the advent of collaborative technologies in recent years has brought some significant changes in the way students learn, communicate, and interact with one another. In recent years, this emergence has sparked increased interest for research into the role and impact of instructional technologies on group learning. Despite…

  15. Protecting genomic data analytics in the cloud: state of the art and opportunities.

    PubMed

    Tang, Haixu; Jiang, Xiaoqian; Wang, Xiaofeng; Wang, Shuang; Sofia, Heidi; Fox, Dov; Lauter, Kristin; Malin, Bradley; Telenti, Amalio; Xiong, Li; Ohno-Machado, Lucila

    2016-10-13

    The outsourcing of genomic data into public cloud computing settings raises concerns over privacy and security. Significant advancements in secure computation methods have emerged over the past several years, but such techniques need to be rigorously evaluated for their ability to support the analysis of human genomic data in an efficient and cost-effective manner. With respect to public cloud environments, there are concerns about the inadvertent exposure of human genomic data to unauthorized users. In analyses involving multiple institutions, there is additional concern about data being used beyond agreed research scope and being prcoessed in untrused computational environments, which may not satisfy institutional policies. To systematically investigate these issues, the NIH-funded National Center for Biomedical Computing iDASH (integrating Data for Analysis, 'anonymization' and SHaring) hosted the second Critical Assessment of Data Privacy and Protection competition to assess the capacity of cryptographic technologies for protecting computation over human genomes in the cloud and promoting cross-institutional collaboration. Data scientists were challenged to design and engineer practical algorithms for secure outsourcing of genome computation tasks in working software, whereby analyses are performed only on encrypted data. They were also challenged to develop approaches to enable secure collaboration on data from genomic studies generated by multiple organizations (e.g., medical centers) to jointly compute aggregate statistics without sharing individual-level records. The results of the competition indicated that secure computation techniques can enable comparative analysis of human genomes, but greater efficiency (in terms of compute time and memory utilization) are needed before they are sufficiently practical for real world environments.

  16. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics

    PubMed Central

    Giacomoni, Franck; Le Corguillé, Gildas; Monsoor, Misharl; Landi, Marion; Pericard, Pierre; Pétéra, Mélanie; Duperier, Christophe; Tremblay-Franco, Marie; Martin, Jean-François; Jacob, Daniel; Goulitquer, Sophie; Thévenot, Etienne A.; Caron, Christophe

    2015-01-01

    Summary: The complex, rapidly evolving field of computational metabolomics calls for collaborative infrastructures where the large volume of new algorithms for data pre-processing, statistical analysis and annotation can be readily integrated whatever the language, evaluated on reference datasets and chained to build ad hoc workflows for users. We have developed Workflow4Metabolomics (W4M), the first fully open-source and collaborative online platform for computational metabolomics. W4M is a virtual research environment built upon the Galaxy web-based platform technology. It enables ergonomic integration, exchange and running of individual modules and workflows. Alternatively, the whole W4M framework and computational tools can be downloaded as a virtual machine for local installation. Availability and implementation: http://workflow4metabolomics.org homepage enables users to open a private account and access the infrastructure. W4M is developed and maintained by the French Bioinformatics Institute (IFB) and the French Metabolomics and Fluxomics Infrastructure (MetaboHUB). Contact: contact@workflow4metabolomics.org PMID:25527831

  17. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics.

    PubMed

    Giacomoni, Franck; Le Corguillé, Gildas; Monsoor, Misharl; Landi, Marion; Pericard, Pierre; Pétéra, Mélanie; Duperier, Christophe; Tremblay-Franco, Marie; Martin, Jean-François; Jacob, Daniel; Goulitquer, Sophie; Thévenot, Etienne A; Caron, Christophe

    2015-05-01

    The complex, rapidly evolving field of computational metabolomics calls for collaborative infrastructures where the large volume of new algorithms for data pre-processing, statistical analysis and annotation can be readily integrated whatever the language, evaluated on reference datasets and chained to build ad hoc workflows for users. We have developed Workflow4Metabolomics (W4M), the first fully open-source and collaborative online platform for computational metabolomics. W4M is a virtual research environment built upon the Galaxy web-based platform technology. It enables ergonomic integration, exchange and running of individual modules and workflows. Alternatively, the whole W4M framework and computational tools can be downloaded as a virtual machine for local installation. http://workflow4metabolomics.org homepage enables users to open a private account and access the infrastructure. W4M is developed and maintained by the French Bioinformatics Institute (IFB) and the French Metabolomics and Fluxomics Infrastructure (MetaboHUB). contact@workflow4metabolomics.org. © The Author 2014. Published by Oxford University Press.

  18. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations andmore » a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.« less

  19. Cloud-based Jupyter Notebooks for Water Data Analysis

    NASA Astrophysics Data System (ADS)

    Castronova, A. M.; Brazil, L.; Seul, M.

    2017-12-01

    The development and adoption of technologies by the water science community to improve our ability to openly collaborate and share workflows will have a transformative impact on how we address the challenges associated with collaborative and reproducible scientific research. Jupyter notebooks offer one solution by providing an open-source platform for creating metadata-rich toolchains for modeling and data analysis applications. Adoption of this technology within the water sciences, coupled with publicly available datasets from agencies such as USGS, NASA, and EPA enables researchers to easily prototype and execute data intensive toolchains. Moreover, implementing this software stack in a cloud-based environment extends its native functionality to provide researchers a mechanism to build and execute toolchains that are too large or computationally demanding for typical desktop computers. Additionally, this cloud-based solution enables scientists to disseminate data processing routines alongside journal publications in an effort to support reproducibility. For example, these data collection and analysis toolchains can be shared, archived, and published using the HydroShare platform or downloaded and executed locally to reproduce scientific analysis. This work presents the design and implementation of a cloud-based Jupyter environment and its application for collecting, aggregating, and munging various datasets in a transparent, sharable, and self-documented manner. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss recent efforts towards achieving these goals, and describe the architectural design of the notebook server in an effort to support collaborative and reproducible science.

  20. ARTEMIS: a collaborative framework for health care.

    PubMed Central

    Reddy, R.; Jagannathan, V.; Srinivas, K.; Karinthi, R.; Reddy, S. M.; Gollapudy, C.; Friedman, S.

    1993-01-01

    Patient centered healthcare delivery is an inherently collaborative process. This involves a wide range of individuals and organizations with diverse perspectives: primary care physicians, hospital administrators, labs, clinics, and insurance. The key to cost reduction and quality improvement in health care is effective management of this collaborative process. The use of multi-media collaboration technology can facilitate timely delivery of patient care and reduce cost at the same time. During the last five years, the Concurrent Engineering Research Center (CERC), under the sponsorship of DARPA (Defense Advanced Research Projects Agency, recently renamed ARPA) developed a number of generic key subsystems of a comprehensive collaboration environment. These subsystems are intended to overcome the barriers that inhibit the collaborative process. Three subsystems developed under this program include: MONET (Meeting On the Net)--to provide consultation over a computer network, ISS (Information Sharing Server)--to provide access to multi-media information, and PCB (Project Coordination Board)--to better coordinate focussed activities. These systems have been integrated into an open environment to enable collaborative processes. This environment is being used to create a wide-area (geographically distributed) research testbed under DARPA sponsorship, ARTEMIS (Advance Research Testbed for Medical Informatics) to explore the collaborative health care processes. We believe this technology will play a key role in the current national thrust to reengineer the present health-care delivery system. PMID:8130536

  1. Self-Service and E-Education: The Relationship to Self-Directed Learning

    NASA Astrophysics Data System (ADS)

    Wells, Marilyn A.; Brook, Phillip W. J.

    Self-service via the Internet is becoming a common method of selling goods or services as customers have access to retailers’ websites whenever the “need” takes them. Higher education institutions are increasingly offering e-education which means that traditional teaching methods need modifying. Traditional teaching often consists of presenting and expanding upon material found in a prescribed text and delivering this content in lecture, seminar or workshop mode. Studies have confirmed that students learn more effectively when they can discuss the material with others and treat learning as a collaborative process. This chapter reports a case study, where students were required to decide on their level of involvement, discuss and propose the criteria for assessment evaluation, share ideas, concepts and understanding amongst themselves: in effect, self-directed learning. The learning environment used computer-mediated tools, such as discussion forums and chat rooms, and the case study assesses both the expectations of the teaching staff and the experiences of the students, and relates the outcomes to self-directed learning in a self-service environment.

  2. A cloud computing based platform for sleep behavior and chronic diseases collaborative research.

    PubMed

    Kuo, Mu-Hsing; Borycki, Elizabeth; Kushniruk, Andre; Huang, Yueh-Min; Hung, Shu-Hui

    2014-01-01

    The objective of this study is to propose a Cloud Computing based platform for sleep behavior and chronic disease collaborative research. The platform consists of two main components: (1) a sensing bed sheet with textile sensors to automatically record patient's sleep behaviors and vital signs, and (2) a service-oriented cloud computing architecture (SOCCA) that provides a data repository and allows for sharing and analysis of collected data. Also, we describe our systematic approach to implementing the SOCCA. We believe that the new cloud-based platform can provide nurse and other health professional researchers located in differing geographic locations with a cost effective, flexible, secure and privacy-preserved research environment.

  3. The Influence of Perceived Information Overload on Student Participation and Knowledge Construction in Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Chen, Chun-Ying; Pedersen, Susan; Murphy, Karen L.

    2012-01-01

    Computer-mediated communication (CMC) has been used widely to engage learners in academic discourse for knowledge construction. Due to the features of the task environment, one of the main problems caused by the medium is information overload (IO). Yet the literature is unclear about the impact of IO on student learning. This study therefore…

  4. Running R Statistical Computing Environment Software on the Peregrine

    Science.gov Websites

    for the development of new statistical methodologies and enjoys a large user base. Please consult the distribution details. Natural language support but running in an English locale R is a collaborative project programming paradigms to better leverage modern HPC systems. The CRAN task view for High Performance Computing

  5. Computer-Assisted Pronunciation Learning in a Collaborative Context: A Case Study in Taiwan

    ERIC Educational Resources Information Center

    Tsai, Pi-hua

    2015-01-01

    Computer-assisted pronunciation training (CAPT) software provides language learners with an individualized free environment where they can have access to unlimited input and repetitive practice pronunciation at their own pace. This study explores the impact of CAPT on 90 Taiwanese college students' pronunciation learning and examines if other…

  6. a Radical Collaborative Approach: Developing a Model for Learning Theory, Human-Based Computation and Participant Motivation in a Rock-Art Heritage Application

    NASA Astrophysics Data System (ADS)

    Haubt, R.

    2016-06-01

    This paper explores a Radical Collaborative Approach in the global and centralized Rock-Art Database project to find new ways to look at rock-art by making information more accessible and more visible through public contributions. It looks at rock-art through the Key Performance Indicator (KPI), identified with the latest Australian State of the Environment Reports to help develop a better understanding of rock-art within a broader Cultural and Indigenous Heritage context. Using a practice-led approach the project develops a conceptual collaborative model that is deployed within the RADB Management System. Exploring learning theory, human-based computation and participant motivation the paper develops a procedure for deploying collaborative functions within the interface design of the RADB Management System. The paper presents the results of the collaborative model implementation and discusses considerations for the next iteration of the RADB Universe within an Agile Development Approach.

  7. Using mediation techniques to manage conflict and create healthy work environments.

    PubMed

    Gerardi, Debra

    2004-01-01

    Healthcare organizations must find ways for managing conflict and developing effective working relationships to create healthy work environments. The effects of unresolved conflict on clinical outcomes, staff retention, and the financial health of the organization lead to many unnecessary costs that divert resources from clinical care. The complexity of delivering critical care services makes conflict resolution difficult. Developing collaborative working relationships helps to manage conflict in complex environments. Working relationships are based on the ability to deal with differences. Dealing with differences requires skill development and techniques for balancing interests and communicating effectively. Techniques used by mediators are effective for resolving disputes and developing working relationships. With practice, these techniques are easily transferable to the clinical setting. Listening for understanding, reframing, elevating the definition of the problem, and forming clear agreements can foster working relationships, decrease the level of conflict, and create healthy work environments that benefit patients and professionals.

  8. Vygotskian Perspectives on Literacy Research: Constructing Meaning through Collaborative Inquiry. Learning in Doing: Social, Cognitive, and Computational Perspectives.

    ERIC Educational Resources Information Center

    Lee, Carol D., Ed.; Smagorinsky, Peter, Ed.

    In this collection of essays, the authors use Lev Vygotsky's cultural-historical theory of human development to frame their analyses of schooling, with particular emphasis on the ways in which literacy practices are mediated by social interaction and cultural artifacts. The collection extends Vygotsky's cultural-historical theoretical framework to…

  9. Relating Communications Mode Choice and Teamwork Quality: Conversational versus Textual Communication in IT System and Software Development Teams

    ERIC Educational Resources Information Center

    Smith, James Robert

    2012-01-01

    This cross-sectional study explored how IT system and software development team members communicated in the workplace and whether teams that used more verbal communication (and less text-based communication) experienced higher levels of collaboration as measured using the Teamwork Quality (TWQ) scale. Although computer-mediated communication tools…

  10. Managing CMC-Based Task through Text-Based Dialogue: An Exploratory Study in a Chinese EFL Context

    ERIC Educational Resources Information Center

    Yu, Lianfen; Zeng, Gang

    2011-01-01

    This paper examines EFL learners' dialogic interaction in the implementation of a computer-mediated communication (CMC) task. Within the framework of sociocultural theory, the research focuses on how learners working in pairs collaboratively perform task management and build relationship in the synchronous CMC context. Sixteen Chinese tertiary EFL…

  11. Helping Second Language Literature Learners Overcome E-Learning Difficulties: LET-NET Team Teaching with Online Peer Interaction

    ERIC Educational Resources Information Center

    Wu, Pin-Hsiang Natalie; Marek, Michael W.

    2013-01-01

    This study presents and discusses results from an EFL second language literature program in which the instructional design included a team teaching scheme, blended learning practice, and computer-mediated peer-interaction. The team teaching plan used a Mandarin speaking English teacher and a Native English-speaking teacher collaborating and…

  12. Making learning whole: an instructional approach for mediating the practices of authentic science inquiries

    NASA Astrophysics Data System (ADS)

    Liljeström, Anu; Enkenberg, Jorma; Pöllänen, Sinikka

    2013-03-01

    This design experiment aimed to answer the question of how to mediate the practices of authentic science inquiries in primary education. An instructional approach based on activity theory was designed and carried out with multi-age students in a small village school. An open-ended learning task was offered to the older students. Their task was to design and implement instruction about the Ice Age to their younger fellows. The objective was collaborative learning among students, the teacher, and outside domain experts. Mobile phones and GPS technologies were applied as the main technological mediators in the learning process. Technology provided an opportunity to expand the learning environment outside the classroom, including the natural environment. Empirically, the goal was to answer the following questions: What kind of learning project emerged? How did the students' knowledge develop? What kinds of science learning processes, activities, and practices were represented? Multiple and parallel data were collected to achieve this aim. The data analysis revealed that the learning project both challenged the students to develop explanations for the phenomena and generated high quality conceptual and physical models in question. During the learning project, the roles of the community members were shaped, mixed, and integrated. The teacher also repeatedly evaluated and adjusted her behavior. The confidence of the learners in their abilities raised the quality of their learning outcomes. The findings showed that this instructional approach can not only mediate the kind of authentic practices that scientists apply but also make learning more holistic than it has been. Thus, it can be concluded that nature of the task, the tool-integrated collaborative inquiries in the natural environment, and the multiage setting can make learning whole.

  13. Social Software and National Security: An Initial Net Assessment

    DTIC Science & Technology

    2009-04-01

    networks. Government ignores this fact at its peril. Use of social software as ICT is creative and collaborative. Large corporations conduct...from the collaborative, distributed approaches promoted by responsible use of social software. Our recommendations are not exhaustive, but this... responsibilities are there for cyber security when using social software on government computers in a Web 2.0 environment?   67 This section might be

  14. Distributed computing testbed for a remote experimental environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butner, D.N.; Casper, T.A.; Howard, B.C.

    1995-09-18

    Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ``Collaboratory.`` The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on themore » DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation`s Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility.« less

  15. Cracking Her Codes: Understanding Shared Technology Resources as Positioning Artifacts for Power and Status in CSCL Environments

    ERIC Educational Resources Information Center

    Simpson, Amber; Bannister, Nicole; Matthews, Gretchen

    2017-01-01

    There is a positive relationship between student participation in computer-supported collaborative learning (CSCL) environments and improved complex problem-solving strategies, increased learning gains, higher engagement in the thinking of their peers, and an enthusiastic disposition toward groupwork. However, student participation varies from…

  16. Collaborative Spaces for GIS-Based Multimedia Cartography in Blended Environments

    ERIC Educational Resources Information Center

    Balram, Shivanand; Dragicevic, Suzana

    2008-01-01

    The interaction spaces between instructors and learners in the traditional face-to-face classroom environment are being changed by the diffusion and adoption of many forms of computer-based pedagogy. An integrated understanding of these evolving interaction spaces together with how they interconnect and leverage learning are needed to develop…

  17. The Effects of Integrating Social Learning Environment with Online Learning

    ERIC Educational Resources Information Center

    Raspopovic, Miroslava; Cvetanovic, Svetlana; Medan, Ivana; Ljubojevic, Danijela

    2017-01-01

    The aim of this paper is to present the learning and teaching styles using the Social Learning Environment (SLE), which was developed based on the computer supported collaborative learning approach. To avoid burdening learners with multiple platforms and tools, SLE was designed and developed in order to integrate existing systems, institutional…

  18. Learning Tools for Knowledge Nomads: Using Personal Digital Assistants (PDAs) in Web-based Learning Environments.

    ERIC Educational Resources Information Center

    Loh, Christian Sebastian

    2001-01-01

    Examines how mobile computers, or personal digital assistants (PDAs), can be used in a Web-based learning environment. Topics include wireless networks on college campuses; online learning; Web-based learning technologies; synchronous and asynchronous communication via the Web; content resources; Web connections; and collaborative learning. (LRW)

  19. Measuring Flow Experience in an Immersive Virtual Environment for Collaborative Learning

    ERIC Educational Resources Information Center

    van Schaik, P.; Martin, S.; Vallance, M.

    2012-01-01

    In contexts other than immersive virtual environments, theoretical and empirical work has identified flow experience as a major factor in learning and human-computer interaction. Flow is defined as a "holistic sensation that people feel when they act with total involvement". We applied the concept of flow to modeling the experience of…

  20. Some Technical Implications of Distributed Cognition on the Design on Interactive Learning Environments.

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre

    1996-01-01

    Maintains that diagnosis, explanation, and tutoring, the functions of an interactive learning environment, are collaborative processes. Examines how human-computer interaction can be improved using a distributed cognition framework. Discusses situational and distributed knowledge theories and provides a model on how they can be used to redesign…

  1. Awareness of Cognitive and Social Behaviour in a CSCL Environment

    ERIC Educational Resources Information Center

    Kirschner, P. A.; Kreijns, K.; Phielix, C.; Fransen, J.

