Sample records for computerised video tracking

  1. Track and track-side video survey technology development.

    DOT National Transportation Integrated Search

    2015-05-01

    Researchers at HiDef/Createc have completed prototype development and testing of a novel track video surveying technology : called Track and Track-Side Video Survey (TTVS). TTVS is designed to capture clear video images of the track and track side : ...

  2. Advancing beyond the system: telemedicine nurses' clinical reasoning using a computerised decision support system for patients with COPD - an ethnographic study.

    PubMed

    Barken, Tina Lien; Thygesen, Elin; Söderhamn, Ulrika

    2017-12-28

    Telemedicine is changing traditional nursing care, and entails nurses performing advanced and complex care within a new clinical environment, and monitoring patients at a distance. Telemedicine practice requires complex disease management, advocating that the nurses' reasoning and decision-making processes are supported. Computerised decision support systems are being used increasingly to assist reasoning and decision-making in different situations. However, little research has focused on the clinical reasoning of nurses using a computerised decision support system in a telemedicine setting. Therefore, the objective of the study is to explore the process of telemedicine nurses' clinical reasoning when using a computerised decision support system for the management of patients with chronic obstructive pulmonary disease. The factors influencing the reasoning and decision-making processes were investigated. In this ethnographic study, a combination of data collection methods, including participatory observations, the think-aloud technique, and a focus group interview was employed. Collected data were analysed using qualitative content analysis. When telemedicine nurses used a computerised decision support system for the management of patients with complex, unstable chronic obstructive pulmonary disease, two categories emerged: "the process of telemedicine nurses' reasoning to assess health change" and "the influence of the telemedicine setting on nurses' reasoning and decision-making processes". An overall theme, termed "advancing beyond the system", represented the connection between the reasoning processes and the telemedicine work and setting, where being familiar with the patient functioned as a foundation for the nurses' clinical reasoning process. In the telemedicine setting, when supported by a computerised decision support system, nurses' reasoning was enabled by the continuous flow of digital clinical data, regular video-mediated contact and shared decision-making with the patient. These factors fostered an in-depth knowledge of the patients and acted as a foundation for the nurses' reasoning process. Nurses' reasoning frequently advanced beyond the computerised decision support system recommendations. Future studies are warranted to develop more accurate algorithms, increase system maturity, and improve the integration of the digital clinical information with clinical experiences, to support telemedicine nurses' reasoning process.

  3. Illusory control, gambling, and video gaming: an investigation of regular gamblers and video game players.

    PubMed

    King, Daniel L; Ejova, Anastasia; Delfabbro, Paul H

    2012-09-01

    There is a paucity of empirical research examining the possible association between gambling and video game play. In two studies, we examined the association between video game playing, erroneous gambling cognitions, and risky gambling behaviour. One hundred and fifteen participants, including 65 electronic gambling machine (EGM) players and 50 regular video game players, were administered a questionnaire that examined video game play, gambling involvement, problem gambling, and beliefs about gambling. We then assessed each groups' performance on a computerised gambling task that involved real money. A post-game survey examined perceptions of the skill and chance involved in the gambling task. The results showed that video game playing itself was not significantly associated with gambling involvement or problem gambling status. However, among those persons who both gambled and played video games, video game playing was uniquely and significantly positively associated with the perception of direct control over chance-based gambling events. Further research is needed to better understand the nature of this association, as it may assist in understanding the impact of emerging digital gambling technologies.

  4. Text Detection, Tracking and Recognition in Video: A Comprehensive Survey.

    PubMed

    Yin, Xu-Cheng; Zuo, Ze-Yu; Tian, Shu; Liu, Cheng-Lin

    2016-04-14

    Intelligent analysis of video data is currently in wide demand because video is a major source of sensory data in our lives. Text is a prominent and direct source of information in video, while recent surveys of text detection and recognition in imagery [1], [2] focus mainly on text extraction from scene images. Here, this paper presents a comprehensive survey of text detection, tracking and recognition in video with three major contributions. First, a generic framework is proposed for video text extraction that uniformly describes detection, tracking, recognition, and their relations and interactions. Second, within this framework, a variety of methods, systems and evaluation protocols of video text extraction are summarized, compared, and analyzed. Existing text tracking techniques, tracking based detection and recognition techniques are specifically highlighted. Third, related applications, prominent challenges, and future directions for video text extraction (especially from scene videos and web videos) are also thoroughly discussed.

  5. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.

    PubMed

    Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald

    2017-12-14

    The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.

  6. Video-assisted segmentation of speech and audio track

    NASA Astrophysics Data System (ADS)

    Pandit, Medha; Yusoff, Yusseri; Kittler, Josef; Christmas, William J.; Chilton, E. H. S.

    1999-08-01

    Video database research is commonly concerned with the storage and retrieval of visual information invovling sequence segmentation, shot representation and video clip retrieval. In multimedia applications, video sequences are usually accompanied by a sound track. The sound track contains potential cues to aid shot segmentation such as different speakers, background music, singing and distinctive sounds. These different acoustic categories can be modeled to allow for an effective database retrieval. In this paper, we address the problem of automatic segmentation of audio track of multimedia material. This audio based segmentation can be combined with video scene shot detection in order to achieve partitioning of the multimedia material into semantically significant segments.

  7. Automatic Association of Chats and Video Tracks for Activity Learning and Recognition in Aerial Video Surveillance

    PubMed Central

    Hammoud, Riad I.; Sahin, Cem S.; Blasch, Erik P.; Rhodes, Bradley J.; Wang, Tao

    2014-01-01

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports. PMID:25340453

  8. Automatic association of chats and video tracks for activity learning and recognition in aerial video surveillance.

    PubMed

    Hammoud, Riad I; Sahin, Cem S; Blasch, Erik P; Rhodes, Bradley J; Wang, Tao

    2014-10-22

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat Sensors 2014, 14 19844 messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports.

  9. Tracking and recognition face in videos with incremental local sparse representation model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang

    2013-10-01

    This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.

  10. Another Way of Tracking Moving Objects Using Short Video Clips

    ERIC Educational Resources Information Center

    Vera, Francisco; Romanque, Cristian

    2009-01-01

    Physics teachers have long employed video clips to study moving objects in their classrooms and instructional labs. A number of approaches exist, both free and commercial, for tracking the coordinates of a point using video. The main characteristics of the method described in this paper are: it is simple to use; coordinates can be tracked using…

  11. Evaluation of Hands-On Clinical Exam Performance Using Marker-less Video Tracking.

    PubMed

    Azari, David; Pugh, Carla; Laufer, Shlomi; Cohen, Elaine; Kwan, Calvin; Chen, Chia-Hsiung Eric; Yen, Thomas Y; Hu, Yu Hen; Radwin, Robert

    2014-09-01

    This study investigates the potential of using marker-less video tracking of the hands for evaluating hands-on clinical skills. Experienced family practitioners attending a national conference were recruited and asked to conduct a breast examination on a simulator that simulates different clinical presentations. Videos were made of the clinician's hands during the exam and video processing software for tracking hand motion to quantify hand motion kinematics was used. Practitioner motion patterns indicated consistent behavior of participants across multiple pathologies. Different pathologies exhibited characteristic motion patterns in the aggregate at specific parts of an exam, indicating consistent inter-participant behavior. Marker-less video kinematic tracking therefore shows promise in discriminating between different examination procedures, clinicians, and pathologies.

  12. MR-Compatible Integrated Eye Tracking System

    DTIC Science & Technology

    2016-03-10

    SECURITY CLASSIFICATION OF: This instrumentation grant was used to purchase state-of-the-art, high-resolution video eye tracker that can be used to...P.O. Box 12211 Research Triangle Park, NC 27709-2211 video eye tracking, eye movments, visual search; camouflage-breaking REPORT DOCUMENTATION PAGE...Report: MR-Compatible Integrated Eye Tracking System Report Title This instrumentation grant was used to purchase state-of-the-art, high-resolution video

  13. Robust feedback zoom tracking for digital video surveillance.

    PubMed

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.

  14. Close to real-time robust pedestrian detection and tracking

    NASA Astrophysics Data System (ADS)

    Lipetski, Y.; Loibner, G.; Sidla, O.

    2015-03-01

    Fully automated video based pedestrian detection and tracking is a challenging task with many practical and important applications. We present our work aimed to allow robust and simultaneously close to real-time tracking of pedestrians. The presented approach is stable to occlusions, lighting conditions and is generalized to be applied on arbitrary video data. The core tracking approach is built upon tracking-by-detections principle. We describe our cascaded HOG detector with successive CNN verification in detail. For the tracking and re-identification task, we did an extensive analysis of appearance based features as well as their combinations. The tracker was tested on many hours of video data for different scenarios; the results are presented and discussed.

  15. Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress

    PubMed Central

    Fu, Longwen; Liu, Zuoyi

    2018-01-01

    Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented. PMID:29849612

  16. Video-based eye tracking for neuropsychiatric assessment.

    PubMed

    Adhikari, Sam; Stark, David E

    2017-01-01

    This paper presents a video-based eye-tracking method, ideally deployed via a mobile device or laptop-based webcam, as a tool for measuring brain function. Eye movements and pupillary motility are tightly regulated by brain circuits, are subtly perturbed by many disease states, and are measurable using video-based methods. Quantitative measurement of eye movement by readily available webcams may enable early detection and diagnosis, as well as remote/serial monitoring, of neurological and neuropsychiatric disorders. We successfully extracted computational and semantic features for 14 testing sessions, comprising 42 individual video blocks and approximately 17,000 image frames generated across several days of testing. Here, we demonstrate the feasibility of collecting video-based eye-tracking data from a standard webcam in order to assess psychomotor function. Furthermore, we were able to demonstrate through systematic analysis of this data set that eye-tracking features (in particular, radial and tangential variance on a circular visual-tracking paradigm) predict performance on well-validated psychomotor tests. © 2017 New York Academy of Sciences.

  17. Simultaneous Recordings of Human Microsaccades and Drifts with a Contemporary Video Eye Tracker and the Search Coil Technique

    PubMed Central

    McCamy, Michael B.; Otero-Millan, Jorge; Leigh, R. John; King, Susan A.; Schneider, Rosalyn M.; Macknik, Stephen L.; Martinez-Conde, Susana

    2015-01-01

    Human eyes move continuously, even during visual fixation. These “fixational eye movements” (FEMs) include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift) and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs. PMID:26035820

  18. Technology survey on video face tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Gomes, Herman Martins

    2014-03-01

    With the pervasiveness of monitoring cameras installed in public areas, schools, hospitals, work places and homes, video analytics technologies for interpreting these video contents are becoming increasingly relevant to people's lives. Among such technologies, human face detection and tracking (and face identification in many cases) are particularly useful in various application scenarios. While plenty of research has been conducted on face tracking and many promising approaches have been proposed, there are still significant challenges in recognizing and tracking people in videos with uncontrolled capturing conditions, largely due to pose and illumination variations, as well as occlusions and cluttered background. It is especially complex to track and identify multiple people simultaneously in real time due to the large amount of computation involved. In this paper, we present a survey on literature and software that are published or developed during recent years on the face tracking topic. The survey covers the following topics: 1) mainstream and state-of-the-art face tracking methods, including features used to model the targets and metrics used for tracking; 2) face identification and face clustering from face sequences; and 3) software packages or demonstrations that are available for algorithm development or trial. A number of publically available databases for face tracking are also introduced.

  19. Hardware accelerator design for tracking in smart camera

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  20. Surveying drainage culvert use by carnivores: sampling design and cost-benefit analyzes of track-pads vs. video-surveillance methods.

    PubMed

    Mateus, Ana Rita A; Grilo, Clara; Santos-Reis, Margarida

    2011-10-01

    Environmental assessment studies often evaluate the effectiveness of drainage culverts as habitat linkages for species, however, the efficiency of the sampling designs and the survey methods are not known. Our main goal was to estimate the most cost-effective monitoring method for sampling carnivore culvert using track-pads and video-surveillance. We estimated the most efficient (lower costs and high detection success) interval between visits (days) when using track-pads and also determined the advantages of using each method. In 2006, we selected two highways in southern Portugal and sampled 15 culverts over two 10-day sampling periods (spring and summer). Using the track-pad method, 90% of the animal tracks were detected using a 2-day interval between visits. We recorded a higher number of crossings for most species using video-surveillance (n = 129) when compared with the track-pad technique (n = 102); however, the detection ability using the video-surveillance method varied with type of structure and species. More crossings were detected in circular culverts (1 m and 1.5 m diameter) than in box culverts (2 m to 4 m width), likely because video cameras had a reduced vision coverage area. On the other hand, carnivore species with small feet such as the common genet Genetta genetta were detected less often using the track-pad surveying method. The cost-benefit analyzes shows that the track-pad technique is the most appropriate technique, but video-surveillance allows year-round surveys as well as the behavior response analyzes of species using crossing structures.

  1. Robust Feedback Zoom Tracking for Digital Video Surveillance

    PubMed Central

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388

  2. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive track makes users experience a virtual dive survey. In addition, by synchronizing a virtual dive track with videos, it is easy to understand living organisms and geological environments of a dive point. Therefore, these functions will visually support understanding of deep-sea environments in lectures and educational activities.

  3. A data set for evaluating the performance of multi-class multi-object video tracking

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avishek; Stamatescu, Victor; Wong, Sebastien C.; Wigley, Grant; Kearney, David

    2017-05-01

    One of the challenges in evaluating multi-object video detection, tracking and classification systems is having publically available data sets with which to compare different systems. However, the measures of performance for tracking and classification are different. Data sets that are suitable for evaluating tracking systems may not be appropriate for classification. Tracking video data sets typically only have ground truth track IDs, while classification video data sets only have ground truth class-label IDs. The former identifies the same object over multiple frames, while the latter identifies the type of object in individual frames. This paper describes an advancement of the ground truth meta-data for the DARPA Neovision2 Tower data set to allow both the evaluation of tracking and classification. The ground truth data sets presented in this paper contain unique object IDs across 5 different classes of object (Car, Bus, Truck, Person, Cyclist) for 24 videos of 871 image frames each. In addition to the object IDs and class labels, the ground truth data also contains the original bounding box coordinates together with new bounding boxes in instances where un-annotated objects were present. The unique IDs are maintained during occlusions between multiple objects or when objects re-enter the field of view. This will provide: a solid foundation for evaluating the performance of multi-object tracking of different types of objects, a straightforward comparison of tracking system performance using the standard Multi Object Tracking (MOT) framework, and classification performance using the Neovision2 metrics. These data have been hosted publically.

  4. A discriminative structural similarity measure and its application to video-volume registration for endoscope three-dimensional motion tracking.

    PubMed

    Luo, Xiongbiao; Mori, Kensaku

    2014-06-01

    Endoscope 3-D motion tracking, which seeks to synchronize pre- and intra-operative images in endoscopic interventions, is usually performed as video-volume registration that optimizes the similarity between endoscopic video and pre-operative images. The tracking performance, in turn, depends significantly on whether a similarity measure can successfully characterize the difference between video sequences and volume rendering images driven by pre-operative images. The paper proposes a discriminative structural similarity measure, which uses the degradation of structural information and takes image correlation or structure, luminance, and contrast into consideration, to boost video-volume registration. By applying the proposed similarity measure to endoscope tracking, it was demonstrated to be more accurate and robust than several available similarity measures, e.g., local normalized cross correlation, normalized mutual information, modified mean square error, or normalized sum squared difference. Based on clinical data evaluation, the tracking error was reduced significantly from at least 14.6 mm to 4.5 mm. The processing time was accelerated more than 30 frames per second using graphics processing unit.

  5. Two-dimensional thermal video analysis of offshore bird and bat flight

    DOE PAGES

    Matzner, Shari; Cullinan, Valerie I.; Duberstein, Corey A.

    2015-09-11

    Thermal infrared video can provide essential information about bird and bat presence and activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We present guidelines for selecting an appropriate thermal camera based on environmental conditions and the physical characteristics of the target animals.more » We developed new video image processing algorithms that automate the extraction of bird and bat flight tracks from thermal video, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms use a video peak store process followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal type and possibly behavior. The developed automated processing generates results that are reproducible and verifiable, and reduces the total amount of video data that must be retained and reviewed by human experts. Finally, we suggest models for interpreting thermal imaging information.« less

  6. Two-dimensional thermal video analysis of offshore bird and bat flight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Cullinan, Valerie I.; Duberstein, Corey A.

    Thermal infrared video can provide essential information about bird and bat presence and activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We present guidelines for selecting an appropriate thermal camera based on environmental conditions and the physical characteristics of the target animals.more » We developed new video image processing algorithms that automate the extraction of bird and bat flight tracks from thermal video, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms use a video peak store process followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal type and possibly behavior. The developed automated processing generates results that are reproducible and verifiable, and reduces the total amount of video data that must be retained and reviewed by human experts. Finally, we suggest models for interpreting thermal imaging information.« less

  7. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  8. Integrated bronchoscopic video tracking and 3D CT registration for virtual bronchoscopy

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Helferty, James P.; Padfield, Dirk R.

    2003-05-01

    Lung cancer assessment involves an initial evaluation of 3D CT image data followed by interventional bronchoscopy. The physician, with only a mental image inferred from the 3D CT data, must guide the bronchoscope through the bronchial tree to sites of interest. Unfortunately, this procedure depends heavily on the physician's ability to mentally reconstruct the 3D position of the bronchoscope within the airways. In order to assist physicians in performing biopsies of interest, we have developed a method that integrates live bronchoscopic video tracking and 3D CT registration. The proposed method is integrated into a system we have been devising for virtual-bronchoscopic analysis and guidance for lung-cancer assessment. Previously, the system relied on a method that only used registration of the live bronchoscopic video to corresponding virtual endoluminal views derived from the 3D CT data. This procedure only performs the registration at manually selected sites; it does not draw upon the motion information inherent in the bronchoscopic video. Further, the registration procedure is slow. The proposed method has the following advantages: (1) it tracks the 3D motion of the bronchoscope using the bronchoscopic video; (2) it uses the tracked 3D trajectory of the bronchoscope to assist in locating sites in the 3D CT "virtual world" to perform the registration. In addition, the method incorporates techniques to: (1) detect and exclude corrupted video frames (to help make the video tracking more robust); (2) accelerate the computation of the many 3D virtual endoluminal renderings (thus, speeding up the registration process). We have tested the integrated tracking-registration method on a human airway-tree phantom and on real human data.

  9. Computerised training improves cognitive performance in chronic pain: a participant-blinded randomised active-controlled trial with remote supervision.

    PubMed

    Baker, Katharine S; Georgiou-Karistianis, Nellie; Lampit, Amit; Valenzuela, Michael; Gibson, Stephen J; Giummarra, Melita J

    2018-04-01

    Chronic pain is associated with reduced efficiency of cognitive performance, and few studies have investigated methods of remediation. We trialled a computerised cognitive training protocol to determine whether it could attenuate cognitive difficulties in a chronic pain sample. Thirty-nine adults with chronic pain (mean age = 43.3, 61.5% females) were randomised to an 8-week online course (3 sessions/week from home) of game-like cognitive training exercises, or an active control involving watching documentary videos. Participants received weekly supervision by video call. Primary outcomes were a global neurocognitive composite (tests of attention, speed, and executive function) and self-reported cognition. Secondary outcomes were pain (intensity; interference), mood symptoms (depression; anxiety), and coping with pain (catastrophising; self-efficacy). Thirty participants (15 training and 15 control) completed the trial. Mixed model intention-to-treat analyses revealed significant effects of training on the global neurocognitive composite (net effect size [ES] = 0.43, P = 0.017), driven by improved executive function performance (attention switching and working memory). The control group reported improvement in pain intensity (net ES = 0.65, P = 0.022). Both groups reported subjective improvements in cognition (ES = 0.28, P = 0.033) and catastrophising (ES = 0.55, P = 0.006). Depression, anxiety, self-efficacy, and pain interference showed no change in either group. This study provides preliminary evidence that supervised cognitive training may be a viable method for enhancing cognitive skills in persons with chronic pain, but transfer to functional and clinical outcomes remains to be demonstrated. Active control results suggest that activities perceived as relaxing or enjoyable contribute to improved perception of well-being. Weekly contact was pivotal to successful program completion.

  10. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  11. Astro Academy: Principia--Using Tracker to Analyse Experiments Undertaken by Tim Peake on the International Space Station

    ERIC Educational Resources Information Center

    Mobbs, Robin

    2016-01-01

    While on the International Space Station, Tim Peake undertook and recorded video files of experiments suitable for physics teaching coordinated by the National Space Academy. This article describes how the video of these experiments was prepared for use with tracking software. The tracking files of the videos are suitable for use by teachers or…

  12. Video redaction: a survey and comparison of enabling technologies

    NASA Astrophysics Data System (ADS)

    Sah, Shagan; Shringi, Ameya; Ptucha, Raymond; Burry, Aaron; Loce, Robert

    2017-09-01

    With the prevalence of video recordings from smart phones, dash cams, body cams, and conventional surveillance cameras, privacy protection has become a major concern, especially in light of legislation such as the Freedom of Information Act. Video redaction is used to obfuscate sensitive and personally identifiable information. Today's typical workflow involves simple detection, tracking, and manual intervention. Automated methods rely on accurate detection mechanisms being paired with robust tracking methods across the video sequence to ensure the redaction of all sensitive information while minimizing spurious obfuscations. Recent studies have explored the use of convolution neural networks and recurrent neural networks for object detection and tracking. The present paper reviews the redaction problem and compares a few state-of-the-art detection, tracking, and obfuscation methods as they relate to redaction. The comparison introduces an evaluation metric that is specific to video redaction performance. The metric can be evaluated in a manner that allows balancing the penalty for false negatives and false positives according to the needs of particular application, thereby assisting in the selection of component methods and their associated hyperparameters such that the redacted video has fewer frames that require manual review.

  13. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    PubMed

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  14. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    PubMed

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  15. Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.

    PubMed

    Li, Chenglong; Cheng, Hui; Hu, Shiyi; Liu, Xiaobai; Tang, Jin; Lin, Liang

    2016-09-27

    Integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting tracking performance. This paper investigates how to perform robust object tracking in challenging scenarios by adaptively incorporating information from grayscale and thermal videos, and proposes a novel collaborative algorithm for online tracking. In particular, an adaptive fusion scheme is proposed based on collaborative sparse representation in Bayesian filtering framework. We jointly optimize sparse codes and the reliable weights of different modalities in an online way. In addition, this work contributes a comprehensive video benchmark, which includes 50 grayscale-thermal sequences and their ground truth annotations for tracking purpose. The videos are with high diversity and the annotations were finished by one single person to guarantee consistency. Extensive experiments against other stateof- the-art trackers with both grayscale and grayscale-thermal inputs demonstrate the effectiveness of the proposed tracking approach. Through analyzing quantitative results, we also provide basic insights and potential future research directions in grayscale-thermal tracking.

  16. Target tracking and 3D trajectory acquisition of cabbage butterfly (P. rapae) based on the KCF-BS algorithm.

    PubMed

    Guo, Yang-Yang; He, Dong-Jian; Liu, Cong

    2018-06-25

    Insect behaviour is an important research topic in plant protection. To study insect behaviour accurately, it is necessary to observe and record their flight trajectory quantitatively and precisely in three dimensions (3D). The goal of this research was to analyse frames extracted from videos using Kernelized Correlation Filters (KCF) and Background Subtraction (BS) (KCF-BS) to plot the 3D trajectory of cabbage butterfly (P. rapae). Considering the experimental environment with a wind tunnel, a quadrature binocular vision insect video capture system was designed and applied in this study. The KCF-BS algorithm was used to track the butterfly in video frames and obtain coordinates of the target centroid in two videos. Finally the 3D trajectory was calculated according to the matching relationship in the corresponding frames of two angles in the video. To verify the validity of the KCF-BS algorithm, Compressive Tracking (CT) and Spatio-Temporal Context Learning (STC) algorithms were performed. The results revealed that the KCF-BS tracking algorithm performed more favourably than CT and STC in terms of accuracy and robustness.

  17. Measuring zebrafish turning rate.

    PubMed

    Mwaffo, Violet; Butail, Sachit; di Bernardo, Mario; Porfiri, Maurizio

    2015-06-01

    Zebrafish is becoming a popular animal model in preclinical research, and zebrafish turning rate has been proposed for the analysis of activity in several domains. The turning rate is often estimated from the trajectory of the fish centroid that is output by commercial or custom-made target tracking software run on overhead videos of fish swimming. However, the accuracy of such indirect methods with respect to the turning rate associated with changes in heading during zebrafish locomotion is largely untested. Here, we compare two indirect methods for the turning rate estimation using the centroid velocity or position data, with full shape tracking for three different video sampling rates. We use tracking data from the overhead video recorded at 60, 30, and 15 frames per second of zebrafish swimming in a shallow water tank. Statistical comparisons of absolute turning rate across methods and sampling rates indicate that, while indirect methods are indistinguishable from full shape tracking, the video sampling rate significantly influences the turning rate measurement. The results of this study can aid in the selection of the video capture frame rate, an experimental design parameter in zebrafish behavioral experiments where activity is an important measure.

  18. Hybrid markerless tracking of complex articulated motion in golf swings.

    PubMed

    Fung, Sim Kwoh; Sundaraj, Kenneth; Ahamed, Nizam Uddin; Kiang, Lam Chee; Nadarajah, Sivadev; Sahayadhas, Arun; Ali, Md Asraf; Islam, Md Anamul; Palaniappan, Rajkumar

    2014-04-01

    Sports video tracking is a research topic that has attained increasing attention due to its high commercial potential. A number of sports, including tennis, soccer, gymnastics, running, golf, badminton and cricket have been utilised to display the novel ideas in sports motion tracking. The main challenge associated with this research concerns the extraction of a highly complex articulated motion from a video scene. Our research focuses on the development of a markerless human motion tracking system that tracks the major body parts of an athlete straight from a sports broadcast video. We proposed a hybrid tracking method, which consists of a combination of three algorithms (pyramidal Lucas-Kanade optical flow (LK), normalised correlation-based template matching and background subtraction), to track the golfer's head, body, hands, shoulders, knees and feet during a full swing. We then match, track and map the results onto a 2D articulated human stick model to represent the pose of the golfer over time. Our work was tested using two video broadcasts of a golfer, and we obtained satisfactory results. The current outcomes of this research can play an important role in enhancing the performance of a golfer, provide vital information to sports medicine practitioners by providing technically sound guidance on movements and should assist to diminish the risk of golfing injuries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Video fingerprinting for copy identification: from research to industry applications

    NASA Astrophysics Data System (ADS)

    Lu, Jian

    2009-02-01

    Research that began a decade ago in video copy detection has developed into a technology known as "video fingerprinting". Today, video fingerprinting is an essential and enabling tool adopted by the industry for video content identification and management in online video distribution. This paper provides a comprehensive review of video fingerprinting technology and its applications in identifying, tracking, and managing copyrighted content on the Internet. The review includes a survey on video fingerprinting algorithms and some fundamental design considerations, such as robustness, discriminability, and compactness. It also discusses fingerprint matching algorithms, including complexity analysis, and approximation and optimization for fast fingerprint matching. On the application side, it provides an overview of a number of industry-driven applications that rely on video fingerprinting. Examples are given based on real-world systems and workflows to demonstrate applications in detecting and managing copyrighted content, and in monitoring and tracking video distribution on the Internet.

  20. Extracting 3d Semantic Information from Video Surveillance System Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Cao, J.; Mao, B.; Shen, D. Q.

    2018-04-01

    At present, intelligent video analysis technology has been widely used in various fields. Object tracking is one of the important part of intelligent video surveillance, but the traditional target tracking technology based on the pixel coordinate system in images still exists some unavoidable problems. Target tracking based on pixel can't reflect the real position information of targets, and it is difficult to track objects across scenes. Based on the analysis of Zhengyou Zhang's camera calibration method, this paper presents a method of target tracking based on the target's space coordinate system after converting the 2-D coordinate of the target into 3-D coordinate. It can be seen from the experimental results: Our method can restore the real position change information of targets well, and can also accurately get the trajectory of the target in space.

  1. Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences

    PubMed Central

    Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong

    2016-01-01

    Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514

  2. Are signalized intersections with cycle tracks safer? A case-control study based on automated surrogate safety analysis using video data.

    PubMed

    Zangenehpour, Sohail; Strauss, Jillian; Miranda-Moreno, Luis F; Saunier, Nicolas

    2016-01-01

    Cities in North America have been building bicycle infrastructure, in particular cycle tracks, with the intention of promoting urban cycling and improving cyclist safety. These facilities have been built and expanded but very little research has been done to investigate the safety impacts of cycle tracks, in particular at intersections, where cyclists interact with turning motor-vehicles. Some safety research has looked at injury data and most have reached the conclusion that cycle tracks have positive effects of cyclist safety. The objective of this work is to investigate the safety effects of cycle tracks at signalized intersections using a case-control study. For this purpose, a video-based method is proposed for analyzing the post-encroachment time as a surrogate measure of the severity of the interactions between cyclists and turning vehicles travelling in the same direction. Using the city of Montreal as the case study, a sample of intersections with and without cycle tracks on the right and left sides of the road were carefully selected accounting for intersection geometry and traffic volumes. More than 90h of video were collected from 23 intersections and processed to obtain cyclist and motor-vehicle trajectories and interactions. After cyclist and motor-vehicle interactions were defined, ordered logit models with random effects were developed to evaluate the safety effects of cycle tracks at intersections. Based on the extracted data from the recorded videos, it was found that intersection approaches with cycle tracks on the right are safer than intersection approaches with no cycle track. However, intersections with cycle tracks on the left compared to no cycle tracks seem to be significantly safer. Results also identify that the likelihood of a cyclist being involved in a dangerous interaction increases with increasing turning vehicle flow and decreases as the size of the cyclist group arriving at the intersection increases. The results highlight the important role of cycle tracks and the factors that increase or decrease cyclist safety. Results need however to be confirmed using longer periods of video data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Anomaly detection driven active learning for identifying suspicious tracks and events in WAMI video

    NASA Astrophysics Data System (ADS)

    Miller, David J.; Natraj, Aditya; Hockenbury, Ryler; Dunn, Katherine; Sheffler, Michael; Sullivan, Kevin

    2012-06-01

    We describe a comprehensive system for learning to identify suspicious vehicle tracks from wide-area motion (WAMI) video. First, since the road network for the scene of interest is assumed unknown, agglomerative hierarchical clustering is applied to all spatial vehicle measurements, resulting in spatial cells that largely capture individual road segments. Next, for each track, both at the cell (speed, acceleration, azimuth) and track (range, total distance, duration) levels, extreme value feature statistics are both computed and aggregated, to form summary (p-value based) anomaly statistics for each track. Here, to fairly evaluate tracks that travel across different numbers of spatial cells, for each cell-level feature type, a single (most extreme) statistic is chosen, over all cells traveled. Finally, a novel active learning paradigm, applied to a (logistic regression) track classifier, is invoked to learn to distinguish suspicious from merely anomalous tracks, starting from anomaly-ranked track prioritization, with ground-truth labeling by a human operator. This system has been applied to WAMI video data (ARGUS), with the tracks automatically extracted by a system developed in-house at Toyon Research Corporation. Our system gives promising preliminary results in highly ranking as suspicious aerial vehicles, dismounts, and traffic violators, and in learning which features are most indicative of suspicious tracks.

  4. Application of Bayesian a Priori Distributions for Vehicles' Video Tracking Systems

    NASA Astrophysics Data System (ADS)

    Mazurek, Przemysław; Okarma, Krzysztof

    Intelligent Transportation Systems (ITS) helps to improve the quality and quantity of many car traffic parameters. The use of the ITS is possible when the adequate measuring infrastructure is available. Video systems allow for its implementation with relatively low cost due to the possibility of simultaneous video recording of a few lanes of the road at a considerable distance from the camera. The process of tracking can be realized through different algorithms, the most attractive algorithms are Bayesian, because they use the a priori information derived from previous observations or known limitations. Use of this information is crucial for improving the quality of tracking especially for difficult observability conditions, which occur in the video systems under the influence of: smog, fog, rain, snow and poor lighting conditions.

  5. Moving object detection and tracking in videos through turbulent medium

    NASA Astrophysics Data System (ADS)

    Halder, Kalyan Kumar; Tahtali, Murat; Anavatti, Sreenatha G.

    2016-06-01

    This paper addresses the problem of identifying and tracking moving objects in a video sequence having a time-varying background. This is a fundamental task in many computer vision applications, though a very challenging one because of turbulence that causes blurring and spatiotemporal movements of the background images. Our proposed approach involves two major steps. First, a moving object detection algorithm that deals with the detection of real motions by separating the turbulence-induced motions using a two-level thresholding technique is used. In the second step, a feature-based generalized regression neural network is applied to track the detected objects throughout the frames in the video sequence. The proposed approach uses the centroid and area features of the moving objects and creates the reference regions instantly by selecting the objects within a circle. Simulation experiments are carried out on several turbulence-degraded video sequences and comparisons with an earlier method confirms that the proposed approach provides a more effective tracking of the targets.

  6. Determining the bias and variance of a deterministic finger-tracking algorithm.

    PubMed

    Morash, Valerie S; van der Velden, Bas H M

    2016-06-01

    Finger tracking has the potential to expand haptic research and applications, as eye tracking has done in vision research. In research applications, it is desirable to know the bias and variance associated with a finger-tracking method. However, assessing the bias and variance of a deterministic method is not straightforward. Multiple measurements of the same finger position data will not produce different results, implying zero variance. Here, we present a method of assessing deterministic finger-tracking variance and bias through comparison to a non-deterministic measure. A proof-of-concept is presented using a video-based finger-tracking algorithm developed for the specific purpose of tracking participant fingers during a psychological research study. The algorithm uses ridge detection on videos of the participant's hand, and estimates the location of the right index fingertip. The algorithm was evaluated using data from four participants, who explored tactile maps using only their right index finger and all right-hand fingers. The algorithm identified the index fingertip in 99.78 % of one-finger video frames and 97.55 % of five-finger video frames. Although the algorithm produced slightly biased and more dispersed estimates relative to a human coder, these differences (x=0.08 cm, y=0.04 cm) and standard deviations (σ x =0.16 cm, σ y =0.21 cm) were small compared to the size of a fingertip (1.5-2.0 cm). Some example finger-tracking results are provided where corrections are made using the bias and variance estimates.

  7. Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding

    PubMed Central

    Li, Xin; Guo, Rui; Chen, Chao

    2014-01-01

    Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR) video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach. PMID:24961216

  8. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  9. An affordable wearable video system for emergency response training

    NASA Astrophysics Data System (ADS)

    King-Smith, Deen; Mikkilineni, Aravind; Ebert, David; Collins, Timothy; Delp, Edward J.

    2009-02-01

    Many emergency response units are currently faced with restrictive budgets that prohibit their use of advanced technology-based training solutions. Our work focuses on creating an affordable, mobile, state-of-the-art emergency response training solution through the integration of low-cost, commercially available products. The system we have developed consists of tracking, audio, and video capability, coupled with other sensors that can all be viewed through a unified visualization system. In this paper we focus on the video sub-system which helps provide real time tracking and video feeds from the training environment through a system of wearable and stationary cameras. These two camera systems interface with a management system that handles storage and indexing of the video during and after training exercises. The wearable systems enable the command center to have live video and tracking information for each trainee in the exercise. The stationary camera systems provide a fixed point of reference for viewing action during the exercise and consist of a small Linux based portable computer and mountable camera. The video management system consists of a server and database which work in tandem with a visualization application to provide real-time and after action review capability to the training system.

  10. Effect of glaucoma on eye movement patterns and laboratory-based hazard detection ability

    PubMed Central

    Black, Alex A.; Wood, Joanne M.

    2017-01-01

    Purpose The mechanisms underlying the elevated crash rates of older drivers with glaucoma are poorly understood. A key driving skill is timely detection of hazards; however, the hazard detection ability of drivers with glaucoma has been largely unexplored. This study assessed the eye movement patterns and visual predictors of performance on a laboratory-based hazard detection task in older drivers with glaucoma. Methods Participants included 30 older drivers with glaucoma (71±7 years; average better-eye mean deviation (MD) = −3.1±3.2 dB; average worse-eye MD = −11.9±6.2 dB) and 25 age-matched controls (72±7 years). Visual acuity, contrast sensitivity, visual fields, useful field of view (UFoV; processing speeds), and motion sensitivity were assessed. Participants completed a computerised Hazard Perception Test (HPT) while their eye movements were recorded using a desk-mounted Tobii TX300 eye-tracking system. The HPT comprises a series of real-world traffic videos recorded from the driver’s perspective; participants responded to road hazards appearing in the videos, and hazard response times were determined. Results Participants with glaucoma exhibited an average of 0.42 seconds delay in hazard response time (p = 0.001), smaller saccades (p = 0.010), and delayed first fixation on hazards (p<0.001) compared to controls. Importantly, larger saccades were associated with faster hazard responses in the glaucoma group (p = 0.004), but not in the control group (p = 0.19). Across both groups, significant visual predictors of hazard response times included motion sensitivity, UFoV, and worse-eye MD (p<0.05). Conclusions Older drivers with glaucoma had delayed hazard response times compared to controls, with associated changes in eye movement patterns. The association between larger saccades and faster hazard response time in the glaucoma group may represent a compensatory behaviour to facilitate improved performance. PMID:28570621

  11. Tracking Multiple Video Targets with an Improved GM-PHD Tracker

    PubMed Central

    Zhou, Xiaolong; Yu, Hui; Liu, Honghai; Li, Youfu

    2015-01-01

    Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art. PMID:26633422

  12. Electronic evaluation for video commercials by impression index.

    PubMed

    Kong, Wanzeng; Zhao, Xinxin; Hu, Sanqing; Vecchiato, Giovanni; Babiloni, Fabio

    2013-12-01

    How to evaluate the effect of commercials is significantly important in neuromarketing. In this paper, we proposed an electronic way to evaluate the influence of video commercials on consumers by impression index. The impression index combines both the memorization and attention index during consumers observing video commercials by tracking the EEG activity. It extracts features from scalp EEG to evaluate the effectiveness of video commercials in terms of time-frequency-space domain. And, the general global field power was used as an impression index for evaluation of video commercial scenes as time series. Results of experiment demonstrate that the proposed approach is able to track variations of the cerebral activity related to cognitive task such as observing video commercials, and help to judge whether the scene in video commercials is impressive or not by EEG signals.

  13. Video-based measurements for wireless capsule endoscope tracking

    NASA Astrophysics Data System (ADS)

    Spyrou, Evaggelos; Iakovidis, Dimitris K.

    2014-01-01

    The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions.

  14. Effects of neonatal excitotoxic lesions in ventral thalamus on social interaction in the rat.

    PubMed

    Wolf, Rainer; Dobrowolny, Henrik; Nullmeier, Sven; Bogerts, Bernhard; Schwegler, Herbert

    2017-03-30

    The role of the thalamus in schizophrenia has increasingly been studied in recent years. Deficits in the ventral thalamus have been described in only few postmortem and neuroimaging studies. We utilised our previously introduced neurodevelopmental animal model, the neonatal excitotoxic lesion of the ventral thalamus of Sprague-Dawley rats (Wolf et al., Pharmacopsychiatry 43:99-109, 22). At postnatal day (PD7), male pubs received bilateral thalamic infusions with ibotenic acid (IBA) or artificial cerebrospinal fluid (control). In adulthood, social interaction of two animals not familiar to each other was studied by a computerised video tracking system. This study displays clear lesion effects on social interaction of adult male rats. The significant reduction of total contact time and the significant increase in distance between the animals in the IBA group compared to controls can be interpreted as social withdrawal modelling a negative symptom of schizophrenia. The significant increase of total distance travelled in the IBA group can be hypothesised as agitation modelling a positive symptom of schizophrenia. Using a triple concept of social interaction, the percentage of no social interaction (Non-SI%) was significantly larger, and inversely, the percentage of passive social interaction (SI-passive%) was significantly smaller in the IBA group when compared to controls. In conclusion, on the background of findings in schizophrenic patients, the effects of neonatal ventral thalamic IBA lesions in adult male rats support the hypothesis of face and construct validity as animal model of schizophrenia.

  15. Fluctuations in running and skill-related performance in elite rugby union match-play.

    PubMed

    Lacome, Mathieu; Piscione, Julien; Hager, Jean-Philippe; Carling, Chris

    2017-03-01

    This study investigated end-game and transient changes in running activities and whether these were concomitantly associated with reductions in skill-related performance in senior international rugby union match-play. Altogether, 18 official matches were analysed (322 individual observations) using computerised video-based tracking and event coding (Amisco Pro ® , SUP, Nice, France). In forwards and backs, trivial to small reductions (% difference: -2.1, ±1.3 to -10.0, ±4.0%) in total distance and that covered at high speeds (>18.0 km h -1 ) occurred in the second- versus the first-half while there were trivial differences in skill-related performance measures (-2.3, ±4.5 to 7.5, ±14.0%). In both positions, small to moderate declines (-42, ±10 to -21, ±7%) occurred in high-speed running in the final 10-min and 5-min periods versus mean values for all other 10-min and 5-min periods throughout the game while only small changes (-18, ±51 to 13, ±41%) in skill-related performance were observed. Trivial changes in running and skill-related performance (-11, ±74 to 7, ±39%) were observed in the 5-min period immediately following the most intense 5-minute periods of play compared to mean performance over the other 5-min periods. These findings suggest that international rugby union players were generally able to maintain skill-related performance over the course of match-play even when declines in running performance occurred.

  16. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  17. Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system

    PubMed Central

    2010-01-01

    Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures. PMID:20377897

  18. Joint Multi-Leaf Segmentation, Alignment, and Tracking for Fluorescence Plant Videos.

    PubMed

    Yin, Xi; Liu, Xiaoming; Chen, Jin; Kramer, David M

    2018-06-01

    This paper proposes a novel framework for fluorescence plant video processing. The plant research community is interested in the leaf-level photosynthetic analysis within a plant. A prerequisite for such analysis is to segment all leaves, estimate their structures, and track them over time. We identify this as a joint multi-leaf segmentation, alignment, and tracking problem. First, leaf segmentation and alignment are applied on the last frame of a plant video to find a number of well-aligned leaf candidates. Second, leaf tracking is applied on the remaining frames with leaf candidate transformation from the previous frame. We form two optimization problems with shared terms in their objective functions for leaf alignment and tracking respectively. A quantitative evaluation framework is formulated to evaluate the performance of our algorithm with four metrics. Two models are learned to predict the alignment accuracy and detect tracking failure respectively in order to provide guidance for subsequent plant biology analysis. The limitation of our algorithm is also studied. Experimental results show the effectiveness, efficiency, and robustness of the proposed method.

  19. A Standard-Compliant Virtual Meeting System with Active Video Object Tracking

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Chang, Yao-Jen; Wang, Chih-Ming; Chen, Yung-Chang; Sun, Ming-Ting

    2002-12-01

    This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU) for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network) and the H.324 WAN (wide-area network) users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.