    2015-01-01

    Most distributed and virtual online environments for and pedagogies of computer-supported collaborative learning (CSCL) neglect the social and social-emotional aspects underlying the group dynamics of learning and working in a CSCL group. These group dynamics often determine whether the group will develop into a well-performing team and whether a…

  2. Environment-Mediated Drug Resistance in Neuroblastoma

    DTIC Science & Technology

    2014-10-01

    Neuroblastoma PRINCIPAL INVESTIGATOR: Yves A. DeClerck CONTRACTING ORGANIZATION... Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0571 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) DE CLERCK, YVES 5d. PROJECT...experiments have demonstrated that monocytes collaborate with MSC in inducing STAT3-dependent drug resistance in neuroblastoma . Further

  3. A National Virtual Specimen Database for Early Cancer Detection

    NASA Technical Reports Server (NTRS)

    Crichton, Daniel; Kincaid, Heather; Kelly, Sean; Thornquist, Mark; Johnsey, Donald; Winget, Marcy

    2003-01-01

    Access to biospecimens is essential for enabling cancer biomarker discovery. The National Cancer Institute's (NCI) Early Detection Research Network (EDRN) comprises and integrates a large number of laboratories into a network in order to establish a collaborative scientific environment to discover and validate disease markers. The diversity of both the institutions and the collaborative focus has created the need for establishing cross-disciplinary teams focused on integrating expertise in biomedical research, computational and biostatistics, and computer science. Given the collaborative design of the network, the EDRN needed an informatics infrastructure. The Fred Hutchinson Cancer Research Center, the National Cancer Institute,and NASA's Jet Propulsion Laboratory (JPL) teamed up to build an informatics infrastructure creating a collaborative, science-driven research environment despite the geographic and morphology differences of the information systems that existed within the diverse network. EDRN investigators identified the need to share biospecimen data captured across the country managed in disparate databases. As a result, the informatics team initiated an effort to create a virtual tissue database whereby scientists could search and locate details about specimens located at collaborating laboratories. Each database, however, was locally implemented and integrated into collection processes and methods unique to each institution. This meant that efforts to integrate databases needed to be done in a manner that did not require redesign or re-implementation of existing system

  4. Mobile collaborative medical display system.

    PubMed

    Park, Sanghun; Kim, Wontae; Ihm, Insung

    2008-03-01

    Because of recent advances in wireless communication technologies, the world of mobile computing is flourishing with a variety of applications. In this study, we present an integrated architecture for a personal digital assistant (PDA)-based mobile medical display system that supports collaborative work between remote users. We aim to develop a system that enables users in different regions to share a working environment for collaborative visualization with the potential for exploring huge medical datasets. Our system consists of three major components: mobile client, gateway, and parallel rendering server. The mobile client serves as a front end and enables users to choose the visualization and control parameters interactively and cooperatively. The gateway handles requests and responses between mobile clients and the rendering server for efficient communication. Through the gateway, it is possible to share working environments between users, allowing them to work together in computer supported cooperative work (CSCW) mode. Finally, the parallel rendering server is responsible for performing heavy visualization tasks. Our experience indicates that some features currently available to our mobile clients for collaborative scientific visualization are limited due to the poor performance of mobile devices and the low bandwidth of wireless connections. However, as mobile devices and wireless network systems are experiencing considerable elevation in their capabilities, we believe that our methodology will be utilized effectively in building quite responsive, useful mobile collaborative medical systems in the very near future.

  5. Understanding the influence of power and empathic perspective-taking on collaborative natural resource management.

    PubMed

    Wald, Dara M; Segal, Elizabeth A; Johnston, Erik W; Vinze, Ajay

    2017-09-01

    Public engagement in collaborative natural resource management necessitates shared understanding and collaboration. Empathic perspective-taking is a critical facilitator of shared understanding and positive social interactions, such as collaboration. Yet there is currently little understanding about how to reliably generate empathic perspective-taking and collaboration, particularly in situations involving the unequal distribution of environmental resources or power. Here we examine how experiencing the loss or gain of social power influenced empathic perspective-taking and behavior within a computer-mediated scenario. Participants (n = 180) were randomly assigned to each condition: high resources, low resources, lose resources, gain resources. Contrary to our expectations, participants in the perspective-taking condition, specifically those who lost resources, also lost perspective taking and exhibited egoistic behavior. This finding suggests that resource control within the collaborative process is a key contextual variable that influences perspective-taking and collaborative behavior. Moreover, the observed relationship between perspective-taking and egoistic behavior within a collaborative resource sharing exercise suggests that when resource control or access is unequal, interventions to promote perspective-taking deserve careful consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion

    PubMed Central

    Luisier, Raphaëlle; Unterberger, Elif B.; Goodman, Jay I.; Schwarz, Michael; Moggs, Jonathan; Terranova, Rémi; van Nimwegen, Erik

    2014-01-01

    Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis. PMID:24464994

  7. Scaffolding High School Students' Divergent Idea Generation in a Computer-Mediated Design and Technology Learning Environment

    ERIC Educational Resources Information Center

    Yeo, Tiong-Meng; Quek, Choon-Lang

    2014-01-01

    This comparative study investigates how two groups of design and technology students generated ideas in an asynchronous computer-mediated communication setting. The generated ideas were design ideas in the form of sketches. Each group comprised five students who were all 15 years of age. All the students were from the same secondary school but…

  8. A proto-Data Processing Center for LISA

    NASA Astrophysics Data System (ADS)

    Cavet, Cécile; Petiteau, Antoine; Le Jeune, Maude; Plagnol, Eric; Marin-Martholaz, Etienne; Bayle, Jean-Baptiste

    2017-05-01

    The LISA project preparation requires to study and define a new data analysis framework, capable of dealing with highly heterogeneous CPU needs and of exploiting the emergent information technologies. In this context, a prototype of the mission’s Data Processing Center (DPC) has been initiated. The DPC is designed to efficiently manage computing constraints and to offer a common infrastructure where the whole collaboration can contribute to development work. Several tools such as continuous integration (CI) have already been delivered to the collaboration and are presently used for simulations and performance studies. This article presents the progress made regarding this collaborative environment and discusses also the possible next steps towards an on-demand computing infrastructure. This activity is supported by CNES as part of the French contribution to LISA.

  9. Museum Informatics.

    ERIC Educational Resources Information Center

    Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.

    2003-01-01

    Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…

  10. A filter-mediated communication model for design collaboration in building construction.

    PubMed

    Lee, Jaewook; Jeong, Yongwook; Oh, Minho; Hong, Seung Wan

    2014-01-01

    Multidisciplinary collaboration is an important aspect of modern engineering activities, arising from the growing complexity of artifacts whose design and construction require knowledge and skills that exceed the capacities of any one professional. However, current collaboration in the architecture, engineering, and construction industries often fails due to lack of shared understanding between different participants and limitations of their supporting tools. To achieve a high level of shared understanding, this study proposes a filter-mediated communication model. In the proposed model, participants retain their own data in the form most appropriate for their needs with domain-specific filters that transform the neutral representations into semantically rich ones, as needed by the participants. Conversely, the filters can translate semantically rich, domain-specific data into a neutral representation that can be accessed by other domain-specific filters. To validate the feasibility of the proposed model, we computationally implement the filter mechanism and apply it to a hypothetical test case. The result acknowledges that the filter mechanism can let the participants know ahead of time what will be the implications of their proposed actions, as seen from other participants' points of view.

  11. Peer-Monitoring vs. Micro-Script Fading for Enhancing Knowledge Acquisition when Learning in Computer-Supported Argumentation Environments

    ERIC Educational Resources Information Center

    Bouyias, Yannis; Demetriadis, Stavros

    2012-01-01

    Research on computer-supported collaborative learning (CSCL) has strongly emphasized the value of providing student support with micro-scripts, which should withdraw (fade-out) allowing students to practice the acquired skills. However, research on fading shows conflicting results and some researchers suggest that the impact of fading is enhanced…

  12. Software Simplifies the Sharing of Numerical Models

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To ease the sharing of climate models with university students, Goddard Space Flight Center awarded SBIR funding to Reston, Virginia-based Parabon Computation Inc., a company that specializes in cloud computing. The firm developed a software program capable of running climate models over the Internet, and also created an online environment for people to collaborate on developing such models.

  13. Telescience workstation

    NASA Technical Reports Server (NTRS)

    Brown, Robert L.; Doyle, Dee; Haines, Richard F.; Slocum, Michael

    1989-01-01

    As part of the Telescience Testbed Pilot Program, the Universities Space Research Association/ Research Institute for Advanced Computer Science (USRA/RIACS) proposed to support remote communication by providing a network of human/machine interfaces, computer resources, and experimental equipment which allows: remote science, collaboration, technical exchange, and multimedia communication. The telescience workstation is intended to provide a local computing environment for telescience. The purpose of the program are as follows: (1) to provide a suitable environment to integrate existing and new software for a telescience workstation; (2) to provide a suitable environment to develop new software in support of telescience activities; (3) to provide an interoperable environment so that a wide variety of workstations may be used in the telescience program; (4) to provide a supportive infrastructure and a common software base; and (5) to advance, apply, and evaluate the telescience technolgy base. A prototype telescience computing environment designed to bring practicing scientists in domains other than their computer science into a modern style of doing their computing was created and deployed. This environment, the Telescience Windowing Environment, Phase 1 (TeleWEn-1), met some, but not all of the goals stated above. The TeleWEn-1 provided a window-based workstation environment and a set of tools for text editing, document preparation, electronic mail, multimedia mail, raster manipulation, and system management.

  14. Enforcing compatibility and constraint conditions and information retrieval at the design action

    NASA Technical Reports Server (NTRS)

    Woodruff, George W.

    1990-01-01

    The design of complex entities is a multidisciplinary process involving several interacting groups and disciplines. There is a need to integrate the data in such environments to enhance the collaboration between these groups and to enforce compatibility between dependent data entities. This paper discusses the implementation of a workstation based CAD system that is integrated with a DBMS and an expert system, CLIPS, (both implemented on a mini computer) to provide such collaborative and compatibility enforcement capabilities. The current implementation allows for a three way link between the CAD system, the DBMS and CLIPS. The engineering design process associated with the design and fabrication of sheet metal housing for computers in a large computer manufacturing facility provides the basis for this prototype system.

  15. Netbook - A Toolset in Support of a Collaborative and Cooperative Learning Environment.

    DTIC Science & Technology

    1996-04-26

    Netbook is a software development/research project being conducted for the DARPA computer aided training initiative (CEATI). As a part of the SNAIR...division of CEATI, Netbook concerns itself with the management of Internet resources. More specifically, Netbook is a toolset that allows students...a meaningful way. In addition Netbook provides the capacity for communication with peers and teachers, enabling students to collaborate while engaged

  16. Rocinante, a virtual collaborative visualizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, M.J.; Ice, L.G.

    1996-12-31

    With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories` Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired.more » Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante`s scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators.« less

  17. The virtual environment display system

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1991-01-01

    Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition.

  18. Contributing, Exchanging and Linking for Learning: Supporting Web Co-Discovery in One-to-One Environments

    ERIC Educational Resources Information Center

    Liu, Chen-Chung; Don, Ping-Hsing; Chung, Chen-Wei; Lin, Shao-Jun; Chen, Gwo-Dong; Liu, Baw-Jhiune

    2010-01-01

    While Web discovery is usually undertaken as a solitary activity, Web co-discovery may transform Web learning activities from the isolated individual search process into interactive and collaborative knowledge exploration. Recent studies have proposed Web co-search environments on a single computer, supported by multiple one-to-one technologies.…

  19. Relationships among Individual Task Self-Efficacy, Self-Regulated Learning Strategy Use and Academic Performance in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Wilson, Kimberly; Narayan, Anupama

    2016-01-01

    This study investigates relationships between self-efficacy, self-regulated learning strategy use and academic performance. Participants were 96 undergraduate students working on projects with three subtasks (idea generation task, methodical task and data collection) in a blended learning environment. Task self-efficacy was measured with…

  20. A Study of the Relationship of Communication Technology Configurations in Virtual Research Environments and Effectiveness of Collaborative Research

    ERIC Educational Resources Information Center

    Ahmed, Iftekhar

    2009-01-01

    Virtual Research Environments (VRE) are electronic meeting places for interaction among scientists created by combining software tools and computer networking. Virtual teams are enjoying increased importance in the conduct of scientific research because of the rising cost of traditional scientific scholarly communication, the growing importance of…

  1. Douglass Rationalization: An Evaluation of a Team Environment and a Computer-Based Task in Academic Libraries

    ERIC Educational Resources Information Center

    Denda, Kayo; Smulewitz, Gracemary

    2004-01-01

    In the contemporary library environment, the presence of the Internet and the infrastructure of the integrated library system suggest an integrated internal organization. The article describes the example of Douglass Rationalization, a team-based collaborative project to refocus the collection of Rutgers' Douglass Library, taking advantage of the…

  2. Creative Multimodal Learning Environments and Blended Interaction for Problem-Based Activity in HCI Education

    ERIC Educational Resources Information Center

    Ioannou, Andri; Vasiliou, Christina; Zaphiris, Panayiotis; Arh, Tanja; Klobucar, Tomaž; Pipan, Matija

    2015-01-01

    This exploratory case study aims to examine how students benefit from a multimodal learning environment while they engage in collaborative problem-based activity in a Human Computer Interaction (HCI) university course. For 12 weeks, 30 students, in groups of 5-7 each, participated in weekly face-to-face meetings and online interactions.…

  3. Decision-Making Processes of SME in Cloud Computing Adoption to Create Disruptive Innovation: Mediating Effect of Collaboration

    ERIC Educational Resources Information Center

    Sonthiprasat, Rattanawadee

    2014-01-01

    THE PROBLEM. The purpose of this quantitative correlation study was to assess the relationship between different Cloud service levels of effective business innovation for SMEs. In addition, the new knowledge gained from the benefits of Cloud adoption with knowledge sharing would enhance the decision making process for businesses to consider the…

  4. "I'm* Two Rabbits" / "J'ai un Rouge Pullover*". How Corrective Feedback Is Handled in Collaborative Exchange Programmes between Early Language Learners

    ERIC Educational Resources Information Center

    Choffat-Durr, Anne; Macaire, Dominique

    2012-01-01

    This article presents how, in the social dynamics of two classrooms involved in an exchange programme, young learners provide their peers with asynchronous feedback taking place in the digital medium. Within two Call Triangles that interact thanks to Computer Mediated Communication tools, teachers sharing the same methodological precept on…

  5. Student use of a Learning Management System for group projects: A case study investigating interaction, collaboration, and knowledge construction

    NASA Astrophysics Data System (ADS)

    Lonn, Steven D.

    Web-based Learning Management Systems (LMS) allow instructors and students to share instructional materials, make class announcements, submit and return course assignments, and communicate with each other online. Previous LMS-related research has focused on how these systems deliver and manage instructional content with little concern for how students' constructivist learning can be encouraged and facilitated. This study investigated how students use LMS to interact, collaborate, and construct knowledge within the context of a group project but without mediation by the instructor. The setting for this case study was students' use in one upper-level biology course of the local LMS within the context of a course-related group project, a mock National Institutes of Health grant proposal. Twenty-one groups (82 students) voluntarily elected to use the LMS, representing two-thirds of all students in the course. Students' peer-to-peer messages within the LMS, event logs, online surveys, focus group interviews, and instructor interviews were used in order to answer the study's overarching research question. The results indicate that students successfully used the LMS to interact and, to a significant extent, collaborate, but there was very little evidence of knowledge construction using the LMS technology. It is possible that the ease and availability of face-to-face meetings as well as problems and limitations with the technology were factors that influenced whether students' online basic interaction could be further distinguished as collaboration or knowledge construction. Despite these limitations, students found several tools and functions of the LMS useful for their online peer interaction and completion of their course project. Additionally, LMS designers and implementers are urged to consider previous literature on computer-supported collaborative learning environments in order to better facilitate independent group projects within these systems. Further research is needed to identify the best types of scaffolds and overall technological improvements in order to provide support for online collaboration and knowledge construction.

  6. Detection of High Levels of Endocrine Activity in Selected Environmental Surface Water Samples Using ER, AR, and GR-mediated In Vitro Bioassays

    EPA Science Inventory

    Determining the associated health risks of exposure to complex mixtures in the environment is a recognized challenge. The Chemical Mixtures project, a collaborative effort between USEPA and USGS, is making a step in that direction by examining the co-occurrence of chemicals and b...

  7. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.

    PubMed

    Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai

    2009-01-01

    Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.

  8. A Virtual Mission Operations Center: Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system/product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.

  9. Computing through Scientific Abstractions in SysBioPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Stephan, Eric G.; Gracio, Deborah K.

    2004-10-13

    Today, biologists and bioinformaticists have a tremendous amount of computational power at their disposal. With the availability of supercomputers, burgeoning scientific databases and digital libraries such as GenBank and PubMed, and pervasive computational environments such as the Grid, biologists have access to a wealth of computational capabilities and scientific data at hand. Yet, the rapid development of computational technologies has far exceeded the typical biologist’s ability to effectively apply the technology in their research. Computational sciences research and development efforts such as the Biology Workbench, BioSPICE (Biological Simulation Program for Intra-Cellular Evaluation), and BioCoRE (Biological Collaborative Research Environment) are importantmore » in connecting biologists and their scientific problems to computational infrastructures. On the Computational Cell Environment and Heuristic Entity-Relationship Building Environment projects at the Pacific Northwest National Laboratory, we are jointly developing a new breed of scientific problem solving environment called SysBioPSE that will allow biologists to access and apply computational resources in the scientific research context. In contrast to other computational science environments, SysBioPSE operates as an abstraction layer above a computational infrastructure. The goal of SysBioPSE is to allow biologists to apply computational resources in the context of the scientific problems they are addressing and the scientific perspectives from which they conduct their research. More specifically, SysBioPSE allows biologists to capture and represent scientific concepts and theories and experimental processes, and to link these views to scientific applications, data repositories, and computer systems.« less

  10. Build It: Will They Come?

    NASA Astrophysics Data System (ADS)

    Corrie, Brian; Zimmerman, Todd

    Scientific research is fundamentally collaborative in nature, and many of today's complex scientific problems require domain expertise in a wide range of disciplines. In order to create research groups that can effectively explore such problems, research collaborations are often formed that involve colleagues at many institutions, sometimes spanning a country and often spanning the world. An increasingly common manifestation of such a collaboration is the collaboratory (Bos et al., 2007), a “…center without walls in which the nation's researchers can perform research without regard to geographical location — interacting with colleagues, accessing instrumentation, sharing data and computational resources, and accessing information from digital libraries.” In order to bring groups together on such a scale, a wide range of components need to be available to researchers, including distributed computer systems, remote instrumentation, data storage, collaboration tools, and the financial and human resources to operate and run such a system (National Research Council, 1993). Media Spaces, as both a technology and a social facilitator, have the potential to meet many of these needs. In this chapter, we focus on the use of scientific media spaces (SMS) as a tool for supporting collaboration in scientific research. In particular, we discuss the design, deployment, and use of a set of SMS environments deployed by WestGrid and one of its collaborating organizations, the Centre for Interdisciplinary Research in the Mathematical and Computational Sciences (IRMACS) over a 5-year period.

  11. Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds

    NASA Astrophysics Data System (ADS)

    Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano

    Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.

  12. An Overview of the CERC ARTEMIS Project

    PubMed Central

    Jagannathan, V.; Reddy, Y. V.; Srinivas, K.; Karinthi, R.; Shank, R.; Reddy, S.; Almasi, G.; Davis, T.; Raman, R.; Qiu, S.; Friedman, S.; Merkin, B.; Kilkenny, M.

    1995-01-01

    The basic premise of this effort is that health care can be made more effective and affordable by applying modern computer technology to improve collaboration among diverse and distributed health care providers. Information sharing, communication, and coordination are basic elements of any collaborative endeavor. In the health care domain, collaboration is characterized by cooperative activities by health care providers to deliver total and real-time care for their patients. Communication between providers and managed access to distributed patient records should enable health care providers to make informed decisions about their patients in a timely manner. With an effective medical information infrastructure in place, a patient will be able to visit any health care provider with access to the network, and the provider will be able to use relevant information from even the last episode of care in the patient record. Such a patient-centered perspective is in keeping with the real mission of health care providers. Today, an easy-to-use, integrated health care network is not in place in any community, even though current technology makes such a network possible. Large health care systems have deployed partial and disparate systems that address different elements of collaboration. But these islands of automation have not been integrated to facilitate cooperation among health care providers in large communities or nationally. CERC and its team members at Valley Health Systems, Inc., St. Marys Hospital and Cabell Huntington Hospital form a consortium committed to improving collaboration among the diverse and distributed providers in the health care arena. As the first contract recipient of the multi-agency High Performance Computing and Communications (HPCC) Initiative, this team of computer system developers, practicing rural physicians, community care groups, health care researchers, and tertiary care providers are using research prototypes and commercial off-the-shelf technologies to develop an open collaboration environment for the health care domain. This environment is called ARTEMIS — Advanced Research TEstbed for Medical InformaticS. PMID:8563249

  13. e-Collaboration for Earth observation (E-CEO): the Cloud4SAR interferometry data challenge

    NASA Astrophysics Data System (ADS)

    Casu, Francesco; Manunta, Michele; Boissier, Enguerran; Brito, Fabrice; Aas, Christina; Lavender, Samantha; Ribeiro, Rita; Farres, Jordi

    2014-05-01

    The e-Collaboration for Earth Observation (E-CEO) project addresses the technologies and architectures needed to provide a collaborative research Platform for automating data mining and processing, and information extraction experiments. The Platform serves for the implementation of Data Challenge Contests focusing on Information Extraction for Earth Observations (EO) applications. The possibility to implement multiple processors within a Common Software Environment facilitates the validation, evaluation and transparent peer comparison among different methodologies, which is one of the main requirements rose by scientists who develop algorithms in the EO field. In this scenario, we set up a Data Challenge, referred to as Cloud4SAR (http://wiki.services.eoportal.org/tiki-index.php?page=ECEO), to foster the deployment of Interferometric SAR (InSAR) processing chains within a Cloud Computing platform. While a large variety of InSAR processing software tools are available, they require a high level of expertise and a complex user interaction to be effectively run. Computing a co-seismic interferogram or a 20-years deformation time series on a volcanic area are not easy tasks to be performed in a fully unsupervised way and/or in very short time (hours or less). Benefiting from ESA's E-CEO platform, participants can optimise algorithms on a Virtual Sandbox environment without being expert programmers, and compute results on high performing Cloud platforms. Cloud4SAR requires solving a relatively easy InSAR problem by trying to maximize the exploitation of the processing capabilities provided by a Cloud Computing infrastructure. The proposed challenge offers two different frameworks, each dedicated to participants with different skills, identified as Beginners and Experts. For both of them, the contest mainly resides in the degree of automation of the deployed algorithms, no matter which one is used, as well as in the capability of taking effective benefit from a parallel computing environment.

  14. Recalibrating intellectual property rights to enhance translational research collaborations.

    PubMed

    Bubela, Tania; FitzGerald, Garret A; Gold, E Richard

    2012-02-22

    Multisectoral collaborative models for drug and therapeutic research and development (R&D) are emerging, requiring a recalibration of how intellectual property rights (IPRs) are used. Although these models appear promising, little study has been conducted on the optimal blend of sharing and exclusion as mediated through the proactive use or nonuse of IPRs. This Commentary is a call for a combination of theoretical and empirical analyses to build a comprehensive understanding of the interplay between formal IP laws, institutions that administer and manage IPRs, and the use of IPRs in practice to better construct and manage collaborations. Such analyses require outcome metrics formulated to measure the success of therapeutic outcomes and to capture the complexity of a highly networked R&D environment.

  15. Efficacy beliefs predict collaborative practice among intensive care unit nurses.

    PubMed

    Le Blanc, Pascale M; Schaufeli, Wilmar B; Salanova, Marisa; Llorens, Susana; Nap, Raoul E

    2010-03-01

    This paper is a report of an investigation of whether intensive care nurses' efficacy beliefs predict future collaborative practice, and to test the potential mediating role of team commitment in this relationship. Recent empirical studies in the field of work and organizational psychology have demonstrated that (professional) efficacy beliefs are reciprocally related to workers' resources and well-being over time, resulting in a positive gain spiral. Moreover, there is ample evidence that workers' affective commitment to their organization or work-team is related to desirable work behaviours such as citizenship behaviour. A longitudinal design was applied to questionnaire data from the EURICUS-project. Structural Equation Modelling was used to analyse the data. The sample consisted of 372 nurses working in 29 different European intensive care units. Data were collected in 1997 and 1998. However, our research model deals with fundamental psychosocial processes that are not time-dependent. Moreover, recent empirical literature shows that there is still room for improvement in ICU collaborative practice. The hypotheses that (i) the relationship between efficacy beliefs and collaborative practice is mediated by team commitment and (ii) efficacy beliefs, team commitment and collaborative practice are reciprocally related were supported, suggesting a potential positive gain spiral of efficacy beliefs. Healthcare organizations should create working environments that provide intensive care unit nurses with sufficient resources to perform their job well. Further research is needed to design and evaluate interventions for the enhancement of collaborative practice in intensive care units.

  16. Teacher Support in Computer-Supported Lab Work: Bridging the Gap between Lab Experiments and Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Furberg, Anniken

    2016-01-01

    This paper reports on a study of teacher support in a setting where students engaged with computer-supported collaborative learning (CSCL) in science. The empirical basis is an intervention study where secondary school students and their teacher performed a lab experiment in genetics supported by a digital learning environment. The analytical…

  17. Supporting Scientific Analysis within Collaborative Problem Solving Environments

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and made possible by the specified design criteria) are: 1. The tool provides highly interactive, dynamic, high resolution, 3D graphics. 2. All remote scientists can view the same dynamic, high resolution, 3D scenes of the analysis as the analysis is being conducted. 3. The responsiveness of the tool is nearly identical to the responsiveness of the tool in a stand-alone mode. 4. The scientists can transfer control of the analysis between themselves. 5. Any analysis session or segment of an analysis session, whether done individually or collaboratively, can be recorded and posted on the Web for other scientists or students to download and play in either a collaborative or individual mode. 6. The scientist or student who downloaded the session can, individually or collaboratively, modify or extend the session with his/her own "what if" analysis of the data and post his/her version of the analysis back onto the Web. 7. The peak network bandwidth used in the collaborative sessions is only 1K bit/second even though the scientists at all sites are viewing high resolution (1280 x 1024 pixels), dynamic, 3D scenes of the analysis. The links between the specified design criteria and these performance features are presented.

  18. Open NASA Earth Exchange (OpenNEX): Strategies for enabling cross organization collaboration in the earth sciences

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Ganguly, S.; Nemani, R. R.; Votava, P.; Wang, W.; Lee, T. J.; Dungan, J. L.

    2014-12-01

    Sharing community-valued codes, intermediary datasets and results from individual efforts with others that are not in a direct funded collaboration can be a challenge. Cross organization collaboration is often impeded due to infrastructure security constraints, rigid financial controls, bureaucracy, and workforce nationalities, etc., which can force groups to work in a segmented fashion and/or through awkward and suboptimal web services. We show how a focused community may come together, share modeling and analysis codes, computing configurations, scientific results, knowledge and expertise on a public cloud platform; diverse groups of researchers working together at "arms length". Through the OpenNEX experimental workshop, users can view short technical "how-to" videos and explore encapsulated working environment. Workshop participants can easily instantiate Amazon Machine Images (AMI) or launch full cluster and data processing configurations within minutes. Enabling users to instantiate computing environments from configuration templates on large public cloud infrastructures, such as Amazon Web Services, may provide a mechanism for groups to easily use each others work and collaborate indirectly. Moreover, using the public cloud for this workshop allowed a single group to host a large read only data archive, making datasets of interest to the community widely available on the public cloud, enabling other groups to directly connect to the data and reduce the costs of the collaborative work by freeing other individual groups from redundantly retrieving, integrating or financing the storage of the datasets of interest.

  19. Grid Computing and Collaboration Technology in Support of Fusion Energy Sciences

    NASA Astrophysics Data System (ADS)

    Schissel, D. P.

    2004-11-01

    The SciDAC Initiative is creating a computational grid designed to advance scientific understanding in fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling, and allowing more efficient use of experimental facilities. The philosophy is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as easy to use network available services. Access to services is stressed rather than portability. Services share the same basic security infrastructure so that stakeholders can control their own resources and helps ensure fair use of resources. The collaborative control room is being developed using the open-source Access Grid software that enables secure group-to-group collaboration with capabilities beyond teleconferencing including application sharing and control. The ability to effectively integrate off-site scientists into a dynamic control room will be critical to the success of future international projects like ITER. Grid computing, the secure integration of computer systems over high-speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. The first grid computational service deployed was the transport code TRANSP and included tools for run preparation, submission, monitoring and management. This approach saves user sites from the laborious effort of maintaining a complex code while at the same time reducing the burden on developers by avoiding the support of a large number of heterogeneous installations. This tutorial will present the philosophy behind an advanced collaborative environment, give specific examples, and discuss its usage beyond FES.

  20. The Role of the Family Environment and Computer-Mediated Social Support on Breast Cancer Patients' Coping Strategies

    PubMed Central

    Yoo, Woohyun; Shah, Dhavan V.; Shaw, Bret R.; Kim, Eunkyung; Smaglik, Paul; Roberts, Linda J.; Hawkins, Robert P.; Pingree, Suzanne; Mcdowell, Helene; Gustafson, David H.

    2014-01-01

    Despite the importance of family environment and computer-mediated social support (CMSS) for women with breast cancer, little is known about the interplay of these sources of care and assistance on patients' coping strategies. To understand this relation, the authors examined the effect of family environment as a predictor of the use of CMSS groups as well as a moderator of the relation between group participation and forms of coping. Data were collected from 111 patients in CMSS groups in the Comprehensive Health Enhancement Support System “Living with Breast Cancer” intervention. Results indicate that family environment plays a crucial role in (a) predicting breast cancer patient's participation in CMSS groups and (b) moderating the effects of use of CMSS groups on breast cancer patients' coping strategies such as problem-focused coping and emotion-focused coping. PMID:24511907

  1. A LANGUAGE FOR MODULAR SPATIO-TEMPORAL SIMULATION (R824766)

    EPA Science Inventory

    Creating an effective environment for collaborative spatio-temporal model development will require computational systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction and archiving/linking of simulation modules; (2)...

  2. Virtual Teaching on the Tundra.

    ERIC Educational Resources Information Center

    McAuley, Alexander

    1998-01-01

    Describes how a teacher and a distance-learning consultant collaborate in using the Internet and Computer Supported Intentional Learning Environment (CISILE) to connect multicultural students on the harsh Baffin Island (Canada). Discusses the creation of the class's database and future implications. (AEF)

  3. Enhancing Collaborative Learning through Group Intelligence Software

    NASA Astrophysics Data System (ADS)

    Tan, Yin Leng; Macaulay, Linda A.

    Employers increasingly demand not only academic excellence from graduates but also excellent interpersonal skills and the ability to work collaboratively in teams. This paper discusses the role of Group Intelligence software in helping to develop these higher order skills in the context of an enquiry based learning (EBL) project. The software supports teams in generating ideas, categorizing, prioritizing, voting and multi-criteria decision making and automatically generates a report of each team session. Students worked in a Group Intelligence lab designed to support both face to face and computer-mediated communication and employers provided feedback at two key points in the year long team project. Evaluation of the effectiveness of Group Intelligence software in collaborative learning was based on five key concepts of creativity, participation, productivity, engagement and understanding.

  4. Mathematical Teachers' Perception: Mobile Learning and Constructing 21st Century Collaborative Cloud-Computing Environments in Elementary Public Schools in the State of Kuwait

    ERIC Educational Resources Information Center

    Alqallaf, Nadeyah

    2016-01-01

    The purpose of this study was to examine Kuwaiti mathematical elementary teachers' perceptions about their ability to integrate M-learning (mobile learning) into their current teaching practices and the major barriers hindering teachers' ability to create an M-learning environment. Furthermore, this study sought to understand teachers' perceptions…

  5. Encrypted Objects and Decryption Processes: Problem-Solving with Functions in a Learning Environment Based on Cryptography

    ERIC Educational Resources Information Center

    White, Tobin

    2009-01-01

    This paper introduces an applied problem-solving task, set in the context of cryptography and embedded in a network of computer-based tools. This designed learning environment engaged students in a series of collaborative problem-solving activities intended to introduce the topic of functions through a set of linked representations. In a…

  6. Advanced Collaborative Environments Supporting Systems Integration and Design

    DTIC Science & Technology

    2003-03-01

    concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future

  7. Fast Markerless Tracking for Augmented Reality in Planar Environment

    NASA Astrophysics Data System (ADS)

    Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim

    2015-12-01

    Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.

  8. Collaboration systems for classroom instruction

    NASA Astrophysics Data System (ADS)

    Chen, C. Y. Roger; Meliksetian, Dikran S.; Chang, Martin C.

    1996-01-01

    In this paper we discuss how classroom instruction can benefit from state-of-the-art technologies in networks, worldwide web access through Internet, multimedia, databases, and computing. Functional requirements for establishing such a high-tech classroom are identified, followed by descriptions of our current experimental implementations. The focus of the paper is on the capabilities of distributed collaboration, which supports both synchronous multimedia information sharing as well as a shared work environment for distributed teamwork and group decision making. Our ultimate goal is to achieve the concept of 'living world in a classroom' such that live and dynamic up-to-date information and material from all over the world can be integrated into classroom instruction on a real-time basis. We describe how we incorporate application developments in a geography study tool, worldwide web information retrievals, databases, and programming environments into the collaborative system.

  9. SciServer: An Online Collaborative Environment for Big Data in Research and Education

    NASA Astrophysics Data System (ADS)

    Raddick, Jordan; Souter, Barbara; Lemson, Gerard; Taghizadeh-Popp, Manuchehr

    2017-01-01

    For the past year, SciServer Compute (http://compute.sciserver.org) has offered access to big data resources running within server-side Docker containers. Compute has allowed thousands of researchers to bring advanced analysis to big datasets like the Sloan Digital Sky Survey and others, while keeping the analysis close to the data for better performance and easier read/write access. SciServer Compute is just one part of the SciServer system being developed at Johns Hopkins University, which provides an easy-to-use collaborative research environment for astronomy and many other sciences.SciServer enables these collaborative research strategies using Jupyter notebooks, in which users can write their own Python and R scripts and execute them on the same server as the data. We have written special-purpose libraries for querying, reading, and writing data. Intermediate results can be stored in large scratch space (hundreds of TBs) and analyzed directly from within Python or R with state-of-the-art visualization and machine learning libraries. Users can store science-ready results in their permanent allocation on SciDrive, a Dropbox-like system for sharing and publishing files.SciServer Compute’s virtual research environment has grown with the addition of task management and access control functions, allowing collaborators to share both data and analysis scripts securely across the world. These features also open up new possibilities for education, allowing instructors to share datasets with students and students to write analysis scripts to share with their instructors. We are leveraging these features into a new system called “SciServer Courseware,” which will allow instructors to share assignments with their students, allowing students to engage with big data in new ways.SciServer has also expanded to include more datasets beyond the Sloan Digital Sky Survey. A part of that growth has been the addition of the SkyQuery component, which allows for simple, fast cross-matching between very large astronomical datasets.Demos, documentation, and more information about all these resources can be found at www.sciserver.org.

  10. Virtual Collaboration for a Distributed Enterprise

    DTIC Science & Technology

    2013-01-01

    451-6915; Email : order@rand.org Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-08330-8003-5 The...category. Online discussion boards, chat rooms, and email are all considered forms of computer-mediated communication.9 In particular, many...Google Wave, which combines features of chat, email , and graphics and document sharing.14 Through these technologies, distant team members can now

  11. No Pain, No Game: Use of an Online Game to Explore Issues of Online Identity and the Implications for Collaborative E-Learning

    ERIC Educational Resources Information Center

    Hughes, Gwyneth; Scott, Catherine

    2005-01-01

    As computer-mediated communication (CMC) is becoming more mainstream in higher education (HE), the issue of social interaction online and its impact on learning has been raised. CMC theorists have argued that shared group identity produces the online social presence necessary for successful interaction but that other identities may be inhibiting.…

  12. Exploring Effective Decision Making through Human-Centered and Computational Intelligence Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kyungsik; Cook, Kristin A.; Shih, Patrick C.

    Decision-making has long been studied to understand a psychological, cognitive, and social process of selecting an effective choice from alternative options. Its studies have been extended from a personal level to a group and collaborative level, and many computer-aided decision-making systems have been developed to help people make right decisions. There has been significant research growth in computational aspects of decision-making systems, yet comparatively little effort has existed in identifying and articulating user needs and requirements in assessing system outputs and the extent to which human judgments could be utilized for making accurate and reliable decisions. Our research focus ismore » decision-making through human-centered and computational intelligence methods in a collaborative environment, and the objectives of this position paper are to bring our research ideas to the workshop, and share and discuss ideas.« less

  13. A Domain-Specific Language for Aviation Domain Interoperability

    ERIC Educational Resources Information Center

    Comitz, Paul

    2013-01-01

    Modern information systems require a flexible, scalable, and upgradeable infrastructure that allows communication and collaboration between heterogeneous information processing and computing environments. Aviation systems from different organizations often use differing representations and distribution policies for the same data and messages,…

  14. Multimedia Instruction Initiative: Building Faculty Competence.

    ERIC Educational Resources Information Center

    Haile, Penelope J.