  20. Cyborg practices: call-handlers and computerised decision support systems in urgent and emergency care.

    PubMed

    Pope, Catherine; Halford, Susan; Turnbull, Joanne; Prichard, Jane

    2014-06-01

    This article draws on data collected during a 2-year project examining the deployment of a computerised decision support system. This computerised decision support system was designed to be used by non-clinical staff for dealing with calls to emergency (999) and urgent care (out-of-hours) services. One of the promises of computerised decisions support technologies is that they can 'hold' vast amounts of sophisticated clinical knowledge and combine it with decision algorithms to enable standardised decision-making by non-clinical (clerical) staff. This article draws on our ethnographic study of this computerised decision support system in use, and we use our analysis to question the 'automated' vision of decision-making in healthcare call-handling. We show that embodied and experiential (human) expertise remains central and highly salient in this work, and we propose that the deployment of the computerised decision support system creates something new, that this conjunction of computer and human creates a cyborg practice.

  1. Optimizations and Applications in Head-Mounted Video-Based Eye Tracking

    ERIC Educational Resources Information Center

    Li, Feng

    2011-01-01

    Video-based eye tracking techniques have become increasingly attractive in many research fields, such as visual perception and human-computer interface design. The technique primarily relies on the positional difference between the center of the eye's pupil and the first-surface reflection at the cornea, the corneal reflection (CR). This…

  2. Automatic colonic lesion detection and tracking in endoscopic videos

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Gustafsson, Ulf; A-Rahim, Yoursif

    2011-03-01

    The biology of colorectal cancer offers an opportunity for both early detection and prevention. Compared with other imaging modalities, optical colonoscopy is the procedure of choice for simultaneous detection and removal of colonic polyps. Computer assisted screening makes it possible to assist physicians and potentially improve the accuracy of the diagnostic decision during the exam. This paper presents an unsupervised method to detect and track colonic lesions in endoscopic videos. The aim of the lesion screening and tracking is to facilitate detection of polyps and abnormal mucosa in real time as the physician is performing the procedure. For colonic lesion detection, the conventional marker controlled watershed based segmentation is used to segment the colonic lesions, followed by an adaptive ellipse fitting strategy to further validate the shape. For colonic lesion tracking, a mean shift tracker with background modeling is used to track the target region from the detection phase. The approach has been tested on colonoscopy videos acquired during regular colonoscopic procedures and demonstrated promising results.

  3. Study of moving object detecting and tracking algorithm for video surveillance system

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Rongfu

    2010-10-01

    This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.

  4. Video guidance, landing, and imaging systems

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Knickerbocker, R. L.; Tietz, J. C.; Grant, C.; Rice, R. B.; Moog, R. D.

    1975-01-01

    The adaptive potential of video guidance technology for earth orbital and interplanetary missions was explored. The application of video acquisition, pointing, tracking, and navigation technology was considered to three primary missions: planetary landing, earth resources satellite, and spacecraft rendezvous and docking. It was found that an imaging system can be mechanized to provide a spacecraft or satellite with a considerable amount of adaptability with respect to its environment. It also provides a level of autonomy essential to many future missions and enhances their data gathering ability. The feasibility of an autonomous video guidance system capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was successfully demonstrated in the laboratory. The techniques developed for acquisition, pointing, and tracking show promise for recognizing and tracking coastlines, rivers, and other constituents of interest. Routines were written and checked for rendezvous, docking, and station-keeping functions.

  5. User-assisted video segmentation system for visual communication

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  6. Three-dimensional face pose detection and tracking using monocular videos: tool and application.

    PubMed

    Dornaika, Fadi; Raducanu, Bogdan

    2009-08-01

    Recently, we have proposed a real-time tracker that simultaneously tracks the 3-D head pose and facial actions in monocular video sequences that can be provided by low quality cameras. This paper has two main contributions. First, we propose an automatic 3-D face pose initialization scheme for the real-time tracker by adopting a 2-D face detector and an eigenface system. Second, we use the proposed methods-the initialization and tracking-for enhancing the human-machine interaction functionality of an AIBO robot. More precisely, we show how the orientation of the robot's camera (or any active vision system) can be controlled through the estimation of the user's head pose. Applications based on head-pose imitation such as telepresence, virtual reality, and video games can directly exploit the proposed techniques. Experiments on real videos confirm the robustness and usefulness of the proposed methods.

  7. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    PubMed Central

    Qin, Lei; Snoussi, Hichem; Abdallah, Fahed

    2014-01-01

    We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883

  8. Evaluation of Simulated Clinical Breast Exam Motion Patterns Using Marker-Less Video Tracking

    PubMed Central

    Azari, David P.; Pugh, Carla M.; Laufer, Shlomi; Kwan, Calvin; Chen, Chia-Hsiung; Yen, Thomas Y.; Hu, Yu Hen; Radwin, Robert G.

    2016-01-01

    Objective This study investigates using marker-less video tracking to evaluate hands-on clinical skills during simulated clinical breast examinations (CBEs). Background There are currently no standardized and widely accepted CBE screening techniques. Methods Experienced physicians attending a national conference conducted simulated CBEs presenting different pathologies with distinct tumorous lesions. Single hand exam motion was recorded and analyzed using marker-less video tracking. Four kinematic measures were developed to describe temporal (time pressing and time searching) and spatial (area covered and distance explored) patterns. Results Mean differences between time pressing, area covered, and distance explored varied across the simulated lesions. Exams were objectively categorized as either sporadic, localized, thorough, or efficient for both temporal and spatial categories based on spatiotemporal characteristics. The majority of trials were temporally or spatially thorough (78% and 91%), exhibiting proportionally greater time pressing and time searching (temporally thorough) and greater area probed with greater distance explored (spatially thorough). More efficient exams exhibited proportionally more time pressing with less time searching (temporally efficient) and greater area probed with less distance explored (spatially efficient). Just two (5.9 %) of the trials exhibited both high temporal and spatial efficiency. Conclusions Marker-less video tracking was used to discriminate different examination techniques and measure when an exam changes from general searching to specific probing. The majority of participants exhibited more thorough than efficient patterns. Application Marker-less video kinematic tracking may be useful for quantifying clinical skills for training and assessment. PMID:26546381

  9. A VidEo-Based Intelligent Recognition and Decision System for the Phacoemulsification Cataract Surgery.

    PubMed

    Tian, Shu; Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei

    2015-01-01

    The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness.

  10. A VidEo-Based Intelligent Recognition and Decision System for the Phacoemulsification Cataract Surgery

    PubMed Central

    Yin, Xu-Cheng; Wang, Zhi-Bin; Zhou, Fang; Hao, Hong-Wei

    2015-01-01

    The phacoemulsification surgery is one of the most advanced surgeries to treat cataract. However, the conventional surgeries are always with low automatic level of operation and over reliance on the ability of surgeons. Alternatively, one imaginative scene is to use video processing and pattern recognition technologies to automatically detect the cataract grade and intelligently control the release of the ultrasonic energy while operating. Unlike cataract grading in the diagnosis system with static images, complicated background, unexpected noise, and varied information are always introduced in dynamic videos of the surgery. Here we develop a Video-Based Intelligent Recognitionand Decision (VeBIRD) system, which breaks new ground by providing a generic framework for automatically tracking the operation process and classifying the cataract grade in microscope videos of the phacoemulsification cataract surgery. VeBIRD comprises a robust eye (iris) detector with randomized Hough transform to precisely locate the eye in the noise background, an effective probe tracker with Tracking-Learning-Detection to thereafter track the operation probe in the dynamic process, and an intelligent decider with discriminative learning to finally recognize the cataract grade in the complicated video. Experiments with a variety of real microscope videos of phacoemulsification verify VeBIRD's effectiveness. PMID:26693249

  11. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling.

    PubMed

    Khan, Zulfiqar Hasan; Gu, Irene Yu-Hua

    2013-12-01

    This paper proposes a novel Bayesian online learning and tracking scheme for video objects on Grassmann manifolds. Although manifold visual object tracking is promising, large and fast nonplanar (or out-of-plane) pose changes and long-term partial occlusions of deformable objects in video remain a challenge that limits the tracking performance. The proposed method tackles these problems with the main novelties on: 1) online estimation of object appearances on Grassmann manifolds; 2) optimal criterion-based occlusion handling for online updating of object appearances; 3) a nonlinear dynamic model for both the appearance basis matrix and its velocity; and 4) Bayesian formulations, separately for the tracking process and the online learning process, that are realized by employing two particle filters: one is on the manifold for generating appearance particles and another on the linear space for generating affine box particles. Tracking and online updating are performed in an alternating fashion to mitigate the tracking drift. Experiments using the proposed tracker on videos captured by a single dynamic/static camera have shown robust tracking performance, particularly for scenarios when target objects contain significant nonplanar pose changes and long-term partial occlusions. Comparisons with eight existing state-of-the-art/most relevant manifold/nonmanifold trackers with evaluations have provided further support to the proposed scheme.

  12. Activity-based exploitation of Full Motion Video (FMV)

    NASA Astrophysics Data System (ADS)

    Kant, Shashi

    2012-06-01

    Video has been a game-changer in how US forces are able to find, track and defeat its adversaries. With millions of minutes of video being generated from an increasing number of sensor platforms, the DOD has stated that the rapid increase in video is overwhelming their analysts. The manpower required to view and garner useable information from the flood of video is unaffordable, especially in light of current fiscal restraints. "Search" within full-motion video has traditionally relied on human tagging of content, and video metadata, to provision filtering and locate segments of interest, in the context of analyst query. Our approach utilizes a novel machine-vision based approach to index FMV, using object recognition & tracking, events and activities detection. This approach enables FMV exploitation in real-time, as well as a forensic look-back within archives. This approach can help get the most information out of video sensor collection, help focus the attention of overburdened analysts form connections in activity over time and conserve national fiscal resources in exploiting FMV.

  13. Person detection, tracking and following using stereo camera

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Zhang, Lilian; Wang, Duo; Hu, Xiaoping

    2018-04-01

    Person detection, tracking and following is a key enabling technology for mobile robots in many human-robot interaction applications. In this article, we present a system which is composed of visual human detection, video tracking and following. The detection is based on YOLO(You only look once), which applies a single convolution neural network(CNN) to the full image, thus can predict bounding boxes and class probabilities directly in one evaluation. Then the bounding box provides initial person position in image to initialize and train the KCF(Kernelized Correlation Filter), which is a video tracker based on discriminative classifier. At last, by using a stereo 3D sparse reconstruction algorithm, not only the position of the person in the scene is determined, but also it can elegantly solve the problem of scale ambiguity in the video tracker. Extensive experiments are conducted to demonstrate the effectiveness and robustness of our human detection and tracking system.

  14. VideoHacking: Automated Tracking and Quantification of Locomotor Behavior with Open Source Software and Off-the-Shelf Video Equipment.

    PubMed

    Conklin, Emily E; Lee, Kathyann L; Schlabach, Sadie A; Woods, Ian G

    2015-01-01

    Differences in nervous system function can result in differences in behavioral output. Measurements of animal locomotion enable the quantification of these differences. Automated tracking of animal movement is less labor-intensive and bias-prone than direct observation, and allows for simultaneous analysis of multiple animals, high spatial and temporal resolution, and data collection over extended periods of time. Here, we present a new video-tracking system built on Python-based software that is free, open source, and cross-platform, and that can analyze video input from widely available video capture devices such as smartphone cameras and webcams. We validated this software through four tests on a variety of animal species, including larval and adult zebrafish (Danio rerio), Siberian dwarf hamsters (Phodopus sungorus), and wild birds. These tests highlight the capacity of our software for long-term data acquisition, parallel analysis of multiple animals, and application to animal species of different sizes and movement patterns. We applied the software to an analysis of the effects of ethanol on thigmotaxis (wall-hugging) behavior on adult zebrafish, and found that acute ethanol treatment decreased thigmotaxis behaviors without affecting overall amounts of motion. The open source nature of our software enables flexibility, customization, and scalability in behavioral analyses. Moreover, our system presents a free alternative to commercial video-tracking systems and is thus broadly applicable to a wide variety of educational settings and research programs.

  15. Hidden Communicative Competence: Case Study Evidence Using Eye-Tracking and Video Analysis

    ERIC Educational Resources Information Center

    Grayson, Andrew; Emerson, Anne; Howard-Jones, Patricia; O'Neil, Lynne

    2012-01-01

    A facilitated communication (FC) user with an autism spectrum disorder produced sophisticated texts by pointing, with physical support, to letters on a letterboard while their eyes were tracked and while their pointing movements were video recorded. This FC user has virtually no independent means of expression, and is held to have no literacy…

  16. Tracking Online Data with YouTube's Insight Tracking Tool

    ERIC Educational Resources Information Center

    Kinsey, Joanne

    2012-01-01

    YouTube users have access to the powerful data collection tool, Insight. Insight allows YouTube content producers to collect data about the number of online views, geographic location of viewers by country, the demographics of the viewers, how a video was discovered, and the attention span of the viewer while watching the video. This article…

  17. Getting the Bigger Picture With Digital Surveillance

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a Space Act Agreement, Diebold, Inc., acquired the exclusive rights to Glenn Research Center's patented video observation technology, originally designed to accelerate video image analysis for various ongoing and future space applications. Diebold implemented the technology into its AccuTrack digital, color video recorder, a state-of- the-art surveillance product that uses motion detection for around-the- clock monitoring. AccuTrack captures digitally signed images and transaction data in real-time. This process replaces the onerous tasks involved in operating a VCR-based surveillance system, and subsequently eliminates the need for central viewing and tape archiving locations altogether. AccuTrack can monitor an entire bank facility, including four automated teller machines, multiple teller lines, and new account areas, all from one central location.

  18. Immunisation registers in Italy: a patchwork of computerisation.

    PubMed

    Alfonsi, V; D'Ancona, F; Rota, M C; Giambi, C; Ranghiasci, A; Iannazzo, S

    2012-04-26

    In Italy, the 21 regional health authorities are in charge of organising and implementing their own vaccination strategy, based on the national vaccine plan. Immunisation coverage varies greatly among the regions for certain vaccines. Efforts to increase childhood immunisation coverage have included initiatives to develop and implement computerised immunisation registers in as many regions as possible. We undertook a cross-sectional online survey in July 2011 to provide an updated picture of the use, heterogeneity and main functions of different computerised immunisation registers used in the Italian regions and to understand the flow of information from local health units to the regional authorities and to the Ministry of Health. Comparing current data with those obtained in 2007, a substantial improvement is evident. A total of 15 regions are fully computerised (previously nine), with 83% of local health units equipped with a computerised register (previously 70%). Eight of the 15 fully computerised regions use the same software, simplifying data sharing. Only four regions are able to obtain data in real time from local health units. Despite the progress made, the capacity to monitor vaccination coverage and to exchange data appears still limited.

  19. Visual Analytics and Storytelling through Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Pak C.; Perrine, Kenneth A.; Mackey, Patrick S.

    2005-10-31

    This paper supplements a video clip submitted to the Video Track of IEEE Symposium on Information Visualization 2005. The original video submission applies a two-way storytelling approach to demonstrate the visual analytics capabilities of a new visualization technique. The paper presents our video production philosophy, describes the plot of the video, explains the rationale behind the plot, and finally, shares our production experiences with our readers.

  20. Traceability in Patient Healthcare through the Integration of RFID Technology in an ICU in a Hospital.

    PubMed

    Martínez Pérez, María; Dafonte, Carlos; Gómez, Ángel

    2018-05-19

    Patient safety is a principal concern for health professionals in the care process and it is, therefore, necessary to provide information management systems to each unit of the hospital, capable of tracking patients and medication to reduce the occurrence of adverse events and therefore increase the quality of care received by patients during their stay in hospital. This work presents a tool for the Intensive Care Unit (ICU), a key service with special characteristics, which computerises and tracks admissions, care plans, vital monitoring, the prescription and medication administration process for patients in this service. To achieve this, it is essential that innovative and cutting-edge technologies are implemented such as Near Field Communication (NFC) technology which is now being implemented in diverse environments bringing a range of benefits to the tasks for which it is employed.

  1. A Novel Video Tracking Method to Evaluate the Effect of Influenza Infection and Antiviral Treatment on Ferret Activity

    PubMed Central

    Oh, Ding Yuan; Barr, Ian G.; Hurt, Aeron C.

    2015-01-01

    Ferrets are the preferred animal model to assess influenza virus infection, virulence and transmission as they display similar clinical symptoms and pathogenesis to those of humans. Measures of disease severity in the ferret include weight loss, temperature rise, sneezing, viral shedding and reduced activity. To date, the only available method for activity measurement has been the assignment of an arbitrary score by a ‘blind’ observer based on pre-defined responsiveness scale. This manual scoring method is subjective and can be prone to bias. In this study, we described a novel video-tracking methodology for determining activity changes in a ferret model of influenza infection. This method eliminates the various limitations of manual scoring, which include the need for a sole ‘blind’ observer and the requirement to recognise the ‘normal’ activity of ferrets in order to assign relative activity scores. In ferrets infected with an A(H1N1)pdm09 virus, video-tracking was more sensitive than manual scoring in detecting ferret activity changes. Using this video-tracking method, oseltamivir treatment was found to ameliorate the effect of influenza infection on activity in ferret. Oseltamivir treatment of animals was associated with an improvement in clinical symptoms, including reduced inflammatory responses in the upper respiratory tract, lower body weight loss and a smaller rise in body temperature, despite there being no significant reduction in viral shedding. In summary, this novel video-tracking is an easy-to-use, objective and sensitive methodology for measuring ferret activity. PMID:25738900

  2. Video observations of sensitive caregiving "off the beaten track": introduction to the special issue.

    PubMed

    Mesman, Judi

    2018-03-22

    This introduction to the special issue on video observations of sensitive caregiving in different cultural communities provides a general theoretical and methodological framework for the seven empirical studies that are at the heart of this special issue. It highlights the cross-cultural potential of the sensitivity construct, the importance of research on sensitivity "off the beaten track," the advantages and potential challenges of the use of video in diverse cultural contexts, and the benefits of forming research teams that include local scholars. The paper concludes with an overview of the seven empirical studies of sensitivity in this special issue with video observations from Brazil, Indonesia, Iran, Kenya, Peru, South Africa, and Yemen.

  3. Attitudes of nursing staff towards computerisation: a case of two hospitals in Nairobi, Kenya

    PubMed Central

    2014-01-01

    Background The health sector is faced with constant changes as new approaches to tackle illnesses are unveiled through research. Information, communication and technology have greatly transformed healthcare practice the world over. Nursing is continually exposed to a variety of changes. Variables including age, educational level, years worked in nursing, computer knowledge and experience have been found to influence the attitudes of nurses towards computerisation. The purpose of the study was to determine the attitudes of nurses towards the use of computers and the factors that influence these attitudes. Methods This cross sectional descriptive study was conducted among staff nurses working at one public hospital (Kenyatta National Hospital, (KNH) and one private hospital (Aga Khan University Hospital (AKUH). A convenience sample of 200 nurses filled the questionnaires. Data was collected using the modified Nurses’ Attitudes Towards Computerisation (NATC) questionnaire. Results Nurses had a favorable attitude towards computerisation. Non-users had a significantly higher attitude score compared to the users (p = 0.0274). Statistically significant associations were observed with age (p = 0.039), level of education (p = 0.025), duration of exposure to computers (p = 0.025) and attitudes towards computerisation. Conclusion Generally, nurses have positive attitudes towards computerisation. This information is important for the planning and implementation of computerisation in the hospital as suggested in other studies. PMID:24774008

  4. An effective and robust method for tracking multiple fish in video image based on fish head detection.

    PubMed

    Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu

    2016-06-23

    Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.

  5. OpenControl: a free opensource software for video tracking and automated control of behavioral mazes.

    PubMed

    Aguiar, Paulo; Mendonça, Luís; Galhardo, Vasco

    2007-10-15

    Operant animal behavioral tests require the interaction of the subject with sensors and actuators distributed in the experimental environment of the arena. In order to provide user independent reliable results and versatile control of these devices it is vital to use an automated control system. Commercial systems for control of animal mazes are usually based in software implementations that restrict their application to the proprietary hardware of the vendor. In this paper we present OpenControl: an opensource Visual Basic software that permits a Windows-based computer to function as a system to run fully automated behavioral experiments. OpenControl integrates video-tracking of the animal, definition of zones from the video signal for real-time assignment of animal position in the maze, control of the maze actuators from either hardware sensors or from the online video tracking, and recording of experimental data. Bidirectional communication with the maze hardware is achieved through the parallel-port interface, without the need for expensive AD-DA cards, while video tracking is attained using an inexpensive Firewire digital camera. OpenControl Visual Basic code is structurally general and versatile allowing it to be easily modified or extended to fulfill specific experimental protocols and custom hardware configurations. The Visual Basic environment was chosen in order to allow experimenters to easily adapt the code and expand it at their own needs.

  6. New robust algorithm for tracking cells in videos of Drosophila morphogenesis based on finding an ideal path in segmented spatio-temporal cellular structures.

    PubMed

    Bellaïche, Yohanns; Bosveld, Floris; Graner, François; Mikula, Karol; Remesíková, Mariana; Smísek, Michal

    2011-01-01

    In this paper, we present a novel algorithm for tracking cells in time lapse confocal microscopy movie of a Drosophila epithelial tissue during pupal morphogenesis. We consider a 2D + time video as a 3D static image, where frames are stacked atop each other, and using a spatio-temporal segmentation algorithm we obtain information about spatio-temporal 3D tubes representing evolutions of cells. The main idea for tracking is the usage of two distance functions--first one from the cells in the initial frame and second one from segmented boundaries. We track the cells backwards in time. The first distance function attracts the subsequently constructed cell trajectories to the cells in the initial frame and the second one forces them to be close to centerlines of the segmented tubular structures. This makes our tracking algorithm robust against noise and missing spatio-temporal boundaries. This approach can be generalized to a 3D + time video analysis, where spatio-temporal tubes are 4D objects.

  7. Automated segmentation and tracking of non-rigid objects in time-lapse microscopy videos of polymorphonuclear neutrophils.

    PubMed

    Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-02-01

    Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A novel vehicle tracking algorithm based on mean shift and active contour model in complex environment

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen

    2017-06-01

    Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.

  9. Tonopah Test Range - Index

    Science.gov Websites

    Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Us Range Videos/Photos Range Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Optical Systems Cinetheodolites Telescopes R&D Telescopes

  10. Video tracking analysis of behavioral patterns during estrus in goats

    PubMed Central

    ENDO, Natsumi; RAHAYU, Larasati Puji; ARAKAWA, Toshiya; TANAKA, Tomomi

    2015-01-01

    Here, we report a new method for measuring behavioral patterns during estrus in goats based on video tracking analysis. Data were collected from cycling goats, which were in estrus (n = 8) or not in estrus (n = 8). An observation pen (2.5 m × 2.5 m) was set up in the corner of the female paddock with one side adjacent to a male paddock. The positions and movements of goats were tracked every 0.5 sec for 10 min by using a video tracking software, and the trajectory data were used for the analysis. There were no significant differences in the durations of standing and walking or the total length of movement. However, the number of approaches to a male and the duration of staying near the male were higher in goats in estrus than in goats not in estrus. The proposed evaluation method may be suitable for detailed monitoring of behavioral changes during estrus in goats. PMID:26560676

  11. Tackling Production Techniques: Professional Studio Sound at Amateur Prices: the Power of the Portable Four-Track Audio Recorder.

    ERIC Educational Resources Information Center

    Robinson, David E.

    1997-01-01

    One solution to poor quality sound in student video projects is a four-track audio cassette recorder. This article discusses the advantages of four-track over single-track recorders and compares two student productions, one using a single-track and the other a four-track recorder. (PEN)

  12. Perceptual training yields rapid improvements in visually impaired youth.

    PubMed

    Nyquist, Jeffrey B; Lappin, Joseph S; Zhang, Ruyuan; Tadin, Duje

    2016-11-30

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events.

  13. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  14. WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, W; Rao, A; Wendt, R

    Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded asmore » it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration framework that is clinically valuable and requires no specialized equipment.« less

  15. Video Guidance Sensors Using Remotely Activated Targets

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    2004-01-01

    Four updated video guidance sensor (VGS) systems have been proposed. As described in a previous NASA Tech Briefs article, a VGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. The VGS provides relative position and attitude (6-DOF) information between the VGS and its target. In the original intended application, the two vehicles would be spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In the first two of the four VGS systems as now proposed, the tracked vehicle would include active targets that would light up on command from the tracking vehicle, and a video camera on the tracking vehicle would be synchronized with, and would acquire images of, the active targets. The video camera would also acquire background images during the periods between target illuminations. The images would be digitized and the background images would be subtracted from the illuminated-target images. Then the position and orientation of the tracked vehicle relative to the tracking vehicle would be computed from the known geometric relationships among the positions of the targets in the image, the positions of the targets relative to each other and to the rest of the tracked vehicle, and the position and orientation of the video camera relative to the rest of the tracking vehicle. The major difference between the first two proposed systems and prior active-target VGS systems lies in the techniques for synchronizing the flashing of the active targets with the digitization and processing of image data. In the prior active-target VGS systems, synchronization was effected, variously, by use of either a wire connection or the Global Positioning System (GPS). In three of the proposed VGS systems, the synchronizing signal would be generated on, and transmitted from, the tracking vehicle. In the first proposed VGS system, the tracking vehicle would transmit a pulse of light. Upon reception of the pulse, circuitry on the tracked vehicle would activate the target lights. During the pulse, the target image acquired by the camera would be digitized. When the pulse was turned off, the target lights would be turned off and the background video image would be digitized. The second proposed system would function similarly to the first proposed system, except that the transmitted synchronizing signal would be a radio pulse instead of a light pulse. In this system, the signal receptor would be a rectifying antenna. If the signal contained sufficient power, the output of the rectifying antenna could be used to activate the target lights, making it unnecessary to include a battery or other power supply for the targets on the tracked vehicle.

  16. Understanding Learning Style by Eye Tracking in Slide Video Learning

    ERIC Educational Resources Information Center

    Cao, Jianxia; Nishihara, Akinori

    2012-01-01

    More and more videos are now being used in e-learning context. For improving learning effect, to understand how students view the online video is important. In this research, we investigate how students deploy their attention when they learn through interactive slide video in the aim of better understanding observers' learning style. Felder and…

  17. Predictive value of ventilatory inflection points determined under field conditions.

    PubMed

    Heyde, Christian; Mahler, Hubert; Roecker, Kai; Gollhofer, Albert

    2016-01-01

    The aim of this study was to evaluate the predictive potential provided by two ventilatory inflection points (VIP1 and VIP2) examined in field without using gas analysis systems and uncomfortable facemasks. A calibrated respiratory inductance plethysmograph (RIP) and a computerised routine were utilised, respectively, to derive ventilation and to detect VIP1 and VIP2 during a standardised field ramp test on a 400 m running track on 81 participants. In addition, average running speed of a competitive 1000 m run (S1k) was observed as criterion. The predictive value of running speed at VIP1 (SVIP1) and the speed range between VIP1 and VIP2 in relation to VIP2 (VIPSPAN) was analysed via regression analysis. VIPSPAN rather than running speed at VIP2 (SVIP2) was operationalised as a predictor to consider the covariance between SVIP1 and SVIP2. SVIP1 and VIPSPAN, respectively, provided 58.9% and 22.9% of explained variance in regard to S1k. Considering covariance, the timing of two ventilatory inflection points provides predictive value in regard to a competitive 1000 m run. This is the first study to apply computerised detection of ventilatory inflection points in a field setting independent on measurements of the respiratory gas exchange and without using any facemasks.

  18. ETHOWATCHER: validation of a tool for behavioral and video-tracking analysis in laboratory animals.

    PubMed

    Crispim Junior, Carlos Fernando; Pederiva, Cesar Nonato; Bose, Ricardo Chessini; Garcia, Vitor Augusto; Lino-de-Oliveira, Cilene; Marino-Neto, José

    2012-02-01

    We present a software (ETHOWATCHER(®)) developed to support ethography, object tracking and extraction of kinematic variables from digital video files of laboratory animals. The tracking module allows controlled segmentation of the target from the background, extracting image attributes used to calculate the distance traveled, orientation, length, area and a path graph of the experimental animal. The ethography module allows recording of catalog-based behaviors from environment or from video files continuously or frame-by-frame. The output reports duration, frequency and latency of each behavior and the sequence of events in a time-segmented format, set by the user. Validation tests were conducted on kinematic measurements and on the detection of known behavioral effects of drugs. This software is freely available at www.ethowatcher.ufsc.br. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Enumeration versus multiple object tracking: the case of action video game players

    PubMed Central

    Green, C.S.; Bavelier, D.

    2010-01-01

    Here, we demonstrate that action video game play enhances subjects’ ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in performance once a critical number of squares was reached. Importantly, this critical number was higher by about two items in video game players (VGPs) than in non-video game players (NVGPs). A following control study indicated that this improvement was not due to an enhanced ability to instantly apprehend the numerosity of the display, a process known as subitizing, but rather due to an enhancement in the slower more serial process of counting. To confirm that video game play facilitates the processing of multiple objects at once, we compared VGPs and NVGPs on the multiple object tracking task (MOT), which requires the allocation of attention to several items over time. VGPs were able to successfully track approximately two more items than NVGPs. Furthermore, NVGPs trained on an action video game established the causal effect of game playing in the enhanced performance on the two tasks. Together, these studies confirm the view that playing action video games enhances the number of objects that can be apprehended and suggest that this enhancement is mediated by changes in visual short-term memory skills. PMID:16359652

  20. Enumeration versus multiple object tracking: the case of action video game players.

    PubMed

    Green, C S; Bavelier, D

    2006-08-01

    Here, we demonstrate that action video game play enhances subjects' ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop in performance once a critical number of squares was reached. Importantly, this critical number was higher by about two items in video game players (VGPs) than in non-video game players (NVGPs). A following control study indicated that this improvement was not due to an enhanced ability to instantly apprehend the numerosity of the display, a process known as subitizing, but rather due to an enhancement in the slower more serial process of counting. To confirm that video game play facilitates the processing of multiple objects at once, we compared VGPs and NVGPs on the multiple object tracking task (MOT), which requires the allocation of attention to several items over time. VGPs were able to successfully track approximately two more items than NVGPs. Furthermore, NVGPs trained on an action video game established the causal effect of game playing in the enhanced performance on the two tasks. Together, these studies confirm the view that playing action video games enhances the number of objects that can be apprehended and suggest that this enhancement is mediated by changes in visual short-term memory skills.

  1. Qualitative Video Analysis of Track-Cycling Team Pursuit in World-Class Athletes.

    PubMed

    Sigrist, Samuel; Maier, Thomas; Faiss, Raphael

    2017-11-01

    Track-cycling team pursuit (TP) is a highly technical effort involving 4 athletes completing 4 km from a standing start, often in less than 240 s. Transitions between athletes leading the team are obviously of utmost importance. To perform qualitative video analyses of transitions of world-class athletes in TP competitions. Videos captured at 100 Hz were recorded for 77 races (including 96 different athletes) in 5 international track-cycling competitions (eg, UCI World Cups and World Championships) and analyzed for the 12 best teams in the UCI Track Cycling TP Olympic ranking. During TP, 1013 transitions were evaluated individually to extract quantitative (eg, average lead time, transition number, length, duration, height in the curve) and qualitative (quality of transition start, quality of return at the back of the team, distance between third and returning rider score) variables. Determination of correlation coefficients between extracted variables and end time allowed assessment of relationships between variables and relevance of the video analyses. Overall quality of transitions and end time were significantly correlated (r = .35, P = .002). Similarly, transition distance (r = .26, P = .02) and duration (r = .35, P = .002) were positively correlated with end time. Conversely, no relationship was observed between transition number, average lead time, or height reached in the curve and end time. Video analysis of TP races highlights the importance of quality transitions between riders, with preferably swift and short relays rather than longer lead times for faster race times.

  2. Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm.

    PubMed

    Guo, Jie; Zhu, Chang'an; Lu, Siliang; Zhang, Dashan; Zhang, Chunyu

    2016-09-01

    Rotational angle and speed are important parameters for condition monitoring and fault diagnosis of rotating machineries, and their measurement is useful in precision machining and early warning of faults. In this study, a novel vision-based measurement algorithm is proposed to complete this task. A high-speed camera is first used to capture the video of the rotational object. To extract the rotational angle, the template-based Lucas-Kanade algorithm is introduced to complete motion tracking by aligning the template image in the video sequence. Given the special case of nonplanar surface of the cylinder object, a nonlinear transformation is designed for modeling the rotation tracking. In spite of the unconventional and complex form, the transformation can realize angle extraction concisely with only one parameter. A simulation is then conducted to verify the tracking effect, and a practical tracking strategy is further proposed to track consecutively the video sequence. Based on the proposed algorithm, instantaneous rotational speed (IRS) can be measured accurately and efficiently. Finally, the effectiveness of the proposed algorithm is verified on a brushless direct current motor test rig through the comparison with results obtained by the microphone. Experimental results demonstrate that the proposed algorithm can extract accurately rotational angles and can measure IRS with the advantage of noncontact and effectiveness.

  3. Application aware approach to compression and transmission of H.264 encoded video for automated and centralized transportation surveillance.

    DOT National Transportation Integrated Search

    2012-10-01

    In this report we present a transportation video coding and wireless transmission system specically tailored to automated : vehicle tracking applications. By taking into account the video characteristics and the lossy nature of the wireless channe...

  4. Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions

    NASA Astrophysics Data System (ADS)

    Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.

    2005-03-01

    The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.

  5. SwarmSight: Real-time Tracking of Insect Antenna Movements and Proboscis Extension Reflex Using a Common Preparation and Conventional Hardware

    PubMed Central

    Birgiolas, Justas; Jernigan, Christopher M.; Gerkin, Richard C.; Smith, Brian H.; Crook, Sharon M.

    2017-01-01

    Many scientifically and agriculturally important insects use antennae to detect the presence of volatile chemical compounds and extend their proboscis during feeding. The ability to rapidly obtain high-resolution measurements of natural antenna and proboscis movements and assess how they change in response to chemical, developmental, and genetic manipulations can aid the understanding of insect behavior. By extending our previous work on assessing aggregate insect swarm or animal group movements from natural and laboratory videos using the video analysis software SwarmSight, we developed a novel, free, and open-source software module, SwarmSight Appendage Tracking (SwarmSight.org) for frame-by-frame tracking of insect antenna and proboscis positions from conventional web camera videos using conventional computers. The software processes frames about 120 times faster than humans, performs at better than human accuracy, and, using 30 frames per second (fps) videos, can capture antennal dynamics up to 15 Hz. The software was used to track the antennal response of honey bees to two odors and found significant mean antennal retractions away from the odor source about 1 s after odor presentation. We observed antenna position density heat map cluster formation and cluster and mean angle dependence on odor concentration. PMID:29364251

  6. Jersey number detection in sports video for athlete identification

    NASA Astrophysics Data System (ADS)

    Ye, Qixiang; Huang, Qingming; Jiang, Shuqiang; Liu, Yang; Gao, Wen

    2005-07-01

    Athlete identification is important for sport video content analysis since users often care about the video clips with their preferred athletes. In this paper, we propose a method for athlete identification by combing the segmentation, tracking and recognition procedures into a coarse-to-fine scheme for jersey number (digital characters on sport shirt) detection. Firstly, image segmentation is employed to separate the jersey number regions with its background. And size/pipe-like attributes of digital characters are used to filter out candidates. Then, a K-NN (K nearest neighbor) classifier is employed to classify a candidate into a digit in "0-9" or negative. In the recognition procedure, we use the Zernike moment features, which are invariant to rotation and scale for digital shape recognition. Synthetic training samples with different fonts are used to represent the pattern of digital characters with non-rigid deformation. Once a character candidate is detected, a SSD (smallest square distance)-based tracking procedure is started. The recognition procedure is performed every several frames in the tracking process. After tracking tens of frames, the overall recognition results are combined to determine if a candidate is a true jersey number or not by a voting procedure. Experiments on several types of sports video shows encouraging result.

  7. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture.

    PubMed

    Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S

    2003-01-01

    In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).

  8. Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model.

    PubMed

    Fang, Yuming; Zhang, Chi; Li, Jing; Lei, Jianjun; Perreira Da Silva, Matthieu; Le Callet, Patrick

    2017-10-01

    In this paper, we investigate the visual attention modeling for stereoscopic video from the following two aspects. First, we build one large-scale eye tracking database as the benchmark of visual attention modeling for stereoscopic video. The database includes 47 video sequences and their corresponding eye fixation data. Second, we propose a novel computational model of visual attention for stereoscopic video based on Gestalt theory. In the proposed model, we extract the low-level features, including luminance, color, texture, and depth, from discrete cosine transform coefficients, which are used to calculate feature contrast for the spatial saliency computation. The temporal saliency is calculated by the motion contrast from the planar and depth motion features in the stereoscopic video sequences. The final saliency is estimated by fusing the spatial and temporal saliency with uncertainty weighting, which is estimated by the laws of proximity, continuity, and common fate in Gestalt theory. Experimental results show that the proposed method outperforms the state-of-the-art stereoscopic video saliency detection models on our built large-scale eye tracking database and one other database (DML-ITRACK-3D).

  9. Object tracking using multiple camera video streams

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  10. GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Barooah, Prabir; Collins, Gaemus E.; Hespanha, João P.

    2009-05-01

    Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara (UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned aircraft systems (UAS) to cooperatively locate and track ground targets. Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system. The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video tracking in low-powered computing platforms.

  11. Annotation of UAV surveillance video

    NASA Astrophysics Data System (ADS)

    Howlett, Todd; Robertson, Mark A.; Manthey, Dan; Krol, John

    2004-08-01

    Significant progress toward the development of a video annotation capability is presented in this paper. Research and development of an object tracking algorithm applicable for UAV video is described. Object tracking is necessary for attaching the annotations to the objects of interest. A methodology and format is defined for encoding video annotations using the SMPTE Key-Length-Value encoding standard. This provides the following benefits: a non-destructive annotation, compliance with existing standards, video playback in systems that are not annotation enabled and support for a real-time implementation. A model real-time video annotation system is also presented, at a high level, using the MPEG-2 Transport Stream as the transmission medium. This work was accomplished to meet the Department of Defense"s (DoD"s) need for a video annotation capability. Current practices for creating annotated products are to capture a still image frame, annotate it using an Electric Light Table application, and then pass the annotated image on as a product. That is not adequate for reporting or downstream cueing. It is too slow and there is a severe loss of information. This paper describes a capability for annotating directly on the video.

  12. Multi-view video segmentation and tracking for video surveillance

    NASA Astrophysics Data System (ADS)

    Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj

    2009-05-01

    Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.

  13. Optical Flow Analysis and Kalman Filter Tracking in Video Surveillance Algorithms

    DTIC Science & Technology

    2007-06-01

    Grover Brown and Patrick Y.C. Hwang , Introduction to Random Signals and Applied Kalman Filtering, Third edition, John Wiley & Sons, New York, 1997...noise. Brown and Hwang [6] achieve this improvement by linearly blending the prior estimate, 1kx ∧ − , with the noisy measurement, kz , in the equation...AND KALMAN FILTER TRACKING IN VIDEO SURVEILLANCE ALGORITHMS by David A. Semko June 2007 Thesis Advisor: Monique P. Fargues Second

  14. Transforming War Fighting through the Use of Service Based Architecture (SBA) Technology

    DTIC Science & Technology

    2006-05-04

    near-real-time video & telemetry to users on network using standard web-based protocols – Provides web-based access to archived video files MTI...Target Tracks Service Capabilities – Disseminates near-real-time MTI and Target Tracks to users on network based on consumer specified geographic...filter IBS SIGINT Service Capabilities – Disseminates near-real-time IBS SIGINT data to users on network based on consumer specified geographic filter

  15. SRNL Tagging and Tracking Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    SRNL generates a next generation satellite base tracking system. The tagging and tracking system can work in remote wilderness areas, inside buildings, underground and other areas not well served by traditional GPS. It’s a perfect response to customer needs and market demand.

  16. Linear array of photodiodes to track a human speaker for video recording

    NASA Astrophysics Data System (ADS)

    DeTone, D.; Neal, H.; Lougheed, R.

    2012-12-01

    Communication and collaboration using stored digital media has garnered more interest by many areas of business, government and education in recent years. This is due primarily to improvements in the quality of cameras and speed of computers. An advantage of digital media is that it can serve as an effective alternative when physical interaction is not possible. Video recordings that allow for viewers to discern a presenter's facial features, lips and hand motions are more effective than videos that do not. To attain this, one must maintain a video capture in which the speaker occupies a significant portion of the captured pixels. However, camera operators are costly, and often do an imperfect job of tracking presenters in unrehearsed situations. This creates motivation for a robust, automated system that directs a video camera to follow a presenter as he or she walks anywhere in the front of a lecture hall or large conference room. Such a system is presented. The system consists of a commercial, off-the-shelf pan/tilt/zoom (PTZ) color video camera, a necklace of infrared LEDs and a linear photodiode array detector. Electronic output from the photodiode array is processed to generate the location of the LED necklace, which is worn by a human speaker. The computer controls the video camera movements to record video of the speaker. The speaker's vertical position and depth are assumed to remain relatively constant- the video camera is sent only panning (horizontal) movement commands. The LED necklace is flashed at 70Hz at a 50% duty cycle to provide noise-filtering capability. The benefit to using a photodiode array versus a standard video camera is its higher frame rate (4kHz vs. 60Hz). The higher frame rate allows for the filtering of infrared noise such as sunlight and indoor lighting-a capability absent from other tracking technologies. The system has been tested in a large lecture hall and is shown to be effective.

  17. Perceptual training yields rapid improvements in visually impaired youth

    PubMed Central

    Nyquist, Jeffrey B.; Lappin, Joseph S.; Zhang, Ruyuan; Tadin, Duje

    2016-01-01

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events. PMID:27901026

  18. Tracking flow of leukocytes in blood for drug analysis

    NASA Astrophysics Data System (ADS)

    Basharat, Arslan; Turner, Wesley; Stephens, Gillian; Badillo, Benjamin; Lumpkin, Rick; Andre, Patrick; Perera, Amitha

    2011-03-01

    Modern microscopy techniques allow imaging of circulating blood components under vascular flow conditions. The resulting video sequences provide unique insights into the behavior of blood cells within the vasculature and can be used as a method to monitor and quantitate the recruitment of inflammatory cells at sites of vascular injury/ inflammation and potentially serve as a pharmacodynamic biomarker, helping screen new therapies and individualize dose and combinations of drugs. However, manual analysis of these video sequences is intractable, requiring hours per 400 second video clip. In this paper, we present an automated technique to analyze the behavior and recruitment of human leukocytes in whole blood under physiological conditions of shear through a simple multi-channel fluorescence microscope in real-time. This technique detects and tracks the recruitment of leukocytes to a bioactive surface coated on a flow chamber. Rolling cells (cells which partially bind to the bioactive matrix) are detected counted, and have their velocity measured and graphed. The challenges here include: high cell density, appearance similarity, and low (1Hz) frame rate. Our approach performs frame differencing based motion segmentation, track initialization and online tracking of individual leukocytes.