    Hofstra University began a university-wide initiative to enhance classroom instruction with multimedia technology and foster collaborative approaches to learning. The Multimedia Instruction Initiative emphasized teamwork among faculty, students, and computer center support staff to develop a technology-enriched learning environment supported by…

  15. Designing Communication and Learning Environments.

    ERIC Educational Resources Information Center

    Gayeski, Diane M., Ed.

    Designing and remodeling educational facilities are becoming more complex with options that include computer-based collaboration, classrooms with multimedia podiums, conference centers, and workplaces with desktop communication systems. This book provides a collection of articles that address educational facility design categorized in the…

  16. Developing an Advanced Environment for Collaborative Computing

    NASA Technical Reports Server (NTRS)

    Becerra-Fernandez, Irma; Stewart, Helen; DelAlto, Martha; DelAlto, Martha; Knight, Chris

    1999-01-01

    Knowledge management in general tries to organize and make available important know-how, whenever and where ever is needed. Today, organizations rely on decision-makers to produce "mission critical" decisions that am based on inputs from multiple domains. The ideal decision-maker has a profound understanding of specific domains that influence the decision-making process coupled with the experience that allows them to act quickly and decisively on the information. In addition, learning companies benefit by not repeating costly mistakes, and by reducing time-to-market in Research & Development projects. Group-decision making tools can help companies make better decisions by capturing the knowledge from groups of experts. Furthermore, companies that capture their customers preferences can improve their customer service, which translates to larger profits. Therefore collaborative computing provides a common communication space, improves sharing of knowledge, provides a mechanism for real-time feedback on the tasks being performed, helps to optimize processes, and results in a centralized knowledge warehouse. This paper presents the research directions. of a project which seeks to augment an advanced collaborative web-based environment called Postdoc, with workflow capabilities. Postdoc is a "government-off-the-shelf" document management software developed at NASA-Ames Research Center (ARC).

  17. The Use of an Online Learning and Teaching System for Monitoring Computer Aided Design Student Participation and Predicting Student Success

    ERIC Educational Resources Information Center

    Akhtar, S.; Warburton, S.; Xu, W.

    2017-01-01

    In this paper we report on the use of a purpose built Computer Support Collaborative learning environment designed to support lab-based CAD teaching through the monitoring of student participation and identified predictors of success. This was carried out by analysing data from the interactive learning system and correlating student behaviour with…

  18. A Filter-Mediated Communication Model for Design Collaboration in Building Construction

    PubMed Central

    Oh, Minho

    2014-01-01

    Multidisciplinary collaboration is an important aspect of modern engineering activities, arising from the growing complexity of artifacts whose design and construction require knowledge and skills that exceed the capacities of any one professional. However, current collaboration in the architecture, engineering, and construction industries often fails due to lack of shared understanding between different participants and limitations of their supporting tools. To achieve a high level of shared understanding, this study proposes a filter-mediated communication model. In the proposed model, participants retain their own data in the form most appropriate for their needs with domain-specific filters that transform the neutral representations into semantically rich ones, as needed by the participants. Conversely, the filters can translate semantically rich, domain-specific data into a neutral representation that can be accessed by other domain-specific filters. To validate the feasibility of the proposed model, we computationally implement the filter mechanism and apply it to a hypothetical test case. The result acknowledges that the filter mechanism can let the participants know ahead of time what will be the implications of their proposed actions, as seen from other participants' points of view. PMID:25309958

  19. NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)

    ScienceCinema

    None

    2018-02-07

    NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

  20. NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-09-30

    NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

  1. Dynamics of hate based Internet user networks

    NASA Astrophysics Data System (ADS)

    Sobkowicz, P.; Sobkowicz, A.

    2010-02-01

    We present a study of the properties of network of political discussions on one of the most popular Polish Internet forums. This provides the opportunity to study the computer mediated human interactions in strongly bipolar environment. The comments of the participants are found to be mostly disagreements, with strong percentage of invective and provocative ones. Binary exchanges (quarrels) play significant role in the network growth and topology. Statistical analysis shows that the growth of the discussions depends on the degree of controversy of the subject and the intensity of personal conflict between the participants. This is in contrast to most previously studied social networks, for example networks of scientific citations, where the nature of the links is much more positive and based on similarity and collaboration rather than opposition and abuse. The work discusses also the implications of the findings for more general studies of consensus formation, where our observations of increased conflict contradict the usual assumptions that interactions between people lead to averaging of opinions and agreement.

  2. NASA Exhibits

    NASA Technical Reports Server (NTRS)

    Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick; hide

    2001-01-01

    A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.

  3. Applications of Multi-Agent Technology to Power Systems

    NASA Astrophysics Data System (ADS)

    Nagata, Takeshi

    Currently, agents are focus of intense on many sub-fields of computer science and artificial intelligence. Agents are being used in an increasingly wide variety of applications. Many important computing applications such as planning, process control, communication networks and concurrent systems will benefit from using multi-agent system approach. A multi-agent system is a structure given by an environment together with a set of artificial agents capable to act on this environment. Multi-agent models are oriented towards interactions, collaborative phenomena, and autonomy. This article presents the applications of multi-agent technology to the power systems.

  4. Building A Community Focused Data and Modeling Collaborative platform with Hardware Virtualization Technology

    NASA Astrophysics Data System (ADS)

    Michaelis, A.; Wang, W.; Melton, F. S.; Votava, P.; Milesi, C.; Hashimoto, H.; Nemani, R. R.; Hiatt, S. H.

    2009-12-01

    As the length and diversity of the global earth observation data records grow, modeling and analyses of biospheric conditions increasingly requires multiple terabytes of data from a diversity of models and sensors. With network bandwidth beginning to flatten, transmission of these data from centralized data archives presents an increasing challenge, and costs associated with local storage and management of data and compute resources are often significant for individual research and application development efforts. Sharing community valued intermediary data sets, results and codes from individual efforts with others that are not in direct funded collaboration can also be a challenge with respect to time, cost and expertise. We purpose a modeling, data and knowledge center that houses NASA satellite data, climate data and ancillary data where a focused community may come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform, named Ecosystem Modeling Center (EMC). With the recent development of new technologies for secure hardware virtualization, an opportunity exists to create specific modeling, analysis and compute environments that are customizable, “archiveable” and transferable. Allowing users to instantiate such environments on large compute infrastructures that are directly connected to large data archives may significantly reduce costs and time associated with scientific efforts by alleviating users from redundantly retrieving and integrating data sets and building modeling analysis codes. The EMC platform also provides the possibility for users receiving indirect assistance from expertise through prefabricated compute environments, potentially reducing study “ramp up” times.

  5. D3: A Collaborative Infrastructure for Aerospace Design

    NASA Technical Reports Server (NTRS)

    Walton, Joan; Filman, Robert E.; Knight, Chris; Korsmeyer, David J.; Lee, Diana D.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid dynamics) model executions. DARWIN captures, stores and indexes data, manages derived knowledge (such as visualizations across multiple data sets) and provides an environment for designers to collaborate in the analysis of the results of testing. DARWIN is an interesting application because it supports high volumes of data, integrates multiple modalities of data display (e.g. images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and view of data.

  6. Multiagent Modeling and Simulation in Human-Robot Mission Operations Work System Design

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Sims, Michael H.; Shafto, Michael (Technical Monitor)

    2001-01-01

    This paper describes a collaborative multiagent modeling and simulation approach for designing work systems. The Brahms environment is used to model mission operations for a semi-autonomous robot mission to the Moon at the work practice level. It shows the impact of human-decision making on the activities and energy consumption of a robot. A collaborative work systems design methodology is described that allows informal models, created with users and stakeholders, to be used as input to the development of formal computational models.

  7. "Wherever You Go, You Will Be a Polis": Spatial Practices and Political Education in Computer-Supported Collaborative Learning Discussions

    ERIC Educational Resources Information Center

    Slakmon, Benzi; Schwarz, Baruch B.

    2017-01-01

    The aim of this article is to increase understanding of the development of spatial practices in virtual learning environments. The spatial change and development in 38 small-group e-discussions taken from a data set of a yearlong 8th-grade humanities course are described and analyzed. We show that the focus on spatial changes in computer-supported…

  8. The Virtual Test Bed Project

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis C.

    2002-01-01

    This is a report of my activities as a NASA Fellow during the summer of 2002 at the NASA Kennedy Space Center (KSC). The core of these activities is the assigned project: the Virtual Test Bed (VTB) from the Spaceport Engineering and Technology Directorate. The VTB Project has its foundations in the NASA Ames Research Center (ARC) Intelligent Launch & Range Operations program. The objective of the VTB project is to develop a new and unique collaborative computing environment where simulation models can be hosted and integrated in a seamless fashion. This collaborative computing environment will be used to build a Virtual Range as well as a Virtual Spaceport. This project will work as a technology pipeline to research, develop, test and validate R&D efforts against real time operations without interfering with the actual operations or consuming the operational personnel s time. This report will also focus on the systems issues required to conceptualize and provide form to a systems architecture capable of handling the different demands.

  9. Supporting interoperability of collaborative networks through engineering of a service-based Mediation Information System (MISE 2.0)

    NASA Astrophysics Data System (ADS)

    Benaben, Frederick; Mu, Wenxin; Boissel-Dallier, Nicolas; Barthe-Delanoe, Anne-Marie; Zribi, Sarah; Pingaud, Herve

    2015-08-01

    The Mediation Information System Engineering project is currently finishing its second iteration (MISE 2.0). The main objective of this scientific project is to provide any emerging collaborative situation with methods and tools to deploy a Mediation Information System (MIS). MISE 2.0 aims at defining and designing a service-based platform, dedicated to initiating and supporting the interoperability of collaborative situations among potential partners. This MISE 2.0 platform implements a model-driven engineering approach to the design of a service-oriented MIS dedicated to supporting the collaborative situation. This approach is structured in three layers, each providing their own key innovative points: (i) the gathering of individual and collaborative knowledge to provide appropriate collaborative business behaviour (key point: knowledge management, including semantics, exploitation and capitalisation), (ii) deployment of a mediation information system able to computerise the previously deduced collaborative processes (key point: the automatic generation of collaborative workflows, including connection with existing devices or services) (iii) the management of the agility of the obtained collaborative network of organisations (key point: supervision of collaborative situations and relevant exploitation of the gathered data). MISE covers business issues (through BPM), technical issues (through an SOA) and agility issues of collaborative situations (through EDA).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vang, Leng; Prescott, Steven R; Smith, Curtis

    In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.

  11. Research on mixed network architecture collaborative application model

    NASA Astrophysics Data System (ADS)

    Jing, Changfeng; Zhao, Xi'an; Liang, Song

    2009-10-01

    When facing complex requirements of city development, ever-growing spatial data, rapid development of geographical business and increasing business complexity, collaboration between multiple users and departments is needed urgently, however conventional GIS software (such as Client/Server model or Browser/Server model) are not support this well. Collaborative application is one of the good resolutions. Collaborative application has four main problems to resolve: consistency and co-edit conflict, real-time responsiveness, unconstrained operation, spatial data recoverability. In paper, application model called AMCM is put forward based on agent and multi-level cache. AMCM can be used in mixed network structure and supports distributed collaborative. Agent is an autonomous, interactive, initiative and reactive computing entity in a distributed environment. Agent has been used in many fields such as compute science and automation. Agent brings new methods for cooperation and the access for spatial data. Multi-level cache is a part of full data. It reduces the network load and improves the access and handle of spatial data, especially, in editing the spatial data. With agent technology, we make full use of its characteristics of intelligent for managing the cache and cooperative editing that brings a new method for distributed cooperation and improves the efficiency.

  12. Cross-domain Collaborative Research and People Interoperability: Beyond Knowledge Representation Frameworks

    NASA Astrophysics Data System (ADS)

    Fox, P. A.; Diviacco, P.; Busato, A.

    2016-12-01

    Geo-scientific research collaboration commonly faces of complex systems where multiple skills and competences are needed at the same time. Efficacy of such collaboration among researchers then becomes of paramount importance. Multidisciplinary studies draw from domains that are far from each other. Researchers also need to understand: how to extract what data they need and eventually produce something that can be used by others. The management of information and knowledge in this perspective is non-trivial. Interoperability is frequently sought in computer-to-computer environements, so-as to overcome mismatches in vocabulary, data formats, coordinate reference system and so on. Successful researcher collaboration also relies on interoperability of the people! Smaller, synchronous and face-to-face settings for researchers are knownn to enhance people interoperability. However changing settings; either geographically; temporally; or with increasing the team size, diversity, and expertise requires people-computer-people-computer (...) interoperability. To date, knowledge representation framework have been proposed but not proven as necessary and sufficient to achieve multi-way interoperability. In this contribution, we address epistemology and sociology of science advocating for a fluid perspective where science is mostly a social construct, conditioned by cognitive issues; especially cognitive bias. Bias cannot be obliterated. On the contrary it must be carefully taken into consideration. Information-centric interfaces built from different perspectives and ways of thinking by actors with different point of views, approaches and aims, are proposed as a means for enhancing people interoperability in computer-based settings. The contribution will provide details on the approach of augmenting and interfacing to knowledge representation frameworks to the cognitive-conceptual frameworks for people that are needed to meet and exceed collaborative research goals in the 21st century. A web based collaborative portal has been developed that integrates both approaches and will be presented. Reports will be given on initial tests that have encouraging results.

  13. A parallel-processing approach to computing for the geographic sciences; applications and systems enhancements

    USGS Publications Warehouse

    Crane, Michael; Steinwand, Dan; Beckmann, Tim; Krpan, Greg; Liu, Shu-Guang; Nichols, Erin; Haga, Jim; Maddox, Brian; Bilderback, Chris; Feller, Mark; Homer, George

    2001-01-01

    The overarching goal of this project is to build a spatially distributed infrastructure for information science research by forming a team of information science researchers and providing them with similar hardware and software tools to perform collaborative research. Four geographically distributed Centers of the U.S. Geological Survey (USGS) are developing their own clusters of low-cost, personal computers into parallel computing environments that provide a costeffective way for the USGS to increase participation in the high-performance computing community. Referred to as Beowulf clusters, these hybrid systems provide the robust computing power required for conducting information science research into parallel computing systems and applications.

  14. Mediator infrastructure for information integration and semantic data integration environment for biomedical research.

    PubMed

    Grethe, Jeffrey S; Ross, Edward; Little, David; Sanders, Brian; Gupta, Amarnath; Astakhov, Vadim

    2009-01-01

    This paper presents current progress in the development of semantic data integration environment which is a part of the Biomedical Informatics Research Network (BIRN; http://www.nbirn.net) project. BIRN is sponsored by the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). A goal is the development of a cyberinfrastructure for biomedical research that supports advance data acquisition, data storage, data management, data integration, data mining, data visualization, and other computing and information processing services over the Internet. Each participating institution maintains storage of their experimental or computationally derived data. Mediator-based data integration system performs semantic integration over the databases to enable researchers to perform analyses based on larger and broader datasets than would be available from any single institution's data. This paper describes recent revision of the system architecture, implementation, and capabilities of the semantically based data integration environment for BIRN.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan

    It is fundamental for the flourishing biological cells that membrane proteins mediate the process. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. Here, we present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.

  16. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  17. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  18. Collaborative Visualization Project: shared-technology learning environments for science learning

    NASA Astrophysics Data System (ADS)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  19. Web-Based Integrated Research Environment for Aerodynamic Analyses and Design

    NASA Astrophysics Data System (ADS)

    Ahn, Jae Wan; Kim, Jin-Ho; Kim, Chongam; Cho, Jung-Hyun; Hur, Cinyoung; Kim, Yoonhee; Kang, Sang-Hyun; Kim, Byungsoo; Moon, Jong Bae; Cho, Kum Won

    e-AIRS[1,2], an abbreviation of ‘e-Science Aerospace Integrated Research System,' is a virtual organization designed to support aerodynamic flow analyses in aerospace engineering using the e-Science environment. As the first step toward a virtual aerospace engineering organization, e-AIRS intends to give a full support of aerodynamic research process. Currently, e-AIRS can handle both the computational and experimental aerodynamic research on the e-Science infrastructure. In detail, users can conduct a full CFD (Computational Fluid Dynamics) research process, request wind tunnel experiment, perform comparative analysis between computational prediction and experimental measurement, and finally, collaborate with other researchers using the web portal. The present paper describes those services and the internal architecture of the e-AIRS system.

  20. Activity Theory and Technology Mediated Interaction: Cognitive Scaffolding Using Question-Based Consultation on "Facebook"

    ERIC Educational Resources Information Center

    Rambe, Patient

    2012-01-01

    Studies that employed activity theory as a theoretical lens for exploring computer-mediated interaction have not adopted social media as their object of study. However, social media provides lecturers with personalised learning environments for diagnostic and prognostic assessments of student mastery of content and deep learning. The integration…

  1. Preparing Computing Students for Culturally Diverse E-Mediated IT Projects

    ERIC Educational Resources Information Center

    Conrad, Marc; French, Tim; Maple, Carsten; Zhang, Sijing

    2006-01-01

    In this paper we present an account of an undergraduate team-based assignment designed to facilitate, exhibit and record team-working skills in an e-mediated environment. By linking the student feedback received to Hofstede's classic model of cultural dimensions we aim to show the assignment's suitability in revealing the student's multi-cultural…

  2. Augmenting Sand Simulation Environments through Subdivision and Particle Refinement

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2012-12-01

    Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say there is a planetary rover interacting with our sand simulation environment. Sand that is actively interacting with a rover wheel will be represented as individual particles whereas sand that is further under the surface will be represented by larger regions of sand. The result of this technique allows for many particles to be represented without the computational complexity. In developing this method, we have further generalized these subdivision regions into any volumetric area suitable for use in the simulation. This is a further improvement of our method as it allows for more compact subdivision sand regions. This helps to fine tune the simulation so that more emphasis can be placed on regions of actively participating sand. We feel that through the generalization of our technique, our research can provide other opportunities within the earth and planetary sciences. Through collaboration with our academic colleagues, we continue to refine our technique and look for other opportunities to utilize our research.

  3. Technology, Teacher Training, and Postmodern Literacies.

    ERIC Educational Resources Information Center

    Blair, Kristine L.

    With many English teachers now opting to teach writing and literature courses in electronic environments, some of the teachers' most significant experiences in these environments have stemmed from their attempts to make technology available as a literacy tool for culturally diverse student populations. Computer-mediated communication can broaden…

  4. Collaborative WorkBench (cwb): Enabling Experiment Execution, Analysis and Visualization with Increased Scientific Productivity

    NASA Astrophysics Data System (ADS)

    Maskey, Manil; Ramachandran, Rahul; Kuo, Kwo-Sen

    2015-04-01

    The Collaborative WorkBench (CWB) has been successfully developed to support collaborative science algorithm development. It incorporates many features that enable and enhance science collaboration, including the support for both asynchronous and synchronous modes of interactions in collaborations. With the former, members in a team can share a full range of research artifacts, e.g. data, code, visualizations, and even virtual machine images. With the latter, they can engage in dynamic interactions such as notification, instant messaging, file exchange, and, most notably, collaborative programming. CWB also implements behind-the-scene provenance capture as well as version control to relieve scientists of these chores. Furthermore, it has achieved a seamless integration between researchers' local compute environments and those of the Cloud. CWB has also been successfully extended to support instrument verification and validation. Adopted by almost every researcher, the current practice of downloading data to local compute resources for analysis results in much duplication and inefficiency. CWB leverages Cloud infrastructure to provide a central location for data used by an entire science team, thereby eliminating much of this duplication and waste. Furthermore, use of CWB in concert with this same Cloud infrastructure enables co-located analysis with data where opportunities of data-parallelism can be better exploited, thereby further improving efficiency. With its collaboration-enabling features apposite to steps throughout the scientific process, we expect CWB to fundamentally transform research collaboration and realize maximum science productivity.

  5. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of themore » collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.« less

  6. Exploring the Effects of Web-Mediated Computational Thinking on Developing Students' Computing Skills in a Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Tsai, Chia-Wen; Shen, Pei-Di; Tsai, Meng-Chuan; Chen, Wen-Yu

    2017-01-01

    Much application software education in Taiwan can hardly be regarded as practical. The researchers in this study provided a flexible means of ubiquitous learning (u-learning) with a mobile app for students to access the learning material. In addition, the authors also adopted computational thinking (CT) to help students develop practical computing…

  7. Undergraduate College Students, Laptop Computers, and Lifelong Learning

    ERIC Educational Resources Information Center

    Tan, Chong Leng; Morris, John S.

    2006-01-01

    Many universities and colleges list the development of lifelong learning skills as a curriculum objective and have adopted laptop programs that may enable lifelong learning. The purpose of this research is to address the effectiveness of a technology-based and computer-mediated learning environment in achieving lifelong learning skills from the…

  8. Computer-Assisted Instruction to Avert Teen Pregnancy.

    ERIC Educational Resources Information Center

    Starn, Jane Ryburn; Paperny, David M.

    Teenage pregnancy has become a major public health problem in the United States. A study was conducted to assess an intervention based upon computer-assisted instruction (CAI) to avert teenage pregnancy. Social learning and decision theory were applied to mediate the adolescent environment through CAI so that adolescent development would be…

  9. Teaching and learning experiences in a collaborative distance-education environment.

    PubMed

    Martin, Peter; Scheetz, Laura Temple

    2011-01-01

    The Great Plains Distance Education Alliance (Great Plains IDEA) emphasizes the importance of a collaborative environment for instructors and students in distance education. The authors highlight a number of important principles for distance-education programs and point out similarities and differences when compared to traditional face-face-to classes such as communication, classroom management, connectivity, and technical challenges. They summarize general topics concerning the faculty, the syllabus, office hours, the calendar, and announcements. Three essential lesson components are noted: an overview, the lesson itself, and supplemanetary material. The authors also take the student perspective, emphasizing the diversity of students, the importance of computer proficiency, and student interactions. Finally, they summarize a first round of course evaluations in the Great Plains IDEA gerontology master's program.

  10. Collaborative voxel-based surgical virtual environments.

    PubMed

    Acosta, Eric; Muniz, Gilbert; Armonda, Rocco; Bowyer, Mark; Liu, Alan

    2008-01-01

    Virtual Reality-based surgical simulators can utilize Collaborative Virtual Environments (C-VEs) to provide team-based training. To support real-time interactions, C-VEs are typically replicated on each user's local computer and a synchronization method helps keep all local copies consistent. This approach does not work well for voxel-based C-VEs since large and frequent volumetric updates make synchronization difficult. This paper describes a method that allows multiple users to interact within a voxel-based C-VE for a craniotomy simulator being developed. Our C-VE method requires smaller update sizes and provides faster synchronization update rates than volumetric-based methods. Additionally, we address network bandwidth/latency issues to simulate networked haptic and bone drilling tool interactions with a voxel-based skull C-VE.

  11. The Human Toxome Collaboratorium: A Shared Environment for Multi-Omic Computational Collaboration within a Consortium.

    PubMed

    Fasani, Rick A; Livi, Carolina B; Choudhury, Dipanwita R; Kleensang, Andre; Bouhifd, Mounir; Pendse, Salil N; McMullen, Patrick D; Andersen, Melvin E; Hartung, Thomas; Rosenberg, Michael

    2015-01-01

    The Human Toxome Project is part of a long-term vision to modernize toxicity testing for the 21st century. In the initial phase of the project, a consortium of six academic, commercial, and government organizations has partnered to map pathways of toxicity, using endocrine disruption as a model hazard. Experimental data is generated at multiple sites, and analyzed using a range of computational tools. While effectively gathering, managing, and analyzing the data for high-content experiments is a challenge in its own right, doing so for a growing number of -omics technologies, with larger data sets, across multiple institutions complicates the process. Interestingly, one of the most difficult, ongoing challenges has been the computational collaboration between the geographically separate institutions. Existing solutions cannot handle the growing heterogeneous data, provide a computational environment for consistent analysis, accommodate different workflows, and adapt to the constantly evolving methods and goals of a research project. To meet the needs of the project, we have created and managed The Human Toxome Collaboratorium, a shared computational environment hosted on third-party cloud services. The Collaboratorium provides a familiar virtual desktop, with a mix of commercial, open-source, and custom-built applications. It shares some of the challenges of traditional information technology, but with unique and unexpected constraints that emerge from the cloud. Here we describe the problems we faced, the current architecture of the solution, an example of its use, the major lessons we learned, and the future potential of the concept. In particular, the Collaboratorium represents a novel distribution method that could increase the reproducibility and reusability of results from similar large, multi-omic studies.

  12. CloudMan as a platform for tool, data, and analysis distribution.

    PubMed

    Afgan, Enis; Chapman, Brad; Taylor, James

    2012-11-27

    Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions.

  13. Studying the Earth's Environment from Space: Computer Laboratory Exercised and Instructor Resources

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.; Alfultis, Michael

    1998-01-01

    Studying the Earth's Environment From Space is a two-year project to develop a suite of CD-ROMs containing Earth System Science curriculum modules for introductory undergraduate science classes. Lecture notes, slides, and computer laboratory exercises, including actual satellite data and software, are being developed in close collaboration with Carla Evans of NASA GSFC Earth Sciences Directorate Scientific and Educational Endeavors (SEE) project. Smith and Alfultis are responsible for the Oceanography and Sea Ice Processes Modules. The GSFC SEE project is responsible for Ozone and Land Vegetation Modules. This document constitutes a report on the first year of activities of Smith and Alfultis' project.

  14. Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine

    ERIC Educational Resources Information Center

    Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.

    2003-01-01

    Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…

  15. The Use of Screencasting to Transform Traditional Pedagogy in a Preservice Mathematics Content Course

    ERIC Educational Resources Information Center

    Guerrero, Shannon; Baumgartel, Drew; Zobott, Maren

    2013-01-01

    Screencasting, or digital recordings of computer screen outputs, can be used to promote pedagogical transformation in the mathematics classroom by moving explicit, procedural-based instruction to the online environment, thus freeing classroom time for more student-centered investigations, problem solving, communication, and collaboration. This…

  16. Teacher-Education Students' Views about Knowledge Building Theory and Practice

    ERIC Educational Resources Information Center

    Hong, Huang-Yao; Chen, Fei-Ching; Chai, Ching Sing; Chan, Wen-Ching

    2011-01-01

    This study investigated the effects of engaging students to collectively learn and work with knowledge in a computer-supported collaborative learning environment called Knowledge Forum on their views about knowledge building theory and practice. Participants were 24 teacher-education students who took a required course titled "Integrating Theory…

  17. Collaborative Joins in a Pervasive Computing Environment

    DTIC Science & Technology

    2003-07-28

    the available resources of each device. For example, CQP allows a tourist to use her handheld device to ask for the closest cheapest laundromat that is...open, given her current location, time of the day and a price range. The protocol also allows the tourist to ask for the closest laundromat adjacent

  18. Social Aspects of CSCL Environments: A Research Framework

    ERIC Educational Resources Information Center

    Kreijns, Karel; Kirschner, Paul A.; Vermeulen, Marjan

    2013-01-01

    Although there are research findings supporting the positive effects of computer-supported collaborative learning (CSCL), problems have been reported regarding the learning process itself, group formation, and group dynamics. These problems can be traced back to impeded social interaction between group members. Social interaction is necessary (a)…

  19. Internet2: Building and Deploying Advanced, Networked Applications.

    ERIC Educational Resources Information Center

    Hanss, Ted

    1997-01-01

    Internet2, a consortium effort of over 100 universities, is investing in upgrading campus and national computer network platforms for such applications as digital libraries, collaboration environments, tele-medicine, and distance-independent instruction. The project is described, issues the project intends to address are detailed, and ways in…

  20. Systems and Software Producibility Collaboration and Experimental Environment (SPRUCE)

    DTIC Science & Technology

    2009-04-23

    Research Manhattan Project Like Research – Transition timeframe needed • Current generation programs – DoD acquisitions over next 1-5 years • Next...Specific Computing Plant B a s i c Transformational Research Manhattan Project Like Research B a s i c 16 • Sponsored by Lockheed Martin

  1. The (Campus) Empire Strikes Back

    ERIC Educational Resources Information Center

    Archibald, Fred

    2008-01-01

    When it comes to anti-malware protection, today's university IT departments have their work cut out for them. Network managers must walk the fine line between enabling a highly collaborative, non-restrictive environment, and ensuring the confidentiality, integrity, and availability of data and computing resources. This is no easy task, especially…

  2. Effects of Blackboard on EFL Academic Writing and Attitudes

    ERIC Educational Resources Information Center

    Fageeh, Abdulaziz; Mekheimer, Mohamed Amin A.

    2013-01-01

    This study aimed to recognize the pedagogical effects of Blackboard as a computer-mediated communication (CMC) environment for teaching academic writing and improving students' attitudes toward academic writing. Learners' interactions in the CMC environment of Blackboard were analyzed via a controlled descriptive design to examine how students…

  3. CERN Computing in Commercial Clouds

    NASA Astrophysics Data System (ADS)

    Cordeiro, C.; Field, L.; Garrido Bear, B.; Giordano, D.; Jones, B.; Keeble, O.; Manzi, A.; Martelli, E.; McCance, G.; Moreno-García, D.; Traylen, S.

    2017-10-01

    By the end of 2016 more than 10 Million core-hours of computing resources have been delivered by several commercial cloud providers to the four LHC experiments to run their production workloads, from simulation to full chain processing. In this paper we describe the experience gained at CERN in procuring and exploiting commercial cloud resources for the computing needs of the LHC experiments. The mechanisms used for provisioning, monitoring, accounting, alarming and benchmarking will be discussed, as well as the involvement of the LHC collaborations in terms of managing the workflows of the experiments within a multicloud environment.

  4. Enabling drug discovery project decisions with integrated computational chemistry and informatics

    NASA Astrophysics Data System (ADS)

    Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.

    2017-03-01

    Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.

  5. The Petascale Data Storage Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Garth; Long, Darrell; Honeyman, Peter

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  6. Ergonomic aspects of a virtual environment.

    PubMed

    Ahasan, M R; Väyrynen, S

    1999-01-01

    A virtual environment is an interactive graphic system mediated through computer technology that allows a certain level of reality or a sense of presence to access virtual information. To create reality in a virtual environment, ergonomics issues are explored in this paper, aiming to develop the design of presentation formats with related information, that is possible to attain and to maintain user-friendly application.

  7. Web based collaborative decision making in flood risk management

    NASA Astrophysics Data System (ADS)

    Evers, Mariele; Almoradie, Adrian; Jonoski, Andreja

    2014-05-01

    Stakeholder participation in the development of flood risk management (FRM) plans is essential since stakeholders often have a better understanding or knowledge of the potentials and limitation of their local area. Moreover, a participatory approach also creates trust amongst stakeholders, leading to a successful implementation of measures. Stakeholder participation however has its challenges and potential pitfalls that could lead to its premature termination. Such challenges and pitfalls are the limitation of financial resources, stakeholders' spatial distribution and their interest to participate. Different type of participation in FRM may encounter diverse challenges. These types of participation in FRM can be classified into (1) Information and knowledge sharing (IKS), (2) Consultative participation (CP) or (3) Collaborative decision making (CDM)- the most challenging type of participation. An innovative approach to address these challenges and potential pitfalls is a web-based mobile or computer-aided environment for stakeholder participation. This enhances the remote interaction between participating entities such as stakeholders. This paper presents a developed framework and an implementation of CDM web based environment for the Alster catchment (Hamburg, Germany) and Cranbrook catchment (London, UK). The CDM framework consists of two main stages: (1) Collaborative modelling and (2) Participatory decision making. This paper also highlights the stakeholder analyses, modelling approach and application of General Public License (GPL) technologies in developing the web-based environments. Actual test and evaluation of the environments was through series of stakeholders workshops. The overall results based from stakeholders' evaluation shows that web-based environments can address the challenges and potential pitfalls in stakeholder participation and it enhances participation in flood risk management. The web-based environment was developed within the DIANE-CM project (Decentralised Integrated Analysis and Enhancement of Awareness through Collaborative Modelling and Management of Flood Risk) of the 2nd ERANET CRUE funding initiative.

  8. On the collaborative design and simulation of space camera: stop structural/thermal/optical) analysis

    NASA Astrophysics Data System (ADS)

    Duan, Pengfei; Lei, Wenping

    2017-11-01

    A number of disciplines (mechanics, structures, thermal, and optics) are needed to design and build Space Camera. Separate design models are normally constructed by each discipline CAD/CAE tools. Design and analysis is conducted largely in parallel subject to requirements that have been levied on each discipline, and technical interaction between the different disciplines is limited and infrequent. As a result a unified view of the Space Camera design across discipline boundaries is not directly possible in the approach above, and generating one would require a large manual, and error-prone process. A collaborative environment that is built on abstract model and performance template allows engineering data and CAD/CAE results to be shared across above discipline boundaries within a common interface, so that it can help to attain speedy multivariate design and directly evaluate optical performance under environment loadings. A small interdisciplinary engineering team from Beijing Institute of Space Mechanics and Electricity has recently conducted a Structural/Thermal/Optical (STOP) analysis of a space camera with this collaborative environment. STOP analysis evaluates the changes in image quality that arise from the structural deformations when the thermal environment of the camera changes throughout its orbit. STOP analyses were conducted for four different test conditions applied during final thermal vacuum (TVAC) testing of the payload on the ground. The STOP Simulation Process begins with importing an integrated CAD model of the camera geometry into the collaborative environment, within which 1. Independent thermal and structural meshes are generated. 2. The thermal mesh and relevant engineering data for material properties and thermal boundary conditions are then used to compute temperature distributions at nodal points in both the thermal and structures mesh through Thermal Desktop, a COTS thermal design and analysis code. 3. Thermally induced structural deformations of the camera are then evaluated in Nastran, an industry standard code for structural design and analysis. 4. Thermal and structural results are next imported into SigFit, another COTS tool that computes deformation and best fit rigid body displacements for the optical surfaces. 5. SigFit creates a modified optical prescription that is imported into CODE V for evaluation of optical performance impacts. The integrated STOP analysis was validated using TVAC test data. For the four different TVAC tests, the relative errors between simulation and test data of measuring points temperatures were almost around 5%, while in some test conditions, they were even much lower to 1%. As to image quality MTF, relative error between simulation and test was 8.3% in the worst condition, others were all below 5%. Through the validation, it has been approved that the collaborative design and simulation environment can achieved the integrated STOP analysis of Space Camera efficiently. And further, the collaborative environment allows an interdisciplinary analysis that formerly might take several months to perform to be completed in two or three weeks, which is very adaptive to scheme demonstration of projects in earlier stages.

  9. Framework Development Supporting the Safety Portal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, Steven Ralph; Kvarfordt, Kellie Jean; Vang, Leng

    2015-07-01

    In a collaborating scientific research arena it is important to have an environment where analysts have access to a shared repository of information, documents, and software tools, and be able to accurately maintain and track historical changes in models. The new Safety Portal cloud-based environment will be accessible remotely from anywhere regardless of computing platforms given that the platform has available Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report discusses current development of a cloud-based web portal for PRA tools.

  10. CatSim: a new computer assisted tomography simulation environment

    NASA Astrophysics Data System (ADS)

    De Man, Bruno; Basu, Samit; Chandra, Naveen; Dunham, Bruce; Edic, Peter; Iatrou, Maria; McOlash, Scott; Sainath, Paavana; Shaughnessy, Charlie; Tower, Brendon; Williams, Eugene

    2007-03-01

    We present a new simulation environment for X-ray computed tomography, called CatSim. CatSim provides a research platform for GE researchers and collaborators to explore new reconstruction algorithms, CT architectures, and X-ray source or detector technologies. The main requirements for this simulator are accurate physics modeling, low computation times, and geometrical flexibility. CatSim allows simulating complex analytic phantoms, such as the FORBILD phantoms, including boxes, ellipsoids, elliptical cylinders, cones, and cut planes. CatSim incorporates polychromaticity, realistic quantum and electronic noise models, finite focal spot size and shape, finite detector cell size, detector cross-talk, detector lag or afterglow, bowtie filtration, finite detector efficiency, non-linear partial volume, scatter (variance-reduced Monte Carlo), and absorbed dose. We present an overview of CatSim along with a number of validation experiments.

  11. Scaling Up and Zooming In: Big Data and Personalization in Language Learning

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2017-01-01

    From its earliest days, practitioners of computer-assisted language learning (CALL) have collected data from computer-mediated learning environments. Indeed, that has been a central aspect of the field from the beginning. Usage logs provided valuable insights into how systems were used and how effective they were for language learning. That…

  12. Fostering Students' Participation in Online Environments: Focus on Interaction, Communication and Problem Solving

    ERIC Educational Resources Information Center

    Zacharis, Nick Z.

    2009-01-01

    Rapid technological advances in the areas of telecommunications, computer technology and the Internet have made available to tutors and learners in the domain of online learning, a broad array of tools that provide the possibility to facilitate and enhance learning to higher levels of critical reflective thinking. Computer mediated communication…

  13. 3D Medical Collaboration Technology to Enhance Emergency Healthcare

    PubMed Central

    Welch, Greg; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M.; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E.

    2009-01-01

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15–20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare. PMID:19521951

  14. 3D medical collaboration technology to enhance emergency healthcare.

    PubMed

    Welch, Gregory F; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj K; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E

    2009-04-19

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15-20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals' viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare.