  19. Clinical and cost-effectiveness of computerised cognitive behavioural therapy for depression in primary care: Design of a randomised trial

    PubMed Central

    de Graaf, L Esther; Gerhards, Sylvia AH; Evers, Silvia MAA; Arntz, Arnoud; Riper, Heleen; Severens, Johan L; Widdershoven, Guy; Metsemakers, Job FM; Huibers, Marcus JH

    2008-01-01

    Background Major depression is a common mental health problem in the general population, associated with a substantial impact on quality of life and societal costs. However, many depressed patients in primary care do not receive the care they need. Reason for this is that pharmacotherapy is only effective in severely depressed patients and psychological treatments in primary care are scarce and costly. A more feasible treatment in primary care might be computerised cognitive behavioural therapy. This can be a self-help computer program based on the principles of cognitive behavioural therapy. Although previous studies suggest that computerised cognitive behavioural therapy is effective, more research is necessary. Therefore, the objective of the current study is to evaluate the (cost-) effectiveness of online computerised cognitive behavioural therapy for depression in primary care. Methods/Design In a randomised trial we will compare (a) computerised cognitive behavioural therapy with (b) treatment as usual by a GP, and (c) computerised cognitive behavioural therapy in combination with usual GP care. Three hundred mild to moderately depressed patients (aged 18–65) will be recruited in the general population by means of a large-scale Internet-based screening (N = 200,000). Patients will be randomly allocated to one of the three treatment groups. Primary outcome measure of the clinical evaluation is the severity of depression. Other outcomes include psychological distress, social functioning, and dysfunctional beliefs. The economic evaluation will be performed from a societal perspective, in which all costs will be related to clinical effectiveness and health-related quality of life. All outcome assessments will take place on the Internet at baseline, two, three, six, nine, and twelve months. Costs are measured on a monthly basis. A time horizon of one year will be used without long-term extrapolation of either costs or quality of life. Discussion Although computerised cognitive behavioural therapy is a promising treatment for depression in primary care, more research is needed. The effectiveness of online computerised cognitive behavioural therapy without support remains to be evaluated as well as the effects of computerised cognitive behavioural therapy in combination with usual GP care. Economic evaluation is also needed. Methodological strengths and weaknesses are discussed. Trial registration The study has been registered at the Netherlands Trial Register, part of the Dutch Cochrane Centre (ISRCTN47481236). PMID:18590518

  20. Can low-cost motion-tracking systems substitute a Polhemus system when researching social motor coordination in children?

    PubMed

    Romero, Veronica; Amaral, Joseph; Fitzpatrick, Paula; Schmidt, R C; Duncan, Amie W; Richardson, Michael J

    2017-04-01

    Functionally stable and robust interpersonal motor coordination has been found to play an integral role in the effectiveness of social interactions. However, the motion-tracking equipment required to record and objectively measure the dynamic limb and body movements during social interaction has been very costly, cumbersome, and impractical within a non-clinical or non-laboratory setting. Here we examined whether three low-cost motion-tracking options (Microsoft Kinect skeletal tracking of either one limb or whole body and a video-based pixel change method) can be employed to investigate social motor coordination. Of particular interest was the degree to which these low-cost methods of motion tracking could be used to capture and index the coordination dynamics that occurred between a child and an experimenter for three simple social motor coordination tasks in comparison to a more expensive, laboratory-grade motion-tracking system (i.e., a Polhemus Latus system). Overall, the results demonstrated that these low-cost systems cannot substitute the Polhemus system in some tasks. However, the lower-cost Microsoft Kinect skeletal tracking and video pixel change methods were successfully able to index differences in social motor coordination in tasks that involved larger-scale, naturalistic whole body movements, which can be cumbersome and expensive to record with a Polhemus. However, we found the Kinect to be particularly vulnerable to occlusion and the pixel change method to movements that cross the video frame midline. Therefore, particular care needs to be taken in choosing the motion-tracking system that is best suited for the particular research.

  1. Pyroclast Tracking Velocimetry: A particle tracking velocimetry-based tool for the study of Strombolian explosive eruptions

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Moroni, Monica; Taddeucci, Jacopo; Scarlato, Piergiorgio; Shindler, Luca

    2014-07-01

    Image-based techniques enable high-resolution observation of the pyroclasts ejected during Strombolian explosions and drawing inferences on the dynamics of volcanic activity. However, data extraction from high-resolution videos is time consuming and operator dependent, while automatic analysis is often challenging due to the highly variable quality of images collected in the field. Here we present a new set of algorithms to automatically analyze image sequences of explosive eruptions: the pyroclast tracking velocimetry (PyTV) toolbox. First, a significant preprocessing is used to remove the image background and to detect the pyroclasts. Then, pyroclast tracking is achieved with a new particle tracking velocimetry algorithm, featuring an original predictor of velocity based on the optical flow equation. Finally, postprocessing corrects the systematic errors of measurements. Four high-speed videos of Strombolian explosions from Yasur and Stromboli volcanoes, representing various observation conditions, have been used to test the efficiency of the PyTV against manual analysis. In all cases, >106 pyroclasts have been successfully detected and tracked by PyTV, with a precision of 1 m/s for the velocity and 20% for the size of the pyroclast. On each video, more than 1000 tracks are several meters long, enabling us to study pyroclast properties and trajectories. Compared to manual tracking, 3 to 100 times more pyroclasts are analyzed. PyTV, by providing time-constrained information, links physical properties and motion of individual pyroclasts. It is a powerful tool for the study of explosive volcanic activity, as well as an ideal complement for other geological and geophysical volcano observation systems.

  2. Highway-railway at-grade crossing structures : long term settlement measurements and assessments.

    DOT National Transportation Integrated Search

    2016-03-22

    A common maintenance technique to correct track geometry at bridge transitions is hand tamping. The first section presents a non-invasive track monitoring system involving high-speed video cameras that evaluates the change in track behavior before an...

  3. SRNL Tagging and Tracking Video

    ScienceCinema

    None

    2018-01-16

    SRNL generates a next generation satellite base tracking system. The tagging and tracking system can work in remote wilderness areas, inside buildings, underground and other areas not well served by traditional GPS. It’s a perfect response to customer needs and market demand.

  4. A preliminary experiment definition for video landmark acquisition and tracking

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Hulstrom, R. L.; Cunningham, R. A.; Reel, G. M.

    1976-01-01

    Six scientific objectives/experiments were derived which consisted of agriculture/forestry/range resources, land use, geology/mineral resources, water resources, marine resources and environmental surveys. Computer calculations were then made of the spectral radiance signature of each of 25 candidate targets as seen by a satellite sensor system. An imaging system capable of recognizing, acquiring and tracking specific generic type surface features was defined. A preliminary experiment definition and design of a video Landmark Acquisition and Tracking system is given. This device will search a 10-mile swath while orbiting the earth, looking for land/water interfaces such as coastlines and rivers.

  5. Detection and Tracking of Moving Objects with Real-Time Onboard Vision System

    NASA Astrophysics Data System (ADS)

    Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.

    2017-05-01

    Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.

  6. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalisedcross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  7. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalised cross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  8. The Accuracy of Conventional 2D Video for Quantifying Upper Limb Kinematics in Repetitive Motion Occupational Tasks

    PubMed Central

    Chen, Chia-Hsiung; Azari, David; Hu, Yu Hen; Lindstrom, Mary J.; Thelen, Darryl; Yen, Thomas Y.; Radwin, Robert G.

    2015-01-01

    Objective Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Background Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross correlation template-matching algorithm for tracking a region of interest on the upper extremities. Methods Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. Results The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s2 for acceleration, and less than 93 mm/s for speed and 656 mm/s2 for acceleration when camera pan and tilt were within ±30 degrees. Conclusion Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value® for repetitive motion when the camera is located within ±30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764

  9. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    PubMed

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  10. Evaluation of an interactive case simulation system in dermatology and venereology for medical students

    PubMed Central

    Wahlgren, Carl-Fredrik; Edelbring, Samuel; Fors, Uno; Hindbeck, Hans; Ståhle, Mona

    2006-01-01

    Background Most of the many computer resources used in clinical teaching of dermatology and venereology for medical undergraduates are information-oriented and focus mostly on finding a "correct" multiple-choice alternative or free-text answer. We wanted to create an interactive computer program, which facilitates not only factual recall but also clinical reasoning. Methods Through continuous interaction with students, a new computerised interactive case simulation system, NUDOV, was developed. It is based on authentic cases and contains images of real patients, actors and healthcare providers. The student selects a patient and proposes questions for medical history, examines the skin, and suggests investigations, diagnosis, differential diagnoses and further management. Feedback is given by comparing the user's own suggestions with those of a specialist. In addition, a log file of the student's actions is recorded. The program includes a large number of images, video clips and Internet links. It was evaluated with a student questionnaire and by randomising medical students to conventional teaching (n = 85) or conventional teaching plus NUDOV (n = 31) and comparing the results of the two groups in a final written examination. Results The questionnaire showed that 90% of the NUDOV students stated that the program facilitated their learning to a large/very large extent, and 71% reported that extensive working with authentic computerised cases made it easier to understand and learn about diseases and their management. The layout, user-friendliness and feedback concept were judged as good/very good by 87%, 97%, and 100%, respectively. Log files revealed that the students, in general, worked with each case for 60–90 min. However, the intervention group did not score significantly better than the control group in the written examination. Conclusion We created a computerised case simulation program allowing students to manage patients in a non-linear format supporting the clinical reasoning process. The student gets feedback through comparison with a specialist, eliminating the need for external scoring or correction. The model also permits discussion of case processing, since all transactions are stored in a log file. The program was highly appreciated by the students, but did not significantly improve their performance in the written final examination. PMID:16907972

  11. Long-term scale adaptive tracking with kernel correlation filters

    NASA Astrophysics Data System (ADS)

    Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui

    2018-04-01

    Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.

  12. Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos

    NASA Astrophysics Data System (ADS)

    Juneja, Medha; Grover, Priyanka

    2013-12-01

    Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.

  13. Automated tracking of whiskers in videos of head fixed rodents.

    PubMed

    Clack, Nathan G; O'Connor, Daniel H; Huber, Daniel; Petreanu, Leopoldo; Hires, Andrew; Peron, Simon; Svoboda, Karel; Myers, Eugene W

    2012-01-01

    We have developed software for fully automated tracking of vibrissae (whiskers) in high-speed videos (>500 Hz) of head-fixed, behaving rodents trimmed to a single row of whiskers. Performance was assessed against a manually curated dataset consisting of 1.32 million video frames comprising 4.5 million whisker traces. The current implementation detects whiskers with a recall of 99.998% and identifies individual whiskers with 99.997% accuracy. The average processing rate for these images was 8 Mpx/s/cpu (2.6 GHz Intel Core2, 2 GB RAM). This translates to 35 processed frames per second for a 640 px×352 px video of 4 whiskers. The speed and accuracy achieved enables quantitative behavioral studies where the analysis of millions of video frames is required. We used the software to analyze the evolving whisking strategies as mice learned a whisker-based detection task over the course of 6 days (8148 trials, 25 million frames) and measure the forces at the sensory follicle that most underlie haptic perception.

  14. Automated Tracking of Whiskers in Videos of Head Fixed Rodents

    PubMed Central

    Clack, Nathan G.; O'Connor, Daniel H.; Huber, Daniel; Petreanu, Leopoldo; Hires, Andrew; Peron, Simon; Svoboda, Karel; Myers, Eugene W.

    2012-01-01

    We have developed software for fully automated tracking of vibrissae (whiskers) in high-speed videos (>500 Hz) of head-fixed, behaving rodents trimmed to a single row of whiskers. Performance was assessed against a manually curated dataset consisting of 1.32 million video frames comprising 4.5 million whisker traces. The current implementation detects whiskers with a recall of 99.998% and identifies individual whiskers with 99.997% accuracy. The average processing rate for these images was 8 Mpx/s/cpu (2.6 GHz Intel Core2, 2 GB RAM). This translates to 35 processed frames per second for a 640 px×352 px video of 4 whiskers. The speed and accuracy achieved enables quantitative behavioral studies where the analysis of millions of video frames is required. We used the software to analyze the evolving whisking strategies as mice learned a whisker-based detection task over the course of 6 days (8148 trials, 25 million frames) and measure the forces at the sensory follicle that most underlie haptic perception. PMID:22792058

  15. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror

    PubMed Central

    Inoue, Michiaki; Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku; Tajima, Kenji

    2017-01-01

    This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time. PMID:29109385

  16. Detection of goal events in soccer videos

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas

    2005-01-01

    In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.

  17. WISESight : a multispectral smart video-track intrusion monitor.

    DOT National Transportation Integrated Search

    2015-05-01

    International Electronic Machines : Corporation (IEM) developed, tested, and : validated a unique smart video-based : intrusion monitoring system for use at : highway-rail grade crossings. The system : used both thermal infrared (IR) and : visible/ne...

  18. Color image processing and object tracking workstation

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Paulick, Michael J.

    1992-01-01

    A system is described for automatic and semiautomatic tracking of objects on film or video tape which was developed to meet the needs of the microgravity combustion and fluid science experiments at NASA Lewis. The system consists of individual hardware parts working under computer control to achieve a high degree of automation. The most important hardware parts include 16 mm film projector, a lens system, a video camera, an S-VHS tapedeck, a frame grabber, and some storage and output devices. Both the projector and tapedeck have a computer interface enabling remote control. Tracking software was developed to control the overall operation. In the automatic mode, the main tracking program controls the projector or the tapedeck frame incrementation, grabs a frame, processes it, locates the edge of the objects being tracked, and stores the coordinates in a file. This process is performed repeatedly until the last frame is reached. Three representative applications are described. These applications represent typical uses and include tracking the propagation of a flame front, tracking the movement of a liquid-gas interface with extremely poor visibility, and characterizing a diffusion flame according to color and shape.

  19. Aerial video mosaicking using binary feature tracking

    NASA Astrophysics Data System (ADS)

    Minnehan, Breton; Savakis, Andreas

    2015-05-01

    Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.

  20. Enhancing data from commercial space flights (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sherman, Ariel; Paolini, Aaron; Kozacik, Stephen; Kelmelis, Eric J.

    2017-05-01

    Video tracking of rocket launches inherently must be done from long range. Due to the high temperatures produced, cameras are often placed far from launch sites and their distance to the rocket increases as it is tracked through the flight. Consequently, the imagery collected is generally severely degraded by atmospheric turbulence. In this talk, we present our experience in enhancing commercial space flight videos. We will present the mission objectives, the unique challenges faced, and the solutions to overcome them.

  1. Learning patterns of life from intelligence analyst chat

    NASA Astrophysics Data System (ADS)

    Schneider, Michael K.; Alford, Mark; Babko-Malaya, Olga; Blasch, Erik; Chen, Lingji; Crespi, Valentino; HandUber, Jason; Haney, Phil; Nagy, Jim; Richman, Mike; Von Pless, Gregory; Zhu, Howie; Rhodes, Bradley J.

    2016-05-01

    Our Multi-INT Data Association Tool (MIDAT) learns patterns of life (POL) of a geographical area from video analyst observations called out in textual reporting. Typical approaches to learning POLs from video make use of computer vision algorithms to extract locations in space and time of various activities. Such approaches are subject to the detection and tracking performance of the video processing algorithms. Numerous examples of human analysts monitoring live video streams annotating or "calling out" relevant entities and activities exist, such as security analysis, crime-scene forensics, news reports, and sports commentary. This user description typically corresponds with textual capture, such as chat. Although the purpose of these text products is primarily to describe events as they happen, organizations typically archive the reports for extended periods. This archive provides a basis to build POLs. Such POLs are useful for diagnosis to assess activities in an area based on historical context, and for consumers of products, who gain an understanding of historical patterns. MIDAT combines natural language processing, multi-hypothesis tracking, and Multi-INT Activity Pattern Learning and Exploitation (MAPLE) technologies in an end-to-end lab prototype that processes textual products produced by video analysts, infers POLs, and highlights anomalies relative to those POLs with links to "tracks" of related activities performed by the same entity. MIDAT technologies perform well, achieving, for example, a 90% F1-value on extracting activities from the textual reports.

  2. Reliable motion detection of small targets in video with low signal-to-clutter ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, S.A.; Naylor, R.B.

    1995-07-01

    Studies show that vigilance decreases rapidly after several minutes when human operators are required to search live video for infrequent intrusion detections. Therefore, there is a need for systems which can automatically detect targets in live video and reserve the operator`s attention for assessment only. Thus far, automated systems have not simultaneously provided adequate detection sensitivity, false alarm suppression, and ease of setup when used in external, unconstrained environments. This unsatisfactory performance can be exacerbated by poor video imagery with low contrast, high noise, dynamic clutter, image misregistration, and/or the presence of small, slow, or erratically moving targets. This papermore » describes a highly adaptive video motion detection and tracking algorithm which has been developed as part of Sandia`s Advanced Exterior Sensor (AES) program. The AES is a wide-area detection and assessment system for use in unconstrained exterior security applications. The AES detection and tracking algorithm provides good performance under stressing data and environmental conditions. Features of the algorithm include: reliable detection with negligible false alarm rate of variable velocity targets having low signal-to-clutter ratios; reliable tracking of targets that exhibit motion that is non-inertial, i.e., varies in direction and velocity; automatic adaptation to both infrared and visible imagery with variable quality; and suppression of false alarms caused by sensor flaws and/or cutouts.« less

  3. Two novel motion-based algorithms for surveillance video analysis on embedded platforms

    NASA Astrophysics Data System (ADS)

    Vijverberg, Julien A.; Loomans, Marijn J. H.; Koeleman, Cornelis J.; de With, Peter H. N.

    2010-05-01

    This paper proposes two novel motion-vector based techniques for target detection and target tracking in surveillance videos. The algorithms are designed to operate on a resource-constrained device, such as a surveillance camera, and to reuse the motion vectors generated by the video encoder. The first novel algorithm for target detection uses motion vectors to construct a consistent motion mask, which is combined with a simple background segmentation technique to obtain a segmentation mask. The second proposed algorithm aims at multi-target tracking and uses motion vectors to assign blocks to targets employing five features. The weights of these features are adapted based on the interaction between targets. These algorithms are combined in one complete analysis application. The performance of this application for target detection has been evaluated for the i-LIDS sterile zone dataset and achieves an F1-score of 0.40-0.69. The performance of the analysis algorithm for multi-target tracking has been evaluated using the CAVIAR dataset and achieves an MOTP of around 9.7 and MOTA of 0.17-0.25. On a selection of targets in videos from other datasets, the achieved MOTP and MOTA are 8.8-10.5 and 0.32-0.49 respectively. The execution time on a PC-based platform is 36 ms. This includes the 20 ms for generating motion vectors, which are also required by the video encoder.

  4. Facilitating Social Initiations of Preschoolers with Autism Spectrum Disorders Using Video Self-Modeling

    ERIC Educational Resources Information Center

    Buggey, Tom; Hoomes, Grace; Sherberger, Mary Elizabeth; Williams, Sarah

    2011-01-01

    Video self-modeling (VSM) has accumulated a relatively impressive track record in the research literature across behaviors, ages, and types of disabilities. Using only positive imagery, VSM gives individuals the opportunity to view themselves performing a task just beyond their present functioning level via creative editing of videos using VCRs or…

  5. Toward automating Hammersmith pulled-to-sit examination of infants using feature point based video object tracking.

    PubMed

    Dogra, Debi P; Majumdar, Arun K; Sural, Shamik; Mukherjee, Jayanta; Mukherjee, Suchandra; Singh, Arun

    2012-01-01

    Hammersmith Infant Neurological Examination (HINE) is a set of tests used for grading neurological development of infants on a scale of 0 to 3. These tests help in assessing neurophysiological development of babies, especially preterm infants who are born before (the fetus reaches) the gestational age of 36 weeks. Such tests are often conducted in the follow-up clinics of hospitals for grading infants with suspected disabilities. Assessment based on HINE depends on the expertise of the physicians involved in conducting the examinations. It has been noted that some of these tests, especially pulled-to-sit and lateral tilting, are difficult to assess solely based on visual observation. For example, during the pulled-to-sit examination, the examiner needs to observe the relative movement of the head with respect to torso while pulling the infant by holding wrists. The examiner may find it difficult to follow the head movement from the coronal view. Video object tracking based automatic or semi-automatic analysis can be helpful in this case. In this paper, we present a video based method to automate the analysis of pulled-to-sit examination. In this context, a dynamic programming and node pruning based efficient video object tracking algorithm has been proposed. Pulled-to-sit event detection is handled by the proposed tracking algorithm that uses a 2-D geometric model of the scene. The algorithm has been tested with normal as well as marker based videos of the examination recorded at the neuro-development clinic of the SSKM Hospital, Kolkata, India. It is found that the proposed algorithm is capable of estimating the pulled-to-sit score with sensitivity (80%-92%) and specificity (89%-96%).

  6. Joint Transform Correlation for face tracking: elderly fall detection application

    NASA Astrophysics Data System (ADS)

    Katz, Philippe; Aron, Michael; Alfalou, Ayman

    2013-03-01

    In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.

  7. Blade counting tool with a 3D borescope for turbine applications

    NASA Astrophysics Data System (ADS)

    Harding, Kevin G.; Gu, Jiajun; Tao, Li; Song, Guiju; Han, Jie

    2014-07-01

    Video borescopes are widely used for turbine and aviation engine inspection to guarantee the health of blades and prevent blade failure during running. When the moving components of a turbine engine are inspected with a video borescope, the operator must view every blade in a given stage. The blade counting tool is video interpretation software that runs simultaneously in the background during inspection. It identifies moving turbine blades in a video stream, tracks and counts the blades as they move across the screen. This approach includes blade detection to identify blades in different inspection scenarios and blade tracking to perceive blade movement even in hand-turning engine inspections. The software is able to label each blade by comparing counting results to a known blade count for the engine type and stage. On-screen indications show the borescope user labels for each blade and how many blades have been viewed as the turbine is rotated.

  8. Feature Quantization and Pooling for Videos

    DTIC Science & Technology

    2014-05-01

    does not score high on this metric. The exceptions are videos where objects move - for exam- ple, the ice skaters (“ice”) and the tennis player , tracked...convincing me that my future path should include a PhD. Martial and Fernando, your energy is exceptional! Its influence can be seen in the burning...3.17 BMW enables Interpretation of similar regions across videos ( tennis ). . . . . . . 50 3.18 Common Motion Words across videos with large camera

  9. Investigating pulmonary embolism in the emergency department with lower limb plethysmography: the Manchester Investigation of Pulmonary Embolism Diagnosis (MIOPED) study

    PubMed Central

    Hogg, K; Dawson, D; Mackway‐Jones, K

    2006-01-01

    Objectives To measure the diagnostic accuracy of computerised strain gauge plethysmography in the diagnosis of pulmonary embolism (PE). Methods Two researchers prospectively recruited 425 patients with pleuritic chest pain presenting to the emergency department (ED). Lower limb computerised strain gauge plethysmography was performed in the ED. All patients underwent an independent reference standard diagnostic algorithm to establish the presence or absence of PE. A low modified Wells' clinical probability combined with a normal D‐dimer excluded PE. All others required diagnostic imaging with PIOPED interpreted ventilation perfusion scanning and/or computerised tomography (CT) pulmonary angiography. Patients with a nondiagnostic CT had digital subtraction pulmonary angiography. All patients were followed up clinically for 3 months. Results The sensitivity of computerised strain gauge plethysmography was 33.3% (95% confidence interval (CI) 16.3 to 56.2%) and specificity 64.1% (95% CI 59.0 to 68.8%). The negative likelihood ratio was 1.04 (95% CI 0.68 to 1.33) and positive likelihood ratio 0.93 (95% CI 0.45 to 1.60). Conclusions Lower limb computerised strain gauge plethysmography does not aid in the diagnosis of PE. PMID:16439734

  10. Saying What You're Looking For: Linguistics Meets Video Search.

    PubMed

    Barrett, Daniel Paul; Barbu, Andrei; Siddharth, N; Siskind, Jeffrey Mark

    2016-10-01

    We present an approach to searching large video corpora for clips which depict a natural-language query in the form of a sentence. Compositional semantics is used to encode subtle meaning differences lost in other approaches, such as the difference between two sentences which have identical words but entirely different meaning: The person rode the horse versus The horse rode the person. Given a sentential query and a natural-language parser, we produce a score indicating how well a video clip depicts that sentence for each clip in a corpus and return a ranked list of clips. Two fundamental problems are addressed simultaneously: detecting and tracking objects, and recognizing whether those tracks depict the query. Because both tracking and object detection are unreliable, our approach uses the sentential query to focus the tracker on the relevant participants and ensures that the resulting tracks are described by the sentential query. While most earlier work was limited to single-word queries which correspond to either verbs or nouns, we search for complex queries which contain multiple phrases, such as prepositional phrases, and modifiers, such as adverbs. We demonstrate this approach by searching for 2,627 naturally elicited sentential queries in 10 Hollywood movies.

  11. Tracking of Ball and Players in Beach Volleyball Videos

    PubMed Central

    Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern

    2014-01-01

    This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936

  12. Experimental and simulation study results for video landmark acquisition and tracking technology

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Thomas, H. M.; Lowrie, J. W.

    1979-01-01

    A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking.

  13. Novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish

    NASA Astrophysics Data System (ADS)

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2006-11-01

    A novel method based on video tracking system for simultaneous measurement of kinematics and flow in the wake of a freely swimming fish is described. Spontaneous and continuous swimming behaviors of a variegated carp (Cyprinus carpio) are recorded by two cameras mounted on a translation stage which is controlled to track the fish. By processing the images recorded during tracking, the detailed kinematics based on calculated midlines and quantitative analysis of the flow in the wake during a low-speed turn and burst-and-coast swimming are revealed. We also draw the trajectory of the fish during a continuous swimming bout containing several moderate maneuvers. The results prove that our method is effective for studying maneuvers of fish both from kinematic and hydrodynamic viewpoints.

  14. Loop-the-Loop: An Easy Experiment, A Challenging Explanation

    NASA Astrophysics Data System (ADS)

    Asavapibhop, B.; Suwonjandee, N.

    2010-07-01

    A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.

  15. Recording and reading of information on optical disks

    NASA Astrophysics Data System (ADS)

    Bouwhuis, G.; Braat, J. J. M.

    In the storage of information, related to video programs, in a spiral track on a disk, difficulties arise because the bandwidth for video is much greater than for audio signals. An attractive solution was found in optical storage. The optical noncontact method is free of wear, and allows for fast random access. Initial problems regarding a suitable light source could be overcome with the aid of appropriate laser devices. The basic concepts of optical storage on disks are treated insofar as they are relevant for the optical arrangement. A general description is provided of a video, a digital audio, and a data storage system. Scanning spot microscopy for recording and reading of optical disks is discussed, giving attention to recording of the signal, the readout of optical disks, the readout of digitally encoded signals, and cross talk. Tracking systems are also considered, taking into account the generation of error signals for radial tracking and the generation of focus error signals.

  16. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.

    PubMed

    Zhao, Zijian; Voros, Sandrine; Weng, Ying; Chang, Faliang; Li, Ruijian

    2017-12-01

    Worldwide propagation of minimally invasive surgeries (MIS) is hindered by their drawback of indirect observation and manipulation, while monitoring of surgical instruments moving in the operated body required by surgeons is a challenging problem. Tracking of surgical instruments by vision-based methods is quite lucrative, due to its flexible implementation via software-based control with no need to modify instruments or surgical workflow. A MIS instrument is conventionally split into a shaft and end-effector portions, while a 2D/3D tracking-by-detection framework is proposed, which performs the shaft tracking followed by the end-effector one. The former portion is described by line features via the RANSAC scheme, while the latter is depicted by special image features based on deep learning through a well-trained convolutional neural network. The method verification in 2D and 3D formulation is performed through the experiments on ex-vivo video sequences, while qualitative validation on in-vivo video sequences is obtained. The proposed method provides robust and accurate tracking, which is confirmed by the experimental results: its 3D performance in ex-vivo video sequences exceeds those of the available state-of -the-art methods. Moreover, the experiments on in-vivo sequences demonstrate that the proposed method can tackle the difficult condition of tracking with unknown camera parameters. Further refinements of the method will refer to the occlusion and multi-instrumental MIS applications.

  17. Optical cell tracking analysis using a straight-forward approach to minimize processing time for high frame rate data

    NASA Astrophysics Data System (ADS)

    Seeto, Wen Jun; Lipke, Elizabeth Ann

    2016-03-01

    Tracking of rolling cells via in vitro experiment is now commonly performed using customized computer programs. In most cases, two critical challenges continue to limit analysis of cell rolling data: long computation times due to the complexity of tracking algorithms and difficulty in accurately correlating a given cell with itself from one frame to the next, which is typically due to errors caused by cells that either come close in proximity to each other or come in contact with each other. In this paper, we have developed a sophisticated, yet simple and highly effective, rolling cell tracking system to address these two critical problems. This optical cell tracking analysis (OCTA) system first employs ImageJ for cell identification in each frame of a cell rolling video. A custom MATLAB code was written to use the geometric and positional information of all cells as the primary parameters for matching each individual cell with itself between consecutive frames and to avoid errors when tracking cells that come within close proximity to one another. Once the cells are matched, rolling velocity can be obtained for further analysis. The use of ImageJ for cell identification eliminates the need for high level MATLAB image processing knowledge. As a result, only fundamental MATLAB syntax is necessary for cell matching. OCTA has been implemented in the tracking of endothelial colony forming cell (ECFC) rolling under shear. The processing time needed to obtain tracked cell data from a 2 min ECFC rolling video recorded at 70 frames per second with a total of over 8000 frames is less than 6 min using a computer with an Intel® Core™ i7 CPU 2.80 GHz (8 CPUs). This cell tracking system benefits cell rolling analysis by substantially reducing the time required for post-acquisition data processing of high frame rate video recordings and preventing tracking errors when individual cells come in close proximity to one another.

  18. Tracking zebrafish larvae in group – Status and perspectives☆

    PubMed Central

    Martineau, Pierre R.; Mourrain, Philippe

    2013-01-01

    Video processing is increasingly becoming a standard procedure in zebrafish behavior investigations as it enables higher research throughput and new or better measures. This trend, fostered by the ever increasing performance-to-price ratio of the required recording and processing equipment, should be expected to continue in the foreseeable future, with video-processing based methods permeating more and more experiments and, as a result, expanding the very role of behavioral studies in zebrafish research. To assess whether the routine video tracking of zebrafish larvae directly in the Petri dish is a capability that can be expected in the near future, the key processing concepts are discussed and illustrated on published zebrafish studies when available or other animals when not. PMID:23707495

  19. [The electronic health record: computerised provider order entry and the electronic instruction document as new functionalities].

    PubMed

    Derikx, Joep P M; Erdkamp, Frans L G; Hoofwijk, A G M

    2013-01-01

    An electronic health record (EHR) should provide 4 key functionalities: (a) documenting patient data; (b) facilitating computerised provider order entry; (c) displaying the results of diagnostic research; and (d) providing support for healthcare providers in the clinical decision-making process.- Computerised provider order entry into the EHR enables the electronic receipt and transfer of orders to ancillary departments, which can take the place of handwritten orders.- By classifying the computer provider order entries according to disorders, digital care pathways can be created. Such care pathways could result in faster and improved diagnostics.- Communicating by means of an electronic instruction document that is linked to a computerised provider order entry facilitates the provision of healthcare in a safer, more efficient and auditable manner.- The implementation of a full-scale EHR has been delayed as a result of economic, technical and legal barriers, as well as some resistance by physicians.

  20. Automated track video inspection pilot project.

    DOT National Transportation Integrated Search

    2013-09-01

    This project had two main objectives. The first was to improve the safety of transit workers, specifically right-of-way safety for rail transit : workers through demonstration of advanced track inspection techniques that limit the inspectors expos...

  1. Privacy-protecting video surveillance

    NASA Astrophysics Data System (ADS)

    Wickramasuriya, Jehan; Alhazzazi, Mohanned; Datt, Mahesh; Mehrotra, Sharad; Venkatasubramanian, Nalini

    2005-02-01

    Forms of surveillance are very quickly becoming an integral part of crime control policy, crisis management, social control theory and community consciousness. In turn, it has been used as a simple and effective solution to many of these problems. However, privacy-related concerns have been expressed over the development and deployment of this technology. Used properly, video cameras help expose wrongdoing but typically come at the cost of privacy to those not involved in any maleficent activity. This work describes the design and implementation of a real-time, privacy-protecting video surveillance infrastructure that fuses additional sensor information (e.g. Radio-frequency Identification) with video streams and an access control framework in order to make decisions about how and when to display the individuals under surveillance. This video surveillance system is a particular instance of a more general paradigm of privacy-protecting data collection. In this paper we describe in detail the video processing techniques used in order to achieve real-time tracking of users in pervasive spaces while utilizing the additional sensor data provided by various instrumented sensors. In particular, we discuss background modeling techniques, object tracking and implementation techniques that pertain to the overall development of this system.

  2. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  3. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, moremore » monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.« less

  4. Geometric estimation of intestinal contraction for motion tracking of video capsule endoscope

    NASA Astrophysics Data System (ADS)

    Mi, Liang; Bao, Guanqun; Pahlavan, Kaveh

    2014-03-01

    Wireless video capsule endoscope (VCE) provides a noninvasive method to examine the entire gastrointestinal (GI) tract, especially small intestine, where other endoscopic instruments can barely reach. VCE is able to continuously provide clear pictures in short fixed intervals, and as such researchers have attempted to use image processing methods to track the video capsule in order to locate the abnormalities inside the GI tract. To correctly estimate the speed of the motion of the endoscope capsule, the radius of the intestinal track must be known a priori. Physiological factors such as intestinal contraction, however, dynamically change the radius of the small intestine, which could bring large errors in speed estimation. In this paper, we are aiming to estimate the radius of the contracted intestinal track. First a geometric model is presented for estimating the radius of small intestine based on the black hole on endoscopic images. To validate our proposed model, a 3-dimentional virtual testbed that emulates the intestinal contraction is then introduced in details. After measuring the size of the black holes on the test images, we used our model to esimate the radius of the contracted intestinal track. Comparision between analytical results and the emulation model parameters has verified that our proposed method could preciously estimate the radius of the contracted small intestine based on endoscopic images.

  5. Echocardiogram video summarization

    NASA Astrophysics Data System (ADS)

    Ebadollahi, Shahram; Chang, Shih-Fu; Wu, Henry D.; Takoma, Shin

    2001-05-01

    This work aims at developing innovative algorithms and tools for summarizing echocardiogram videos. Specifically, we summarize the digital echocardiogram videos by temporally segmenting them into the constituent views and representing each view by the most informative frame. For the segmentation we take advantage of the well-defined spatio- temporal structure of the echocardiogram videos. Two different criteria are used: presence/absence of color and the shape of the region of interest (ROI) in each frame of the video. The change in the ROI is due to different modes of echocardiograms present in one study. The representative frame is defined to be the frame corresponding to the end- diastole of the heart cycle. To locate the end-diastole we track the ECG of each frame to find the exact time the time- marker on the ECG crosses the peak of the end-diastole we track the ECG of each frame to find the exact time the time- marker on the ECG crosses the peak of the R-wave. The corresponding frame is chosen to be the key-frame. The entire echocardiogram video can be summarized into either a static summary, which is a storyboard type of summary and a dynamic summary, which is a concatenation of the selected segments of the echocardiogram video. To the best of our knowledge, this if the first automated system for summarizing the echocardiogram videos base don visual content.

  6. Computerised anthropomorphometric analysis of images: case report.

    PubMed

    Ventura, F; Zacheo, A; Ventura, A; Pala, A

    2004-12-02

    The personal identification of living subjects through video filmed images can occasionally be necessary, particularly in the following circumstances: (1) the need to identify unknown subjects by comparing two-dimensional images of someone of known identity with the subject. (2) The need to identify subjects taken in photographs or recorded on video camera by using a comparison with individuals of known identity. The final aim of our research was that of analysing a video clip of a bank robbery and to determine whether one of the subjects was identifiable with one of the suspects. Following the correct methodology for personal identification, the original videotape was first analysed, relating to the robbery carried out in the bank so as to study the characteristics of the criminal action and to pinpoint the best scenes for an antropomorphometrical analysis. The scene of the crime was therefore reconstructed by bringing the suspect back to the bank where the robbery took place, who was then filmed with the same closed circuit video cameras and made to assume positions as close as possible to those of the bank robber to be identified. Taking frame no. 17, points of comparable similarity were identified on the face and right ear of the perpetrator of the crime and the same points of similarity identified on the face of the suspect: right and left eyebrows, right and left eyes, "glabella", nose, mouth, chin, fold between nose and upper lip, right ear, elix, tragus,"fossetta", "conca" and lobule. After careful comparative morphometric computer analysis, it was concluded that none of the 17 points of similarity showed the same anthropomorphology (points of negative similarity). It is reasonable to sustain that 17 points of negative similarity (or non coincidental points) is sufficient to exclude the identity of the person compared with the other.

  7. Optimized swimmer tracking system based on a novel multi-related-targets approach

    NASA Astrophysics Data System (ADS)

    Benarab, D.; Napoléon, T.; Alfalou, A.; Verney, A.; Hellard, P.

    2017-02-01

    Robust tracking is a crucial step in automatic swimmer evaluation from video sequences. We designed a robust swimmer tracking system using a new multi-related-targets approach. The main idea is to consider the swimmer as a bloc of connected subtargets that advance at the same speed. If one of the subtargets is partially or totally occluded, it can be localized by knowing the position of the others. In this paper, we first introduce the two-dimensional direct linear transformation technique that we used to calibrate the videos. Then, we present the classical tracking approach based on dynamic fusion. Next, we highlight the main contribution of our work, which is the multi-related-targets tracking approach. This approach, the classical head-only approach and the ground truth are then compared, through testing on a database of high-level swimmers in training, national and international competitions (French National Championships, Limoges 2015, and World Championships, Kazan 2015). Tracking percentage and the accuracy of the instantaneous speed are evaluated and the findings show that our new appraoach is significantly more accurate than the classical approach.

  8. Video-Based Eye Tracking in Sex Research: A Systematic Literature Review.

    PubMed

    Wenzlaff, Frederike; Briken, Peer; Dekker, Arne

    2015-12-21

    Although eye tracking has been used for decades, it has gained popularity in the area of sex research only recently. The aim of this article is to examine the potential merits of eye tracking for this field. We present a systematic review of the current use of video-based eye-tracking technology in this area, evaluate the findings, and identify future research opportunities. A total of 34 relevant studies published between 2006 and 2014 were identified for inclusion by means of online databases and other methods. We grouped them into three main areas of research: body perception and attractiveness, forensic research, and sexual orientation. Despite the methodological and theoretical differences across the studies, eye tracking has been shown to be a promising tool for sex research. The article suggests there is much potential for further studies to employ this technique because it is noninvasive and yet still allows for the assessment of both conscious and unconscious perceptional processes. Furthermore, eye tracking can be implemented in investigations of various theoretical backgrounds, ranging from biology to the social sciences.

  9. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  10. Real time markerless motion tracking using linked kinematic chains

    DOEpatents

    Luck, Jason P [Arvada, CO; Small, Daniel E [Albuquerque, NM

    2007-08-14

    A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

  11. A comparison of foveated acquisition and tracking performance relative to uniform resolution approaches

    NASA Astrophysics Data System (ADS)

    Dubuque, Shaun; Coffman, Thayne; McCarley, Paul; Bovik, A. C.; Thomas, C. William

    2009-05-01

    Foveated imaging has been explored for compression and tele-presence, but gaps exist in the study of foveated imaging applied to acquisition and tracking systems. Results are presented from two sets of experiments comparing simple foveated and uniform resolution targeting (acquisition and tracking) algorithms. The first experiments measure acquisition performance when locating Gabor wavelet targets in noise, with fovea placement driven by a mutual information measure. The foveated approach is shown to have lower detection delay than a notional uniform resolution approach when using video that consumes equivalent bandwidth. The second experiments compare the accuracy of target position estimates from foveated and uniform resolution tracking algorithms. A technique is developed to select foveation parameters that minimize error in Kalman filter state estimates. Foveated tracking is shown to consistently outperform uniform resolution tracking on an abstract multiple target task when using video that consumes equivalent bandwidth. Performance is also compared to uniform resolution processing without bandwidth limitations. In both experiments, superior performance is achieved at a given bandwidth by foveated processing because limited resources are allocated intelligently to maximize operational performance. These findings indicate the potential for operational performance improvements over uniform resolution systems in both acquisition and tracking tasks.

  12. ViCoMo: visual context modeling for scene understanding in video surveillance

    NASA Astrophysics Data System (ADS)

    Creusen, Ivo M.; Javanbakhti, Solmaz; Loomans, Marijn J. H.; Hazelhoff, Lykele B.; Roubtsova, Nadejda; Zinger, Svitlana; de With, Peter H. N.

    2013-10-01

    The use of contextual information can significantly aid scene understanding of surveillance video. Just detecting people and tracking them does not provide sufficient information to detect situations that require operator attention. We propose a proof-of-concept system that uses several sources of contextual information to improve scene understanding in surveillance video. The focus is on two scenarios that represent common video surveillance situations, parking lot surveillance and crowd monitoring. In the first scenario, a pan-tilt-zoom (PTZ) camera tracking system is developed for parking lot surveillance. Context is provided by the traffic sign recognition system to localize regular and handicapped parking spot signs as well as license plates. The PTZ algorithm has the ability to selectively detect and track persons based on scene context. In the second scenario, a group analysis algorithm is introduced to detect groups of people. Contextual information is provided by traffic sign recognition and region labeling algorithms and exploited for behavior understanding. In both scenarios, decision engines are used to interpret and classify the output of the subsystems and if necessary raise operator alerts. We show that using context information enables the automated analysis of complicated scenarios that were previously not possible using conventional moving object classification techniques.

  13. Super-resolution imaging applied to moving object tracking

    NASA Astrophysics Data System (ADS)

    Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi

    2017-10-01

    Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.