  15. The Influence of Trainee Gaming Experience and Computer Self-Efficacy on Learner Outcomes of Videogame-Based Learning Environments

    DTIC Science & Technology

    2005-06-01

    videogame-based training environment. In this research, 413 participants played a first-person-perspective videogame that began with a single- player ...section to introduce game-specific tasks, followed by a multi- player section where participants formed small teams to conduct several collaborative...with over four million registered players . In Janurary 2004, America’s Army was used during a four-day inter-semester game- based training exercise at

  16. ARIANNA: A research environment for neuroimaging studies in autism spectrum disorders.

    PubMed

    Retico, Alessandra; Arezzini, Silvia; Bosco, Paolo; Calderoni, Sara; Ciampa, Alberto; Coscetti, Simone; Cuomo, Stefano; De Santis, Luca; Fabiani, Dario; Fantacci, Maria Evelina; Giuliano, Alessia; Mazzoni, Enrico; Mercatali, Pietro; Miscali, Giovanni; Pardini, Massimiliano; Prosperi, Margherita; Romano, Francesco; Tamburini, Elena; Tosetti, Michela; Muratori, Filippo

    2017-08-01

    The complexity and heterogeneity of Autism Spectrum Disorders (ASD) require the implementation of dedicated analysis techniques to obtain the maximum from the interrelationship among many variables that describe affected individuals, spanning from clinical phenotypic characterization and genetic profile to structural and functional brain images. The ARIANNA project has developed a collaborative interdisciplinary research environment that is easily accessible to the community of researchers working on ASD (https://arianna.pi.infn.it). The main goals of the project are: to analyze neuroimaging data acquired in multiple sites with multivariate approaches based on machine learning; to detect structural and functional brain characteristics that allow the distinguishing of individuals with ASD from control subjects; to identify neuroimaging-based criteria to stratify the population with ASD to support the future development of personalized treatments. Secure data handling and storage are guaranteed within the project, as well as the access to fast grid/cloud-based computational resources. This paper outlines the web-based architecture, the computing infrastructure and the collaborative analysis workflows at the basis of the ARIANNA interdisciplinary working environment. It also demonstrates the full functionality of the research platform. The availability of this innovative working environment for analyzing clinical and neuroimaging information of individuals with ASD is expected to support researchers in disentangling complex data thus facilitating their interpretation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Computing at h1 - Experience and Future

    NASA Astrophysics Data System (ADS)

    Eckerlin, G.; Gerhards, R.; Kleinwort, C.; KrÜNer-Marquis, U.; Egli, S.; Niebergall, F.

    The H1 experiment has now been successfully operating at the electron proton collider HERA at DESY for three years. During this time the computing environment has gradually shifted from a mainframe oriented environment to the distributed server/client Unix world. This transition is now almost complete. Computing needs are largely determined by the present amount of 1.5 TB of reconstructed data per year (1994), corresponding to 1.2 × 107 accepted events. All data are centrally available at DESY. In addition to data analysis, which is done in all collaborating institutes, most of the centrally organized Monte Carlo production is performed outside of DESY. New software tools to cope with offline computing needs include CENTIPEDE, a tool for the use of distributed batch and interactive resources for Monte Carlo production, and H1 UNIX, a software package for automatic updates of H1 software on all UNIX platforms.

  18. Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist

    PubMed Central

    Banerjee, Debjani; Bellesia, Giovanni; Daigle, Bernie J.; Douglas, Geoffrey; Gu, Mengyuan; Gupta, Anand; Hellander, Stefan; Horuk, Chris; Nath, Dibyendu; Takkar, Aviral; Lötstedt, Per; Petzold, Linda R.

    2016-01-01

    We present StochSS: Stochastic Simulation as a Service, an integrated development environment for modeling and simulation of both deterministic and discrete stochastic biochemical systems in up to three dimensions. An easy to use graphical user interface enables researchers to quickly develop and simulate a biological model on a desktop or laptop, which can then be expanded to incorporate increasing levels of complexity. StochSS features state-of-the-art simulation engines. As the demand for computational power increases, StochSS can seamlessly scale computing resources in the cloud. In addition, StochSS can be deployed as a multi-user software environment where collaborators share computational resources and exchange models via a public model repository. We demonstrate the capabilities and ease of use of StochSS with an example of model development and simulation at increasing levels of complexity. PMID:27930676

  19. Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist

    DOE PAGES

    Drawert, Brian; Hellander, Andreas; Bales, Ben; ...

    2016-12-08

    We present StochSS: Stochastic Simulation as a Service, an integrated development environment for modeling and simulation of both deterministic and discrete stochastic biochemical systems in up to three dimensions. An easy to use graphical user interface enables researchers to quickly develop and simulate a biological model on a desktop or laptop, which can then be expanded to incorporate increasing levels of complexity. StochSS features state-of-the-art simulation engines. As the demand for computational power increases, StochSS can seamlessly scale computing resources in the cloud. In addition, StochSS can be deployed as a multi-user software environment where collaborators share computational resources andmore » exchange models via a public model repository. We also demonstrate the capabilities and ease of use of StochSS with an example of model development and simulation at increasing levels of complexity.« less

  20. Instructional Designers' Media Selection Practices for Distributed Problem-Based Learning Environments

    ERIC Educational Resources Information Center

    Fells, Stephanie

    2012-01-01

    The design of online or distributed problem-based learning (dPBL) is a nascent, complex design problem. Instructional designers are challenged to effectively unite the constructivist principles of problem-based learning (PBL) with appropriate media in order to create quality dPBL environments. While computer-mediated communication (CMC) tools and…

  1. Toward Bridging the Mechanistic Gap Between Genes and Traits by Emphasizing the Role of Proteins in a Computational Environment

    NASA Astrophysics Data System (ADS)

    Haskel-Ittah, Michal; Yarden, Anat

    2017-12-01

    Previous studies have shown that students often ignore molecular mechanisms when describing genetic phenomena. Specifically, students tend to directly link genes to their encoded traits, ignoring the role of proteins as mediators in this process. We tested the ability of 10th grade students to connect genes to traits through proteins, using concept maps and reasoning questions. The context of this study was a computational learning environment developed specifically to foster this ability. This environment presents proteins as the mechanism-mediating genetic phenomena. We found that students' ability to connect genes, proteins, and traits, or to reason using this connection, was initially poor. However, significant improvement was obtained when using the learning environment. Our results suggest that visual representations of proteins' functions in the context of a specific trait contributed to this improvement. One significant aspect of these results is the indication that 10th graders are capable of accurately describing genetic phenomena and their underlying mechanisms, a task that has been shown to raise difficulties, even in higher grades of high school.

  2. Component Exchange Community: A Model of Utilizing Research Components to Foster International Collaboration

    ERIC Educational Resources Information Center

    Deng, Yi-Chan; Lin, Taiyu; Kinshuk; Chan, Tak-Wai

    2006-01-01

    "One-to-one" technology enhanced learning research refers to the design and investigation of learning environments and learning activities where every learner is equipped with at least one portable computing device enabled by wireless capability. G1:1 is an international research community coordinated by a network of laboratories conducting…

  3. Statistical Model for Predicting Roles and Effects in Learning Community

    ERIC Educational Resources Information Center

    Chang, Chih-Kai; Chen, Gwo-Dong; Wang, Chin-Yeh

    2011-01-01

    Functional roles may explain the learning performance of groups. Detecting a functional role is critical for promoting group learning performance in computer-supported collaborative learning environments. However, it is not easy for teachers to identify the functional roles played by students in a web-based learning group, or the relationship…

  4. LSQuiz: A Collaborative Classroom Response System to Support Active Learning through Ubiquitous Computing

    ERIC Educational Resources Information Center

    Caceffo, Ricardo; Azevedo, Rodolfo

    2014-01-01

    The constructivist theory indicates that knowledge is not something finished and complete. However, the individuals must construct it through the interaction with the physical and social environment. The Active Learning is a methodology designed to support the constructivism through the involvement of students in their learning process, allowing…

  5. Influence of Participation, Facilitator Styles, and Metacognitive Reflection on Knowledge Building in Online University Courses

    ERIC Educational Resources Information Center

    Cacciamani, Stefano; Cesareni, Donatella; Martini, Francesca; Ferrini, Tiziana; Fujita, Nobuko

    2012-01-01

    Understanding how to foster knowledge building in online and blended learning environments is a key for computer-supported collaborative learning research. Knowledge building is a deeply constructivist pedagogy and kind of inquiry learning focused on theory building. A strong indicator of engagement in knowledge building activity is the…

  6. Affective Behavior and Nonverbal Interaction in Collaborative Virtual Environments

    ERIC Educational Resources Information Center

    Peña, Adriana; Rangel, Nora; Muñoz, Mirna; Mejia, Jezreel; Lara, Graciela

    2016-01-01

    While a person's internal state might not be easily inferred through an automatic computer system, within a group, people express themselves through their interaction with others. The group members' interaction can be then helpful to understand, to certain extent, its members' affective behavior in any case toward the task at hand. In this…

  7. Development of an Industrial Engineering Project

    ERIC Educational Resources Information Center

    Moreno, Lorenzo; Gonzalez, Evelio; Acosta, Leopoldo; Toledo, Jonay; Marichal, Nicolas; Hamilton, Alberto; Sigut, Marta; Mendez, J. Albino; Hernandez, Sergio; Torres, Santiago

    2005-01-01

    This paper presents a teaching strategy of the scheduling and developmental phase of an Industrial Engineering computer project. It is based on a real project which has been carried out by our department in collaboration with a local company. The classroom setting provides an environment where students can experience firsthand all phases of the…

  8. GenePattern Notebooks for Cancer Research | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    The goal is to use the GenePattern computational genomics platform, which has served the cancer community since 2004, as the foundation for a new electronic notebook environment to provide cancer research community a way to easily collaborate on, document, capture, and share their work, from conception through analysis to publication.

  9. New Learning Design in Distance Education: The Impact on Student Perception and Motivation

    ERIC Educational Resources Information Center

    Martens, Rob; Bastiaens, Theo; Kirschner, Paul A.

    2007-01-01

    Many forms of e-learning (such as online courses with authentic tasks and computer-supported collaborative learning) have become important in distance education. Very often, such e-learning courses or tasks are set up following constructivist design principles. Often, this leads to learning environments with authentic problems in ill-structured…

  10. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    PubMed

    Wu, Dongrui; Lance, Brent J; Parsons, Thomas D

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  11. Collaborative Filtering for Brain-Computer Interaction Using Transfer Learning and Active Class Selection

    PubMed Central

    Wu, Dongrui; Lance, Brent J.; Parsons, Thomas D.

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing. PMID:23437188

  12. Assessing Team Learning in Technology-Mediated Collaboration: An Experimental Study

    ERIC Educational Resources Information Center

    Andres, Hayward P.; Akan, Obasi H.

    2010-01-01

    This study examined the effects of collaboration mode (collocated versus non-collocated videoconferencing-mediated) on team learning and team interaction quality in a team-based problem solving context. Situated learning theory and the theory of affordances are used to provide a framework that describes how technology-mediated collaboration…

  13. OpenWorm: an open-science approach to modeling Caenorhabditis elegans.

    PubMed

    Szigeti, Balázs; Gleeson, Padraig; Vella, Michael; Khayrulin, Sergey; Palyanov, Andrey; Hokanson, Jim; Currie, Michael; Cantarelli, Matteo; Idili, Giovanni; Larson, Stephen

    2014-01-01

    OpenWorm is an international collaboration with the aim of understanding how the behavior of Caenorhabditis elegans (C. elegans) emerges from its underlying physiological processes. The project has developed a modular simulation engine to create computational models of the worm. The modularity of the engine makes it possible to easily modify the model, incorporate new experimental data and test hypotheses. The modeling framework incorporates both biophysical neuronal simulations and a novel fluid-dynamics-based soft-tissue simulation for physical environment-body interactions. The project's open-science approach is aimed at overcoming the difficulties of integrative modeling within a traditional academic environment. In this article the rationale is presented for creating the OpenWorm collaboration, the tools and resources developed thus far are outlined and the unique challenges associated with the project are discussed.

  14. Trust and Extra Effort Implementing Curriculum Reform: The Mediating Effects of Collaboration

    ERIC Educational Resources Information Center

    Cerit, Yusuf

    2013-01-01

    This study aims to examine the relationship between trust and extra effort implementing reform, and relationship between trust and extra effort are mediated by collaboration. The study was carried out in elementary schools in Turkey. Faculty trust in schools was measured using the Omnibus T-Scale, collaboration was measured using collaboration…

  15. Sustaining and Extending the Open Science Grid: Science Innovation on a PetaScale Nationwide Facility (DE-FC02-06ER41436) SciDAC-2 Closeout Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livny, Miron; Shank, James; Ernst, Michael

    Under this SciDAC-2 grant the project’s goal w a s t o stimulate new discoveries by providing scientists with effective and dependable access to an unprecedented national distributed computational facility: the Open Science Grid (OSG). We proposed to achieve this through the work of the Open Science Grid Consortium: a unique hands-on multi-disciplinary collaboration of scientists, software developers and providers of computing resources. Together the stakeholders in this consortium sustain and use a shared distributed computing environment that transforms simulation and experimental science in the US. The OSG consortium is an open collaboration that actively engages new research communities. Wemore » operate an open facility that brings together a broad spectrum of compute, storage, and networking resources and interfaces to other cyberinfrastructures, including the US XSEDE (previously TeraGrid), the European Grids for ESciencE (EGEE), as well as campus and regional grids. We leverage middleware provided by computer science groups, facility IT support organizations, and computing programs of application communities for the benefit of consortium members and the US national CI.« less

  16. Incorporating Brokers within Collaboration Environments

    NASA Astrophysics Data System (ADS)

    Rajasekar, A.; Moore, R.; de Torcy, A.

    2013-12-01

    A collaboration environment, such as the integrated Rule Oriented Data System (iRODS - http://irods.diceresearch.org), provides interoperability mechanisms for accessing storage systems, authentication systems, messaging systems, information catalogs, networks, and policy engines from a wide variety of clients. The interoperability mechanisms function as brokers, translating actions requested by clients to the protocol required by a specific technology. The iRODS data grid is used to enable collaborative research within hydrology, seismology, earth science, climate, oceanography, plant biology, astronomy, physics, and genomics disciplines. Although each domain has unique resources, data formats, semantics, and protocols, the iRODS system provides a generic framework that is capable of managing collaborative research initiatives that span multiple disciplines. Each interoperability mechanism (broker) is linked to a name space that enables unified access across the heterogeneous systems. The collaboration environment provides not only support for brokers, but also support for virtualization of name spaces for users, files, collections, storage systems, metadata, and policies. The broker enables access to data or information in a remote system using the appropriate protocol, while the collaboration environment provides a uniform naming convention for accessing and manipulating each object. Within the NSF DataNet Federation Consortium project (http://www.datafed.org), three basic types of interoperability mechanisms have been identified and applied: 1) drivers for managing manipulation at the remote resource (such as data subsetting), 2) micro-services that execute the protocol required by the remote resource, and 3) policies for controlling the execution. For example, drivers have been written for manipulating NetCDF and HDF formatted files within THREDDS servers. Micro-services have been written that manage interactions with the CUAHSI data repository, the DataONE information catalog, and the GeoBrain broker. Policies have been written that manage transfer of messages between an iRODS message queue and the Advanced Message Queuing Protocol. Examples of these brokering mechanisms will be presented. The DFC collaboration environment serves as the intermediary between community resources and compute grids, enabling reproducible data-driven research. It is possible to create an analysis workflow that retrieves data subsets from a remote server, assemble the required input files, automate the execution of the workflow, automatically track the provenance of the workflow, and share the input files, workflow, and output files. A collaborator can re-execute a shared workflow, compare results, change input files, and re-execute an analysis.

  17. Collaborative Indoor Access Point Localization Using Autonomous Mobile Robot Swarm.

    PubMed

    Awad, Fahed; Naserllah, Muhammad; Omar, Ammar; Abu-Hantash, Alaa; Al-Taj, Abrar

    2018-01-31

    Localization of access points has become an important research problem due to the wide range of applications it addresses such as dismantling critical security threats caused by rogue access points or optimizing wireless coverage of access points within a service area. Existing proposed solutions have mostly relied on theoretical hypotheses or computer simulation to demonstrate the efficiency of their methods. The techniques that rely on estimating the distance using samples of the received signal strength usually assume prior knowledge of the signal propagation characteristics of the indoor environment in hand and tend to take a relatively large number of uniformly distributed random samples. This paper presents an efficient and practical collaborative approach to detect the location of an access point in an indoor environment without any prior knowledge of the environment. The proposed approach comprises a swarm of wirelessly connected mobile robots that collaboratively and autonomously collect a relatively small number of non-uniformly distributed random samples of the access point's received signal strength. These samples are used to efficiently and accurately estimate the location of the access point. The experimental testing verified that the proposed approach can identify the location of the access point in an accurate and efficient manner.

  18. Collaborative Indoor Access Point Localization Using Autonomous Mobile Robot Swarm

    PubMed Central

    Awad, Fahed; Naserllah, Muhammad; Omar, Ammar; Abu-Hantash, Alaa; Al-Taj, Abrar

    2018-01-01

    Localization of access points has become an important research problem due to the wide range of applications it addresses such as dismantling critical security threats caused by rogue access points or optimizing wireless coverage of access points within a service area. Existing proposed solutions have mostly relied on theoretical hypotheses or computer simulation to demonstrate the efficiency of their methods. The techniques that rely on estimating the distance using samples of the received signal strength usually assume prior knowledge of the signal propagation characteristics of the indoor environment in hand and tend to take a relatively large number of uniformly distributed random samples. This paper presents an efficient and practical collaborative approach to detect the location of an access point in an indoor environment without any prior knowledge of the environment. The proposed approach comprises a swarm of wirelessly connected mobile robots that collaboratively and autonomously collect a relatively small number of non-uniformly distributed random samples of the access point’s received signal strength. These samples are used to efficiently and accurately estimate the location of the access point. The experimental testing verified that the proposed approach can identify the location of the access point in an accurate and efficient manner. PMID:29385042

  19. CloudMan as a platform for tool, data, and analysis distribution

    PubMed Central

    2012-01-01

    Background Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. Results CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. Conclusions With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions. PMID:23181507

  20. WWW creates new interactive 3D graphics and collaborative environments for medical research and education.

    PubMed

    Samothrakis, S; Arvanitis, T N; Plataniotis, A; McNeill, M D; Lister, P F

    1997-11-01

    Virtual Reality Modelling Language (VRML) is the start of a new era for medicine and the World Wide Web (WWW). Scientists can use VRML across the Internet to explore new three-dimensional (3D) worlds, share concepts and collaborate together in a virtual environment. VRML enables the generation of virtual environments through the use of geometric, spatial and colour data structures to represent 3D objects and scenes. In medicine, researchers often want to interact with scientific data, which in several instances may also be dynamic (e.g. MRI data). This data is often very large and is difficult to visualise. A 3D graphical representation can make the information contained in such large data sets more understandable and easier to interpret. Fast networks and satellites can reliably transfer large data sets from computer to computer. This has led to the adoption of remote tale-working in many applications including medical applications. Radiology experts, for example, can view and inspect in near real-time a 3D data set acquired from a patient who is in another part of the world. Such technology is destined to improve the quality of life for many people. This paper introduces VRML (including some technical details) and discusses the advantages of VRML in application developing.

  1. Reducing Time to Science: Unidata and JupyterHub Technology Using the Jetstream Cloud

    NASA Astrophysics Data System (ADS)

    Chastang, J.; Signell, R. P.; Fischer, J. L.

    2017-12-01

    Cloud computing can accelerate scientific workflows, discovery, and collaborations by reducing research and data friction. We describe the deployment of Unidata and JupyterHub technologies on the NSF-funded XSEDE Jetstream cloud. With the aid of virtual machines and Docker technology, we deploy a Unidata JupyterHub server co-located with a Local Data Manager (LDM), THREDDS data server (TDS), and RAMADDA geoscience content management system. We provide Jupyter Notebooks and the pre-built Python environments needed to run them. The notebooks can be used for instruction and as templates for scientific experimentation and discovery. We also supply a large quantity of NCEP forecast model results to allow data-proximate analysis and visualization. In addition, users can transfer data using Globus command line tools, and perform their own data-proximate analysis and visualization with Notebook technology. These data can be shared with others via a dedicated TDS server for scientific distribution and collaboration. There are many benefits of this approach. Not only is the cloud computing environment fast, reliable and scalable, but scientists can analyze, visualize, and share data using only their web browser. No local specialized desktop software or a fast internet connection is required. This environment will enable scientists to spend less time managing their software and more time doing science.

  2. The collaboratory for MS3D: a new cyberinfrastructure for the structural elucidation of biological macromolecules and their assemblies using mass spectrometry-based approaches.

    PubMed

    Yu, Eizadora T; Hawkins, Arie; Kuntz, Irwin D; Rahn, Larry A; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M; Yang, Christine L; Pancerella, Carmen M; Fabris, Daniele

    2008-11-01

    Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies.

  3. Collaborative Product Development in an R&D Environment

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Keys, L. Ken; Chen, Injazz J.; Peterson, Paul L.

    2004-01-01

    Research and development (R&D) organizations are being required to be relevant, to be more application-oriented, and to be partners in the strategic management of the business while meeting the same challenges as the rest of the organization, namely: (1) reduced time to market; (2) reduced cost; (3) improved quality; (4) increased reliability; and (5) increased focus on customer needs. Recent advances in computer technology and the Internet have created a new paradigm of collaborative engineering or collaborative product development (CPD), from which new types of relationships among researchers and their partners have emerged. Research into the applicability and benefits of CPD in a low/no production, R&D, and/or government environment is limited. In addition, the supply chain management (SCM) aspects of these relationships have not been studied. This paper presents research conducted at the NASA Glenn Research Center (GRC) investigating the applicability of CPD and SCM in an R&D organization. The study concentrates on the management and implementation of space research activities at GRC. Results indicate that although the organization is engaged in collaborative relationships that incorporate aspects of SCM, a number of areas, such as development of trust and information sharing merit special attention.

  4. Collaborative visual analytics of radio surveys in the Big Data era

    NASA Astrophysics Data System (ADS)

    Vohl, Dany; Fluke, Christopher J.; Hassan, Amr H.; Barnes, David G.; Kilborn, Virginia A.

    2017-06-01

    Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform - allowing the research process to continue wherever you are.

  5. Low Proficiency Learners in Synchronous Computer-Assisted and Face-to-Face Interactions

    ERIC Educational Resources Information Center

    Tam, Shu Sim; Kan, Ngat Har; Ng, Lee Luan

    2010-01-01

    This experimental study offers empirical evidence of the effect of the computer-mediated environment on the linguistic output of low proficiency learners. The subjects were 32 female undergraduates with high and low proficiency in ESL. A within-subject repeated measures concurrent nested QUAN-qual (Creswell, 2003) mixed methods approach was used.…

  6. Transmission, Transformation and Ritual: An Investigation of Students' and Researchers' Digitally Mediated Communications and Collaborative Work

    ERIC Educational Resources Information Center

    Timmis, Sue; Joubert, Marie; Manuel, Anne; Barnes, Sally

    2010-01-01

    This article explores the use of multiple digital tools for mediating communications, drawing on two recent empirical studies in which students and researchers in UK higher education worked on collaborative activities: how different tools were used and the quality of the communications and their contributions to collaborative working and knowledge…

  7. Computer-mediated focus groups.

    PubMed

    Walston, J T; Lissitz, R W

    2000-10-01

    This article discusses the feasibility and effectiveness of computer-mediated (CM) focus groups. The study describes technological and practical considerations the authors learned from conducting such groups and reports on a comparison of the reactions of CM and face-to-face (FTF) participants in focus groups discussing academic dishonesty. The results suggest that the CM environment, in comparison to FTF, may lessen members' concern about what the moderator thinks of them and discourage participants from withholding embarrassing information. The article concludes with a list of suggestions for this technique and a discussion of the potential advantages and limitations associated with CM focus groups.

  8. Tool Mediation in Focus on Form Activities: Case Studies in a Grammar-Exploring Environment

    ERIC Educational Resources Information Center

    Karlstrom, Petter; Cerratto-Pargman, Teresa; Lindstrom, Henrik; Knutsson, Ola

    2007-01-01

    We present two case studies of two different pedagogical tasks in a Computer Assisted Language Learning environment called Grim. The main design principle in Grim is to support "Focus on Form" in second language pedagogy. Grim contains several language technology-based features for exploring linguistic forms (static, rule-based and statistical),…

  9. Deeper than Blueberries: A Reciprocal Teaching Method Approach to Narrative Text in an Electronically Supported Learning Environment.

    ERIC Educational Resources Information Center

    Pisha, Bart; Brady, Mary

    This paper describes a five-phase, 20-week, computer supported reading comprehension instruction process, which begins with access to powerful supports and direct teacher-mediated instruction. The process involves five phases: (1) fully supported reading and strategy instruction; (2) strategy practice in a fully supported reading environment with…

  10. Virtual Worlds for Language Learning: From Theory to Practice. Telecollaboration in Education. Volume 2

    ERIC Educational Resources Information Center

    Sadler, Randall

    2012-01-01

    This book focuses on one area in the field of Computer-Mediated Communication that has recently exploded in popularity--Virtual Worlds. Virtual Worlds are online multiplayer three-dimensional environments where avatars represent their real world counterparts. In particular, this text explores the potential for these environments to be used for…

  11. Interaction Equivalency in Self-Paced Online Learning Environments: An Exploration of Learner Preferences

    ERIC Educational Resources Information Center

    Rhode, Jason F.

    2009-01-01

    This mixed methods study explored the dynamics of interaction within a self-paced online learning environment. It used rich media and a mix of traditional and emerging asynchronous computer-mediated communication tools to determine what forms of interaction learners in a self-paced online course value most and what impact they perceive interaction…

  12. The Effects of Instructor-Avatar Immediacy in Second Life, an Immersive and Interactive Three-Dimensional Virtual Environment

    ERIC Educational Resources Information Center

    Lawless-Reljic, Sabine Karine

    2010-01-01

    Growing interest of educational institutions in desktop 3D graphic virtual environments for hybrid and distance education prompts questions on the efficacy of such tools. Virtual worlds, such as Second Life[R], enable computer-mediated immersion and interactions encompassing multimodal communication channels including audio, video, and text-.…

  13. Analyzing User Interaction to Design an Intelligent e-Learning Environment

    ERIC Educational Resources Information Center

    Sharma, Richa

    2011-01-01

    Building intelligent course designing systems adaptable to the learners' needs is one of the key goals of research in e-learning. This goal is all the more crucial as gaining knowledge in an e-learning environment depends solely on computer mediated interaction within the learner group and among the learners and instructors. The patterns generated…

  14. eXascale PRogramming Environment and System Software (XPRESS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Barbara; Gabriel, Edgar

    Exascale systems, with a thousand times the compute capacity of today’s leading edge petascale computers, are expected to emerge during the next decade. Their software systems will need to facilitate the exploitation of exceptional amounts of concurrency in applications, and ensure that jobs continue to run despite the occurrence of system failures and other kinds of hard and soft errors. Adapting computations at runtime to cope with changes in the execution environment, as well as to improve power and performance characteristics, is likely to become the norm. As a result, considerable innovation is required to develop system support to meetmore » the needs of future computing platforms. The XPRESS project aims to develop and prototype a revolutionary software system for extreme-­scale computing for both exascale and strong­scaled problems. The XPRESS collaborative research project will advance the state-­of-­the-­art in high performance computing and enable exascale computing for current and future DOE mission-­critical applications and supporting systems. The goals of the XPRESS research project are to: A. enable exascale performance capability for DOE applications, both current and future, B. develop and deliver a practical computing system software X-­stack, OpenX, for future practical DOE exascale computing systems, and C. provide programming methods and environments for effective means of expressing application and system software for portable exascale system execution.« less

  15. Biologically inspired collision avoidance system for unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  16. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory

    DOE PAGES

    Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan; ...

    2015-06-11

    It is fundamental for the flourishing biological cells that membrane proteins mediate the process. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. Here, we present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.

  17. The Application of Modeling and Simulation to the Behavioral Deficit of Autism

    NASA Technical Reports Server (NTRS)

    Anton, John J.

    2010-01-01

    This abstract describes a research effort to apply technological advances in virtual reality simulation and computer-based games to create behavioral modification programs for individuals with Autism Spectrum Disorder (ASD). The research investigates virtual social skills training within a 3D game environment to diminish the impact of ASD social impairments and to increase learning capacity for optimal intellectual capability. Individuals with autism will encounter prototypical social contexts via computer interface and will interact with 3D avatars with predefined roles within a game-like environment. Incremental learning objectives will combine to form a collaborative social environment. A secondary goal of the effort is to begin the research and development of virtual reality exercises aimed at triggering the release of neurotransmitters to promote critical aspects of synaptic maturation at an early age to change the course of the disease.

  18. Evaluation of the Development of Metacognitive Knowledge Supported by the KnowCat System

    ERIC Educational Resources Information Center

    Pifarre, Manoli; Cobos, Ruth

    2009-01-01

    The aim of this study was to examine the development of the metacognitive knowledge of a group of higher education students who participated actively in an experiment based on a Computer Supported Collaborative Learning environment called KnowCat. Eighteen university students participated in a 12-month learning project during which the KnowCat…

  19. Do Handheld Devices Facilitate Face-to-Face Collaboration? Handheld Devices with Large Shared Display Groupware to Facilitate Group Interactions

    ERIC Educational Resources Information Center

    Liu, Chen-Chung; Kao, L.-C.

    2007-01-01

    One-to-one computing environments change and improve classroom dynamics as individual students can bring handheld devices fitted with wireless communication capabilities into the classrooms. However, the screens of handheld devices, being designed for individual-user mobile application, limit promotion of interaction among groups of learners. This…

  20. An E-Learning Collaborative Environment: Learning within a Masters in Education Programme

    ERIC Educational Resources Information Center

    Hendricks, Natheem

    2012-01-01

    This article contributes to the debate about e-learning as a form of adult education. It is based on the experiences of South African students, describes and analyses group interaction in an intercontinental Masters in Adult Education Programme which uses a computer electronic platform as the primary medium for learning and teaching. The article…

  1. The Effects of the Coordination Support on Shared Mental Models and Coordinated Action

    ERIC Educational Resources Information Center

    Kim, Hyunsong; Kim, Dongsik

    2008-01-01

    The purpose of this study was to examine the effects of coordination support (tool support and tutor support) on the development of shared mental models (SMMs) and coordinated action in a computer-supported collaborative learning environment. Eighteen students were randomly assigned to one of three conditions, including the tool condition, the…

  2. Influence of mental imagery on spatial presence and enjoyment assessed in different types of media.

    PubMed

    Weibel, David; Wissmath, Bartholomäus; Mast, Fred W

    2011-10-01

    Previous research studies on spatial presence point out that the users' imagery abilities are of importance. However, this influence has not yet been tested for different media. This is surprising because theoretical considerations suggest that mental imagery comes into play when a mediated environment lacks vividness. The aim of this study was to clarify the influence mental imagery abilities can have on the sensation of presence and enjoyment in different mediated environments. We presented the participants (n = 60) a narrative text, a movie sequence, and a computer game. Across all media, no effect of mental imagery abilities on presence and enjoyment was found, but imagery abilities marginally interacted with the mediated environment. Individuals with high imagery abilities experienced more presence and enjoyment in the text condition. The results were different for the film condition: here, individuals with poor imagery abilities reported marginally higher enjoyment ratings, whereas the presence ratings did not differ between the two groups. Imagery abilities had no influence on presence and enjoyment within the computer game condition. The results suggest that good imagery abilities contribute to the sensations of presence and enjoyment when reading a narrative text. The results for this study have an applied impact for media use because their effectiveness can depend on the individual mental imagery abilities.

  3. Mediating Effects of Trust, Communication, and Collaboration on Teacher Professional Learning in Hong Kong Primary Schools

    ERIC Educational Resources Information Center

    Li, Lijuan; Hallinger, Philip; Kennedy, Kerry John; Walker, Allan

    2017-01-01

    This study tests mediated principal leadership effects on teacher professional learning through collegial trust, communication and collaboration in Hong Kong primary schools. It is based on a series of single mediator studies, and uses the same convenience sample of 970 teachers from 32 local primary schools. It also adopts regression-based…

  4. Improving collaborative learning in online software engineering education

    NASA Astrophysics Data System (ADS)

    Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.

    2017-11-01

    Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all student teams experience challenges, those in fully online programmes must also deal with remote working, asynchronous coordination, and computer-mediated communications all of which contribute to greater social distance between team members. We have developed a facilitation framework to aid team collaboration and have demonstrated its efficacy, in prior research, with respect to team performance and outcomes. Those studies indicated, however, that despite experiencing improved project outcomes, students working in effective software engineering teams did not experience significantly improved individual achievement. To address this deficiency we implemented theoretically grounded refinements to the collaboration model based upon peer-tutoring research. Our results indicate a modest, but statistically significant (p = .08), improvement in individual achievement using this refined model.

  5. Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.

    2017-09-01

    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  6. Enabling scientific teamwork

    NASA Astrophysics Data System (ADS)

    Hereld, Mark; Hudson, Randy; Norris, John; Papka, Michael E.; Uram, Thomas

    2009-07-01

    The Computer Supported Collaborative Work research community has identified that the technology used to support distributed teams of researchers, such as email, instant messaging, and conferencing environments, are not enough. Building from a list of areas where it is believed technology can help support distributed teams, we have divided our efforts into support of asynchronous and synchronous activities. This paper will describe two of our recent efforts to improve the productivity of distributed science teams. One effort focused on supporting the management and tracking of milestones and results, with the hope of helping manage information overload. The second effort focused on providing an environment that supports real-time analysis of data. Both of these efforts are seen as add-ons to the existing collaborative infrastructure, developed to enhance the experience of teams working at a distance by removing barriers to effective communication.

  7. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills

    PubMed Central

    Polyak, Stephen T.; von Davier, Alina A.; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses. PMID:29238314

  8. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills.

    PubMed

    Polyak, Stephen T; von Davier, Alina A; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses.

  9. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring

    PubMed Central

    Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał

    2016-01-01

    Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper. PMID:27649186

  10. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring.

    PubMed

    Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał

    2016-09-14

    Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.

  11. Parental Emotion Socialization and Child Psychological Adjustment among Chinese Urban Families: Mediation through Child Emotion Regulation and Moderation through Dyadic Collaboration.

    PubMed

    Jin, Zhuyun; Zhang, Xutong; Han, Zhuo Rachel

    2017-01-01

    The theoretical model of emotion regulation and many empirical findings have suggested that children's emotion regulation may mediate the association between parents' emotion socialization and children's psychological adjustment. However, limited research has been conducted on moderators of these relations, despite the argument that the associations between parenting practices and children's psychological adjustment are probabilistic rather than deterministic. This study examined the mediating role of children's emotion regulation in linking parents' emotion socialization and children's psychological adjustment, and whether dyadic collaboration could moderate the proposed mediation model in a sample of Chinese parents and their children in their middle childhood. Participants were 150 Chinese children (87 boys and 63 girls, M age = 8.54, SD = 1.67) and their parents ( M age = 39.22, SD = 4.07). Parent-child dyadic collaboration was videotaped and coded from an interaction task. Parents reported on their emotion socialization, children's emotion regulation and psychopathological symptoms. Results indicated that child emotion regulation mediated the links between parental emotion socialization and child's psychopathological symptoms. Evidence of moderated mediation was also found: supportive emotion socialization and child emotion regulation were positively correlated only at high and medium levels of dyadic collaboration, with child's psychopathological symptoms as the dependent variables. Our findings suggested that higher-level parent-child collaboration might further potentiate the protective effect of parental supportive emotion socialization practices against child psychopathological symptoms.

  12. Describing functional requirements for knowledge sharing communities

    NASA Technical Reports Server (NTRS)

    Garrett, Sandra; Caldwell, Barrett

    2002-01-01

    Human collaboration in distributed knowledge sharing groups depends on the functionality of information and communication technologies (ICT) to support performance. Since many of these dynamic environments are constrained by time limits, knowledge must be shared efficiently by adapting the level of information detail to the specific situation. This paper focuses on the process of knowledge and context sharing with and without mediation by ICT, as well as issues to be resolved when determining appropriate ICT channels. Both technology-rich and non-technology examples are discussed.

  13. Disparities in collaborative patient-provider communication about human papillomavirus (HPV) vaccination.

    PubMed

    Moss, Jennifer L; Gilkey, Melissa B; Rimer, Barbara K; Brewer, Noel T

    2016-06-02

    Healthcare providers may vary their communications with different patients, which could give rise to differences in vaccination coverage. We examined demographic disparities in parental report of collaborative provider communication and implications for human papillomavirus (HPV) vaccination. Participants were 4,124 parents who completed the National Immunization Survey-Teen about daughters ages 13-17. We analyzed disparities in collaborative communication (mutual information exchange, deliberation, and decision) and whether they mediated the relationship between demographic characteristics and HPV vaccine initiation. Half of parents (53%) in the survey reported collaborative communication. Poor, less educated, Spanish-speaking, Southern, and rural parents, and parents of non-privately insured and Hispanic adolescents, were least likely to report collaborative communication (all p<.05). These disparities in communication accounted for geographic variation in HPV vaccination, specifically, the higher rates of uptake in the Northeast versus the South (mediation z=2.31, p<.01) and in urban/suburban vs. rural areas (mediation z=2.87, p<.01). These disparities were also associated with vaccination among subgroups with relatively high coverage, minimizing what could have been even higher uptake among Hispanic compared to non-Hispanic white adolescents (mediation z=-3.04, p<.01) and non-privately versus privately insured adolescents (mediation z=-3.67, p<.001). Controlling for provider recommendation attenuated some of these associations (but all p<.10). Collaborative communication showed widespread disparities, being least common among underserved groups. Collaborative communication helped account for differences-and lack of differences-in HPV vaccination among some subgroups of adolescent girls. Leveraging patient-provider communication, especially for underserved demographic groups, could improve HPV vaccination coverage.