  14. In vitro investigations of propulsion during laser lithotripsy using video tracking.

    PubMed

    Eisel, Maximilian; Ströbl, Stephan; Pongratz, Thomas; Strittmatter, Frank; Sroka, Ronald

    2018-04-01

    Ureteroscopic laser lithotripsy is an important and widely used method for destroying ureter stones. It represents an alternative to ultrasonic and pneumatic lithotripsy techniques. Although these techniques have been thoroughly investigated, the influence of some physical parameters that may be relevant to further improve the treatment results is not fully understood. One crucial topic is the propulsive stone movement induced by the applied laser pulses. To simplify and speed up the optimization of laser parameters in this regard, a video tracking method was developed in connection with a vertical column setup that allows recording and subsequently analyzing the propulsive stone movement in dependence of different laser parameters in a particularly convenient and fast manner. Pulsed laser light was applied from below to a cubic BegoStone phantom loosely guided within a vertical column setup. The video tracking method uses an algorithm to determine the vertical stone position in each frame of the recorded scene. The time-dependence of the vertical stone position is characterized by an irregular series of peaks. By analyzing the slopes of the peaks in this signal it was possible to determine the mean upward stone velocity for a whole pulse train and to compare it for different laser settings. For a proof of principle of the video tracking method, a specific pulse energy setting (1 J/pulse) was used in combination with three different pulse durations: short pulse (0.3 ms), medium pulse (0.6 ms), and long pulse (1.0 ms). The three pulse durations were compared in terms of their influence on the propulsive stone movement in terms of upward velocity. Furthermore, the propulsions induced by two different pulse energy settings (0.8 J/pulse and 1.2 J/pulse) for a fixed pulse duration (0.3 ms) were compared. A pulse repetition rate of 10 Hz was chosen for all experiments, and for each laser setting, the experiment was repeated on 15 different freshly prepared stones. The latter set of experiments was compared with the results of previous propulsion measurements performed with a pendulum setup. For a fixed pulse energy (1 J/pulse), the mean upward propulsion velocity increased (from 120.0 to 154.9 mm · s -1 ) with decreasing pulse duration. For fixed pulse duration (0.3 ms), the mean upward propulsion velocity increased (from 91.9 to 123.3 mm · s -1 ) with increasing pulse energy (0.8 J/pulse and 1.2 J/pulse). The latter result corresponds roughly to the one obtained with the pendulum setup (increase from 61 to 105 mm · s -1 ). While the mean propulsion velocities for the two different pulse energies were found to differ significantly (P < 0.001) for the two experimental and analysis methods, the standard deviations of the measured mean propulsion velocities were considerably smaller in case of the vertical column method with video tracking (12% and 15% for n = 15 freshly prepared stones) than in case of the pendulum method (26% and 41% for n = 50 freshly prepared stones), in spite of the considerably smaller number of experiment repetitions ("sample size") in the first case. The proposed vertical column method with video tracking appears advantageous compared to the pendulum method in terms of the statistical significance of the obtained results. This may partly be understood by the fact that the entire motion of the stones contributes to the data analysis, rather than just their maximum distance from the initial position. The key difference is, however, that the pendulum method involves only one single laser pulse in each experiment run, which renders this method rather tedious to perform. Furthermore, the video tracking method appears much better suited to model a clinical lithotripsy intervention that utilizes longer series of laser pulses at higher repetition rates. The proposed video tracking method can conveniently and quickly deliver results for a large number of laser pulses that can easily be averaged. An optimization of laser settings to achieve minimal propulsive stone movement should thus be more easily feasible with the video tracking method in connection with the vertical column setup. Lasers Surg. Med. 50:333-339, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Intelligent Flight Control System and Aeronautics Research at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Brown, Nelson A.

    2009-01-01

    This video presentation reviews the F-15 Intelligent Flight Control System and contains clips of flight tests and aircraft performance in the areas of target tracking, takeoff and differential stabilators. Video of the APG milestone flight 1g formation is included.

  16. More About The Video Event Trigger

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    1996-01-01

    Report presents additional information about system described in "Video Event Trigger" (LEW-15076). Digital electronic system processes video-image data to generate trigger signal when image shows significant change, such as motion, or appearance, disappearance, change in color, brightness, or dilation of object. Potential uses include monitoring of hallways, parking lots, and other areas during hours when supposed unoccupied, looking for fires, tracking airplanes or other moving objects, identification of missing or defective parts on production lines, and video recording of automobile crash tests.

  17. Automated extraction of temporal motor activity signals from video recordings of neonatal seizures based on adaptive block matching.

    PubMed

    Karayiannis, Nicolaos B; Sami, Abdul; Frost, James D; Wise, Merrill S; Mizrahi, Eli M

    2005-04-01

    This paper presents an automated procedure developed to extract quantitative information from video recordings of neonatal seizures in the form of motor activity signals. This procedure relies on optical flow computation to select anatomical sites located on the infants' body parts. Motor activity signals are extracted by tracking selected anatomical sites during the seizure using adaptive block matching. A block of pixels is tracked throughout a sequence of frames by searching for the most similar block of pixels in subsequent frames; this search is facilitated by employing various update strategies to account for the changing appearance of the block. The proposed procedure is used to extract temporal motor activity signals from video recordings of neonatal seizures and other events not associated with seizures.

  18. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs.

    PubMed

    Kursawe, Jochen; Bardenet, Rémi; Zartman, Jeremiah J; Baker, Ruth E; Fletcher, Alexander G

    2016-11-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. © 2016 The Authors.

  19. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs

    PubMed Central

    Bardenet, Rémi; Zartman, Jeremiah J.; Baker, Ruth E.

    2016-01-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a ‘maximum common subgraph’ to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell–cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. PMID:28334699

  20. Reconstructing the flight kinematics of swarming and mating in wild mosquitoes

    PubMed Central

    Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.

    2012-01-01

    We describe a novel tracking system for reconstructing three-dimensional tracks of individual mosquitoes in wild swarms and present the results of validating the system by filming swarms and mating events of the malaria mosquito Anopheles gambiae in Mali. The tracking system is designed to address noisy, low frame-rate (25 frames per second) video streams from a stereo camera system. Because flying A. gambiae move at 1–4 m s−1, they appear as faded streaks in the images or sometimes do not appear at all. We provide an adaptive algorithm to search for missing streaks and a likelihood function that uses streak endpoints to extract velocity information. A modified multi-hypothesis tracker probabilistically addresses occlusions and a particle filter estimates the trajectories. The output of the tracking algorithm is a set of track segments with an average length of 0.6–1 s. The segments are verified and combined under human supervision to create individual tracks up to the duration of the video (90 s). We evaluate tracking performance using an established metric for multi-target tracking and validate the accuracy using independent stereo measurements of a single swarm. Three-dimensional reconstructions of A. gambiae swarming and mating events are presented. PMID:22628212

  1. Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features

    NASA Astrophysics Data System (ADS)

    Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique

    2011-12-01

    We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.

  2. Commercial vehicle route tracking using video detection.

    DOT National Transportation Integrated Search

    2010-10-31

    Interstate commercial vehicle traffic is a major factor in the life of any road surface. The ability to track : these vehicles and their routes through the state can provide valuable information to planning : activities. We propose a method using vid...

  3. Automated Video-Based Traffic Count Analysis.

    DOT National Transportation Integrated Search

    2016-01-01

    The goal of this effort has been to develop techniques that could be applied to the : detection and tracking of vehicles in overhead footage of intersections. To that end we : have developed and published techniques for vehicle tracking based on dete...

  4. A Benchmark Dataset and Saliency-guided Stacked Autoencoders for Video-based Salient Object Detection.

    PubMed

    Li, Jia; Xia, Changqun; Chen, Xiaowu

    2017-10-12

    Image-based salient object detection (SOD) has been extensively studied in past decades. However, video-based SOD is much less explored due to the lack of large-scale video datasets within which salient objects are unambiguously defined and annotated. Toward this end, this paper proposes a video-based SOD dataset that consists of 200 videos. In constructing the dataset, we manually annotate all objects and regions over 7,650 uniformly sampled keyframes and collect the eye-tracking data of 23 subjects who free-view all videos. From the user data, we find that salient objects in a video can be defined as objects that consistently pop-out throughout the video, and objects with such attributes can be unambiguously annotated by combining manually annotated object/region masks with eye-tracking data of multiple subjects. To the best of our knowledge, it is currently the largest dataset for videobased salient object detection. Based on this dataset, this paper proposes an unsupervised baseline approach for video-based SOD by using saliencyguided stacked autoencoders. In the proposed approach, multiple spatiotemporal saliency cues are first extracted at the pixel, superpixel and object levels. With these saliency cues, stacked autoencoders are constructed in an unsupervised manner that automatically infers a saliency score for each pixel by progressively encoding the high-dimensional saliency cues gathered from the pixel and its spatiotemporal neighbors. In experiments, the proposed unsupervised approach is compared with 31 state-of-the-art models on the proposed dataset and outperforms 30 of them, including 19 imagebased classic (unsupervised or non-deep learning) models, six image-based deep learning models, and five video-based unsupervised models. Moreover, benchmarking results show that the proposed dataset is very challenging and has the potential to boost the development of video-based SOD.

  5. Applying Adaptive Variables in Computerised Adaptive Testing

    ERIC Educational Resources Information Center

    Triantafillou, Evangelos; Georgiadou, Elissavet; Economides, Anastasios A.

    2007-01-01

    Current research in computerised adaptive testing (CAT) focuses on applications, in small and large scale, that address self assessment, training, employment, teacher professional development for schools, industry, military, assessment of non-cognitive skills, etc. Dynamic item generation tools and automated scoring of complex, constructed…

  6. Tracking cells in Life Cell Imaging videos using topological alignments.

    PubMed

    Mosig, Axel; Jäger, Stefan; Wang, Chaofeng; Nath, Sumit; Ersoy, Ilker; Palaniappan, Kannap-pan; Chen, Su-Shing

    2009-07-16

    With the increasing availability of live cell imaging technology, tracking cells and other moving objects in live cell videos has become a major challenge for bioimage informatics. An inherent problem for most cell tracking algorithms is over- or under-segmentation of cells - many algorithms tend to recognize one cell as several cells or vice versa. We propose to approach this problem through so-called topological alignments, which we apply to address the problem of linking segmentations of two consecutive frames in the video sequence. Starting from the output of a conventional segmentation procedure, we align pairs of consecutive frames through assigning sets of segments in one frame to sets of segments in the next frame. We achieve this through finding maximum weighted solutions to a generalized "bipartite matching" between two hierarchies of segments, where we derive weights from relative overlap scores of convex hulls of sets of segments. For solving the matching task, we rely on an integer linear program. Practical experiments demonstrate that the matching task can be solved efficiently in practice, and that our method is both effective and useful for tracking cells in data sets derived from a so-called Large Scale Digital Cell Analysis System (LSDCAS). The source code of the implementation is available for download from http://www.picb.ac.cn/patterns/Software/topaln.

  7. Error analysis and algorithm implementation for an improved optical-electric tracking device based on MEMS

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Wu, Qian-zhong

    2013-09-01

    In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.

  8. Computerised interventions designed to reduce potentially inappropriate prescribing in hospitalised older adults: a systematic review and meta-analysis.

    PubMed

    Dalton, Kieran; O'Brien, Gary; O'Mahony, Denis; Byrne, Stephen

    2018-06-08

    computerised interventions have been suggested as an effective strategy to reduce potentially inappropriate prescribing (PIP) for hospitalised older adults. This systematic review and meta-analysis examined the evidence for efficacy of computerised interventions designed to reduce PIP in this patient group. an electronic literature search was conducted using eight databases up to October 2017. Included studies were controlled trials of computerised interventions aiming to reduce PIP in hospitalised older adults (≥65 years). Risk of bias was assessed using Cochrane's Effective Practice and Organisation of Care criteria. of 653 records identified, eight studies were included-two randomised controlled trials, two interrupted time series analysis studies and four controlled before-after studies. Included studies were mostly at a low risk of bias. Overall, seven studies showed either a statistically significant reduction in the proportion of patients prescribed a potentially inappropriate medicine (PIM) (absolute risk reduction {ARR} 1.3-30.1%), or in PIMs ordered (ARR 2-5.9%). However, there is insufficient evidence thus far to suggest that these interventions can routinely improve patient-related outcomes. It was only possible to include three studies in the meta-analysis-which demonstrated that intervention patients were less likely to be prescribed a PIM (odds ratio 0.6; 95% CI 0.38, 0.93). No computerised intervention targeting potential prescribing omissions (PPOs) was identified. this systematic review concludes that computerised interventions are capable of statistically significantly reducing PIMs in hospitalised older adults. Future interventions should strive to target both PIMs and PPOs, ideally demonstrating both cost-effectiveness data and clinically significant improvements in patient-related outcomes.

  9. Online tracking of outdoor lighting variations for augmented reality with moving cameras.

    PubMed

    Liu, Yanli; Granier, Xavier

    2012-04-01

    In augmented reality, one of key tasks to achieve a convincing visual appearance consistency between virtual objects and video scenes is to have a coherent illumination along the whole sequence. As outdoor illumination is largely dependent on the weather, the lighting condition may change from frame to frame. In this paper, we propose a full image-based approach for online tracking of outdoor illumination variations from videos captured with moving cameras. Our key idea is to estimate the relative intensities of sunlight and skylight via a sparse set of planar feature-points extracted from each frame. To address the inevitable feature misalignments, a set of constraints are introduced to select the most reliable ones. Exploiting the spatial and temporal coherence of illumination, the relative intensities of sunlight and skylight are finally estimated by using an optimization process. We validate our technique on a set of real-life videos and show that the results with our estimations are visually coherent along the video sequences.

  10. A Fast MEANSHIFT Algorithm-Based Target Tracking System

    PubMed Central

    Sun, Jian

    2012-01-01

    Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397

  11. Perception for Outdoor Navigation

    DTIC Science & Technology

    1990-11-01

    without lane marktings. Our perception modules use a variety of techniques for video processing (clusering theory, symbolic feature detection, neural nets...on gravel and dirt roads, as expected. The most difficult case involved a dirt road in a forest, which was mainly distinguishable in the video images...in that estimate. u bIsrshigl Neural Nets. Under separate funding, we have driven the Naviab using neural nets to track the road in video iages. We ame

  12. Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets*

    PubMed Central

    Nakhmani, Arie; Tannenbaum, Allen

    2012-01-01

    Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The algorithm divides the template, selected by the user in the first video frame, into numerous patches. The matching process of these patches by particle filtering allows one to handle the target’s occlusions and scaling. Experimental results with fixed rectangular templates show that the method is reliable for videos with nonstationary, noisy, and cluttered background, and provides accurate trajectories in cases of target translation, scaling, and occlusion. PMID:22506088

  13. 47 CFR 27.1232 - Planning the transition.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sites at which replacement downconverters will be installed (see § 27.1233(a)); (iv) Identify the video..., unless dispute resolution procedures are used, may not exceed 18 months from the conclusion of the... its single video programming or data transmission track to spectrum licensed to another licensee...

  14. 47 CFR 27.1232 - Planning the transition.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sites at which replacement downconverters will be installed (see § 27.1233(a)); (iv) Identify the video..., unless dispute resolution procedures are used, may not exceed 18 months from the conclusion of the... its single video programming or data transmission track to spectrum licensed to another licensee...

  15. 47 CFR 27.1232 - Planning the transition.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sites at which replacement downconverters will be installed (see § 27.1233(a)); (iv) Identify the video..., unless dispute resolution procedures are used, may not exceed 18 months from the conclusion of the... its single video programming or data transmission track to spectrum licensed to another licensee...

  16. 47 CFR 27.1232 - Planning the transition.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sites at which replacement downconverters will be installed (see § 27.1233(a)); (iv) Identify the video..., unless dispute resolution procedures are used, may not exceed 18 months from the conclusion of the... its single video programming or data transmission track to spectrum licensed to another licensee...

  17. 47 CFR 27.1232 - Planning the transition.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sites at which replacement downconverters will be installed (see § 27.1233(a)); (iv) Identify the video..., unless dispute resolution procedures are used, may not exceed 18 months from the conclusion of the... its single video programming or data transmission track to spectrum licensed to another licensee...

  18. [Patella navigation in computer-assisted TKA : Intraoperative measurement of patellar kinematics. Video article].

    PubMed

    Springorum, H-R; Baier, C; Craiovan, B; Maderbacher, G; Renkawitz, T; Grifka, J; Keshmiri, A

    2016-07-01

    Patellofemoral maltracking is a relevant problem after total knee arthroplasty (TKA). Patella navigation is a tool that allows real time monitoring of patella tracking. This video contribution demonstrates the technique of patellofemoral navigation and a possible consequence of intraoperative monitoring. A higher postoperative lateral tilt is addressed with a widening of the lateral retinaculum in a particular manner. In selected cases of patellofemoral problems, patella navigation is a helpful tool to evaluate patellofemoral tracking intraoperatively. Modifications of implant position and soft tissue measurements can then prevent postoperative patellofemoral maltracking.

  19. An analysis of automatic human detection and tracking

    NASA Astrophysics Data System (ADS)

    Demuth, Philipe R.; Cosmo, Daniel L.; Ciarelli, Patrick M.

    2015-12-01

    This paper presents an automatic method to detect and follow people on video streams. This method uses two techniques to determine the initial position of the person at the beginning of the video file: one based on optical flow and the other one based on Histogram of Oriented Gradients (HOG). After defining the initial bounding box, tracking is done using four different trackers: Median Flow tracker, TLD tracker, Mean Shift tracker and a modified version of the Mean Shift tracker using HSV color space. The results of the methods presented in this paper are then compared at the end of the paper.

  20. Manifolds for pose tracking from monocular video

    NASA Astrophysics Data System (ADS)

    Basu, Saurav; Poulin, Joshua; Acton, Scott T.

    2015-03-01

    We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).

  1. ConfChem Conference on Select 2016 BCCE Presentations: Tracking Student Use of Web-Based Resources for Chemical Education

    ERIC Educational Resources Information Center

    Bodily, Robert; Wood, Steven

    2017-01-01

    This paper presents the technical infrastructure required to track student use of web-based resources in an introductory chemistry course, the design of a student dashboard, and the results from analyzing student web-based resource use. Students were tracked as they interacted with online homework problems and high quality course content videos.…

  2. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    NASA Astrophysics Data System (ADS)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  3. Robust Arm and Hand Tracking by Unsupervised Context Learning

    PubMed Central

    Spruyt, Vincent; Ledda, Alessandro; Philips, Wilfried

    2014-01-01

    Hand tracking in video is an increasingly popular research field due to the rise of novel human-computer interaction methods. However, robust and real-time hand tracking in unconstrained environments remains a challenging task due to the high number of degrees of freedom and the non-rigid character of the human hand. In this paper, we propose an unsupervised method to automatically learn the context in which a hand is embedded. This context includes the arm and any other object that coherently moves along with the hand. We introduce two novel methods to incorporate this context information into a probabilistic tracking framework, and introduce a simple yet effective solution to estimate the position of the arm. Finally, we show that our method greatly increases robustness against occlusion and cluttered background, without degrading tracking performance if no contextual information is available. The proposed real-time algorithm is shown to outperform the current state-of-the-art by evaluating it on three publicly available video datasets. Furthermore, a novel dataset is created and made publicly available for the research community. PMID:25004155

  4. Development of a Receiver Processor For UAV Video Signal Acquisition and Tracking Using Digital Phased Array Antenna

    DTIC Science & Technology

    2010-09-01

    53 Figure 26. Image of the phased array antenna...................................................................54...69 Figure 38. Computation of correction angle from array factor and sum/difference beams...71 Figure 39. Front panel of the tracking algorithm

  5. A Comparison of Techniques for Camera Selection and Hand-Off in a Video Network

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Bhanu, Bir

    Video networks are becoming increasingly important for solving many real-world problems. Multiple video sensors require collaboration when performing various tasks. One of the most basic tasks is the tracking of objects, which requires mechanisms to select a camera for a certain object and hand-off this object from one camera to another so as to accomplish seamless tracking. In this chapter, we provide a comprehensive comparison of current and emerging camera selection and hand-off techniques. We consider geometry-, statistics-, and game theory-based approaches and provide both theoretical and experimental comparison using centralized and distributed computational models. We provide simulation and experimental results using real data for various scenarios of a large number of cameras and objects for in-depth understanding of strengths and weaknesses of these techniques.

  6. Recent experiences with implementing a video based six degree of freedom measurement system for airplane models in a 20 foot diameter vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.; Jones, Stephen B.; Fremaux, Charles M.

    1993-01-01

    A model space positioning system (MSPS), a state-of-the-art, real-time tracking system to provide the test engineer with on line model pitch and spin rate information, is described. It is noted that the six-degree-of-freedom post processor program will require additional programming effort both in the automated tracking mode for high spin rates and in accuracy to meet the measurement objectives. An independent multicamera system intended to augment the MSPS is studied using laboratory calibration methods based on photogrammetry to characterize the losses in various recording options. Data acquired to Super VHS tape encoded with Vertical Interval Time Code and transcribed to video disk are considered to be a reasonable priced choice for post editing and processing video data.

  7. A functional video-based anthropometric measuring system

    NASA Technical Reports Server (NTRS)

    Nixon, J. H.; Cater, J. P.

    1982-01-01

    A high-speed anthropometric three dimensional measurement system using the Selcom Selspot motion tracking instrument for visual data acquisition is discussed. A three-dimensional scanning system was created which collects video, audio, and performance data on a single standard video cassette recorder. Recording rates of 1 megabit per second for periods of up to two hours are possible with the system design. A high-speed off-the-shelf motion analysis system for collecting optical information as used. The video recording adapter (VRA) is interfaced to the Selspot data acquisition system.

  8. Video cameras on wild birds.

    PubMed

    Rutz, Christian; Bluff, Lucas A; Weir, Alex A S; Kacelnik, Alex

    2007-11-02

    New Caledonian crows (Corvus moneduloides) are renowned for using tools for extractive foraging, but the ecological context of this unusual behavior is largely unknown. We developed miniaturized, animal-borne video cameras to record the undisturbed behavior and foraging ecology of wild, free-ranging crows. Our video recordings enabled an estimate of the species' natural foraging efficiency and revealed that tool use, and choice of tool materials, are more diverse than previously thought. Video tracking has potential for studying the behavior and ecology of many other bird species that are shy or live in inaccessible habitats.

  9. Computerised Attention Training for Children with Intellectual and Developmental Disabilities: A Randomised Controlled Trial

    ERIC Educational Resources Information Center

    Kirk, Hannah E.; Gray, Kylie M.; Ellis, Kirsten; Taffe, John; Cornish, Kim M.

    2016-01-01

    Background: Children with intellectual and developmental disabilities (IDD) experience heightened attention difficulties which have been linked to poorer cognitive, academic and social outcomes. Although, increasing research has focused on the potential of computerised cognitive training in reducing attention problems, limited studies have…

  10. Infrared target tracking via weighted correlation filter

    NASA Astrophysics Data System (ADS)

    He, Yu-Jie; Li, Min; Zhang, JinLi; Yao, Jun-Ping

    2015-11-01

    Design of an effective target tracker is an important and challenging task for many applications due to multiple factors which can cause disturbance in infrared video sequences. In this paper, an infrared target tracking method under tracking by detection framework based on a weighted correlation filter is presented. This method consists of two parts: detection and filtering. For the detection stage, we propose a sequential detection method for the infrared target based on low-rank representation. For the filtering stage, a new multi-feature weighted function which fuses different target features is proposed, which takes the importance of the different regions into consideration. The weighted function is then incorporated into a correlation filter to compute a confidence map more accurately, in order to indicate the best target location based on the detection results obtained from the first stage. Extensive experimental results on different video sequences demonstrate that the proposed method performs favorably for detection and tracking compared with baseline methods in terms of efficiency and accuracy.

  11. An improved KCF tracking algorithm based on multi-feature and multi-scale

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Wang, Ding; Luo, Xin; Su, Yang; Tian, Weiye

    2018-02-01

    The purpose of visual tracking is to associate the target object in a continuous video frame. In recent years, the method based on the kernel correlation filter has become the research hotspot. However, the algorithm still has some problems such as video capture equipment fast jitter, tracking scale transformation. In order to improve the ability of scale transformation and feature description, this paper has carried an innovative algorithm based on the multi feature fusion and multi-scale transform. The experimental results show that our method solves the problem that the target model update when is blocked or its scale transforms. The accuracy of the evaluation (OPE) is 77.0%, 75.4% and the success rate is 69.7%, 66.4% on the VOT and OTB datasets. Compared with the optimal one of the existing target-based tracking algorithms, the accuracy of the algorithm is improved by 6.7% and 6.3% respectively. The success rates are improved by 13.7% and 14.2% respectively.

  12. Action-Driven Visual Object Tracking With Deep Reinforcement Learning.

    PubMed

    Yun, Sangdoo; Choi, Jongwon; Yoo, Youngjoon; Yun, Kimin; Choi, Jin Young

    2018-06-01

    In this paper, we propose an efficient visual tracker, which directly captures a bounding box containing the target object in a video by means of sequential actions learned using deep neural networks. The proposed deep neural network to control tracking actions is pretrained using various training video sequences and fine-tuned during actual tracking for online adaptation to a change of target and background. The pretraining is done by utilizing deep reinforcement learning (RL) as well as supervised learning. The use of RL enables even partially labeled data to be successfully utilized for semisupervised learning. Through the evaluation of the object tracking benchmark data set, the proposed tracker is validated to achieve a competitive performance at three times the speed of existing deep network-based trackers. The fast version of the proposed method, which operates in real time on graphics processing unit, outperforms the state-of-the-art real-time trackers with an accuracy improvement of more than 8%.

  13. 3D Tracking of Mating Events in Wild Swarms of the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Yaro, Alpha S.; Dao, Adama; Traoré, Sekou F.; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.

    2013-01-01

    We describe an automated tracking system that allows us to reconstruct the 3D kinematics of individual mosquitoes in swarms of Anopheles gambiae. The inputs to the tracking system are video streams recorded from a stereo camera system. The tracker uses a two-pass procedure to automatically localize and track mosquitoes within the swarm. A human-in-the-loop step verifies the estimates and connects broken tracks. The tracker performance is illustrated using footage of mating events filmed in Mali in August 2010. PMID:22254411

  14. Long-range eye tracking: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaweera, S.K.; Lu, Shin-yee

    1994-08-24

    The design considerations for a long-range Purkinje effects based video tracking system using current technology is presented. Past work, current experiments, and future directions are thoroughly discussed, with an emphasis on digital signal processing techniques and obstacles. It has been determined that while a robust, efficient, long-range, and non-invasive eye tracking system will be difficult to develop, such as a project is indeed feasible.

  15. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    PubMed Central

    Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua

    2014-01-01

    To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252

  16. Task-oriented situation recognition

    NASA Astrophysics Data System (ADS)

    Bauer, Alexander; Fischer, Yvonne

    2010-04-01

    From the advances in computer vision methods for the detection, tracking and recognition of objects in video streams, new opportunities for video surveillance arise: In the future, automated video surveillance systems will be able to detect critical situations early enough to enable an operator to take preventive actions, instead of using video material merely for forensic investigations. However, problems such as limited computational resources, privacy regulations and a constant change in potential threads have to be addressed by a practical automated video surveillance system. In this paper, we show how these problems can be addressed using a task-oriented approach. The system architecture of the task-oriented video surveillance system NEST and an algorithm for the detection of abnormal behavior as part of the system are presented and illustrated for the surveillance of guests inside a video-monitored building.

  17. A unified and efficient framework for court-net sports video analysis using 3D camera modeling

    NASA Astrophysics Data System (ADS)

    Han, Jungong; de With, Peter H. N.

    2007-01-01

    The extensive amount of video data stored on available media (hard and optical disks) necessitates video content analysis, which is a cornerstone for different user-friendly applications, such as, smart video retrieval and intelligent video summarization. This paper aims at finding a unified and efficient framework for court-net sports video analysis. We concentrate on techniques that are generally applicable for more than one sports type to come to a unified approach. To this end, our framework employs the concept of multi-level analysis, where a novel 3-D camera modeling is utilized to bridge the gap between the object-level and the scene-level analysis. The new 3-D camera modeling is based on collecting features points from two planes, which are perpendicular to each other, so that a true 3-D reference is obtained. Another important contribution is a new tracking algorithm for the objects (i.e. players). The algorithm can track up to four players simultaneously. The complete system contributes to summarization by various forms of information, of which the most important are the moving trajectory and real-speed of each player, as well as 3-D height information of objects and the semantic event segments in a game. We illustrate the performance of the proposed system by evaluating it for a variety of court-net sports videos containing badminton, tennis and volleyball, and we show that the feature detection performance is above 92% and events detection about 90%.

  18. Computers, the Internet and medical education in Africa.

    PubMed

    Williams, Christopher D; Pitchforth, Emma L; O'Callaghan, Christopher

    2010-05-01

    OBJECTIVES This study aimed to explore the use of information and communications technology (ICT) in undergraduate medical education in developing countries. METHODS Educators (deans and heads of medical education) in English-speaking countries across Africa were sent a questionnaire to establish the current state of ICT at medical schools. Non-respondents were contacted firstly by e-mail, subsequently by two postal mailings at 3-month intervals, and finally by telephone. Main outcome measures included cross-sectional data about the availability of computers, specifications, Internet connection speeds, use of ICT by students, and teaching of ICT and computerised research skills, presented by country or region. RESULTS The mean computer : student ratio was 0.123. Internet speeds were rated as 'slow' or 'very slow' on a 5-point Likert scale by 25.0% of respondents overall, but by 58.3% in East Africa and 33.3% in West Africa (including Cameroon). Mean estimates showed that campus computers more commonly supported CD-ROM (91.4%) and sound (87.3%) than DVD-ROM (48.1%) and Internet (72.5%). The teaching of ICT and computerised research skills, and the use of computers by medical students for research, assignments and personal projects were common. CONCLUSIONS It is clear that ICT infrastructure in Africa lags behind that in other regions. Poor download speeds limit the potential of Internet resources (especially videos, sound and other large downloads) to benefit students, particularly in East and West (including Cameroon) Africa. CD-ROM capability is more widely available, but has not yet gained momentum as a means of distributing materials. Despite infrastructure limitations, ICT is already being used and there is enthusiasm for developing this further. Priority should be given to developing partnerships to improve ICT infrastructure and maximise the potential of existing technology.

  19. Knowledge-based understanding of aerial surveillance video

    NASA Astrophysics Data System (ADS)

    Cheng, Hui; Butler, Darren

    2006-05-01

    Aerial surveillance has long been used by the military to locate, monitor and track the enemy. Recently, its scope has expanded to include law enforcement activities, disaster management and commercial applications. With the ever-growing amount of aerial surveillance video acquired daily, there is an urgent need for extracting actionable intelligence in a timely manner. Furthermore, to support high-level video understanding, this analysis needs to go beyond current approaches and consider the relationships, motivations and intentions of the objects in the scene. In this paper we propose a system for interpreting aerial surveillance videos that automatically generates a succinct but meaningful description of the observed regions, objects and events. For a given video, the semantics of important regions and objects, and the relationships between them, are summarised into a semantic concept graph. From this, a textual description is derived that provides new search and indexing options for aerial video and enables the fusion of aerial video with other information modalities, such as human intelligence, reports and signal intelligence. Using a Mixture-of-Experts video segmentation algorithm an aerial video is first decomposed into regions and objects with predefined semantic meanings. The objects are then tracked and coerced into a semantic concept graph and the graph is summarized spatially, temporally and semantically using ontology guided sub-graph matching and re-writing. The system exploits domain specific knowledge and uses a reasoning engine to verify and correct the classes, identities and semantic relationships between the objects. This approach is advantageous because misclassifications lead to knowledge contradictions and hence they can be easily detected and intelligently corrected. In addition, the graph representation highlights events and anomalies that a low-level analysis would overlook.

  20. Do Computerised Training Programmes Designed to Improve Working Memory Work?

    ERIC Educational Resources Information Center

    Apter, Brian J. B.

    2012-01-01

    A critical review of working memory training research during the last 10 years is provided. Particular attention is given to research that has attempted to investigate the efficacy of commercially marketed computerised training programmes such as "Cogmed" and "Jungle Memory". Claimed benefits are questioned on the basis that research methodologies…

  1. Demography, Social Structure and Learning through Life

    ERIC Educational Resources Information Center

    van der Veen, Ruud

    2010-01-01

    The modernisation of the Western world during the last two centuries has been a mix of industrialisation/computerisation and urbanisation. Consequently, reports on the future of adult learning and adult education have been a mix on the one hand of the learning requirements that follow from industrialisation/computerisation and on the other hand,…

  2. Computerised Accounting Software; A Curriculum That Enhances an Accounting Programme

    ERIC Educational Resources Information Center

    Machera, Robert P.; Machera, Precious C.

    2017-01-01

    There has been an outcry in commerce and industry about students who fail to perform in the accounting department due to lack of "practical accounting skills". It is from this background that the researchers were motivated to investigate the impact of a Computerised Accounting Software Curriculum that enhances an Accounting Programme. At…

  3. A review of vision-based motion analysis in sport.

    PubMed

    Barris, Sian; Button, Chris

    2008-01-01

    Efforts at player motion tracking have traditionally involved a range of data collection techniques from live observation to post-event video analysis where player movement patterns are manually recorded and categorized to determine performance effectiveness. Due to the considerable time required to manually collect and analyse such data, research has tended to focus only on small numbers of players within predefined playing areas. Whilst notational analysis is a convenient, practical and typically inexpensive technique, the validity and reliability of the process can vary depending on a number of factors, including how many observers are used, their experience, and the quality of their viewing perspective. Undoubtedly the application of automated tracking technology to team sports has been hampered because of inadequate video and computational facilities available at sports venues. However, the complex nature of movement inherent to many physical activities also represents a significant hurdle to overcome. Athletes tend to exhibit quick and agile movements, with many unpredictable changes in direction and also frequent collisions with other players. Each of these characteristics of player behaviour violate the assumptions of smooth movement on which computer tracking algorithms are typically based. Systems such as TRAKUS, SoccerMan, TRAKPERFORMANCE, Pfinder and Prozone all provide extrinsic feedback information to coaches and athletes. However, commercial tracking systems still require a fair amount of operator intervention to process the data after capture and are often limited by the restricted capture environments that can be used and the necessity for individuals to wear tracking devices. Whilst some online tracking systems alleviate the requirements of manual tracking, to our knowledge a completely automated system suitable for sports performance is not yet commercially available. Automatic motion tracking has been used successfully in other domains outside of elite sport performance, notably for surveillance in the military and security industry where automatic recognition of moving objects is achievable because identification of the objects is not necessary. The current challenge is to obtain appropriate video sequences that can robustly identify and label people over time, in a cluttered environment containing multiple interacting people. This problem is often compounded by the quality of video capture, the relative size and occlusion frequency of people, and also changes in illumination. Potential applications of an automated motion detection system are offered, such as: planning tactics and strategies; measuring team organisation; providing meaningful kinematic feedback; and objective measures of intervention effectiveness in team sports, which could benefit coaches, players, and sports scientists.

  4. Getting to know you: using documentary video-making to challenge ageist stereotypes.

    PubMed

    Lee, Terry

    2012-01-01

    The article theorizes that augmenting traditional humanities course work with documentary video-making can enhance and motivate learning. The English class profiled focused on aging and the lives of elders in an adult daycare center and a retirement community. Students documented elders' stories in video over 15 weeks. The instructor's goal was to use the immediacy of video to challenge and dismantle ageist stereotypes. Documentary video-making is a simple, and enticing, technology that gives students a powerful tool for getting to know elders. Scholarship on classroom uses of digital video-making is discussed, and critical comments from the five reflective essays students wrote during the semester are used to track changes in student perceptions of elders.

  5. Computerised therapies for anxiety and depression in children and young people: a systematic review and meta-analysis.

    PubMed

    Pennant, Mary E; Loucas, Christina E; Whittington, Craig; Creswell, Cathy; Fonagy, Peter; Fuggle, Peter; Kelvin, Raphael; Naqvi, Sabrina; Stockton, Sarah; Kendall, Tim

    2015-04-01

    One quarter of children and young people (CYP) experience anxiety and/or depression before adulthood, but treatment is sometimes unavailable or inadequate. Self-help interventions may have a role in augmenting treatment and this work aimed to systematically review the evidence for computerised anxiety and depression interventions in CYP aged 5-25 years old. Databases were searched for randomised controlled trials and 27 studies were identified. For young people (12-25 years) with risk of diagnosed anxiety disorders or depression, computerised CBT (cCBT) had positive effects for symptoms of anxiety (SMD -0.77, 95% CI -1.45 to -0.09, k = 6, N = 220) and depression (SMD -0.62, 95% CI -1.13 to -0.11, k = 7, N = 279). In a general population study of young people, there were small positive effects for anxiety (SMD -0.15, 95% CI -0.26 to -0.03; N = 1273) and depression (SMD -0.15, 95% CI -0.26 to -0.03; N = 1280). There was uncertainty around the effectiveness of cCBT in children (5-11 years). Evidence for other computerised interventions was sparse and inconclusive. Computerised CBT has potential for treating and preventing anxiety and depression in clinical and general populations of young people. Further program development and research is required to extend its use and establish its benefit in children. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Development and evaluation of a centralised computerised registry for ureteric stents: completing the audit cycle.

    PubMed

    Davis, N F; Murray, G; O'Connor, T; Browne, C; MacCraith, E; Galvin, D; Mulvin, D; Quinlan, D; Lennon, G

    2017-11-01

    A forgotten ureteric stent may result in severe renal impairment leading to nephrectomy. To compare the effectiveness of a centralised computerised registry for monitoring ureteric stent activity with a previously established theatre stent logbook system. This prospective audit was performed in two 9-monthly intervals. During the first interval, insertion/removal of a ureteric stent was documented in a specific theatre stent logbook. In the second interval, an electronic centralised computerised registry was developed to document insertion/removal of a ureteric stent onto an accessible hospital server. A computerised traffic-light system was also developed to identify patients with an indwelling stent for >3 months. The primary outcome variable was the number of prolonged indwelling ureteric stents in both groups. During the first time interval, 188 ureteric stents were inserted and 182 (96%) were removed or changed. Six (4%) patients underwent insertion of a ureteric stent for a prolonged period of time (>6 months). This subgroup required complex endourological intervention for stent removal due to encrustation. During the second time interval, 157 ureteric stents were inserted and all patients had their stent removed or changed within 6 months. No patients in this group were lost to follow-up. This study demonstrates that a centralised computerised ureteric stent registry is superior to a conventional logbook for monitoring ureteric stent activity. We propose the introduction a centralised nationalised ureteric stent registry for eliminating the potential for prolonged or forgotten ureteric stents.

  7. The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task.

    PubMed

    Gozli, Davood G; Bavelier, Daphne; Pratt, Jay

    2014-10-12

    Research on the impact of action video game playing has revealed performance advantages on a wide range of perceptual and cognitive tasks. It is not known, however, if playing such games confers similar advantages in sensorimotor learning. To address this issue, the present study used a manual motion-tracking task that allowed for a sensitive measure of both accuracy and improvement over time. When the target motion pattern was consistent over trials, gamers improved with a faster rate and eventually outperformed non-gamers. Performance between the two groups, however, did not differ initially. When the target motion was inconsistent, changing on every trial, results revealed no difference between gamers and non-gamers. Together, our findings suggest that video game playing confers no reliable benefit in sensorimotor control, but it does enhance sensorimotor learning, enabling superior performance in tasks with consistent and predictable structure. Copyright © 2014. Published by Elsevier B.V.

  8. Data Mining and Information Technology: Its Impact on Intelligence Collection and Privacy Rights

    DTIC Science & Technology

    2007-11-26

    sources include: Cameras - Digital cameras (still and video ) have been improving in capability while simultaneously dropping in cost at a rate...citizen is caught on camera 300 times each day.5 The power of extensive video coverage is magnified greatly by the nascent capability for voice and...software on security videos and tracking cell phone usage in the local area. However, it would only return the names and data of those who

  9. A Picture Is Worth...: Video Self-Modeling Applications at School and Home

    ERIC Educational Resources Information Center

    Buggey, Tom

    2007-01-01

    Video self-modeling (VSM) is a relatively new technique for modifying and training behaviors and has accumulated a relatively impressive track record in the research literature. Using only positive examples, VSM gives persons the opportunity to view themselves performing a task just beyond their present functioning level via creative editing of…

  10. Optimal UAV Path Planning for Tracking a Moving Ground Vehicle with a Gimbaled Camera

    DTIC Science & Technology

    2014-03-27

    micro SD card slot to record all video taken at 1080P resolution. This feature allows the team to record the high definition video taken by the...Inequality constraints 64 h=[]; %Equality constraints 104 Bibliography 1. “ DIY Drones: Official ArduPlane Repository”, 2013. URL https://code

  11. Active Voodoo Dolls: A Vision Based Input Device for Nonrigid Control.

    DTIC Science & Technology

    1998-08-01

    A vision based technique for nonrigid control is presented that can be used for animation and video game applications. The user grasps a soft...allowing the user to control it interactively. Our use of texture mapping hardware in tracking makes the system responsive enough for interactive animation and video game character control.

  12. Tracking people and cars using 3D modeling and CCTV.

    PubMed

    Edelman, Gerda; Bijhold, Jurrien

    2010-10-10

    The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Eyelid contour detection and tracking for startle research related eye-blink measurements from high-speed video records.

    PubMed

    Bernard, Florian; Deuter, Christian Eric; Gemmar, Peter; Schachinger, Hartmut

    2013-10-01

    Using the positions of the eyelids is an effective and contact-free way for the measurement of startle induced eye-blinks, which plays an important role in human psychophysiological research. To the best of our knowledge, no methods for an efficient detection and tracking of the exact eyelid contours in image sequences captured at high-speed exist that are conveniently usable by psychophysiological researchers. In this publication a semi-automatic model-based eyelid contour detection and tracking algorithm for the analysis of high-speed video recordings from an eye tracker is presented. As a large number of images have been acquired prior to method development it was important that our technique is able to deal with images that are recorded without any special parametrisation of the eye tracker. The method entails pupil detection, specular reflection removal and makes use of dynamic model adaption. In a proof-of-concept study we could achieve a correct detection rate of 90.6%. With this approach, we provide a feasible method to accurately assess eye-blinks from high-speed video recordings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. A software-based tool for video motion tracking in the surgical skills assessment landscape.

    PubMed

    Ganni, Sandeep; Botden, Sanne M B I; Chmarra, Magdalena; Goossens, Richard H M; Jakimowicz, Jack J

    2018-01-16

    The use of motion tracking has been proved to provide an objective assessment in surgical skills training. Current systems, however, require the use of additional equipment or specialised laparoscopic instruments and cameras to extract the data. The aim of this study was to determine the possibility of using a software-based solution to extract the data. 6 expert and 23 novice participants performed a basic laparoscopic cholecystectomy procedure in the operating room. The recorded videos were analysed using Kinovea 0.8.15 and the following parameters calculated the path length, average instrument movement and number of sudden or extreme movements. The analysed data showed that experts had significantly shorter path length (median 127 cm vs. 187 cm, p = 0.01), smaller average movements (median 0.40 cm vs. 0.32 cm, p = 0.002) and fewer sudden movements (median 14.00 vs. 21.61, p = 0.001) than their novice counterparts. The use of software-based video motion tracking of laparoscopic cholecystectomy is a simple and viable method enabling objective assessment of surgical performance. It provides clear discrimination between expert and novice performance.

  15. TU-AB-202-12: A Novel Method to Map Endoscopic Video to CT for Treatment Planning and Toxicity Analysis in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, W; Yang, J; Beadle, B

    Purpose: Endoscopic examinations are routine procedures for head-and-neck cancer patients. Our goal is to develop a method to map the recorded video to CT, providing valuable information for radiotherapy treatment planning and toxicity analysis. Methods: We map video frames to CT via virtual endoscopic images rendered at the real endoscope’s CT-space coordinates. We developed two complementary methods to find these coordinates by maximizing real-to-virtual image similarity:(1)Endoscope Tracking: moves the virtual endoscope frame-by-frame until the desired frame is reached. Utilizes prior knowledge of endoscope coordinates, but sensitive to local optima. (2)Location Search: moves the virtual endoscope along possible paths through themore » volume to find the desired frame. More robust, but more computationally expensive. We tested these methods on clay phantoms with embedded markers for point mapping and protruding bolus material for contour mapping, and we assessed them qualitatively on three patient exams. For mapped points we calculated 3D-distance errors, and for mapped contours we calculated mean absolute distances (MAD) from CT contours. Results: In phantoms, Endoscope Tracking had average point error=0.66±0.50cm and average bolus MAD=0.74±0.37cm for the first 80% of each video. After that the virtual endoscope got lost, increasing these values to 4.73±1.69cm and 4.06±0.30cm. Location Search had point error=0.49±0.44cm and MAD=0.53±0.28cm. Point errors were larger where the endoscope viewed the surface at shallow angles<10 degrees (1.38±0.62cm and 1.22±0.69cm for Endoscope Tracking and Location Search, respectively). In patients, Endoscope Tracking did not make it past the nasal cavity. However, Location Search found coordinates near the correct location for 70% of test frames. Its performance was best near the epiglottis and in the nasal cavity. Conclusion: Location Search is a robust and accurate technique to map endoscopic video to CT. Endoscope Tracking is sensitive to erratic camera motion and local optima, but could be used in conjunction with anchor points found using Location Search.« less

  16. Evaluation of three indices for biofilm accumulation on complete dentures.

    PubMed

    Paranhos, Helena de Freitas Oliveira; Lovato da Silva, Claudia Helena; de Souza, Raphael Freitas; Pontes, Karina Matthes de Freitas

    2010-03-01

    The objective of this study was to evaluate the accuracy and reproducibility of three complete denture biofilm indices (Prosthesis Hygiene Index; Jeganathan et al. Index; Budtz-Jørgensen Index) by means of a computerised comparison method. Clinical studies into denture hygiene have employed a large number of biofilm indices among their outcome variables. However, the knowledge about the validity of these indices is still scarce. Sixty-two complete denture wearers were selected. The internal surfaces of the upper complete dentures were stained (5% erythrosine) and photographed. The slides were projected on paper, and the biofilm indices were applied over the photos by means of a scoring method. For the computerised method, the areas (total and biofilm-covered) were measured by dedicated software (Image Tool). In addition, to compare the results of the computerised method and Prosthetic Hygiene Index, a new scoring scale (including four and five graded) was introduced. For the Jeganathan et al. and Budtz-Jørgensen indices, the original scales were used. Values for each index were compared with the computerised method by the Friedman test. Their reproducibility was measured by means of weighed kappa. Significance for both tests was set at 0.05. The indices tested provided similar mean measures but they tended to overestimate biofilm coverage when compared with the computerised method (p < 0.001). Agreement between the Prosthesis Hygiene Index and the computerised method was not significant, regardless of the scale used. Jeghanathan et al. Index showed weak agreement, and consistent results were found for Budtz-Jorgensen Index (kappa = 0.19 and 0.39 respectively). Assessment of accuracy for the biofilm indices showed instrument bias that was similar among the tested methods. Weak inter-instrument reproducibility was found for the indices, except for the Budtz-Jørgensen Index. This should be the method of choice for clinical studies when more sophisticated approaches are not possible.

  17. Human body motion capture from multi-image video sequences

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.

  18. Spatial Pyramid Covariance based Compact Video Code for Robust Face Retrieval in TV-series.

    PubMed

    Li, Yan; Wang, Ruiping; Cui, Zhen; Shan, Shiguang; Chen, Xilin

    2016-10-10

    We address the problem of face video retrieval in TV-series which searches video clips based on the presence of specific character, given one face track of his/her. This is tremendously challenging because on one hand, faces in TV-series are captured in largely uncontrolled conditions with complex appearance variations, and on the other hand retrieval task typically needs efficient representation with low time and space complexity. To handle this problem, we propose a compact and discriminative representation for the huge body of video data, named Compact Video Code (CVC). Our method first models the face track by its sample (i.e., frame) covariance matrix to capture the video data variations in a statistical manner. To incorporate discriminative information and obtain more compact video signature suitable for retrieval, the high-dimensional covariance representation is further encoded as a much lower-dimensional binary vector, which finally yields the proposed CVC. Specifically, each bit of the code, i.e., each dimension of the binary vector, is produced via supervised learning in a max margin framework, which aims to make a balance between the discriminability and stability of the code. Besides, we further extend the descriptive granularity of covariance matrix from traditional pixel-level to more general patchlevel, and proceed to propose a novel hierarchical video representation named Spatial Pyramid Covariance (SPC) along with a fast calculation method. Face retrieval experiments on two challenging TV-series video databases, i.e., the Big Bang Theory and Prison Break, demonstrate the competitiveness of the proposed CVC over state-of-the-art retrieval methods. In addition, as a general video matching algorithm, CVC is also evaluated in traditional video face recognition task on a standard Internet database, i.e., YouTube Celebrities, showing its quite promising performance by using an extremely compact code with only 128 bits.

  19. A Coincidental Sound Track for "Time Flies"

    ERIC Educational Resources Information Center

    Cardany, Audrey Berger

    2014-01-01

    Sound tracks serve a valuable purpose in film and video by helping tell a story, create a mood, and signal coming events. Holst's "Mars" from "The Planets" yields a coincidental soundtrack to Eric Rohmann's Caldecott-winning book, "Time Flies." This pairing provides opportunities for upper elementary and…

  20. ThermalTracker Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The software processes recorded thermal video and detects the flight tracks of birds and bats that passed through the camera's field of view. The output is a set of images that show complete flight tracks for any detections, with the direction of travel indicated and the thermal image of the animal delineated. A report of the descriptive features of each detected track is also output in the form of a comma-separated value text file.

  1. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  2. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of thesemore » methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.« less

  3. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    NASA Astrophysics Data System (ADS)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  4. Gaze inspired subtitle position evaluation for MOOCs videos

    NASA Astrophysics Data System (ADS)

    Chen, Hongli; Yan, Mengzhen; Liu, Sijiang; Jiang, Bo

    2017-06-01

    Online educational resources, such as MOOCs, is becoming increasingly popular, especially in higher education field. One most important media type for MOOCs is course video. Besides traditional bottom-position subtitle accompany to the videos, in recent years, researchers try to develop more advanced algorithms to generate speaker-following style subtitles. However, the effectiveness of such subtitle is still unclear. In this paper, we investigate the relationship between subtitle position and the learning effect after watching the video on tablet devices. Inspired with image based human eye tracking technique, this work combines the objective gaze estimation statistics with subjective user study to achieve a convincing conclusion - speaker-following subtitles are more suitable for online educational videos.

  5. Influence of acquisition frame-rate and video compression techniques on pulse-rate variability estimation from vPPG signal.

    PubMed

    Cerina, Luca; Iozzia, Luca; Mainardi, Luca

    2017-11-14

    In this paper, common time- and frequency-domain variability indexes obtained by pulse rate variability (PRV) series extracted from video-photoplethysmographic signal (vPPG) were compared with heart rate variability (HRV) parameters calculated from synchronized ECG signals. The dual focus of this study was to analyze the effect of different video acquisition frame-rates starting from 60 frames-per-second (fps) down to 7.5 fps and different video compression techniques using both lossless and lossy codecs on PRV parameters estimation. Video recordings were acquired through an off-the-shelf GigE Sony XCG-C30C camera on 60 young, healthy subjects (age 23±4 years) in the supine position. A fully automated, signal extraction method based on the Kanade-Lucas-Tomasi (KLT) algorithm for regions of interest (ROI) detection and tracking, in combination with a zero-phase principal component analysis (ZCA) signal separation technique was employed to convert the video frames sequence to a pulsatile signal. The frame-rate degradation was simulated on video recordings by directly sub-sampling the ROI tracking and signal extraction modules, to correctly mimic videos recorded at a lower speed. The compression of the videos was configured to avoid any frame rejection caused by codec quality leveling, FFV1 codec was used for lossless compression and H.264 with variable quality parameter as lossy codec. The results showed that a reduced frame-rate leads to inaccurate tracking of ROIs, increased time-jitter in the signals dynamics and local peak displacements, which degrades the performances in all the PRV parameters. The root mean square of successive differences (RMSSD) and the proportion of successive differences greater than 50 ms (PNN50) indexes in time-domain and the low frequency (LF) and high frequency (HF) power in frequency domain were the parameters which highly degraded with frame-rate reduction. Such a degradation can be partially mitigated by up-sampling the measured signal at a higher frequency (namely 60 Hz). Concerning the video compression, the results showed that compression techniques are suitable for the storage of vPPG recordings, although lossless or intra-frame compression are to be preferred over inter-frame compression methods. FFV1 performances are very close to the uncompressed (UNC) version with less than 45% disk size. H.264 showed a degradation of the PRV estimation directly correlated with the increase of the compression ratio.

  6. Effectiveness of a Computerised Working Memory Training in Adolescents with Mild to Borderline Intellectual Disabilities

    ERIC Educational Resources Information Center

    Van der Molen, M. J.; Van Luit, J. E. H.; Van der Molen, M. W.; Klugkist, I.; Jongmans, M. J.

    2010-01-01

    Background: The goal of this study is to evaluate the effectiveness of a computerised working memory (WM) training on memory, response inhibition, fluid intelligence, scholastic abilities and the recall of stories in adolescents with mild to borderline intellectual disabilities attending special education. Method: A total of 95 adolescents with…

  7. Evaluation of Computerised Reading-Assistance Systems for Reading Japanese Texts--From a Linguistic Point of View

    ERIC Educational Resources Information Center

    Toyoda, Etsuko

    2016-01-01

    For second-language learners to effectively and efficiently gather information from online texts in their target language, a well-designed computerised system to assist their reading is essential. While many articles and websites which introduce electronic second-language learning tools exist, evaluation of their functions in relation to the…

  8. An Investigation of Integrative and Independent Listening Test Tasks in a Computerised Academic English Test

    ERIC Educational Resources Information Center

    Wei, Wei; Zheng, Ying

    2017-01-01

    This research provided a comprehensive evaluation and validation of the listening section of a newly introduced computerised test, Pearson Test of English Academic (PTE Academic). PTE Academic contains 11 item types assessing academic listening skills either alone or in combination with other skills. First, task analysis helped identify skills…

  9. Using a Computerised Graphics Package to Achieve a Technology-Oriented Classroom

    ERIC Educational Resources Information Center

    Aladejana, Francisca; Idowu, Lanre

    2009-01-01

    The present situation in Nigeria involves students of fine arts, a practical-oriented subject, being exposed to poor methods of teaching with consequent poor performances. This study examined the extent to which the use of a computerised graphics package could make the classroom technology-oriented and affect the performance of learners. This is…

  10. A New Computerised Advanced Theory of Mind Measure for Children with Asperger Syndrome: The ATOMIC

    ERIC Educational Resources Information Center

    Beaumont, Renae B.; Sofronoff, Kate

    2008-01-01

    This study examined the ability of children with Asperger Syndrome (AS) to attribute mental states to characters in a new computerised, advanced theory of mind measure: The Animated Theory of Mind Inventory for Children (ATOMIC). Results showed that children with AS matched on IQ, verbal comprehension, age and gender performed equivalently on…

  11. Student Evaluation in Higher Education: A Comparison between Computer Assisted Assessment and Traditional Evaluation

    ERIC Educational Resources Information Center

    Ghilay, Yaron; Ghilay, Ruth

    2012-01-01

    The study examined advantages and disadvantages of computerised assessment compared to traditional evaluation. It was based on two samples of college students (n=54) being examined in computerised tests instead of paper-based exams. Students were asked to answer a questionnaire focused on test effectiveness, experience, flexibility and integrity.…

  12. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    NASA Astrophysics Data System (ADS)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  13. Statistical and sampling issues when using multiple particle tracking

    NASA Astrophysics Data System (ADS)

    Savin, Thierry; Doyle, Patrick S.

    2007-08-01

    Video microscopy can be used to simultaneously track several microparticles embedded in a complex material. The trajectories are used to extract a sample of displacements at random locations in the material. From this sample, averaged quantities characterizing the dynamics of the probes are calculated to evaluate structural and/or mechanical properties of the assessed material. However, the sampling of measured displacements in heterogeneous systems is singular because the volume of observation with video microscopy is finite. By carefully characterizing the sampling design in the experimental output of the multiple particle tracking technique, we derive estimators for the mean and variance of the probes’ dynamics that are independent of the peculiar statistical characteristics. We expose stringent tests of these estimators using simulated and experimental complex systems with a known heterogeneous structure. Up to a certain fundamental limitation, which we characterize through a material degree of sampling by the embedded probe tracking, these estimators can be applied to quantify the heterogeneity of a material, providing an original and intelligible kind of information on complex fluid properties. More generally, we show that the precise assessment of the statistics in the multiple particle tracking output sample of observations is essential in order to provide accurate unbiased measurements.

  14. Application of TrackEye in equine locomotion research.

    PubMed

    Drevemo, S; Roepstorff, L; Kallings, P; Johnston, C J

    1993-01-01

    TrackEye is an analysis system, which is applicable for equine biokinematic studies. It covers the whole process from digitizing of images, automatic target tracking and analysis. Key components in the system are an image work station for processing of video images and a high-resolution film-to-video scanner for 16-mm film. A recording module controls the input device and handles the capture of image sequences into a videodisc system, and a tracking module is able to follow reference markers automatically. The system offers a flexible analysis including calculations of markers displacements, distances and joint angles, velocities and accelerations. TrackEye was used to study effects of phenylbutazone on the fetlock and carpal joint angle movements in a horse with a mild lameness caused by osteo-arthritis in the fetlock joint of a forelimb. Significant differences, most evident before treatment, were observed in the minimum fetlock and carpal joint angles when contralateral limbs were compared (p < 0.001). The minimum fetlock angle and the minimum carpal joint angle were significantly greater in the lame limb before treatment compared to those 6, 37 and 49 h after the last treatment (p < 0.001).

  15. User Input Devices’ Impact on Virtual Desktop Trainers

    DTIC Science & Technology

    2010-07-01

    effectiveness?” 3 Background • Literature Review – Evolution of game controllers – Use of Game controllers outside of video games – Personnel...computers verses console video games • Virtual Battlespace 2 (VBS2TM) • Sony PlayStation 3 game controller • Natural Point TrackIR 5 4 Methodology • Phases...gamers” averaged 4.6 years of experience playing video games at 2.1 hours per week – The “Gamers” averaged 10.4 years of experience playing PC Games

  16. Design Issues in Video Disc Map Display.

    DTIC Science & Technology

    1984-10-01

    such items as the equipment used by ETL in its work with discs and selected images from a disc. % %. I 4 11. VIDEO DISC TECHNOLOGY AND VOCABULARY 0...The term video refers to a television image. The standard home television set is equipped with a receiver, which is capable of picking up a signal...plays for one hour per side and is played at a constant linear velocity. The industria )y-formatted disc has 54,000 frames per side in concentric tracks

  17. Validation of a computerized technique for automatically tracking and measuring the inferior vena cava in ultrasound imagery.

    PubMed

    Bellows, Spencer; Smith, Jordan; Mcguire, Peter; Smith, Andrew

    2014-01-01

    Accurate resuscitation of the critically-ill patient using intravenous fluids and blood products is a challenging, time sensitive task. Ultrasound of the inferior vena cava (IVC) is a non-invasive technique currently used to guide fluid administration, though multiple factors such as variable image quality, time, and operator skill challenge mainstream acceptance. This study represents a first attempt to develop and validate an algorithm capable of automatically tracking and measuring the IVC compared to human operators across a diverse range of image quality. Minimal tracking failures and high levels of agreement between manual and algorithm measurements were demonstrated on good quality videos. Addressing problems such as gaps in the vessel wall and intra-lumen speckle should result in improved performance in average and poor quality videos. Semi-automated measurement of the IVC for the purposes of non-invasive estimation of circulating blood volume poses challenges however is feasible.

  18. Overview of the TREC 2014 Federated Web Search Track

    DTIC Science & Technology

    2014-11-01

    Pictures e021 Dailymotion Video e123 Picsearch Photo/Pictures e022 YouTube Video e124 Wikimedia Photo/Pictures e023 Google Blogs Blogs e126 Funny or...song of ice and fire 7045 Natural Parks America 7072 price gibson howard roberts custom 7092 How much was a gallon of gas during depression 7111 what is

  19. Enumeration versus Multiple Object Tracking: The Case of Action Video Game Players

    ERIC Educational Resources Information Center

    Green, C. S.; Bavelier, D.

    2006-01-01

    Here, we demonstrate that action video game play enhances subjects' ability in two tasks thought to indicate the number of items that can be apprehended. Using an enumeration task, in which participants have to determine the number of quickly flashed squares, accuracy measures showed a near ceiling performance for low numerosities and a sharp drop…

  20. Enhancing Vocabulary Learning through Captioned Video: An Eye-Tracking Study

    ERIC Educational Resources Information Center

    Perez, Maribel Montero; Peters, Elke; Desmet, Piet

    2015-01-01

    This study investigates the effect of two attention-enhancing techniques on L2 students' learning and processing of novel French words (i.e., target words) through video with L2 subtitles or captions. A combination of eye-movement data and vocabulary tests was gathered to study the effects of Type of Captioning (full or keyword captioning) and…

  1. The Impact of Video Technology on Student Performance in Physical Education

    ERIC Educational Resources Information Center

    Palao, Jose Manuel; Hastie, Peter Andrew; Guerrero Cruz, Prudencia; Ortega, Enrique

    2015-01-01

    The purpose of this study was to assess the effectiveness of the use of video feedback on student learning in physical education, while also examining the teacher's responses to the innovation. Three classes from one Spanish high school participated in different conditions for learning hurdles in a track and field unit. These conditions compared…

  2. Effectiveness of Using a Video Game to Teach a Course in Mechanical Engineering

    ERIC Educational Resources Information Center

    Coller, B. D.; Scott, M. J.

    2009-01-01

    One of the core courses in the undergraduate mechanical engineering curriculum has been completely redesigned. In the new numerical methods course, all assignments and learning experiences are built around a video/computer game. Students are given the task of writing computer programs to race a simulated car around a track. In doing so, students…

  3. Biomechanical analysis using Kinovea for sports application

    NASA Astrophysics Data System (ADS)

    Muaza Nor Adnan, Nor; Patar, Mohd Nor Azmi Ab; Lee, Hokyoo; Yamamoto, Shin-Ichiroh; Jong-Young, Lee; Mahmud, Jamaluddin

    2018-04-01

    This paper assesses the reliability of HD VideoCam–Kinovea as an alternative tool in conducting motion analysis and measuring knee relative angle of drop jump movement. The motion capture and analysis procedure were conducted in the Biomechanics Lab, Shibaura Institute of Technology, Omiya Campus, Japan. A healthy subject without any gait disorder (BMI of 28.60 ± 1.40) was recruited. The volunteered subject was asked to per the drop jump movement on preset platform and the motion was simultaneously recorded using an established infrared motion capture system (Hawk–Cortex) and a HD VideoCam in the sagittal plane only. The capture was repeated for 5 times. The outputs (video recordings) from the HD VideoCam were input into Kinovea (an open-source software) and the drop jump pattern was tracked and analysed. These data are compared with the drop jump pattern tracked and analysed earlier using the Hawk–Cortex system. In general, the results obtained (drop jump pattern) using the HD VideoCam–Kinovea are close to the results obtained using the established motion capture system. Basic statistical analyses show that most average variances are less than 10%, thus proving the repeatability of the protocol and the reliability of the results. It can be concluded that the integration of HD VideoCam–Kinovea has the potential to become a reliable motion capture–analysis system. Moreover, it is low cost, portable and easy to use. As a conclusion, the current study and its findings are found useful and has contributed to enhance significant knowledge pertaining to motion capture-analysis, drop jump movement and HD VideoCam–Kinovea integration.

  4. Fast object reconstruction in block-based compressive low-light-level imaging

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Sui, Dong; Wei, Ping

    2014-11-01

    In this paper we propose a simply yet effective and efficient method for long-term object tracking. Different from traditional visual tracking method which mainly depends on frame-to-frame correspondence, we combine high-level semantic information with low-level correspondences. Our framework is formulated in a confidence selection framework, which allows our system to recover from drift and partly deal with occlusion problem. To summarize, our algorithm can be roughly decomposed in a initialization stage and a tracking stage. In the initialization stage, an offline classifier is trained to get the object appearance information in category level. When the video stream is coming, the pre-trained offline classifier is used for detecting the potential target and initializing the tracking stage. In the tracking stage, it consists of three parts which are online tracking part, offline tracking part and confidence judgment part. Online tracking part captures the specific target appearance information while detection part localizes the object based on the pre-trained offline classifier. Since there is no data dependence between online tracking and offline detection, these two parts are running in parallel to significantly improve the processing speed. A confidence selection mechanism is proposed to optimize the object location. Besides, we also propose a simple mechanism to judge the absence of the object. If the target is lost, the pre-trained offline classifier is utilized to re-initialize the whole algorithm as long as the target is re-located. During experiment, we evaluate our method on several challenging video sequences and demonstrate competitive results.

  5. Image sequence analysis workstation for multipoint motion analysis

    NASA Astrophysics Data System (ADS)

    Mostafavi, Hassan

    1990-08-01

    This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.

  6. Adaptive low-rank subspace learning with online optimization for robust visual tracking.

    PubMed

    Liu, Risheng; Wang, Di; Han, Yuzhuo; Fan, Xin; Luo, Zhongxuan

    2017-04-01

    In recent years, sparse and low-rank models have been widely used to formulate appearance subspace for visual tracking. However, most existing methods only consider the sparsity or low-rankness of the coefficients, which is not sufficient enough for appearance subspace learning on complex video sequences. Moreover, as both the low-rank and the column sparse measures are tightly related to all the samples in the sequences, it is challenging to incrementally solve optimization problems with both nuclear norm and column sparse norm on sequentially obtained video data. To address above limitations, this paper develops a novel low-rank subspace learning with adaptive penalization (LSAP) framework for subspace based robust visual tracking. Different from previous work, which often simply decomposes observations as low-rank features and sparse errors, LSAP simultaneously learns the subspace basis, low-rank coefficients and column sparse errors to formulate appearance subspace. Within LSAP framework, we introduce a Hadamard production based regularization to incorporate rich generative/discriminative structure constraints to adaptively penalize the coefficients for subspace learning. It is shown that such adaptive penalization can significantly improve the robustness of LSAP on severely corrupted dataset. To utilize LSAP for online visual tracking, we also develop an efficient incremental optimization scheme for nuclear norm and column sparse norm minimizations. Experiments on 50 challenging video sequences demonstrate that our tracker outperforms other state-of-the-art methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    PubMed

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  8. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    PubMed Central

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  9. Future of computerised electrocardiography.

    PubMed Central

    Meijler, F L; Robles de Medina, E O; Helder, J C

    1980-01-01

    The advent of computerised electrocardiography has been of prime importance for the storage and retrieval of data, but none of the available systems is of universal application for analysis of patterns. Future needs require hierarchical systems of increasing degrees of complexity, depending on the source of requests, and there should be appropriate provision for review by cardiologists before the final report is issued. PMID:7000098

  10. Review and Reward within the Computerised Peer-Assessment of Essays

    ERIC Educational Resources Information Center

    Davies, Phil

    2009-01-01

    This article details the implementation and use of a "Review Stage" within the CAP (computerised assessment by peers) tool as part of the assessment process for a post-graduate module in e-learning. It reports upon the effect of providing the students with a "second chance" in marking and commenting their peers' essays having been able to view the…

  11. Defense.gov - Warrior Games

    Science.gov Websites

    Warrior Games Archery, Track & Field More Videos at DoD Vclips Photo Essays Track and Field, Day 4 Army vs. Air Force in Volleyball More Photo Essays Click here for the 2011 Warrior Games Home Profiles Bios Event Schedule Stories Games Closing Marks New Beginning COLORADO SPRINGS, Colo., May 15, 2010

  12. MATHEMATICS OF SENSING, EXPLOITATION, AND EXECUTION (MSEE) Sensing, Exploitation, and Execution (SEE) on a Foundation for Representation, Inference, and Learning

    DTIC Science & Technology

    2016-07-01

    reconstruction, video synchronization, multi - view tracking, action recognition, reasoning with uncertainty 16. SECURITY CLASSIFICATION OF: 17...3.4.2. Human action recognition across multi - views ......................................................................................... 44 3.4.3...68 4.2.1. Multi - view Multi -object Tracking with 3D cues

  13. Understanding Collective Activities of People from Videos.

    PubMed

    Wongun Choi; Savarese, Silvio

    2014-06-01

    This paper presents a principled framework for analyzing collective activities at different levels of semantic granularity from videos. Our framework is capable of jointly tracking multiple individuals, recognizing activities performed by individuals in isolation (i.e., atomic activities such as walking or standing), recognizing the interactions between pairs of individuals (i.e., interaction activities) as well as understanding the activities of group of individuals (i.e., collective activities). A key property of our work is that it can coherently combine bottom-up information stemming from detections or fragments of tracks (or tracklets) with top-down evidence. Top-down evidence is provided by a newly proposed descriptor that captures the coherent behavior of groups of individuals in a spatial-temporal neighborhood of the sequence. Top-down evidence provides contextual information for establishing accurate associations between detections or tracklets across frames and, thus, for obtaining more robust tracking results. Bottom-up evidence percolates upwards so as to automatically infer collective activity labels. Experimental results on two challenging data sets demonstrate our theoretical claims and indicate that our model achieves enhances tracking results and the best collective classification results to date.

  14. Resolving occlusion and segmentation errors in multiple video object tracking

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Yung; Hwang, Jenq-Neng

    2009-02-01

    In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.

  15. Simultaneous measurements of jellyfish bell kinematics and flow fields using PTV and PIV

    NASA Astrophysics Data System (ADS)

    Xu, Nicole; Dabiri, John

    2016-11-01

    A better understanding of jellyfish swimming can potentially improve the energy efficiency of aquatic vehicles or create biomimetic robots for ocean monitoring. Aurelia aurita is a simple oblate invertebrate composed of a flexible bell and coronal muscle, which contracts to eject water from the subumbrellar volume. Jellyfish locomotion can be studied by obtaining body kinematics or by examining the resulting fluid velocity fields using particle image velocimetry (PIV). Typically, swim kinematics are obtained by semi-manually tracking points of interest (POI) along the bell in video post-processing; simultaneous measurements of kinematics and flows involve using this semi-manual tracking method on PIV videos. However, we show that both the kinematics and flow fields can be directly visualized in 3D space by embedding phosphorescent particles in animals free-swimming in seeded environments. Particle tracking velocimetry (PTV) can then be used to calculate bell kinematics, such as pulse frequency, bell deformation, swim trajectories, and propulsive efficiency. By simultaneously tracking POI within the bell and collecting PIV data, we can further study the jellyfish's natural locomotive control mechanisms in conjunction with flow measurements. NSF GRFP.

  16. Spatio-temporal features for tracking and quadruped/biped discrimination

    NASA Astrophysics Data System (ADS)

    Rickman, Rick; Copsey, Keith; Bamber, David C.; Page, Scott F.

    2012-05-01

    Techniques such as SIFT and SURF facilitate efficient and robust image processing operations through the use of sparse and compact spatial feature descriptors and show much potential for defence and security applications. This paper considers the extension of such techniques to include information from the temporal domain, to improve utility in applications involving moving imagery within video data. In particular, the paper demonstrates how spatio-temporal descriptors can be used very effectively as the basis of a target tracking system and as target discriminators which can distinguish between bipeds and quadrupeds. Results using sequences of video imagery of walking humans and dogs are presented, and the relative merits of the approach are discussed.

  17. Optical tracking of embryonic vertebrates behavioural responses using automated time-resolved video-microscopy system

    NASA Astrophysics Data System (ADS)

    Walpitagama, Milanga; Kaslin, Jan; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    The fish embryo toxicity (FET) biotest performed on embryos of zebrafish (Danio rerio) has gained significant popularity as a rapid and inexpensive alternative approach in chemical hazard and risk assessment. The FET was designed to evaluate acute toxicity on embryonic stages of fish exposed to the test chemical. The current standard, similar to most traditional methods for evaluating aquatic toxicity provides, however, little understanding of effects of environmentally relevant concentrations of chemical stressors. We postulate that significant environmental effects such as altered motor functions, physiological alterations reflected in heart rate, effects on development and reproduction can occur at sub-lethal concentrations well below than LC10. Behavioral studies can, therefore, provide a valuable integrative link between physiological and ecological effects. Despite the advantages of behavioral analysis development of behavioral toxicity, biotests is greatly hampered by the lack of dedicated laboratory automation, in particular, user-friendly and automated video microscopy systems. In this work we present a proof-of-concept development of an optical system capable of tracking embryonic vertebrates behavioral responses using automated and vastly miniaturized time-resolved video-microscopy. We have employed miniaturized CMOS cameras to perform high definition video recording and analysis of earliest vertebrate behavioral responses. The main objective was to develop a biocompatible embryo positioning structures that were suitable for high-throughput imaging as well as video capture and video analysis algorithms. This system should support the development of sub-lethal and behavioral markers for accelerated environmental monitoring.

  18. Intelligent video storage of visual evidences on site in fast deployment

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois

    2004-07-01

    In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.

  19. A novel Kalman filter based video image processing scheme for two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Huang, Xia; Li, Chunqiang; Xiao, Chuan; Qian, Wei

    2016-03-01

    Two-photon fluorescence microscopy (TPFM) is a perfect optical imaging equipment to monitor the interaction between fast moving viruses and hosts. However, due to strong unavoidable background noises from the culture, videos obtained by this technique are too noisy to elaborate this fast infection process without video image processing. In this study, we developed a novel scheme to eliminate background noises, recover background bacteria images and improve video qualities. In our scheme, we modified and implemented the following methods for both host and virus videos: correlation method, round identification method, tree-structured nonlinear filters, Kalman filters, and cell tracking method. After these procedures, most of noises were eliminated and host images were recovered with their moving directions and speed highlighted in the videos. From the analysis of the processed videos, 93% bacteria and 98% viruses were correctly detected in each frame on average.

  20. Real-time moving objects detection and tracking from airborne infrared camera

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2017-10-01

    Detecting and tracking moving objects in real-time from an airborne infrared (IR) camera offers interesting possibilities in video surveillance, remote sensing and computer vision applications, such as monitoring large areas simultaneously, quickly changing the point of view on the scene and pursuing objects of interest. To fully exploit such a potential, versatile solutions are needed, but, in the literature, the majority of them works only under specific conditions about the considered scenario, the characteristics of the moving objects or the aircraft movements. In order to overcome these limitations, we propose a novel approach to the problem, based on the use of a cheap inertial navigation system (INS), mounted on the aircraft. To exploit jointly the information contained in the acquired video sequence and the data provided by the INS, a specific detection and tracking algorithm has been developed. It consists of three main stages performed iteratively on each acquired frame. The detection stage, in which a coarse detection map is computed, using a local statistic both fast to calculate and robust to noise and self-deletion of the targeted objects. The registration stage, in which the position of the detected objects is coherently reported on a common reference frame, by exploiting the INS data. The tracking stage, in which the steady objects are rejected, the moving objects are tracked, and an estimation of their future position is computed, to be used in the subsequent iteration. The algorithm has been tested on a large dataset of simulated IR video sequences, recreating different environments and different movements of the aircraft. Promising results have been obtained, both in terms of detection and false alarm rate, and in terms of accuracy in the estimation of position and velocity of the objects. In addition, for each frame, the detection and tracking map has been generated by the algorithm, before the acquisition of the subsequent frame, proving its capability to work in real-time.

  1. Robust skin color-based moving object detection for video surveillance

    NASA Astrophysics Data System (ADS)

    Kaliraj, Kalirajan; Manimaran, Sudha

    2016-07-01

    Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.

  2. Gaze Allocation in a Dynamic Situation: Effects of Social Status and Speaking

    ERIC Educational Resources Information Center

    Foulsham, Tom; Cheng, Joey T.; Tracy, Jessica L.; Henrich, Joseph; Kingstone, Alan

    2010-01-01

    Human visual attention operates in a context that is complex, social and dynamic. To explore this, we recorded people taking part in a group decision-making task and then showed video clips of these situations to new participants while tracking their eye movements. Observers spent the majority of time looking at the people in the videos, and in…

  3. Video-tracking and on-plant tests show Cry1Ab resistance influences behavior and survival of neonate Ostrinia nubilalis following exposure to Bt maize

    USDA-ARS?s Scientific Manuscript database

    To examine how resistance to Bacillus thuringiensis (Bt) toxins influences movement and survival of European corn borer (Ostrinia nubilalis) neonates, the responses of Cry1Ab-resistant, -susceptible, and hybrid (F1) larvae were examined using two different techniques. First, using an automated video...

  4. Improvement of Hungarian Joint Terminal Attack Program

    DTIC Science & Technology

    2013-06-13

    LST Laser Spot Tracker NVG Night Vision Goggle ROMAD Radio Operator Maintainer and Driver ROVER Remotely Operated Video Enhanced Receiver TACP...visual target designation. The other component consists of a laser spot tracker (LST), which identifies targets by tracking laser energy reflecting...capability for every type of night time missions, laser spot tracker for laser spot search missions, remotely operated video enhanced receiver

  5. PC-based high-speed video-oculography for measuring rapid eye movements in mice.

    PubMed

    Sakatani, Tomoya; Isa, Tadashi

    2004-05-01

    We newly developed an infrared video-oculographic system for on-line tracking of the eye position in awake and head-fixed mice, with high temporal resolution (240 Hz). The system consists of a commercially available high-speed CCD camera and an image processing software written in LabVIEW run on IBM-PC with a plug-in video grabber board. This software calculates the center and area of the pupil by fitting circular function to the pupil boundary, and allows robust and stable tracking of the eye position in small animals like mice. On-line calculation is performed to obtain reasonable circular fitting of the pupil boundary even if a part of the pupil is covered with shadows or occluded by eyelids or corneal reflections. The pupil position in the 2-D video plane is converted to the rotation angle of the eyeball by estimating its rotation center based on the anatomical eyeball model. By this recording system, it is possible to perform quantitative analysis of rapid eye movements such as saccades in mice. This will provide a powerful tool for analyzing molecular basis of oculomotor and cognitive functions by using various lines of mutant mice.

  6. Stochastic modeling of soundtrack for efficient segmentation and indexing of video

    NASA Astrophysics Data System (ADS)

    Naphade, Milind R.; Huang, Thomas S.

    1999-12-01

    Tools for efficient and intelligent management of digital content are essential for digital video data management. An extremely challenging research area in this context is that of multimedia analysis and understanding. The capabilities of audio analysis in particular for video data management are yet to be fully exploited. We present a novel scheme for indexing and segmentation of video by analyzing the audio track. This analysis is then applied to the segmentation and indexing of movies. We build models for some interesting events in the motion picture soundtrack. The models built include music, human speech and silence. We propose the use of hidden Markov models to model the dynamics of the soundtrack and detect audio-events. Using these models we segment and index the soundtrack. A practical problem in motion picture soundtracks is that the audio in the track is of a composite nature. This corresponds to the mixing of sounds from different sources. Speech in foreground and music in background are common examples. The coexistence of multiple individual audio sources forces us to model such events explicitly. Experiments reveal that explicit modeling gives better result than modeling individual audio events separately.

  7. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    NASA Astrophysics Data System (ADS)

    Morishima, Shigeo; Nakamura, Satoshi

    2004-12-01

    We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  8. A new user-assisted segmentation and tracking technique for an object-based video editing system

    NASA Astrophysics Data System (ADS)

    Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark

    2004-03-01

    This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.

  9. Real-time video analysis for retail stores

    NASA Astrophysics Data System (ADS)

    Hassan, Ehtesham; Maurya, Avinash K.

    2015-03-01

    With the advancement in video processing technologies, we can capture subtle human responses in a retail store environment which play decisive role in the store management. In this paper, we present a novel surveillance video based analytic system for retail stores targeting localized and global traffic estimate. Development of an intelligent system for human traffic estimation in real-life poses a challenging problem because of the variation and noise involved. In this direction, we begin with a novel human tracking system by an intelligent combination of motion based and image level object detection. We demonstrate the initial evaluation of this approach on available standard dataset yielding promising result. Exact traffic estimate in a retail store require correct separation of customers from service providers. We present a role based human classification framework using Gaussian mixture model for this task. A novel feature descriptor named graded colour histogram is defined for object representation. Using, our role based human classification and tracking system, we have defined a novel computationally efficient framework for two types of analytics generation i.e., region specific people count and dwell-time estimation. This system has been extensively evaluated and tested on four hours of real-life video captured from a retail store.

  10. Video-processing-based system for automated pedestrian data collection and analysis when crossing the street

    NASA Astrophysics Data System (ADS)

    Mansouri, Nabila; Watelain, Eric; Ben Jemaa, Yousra; Motamed, Cina

    2018-03-01

    Computer-vision techniques for pedestrian detection and tracking have progressed considerably and become widely used in several applications. However, a quick glance at the literature shows a minimal use of these techniques in pedestrian behavior and safety analysis, which might be due to the technical complexities facing the processing of pedestrian videos. To extract pedestrian trajectories from a video automatically, all road users must be detected and tracked during sequences, which is a challenging task, especially in a congested open-outdoor urban space. A multipedestrian tracker based on an interframe-detection-association process was proposed and evaluated. The tracker results are used to implement an automatic tool for pedestrians data collection when crossing the street based on video processing. The variations in the instantaneous speed allowed the detection of the street crossing phases (approach, waiting, and crossing). These were addressed for the first time in the pedestrian road security analysis to illustrate the causal relationship between pedestrian behaviors in the different phases. A comparison with a manual data collection method, by computing the root mean square error and the Pearson correlation coefficient, confirmed that the procedures proposed have significant potential to automate the data collection process.

  11. Dual linear structured support vector machine tracking method via scale correlation filter

    NASA Astrophysics Data System (ADS)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  12. UWB Tracking System Design for Free-Flyers

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John

    2004-01-01

    This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.

  13. A low-cost test-bed for real-time landmark tracking

    NASA Astrophysics Data System (ADS)

    Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher

    2007-04-01

    A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.

  14. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    PubMed

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.

  15. Automated Thermal Image Processing for Detection and Classification of Birds and Bats - FY2012 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duberstein, Corey A.; Matzner, Shari; Cullinan, Valerie I.

    Surveying wildlife at risk from offshore wind energy development is difficult and expensive. Infrared video can be used to record birds and bats that pass through the camera view, but it is also time consuming and expensive to review video and determine what was recorded. We proposed to conduct algorithm and software development to identify and to differentiate thermally detected targets of interest that would allow automated processing of thermal image data to enumerate birds, bats, and insects. During FY2012 we developed computer code within MATLAB to identify objects recorded in video and extract attribute information that describes the objectsmore » recorded. We tested the efficiency of track identification using observer-based counts of tracks within segments of sample video. We examined object attributes, modeled the effects of random variability on attributes, and produced data smoothing techniques to limit random variation within attribute data. We also began drafting and testing methodology to identify objects recorded on video. We also recorded approximately 10 hours of infrared video of various marine birds, passerine birds, and bats near the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) at Sequim, Washington. A total of 6 hours of bird video was captured overlooking Sequim Bay over a series of weeks. An additional 2 hours of video of birds was also captured during two weeks overlooking Dungeness Bay within the Strait of Juan de Fuca. Bats and passerine birds (swallows) were also recorded at dusk on the MSL campus during nine evenings. An observer noted the identity of objects viewed through the camera concurrently with recording. These video files will provide the information necessary to produce and test software developed during FY2013. The annotation will also form the basis for creation of a method to reliably identify recorded objects.« less

  16. Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach.

    PubMed

    Reader, Arran T; Holmes, Nicholas P

    2015-01-01

    Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.

  17. KOLAM: a cross-platform architecture for scalable visualization and tracking in wide-area imagery

    NASA Astrophysics Data System (ADS)

    Fraser, Joshua; Haridas, Anoop; Seetharaman, Guna; Rao, Raghuveer M.; Palaniappan, Kannappan

    2013-05-01

    KOLAM is an open, cross-platform, interoperable, scalable and extensible framework supporting a novel multi- scale spatiotemporal dual-cache data structure for big data visualization and visual analytics. This paper focuses on the use of KOLAM for target tracking in high-resolution, high throughput wide format video also known as wide-area motion imagery (WAMI). It was originally developed for the interactive visualization of extremely large geospatial imagery of high spatial and spectral resolution. KOLAM is platform, operating system and (graphics) hardware independent, and supports embedded datasets scalable from hundreds of gigabytes to feasibly petabytes in size on clusters, workstations, desktops and mobile computers. In addition to rapid roam, zoom and hyper- jump spatial operations, a large number of simultaneously viewable embedded pyramid layers (also referred to as multiscale or sparse imagery), interactive colormap and histogram enhancement, spherical projection and terrain maps are supported. The KOLAM software architecture was extended to support airborne wide-area motion imagery by organizing spatiotemporal tiles in very large format video frames using a temporal cache of tiled pyramid cached data structures. The current version supports WAMI animation, fast intelligent inspection, trajectory visualization and target tracking (digital tagging); the latter by interfacing with external automatic tracking software. One of the critical needs for working with WAMI is a supervised tracking and visualization tool that allows analysts to digitally tag multiple targets, quickly review and correct tracking results and apply geospatial visual analytic tools on the generated trajectories. One-click manual tracking combined with multiple automated tracking algorithms are available to assist the analyst and increase human effectiveness.

  18. Scintillator-fiber charged particle track-imaging detector

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Israel, M. H.; Klarmann, J.

    1983-01-01

    A scintillator-fiber charged-particle track-imaging detector was developed using a bundle of square cross section plastic scintillator fiber optics, proximity focused onto an image intensified charge injection device (CID) camera. The tracks of charged particle penetrating into the scintillator fiber bundle are projected onto the CID camera and the imaging information is read out in video format. The detector was exposed to beams of 15 MeV protons and relativistic Neon, Manganese, and Gold nuclei and images of their tracks were obtained. Details of the detector technique, properties of the tracks obtained, and preliminary range measurements of 15 MeV protons stopping in the fiber bundle are presented.

  19. Research on target tracking in coal mine based on optical flow method

    NASA Astrophysics Data System (ADS)

    Xue, Hongye; Xiao, Qingwei

    2015-03-01

    To recognize, track and count the bolting machine in coal mine video images, a real-time target tracking method based on the Lucas-Kanade sparse optical flow is proposed in this paper. In the method, we judge whether the moving target deviate from its trajectory, predicate and correct the position of the moving target. The method solves the problem of failure to track the target or lose the target because of the weak light, uneven illumination and blocking. Using the VC++ platform and Opencv lib we complete the recognition and tracking. The validity of the method is verified by the result of the experiment.

  20. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  1. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system.

    PubMed

    Ebe, Kazuyu; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji

    2015-08-01

    To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio-caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient's tumor motion. A substitute target with the patient's tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors' QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients' tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.

  2. Contour Detector and Data Acquisition System for the Left Ventricular Outline

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C. (Inventor)

    1978-01-01

    A real-time contour detector and data acquisition system is described for an angiographic apparatus having a video scanner for converting an X-ray image of a structure characterized by a change in brightness level compared with its surrounding into video format and displaying the X-ray image in recurring video fields. The real-time contour detector and data acqusition system includes track and hold circuits; a reference level analog computer circuit; an analog compartor; a digital processor; a field memory; and a computer interface.

  3. Time-Lapse and Slow-Motion Tracking of Temperature Changes: Response Time of a Thermometer

    ERIC Educational Resources Information Center

    Moggio, L.; Onorato, P.; Gratton, L. M.; Oss, S.