  14. HydroShare: An online, collaborative environment for the sharing of hydrologic data and models (Invited)

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Arrigo, J.; Hooper, R. P.; Valentine, D. W.; Maidment, D. R.

    2013-12-01

    HydroShare is an online, collaborative system being developed for sharing hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. HydroShare will use the integrated Rule-Oriented Data System (iRODS) to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.

  15. PyPedia: using the wiki paradigm as crowd sourcing environment for bioinformatics protocols.

    PubMed

    Kanterakis, Alexandros; Kuiper, Joël; Potamias, George; Swertz, Morris A

    2015-01-01

    Today researchers can choose from many bioinformatics protocols for all types of life sciences research, computational environments and coding languages. Although the majority of these are open source, few of them possess all virtues to maximize reuse and promote reproducible science. Wikipedia has proven a great tool to disseminate information and enhance collaboration between users with varying expertise and background to author qualitative content via crowdsourcing. However, it remains an open question whether the wiki paradigm can be applied to bioinformatics protocols. We piloted PyPedia, a wiki where each article is both implementation and documentation of a bioinformatics computational protocol in the python language. Hyperlinks within the wiki can be used to compose complex workflows and induce reuse. A RESTful API enables code execution outside the wiki. Initial content of PyPedia contains articles for population statistics, bioinformatics format conversions and genotype imputation. Use of the easy to learn wiki syntax effectively lowers the barriers to bring expert programmers and less computer savvy researchers on the same page. PyPedia demonstrates how wiki can provide a collaborative development, sharing and even execution environment for biologists and bioinformaticians that complement existing resources, useful for local and multi-center research teams. PyPedia is available online at: http://www.pypedia.com. The source code and installation instructions are available at: https://github.com/kantale/PyPedia_server. The PyPedia python library is available at: https://github.com/kantale/pypedia. PyPedia is open-source, available under the BSD 2-Clause License.

  16. Technology mediator: a new role for the reference librarian?

    PubMed Central

    Howse, David K; Bracke, Paul J; Keim, Samuel M

    2006-01-01

    The Arizona Health Sciences Library has collaborated with clinical faculty to develop a federated search engine that is useful for meeting real-time clinical information needs. This article proposes a technology mediation role for the reference librarian that was inspired by the project, and describes the collaborative model used for developing technology-mediated services for targeted users. PMID:17040566

  17. A Study of Building a Resource-Based Learning Environment with the Inquiry Learning Approach: Knowledge of Family Trees

    ERIC Educational Resources Information Center

    Kong, Siu Cheung; So, Wing Mui Winnie

    2008-01-01

    This study aims to provide teachers with ways and means to facilitate learners to develop nomenclature knowledge of family trees through the establishment of resource-based learning environments (RBLEs). It discusses the design of an RBLE in the classroom by selecting an appropriate context with the assistance of computer-mediated learning…

  18. Can Music and Animation Improve the Flow and Attainment in Online Learning?

    ERIC Educational Resources Information Center

    Grice, Sue; Hughes, Janet

    2009-01-01

    Despite the wide use of music in various areas of society to influence listeners in different ways, one area often neglected is the use of music within online learning environments. This paper describes a study of the effects of music and animation upon learners in a computer mediated environment. A test was developed in which each learner was…

  19. Use of Emerging Grid Computing Technologies for the Analysis of LIGO Data

    NASA Astrophysics Data System (ADS)

    Koranda, Scott

    2004-03-01

    The LIGO Scientific Collaboration (LSC) today faces the challenge of enabling analysis of terabytes of LIGO data by hundreds of scientists from institutions all around the world. To meet this challenge the LSC is developing tools, infrastructure, applications, and expertise leveraging Grid Computing technologies available today, and making available to LSC scientists compute resources at sites across the United States and Europe. We use digital credentials for strong and secure authentication and authorization to compute resources and data. Building on top of products from the Globus project for high-speed data transfer and information discovery we have created the Lightweight Data Replicator (LDR) to securely and robustly replicate data to resource sites. We have deployed at our computing sites the Virtual Data Toolkit (VDT) Server and Client packages, developed in collaboration with our partners in the GriPhyN and iVDGL projects, providing uniform access to distributed resources for users and their applications. Taken together these Grid Computing technologies and infrastructure have formed the LSC DataGrid--a coherent and uniform environment across two continents for the analysis of gravitational-wave detector data. Much work, however, remains in order to scale current analyses and recent lessons learned need to be integrated into the next generation of Grid middleware.

  20. Participation, Interaction and Social Presence: An Exploratory Study of Collaboration in Online Peer Review Groups

    ERIC Educational Resources Information Center

    Zhao, Huahui; Sullivan, Kirk P. H.; Mellenius, Ingmarie

    2014-01-01

    A key reason for using asynchronous computer conferencing in instruction is its potential for supporting collaborative learning. However, few studies have examined collaboration in computer conferencing. This study examined collaboration in six peer review groups within an asynchronous computer conferencing. Eighteen tertiary students participated…

  1. Integrating on campus problem based learning and practice based learning: issues and challenges in using computer mediated communication.

    PubMed

    Conway, J; Sharkey, R

    2002-10-01

    The Faculty of Nursing, University of Newcastle, Australia, has been keen to initiate strategies that enhance student learning and nursing practice. Two strategies are problem based learning (PBL) and clinical practice. The Faculty has maintained a comparatively high proportion of the undergraduate hours in the clinical setting in times when financial constraints suggest that simulations and on campus laboratory experiences may be less expensive.Increasingly, computer based technologies are becoming sufficiently refined to support the exploration of nursing practice in a non-traditional lecture/tutorial environment. In 1998, a group of faculty members proposed that computer mediated instruction would provide an opportunity for partnership between students, academics and clinicians that would promote more positive outcomes for all and maintain the integrity of the PBL approach. This paper discusses the similarities between problem based and practice based learning and presents the findings of an evaluative study of the implementation of a practice based learning model that uses computer mediated communication to promote integration of practice experiences with the broader goals of the undergraduate curriculum.

  2. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  3. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  4. Cognitive Task Analysis and Intelligent Computer-Based Training Systems: Lessons Learned from Coached Practice Environments in Air Force Avionics.

    ERIC Educational Resources Information Center

    Katz, Sandra N.; Hall, Ellen; Lesgold, Alan

    This paper describes some results of a collaborative effort between the University of Pittsburgh and the Air Force to develop advanced troubleshooting training for F-15 maintenance technicians. The focus is on the cognitive task methodology used in the development of three intelligent tutoring systems to inform their instructional content and…

  5. The Idea Storming Cube: Evaluating the Effects of Using Game and Computer Agent to Support Divergent Thinking

    ERIC Educational Resources Information Center

    Huang, Chun-Chieh; Yeh, Ting-Kuang; Li, Tsai-Yen; Chang, Chun-Yen

    2010-01-01

    The objective of this article is to evaluate the effectiveness of a collaborative and online brainstorming game, Idea Storming Cube (ISC), which provides users with a competitive game-based environment and a peer-like intelligent agent. The program seeks to promote students' divergent thinking to aid in the process of problem solving. The…

  6. A DS106 Thing Happened on the Way to the 3M Tech Forum

    ERIC Educational Resources Information Center

    Lockridge, Rochelle; Levine, Alan; Funes, Mariana

    2014-01-01

    This case study illustrates how DS106, a computer science course in Digital Storytelling from the University of Mary Washington (UMW) and accessible as an open course on the web, is being explored in a corporate environment at 3M, an American multinational corporation based in St. Paul, Minnesota, to build community, collaboration, and more…

  7. The Effects of Guided Elaboration in a CSCL Programme on the Learning Outcomes of Primary School Students from Dutch and Immigrant Families

    ERIC Educational Resources Information Center

    Prinsen, Fleur Ruth; Terwel, Jan; Zijlstra, Bonne J. H.; Volman, Monique M. L.

    2013-01-01

    This study examined the effects of guided elaboration on students' learning outcomes in a computer-supported collaborative learning (CSCL) environment. The programme provided students with feedback on their elaborations, and students reflected on this feedback. It was expected that students in the experimental (elaboration) programme would show…

  8. The Berry Informational Technology (B.I.T.S.) Student Work Program: An Effective Environment for Collaborative Learning, Leadership, Technological Training, and Certification.

    ERIC Educational Resources Information Center

    Cornelius, Amy; Macaluso, Paul

    The Berry Informational Technology (B.I.T.S.) program at Berry College (Georgia) is an apprenticeship opportunity associated with student work. The program gives students the opportunity to seek technological training in areas, such as building computer systems, trouble-shooting, networking, Web development, and user and technical support. In…

  9. Supporting Students' Participation in Authentic Proof Activities in Computer Supported Collaborative Learning (CSCL) Environments

    ERIC Educational Resources Information Center

    Oner, Diler

    2008-01-01

    In this paper, I review both mathematics education and CSCL literature and discuss how we can better take advantage of CSCL tools for developing mathematical proof skills. I introduce a model of proof in school mathematics that incorporates both empirical and deductive ways of knowing. I argue that two major forces have given rise to this…

  10. Assessing Student Peer Dialogue in Collaborative Settings: A Window into Student Reasoning

    NASA Astrophysics Data System (ADS)

    Stone, Antoinette

    The use of science classroom discourse analysis as a way to gain a better understanding of various student cognitive outcomes has a rich history in Science Education in general and Physics Education Research (PER) in particular. When students talk to each other in a collaborative peer instruction environment, such as in the CLASP classes (Collaborative Learning and Sense-making in Physics) at UC Davis, they get to practice and enhance their reasoning and sense-making skills, develop collaborative approaches to problem solving, and participate in co-construction of knowledge and shared thinking. To better understand these important cognitive processes, an analysis tool for monitoring, assessing and categorizing the peer talk arising in this environment is needed as a first step in teasing out evidence for these processes inherent in such talk. In order to meaningfully contribute to the extensive body of knowledge that currently exists, deeper, more insightful answers to the question of what happens linguistically when students struggle to "make sense" and how students use language to mediate these important cognitive outcomes is needed. To this end, a new tool for interpreting particularly qualitative linguistic data is needed, and the first part of the dissertation expounds on the development of a discourse analysis tool that has as its underpinnings a framework for coding borrowed extensively from Systemic Functional Linguistics Theory (SFL). The second part of this dissertation illustrates multiple ways in which the tool is used and how it can be utilized to address many current research questions.

  11. KODAMA and VPC based Framework for Ubiquitous Systems and its Experiment

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenichi; Amamiya, Satoshi; Iwao, Tadashige; Zhong, Guoqiang; Kainuma, Tatsuya; Amamiya, Makoto

    Recently, agent technologies have attracted a lot of interest as an emerging programming paradigm. With such agent technologies, services are provided through collaboration among agents. At the same time, the spread of mobile technologies and communication infrastructures has made it possible to access the network anytime and from anywhere. Using agents and mobile technologies to realize ubiquitous computing systems, we propose a new framework based on KODAMA and VPC. KODAMA provides distributed management mechanisms by using the concept of community and communication infrastructure to deliver messages among agents without agents being aware of the physical network. VPC provides a method of defining peer-to-peer services based on agent communication with policy packages. By merging the characteristics of both KODAMA and VPC functions, we propose a new framework for ubiquitous computing environments. It provides distributed management functions according to the concept of agent communities, agent communications which are abstracted from the physical environment, and agent collaboration with policy packages. Using our new framework, we conducted a large-scale experiment in shopping malls in Nagoya, which sent advertisement e-mails to users' cellular phones according to user location and attributes. The empirical results showed that our new framework worked effectively for sales in shopping malls.

  12. Visual interaction: models, systems, prototypes. The Pictorial Computing Laboratory at the University of Rome La Sapienza.

    PubMed

    Bottoni, Paolo; Cinque, Luigi; De Marsico, Maria; Levialdi, Stefano; Panizzi, Emanuele

    2006-06-01

    This paper reports on the research activities performed by the Pictorial Computing Laboratory at the University of Rome, La Sapienza, during the last 5 years. Such work, essentially is based on the study of humancomputer interaction, spans from metamodels of interaction down to prototypes of interactive systems for both synchronous multimedia communication and groupwork, annotation systems for web pages, also encompassing theoretical and practical issues of visual languages and environments also including pattern recognition algorithms. Some applications are also considered like e-learning and collaborative work.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Riensche, Roderick M.; Haack, Jereme N.

    “Gamification”, the application of gameplay to real-world problems, enables the development of human computation systems that support decision-making through the integration of social and machine intelligence. One of gamification’s major benefits includes the creation of a problem solving environment where the influence of cognitive and cultural biases on human judgment can be curtailed through collaborative and competitive reasoning. By reducing biases on human judgment, gamification allows human computation systems to exploit human creativity relatively unhindered by human error. Operationally, gamification uses simulation to harvest human behavioral data that provide valuable insights for the solution of real-world problems.

  14. Building a Propulsion Experiment Project Management Environment

    NASA Technical Reports Server (NTRS)

    Keiser, Ken; Tanner, Steve; Hatcher, Danny; Graves, Sara

    2004-01-01

    What do you get when you cross rocket scientists with computer geeks? It is an interactive, distributed computing web of tools and services providing a more productive environment for propulsion research and development. The Rocket Engine Advancement Program 2 (REAP2) project involves researchers at several institutions collaborating on propulsion experiments and modeling. In an effort to facilitate these collaborations among researchers at different locations and with different specializations, researchers at the Information Technology and Systems Center,' University of Alabama in Huntsville, are creating a prototype web-based interactive information system in support of propulsion research. This system, to be based on experience gained in creating similar systems for NASA Earth science field experiment campaigns such as the Convection and Moisture Experiments (CAMEX), will assist in the planning and analysis of model and experiment results across REAP2 participants. The initial version of the Propulsion Experiment Project Management Environment (PExPM) consists of a controlled-access web portal facilitating the drafting and sharing of working documents and publications. Interactive tools for building and searching an annotated bibliography of publications related to REAP2 research topics have been created to help organize and maintain the results of literature searches. Also work is underway, with some initial prototypes in place, for interactive project management tools allowing project managers to schedule experiment activities, track status and report on results. This paper describes current successes, plans, and expected challenges for this project.

  15. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  16. Parental Emotion Socialization and Child Psychological Adjustment among Chinese Urban Families: Mediation through Child Emotion Regulation and Moderation through Dyadic Collaboration

    PubMed Central

    Jin, Zhuyun; Zhang, Xutong; Han, Zhuo Rachel

    2017-01-01

    The theoretical model of emotion regulation and many empirical findings have suggested that children’s emotion regulation may mediate the association between parents’ emotion socialization and children’s psychological adjustment. However, limited research has been conducted on moderators of these relations, despite the argument that the associations between parenting practices and children’s psychological adjustment are probabilistic rather than deterministic. This study examined the mediating role of children’s emotion regulation in linking parents’ emotion socialization and children’s psychological adjustment, and whether dyadic collaboration could moderate the proposed mediation model in a sample of Chinese parents and their children in their middle childhood. Participants were 150 Chinese children (87 boys and 63 girls, Mage = 8.54, SD = 1.67) and their parents (Mage = 39.22, SD = 4.07). Parent–child dyadic collaboration was videotaped and coded from an interaction task. Parents reported on their emotion socialization, children’s emotion regulation and psychopathological symptoms. Results indicated that child emotion regulation mediated the links between parental emotion socialization and child’s psychopathological symptoms. Evidence of moderated mediation was also found: supportive emotion socialization and child emotion regulation were positively correlated only at high and medium levels of dyadic collaboration, with child’s psychopathological symptoms as the dependent variables. Our findings suggested that higher-level parent–child collaboration might further potentiate the protective effect of parental supportive emotion socialization practices against child psychopathological symptoms. PMID:29326629

  17. Specifying Computer-Supported Collaboration Scripts

    ERIC Educational Resources Information Center

    Kobbe, Lars; Weinberger, Armin; Dillenbourg, Pierre; Harrer, Andreas; Hamalainen, Raija; Hakkinen, Paivi; Fischer, Frank

    2007-01-01

    Collaboration scripts facilitate social and cognitive processes of collaborative learning by shaping the way learners interact with each other. Computer-supported collaboration scripts generally suffer from the problem of being restrained to a specific learning platform. A standardization of collaboration scripts first requires a specification of…

  18. PATHFINDER: Probing Atmospheric Flows in an Integrated and Distributed Environment

    NASA Technical Reports Server (NTRS)

    Wilhelmson, R. B.; Wojtowicz, D. P.; Shaw, C.; Hagedorn, J.; Koch, S.

    1995-01-01

    PATHFINDER is a software effort to create a flexible, modular, collaborative, and distributed environment for studying atmospheric, astrophysical, and other fluid flows in the evolving networked metacomputer environment of the 1990s. It uses existing software, such as HDF (Hierarchical Data Format), DTM (Data Transfer Mechanism), GEMPAK (General Meteorological Package), AVS, SGI Explorer, and Inventor to provide the researcher with the ability to harness the latest in desktop to teraflop computing. Software modules developed during the project are available in the public domain via anonymous FTP from the National Center for Supercomputing Applications (NCSA). The address is ftp.ncsa.uiuc.edu, and the directory is /SGI/PATHFINDER.

  19. Online System for Faster Multipoint Linkage Analysis via Parallel Execution on Thousands of Personal Computers

    PubMed Central

    Silberstein, M.; Tzemach, A.; Dovgolevsky, N.; Fishelson, M.; Schuster, A.; Geiger, D.

    2006-01-01

    Computation of LOD scores is a valuable tool for mapping disease-susceptibility genes in the study of Mendelian and complex diseases. However, computation of exact multipoint likelihoods of large inbred pedigrees with extensive missing data is often beyond the capabilities of a single computer. We present a distributed system called “SUPERLINK-ONLINE,” for the computation of multipoint LOD scores of large inbred pedigrees. It achieves high performance via the efficient parallelization of the algorithms in SUPERLINK, a state-of-the-art serial program for these tasks, and through the use of the idle cycles of thousands of personal computers. The main algorithmic challenge has been to efficiently split a large task for distributed execution in a highly dynamic, nondedicated running environment. Notably, the system is available online, which allows computationally intensive analyses to be performed with no need for either the installation of software or the maintenance of a complicated distributed environment. As the system was being developed, it was extensively tested by collaborating medical centers worldwide on a variety of real data sets, some of which are presented in this article. PMID:16685644

  20. Seven Affordances of Computer-Supported Collaborative Learning: How to Support Collaborative Learning? How Can Technologies Help?

    ERIC Educational Resources Information Center

    Jeong, Heisawn; Hmelo-Silver, Cindy E.

    2016-01-01

    This article proposes 7 core affordances of technology for collaborative learning based on theories of collaborative learning and CSCL (Computer-Supported Collaborative Learning) practices. Technology affords learner opportunities to (1) engage in a joint task, (2) communicate, (3) share resources, (4) engage in productive collaborative learning…

Top