    2017-01-01

    We propose the use of a smartphone based time-lapse and slow-motion video techniques together with tracking analysis as valuable tools for investigating thermal processes such as the response time of a thermometer. The two simple experimental activities presented here, suitable also for high school and undergraduate students, allow one to measure…

  4. Shadow Detection Based on Regions of Light Sources for Object Extraction in Nighttime Video

    PubMed Central

    Lee, Gil-beom; Lee, Myeong-jin; Lee, Woo-Kyung; Park, Joo-heon; Kim, Tae-Hwan

    2017-01-01

    Intelligent video surveillance systems detect pre-configured surveillance events through background modeling, foreground and object extraction, object tracking, and event detection. Shadow regions inside video frames sometimes appear as foreground objects, interfere with ensuing processes, and finally degrade the event detection performance of the systems. Conventional studies have mostly used intensity, color, texture, and geometric information to perform shadow detection in daytime video, but these methods lack the capability of removing shadows in nighttime video. In this paper, a novel shadow detection algorithm for nighttime video is proposed; this algorithm partitions each foreground object based on the object’s vertical histogram and screens out shadow objects by validating their orientations heading toward regions of light sources. From the experimental results, it can be seen that the proposed algorithm shows more than 93.8% shadow removal and 89.9% object extraction rates for nighttime video sequences, and the algorithm outperforms conventional shadow removal algorithms designed for daytime videos. PMID:28327515

  5. Object tracking with adaptive HOG detector and adaptive Rao-Blackwellised particle filter

    NASA Astrophysics Data System (ADS)

    Rosa, Stefano; Paleari, Marco; Ariano, Paolo; Bona, Basilio

    2012-01-01

    Scenarios for a manned mission to the Moon or Mars call for astronaut teams to be accompanied by semiautonomous robots. A prerequisite for human-robot interaction is the capability of successfully tracking humans and objects in the environment. In this paper we present a system for real-time visual object tracking in 2D images for mobile robotic systems. The proposed algorithm is able to specialize to individual objects and to adapt to substantial changes in illumination and object appearance during tracking. The algorithm is composed by two main blocks: a detector based on Histogram of Oriented Gradient (HOG) descriptors and linear Support Vector Machines (SVM), and a tracker which is implemented by an adaptive Rao-Blackwellised particle filter (RBPF). The SVM is re-trained online on new samples taken from previous predicted positions. We use the effective sample size to decide when the classifier needs to be re-trained. Position hypotheses for the tracked object are the result of a clustering procedure applied on the set of particles. The algorithm has been tested on challenging video sequences presenting strong changes in object appearance, illumination, and occlusion. Experimental tests show that the presented method is able to achieve near real-time performances with a precision of about 7 pixels on standard video sequences of dimensions 320 × 240.

  6. Scene-Aware Adaptive Updating for Visual Tracking via Correlation Filters

    PubMed Central

    Zhang, Sirou; Qiao, Xiaoya

    2017-01-01

    In recent years, visual object tracking has been widely used in military guidance, human-computer interaction, road traffic, scene monitoring and many other fields. The tracking algorithms based on correlation filters have shown good performance in terms of accuracy and tracking speed. However, their performance is not satisfactory in scenes with scale variation, deformation, and occlusion. In this paper, we propose a scene-aware adaptive updating mechanism for visual tracking via a kernel correlation filter (KCF). First, a low complexity scale estimation method is presented, in which the corresponding weight in five scales is employed to determine the final target scale. Then, the adaptive updating mechanism is presented based on the scene-classification. We classify the video scenes as four categories by video content analysis. According to the target scene, we exploit the adaptive updating mechanism to update the kernel correlation filter to improve the robustness of the tracker, especially in scenes with scale variation, deformation, and occlusion. We evaluate our tracker on the CVPR2013 benchmark. The experimental results obtained with the proposed algorithm are improved by 33.3%, 15%, 6%, 21.9% and 19.8% compared to those of the KCF tracker on the scene with scale variation, partial or long-time large-area occlusion, deformation, fast motion and out-of-view. PMID:29140311

  7. Adaptive and accelerated tracking-learning-detection

    NASA Astrophysics Data System (ADS)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  8. Can fractal methods applied to video tracking detect the effects of deltamethrin pesticide or mercury on the locomotion behavior of shrimps?

    PubMed

    Tenorio, Bruno Mendes; da Silva Filho, Eurípedes Alves; Neiva, Gentileza Santos Martins; da Silva, Valdemiro Amaro; Tenorio, Fernanda das Chagas Angelo Mendes; da Silva, Themis de Jesus; Silva, Emerson Carlos Soares E; Nogueira, Romildo de Albuquerque

    2017-08-01

    Shrimps can accumulate environmental toxicants and suffer behavioral changes. However, methods to quantitatively detect changes in the behavior of these shrimps are still needed. The present study aims to verify whether mathematical and fractal methods applied to video tracking can adequately describe changes in the locomotion behavior of shrimps exposed to low concentrations of toxic chemicals, such as 0.15µgL -1 deltamethrin pesticide or 10µgL -1 mercuric chloride. Results showed no change after 1min, 4, 24, and 48h of treatment. However, after 72 and 96h of treatment, both the linear methods describing the track length, mean speed, mean distance from the current to the previous track point, as well as the non-linear methods of fractal dimension (box counting or information entropy) and multifractal analysis were able to detect changes in the locomotion behavior of shrimps exposed to deltamethrin. Analysis of angular parameters of the track points vectors and lacunarity were not sensitive to those changes. None of the methods showed adverse effects to mercury exposure. These mathematical and fractal methods applicable to software represent low cost useful tools in the toxicological analyses of shrimps for quality of food, water and biomonitoring of ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Enhancing cognition with video games: a multiple game training study.

    PubMed

    Oei, Adam C; Patterson, Michael D

    2013-01-01

    Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.

  10. Robust tracking and quantification of C. elegans body shape and locomotion through coiling, entanglement, and omega bends

    PubMed Central

    Roussel, Nicolas; Sprenger, Jeff; Tappan, Susan J; Glaser, Jack R

    2014-01-01

    The behavior of the well-characterized nematode, Caenorhabditis elegans (C. elegans), is often used to study the neurologic control of sensory and motor systems in models of health and neurodegenerative disease. To advance the quantification of behaviors to match the progress made in the breakthroughs of genetics, RNA, proteins, and neuronal circuitry, analysis must be able to extract subtle changes in worm locomotion across a population. The analysis of worm crawling motion is complex due to self-overlap, coiling, and entanglement. Using current techniques, the scope of the analysis is typically restricted to worms to their non-occluded, uncoiled state which is incomplete and fundamentally biased. Using a model describing the worm shape and crawling motion, we designed a deformable shape estimation algorithm that is robust to coiling and entanglement. This model-based shape estimation algorithm has been incorporated into a framework where multiple worms can be automatically detected and tracked simultaneously throughout the entire video sequence, thereby increasing throughput as well as data validity. The newly developed algorithms were validated against 10 manually labeled datasets obtained from video sequences comprised of various image resolutions and video frame rates. The data presented demonstrate that tracking methods incorporated in WormLab enable stable and accurate detection of these worms through coiling and entanglement. Such challenging tracking scenarios are common occurrences during normal worm locomotion. The ability for the described approach to provide stable and accurate detection of C. elegans is critical to achieve unbiased locomotory analysis of worm motion. PMID:26435884

  11. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Paik, Joonki

    2016-01-01

    This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978

  12. A Computerized Wear Particle Atlas for Ferrogram and Filtergram Analyses

    DTIC Science & Technology

    1998-01-01

    A Computerised Wear Particle Atlas for Ferrogram and Filtergram Analyses Jian G. Ding Lubrosoft P/L P 0 Box 2368, Rowville Melbourne VIC 3178...Australia (61-3) 9759-9083 Abstract: A new computerised wear particle atlas has been developed for identification of solid particles and...differentiation of wear severity of lubricated equipment. This atlas contains 892 images of representative solid particles selected from thousands of filtergram

  13. A systematic review of computerised serious educational games about alcohol and other drugs for adolescents.

    PubMed

    Rodriguez, Daniel M; Teesson, Maree; Newton, Nicola C

    2014-03-01

    Serious educational games (SEG) have been shown to be effective in educating young people about a range of topics, including languages and maths. This paper identifies the use of computerised SEGs in education about alcohol and other drugs and reviews their impact on the prevention of alcohol and drug use. The Cochrane Library, EMBASE, MEDLINE, ERIC, Scopus, psychINFO, pubMED and DRUG databases were searched in February 2013. Additional publications were obtained from the reference lists of the relevant papers. Studies were included if they described an evaluation of a computerised SEG that targeted alcohol and/or other drugs and had been trialled with adolescents. Eight SEGs were identified targeting tobacco, alcohol, cannabis, methamphetamine, ecstasy, inhalants, cocaine and opioids. Six reported positive outcomes in terms of increased content knowledge and two reported increased negative attitudes towards the targeted drugs. Only one reported a decrease in the frequency of drug use. This is the first review of the efficacy of computerised SEGs for alcohol and other drugs for adolescents. Results suggest that SEGs can increase content knowledge of alcohol and other drugs. Evidence concerning impacts on negative attitudes and alcohol and drug use is limited, with few studies examining these outcomes. © 2013 Australasian Professional Society on Alcohol and other Drugs.

  14. Feasibility and effectiveness of a cognitive remediation programme with original computerised cognitive training and group intervention for schizophrenia: a multicentre randomised trial.

    PubMed

    Matsuda, Yasuhiro; Morimoto, Tsubasa; Furukawa, Shunichi; Sato, Sayaka; Hatsuse, Norifumi; Iwata, Kazuhiko; Kimura, Mieko; Kishimoto, Toshifumi; Ikebuchi, Emi

    2018-04-01

    Devising new methods to improve neurocognitive impairment through cognitive remediation is an important research goal. We developed an original computer programme termed the Japanese Cognitive Rehabilitation Programme for Schizophrenia (JCORES) that provides cognitive practice across a broad range of abilities. The current study examined for the first time whether a cognitive remediation programme, including both computerised cognitive training using JCORES and group intervention such as enhancing meta-cognition and teaching strategies, is more effective than treatment as usual for improving neurocognitive and social functioning. Sixty-two outpatients with schizophrenia were randomised to either a cognitive remediation group or a control group. Participants engaged in two computerised cognitive training sessions and one group meeting per week for 12 weeks. The average number of total sessions attended (computerised cognitive practice + group intervention) was 32.3 (89.7%). The cognitive remediation group showed significantly more improvements in verbal memory, composite score of the Brief Assessment of Cognition in Schizophrenia, Japanese version (BACS-J), and general psychopathology on the Positive and Negative Syndrome Scale (PANSS) than the control group. These findings demonstrate that a cognitive remediation programme is feasible in Japan and is a more effective way to improve neurocognitive functioning and psychiatric symptoms.

  15. Hybrid tracking and control system for computer-aided retinal surgery

    NASA Astrophysics Data System (ADS)

    Ferguson, R. D.; Wright, Cameron H. G.; Rylander, Henry G., III; Welch, Ashley J.; Barrett, Steven F.

    1996-05-01

    We describe initial experimental results of a new hybrid digital and analog design for retinal tracking and laser beam control. Initial results demonstrate tracking rates which exceed the equivalent of 50 degrees per second in the eye, with automatic lesion pattern creation and robust loss of lock detection. Robotically assisted laser surgery to treat conditions such as diabetic retinopathy, macular degeneration, and retinal tears can now be realized under clinical conditions with requisite safety using standard video hardware and inexpensive optical components.

  16. Video Guidance Sensor and Time-of-Flight Rangefinder

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas; Howard, Richard; Bell, Joseph L.; Roe, Fred D.; Book, Michael L.

    2007-01-01

    A proposed video guidance sensor (VGS) would be based mostly on the hardware and software of a prior Advanced VGS (AVGS), with some additions to enable it to function as a time-of-flight rangefinder (in contradistinction to a triangulation or image-processing rangefinder). It would typically be used at distances of the order of 2 or 3 kilometers, where a typical target would appear in a video image as a single blob, making it possible to extract the direction to the target (but not the orientation of the target or the distance to the target) from a video image of light reflected from the target. As described in several previous NASA Tech Briefs articles, an AVGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. In the original application, the two vehicles are spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In a prior AVGS system of the type upon which the now-proposed VGS is largely based, the tracked vehicle is equipped with one or more passive targets that reflect light from one or more continuous-wave laser diode(s) on the tracking vehicle, a video camera on the tracking vehicle acquires images of the targets in the reflected laser light, the video images are digitized, and the image data are processed to obtain the direction to the target. The design concept of the proposed VGS does not call for any memory or processor hardware beyond that already present in the prior AVGS, but does call for some additional hardware and some additional software. It also calls for assignment of some additional tasks to two subsystems that are parts of the prior VGS: a field-programmable gate array (FPGA) that generates timing and control signals, and a digital signal processor (DSP) that processes the digitized video images. The additional timing and control signals generated by the FPGA would cause the VGS to alternate between an imaging (direction-finding) mode and a time-of-flight (range-finding mode) and would govern operation in the range-finding mode.

  17. Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor.

    PubMed

    Lange, Belinda; Chang, Chien-Yen; Suma, Evan; Newman, Bradley; Rizzo, Albert Skip; Bolas, Mark

    2011-01-01

    The use of the commercial video games as rehabilitation tools, such as the Nintendo WiiFit, has recently gained much interest in the physical therapy arena. Motion tracking controllers such as the Nintendo Wiimote are not sensitive enough to accurately measure performance in all components of balance. Additionally, users can figure out how to "cheat" inaccurate trackers by performing minimal movement (e.g. wrist twisting a Wiimote instead of a full arm swing). Physical rehabilitation requires accurate and appropriate tracking and feedback of performance. To this end, we are developing applications that leverage recent advances in commercial video game technology to provide full-body control of animated virtual characters. A key component of our approach is the use of newly available low cost depth sensing camera technology that provides markerless full-body tracking on a conventional PC. The aim of this research was to develop and assess an interactive game-based rehabilitation tool for balance training of adults with neurological injury.

  18. Control Method for Video Guidance Sensor System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)

    2005-01-01

    A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are commands is permitted only when the system is in the carried out. Further, acceptance of reset and diagnostic standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.

  19. Control method for video guidance sensor system

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)

    2005-01-01

    A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are carried out. Further, acceptance of reset and diagnostic commands is permitted only when the system is in the standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.

  20. Video-tracker trajectory analysis: who meets whom, when and where

    NASA Astrophysics Data System (ADS)

    Jäger, U.; Willersinn, D.

    2010-04-01

    Unveiling unusual or hostile events by observing manifold moving persons in a crowd is a challenging task for human operators, especially when sitting in front of monitor walls for hours. Typically, hostile events are rare. Thus, due to tiredness and negligence the operator may miss important events. In such situations, an automatic alarming system is able to support the human operator. The system incorporates a processing chain consisting of (1) people tracking, (2) event detection, (3) data retrieval, and (4) display of relevant video sequence overlaid by highlighted regions of interest. In this paper we focus on the event detection stage of the processing chain mentioned above. In our case, the selected event of interest is the encounter of people. Although being based on a rather simple trajectory analysis, this kind of event embodies great practical importance because it paves the way to answer the question "who meets whom, when and where". This, in turn, forms the basis to detect potential situations where e.g. money, weapons, drugs etc. are handed over from one person to another in crowded environments like railway stations, airports or busy streets and places etc.. The input to the trajectory analysis comes from a multi-object video-based tracking system developed at IOSB which is able to track multiple individuals within a crowd in real-time [1]. From this we calculate the inter-distances between all persons on a frame-to-frame basis. We use a sequence of simple rules based on the individuals' kinematics to detect the event mentioned above to output the frame number, the persons' IDs from the tracker and the pixel coordinates of the meeting position. Using this information, a data retrieval system may extract the corresponding part of the recorded video image sequence and finally allows for replaying the selected video clip with a highlighted region of interest to attract the operator's attention for further visual inspection.

  1. Unfreezing the behaviour of two orb spiders.

    PubMed

    Zschokke, S; Vollrath, F

    1995-12-01

    Spider's webs reflect the builders behaviour pattern; yet there are aspects of the construction behaviour that cannot be "read" from the geometry of the finished web alone. Using computerised image analysis we developed an automatic surveillance method to track a spider's path during web-building. Thus we collected data on two orb-weaving spiders--the cribellate Uloborus walckenaerius and the ecribellate Araneus diadematus--for web geometry, movement pattern and time allocation. Representatives of these two species built webs of similar geometry but they used different movement patterns both spatially (which we describe qualitatively) and temporally (which we analyse quantitatively). Most importantly, temporal analysis showed that the two spiders differed significantly in some but not all web-building stages; and from this we deduce that Uloborus--unlike Araneus--was constrained by speed of silk production during the construction of its capture but not its auxiliary spiral.

  2. Adaptive block online learning target tracking based on super pixel segmentation

    NASA Astrophysics Data System (ADS)

    Cheng, Yue; Li, Jianzeng

    2018-04-01

    Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.

  3. Accuracy and Precision of a Custom Camera-Based System for 2-D and 3-D Motion Tracking during Speech and Nonspeech Motor Tasks

    ERIC Educational Resources Information Center

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose: Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable…

  4. A Computer Assisted Method to Track Listening Strategies in Second Language Learning

    ERIC Educational Resources Information Center

    Roussel, Stephanie

    2011-01-01

    Many studies about listening strategies are based on what learners report while listening to an oral message in the second language (Vandergrift, 2003; Graham, 2006). By recording a video of the computer screen while L2 learners (L1 French) were listening to an MP3-track in German, this study uses a novel approach and recent developments in…

  5. Development of Automated Tracking System with Active Cameras for Figure Skating

    NASA Astrophysics Data System (ADS)

    Haraguchi, Tomohiko; Taki, Tsuyoshi; Hasegawa, Junichi

    This paper presents a system based on the control of PTZ cameras for automated real-time tracking of individual figure skaters moving on an ice rink. In the video images of figure skating, irregular trajectories, various postures, rapid movements, and various costume colors are included. Therefore, it is difficult to determine some features useful for image tracking. On the other hand, an ice rink has a limited area and uniform high intensity, and skating is always performed on ice. In the proposed system, an ice rink region is first extracted from a video image by the region growing method, and then, a skater region is extracted using the rink shape information. In the camera control process, each camera is automatically panned and/or tilted so that the skater region is as close to the center of the image as possible; further, the camera is zoomed to maintain the skater image at an appropriate scale. The results of experiments performed for 10 training scenes show that the skater extraction rate is approximately 98%. Thus, it was concluded that tracking with camera control was successful for almost all the cases considered in the study.

  6. AR.Drone: security threat analysis and exemplary attack to track persons

    NASA Astrophysics Data System (ADS)

    Samland, Fred; Fruth, Jana; Hildebrandt, Mario; Hoppe, Tobias; Dittmann, Jana

    2012-01-01

    In this article we illustrate an approach of a security threat analysis of the quadrocopter AR.Drone, a toy for augmented reality (AR) games. The technical properties of the drone can be misused for attacks, which may relate security and/or privacy aspects. Our aim is to sensitize for the possibility of misuses and the motivation for an implementation of improved security mechanisms of the quadrocopter. We focus primarily on obvious security vulnerabilities (e.g. communication over unencrypted WLAN, usage of UDP, live video streaming via unencrypted WLAN to the control device) of this quadrocopter. We could practically verify in three exemplary scenarios that this can be misused by unauthorized persons for several attacks: high-jacking of the drone, eavesdropping of the AR.Drones unprotected video streams, and the tracking of persons. Amongst other aspects, our current research focuses on the realization of the attack of tracking persons and objects with the drone. Besides the realization of attacks, we want to evaluate the potential of this particular drone for a "safe-landing" function, as well as potential security enhancements. Additionally, in future we plan to investigate an automatic tracking of persons or objects without the need of human interactions.

  7. Video game use and cognitive performance: does it vary with the presence of problematic video game use?

    PubMed

    Collins, Emily; Freeman, Jonathan

    2014-03-01

    Action video game players have been found to outperform nonplayers on a variety of cognitive tasks. However, several failures to replicate these video game player advantages have indicated that this relationship may not be straightforward. Moreover, despite the discovery that problematic video game players do not appear to demonstrate the same superior performance as nonproblematic video game players in relation to multiple object tracking paradigms, this has not been investigated for other tasks. Consequently, this study compared gamers and nongamers in task switching ability, visual short-term memory, mental rotation, enumeration, and flanker interference, as well as investigated the influence of self-reported problematic video game use. A total of 66 participants completed the experiment, 26 of whom played action video games, including 20 problematic players. The results revealed no significant effect of playing action video games, nor any influence of problematic video game play. This indicates that the previously reported cognitive advantages in video game players may be restricted to specific task features or samples. Furthermore, problematic video game play may not have a detrimental effect on cognitive performance, although this is difficult to ascertain considering the lack of video game player advantage. More research is therefore sorely needed.

  8. A visual tracking method based on deep learning without online model updating

    NASA Astrophysics Data System (ADS)

    Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei

    2018-02-01

    The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.

  9. [A computerised clinical decision-support system for the management of depression in Primary Care].

    PubMed

    Aragonès, Enric; Comín, Eva; Cavero, Myriam; Pérez, Víctor; Molina, Cristina; Palao, Diego

    Despite its clinical relevance and its importance as a public health problem, there are major gaps in the management of depression. Evidence-based clinical guidelines are useful to improve processes and clinical outcomes. In order to make their implementation easier these guidelines have been transformed into computerised clinical decision support systems. In this article, a description is presented on the basics and characteristics of a new computerised clinical guideline for the management of major depression, developed in the public health system in Catalonia. This tool helps the clinician to establish reliable and accurate diagnoses of depression, to choose the best treatment a priori according to the disease and the patient characteristics. It also emphasises the importance of systematic monitoring to assess the clinical course, and to adjust therapeutic interventions to the patient's needs at all times. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  10. The Melbourne East Monash General Practice Database (MAGNET): Using data from computerised medical records to create a platform for primary care and health services research.

    PubMed

    Mazza, Danielle; Pearce, Christopher; Turner, Lyle Robert; De Leon-Santiago, Maria; McLeod, Adam; Ferriggi, Jason; Shearer, Marianne

    2016-07-04

    The Melbourne East MonAsh GeNeral PracticE DaTabase (MAGNET) research platform was launched in 2013 to provide a unique data source for primary care and health services research in Australia.  MAGNET contains information from the computerised records of 50 participating general practices and includes data from the computerised medical records of more than 1,100,000 patients.  The data extracted is patient-level episodic information and includes a variety of fields related to patient demographics and historical clinical information, along with the characteristics of the participating general practices.  While there are limitations to the data that is currently available, the MAGNET research platform continues to investigate other avenues for improving the breadth and quality of data, with the aim of providing a more comprehensive picture of primary care in Australia.

  11. Computerised electronic foetal heart rate monitoring in labour: automated contraction identification.

    PubMed

    Georgieva, A; Payne, S J; Redman, C W G

    2009-12-01

    The foetal heart rate (FHR) response to uterine contractions is crucial to detect foetal distress by electronic FHR monitoring during labour. We are developing a new automated system (OxSys) for decision support in labour, using the Oxford database of intrapartum FHR records. We describe here a novel technique for automated detection of uterus contractions. In addition, we present a comparison of the new method with four other computerised approaches. During training, OxSys achieved sensitivity above 95% and positive predictive value (PPV) of up to 90% for traces of good quality. During testing, OxSys achieved sensitivity = 87% and PPV = 75%. For comparison, a second clinical expert obtained sensitivity = 93% and PPV = 80%, and all other computerised approaches achieved lower values. It was concluded that the proposed method can be employed with confidence in our study on foetal health assessment in labour and future OxSys development.

  12. Video-Guidance Design for the DART Rendezvous Mission

    NASA Technical Reports Server (NTRS)

    Ruth, Michael; Tracy, Chisholm

    2004-01-01

    NASA's Demonstration of Autonomous Rendezvous Technology (DART) mission will validate a number of different guidance technologies, including state-differenced GPS transfers and close-approach video guidance. The video guidance for DART will employ NASA/Marshall s Advanced Video Guidance Sensor (AVGS). This paper focuses on the terminal phase of the DART mission that includes close-approach maneuvers under AVGS guidance. The closed-loop video guidance design for DART is driven by a number of competing requirements, including a need for maximizing tracking bandwidths while coping with measurement noise and the need to minimize RCS firings. A range of different strategies for attitude control and docking guidance have been considered for the DART mission, and design decisions are driven by a goal of minimizing both the design complexity and the effects of video guidance lags. The DART design employs an indirect docking approach, in which the guidance position targets are defined using relative attitude information. Flight simulation results have proven the effectiveness of the video guidance design.

  13. Quantitative analysis of the improvement in omnidirectional maritime surveillance and tracking due to real-time image enhancement

    NASA Astrophysics Data System (ADS)

    de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.

    2011-05-01

    Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.

  14. A Video-Tracking Analysis-Based Behavioral Assay for Larvae of Anopheles pseudopunctipennis and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Gonzalez, Paula V; Alvarez Costa, Agustín; Masuh, Héctor M

    2017-05-01

    Aedes aegypti (L.) is the primary vector of dengue, yellow fever, Zika, and chikungunya viruses, whereas Anopheles pseudopunctipennis (Theobald) is the principal vector for malaria in Latin America. The larval stage of these mosquitoes occurs in very different development habitats, and the study of their respective behaviors could give us valuable information to improve larval control. The aim of this study was to set up a bioassay to study basic larval behaviors using a video-tracking software. Larvae of An. pseudopunctipennis came from two localities in Salta Province, Argentina, while Ae. aegypti larvae were of the Rockefeller laboratory strain. Behaviors of individual fourth-instar larvae were documented in an experimental petri dish arena using EthoVision XT10.1 video-tracking software. The overall level of movement of larval An. pseudopunctipennis was lower than that for Ae. aegypti, and, while moving, larval An. pseudopunctipennis spent significantly more time swimming near the wall of the arena (thigmotaxis). This is the first study that analyzes the behavior of An. pseudopunctipennis larvae. The experimental system described here may be useful for future studies on the effect of physiological, toxicological, and chemosensory stimuli on larval behaviors. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Optoelectronic Sensor System for Guidance in Docking

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Book, Michael L.; Jackson, John L.

    2004-01-01

    The Video Guidance Sensor (VGS) system is an optoelectronic sensor that provides automated guidance between two vehicles. In the original intended application, the two vehicles would be spacecraft docking together, but the basic principles of design and operation of the sensor are applicable to aircraft, robots, vehicles, or other objects that may be required to be aligned for docking, assembly, resupply, or precise separation. The system includes a sensor head containing a monochrome charge-coupled- device video camera and pulsed laser diodes mounted on the tracking vehicle, and passive reflective targets on the tracked vehicle. The lasers illuminate the targets, and the resulting video images of the targets are digitized. Then, from the positions of the digitized target images and known geometric relationships among the targets, the relative position and orientation of the vehicles are computed. As described thus far, the VGS system is based on the same principles as those of the system described in "Improved Video Sensor System for Guidance in Docking" (MFS-31150), NASA Tech Briefs, Vol. 21, No. 4 (April 1997), page 9a. However, the two systems differ in the details of design and operation. The VGS system is designed to operate with the target completely visible within a relative-azimuth range of +/-10.5deg and a relative-elevation range of +/-8deg. The VGS acquires and tracks the target within that field of view at any distance from 1.0 to 110 m and at any relative roll, pitch, and/or yaw angle within +/-10deg. The VGS produces sets of distance and relative-orientation data at a repetition rate of 5 Hz. The software of this system also accommodates the simultaneous operation of two sensors for redundancy

  16. iTrack: instrumented mobile electrooculography (EOG) eye-tracking in older adults and Parkinson's disease.

    PubMed

    Stuart, Samuel; Hickey, Aodhán; Galna, Brook; Lord, Sue; Rochester, Lynn; Godfrey, Alan

    2017-01-01

    Detection of saccades (fast eye-movements) within raw mobile electrooculography (EOG) data involves complex algorithms which typically process data acquired during seated static tasks only. Processing of data during dynamic tasks such as walking is relatively rare and complex, particularly in older adults or people with Parkinson's disease (PD). Development of algorithms that can be easily implemented to detect saccades is required. This study aimed to develop an algorithm for the detection and measurement of saccades in EOG data during static (sitting) and dynamic (walking) tasks, in older adults and PD. Eye-tracking via mobile EOG and infra-red (IR) eye-tracker (with video) was performed with a group of older adults (n  =  10) and PD participants (n  =  10) (⩾50 years). Horizontal saccades made between targets set 5°, 10° and 15° apart were first measured while seated. Horizontal saccades were then measured while a participant walked and executed a 40° turn left and right. The EOG algorithm was evaluated by comparing the number of correct saccade detections and agreement (ICC 2,1 ) between output from visual inspection of eye-tracker videos and IR eye-tracker. The EOG algorithm detected 75-92% of saccades compared to video inspection and IR output during static testing, with fair to excellent agreement (ICC 2,1 0.49-0.93). However, during walking EOG saccade detection reduced to 42-88% compared to video inspection or IR output, with poor to excellent (ICC 2,1 0.13-0.88) agreement between methodologies. The algorithm was robust during seated testing but less so during walking, which was likely due to increased measurement and analysis error with a dynamic task. Future studies may consider a combination of EOG and IR for comprehensive measurement.

  17. A real-time TV logo tracking method using template matching

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Sang, Xinzhu; Yan, Binbin; Leng, Junmin

    2012-11-01

    A fast and accurate TV Logo detection method is presented based on real-time image filtering, noise eliminating and recognition of image features including edge and gray level information. It is important to accurately extract the optical template using the time averaging method from the sample video stream, and then different templates are used to match different logos in separated video streams with different resolution based on the topology features of logos. 12 video streams with different logos are used to verify the proposed method, and the experimental result demonstrates that the achieved accuracy can be up to 99%.

  18. Living with Spina Bifida (at different ages)

    MedlinePlus

    ... School-Aged Adolescents & Teens Young Adults Videos My Story Data and Statistics Research & Tracking Spina Bifida Patient Registry Clinic Map Findings from Patient Registry Articles & Key Findings Free ...

  19. Into the Black Box: Using Data Mining of In-Game Actions to Draw Inferences from Educational Technology about Students' Math Knowledge

    ERIC Educational Resources Information Center

    Kerr, Deirdre Song

    2014-01-01

    Educational video games have the potential to be used as assessments of student understanding of complex concepts. However, the interpretation of the rich stream of complex data that results from the tracking of in-game actions is so difficult that it is one of the most serious blockades to the use of educational video games or simulations to…

  20. Efficient Feature Extraction and Likelihood Fusion for Vehicle Tracking in Low Frame Rate Airborne Video

    DTIC Science & Technology

    2010-07-01

    imagery, persistent sensor array I. Introduction New device fabrication technologies and heterogeneous embedded processors have led to the emergence of a...geometric occlusions between target and sensor , motion blur, urban scene complexity, and high data volumes. In practical terms the targets are small...distributed airborne narrow-field-of-view video sensor networks. Airborne camera arrays combined with com- putational photography techniques enable the

  1. How young adults with autism spectrum disorder watch and interpret pragmatically complex scenes.

    PubMed

    Lönnqvist, Linda; Loukusa, Soile; Hurtig, Tuula; Mäkinen, Leena; Siipo, Antti; Väyrynen, Eero; Palo, Pertti; Laukka, Seppo; Mämmelä, Laura; Mattila, Marja-Leena; Ebeling, Hanna

    2017-11-01

    The aim of the current study was to investigate subtle characteristics of social perception and interpretation in high-functioning individuals with autism spectrum disorders (ASDs), and to study the relation between watching and interpreting. As a novelty, we used an approach that combined moment-by-moment eye tracking and verbal assessment. Sixteen young adults with ASD and 16 neurotypical control participants watched a video depicting a complex communication situation while their eye movements were tracked. The participants also completed a verbal task with questions related to the pragmatic content of the video. We compared verbal task scores and eye movements between groups, and assessed correlations between task performance and eye movements. Individuals with ASD had more difficulty than the controls in interpreting the video, and during two short moments there were significant group differences in eye movements. Additionally, we found significant correlations between verbal task scores and moment-level eye movement in the ASD group, but not among the controls. We concluded that participants with ASD had slight difficulties in understanding the pragmatic content of the video stimulus and attending to social cues, and that the connection between pragmatic understanding and eye movements was more pronounced for participants with ASD than for neurotypical participants.

  2. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    PubMed

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our calibration method and a virtual navigation evaluation system for quantifying the overall errors of the intra-operative data integration. We believe this phantom not only offers us good insights to understand the systematic errors encountered in all phases of an EM-tracked endoscopy procedure but also can provide quality control of laboratory experiments for endoscopic procedures before the experiments are transferred from the laboratory to human subjects.

  3. Joint Video Stitching and Stabilization from Moving Cameras.

    PubMed

    Guo, Heng; Liu, Shuaicheng; He, Tong; Zhu, Shuyuan; Zeng, Bing; Gabbouj, Moncef

    2016-09-08

    In this paper, we extend image stitching to video stitching for videos that are captured for the same scene simultaneously by multiple moving cameras. In practice, videos captured under this circumstance often appear shaky. Directly applying image stitching methods for shaking videos often suffers from strong spatial and temporal artifacts. To solve this problem, we propose a unified framework in which video stitching and stabilization are performed jointly. Specifically, our system takes several overlapping videos as inputs. We estimate both inter motions (between different videos) and intra motions (between neighboring frames within a video). Then, we solve an optimal virtual 2D camera path from all original paths. An enlarged field of view along the virtual path is finally obtained by a space-temporal optimization that takes both inter and intra motions into consideration. Two important components of this optimization are that (1) a grid-based tracking method is designed for an improved robustness, which produces features that are distributed evenly within and across multiple views, and (2) a mesh-based motion model is adopted for the handling of the scene parallax. Some experimental results are provided to demonstrate the effectiveness of our approach on various consumer-level videos and a Plugin, named "Video Stitcher" is developed at Adobe After Effects CC2015 to show the processed videos.

  4. Pilot study on real-time motion detection in UAS video data by human observer and image exploitation algorithm

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Voit, Michael; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2017-05-01

    Real-time motion video analysis is a challenging and exhausting task for the human observer, particularly in safety and security critical domains. Hence, customized video analysis systems providing functions for the analysis of subtasks like motion detection or target tracking are welcome. While such automated algorithms relieve the human operators from performing basic subtasks, they impose additional interaction duties on them. Prior work shows that, e.g., for interaction with target tracking algorithms, a gaze-enhanced user interface is beneficial. In this contribution, we present an investigation on interaction with an independent motion detection (IDM) algorithm. Besides identifying an appropriate interaction technique for the user interface - again, we compare gaze-based and traditional mouse-based interaction - we focus on the benefit an IDM algorithm might provide for an UAS video analyst. In a pilot study, we exposed ten subjects to the task of moving target detection in UAS video data twice, once performing with automatic support, once performing without it. We compare the two conditions considering performance in terms of effectiveness (correct target selections). Additionally, we report perceived workload (measured using the NASA-TLX questionnaire) and user satisfaction (measured using the ISO 9241-411 questionnaire). The results show that a combination of gaze input and automated IDM algorithm provides valuable support for the human observer, increasing the number of correct target selections up to 62% and reducing workload at the same time.

  5. Optimal path planning for video-guided smart munitions via multitarget tracking

    NASA Astrophysics Data System (ADS)

    Borkowski, Jeffrey M.; Vasquez, Juan R.

    2006-05-01

    An advent in the development of smart munitions entails autonomously modifying target selection during flight in order to maximize the value of the target being destroyed. A unique guidance law can be constructed that exploits both attribute and kinematic data obtained from an onboard video sensor. An optimal path planning algorithm has been developed with the goals of obstacle avoidance and maximizing the value of the target impacted by the munition. Target identification and classification provides a basis for target value which is used in conjunction with multi-target tracks to determine an optimal waypoint for the munition. A dynamically feasible trajectory is computed to provide constraints on the waypoint selection. Results demonstrate the ability of the autonomous system to avoid moving obstacles and revise target selection in flight.

  6. A benchmark for comparison of cell tracking algorithms

    PubMed Central

    Maška, Martin; Ulman, Vladimír; Svoboda, David; Matula, Pavel; Matula, Petr; Ederra, Cristina; Urbiola, Ainhoa; España, Tomás; Venkatesan, Subramanian; Balak, Deepak M.W.; Karas, Pavel; Bolcková, Tereza; Štreitová, Markéta; Carthel, Craig; Coraluppi, Stefano; Harder, Nathalie; Rohr, Karl; Magnusson, Klas E. G.; Jaldén, Joakim; Blau, Helen M.; Dzyubachyk, Oleh; Křížek, Pavel; Hagen, Guy M.; Pastor-Escuredo, David; Jimenez-Carretero, Daniel; Ledesma-Carbayo, Maria J.; Muñoz-Barrutia, Arrate; Meijering, Erik; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2014-01-01

    Motivation: Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this article, we present the logistics, datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. Results: The main contributions of the challenge include the creation of a comprehensive video dataset repository and the definition of objective measures for comparison and ranking of the algorithms. With this benchmark, six algorithms covering a variety of segmentation and tracking paradigms have been compared and ranked based on their performance on both synthetic and real datasets. Given the diversity of the datasets, we do not declare a single winner of the challenge. Instead, we present and discuss the results for each individual dataset separately. Availability and implementation: The challenge Web site (http://www.codesolorzano.com/celltrackingchallenge) provides access to the training and competition datasets, along with the ground truth of the training videos. It also provides access to Windows and Linux executable files of the evaluation software and most of the algorithms that competed in the challenge. Contact: codesolorzano@unav.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24526711

  7. Tracking and people counting using Particle Filter Method

    NASA Astrophysics Data System (ADS)

    Sulistyaningrum, D. R.; Setiyono, B.; Rizky, M. S.

    2018-03-01

    In recent years, technology has developed quite rapidly, especially in the field of object tracking. Moreover, if the object under study is a person and the number of people a lot. The purpose of this research is to apply Particle Filter method for tracking and counting people in certain area. Tracking people will be rather difficult if there are some obstacles, one of which is occlusion. The stages of tracking and people counting scheme in this study include pre-processing, segmentation using Gaussian Mixture Model (GMM), tracking using particle filter, and counting based on centroid. The Particle Filter method uses the estimated motion included in the model used. The test results show that the tracking and people counting can be done well with an average accuracy of 89.33% and 77.33% respectively from six videos test data. In the process of tracking people, the results are good if there is partial occlusion and no occlusion

  8. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  9. Brief Report: Broad Autism Phenotype in Adults Is Associated with Performance on an Eye-Tracking Measure of Joint Attention

    ERIC Educational Resources Information Center

    Swanson, Meghan R.; Siller, Michael

    2014-01-01

    The current study takes advantage of modern eye-tracking technology and evaluates how individuals allocate their attention when viewing social videos that display an adult model who is gazing at a series of targets that appear and disappear in the four corners of the screen (congruent condition), or gazing elsewhere (incongruent condition). Data…

  10. Development of a real time multiple target, multi camera tracker for civil security applications

    NASA Astrophysics Data System (ADS)

    Åkerlund, Hans

    2009-09-01

    A surveillance system has been developed that can use multiple TV-cameras to detect and track personnel and objects in real time in public areas. The document describes the development and the system setup. The system is called NIVS Networked Intelligent Video Surveillance. Persons in the images are tracked and displayed on a 3D map of the surveyed area.

  11. Ship Tracks

    NASA Image and Video Library

    2017-12-08

    Ship tracks above the northern Pacific Ocean. NASA image captured July 3, 2010. Satellite: Aqua NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest To learn more about ship tracks go to: visibleearth.nasa.gov/view_rec.php?id=2370 To watch a video on ship tracks go to: www.youtube.com/watch?v=Vsri2sOAjWo&feature=player_em...! NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  12. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  13. Registration of retinal sequences from new video-ophthalmoscopic camera.

    PubMed

    Kolar, Radim; Tornow, Ralf P; Odstrcilik, Jan; Liberdova, Ivana

    2016-05-20

    Analysis of fast temporal changes on retinas has become an important part of diagnostic video-ophthalmology. It enables investigation of the hemodynamic processes in retinal tissue, e.g. blood-vessel diameter changes as a result of blood-pressure variation, spontaneous venous pulsation influenced by intracranial-intraocular pressure difference, blood-volume changes as a result of changes in light reflection from retinal tissue, and blood flow using laser speckle contrast imaging. For such applications, image registration of the recorded sequence must be performed. Here we use a new non-mydriatic video-ophthalmoscope for simple and fast acquisition of low SNR retinal sequences. We introduce a novel, two-step approach for fast image registration. The phase correlation in the first stage removes large eye movements. Lucas-Kanade tracking in the second stage removes small eye movements. We propose robust adaptive selection of the tracking points, which is the most important part of tracking-based approaches. We also describe a method for quantitative evaluation of the registration results, based on vascular tree intensity profiles. The achieved registration error evaluated on 23 sequences (5840 frames) is 0.78 ± 0.67 pixels inside the optic disc and 1.39 ± 0.63 pixels outside the optic disc. We compared the results with the commonly used approaches based on Lucas-Kanade tracking and scale-invariant feature transform, which achieved worse results. The proposed method can efficiently correct particular frames of retinal sequences for shift and rotation. The registration results for each frame (shift in X and Y direction and eye rotation) can also be used for eye-movement evaluation during single-spot fixation tasks.

  14. Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol.

    PubMed

    Kasturi, Rangachar; Goldgof, Dmitry; Soundararajan, Padmanabhan; Manohar, Vasant; Garofolo, John; Bowers, Rachel; Boonstra, Matthew; Korzhova, Valentina; Zhang, Jing

    2009-02-01

    Common benchmark data sets, standardized performance metrics, and baseline algorithms have demonstrated considerable impact on research and development in a variety of application domains. These resources provide both consumers and developers of technology with a common framework to objectively compare the performance of different algorithms and algorithmic improvements. In this paper, we present such a framework for evaluating object detection and tracking in video: specifically for face, text, and vehicle objects. This framework includes the source video data, ground-truth annotations (along with guidelines for annotation), performance metrics, evaluation protocols, and tools including scoring software and baseline algorithms. For each detection and tracking task and supported domain, we developed a 50-clip training set and a 50-clip test set. Each data clip is approximately 2.5 minutes long and has been completely spatially/temporally annotated at the I-frame level. Each task/domain, therefore, has an associated annotated corpus of approximately 450,000 frames. The scope of such annotation is unprecedented and was designed to begin to support the necessary quantities of data for robust machine learning approaches, as well as a statistically significant comparison of the performance of algorithms. The goal of this work was to systematically address the challenges of object detection and tracking through a common evaluation framework that permits a meaningful objective comparison of techniques, provides the research community with sufficient data for the exploration of automatic modeling techniques, encourages the incorporation of objective evaluation into the development process, and contributes useful lasting resources of a scale and magnitude that will prove to be extremely useful to the computer vision research community for years to come.

  15. Real-time lens distortion correction: speed, accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Bax, Michael R.; Shahidi, Ramin

    2014-11-01

    Optical lens systems suffer from nonlinear geometrical distortion. Optical imaging applications such as image-enhanced endoscopy and image-based bronchoscope tracking require correction of this distortion for accurate localization, tracking, registration, and measurement of image features. Real-time capability is desirable for interactive systems and live video. The use of a texture-mapping graphics accelerator, which is standard hardware on current motherboard chipsets and add-in video graphics cards, to perform distortion correction is proposed. Mesh generation for image tessellation, an error analysis, and performance results are presented. It is shown that distortion correction using commodity graphics hardware is substantially faster than using the main processor and can be performed at video frame rates (faster than 30 frames per second), and that the polar-based method of mesh generation proposed here is more accurate than a conventional grid-based approach. Using graphics hardware to perform distortion correction is not only fast and accurate but also efficient as it frees the main processor for other tasks, which is an important issue in some real-time applications.

  16. Mapping wide row crops with video sequences acquired from a tractor moving at treatment speed.

    PubMed

    Sainz-Costa, Nadir; Ribeiro, Angela; Burgos-Artizzu, Xavier P; Guijarro, María; Pajares, Gonzalo

    2011-01-01

    This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird's-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight.

  17. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.

    PubMed

    Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P; Zelikowsky, Moriel; Navonne, Santiago G; Perona, Pietro; Anderson, David J

    2015-09-22

    A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body "pose" of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics.

  18. Multiple vehicle tracking in aerial video sequence using driver behavior analysis and improved deterministic data association

    NASA Astrophysics Data System (ADS)

    Zhang, Xunxun; Xu, Hongke; Fang, Jianwu

    2018-01-01

    Along with the rapid development of the unmanned aerial vehicle technology, multiple vehicle tracking (MVT) in aerial video sequence has received widespread interest for providing the required traffic information. Due to the camera motion and complex background, MVT in aerial video sequence poses unique challenges. We propose an efficient MVT algorithm via driver behavior-based Kalman filter (DBKF) and an improved deterministic data association (IDDA) method. First, a hierarchical image registration method is put forward to compensate the camera motion. Afterward, to improve the accuracy of the state estimation, we propose the DBKF module by incorporating the driver behavior into the Kalman filter, where artificial potential field is introduced to reflect the driver behavior. Then, to implement the data association, a local optimization method is designed instead of global optimization. By introducing the adaptive operating strategy, the proposed IDDA method can also deal with the situation in which the vehicles suddenly appear or disappear. Finally, comprehensive experiments on the DARPA VIVID data set and KIT AIS data set demonstrate that the proposed algorithm can generate satisfactory and superior results.

  19. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning

    PubMed Central

    Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P.; Zelikowsky, Moriel; Navonne, Santiago G.; Perona, Pietro; Anderson, David J.

    2015-01-01

    A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body “pose” of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics. PMID:26354123

  20. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    PubMed

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  1. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta

    Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on themore » target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors and gimbal motion errors in the ExacTrac log analyses (n = 13). Conclusions: The newly developed video image-based QA system, including in-house software, can analyze more than a thousand images (33 frames/s). Positional errors are approximately equivalent to those in ExacTrac log analyses. This system is useful for the visual illustration of the progress of the tracking state and for the quantification of positional accuracy during dynamic tumor tracking irradiation in the Vero4DRT system.« less

  2. A national survey of the infrastructure and IT policies required to deliver computerised cognitive behavioural therapy in the English NHS

    PubMed Central

    Andrewes, Holly; Kenicer, David; McClay, Carrie-Anne; Williams, Christopher

    2013-01-01

    Objective This study aimed to identify if patients have adequate access to Computerised Cognitive Behavioural Therapy (cCBT) programmes in all mental health trusts across England. Design The primary researcher contacted a targeted sample of information technology (IT) leads in each mental health trust in England to complete the survey. Setting Telephone, email and postal mail were used to contact an IT lead or nominated expert from each mental health trust. Participants 48 of the 56 IT experts from each mental health trust in England responded. The experts who were chosen had sufficient knowledge of the infrastructure, technology, policies and regulations to answer all survey questions. Results 77% of trusts provided computers for direct patient use, with computers in all except one trust meeting the specifications to access cCBT. However, 24% of trusts acknowledged that the number of computers provided was insufficient to provide a trust-wide service. 71% stated that the bandwidth available was adequate to provide access to cCBT sites, yet for many trusts, internet speed was identified as unpredictable and variable between locations. IT policies in only 56% of the trusts allowed National Health Service (NHS) staff to directly support patients as they complete cCBT courses via emails to the patients’ personal email account. Only 37% allowed support via internet video calls, and only 9% allowed support via instant messaging services. Conclusions Patient access to cCBT in English NHS mental health trusts is limited by the inadequate number of computers provided to patients, unpredictable bandwidth speed and inconsistent IT policies, which restrict patients from receiving the support needed to maximise the success of this therapy. English NHS mental health trusts need to alter IT policy and improve resources to reduce the waiting time for psychological resources required for patients seeking this evidence-based therapy. PMID:23377995

  3. Automated assessment of levodopa-induced dyskinesia: Evaluating the responsiveness of video-based features.

    PubMed

    Li, Michael H; Mestre, Tiago A; Fox, Susan H; Taati, Babak

    2018-05-05

    Technological solutions for quantifying Parkinson's disease (PD) symptoms may provide an objective means to track response to treatment, including side effects such as levodopa-induced dyskinesia. Vision-based systems are advantageous as they do not require physical contact with the body and have minimal instrumentation compared to wearables. We have developed a vision-based system to quantify a change in dyskinesia as reported by patients using 2D videos of clinical assessments during acute levodopa infusions. Nine participants with PD completed a total of 16 levodopa infusions, where they were asked to report important changes in dyskinesia (i.e. onset and remission). Participants were simultaneously rated using the UDysRS Part III (from video recordings analyzed post-hoc). Body joint positions and movements were tracked using a state-of-the-art deep learning pose estimation algorithm applied to the videos. 416 features (e.g. kinematics, frequency distribution) were extracted to characterize movements. The sensitivity and specificity of each feature to patient-reported changes in dyskinesia severity was computed and compared with physician-rated results. Features achieved similar or superior performance to the UDysRS for detecting the onset and remission of dyskinesia. The best AUC for detecting onset of dyskinesia was 0.822 and for remission of dyskinesia was 0.958, compared to 0.826 and 0.802 for the UDysRS. Video-based features may provide an objective means of quantifying the severity of levodopa-induced dyskinesia, and have responsiveness as good or better than the clinically-rated UDysRS. The results demonstrate encouraging evidence for future integration of video-based technology into clinical research and eventually clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Understanding the acceptability of e-mental health--attitudes and expectations towards computerised self-help treatments for mental health problems.

    PubMed

    Musiat, Peter; Goldstone, Philip; Tarrier, Nicholas

    2014-04-11

    E-mental health and m-mental health include the use of technology in the prevention, treatment and aftercare of mental health problems. With the economical pressure on mental health services increasing, e-mental health and m-mental health could bridge treatment gaps, reduce waiting times for patients and deliver interventions at lower costs. However, despite the existence of numerous effective interventions, the transition of computerised interventions into care is slow. The aim of the present study was to investigate the acceptability of e-mental health and m-mental health in the general population. An advisory group of service users identified dimensions that potentially influence an individual's decision to engage with a particular treatment for mental health problems. A large sample (N = 490) recruited through email, flyers and social media was asked to rate the acceptability of different treatment options for mental health problems on these domains. Results were analysed using repeated measures MANOVA. Participants rated the perceived helpfulness of an intervention, the ability to motivate users, intervention credibility, and immediate access without waiting time as most important dimensions with regard to engaging with a treatment for mental health problems. Participants expected face-to-face therapy to meet their needs on most of these dimensions. Computerised treatments and smartphone applications for mental health were reported to not meet participants' expectations on most domains. However, these interventions scored higher than face-to-face treatments on domains associated with the convenience of access. Overall, participants reported a very low likelihood of using computerised treatments for mental health in the future. Individuals in this study expressed negative views about computerised self-help intervention and low likelihood of use in the future. To improve the implementation and uptake, policy makers need to improve the public perception of such interventions.

  5. Understanding the acceptability of e-mental health - attitudes and expectations towards computerised self-help treatments for mental health problems

    PubMed Central

    2014-01-01

    Background E-mental health and m-mental health include the use of technology in the prevention, treatment and aftercare of mental health problems. With the economical pressure on mental health services increasing, e-mental health and m-mental health could bridge treatment gaps, reduce waiting times for patients and deliver interventions at lower costs. However, despite the existence of numerous effective interventions, the transition of computerised interventions into care is slow. The aim of the present study was to investigate the acceptability of e-mental health and m-mental health in the general population. Methods An advisory group of service users identified dimensions that potentially influence an individual’s decision to engage with a particular treatment for mental health problems. A large sample (N = 490) recruited through email, flyers and social media was asked to rate the acceptability of different treatment options for mental health problems on these domains. Results were analysed using repeated measures MANOVA. Results Participants rated the perceived helpfulness of an intervention, the ability to motivate users, intervention credibility, and immediate access without waiting time as most important dimensions with regard to engaging with a treatment for mental health problems. Participants expected face-to-face therapy to meet their needs on most of these dimensions. Computerised treatments and smartphone applications for mental health were reported to not meet participants’ expectations on most domains. However, these interventions scored higher than face-to-face treatments on domains associated with the convenience of access. Overall, participants reported a very low likelihood of using computerised treatments for mental health in the future. Conclusions Individuals in this study expressed negative views about computerised self-help intervention and low likelihood of use in the future. To improve the implementation and uptake, policy makers need to improve the public perception of such interventions. PMID:24725765

  6. Compressed multi-block local binary pattern for object tracking

    NASA Astrophysics Data System (ADS)

    Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao

    2018-04-01

    Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.

  7. INRstar: computerised decision support software for anticoagulation management in primary care.

    PubMed

    Jones, Robert Treharne; Sullivan, Mark; Barrett, David

    2005-01-01

    Computerised decision support software (CDSS) for anticoagulation management has become established practice in the UK, offering significant advantages for patients and clinicians over traditional methods of dose calculation. The New GMS Contract has been partly responsible for this shift of management from secondary to primary care, in which INRstar has been the market leader for many years. In September 2004, INRstar received the John Perry Prize, awarded by the PHCSG for excellence and innovation in medical applications of information technology.

  8. Face landmark point tracking using LK pyramid optical flow

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Tang, Sikan; Li, Jiaquan

    2018-04-01

    LK pyramid optical flow is an effective method to implement object tracking in a video. It is used for face landmark point tracking in a video in the paper. The landmark points, i.e. outer corner of left eye, inner corner of left eye, inner corner of right eye, outer corner of right eye, tip of a nose, left corner of mouth, right corner of mouth, are considered. It is in the first frame that the landmark points are marked by hand. For subsequent frames, performance of tracking is analyzed. Two kinds of conditions are considered, i.e. single factors such as normalized case, pose variation and slowly moving, expression variation, illumination variation, occlusion, front face and rapidly moving, pose face and rapidly moving, and combination of the factors such as pose and illumination variation, pose and expression variation, pose variation and occlusion, illumination and expression variation, expression variation and occlusion. Global measures and local ones are introduced to evaluate performance of tracking under different factors or combination of the factors. The global measures contain the number of images aligned successfully, average alignment error, the number of images aligned before failure, and the local ones contain the number of images aligned successfully for components of a face, average alignment error for the components. To testify performance of tracking for face landmark points under different cases, tests are carried out for image sequences gathered by us. Results show that the LK pyramid optical flow method can implement face landmark point tracking under normalized case, expression variation, illumination variation which does not affect facial details, pose variation, and that different factors or combination of the factors have different effect on performance of alignment for different landmark points.

  9. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.

  10. STS-26 Post-Flight Crew Press Conference

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This video tape contains footage selected and narrated by the STS-26 crew including launch, TDRS-C/IUS (Tracking and Data Relay Satellite C / Inertial Upper Stage) deployment, onboard activities, and landing.

  11. Automated tracking of a figure skater by using PTZ cameras

    NASA Astrophysics Data System (ADS)

    Haraguchi, Tomohiko; Taki, Tsuyoshi; Hasegawa, Junichi

    2009-08-01

    In this paper, a system for automated real-time tracking of a figure skater moving on an ice rink by using PTZ cameras is presented. This system is intended for support in training of skating, for example, as a tool for recording and evaluation of his/her motion performances. In the processing procedure of the system, an ice rink region is extracted first from a video image by region growing method, then one of hole components in the obtained rink region is extracted as a skater region. If there exists no hole component, a skater region is estimated from horizontal and vertical intensity projections of the rink region. Each camera is automatically panned and/or tilted so as to keep the skater region on almost the center of the image, and also zoomed so as to keep the height of the skater region within an appropriate range. In the experiments using 5 practical video images of skating, it was shown that the extraction rate of the skater region was almost 90%, and tracking with camera control was successfully done for almost all of the cases used here.

  12. Determining nest predators of the Least Bell's Vireo through point counts, tracking stations, and video photography

    USGS Publications Warehouse

    Peterson, Bonnie L.; Kus, Barbara E.; Deutschman, Douglas H.

    2004-01-01

    We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.

  13. A Kalman-Filter-Based Common Algorithm Approach for Object Detection in Surgery Scene to Assist Surgeon's Situation Awareness in Robot-Assisted Laparoscopic Surgery

    PubMed Central

    2018-01-01

    Although the use of the surgical robot is rapidly expanding for various medical treatments, there still exist safety issues and concerns about robot-assisted surgeries due to limited vision through a laparoscope, which may cause compromised situation awareness and surgical errors requiring rapid emergency conversion to open surgery. To assist surgeon's situation awareness and preventive emergency response, this study proposes situation information guidance through a vision-based common algorithm architecture for automatic detection and tracking of intraoperative hemorrhage and surgical instruments. The proposed common architecture comprises the location of the object of interest using feature texture, morphological information, and the tracking of the object based on Kalman filter for robustness with reduced error. The average recall and precision of the instrument detection in four prostate surgery videos were 96% and 86%, and the accuracy of the hemorrhage detection in two prostate surgery videos was 98%. Results demonstrate the robustness of the automatic intraoperative object detection and tracking which can be used to enhance the surgeon's preventive state recognition during robot-assisted surgery. PMID:29854366

  14. Near-real-time biplanar fluoroscopic tracking system for the video tumor fighter

    NASA Astrophysics Data System (ADS)

    Lawson, Michael A.; Wika, Kevin G.; Gilles, George T.; Ritter, Rogers C.

    1991-06-01

    We have developed software capable of the three-dimensional tracking of objects in the brain volume, and the subsequent overlaying of an image of the object onto previously obtained MR or CT scans. This software has been developed for use with the Magnetic Stereotaxis System (MSS), also called the 'Video Tumor Fighter' (VTF). The software was written for a Sun 4/110 SPARC workstation with an ANDROX ICS-400 image processing card installed to manage this task. At present, the system uses input from two orthogonally-oriented, visible- light cameras and a simulated scene to determine the three-dimensional position of the object of interest. The coordinates are then transformed into MR or CT coordinates and an image of the object is displayed in the appropriate intersecting MR slice on a computer screen. This paper describes the tracking algorithm and discusses how it was implemented in software. The system's hardware is also described. The limitations of the present system are discussed and plans for incorporating bi-planar, x-ray fluoroscopy are presented.

  15. State Recognition of High Voltage Isolation Switch Based on Background Difference and Iterative Search

    NASA Astrophysics Data System (ADS)

    Xu, Jiayuan; Yu, Chengtao; Bo, Bin; Xue, Yu; Xu, Changfu; Chaminda, P. R. Dushantha; Hu, Chengbo; Peng, Kai

    2018-03-01

    The automatic recognition of the high voltage isolation switch by remote video monitoring is an effective means to ensure the safety of the personnel and the equipment. The existing methods mainly include two ways: improving monitoring accuracy and adopting target detection technology through equipment transformation. Such a method is often applied to specific scenarios, with limited application scope and high cost. To solve this problem, a high voltage isolation switch state recognition method based on background difference and iterative search is proposed in this paper. The initial position of the switch is detected in real time through the background difference method. When the switch starts to open and close, the target tracking algorithm is used to track the motion trajectory of the switch. The opening and closing state of the switch is determined according to the angle variation of the switch tracking point and the center line. The effectiveness of the method is verified by experiments on different switched video frames of switching states. Compared with the traditional methods, this method is more robust and effective.

  16. Enhancing Cognition with Video Games: A Multiple Game Training Study

    PubMed Central

    Oei, Adam C.; Patterson, Michael D.

    2013-01-01

    Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects. PMID:23516504

  17. Multithreaded hybrid feature tracking for markerless augmented reality.

    PubMed

    Lee, Taehee; Höllerer, Tobias

    2009-01-01

    We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.

  18. The research and application of visual saliency and adaptive support vector machine in target tracking field.

    PubMed

    Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing

    2013-01-01

    The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  19. Multiple objects tracking with HOGs matching in circular windows

    NASA Astrophysics Data System (ADS)

    Miramontes-Jaramillo, Daniel; Kober, Vitaly; Díaz-Ramírez, Víctor H.

    2014-09-01

    In recent years tracking applications with development of new technologies like smart TVs, Kinect, Google Glass and Oculus Rift become very important. When tracking uses a matching algorithm, a good prediction algorithm is required to reduce the search area for each object to be tracked as well as processing time. In this work, we analyze the performance of different tracking algorithms based on prediction and matching for a real-time tracking multiple objects. The used matching algorithm utilizes histograms of oriented gradients. It carries out matching in circular windows, and possesses rotation invariance and tolerance to viewpoint and scale changes. The proposed algorithm is implemented in a personal computer with GPU, and its performance is analyzed in terms of processing time in real scenarios. Such implementation takes advantage of current technologies and helps to process video sequences in real-time for tracking several objects at the same time.

  20. OpenCV and TYZX : video surveillance for tracking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jim; Spencer, Andrew; Chu, Eric

    2008-08-01

    As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processingmore » solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition.« less

  1. Human tracking over camera networks: a review

    NASA Astrophysics Data System (ADS)

    Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang

    2017-12-01

    In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.

  2. Human silhouette matching based on moment invariants

    NASA Astrophysics Data System (ADS)

    Sun, Yong-Chao; Qiu, Xian-Jie; Xia, Shi-Hong; Wang, Zhao-Qi

    2005-07-01

    This paper aims to apply the method of silhouette matching based on moment invariants to infer the human motion parameters from video sequences of single monocular uncalibrated camera. Currently, there are two ways of tracking human motion: Marker and Markerless. While a hybrid framework is introduced in this paper to recover the input video contents. A standard 3D motion database is built up by marker technique in advance. Given a video sequences, human silhouettes are extracted as well as the viewpoint information of the camera which would be utilized to project the standard 3D motion database onto the 2D one. Therefore, the video recovery problem is formulated as a matching issue of finding the most similar body pose in standard 2D library with the one in video image. The framework is applied to the special trampoline sport where we can obtain the complicated human motion parameters in the single camera video sequences, and a lot of experiments are demonstrated that this approach is feasible in the field of monocular video-based 3D motion reconstruction.

  3. Video capture virtual reality as a flexible and effective rehabilitation tool

    PubMed Central

    Weiss, Patrice L; Rand, Debbie; Katz, Noomi; Kizony, Rachel

    2004-01-01

    Video capture virtual reality (VR) uses a video camera and software to track movement in a single plane without the need to place markers on specific bodily locations. The user's image is thereby embedded within a simulated environment such that it is possible to interact with animated graphics in a completely natural manner. Although this technology first became available more than 25 years ago, it is only within the past five years that it has been applied in rehabilitation. The objective of this article is to describe the way this technology works, to review its assets relative to other VR platforms, and to provide an overview of some of the major studies that have evaluated the use of video capture technologies for rehabilitation. PMID:15679949

  4. Visual analysis of trash bin processing on garbage trucks in low resolution video

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver; Loibner, Gernot

    2015-03-01

    We present a system for trash can detection and counting from a camera which is mounted on a garbage collection truck. A working prototype has been successfully implemented and tested with several hours of real-world video. The detection pipeline consists of HOG detectors for two trash can sizes, and meanshift tracking and low level image processing for the analysis of the garbage disposal process. Considering the harsh environment and unfavorable imaging conditions, the process works already good enough so that very useful measurements from video data can be extracted. The false positive/false negative rate of the full processing pipeline is about 5-6% at fully automatic operation. Video data of a full day (about 8 hrs) can be processed in about 30 minutes on a standard PC.

  5. Carbohydrates and Diabetes

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Carbohydrates and Diabetes KidsHealth / For Teens / Carbohydrates and Diabetes ... Los carbohidratos y la diabetes Carbs and Blood Sugar Keeping your blood sugar levels on track means ...

  6. Lamprey Tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison; Deters, Kate

    2017-05-26

    Pacific Northwest National Laboratory has developed a super-small acoustic tracking tag designed just for juvenile lamprey. In this video, PNNL researcher Alison Colotelo describes how she and her colleague Kate Deters inject young lamprey with the PNNL tag.

  7. A digital video tracking system

    NASA Astrophysics Data System (ADS)

    Giles, M. K.

    1980-01-01

    The Real-Time Videotheodolite (RTV) was developed in connection with the requirement to replace film as a recording medium to obtain the real-time location of an object in the field-of-view (FOV) of a long focal length theodolite. Design philosophy called for a system capable of discriminatory judgment in identifying the object to be tracked with 60 independent observations per second, capable of locating the center of mass of the object projection on the image plane within about 2% of the FOV in rapidly changing background/foreground situations, and able to generate a predicted observation angle for the next observation. A description is given of a number of subsystems of the RTV, taking into account the processor configuration, the video processor, the projection processor, the tracker processor, the control processor, and the optics interface and imaging subsystem.

  8. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  9. Moving Object Detection in Heterogeneous Conditions in Embedded Systems.

    PubMed

    Garbo, Alessandro; Quer, Stefano

    2017-07-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates.

  10. JEFX 10 demonstration of Cooperative Hunter Killer UAS and upstream data fusion

    NASA Astrophysics Data System (ADS)

    Funk, Brian K.; Castelli, Jonathan C.; Watkins, Adam S.; McCubbin, Christopher B.; Marshall, Steven J.; Barton, Jeffrey D.; Newman, Andrew J.; Peterson, Cammy K.; DeSena, Jonathan T.; Dutrow, Daniel A.; Rodriguez, Pedro A.

    2011-05-01

    The Johns Hopkins University Applied Physics Laboratory deployed and demonstrated a prototype Cooperative Hunter Killer (CHK) Unmanned Aerial System (UAS) capability and a prototype Upstream Data Fusion (UDF) capability as participants in the Joint Expeditionary Force Experiment 2010 in April 2010. The CHK capability was deployed at the Nevada Test and Training Range to prosecute a convoy protection operational thread. It used mission-level autonomy (MLA) software applied to a networked swarm of three Raven hunter UAS and a Procerus Miracle surrogate killer UAS, all equipped with full motion video (FMV). The MLA software provides the capability for the hunter-killer swarm to autonomously search an area or road network, divide the search area, deconflict flight paths, and maintain line of sight communications with mobile ground stations. It also provides an interface for an operator to designate a threat and initiate automatic engagement of the target by the killer UAS. The UDF prototype was deployed at the Maritime Operations Center at Commander Second Fleet, Naval Station Norfolk to provide intelligence analysts and the ISR commander with a common fused track picture from the available FMV sources. It consisted of a video exploitation component that automatically detected moving objects, a multiple hypothesis tracker that fused all of the detection data to produce a common track picture, and a display and user interface component that visualized the common track picture along with appropriate geospatial information such as maps and terrain as well as target coordinates and the source video.

  11. Moving Object Detection in Heterogeneous Conditions in Embedded Systems

    PubMed Central

    Garbo, Alessandro

    2017-01-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates. PMID:28671582

  12. Intelligent keyframe extraction for video printing

    NASA Astrophysics Data System (ADS)

    Zhang, Tong

    2004-10-01

    Nowadays most digital cameras have the functionality of taking short video clips, with the length of video ranging from several seconds to a couple of minutes. The purpose of this research is to develop an algorithm which extracts an optimal set of keyframes from each short video clip so that the user could obtain proper video frames to print out. In current video printing systems, keyframes are normally obtained by evenly sampling the video clip over time. Such an approach, however, may not reflect highlights or regions of interest in the video. Keyframes derived in this way may also be improper for video printing in terms of either content or image quality. In this paper, we present an intelligent keyframe extraction approach to derive an improved keyframe set by performing semantic analysis of the video content. For a video clip, a number of video and audio features are analyzed to first generate a candidate keyframe set. These features include accumulative color histogram and color layout differences, camera motion estimation, moving object tracking, face detection and audio event detection. Then, the candidate keyframes are clustered and evaluated to obtain a final keyframe set. The objective is to automatically generate a limited number of keyframes to show different views of the scene; to show different people and their actions in the scene; and to tell the story in the video shot. Moreover, frame extraction for video printing, which is a rather subjective problem, is considered in this work for the first time, and a semi-automatic approach is proposed.

  13. Visual Information Theory and Visual Representation for Achieving Provable Bounds in Vision-Based Control and Decision

    DTIC Science & Technology

    2014-07-30

    of the IEEE Intl. Conf. on Comp. Vis. and Patt . Recog. (CVPR). 07-JAN-14, . : , B. Taylor, A. Ayvaci, A. Ravichandran, and S. Soatto.. Semantic video...detection, localization and tracking, Intl. Conf. on Comp. Vis. Patt . Recog.. 06-JAN-11, . : , Michalis Raptis, Iasonas Kokkinos, Stefano Soatto...of the IEEE Intl. Conf. on Comp. Vis. and Patt . Recog., 2012. [12] M. Raptis and S. Soatto. Tracklet descriptors for action modeling and video

  14. Real-time heart rate measurement for multi-people using compressive tracking

    NASA Astrophysics Data System (ADS)

    Liu, Lingling; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Dong, Liquan; Ma, Feilong; Pang, Zongguang; Cai, Zhi; Zhang, Yachu; Hua, Peng; Yuan, Ruifeng

    2017-09-01

    The rise of aging population has created a demand for inexpensive, unobtrusive, automated health care solutions. Image PhotoPlethysmoGraphy(IPPG) aids in the development of these solutions by allowing for the extraction of physiological signals from video data. However, the main deficiencies of the recent IPPG methods are non-automated, non-real-time and susceptible to motion artifacts(MA). In this paper, a real-time heart rate(HR) detection method for multiple subjects simultaneously was proposed and realized using the open computer vision(openCV) library, which consists of getting multiple subjects' facial video automatically through a Webcam, detecting the region of interest (ROI) in the video, reducing the false detection rate by our improved Adaboost algorithm, reducing the MA by our improved compress tracking(CT) algorithm, wavelet noise-suppression algorithm for denoising and multi-threads for higher detection speed. For comparison, HR was measured simultaneously using a medical pulse oximetry device for every subject during all sessions. Experimental results on a data set of 30 subjects show that the max average absolute error of heart rate estimation is less than 8 beats per minute (BPM), and the processing speed of every frame has almost reached real-time: the experiments with video recordings of ten subjects under the condition of the pixel resolution of 600× 800 pixels show that the average HR detection time of 10 subjects was about 17 frames per second (fps).

  15. Direct endoscopic video registration for sinus surgery

    NASA Astrophysics Data System (ADS)

    Mirota, Daniel; Taylor, Russell H.; Ishii, Masaru; Hager, Gregory D.

    2009-02-01

    Advances in computer vision have made possible robust 3D reconstruction of monocular endoscopic video. These reconstructions accurately represent the visible anatomy and, once registered to pre-operative CT data, enable a navigation system to track directly through video eliminating the need for an external tracking system. Video registration provides the means for a direct interface between an endoscope and a navigation system and allows a shorter chain of rigid-body transformations to be used to solve the patient/navigation-system registration. To solve this registration step we propose a new 3D-3D registration algorithm based on Trimmed Iterative Closest Point (TrICP)1 and the z-buffer algorithm.2 The algorithm takes as input a 3D point cloud of relative scale with the origin at the camera center, an isosurface from the CT, and an initial guess of the scale and location. Our algorithm utilizes only the visible polygons of the isosurface from the current camera location during each iteration to minimize the search area of the target region and robustly reject outliers of the reconstruction. We present example registrations in the sinus passage applicable to both sinus surgery and transnasal surgery. To evaluate our algorithm's performance we compare it to registration via Optotrak and present closest distance point to surface error. We show our algorithm has a mean closest distance error of .2268mm.

  16. A robust approach towards unknown transformation, regional adjacency graphs, multigraph matching, segmentation video frames from unnamed aerial vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Gohatre, Umakant Bhaskar; Patil, Venkat P.

    2018-04-01

    In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.

  17. A video based feedback system for control of an active commutator during behavioral physiology.

    PubMed

    Roh, Mootaek; McHugh, Thomas J; Lee, Kyungmin

    2015-10-12

    To investigate the relationship between neural function and behavior it is necessary to record neuronal activity in the brains of freely behaving animals, a technique that typically involves tethering to a data acquisition system. Optimally this approach allows animals to behave without any interference of movement or task performance. Currently many laboratories in the cognitive and behavioral neuroscience fields employ commercial motorized commutator systems using torque sensors to detect tether movement induced by the trajectory behaviors of animals. In this study we describe a novel motorized commutator system which is automatically controlled by video tracking. To obtain accurate head direction data two light emitting diodes were used and video image noise was minimized by physical light source manipulation. The system calculates the rotation of the animal across a single trial by processing head direction data and the software, which calibrates the motor rotation angle, subsequently generates voltage pulses to actively untwist the tether. This system successfully provides a tether twist-free environment for animals performing behavioral tasks and simultaneous neural activity recording. To the best of our knowledge, it is the first to utilize video tracking generated head direction to detect tether twisting and compensate with a motorized commutator system. Our automatic commutator control system promises an affordable and accessible method to improve behavioral neurophysiology experiments, particularly in mice.

  18. A Video Game Platform for Exploring Satellite and In-Situ Data Streams

    NASA Astrophysics Data System (ADS)

    Cai, Y.

    2014-12-01

    Exploring spatiotemporal patterns of moving objects are essential to Earth Observation missions, such as tracking, modeling and predicting movement of clouds, dust, plumes and harmful algal blooms. Those missions involve high-volume, multi-source, and multi-modal imagery data analysis. Analytical models intend to reveal inner structure, dynamics, and relationship of things. However, they are not necessarily intuitive to humans. Conventional scientific visualization methods are intuitive but limited by manual operations, such as area marking, measurement and alignment of multi-source data, which are expensive and time-consuming. A new development of video analytics platform has been in progress, which integrates the video game engine with satellite and in-situ data streams. The system converts Earth Observation data into articulated objects that are mapped from a high-dimensional space to a 3D space. The object tracking and augmented reality algorithms highlight the objects' features in colors, shapes and trajectories, creating visual cues for observing dynamic patterns. The head and gesture tracker enable users to navigate the data space interactively. To validate our design, we have used NASA SeaWiFS satellite images of oceanographic remote sensing data and NOAA's in-situ cell count data. Our study demonstrates that the video game system can reduce the size and cost of traditional CAVE systems in two to three orders of magnitude. This system can also be used for satellite mission planning and public outreaching.

  19. Detecting multiple moving objects in crowded environments with coherent motion regions

    DOEpatents

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  20. Reduction in chemotherapy order errors with computerised physician order entry and clinical decision support systems.

    PubMed

    Aziz, Muhammad Tahir; Ur-Rehman, Tofeeq; Qureshi, Sadia; Bukhari, Nadeem Irfan

    Medication errors in chemotherapy are frequent and lead to patient morbidity and mortality, as well as increased rates of re-admission and length of stay, and considerable extra costs. Objective: This study investigated the proposition that computerised chemotherapy ordering reduces the incidence and severity of chemotherapy protocol errors. A computerised physician order entry of chemotherapy order (C-CO) with clinical decision support system was developed in-house, including standardised chemotherapy protocol definitions, automation of pharmacy distribution, clinical checks, labeling and invoicing. A prospective study was then conducted in a C-CO versus paper based chemotherapy order (P-CO) in a 30-bed chemotherapy bay of a tertiary hospital. Both C-CO and P-CO orders, including pharmacoeconomic analysis and the severity of medication errors, were checked and validated by a clinical pharmacist. A group analysis and field trial were also conducted to assess clarity, feasibility and decision making. The C-CO was very usable in terms of its clarity and feasibility. The incidence of medication errors was significantly lower in the C-CO compared with the P-CO (10/3765 [0.26%] versus 134/5514 [2.4%]). There was also a reduction in dispensing time of chemotherapy protocols in the C-CO. The chemotherapy computerisation with clinical decision support system resulted in a significant decrease in the occurrence and severity of medication errors, improvements in chemotherapy dispensing and administration times, and reduction of chemotherapy cost.

  1. Effectiveness of an automatic tracking software in underwater motion analysis.

    PubMed

    Magalhaes, Fabrício A; Sawacha, Zimi; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio; Fantozzi, Silvia

    2013-01-01

    Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP), based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers' positions) were manually tracked to determine the markers' center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM). Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker's coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4%) than for COM (17.8%). Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis. Key PointsThe availability of effective software for automatic tracking would represent a significant advance for the practical use of kinematic analysis in swimming and other aquatic sports.An important feature of automatic tracking software is to require limited human interventions and supervision, thus allowing short processing time.When tracking underwater movements, the degree of automation of the tracking procedure is influenced by the capability of the algorithm to overcome difficulties linked to the small target size, the low image quality and the presence of background clutters.The newly developed feature-tracking algorithm has shown a good automatic tracking effectiveness in underwater motion analysis with significantly smaller percentage of required manual interventions when compared to a commercial software.

  2. Semantic-based surveillance video retrieval.

    PubMed

    Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve

    2007-04-01

    Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.

  3. Common and Innovative Visuals: A sparsity modeling framework for video.

    PubMed

    Abdolhosseini Moghadam, Abdolreza; Kumar, Mrityunjay; Radha, Hayder

    2014-05-02

    Efficient video representation models are critical for many video analysis and processing tasks. In this paper, we present a framework based on the concept of finding the sparsest solution to model video frames. To model the spatio-temporal information, frames from one scene are decomposed into two components: (i) a common frame, which describes the visual information common to all the frames in the scene/segment, and (ii) a set of innovative frames, which depicts the dynamic behaviour of the scene. The proposed approach exploits and builds on recent results in the field of compressed sensing to jointly estimate the common frame and the innovative frames for each video segment. We refer to the proposed modeling framework by CIV (Common and Innovative Visuals). We show how the proposed model can be utilized to find scene change boundaries and extend CIV to videos from multiple scenes. Furthermore, the proposed model is robust to noise and can be used for various video processing applications without relying on motion estimation and detection or image segmentation. Results for object tracking, video editing (object removal, inpainting) and scene change detection are presented to demonstrate the efficiency and the performance of the proposed model.

  4. A web-based video annotation system for crowdsourcing surveillance videos

    NASA Astrophysics Data System (ADS)

    Gadgil, Neeraj J.; Tahboub, Khalid; Kirsh, David; Delp, Edward J.

    2014-03-01

    Video surveillance systems are of a great value to prevent threats and identify/investigate criminal activities. Manual analysis of a huge amount of video data from several cameras over a long period of time often becomes impracticable. The use of automatic detection methods can be challenging when the video contains many objects with complex motion and occlusions. Crowdsourcing has been proposed as an effective method for utilizing human intelligence to perform several tasks. Our system provides a platform for the annotation of surveillance video in an organized and controlled way. One can monitor a surveillance system using a set of tools such as training modules, roles and labels, task management. This system can be used in a real-time streaming mode to detect any potential threats or as an investigative tool to analyze past events. Annotators can annotate video contents assigned to them for suspicious activity or criminal acts. First responders are then able to view the collective annotations and receive email alerts about a newly reported incident. They can also keep track of the annotators' training performance, manage their activities and reward their success. By providing this system, the process of video analysis is made more efficient.

  5. Perceptions of rapport across the life span: Gaze patterns and judgment accuracy.

    PubMed

    Vicaria, Ishabel M; Bernieri, Frank J; Isaacowitz, Derek M

    2015-06-01

    Although age-related deficits in emotion perception have been established using photographs of individuals, the extension of these findings to dynamic displays and dyads is just beginning. Similarly, most eye-tracking research in the person perception literature, including those that study age differences, have focused on individual attributes gleaned from static images; to our knowledge, no previous research has considered cue use in dyadic judgments with eye-tracking. The current study employed a Brunswikian lens model analysis in conjunction with eye-tracking measurements to study age differences in the judgment of rapport, a social construct comprised of mutual attentiveness, positive feelings, and coordination between interacting partners. Judgment accuracy and cue utilization of younger (n = 47) and older (n = 46) adults were operationalized as correlations between a perceiver's judgments and criterion values within a set of 34 brief interaction videos in which 2 opposite sex college students discussed a controversial topic. No age differences emerged in the accuracy of judgments; however, pathways to accuracy differed by age: Younger adults' judgments relied on some behavioral cues more than older adults. In addition, eye-tracking analyses revealed that older adults spent more time looking at the bodies of the targets in the videos, whereas younger adults spent more time looking at the targets' heads. The contributions from both the lens model and eye-tracking findings provide distinct but complementary insights to our understanding of age-related continuities and shifts in social perceptual processing. (c) 2015 APA, all rights reserved.

  6. Assessment of the perception of verticality and horizontality with self-paced saccades.

    PubMed

    Pettorossi, V E; Bambagioni, D; Bronstein, A M; Gresty, M A

    1998-07-01

    We investigated the ability of human subjects (Ss) to make self-paced saccades in the earth-vertical and horizontal directions (space-referenced task) and in the direction of the head-vertical and horizontal axis (self-referenced task) during whole body tilts of 0 degrees, 22.5 degrees, 45 degrees and 90 degrees in the frontal (roll) plane. Saccades were recorded in the dark with computerised video-oculography. During space-referenced tasks, the saccade vectors did not fully counter-rotate to compensate for larger angles of body tilt. This finding is in agreement with the 'A' effect reported for the visual vertical. The error was significantly larger for saccades intended to be space-horizontal than space-vertical. This vertico-horizontal dissociation implies greater difficulty in defining horizontality than verticality with the non-visual motor task employed. In contrast, normal Ss (and an alabyrinthine subject tested) were accurate in orienting saccades to their own (cranio-centric) vertical and horizontal axes regardless of tilt indicating that cranio-centric perception is robust and apparently not affected by gravitational influences.

  7. Computerised decision support in physical activity interventions: A systematic literature review.

    PubMed

    Triantafyllidis, Andreas; Filos, Dimitris; Claes, Jomme; Buys, Roselien; Cornelissen, Véronique; Kouidi, Evangelia; Chouvarda, Ioanna; Maglaveras, Nicos

    2018-03-01

    The benefits of regular physical activity for health and quality of life are unarguable. New information, sensing and communication technologies have the potential to play a critical role in computerised decision support and coaching for physical activity. We provide a literature review of recent research in the development of physical activity interventions employing computerised decision support, their feasibility and effectiveness in healthy and diseased individuals, and map out challenges and future research directions. We searched the bibliographic databases of PubMed and Scopus to identify physical activity interventions with computerised decision support utilised in a real-life context. Studies were synthesized according to the target user group, the technological format (e.g., web-based or mobile-based) and decision-support features of the intervention, the theoretical model for decision support in health behaviour change, the study design, the primary outcome, the number of participants and their engagement with the intervention, as well as the total follow-up duration. From the 24 studies included in the review, the highest percentage (n = 7, 29%) targeted sedentary healthy individuals followed by patients with prediabetes/diabetes (n = 4, 17%) or overweight individuals (n = 4, 17%). Most randomized controlled trials reported significantly positive effects of the interventions, i.e., increase in physical activity (n = 7, 100%) for 7 studies assessing physical activity measures, weight loss (n = 3, 75%) for 4 studies assessing diet, and reductions in glycosylated hemoglobin (n = 2, 66%) for 3 studies assessing glycose concentration. Accelerometers/pedometers were used in almost half of the studies (n = 11, 46%). Most adopted decision support features included personalised goal-setting (n = 16, 67%) and motivational feedback sent to the users (n = 15, 63%). Fewer adopted features were integration with electronic health records (n = 3, 13%) and alerts sent to caregivers (n = 4, 17%). Theoretical models of decision support in health behaviour to drive the development of the intervention were not reported in most studies (n = 14, 58%). Interventions employing computerised decision support have the potential to promote physical activity and result in health benefits for both diseased and healthy individuals, and help healthcare providers to monitor patients more closely. Objectively measured activity through sensing devices, integration with clinical systems used by healthcare providers and theoretical frameworks for health behaviour change need to be employed in a larger scale in future studies in order to realise the development of evidence-based computerised systems for physical activity monitoring and coaching. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Real-time target tracking and locating system for UAV

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Tang, Linbo; Fu, Huiquan; Li, Maowen

    2017-07-01

    In order to achieve real-time target tracking and locating for UAV, a reliable processing system is built on the embedded platform. Firstly, the video image is acquired in real time by the photovoltaic system on the UAV. When the target information is known, KCF tracking algorithm is adopted to track the target. Then, the servo is controlled to rotate with the target, when the target is in the center of the image, the laser ranging module is opened to obtain the distance between the UAV and the target. Finally, to combine with UAV flight parameters obtained by BeiDou navigation system, through the target location algorithm to calculate the geodetic coordinates of the target. The results show that the system is stable for real-time tracking of targets and positioning.

  9. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory detection rate by using facial features and skin color model. To harness all the features in the scene, we further developed another system using multiple types of local descriptors along with Bag-of-Visual Word framework. In addition, an investigation of new contour feature in detecting obscene content is presented.

  10. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  11. 47 CFR 27.1233 - Reimbursement costs of transitioning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nanoseconds for analog operations over any individual six megahertz MBS channel. (b) Migration of Video... migration, a program track must contain EBS programming that complies with § 27.1203 (b) and (c). (ii) The...

  12. 47 CFR 27.1233 - Reimbursement costs of transitioning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nanoseconds for analog operations over any individual six megahertz MBS channel. (b) Migration of Video... migration, a program track must contain EBS programming that complies with § 27.1203 (b) and (c). (ii) The...

  13. An extended Kalman filter for mouse tracking.

    PubMed

    Choi, Hongjun; Kim, Mingi; Lee, Onseok

    2018-05-19

    Animal tracking is an important tool for observing behavior, which is useful in various research areas. Animal specimens can be tracked using dynamic models and observation models that require several types of data. Tracking mouse has several barriers due to the physical characteristics of the mouse, their unpredictable movement, and cluttered environments. Therefore, we propose a reliable method that uses a detection stage and a tracking stage to successfully track mouse. The detection stage detects the surface area of the mouse skin, and the tracking stage implements an extended Kalman filter to estimate the state variables of a nonlinear model. The changes in the overall shape of the mouse are tracked using an oval-shaped tracking model to estimate the parameters for the ellipse. An experiment is conducted to demonstrate the performance of the proposed tracking algorithm using six video images showing various types of movement, and the ground truth values for synthetic images are compared to the values generated by the tracking algorithm. A conventional manual tracking method is also applied to compare across eight experimenters. Furthermore, the effectiveness of the proposed tracking method is also demonstrated by applying the tracking algorithm with actual images of mouse. Graphical abstract.

  14. ITC/USA/'90; Proceedings of the International Telemetering Conference, Las Vegas, NV, Oct. 29-Nov. 2, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This conference presents papers in the fields of airborne telemetry, measurement technology, video instrumentation and monitoring, tracking and receiving systems, and real-time processing in telemetry. Topics presented include packet telemetry ground station simulation, a predictable performance wideband noise generator, an improved drone tracking control system transponder, the application of neural networks to drone control, and an integrated real-time turbine engine flight test system.

  15. The OPAC Reborn: Electronic Content Belongs in the OPAC, at Least if We Want People to Find It

    ERIC Educational Resources Information Center

    McCracken, Peter

    2004-01-01

    One critical role of the catalog is to help librarians manage and track their inventory, whether it's books, videos, journals, microfilm reels, laptops, or even access to study rooms. The phrase, "if you can't track it, you don't own it," is quite real for the library that is trying to monitor thousands or millions of items. In the last decade,…

  16. Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset

    NASA Astrophysics Data System (ADS)

    Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi

    2017-11-01

    Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.

  17. Examining the effect of task on viewing behavior in videos using saliency maps

    NASA Astrophysics Data System (ADS)

    Alers, Hani; Redi, Judith A.; Heynderickx, Ingrid

    2012-03-01

    Research has shown that when viewing still images, people will look at these images in a different manner if instructed to evaluate their quality. They will tend to focus less on the main features of the image and, instead, scan the entire image area looking for clues for its level of quality. It is questionable, however, whether this finding can be extended to videos considering their dynamic nature. One can argue that when watching a video the viewer will always focus on the dynamically changing features of the video regardless of the given task. To test whether this is true, an experiment was conducted where half of the participants viewed videos with the task of quality evaluation while the other half were simply told to watch the videos as if they were watching a movie on TV or a video downloaded from the internet. The videos contained content which was degraded with compression artifacts over a wide range of quality. An eye tracking device was used to record the viewing behavior in both conditions. By comparing the behavior during each task, it was possible to observe a systematic difference in the viewing behavior which seemed to correlate to the quality of the videos.

  18. Application of computerised penile arterial waveform analysis in the diagnosis of arteriogenic impotence. An initial study in potent and impotent men.

    PubMed

    Desai, K M; Gingell, J C; Skidmore, R; Follett, D H

    1987-11-01

    A new method is described for evaluating arteriogenic impotence by means of noninvasive quantification of penile Doppler arterial waveforms using computerised analysis based on the Laplace Transform model. The haemodynamic changes occurring during a papaverine-induced erection in healthy potent volunteers have been recorded by this technique, which has also been shown to be capable of discriminating between a normal and an abnormal penile arterial supply in an initial study of potent and impotent men.

  19. Multiple Target Tracking in a Wide-Field-of-View Camera System

    DTIC Science & Technology

    1990-01-01

    assembly is mounted on a Contraves alt-azi axis table with a pointing accuracy of < 2 Urad. * Work performed under the auspices of the U.S. Department of... Contraves SUN 3 CCD DR11W VME EITHERNET SUN 3 !3T 3 RS170 Video 1 Video ^mglifier^ I WWV Clock VCR Datacube u Monitor Monitor UL...displaying processed images with overlay from the Datacube. We control the Contraves table using a GPIB interface on the SUN. GPIB also interfaces a

  20. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  1. Benefit from NASA

    NASA Image and Video Library

    1999-06-01

    Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.

  2. Say What? The Role of Audio in Multimedia Video

    NASA Astrophysics Data System (ADS)

    Linder, C. A.; Holmes, R. M.

    2011-12-01

    Audio, including interviews, ambient sounds, and music, is a critical-yet often overlooked-part of an effective multimedia video. In February 2010, Linder joined scientists working on the Global Rivers Observatory Project for two weeks of intensive fieldwork in the Congo River watershed. The team's goal was to learn more about how climate change and deforestation are impacting the river system and coastal ocean. Using stills and video shot with a lightweight digital SLR outfit and audio recorded with a pocket-sized sound recorder, Linder documented the trials and triumphs of working in the heart of Africa. Using excerpts from the six-minute Congo multimedia video, this presentation will illustrate how to record and edit an engaging audio track. Topics include interview technique, collecting ambient sounds, choosing and using music, and editing it all together to educate and entertain the viewer.

  3. Efficient video-equipped fire detection approach for automatic fire alarm systems

    NASA Astrophysics Data System (ADS)

    Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon

    2013-01-01

    This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.

  4. Optimal space communications techniques. [discussion of video signals and delta modulation

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1974-01-01

    The encoding of video signals using the Song Adaptive Delta Modulator (Song ADM) is discussed. The video signals are characterized as a sequence of pulses having arbitrary height and width. Although the ADM is suited to tracking signals having fast rise times, it was found that the DM algorithm (which permits an exponential rise for estimating an input step) results in a large overshoot and an underdamped response to the step. An overshoot suppression algorithm which significantly reduces the ringing while not affecting the rise time is presented along with formuli for the rise time and the settling time. Channel errors and their effect on the DM encoded bit stream were investigated.

  5. A spatiotemporal decomposition strategy for personal home video management

    NASA Astrophysics Data System (ADS)

    Yi, Haoran; Kozintsev, Igor; Polito, Marzia; Wu, Yi; Bouguet, Jean-Yves; Nefian, Ara; Dulong, Carole

    2007-01-01

    With the advent and proliferation of low cost and high performance digital video recorder devices, an increasing number of personal home video clips are recorded and stored by the consumers. Compared to image data, video data is lager in size and richer in multimedia content. Efficient access to video content is expected to be more challenging than image mining. Previously, we have developed a content-based image retrieval system and the benchmarking framework for personal images. In this paper, we extend our personal image retrieval system to include personal home video clips. A possible initial solution to video mining is to represent video clips by a set of key frames extracted from them thus converting the problem into an image search one. Here we report that a careful selection of key frames may improve the retrieval accuracy. However, because video also has temporal dimension, its key frame representation is inherently limited. The use of temporal information can give us better representation for video content at semantic object and concept levels than image-only based representation. In this paper we propose a bottom-up framework to combine interest point tracking, image segmentation and motion-shape factorization to decompose the video into spatiotemporal regions. We show an example application of activity concept detection using the trajectories extracted from the spatio-temporal regions. The proposed approach shows good potential for concise representation and indexing of objects and their motion in real-life consumer video.

  6. Defense.gov Special Report: Travels With Hagel

    Science.gov Websites

    2013 News Stories Hagel Says NATO's Afghanistan Planning On Track While a bilateral security agreement Video: Hagel: U.S., Afghanistan Near Agreement on Security Hagel: U.S., Afghanistan Near Agreement on

  7. Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering

    PubMed Central

    Wu, Pei-Hsun; Agarwal, Ashutosh; Hess, Henry; Khargonekar, Pramod P.; Tseng, Yiider

    2010-01-01

    Abstract The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes. PMID:20550894

  8. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy

    PubMed Central

    Davis, Michael L.; Mounteer, Leslie C.; Stevens, Lindsey K.; Miller, Charles D.; Zhou, Anhong

    2011-01-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout exponential growth phase (~20.9 µm/sec), while maximum velocities peak early in exponential growth phase at a velocity of 51.2 µm/sec. Pseudomonas putida KT2440 also favor smaller turn angles indicating they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. PMID:21334971

  9. Submarine harbor navigation using image data

    NASA Astrophysics Data System (ADS)

    Stubberud, Stephen C.; Kramer, Kathleen A.

    2017-01-01

    The process of ingress and egress of a United States Navy submarine is a human-intensive process that takes numerous individuals to monitor locations and for hazards. Sailors pass vocal information to bridge where it is processed manually. There is interest in using video imaging of the periscope view to more automatically provide navigation within harbors and other points of ingress and egress. In this paper, video-based navigation is examined as a target-tracking problem. While some image-processing methods claim to provide range information, the moving platform problem and weather concerns, such as fog, reduce the effectiveness of these range estimates. The video-navigation problem then becomes an angle-only tracking problem. Angle-only tracking is known to be fraught with difficulties, due to the fact that the unobservable space is not the null space. When using a Kalman filter estimator to perform the tracking, significant errors arise which could endanger the submarine. This work analyzes the performance of the Kalman filter when angle-only measurements are used to provide the target tracks. This paper addresses estimation unobservability and the minimal set of requirements that are needed to address it in this complex but real-world problem. Three major issues are addressed: the knowledge of navigation beacons/landmarks' locations, the minimal number of these beacons needed to maintain the course, and update rates of the angles of the landmarks as the periscope rotates and landmarks become obscured due to blockage and weather. The goal is to address the problem of navigation to and from the docks, while maintaining the traversing of the harbor channel based on maritime rules relying solely on the image-based data. The minimal number of beacons will be considered. For this effort, the image correlation from frame to frame is assumed to be achieved perfectly. Variation in the update rates and the dropping of data due to rotation and obscuration is considered. The analysis will be based on a simple straight-line channel harbor entry to the dock, similar to a submarine entering the submarine port in San Diego.

  10. The design, construction and implementation of a computerised trauma registry in a developing South African metropolitan trauma service.

    PubMed

    Laing, G L; Bruce, J L; Aldous, C; Clarke, D L

    2014-01-01

    The Pietermaritzburg Metropolitan Trauma Service formerly lacked a robust computerised trauma registry. This made surgical audit difficult for the purpose of quality of care improvement and development. We aimed to design, construct and implement a computerised trauma registry within our service. Twelve months following its implementation, we sought to examine and report on the quality of the registry. Formal ethical approval to maintain a computerised trauma registry was obtained prior to undertaking any design and development. Appropriate commercial software was sourced to develop this project. The registry was designed as a flat file. A flat file is a plain text or mixed text and binary file which usually contains one record per line or physical record. Thereafter the registry file was launched onto a secure server. This provided the benefits of access security and automated backups. Registry training was provided to clients by the developer. The exercise of data capture was then integrated into the process of service delivery, taking place at the endpoint of patient care (discharge, transfer or death). Twelve months following its implementation, the compliance rates of data entry were measured. The developer of this project managed to design, construct and implement an electronic trauma registry into the service. Twelve months following its implementation the data were extracted and audited to assess the quality. A total of 2640 patient entries were captured onto the registry. Compliance rates were in the order of eighty percent and client satisfaction rates were high. A number of deficits were identified. These included the omission of weekend discharges and underreporting of deaths. The construction and implementation of the computerised trauma registry was the beginning of an endeavour to continue improvements in the quality of care within our service. The registry provided a reliable audit at twelve months post implementation. Deficits and limitations were identified and new strategies have been planned to overcome these problems and integrate the trauma registry into the process of clinical care. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Dense-HOG-based drift-reduced 3D face tracking for infant pain monitoring

    NASA Astrophysics Data System (ADS)

    Saeijs, Ronald W. J. J.; Tjon A Ten, Walther E.; de With, Peter H. N.

    2017-03-01

    This paper presents a new algorithm for 3D face tracking intended for clinical infant pain monitoring. The algorithm uses a cylinder head model and 3D head pose recovery by alignment of dynamically extracted templates based on dense-HOG features. The algorithm includes extensions for drift reduction, using re-registration in combination with multi-pose state estimation by means of a square-root unscented Kalman filter. The paper reports experimental results on videos of moving infants in hospital who are relaxed or in pain. Results show good tracking behavior for poses up to 50 degrees from upright-frontal. In terms of eye location error relative to inter-ocular distance, the mean tracking error is below 9%.

  12. Real-time tracking and fast retrieval of persons in multiple surveillance cameras of a shopping mall

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Baan, Jan; Landsmeer, Sander; Kruszynski, Chris; van Antwerpen, Gert; Dijk, Judith

    2013-05-01

    The capability to track individuals in CCTV cameras is important for e.g. surveillance applications at large areas such as train stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras. In this paper, we present a system for real-time tracking and fast interactive retrieval of persons in video streams from multiple static surveillance cameras. This system is demonstrated in a shopping mall, where the cameras are positioned without overlapping fields-of-view and have different lighting conditions. The results show that the system allows an operator to find the origin or destination of a person more efficiently. The misses are reduced with 37%, which is a significant improvement.

  13. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E [Livermore, CA; Zumstein, James E [Livermore, CA; Chang, John T [Danville, CA; Leach, Jr Richard R. [Castro Valley, CA

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  14. A semi-automatic annotation tool for cooking video

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Ciocca, Gianluigi; Napoletano, Paolo; Schettini, Raimondo; Margherita, Roberto; Marini, Gianluca; Gianforme, Giorgio; Pantaleo, Giuseppe

    2013-03-01

    In order to create a cooking assistant application to guide the users in the preparation of the dishes relevant to their profile diets and food preferences, it is necessary to accurately annotate the video recipes, identifying and tracking the foods of the cook. These videos present particular annotation challenges such as frequent occlusions, food appearance changes, etc. Manually annotate the videos is a time-consuming, tedious and error-prone task. Fully automatic tools that integrate computer vision algorithms to extract and identify the elements of interest are not error free, and false positive and false negative detections need to be corrected in a post-processing stage. We present an interactive, semi-automatic tool for the annotation of cooking videos that integrates computer vision techniques under the supervision of the user. The annotation accuracy is increased with respect to completely automatic tools and the human effort is reduced with respect to completely manual ones. The performance and usability of the proposed tool are evaluated on the basis of the time and effort required to annotate the same video sequences.

  15. A no-reference video quality assessment metric based on ROI

    NASA Astrophysics Data System (ADS)

    Jia, Lixiu; Zhong, Xuefei; Tu, Yan; Niu, Wenjuan

    2015-01-01

    A no reference video quality assessment metric based on the region of interest (ROI) was proposed in this paper. In the metric, objective video quality was evaluated by integrating the quality of two compressed artifacts, i.e. blurring distortion and blocking distortion. The Gaussian kernel function was used to extract the human density maps of the H.264 coding videos from the subjective eye tracking data. An objective bottom-up ROI extraction model based on magnitude discrepancy of discrete wavelet transform between two consecutive frames, center weighted color opponent model, luminance contrast model and frequency saliency model based on spectral residual was built. Then only the objective saliency maps were used to compute the objective blurring and blocking quality. The results indicate that the objective ROI extraction metric has a higher the area under the curve (AUC) value. Comparing with the conventional video quality assessment metrics which measured all the video quality frames, the metric proposed in this paper not only decreased the computation complexity, but improved the correlation between subjective mean opinion score (MOS) and objective scores.

  16. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    PubMed

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.

    PubMed

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-04-15

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.

  18. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    PubMed Central

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-01-01

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505

  19. Automation and apps for clinical dental biomechanics.

    PubMed

    Adams, Bruce W

    2016-09-01

    The aim of this research summary is to introduce the current and ongoing work using smartphone video, tracking markers to measure musculoskeletal disorders of cranial and mandibular origin, and the potential significance of the technology to doctors and therapists. The MPA™ biomechanical measuring apps are in beta trials with various doctors and therapists. The technique requires substantial image processing and statistical analysis, best suited to server-side processing. A smartphone environment has enabled a virtual laboratory, which provides automated generation of graphics and in some cases automated interpretation. The system enables highly accurate real-time biomechanics studies using only a smartphone and tracking markers. Despite the technical challenges in setting up and testing of the virtual environment and with interpretation of clinical relevance, the trials have enabled a demonstration of real-time biomechanics studies. The technology has prompted a lot of discussion about the relevance of rapid assessment tools in clinical practice. It seems that a prior bias against motion tracking and its relevance is very strong with occlusion related use cases, yet there has been a general agreement about the use case for cranial movement tracking in managing complex issues related to the head, neck, and TMJ. Measurement of cranial and mandibular functions using a smartphone video as the input have been investigated. Ongoing research will depend upon doctors and therapists to provide feedback as to which uses are considered clinically relevant.

  20. Infrared dim and small target detecting and tracking method inspired by Human Visual System

    NASA Astrophysics Data System (ADS)

    Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Shen, Lurong; Bai, Shengjian

    2014-01-01

    Detecting and tracking dim and small target in infrared images and videos is one of the most important techniques in many computer vision applications, such as video surveillance and infrared imaging precise guidance. Recently, more and more algorithms based on Human Visual System (HVS) have been proposed to detect and track the infrared dim and small target. In general, HVS concerns at least three mechanisms including contrast mechanism, visual attention and eye movement. However, most of the existing algorithms simulate only a single one of the HVS mechanisms, resulting in many drawbacks of these algorithms. A novel method which combines the three mechanisms of HVS is proposed in this paper. First, a group of Difference of Gaussians (DOG) filters which simulate the contrast mechanism are used to filter the input image. Second, a visual attention, which is simulated by a Gaussian window, is added at a point near the target in order to further enhance the dim small target. This point is named as the attention point. Eventually, the Proportional-Integral-Derivative (PID) algorithm is first introduced to predict the attention point of the next frame of an image which simulates the eye movement of human being. Experimental results of infrared images with different types of backgrounds demonstrate the high efficiency and accuracy of the proposed method to detect and track the dim and small targets.

  1. Fluoroscopic image-guided intervention system for transbronchial localization

    NASA Astrophysics Data System (ADS)

    Rai, Lav; Keast, Thomas M.; Wibowo, Henky; Yu, Kun-Chang; Draper, Jeffrey W.; Gibbs, Jason D.

    2012-02-01

    Reliable transbronchial access of peripheral lung lesions is desirable for the diagnosis and potential treatment of lung cancer. This procedure can be difficult, however, because accessory devices (e.g., needle or forceps) cannot be reliably localized while deployed. We present a fluoroscopic image-guided intervention (IGI) system for tracking such bronchoscopic accessories. Fluoroscopy, an imaging technology currently utilized by many bronchoscopists, has a fundamental shortcoming - many lung lesions are invisible in its images. Our IGI system aligns a digitally reconstructed radiograph (DRR) defined from a pre-operative computed tomography (CT) scan with live fluoroscopic images. Radiopaque accessory devices are readily apparent in fluoroscopic video, while lesions lacking a fluoroscopic signature but identifiable in the CT scan are superimposed in the scene. The IGI system processing steps consist of: (1) calibrating the fluoroscopic imaging system; (2) registering the CT anatomy with its depiction in the fluoroscopic scene; (3) optical tracking to continually update the DRR and target positions as the fluoroscope is moved about the patient. The end result is a continuous correlation of the DRR and projected targets with the anatomy depicted in the live fluoroscopic video feed. Because both targets and bronchoscopic devices are readily apparent in arbitrary fluoroscopic orientations, multiplane guidance is straightforward. The system tracks in real-time with no computational lag. We have measured a mean projected tracking accuracy of 1.0 mm in a phantom and present results from an in vivo animal study.

  2. An intelligent crowdsourcing system for forensic analysis of surveillance video

    NASA Astrophysics Data System (ADS)

    Tahboub, Khalid; Gadgil, Neeraj; Ribera, Javier; Delgado, Blanca; Delp, Edward J.

    2015-03-01

    Video surveillance systems are of a great value for public safety. With an exponential increase in the number of cameras, videos obtained from surveillance systems are often archived for forensic purposes. Many automatic methods have been proposed to do video analytics such as anomaly detection and human activity recognition. However, such methods face significant challenges due to object occlusions, shadows and scene illumination changes. In recent years, crowdsourcing has become an effective tool that utilizes human intelligence to perform tasks that are challenging for machines. In this paper, we present an intelligent crowdsourcing system for forensic analysis of surveillance video that includes the video recorded as a part of search and rescue missions and large-scale investigation tasks. We describe a method to enhance crowdsourcing by incorporating human detection, re-identification and tracking. At the core of our system, we use a hierarchal pyramid model to distinguish the crowd members based on their ability, experience and performance record. Our proposed system operates in an autonomous fashion and produces a final output of the crowdsourcing analysis consisting of a set of video segments detailing the events of interest as one storyline.

  3. Specification for wide channel bandwidth one-inch video tape

    NASA Technical Reports Server (NTRS)

    Perry, Jimmy L.

    1988-01-01

    Standards and controls are established for the procurement of wide channel bandwidth one inch video magnetic recording tapes for Very Long Base Interferometer (VLBI) system applications. The Magnetic Tape Certification Facility (MTCF) currently maintains three specifications for the Quality Products List (QPL) and acceptance testing of magnetic tapes. NASA-TM-79724 is used for the QPL and acceptance testing of new analog tapes; NASA-TM-80599 is used for QPL and acceptance testing of new digital tapes; and NASA-TM-100702 is used for the QPL and acceptance testing of new IBM/IBM compatible 3480 magnetic tape cartridges. This specification will be used for the QPL and acceptance testing of new wide channel bandwidth one inch video magnetic recording tapes. The one inch video tapes used by the Jet Propulsion Lab., the Deep Space Network and the Haystack Observatory will be covered by this specification. These NASA stations will use the video tapes for their VLBI system applications. The VLBI system is used for the tracking of quasars and the support of interplanetary exploration.

  4. Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking

    NASA Astrophysics Data System (ADS)

    Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan

    2016-06-01

    SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability

  5. NucliTrack: an integrated nuclei tracking application.

    PubMed

    Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris

    2017-10-15

    Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  6. Particle image velocimetry for the Surface Tension Driven Convection Experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  7. Particle image velocimetry for the surface tension driven convection experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  8. Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model.

    PubMed

    Leotta, Matthew J; Mundy, Joseph L

    2011-07-01

    In automated surveillance, one is often interested in tracking road vehicles, measuring their shape in 3D world space, and determining vehicle classification. To address these tasks simultaneously, an effective approach is the constrained alignment of a prior model of 3D vehicle shape to images. Previous 3D vehicle models are either generic but overly simple or rigid and overly complex. Rigid models represent exactly one vehicle design, so a large collection is needed. A single generic model can deform to a wide variety of shapes, but those shapes have been far too primitive. This paper uses a generic 3D vehicle model that deforms to match a wide variety of passenger vehicles. It is adjustable in complexity between the two extremes. The model is aligned to images by predicting and matching image intensity edges. Novel algorithms are presented for fitting models to multiple still images and simultaneous tracking while estimating shape in video. Experiments compare the proposed model to simple generic models in accuracy and reliability of 3D shape recovery from images and tracking in video. Standard techniques for classification are also used to compare the models. The proposed model outperforms the existing simple models at each task.

  9. Studying the movement behavior of benthic macroinvertebrates with automated video tracking.

    PubMed

    Augusiak, Jacqueline; Van den Brink, Paul J

    2015-04-01

    Quantifying and understanding movement is critical for a wide range of questions in basic and applied ecology. Movement ecology is also fostered by technological advances that allow automated tracking for a wide range of animal species. However, for aquatic macroinvertebrates, such detailed methods do not yet exist. We developed a video tracking method for two different species of benthic macroinvertebrates, the crawling isopod Asellus aquaticus and the swimming fresh water amphipod Gammarus pulex. We tested the effects of different light sources and marking techniques on their movement behavior to establish the possibilities and limitations of the experimental protocol and to ensure that the basic handling of test specimens would not bias conclusions drawn from movement path analyses. To demonstrate the versatility of our method, we studied the influence of varying population densities on different movement parameters related to resting behavior, directionality, and step lengths. We found that our method allows studying species with different modes of dispersal and under different conditions. For example, we found that gammarids spend more time moving at higher population densities, while asellids rest more under similar conditions. At the same time, in response to higher densities, gammarids mostly decreased average step lengths, whereas asellids did not. Gammarids, however, were also more sensitive to general handling and marking than asellids. Our protocol for marking and video tracking can be easily adopted for other species of aquatic macroinvertebrates or testing conditions, for example, presence or absence of food sources, shelter, or predator cues. Nevertheless, limitations with regard to the marking protocol, material, and a species' physical build need to be considered and tested before a wider application, particularly for swimming species. Data obtained with this approach can deepen the understanding of population dynamics on larger spatial scales and of the effects of different management strategies on a species' dispersal potential.

  10. Studying the movement behavior of benthic macroinvertebrates with automated video tracking

    PubMed Central

    Augusiak, Jacqueline; Van den Brink, Paul J

    2015-01-01

    Quantifying and understanding movement is critical for a wide range of questions in basic and applied ecology. Movement ecology is also fostered by technological advances that allow automated tracking for a wide range of animal species. However, for aquatic macroinvertebrates, such detailed methods do not yet exist. We developed a video tracking method for two different species of benthic macroinvertebrates, the crawling isopod Asellus aquaticus and the swimming fresh water amphipod Gammarus pulex. We tested the effects of different light sources and marking techniques on their movement behavior to establish the possibilities and limitations of the experimental protocol and to ensure that the basic handling of test specimens would not bias conclusions drawn from movement path analyses. To demonstrate the versatility of our method, we studied the influence of varying population densities on different movement parameters related to resting behavior, directionality, and step lengths. We found that our method allows studying species with different modes of dispersal and under different conditions. For example, we found that gammarids spend more time moving at higher population densities, while asellids rest more under similar conditions. At the same time, in response to higher densities, gammarids mostly decreased average step lengths, whereas asellids did not. Gammarids, however, were also more sensitive to general handling and marking than asellids. Our protocol for marking and video tracking can be easily adopted for other species of aquatic macroinvertebrates or testing conditions, for example, presence or absence of food sources, shelter, or predator cues. Nevertheless, limitations with regard to the marking protocol, material, and a species’ physical build need to be considered and tested before a wider application, particularly for swimming species. Data obtained with this approach can deepen the understanding of population dynamics on larger spatial scales and of the effects of different management strategies on a species’ dispersal potential. PMID:25937901

  11. Lip-reading enhancement for law enforcement

    NASA Astrophysics Data System (ADS)

    Theobald, Barry J.; Harvey, Richard; Cox, Stephen J.; Lewis, Colin; Owen, Gari P.

    2006-09-01

    Accurate lip-reading techniques would be of enormous benefit for agencies involved in counter-terrorism and other law-enforcement areas. Unfortunately, there are very few skilled lip-readers, and it is apparently a difficult skill to transmit, so the area is under-resourced. In this paper we investigate the possibility of making the lip-reading task more amenable to a wider range of operators by enhancing lip movements in video sequences using active appearance models. These are generative, parametric models commonly used to track faces in images and video sequences. The parametric nature of the model allows a face in an image to be encoded in terms of a few tens of parameters, while the generative nature allows faces to be re-synthesised using the parameters. The aim of this study is to determine if exaggerating lip-motions in video sequences by amplifying the parameters of the model improves lip-reading ability. We also present results of lip-reading tests undertaken by experienced (but non-expert) adult subjects who claim to use lip-reading in their speech recognition process. The results, which are comparisons of word error-rates on unprocessed and processed video, are mixed. We find that there appears to be the potential to improve the word error rate but, for the method to improve the intelligibility there is need for more sophisticated tracking and visual modelling. Our technique can also act as an expression or visual gesture amplifier and so has applications to animation and the presentation of information via avatars or synthetic humans.

  12. Coding visual features extracted from video sequences.

    PubMed

    Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2014-05-01

    Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.

  13. Getting Inside the Expert's Head: An Analysis of Physician Cognitive Processes During Trauma Resuscitations.

    PubMed

    White, Matthew R; Braund, Heather; Howes, Daniel; Egan, Rylan; Gegenfurtner, Andreas; van Merrienboer, Jeroen J G; Szulewski, Adam

    2018-04-23

    Crisis resource management skills are integral to leading the resuscitation of a critically ill patient. Despite their importance, crisis resource management skills (and their associated cognitive processes) have traditionally been difficult to study in the real world. The objective of this study was to derive key cognitive processes underpinning expert performance in resuscitation medicine, using a new eye-tracking-based video capture method during clinical cases. During an 18-month period, a sample of 10 trauma resuscitations led by 4 expert trauma team leaders was analyzed. The physician team leaders were outfitted with mobile eye-tracking glasses for each case. After each resuscitation, participants were debriefed with a modified cognitive task analysis, based on a cued-recall protocol, augmented by viewing their own first-person perspective eye-tracking video from the clinical encounter. Eye-tracking technology was successfully applied as a tool to aid in the qualitative analysis of expert performance in a clinical setting. All participants stated that using these methods helped uncover previously unconscious aspects of their cognition. Overall, 5 major themes were derived from the interviews: logistic awareness, managing uncertainty, visual fixation behaviors, selective attendance to information, and anticipatory behaviors. The novel approach of cognitive task analysis augmented by eye tracking allowed the derivation of 5 unique cognitive processes underpinning expert performance in leading a resuscitation. An understanding of these cognitive processes has the potential to enhance educational methods and to create new assessment modalities of these previously tacit aspects of expertise in this field. Copyright © 2018 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  14. Classification of Birds and Bats Using Flight Tracks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullinan, Valerie I.; Matzner, Shari; Duberstein, Corey A.

    Classification of birds and bats that use areas targeted for offshore wind farm development and the inference of their behavior is essential to evaluating the potential effects of development. The current approach to assessing the number and distribution of birds at sea involves transect surveys using trained individuals in boats or airplanes or using high-resolution imagery. These approaches are costly and have safety concerns. Based on a limited annotated library extracted from a single-camera thermal video, we provide a framework for building models that classify birds and bats and their associated behaviors. As an example, we developed a discriminant modelmore » for theoretical flight paths and applied it to data (N = 64 tracks) extracted from 5-min video clips. The agreement between model- and observer-classified path types was initially only 41%, but it increased to 73% when small-scale jitter was censored and path types were combined. Classification of 46 tracks of bats, swallows, gulls, and terns on average was 82% accurate, based on a jackknife cross-validation. Model classification of bats and terns (N = 4 and 2, respectively) was 94% and 91% correct, respectively; however, the variance associated with the tracks from these targets is poorly estimated. Model classification of gulls and swallows (N ≥ 18) was on average 73% and 85% correct, respectively. The models developed here should be considered preliminary because they are based on a small data set both in terms of the numbers of species and the identified flight tracks. Future classification models would be greatly improved by including a measure of distance between the camera and the target.« less

  15. A Framework of Simple Event Detection in Surveillance Video

    NASA Astrophysics Data System (ADS)

    Xu, Weiguang; Zhang, Yafei; Lu, Jianjiang; Tian, Yulong; Wang, Jiabao

    Video surveillance is playing more and more important role in people's social life. Real-time alerting of threaten events and searching interesting content in stored large scale video footage needs human operator to pay full attention on monitor for long time. The labor intensive mode has limit the effectiveness and efficiency of the system. A framework of simple event detection is presented advance the automation of video surveillance. An improved inner key point matching approach is used to compensate motion of background in real-time; frame difference are used to detect foreground; HOG based classifiers are used to classify foreground object into people and car; mean-shift is used to tracking the recognized objects. Events are detected based on predefined rules. The maturity of the algorithms guarantee the robustness of the framework, and the improved approach and the easily checked rules enable the framework to work in real-time. Future works to be done are also discussed.

  16. Using behavioral skills training and video rehearsal to teach blackjack skills.

    PubMed

    Speelman, Ryan C; Whiting, Seth W; Dixon, Mark R

    2015-09-01

    A behavioral skills training procedure that consisted of video instructions, video rehearsal, and video testing was used to teach 4 recreational gamblers a specific skill in playing blackjack (sometimes called card counting). A multiple baseline design was used to evaluate intervention effects on card-counting accuracy and chips won or lost across participants. Before training, no participant counted cards accurately. Each participant completed all phases of the training protocol, counting cards fluently with 100% accuracy during changing speed criterion training exercises. Generalization probes were conducted while participants played blackjack in a mock casino following each training phase. Afterwards, all 4 participants were able to count cards while they played blackjack. In conjunction with count accuracy, total winnings were tracked to determine the monetary advantages associated with counting cards. After losing money during baseline, 3 of 4 participants won a substantial amount of money playing blackjack after the intervention. © Society for the Experimental Analysis of Behavior.

  17. 2011 Tohoku tsunami runup hydrographs, ship tracks, upriver and overland flow velocities based on video, LiDAR and AIS measurements

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C.; Takahashi, T.

    2014-12-01

    The 2004 Indian Ocean tsunami marked the advent of survivor videos mainly from tourist areas in Thailand and basin-wide locations. Near-field video recordings on Sumatra's north tip at Banda Aceh were limited to inland areas a few kilometres off the beach (Fritz et al., 2006). The March 11, 2011, magnitude Mw 9.0 earthquake off the Tohoku coast of Japan caused catastrophic damage and loss of life resulting in the costliest natural disaster in recorded history. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided numerous inundation recordings with unprecedented spatial and temporal resolution. High quality tsunami video recording sites at Yoriisohama, Kesennuma, Kamaishi and Miyako along Japan's Sanriku coast were surveyed, eyewitnesses interviewed and precise topographic data recorded using terrestrial laser scanning (TLS). The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure (Fritz et al., 2012). Measured overland flow velocities during tsunami runup exceed 13 m/s at Yoriisohama. The runup hydrograph at Yoriisohama highlights the under sampling at the Onagawa Nuclear Power Plant (NPP) pressure gauge, which skips the shorter period second crest. Combined tsunami and runup hydrographs are derived from the videos based on water surface elevations at surface piercing objects and along slopes identified in the acquired topographic TLS data. Several hydrographs reveal a draw down to minus 10 m after a first wave crest exposing harbor bottoms at Yoriisohama and Kamaishi. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down. A multi-hour ship track for the Asia Symphony with the vessels complete tsunami drifting motion in Kamaishi Bay is recovered from the universal ship borne AIS (Automatic Identification System). Multiple hydrographs corroborate the tsunami propagation through Miyako Bay and up the Hei River. Tsunami outflow currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs as well as associated flow velocities.

  18. SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, S; Rao, A; Wendt, R

    Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the cameramore » by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination.« less

  19. The new approach for infrared target tracking based on the particle filter algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Hang; Han, Hong-xia

    2011-08-01

    Target tracking on the complex background in the infrared image sequence is hot research field. It provides the important basis in some fields such as video monitoring, precision, and video compression human-computer interaction. As a typical algorithms in the target tracking framework based on filtering and data connection, the particle filter with non-parameter estimation characteristic have ability to deal with nonlinear and non-Gaussian problems so it were widely used. There are various forms of density in the particle filter algorithm to make it valid when target occlusion occurred or recover tracking back from failure in track procedure, but in order to capture the change of the state space, it need a certain amount of particles to ensure samples is enough, and this number will increase in accompany with dimension and increase exponentially, this led to the increased amount of calculation is presented. In this paper particle filter algorithm and the Mean shift will be combined. Aiming at deficiencies of the classic mean shift Tracking algorithm easily trapped into local minima and Unable to get global optimal under the complex background. From these two perspectives that "adaptive multiple information fusion" and "with particle filter framework combining", we expand the classic Mean Shift tracking framework .Based on the previous perspective, we proposed an improved Mean Shift infrared target tracking algorithm based on multiple information fusion. In the analysis of the infrared characteristics of target basis, Algorithm firstly extracted target gray and edge character and Proposed to guide the above two characteristics by the moving of the target information thus we can get new sports guide grayscale characteristics and motion guide border feature. Then proposes a new adaptive fusion mechanism, used these two new information adaptive to integrate into the Mean Shift tracking framework. Finally we designed a kind of automatic target model updating strategy to further improve tracking performance. Experimental results show that this algorithm can compensate shortcoming of the particle filter has too much computation, and can effectively overcome the fault that mean shift is easy to fall into local extreme value instead of global maximum value .Last because of the gray and fusion target motion information, this approach also inhibit interference from the background, ultimately improve the stability and the real-time of the target track.

  20. A system for endobronchial video analysis

    NASA Astrophysics Data System (ADS)

    Byrnes, Patrick D.; Higgins, William E.

    2017-03-01

    Image-guided bronchoscopy is a critical component in the treatment of lung cancer and other pulmonary disorders. During bronchoscopy, a high-resolution endobronchial video stream facilitates guidance through the lungs and allows for visual inspection of a patient's airway mucosal surfaces. Despite the detailed information it contains, little effort has been made to incorporate recorded video into the clinical workflow. Follow-up procedures often required in cancer assessment or asthma treatment could significantly benefit from effectively parsed and summarized video. Tracking diagnostic regions of interest (ROIs) could potentially better equip physicians to detect early airway-wall cancer or improve asthma treatments, such as bronchial thermoplasty. To address this need, we have developed a system for the postoperative analysis of recorded endobronchial video. The system first parses an input video stream into endoscopic shots, derives motion information, and selects salient representative key frames. Next, a semi-automatic method for CT-video registration creates data linkages between a CT-derived airway-tree model and the input video. These data linkages then enable the construction of a CT-video chest model comprised of a bronchoscopy path history (BPH) - defining all airway locations visited during a procedure - and texture-mapping information for rendering registered video frames onto the airwaytree model. A suite of analysis tools is included to visualize and manipulate the extracted data. Video browsing and retrieval is facilitated through a video table of contents (TOC) and a search query interface. The system provides a variety of operational modes and additional functionality, including the ability to define regions of interest. We demonstrate the potential of our system using two human case study examples.

  1. Real Time Eye Tracking and Hand Tracking Using Regular Video Cameras for Human Computer Interaction

    DTIC Science & Technology

    2011-01-01

    Paperwork Reduction Project (0704-0188) Washington, DC 20503. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) January...understand us. More specifically, the computer should be able to infer what we wish to see, do , and interact with through our movements, gestures, and...in depth freedom. Our system differs from the majority of other systems in that we do not use infrared, stereo-cameras, specially-constructed

  2. Assessing senescence in Drosophila using video tracking.

    PubMed

    Ardekani, Reza; Tavaré, Simon; Tower, John

    2013-01-01

    Senescence is associated with changes in gene expression, including the upregulation of stress response- and innate immune response-related genes. In addition, aging animals exhibit characteristic changes in movement behaviors including decreased gait speed and a deterioration in sleep/wake rhythms. Here, we describe methods for tracking Drosophila melanogaster movements in 3D with simultaneous quantification of fluorescent transgenic reporters. This approach allows for the assessment of correlations between behavior, aging, and gene expression as well as for the quantification of biomarkers of aging.

  3. See-What-I-Do: Increasing Mentor and Trainee Sense of Co-Presence in Trauma Surgeries with the STAR Platform

    DTIC Science & Technology

    2016-04-01

    publications, images, and videos.  Technologies or techniques . The technique for one shot gesture recognition is a result from the research activity... shot learning concept for gesture recognition. Name: Aditya Ajay Shanghavi Project Role: Master Student Researcher Identifier (e.g. ORCID ID...use case . The transparency error depends more on the x than the z head tracking error. Head tracking is typically accurate to less than 10mm in x

  4. Recognition and localization of relevant human behavior in videos

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Burghouts, Gertjan; de Penning, Leo; Hanckmann, Patrick; ten Hove, Johan-Martijn; Korzec, Sanne; Kruithof, Maarten; Landsmeer, Sander; van Leeuwen, Coen; van den Broek, Sebastiaan; Halma, Arvid; den Hollander, Richard; Schutte, Klamer

    2013-06-01

    Ground surveillance is normally performed by human assets, since it requires visual intelligence. However, especially for military operations, this can be dangerous and is very resource intensive. Therefore, unmanned autonomous visualintelligence systems are desired. In this paper, we present an improved system that can recognize actions of a human and interactions between multiple humans. Central to the new system is our agent-based architecture. The system is trained on thousands of videos and evaluated on realistic persistent surveillance data in the DARPA Mind's Eye program, with hours of videos of challenging scenes. The results show that our system is able to track the people, detect and localize events, and discriminate between different behaviors, and it performs 3.4 times better than our previous system.

  5. Detection of dominant flow and abnormal events in surveillance video

    NASA Astrophysics Data System (ADS)

    Kwak, Sooyeong; Byun, Hyeran

    2011-02-01

    We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.

  6. Single and multiple object tracking using log-euclidean Riemannian subspace and block-division appearance model.

    PubMed

    Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei

    2012-12-01

    Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.

  7. NucliTrack: an integrated nuclei tracking application

    PubMed Central

    Cooper, Sam; Barr, Alexis R.; Glen, Robert; Bakal, Chris

    2017-01-01

    Abstract Summary Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack’s interactive, graphical interface makes it significantly more user friendly. Availability and implementation NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. Contact sam@socooper.com Supplementary information Supplementary data are available at Bioinformatics online. PMID:28637183

  8. Physiologically Modulating Videogames or Simulations which use Motion-Sensing Input Devices

    NASA Technical Reports Server (NTRS)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Blanson, Nina Marie (Inventor)

    2014-01-01

    New types of controllers allow players to make inputs to a video game or simulation by moving the entire controller itself. This capability is typically accomplished using a wireless input device having accelerometers, gyroscopes, and an infrared LED tracking camera. The present invention exploits these wireless motion-sensing technologies to modulate the player's movement inputs to the videogame based upon physiological signals. Such biofeedback-modulated video games train valuable mental skills beyond eye-hand coordination. These psychophysiological training technologies enhance personal improvement, not just the diversion, of the user.

  9. Advancements in remote physiological measurement and applications in human-computer interaction

    NASA Astrophysics Data System (ADS)

    McDuff, Daniel

    2017-04-01

    Physiological signals are important for tracking health and emotional states. Imaging photoplethysmography (iPPG) is a set of techniques for remotely recovering cardio-pulmonary signals from video of the human body. Advances in iPPG methods over the past decade combined with the ubiquity of digital cameras presents the possibility for many new, lowcost applications of physiological monitoring. This talk will highlight methods for recovering physiological signals, work characterizing the impact of video parameters and hardware on these measurements, and applications of this technology in human-computer interfaces.

  10. Object tracking based on harmony search: comparative study

    NASA Astrophysics Data System (ADS)

    Gao, Ming-Liang; He, Xiao-Hai; Luo, Dai-Sheng; Yu, Yan-Mei

    2012-10-01

    Visual tracking can be treated as an optimization problem. A new meta-heuristic optimal algorithm, Harmony Search (HS), was first applied to perform visual tracking by Fourie et al. As the authors point out, many subjects are still required in ongoing research. Our work is a continuation of Fourie's study, with four prominent improved variations of HS, namely Improved Harmony Search (IHS), Global-best Harmony Search (GHS), Self-adaptive Harmony Search (SHS) and Differential Harmony Search (DHS) adopted into the tracking system. Their performances are tested and analyzed on multiple challenging video sequences. Experimental results show that IHS is best, with DHS ranking second among the four improved trackers when the iteration number is small. However, the differences between all four reduced gradually, along with the increasing number of iterations.

  11. An Objective Comparison of Cell Tracking Algorithms

    PubMed Central

    Ulman, Vladimír; Maška, Martin; Magnusson, Klas E. G.; Ronneberger, Olaf; Haubold, Carsten; Harder, Nathalie; Matula, Pavel; Matula, Petr; Svoboda, David; Radojevic, Miroslav; Smal, Ihor; Rohr, Karl; Jaldén, Joakim; Blau, Helen M.; Dzyubachyk, Oleh; Lelieveldt, Boudewijn; Xiao, Pengdong; Li, Yuexiang; Cho, Siu-Yeung; Dufour, Alexandre C.; Olivo-Marin, Jean-Christophe; Reyes-Aldasoro, Constantino C.; Solis-Lemus, Jose A.; Bensch, Robert; Brox, Thomas; Stegmaier, Johannes; Mikut, Ralf; Wolf, Steffen; Hamprecht, Fred. A.; Esteves, Tiago; Quelhas, Pedro; Demirel, Ömer; Malmström, Lars; Jug, Florian; Tomancak, Pavel; Meijering, Erik; Muñoz-Barrutia, Arrate; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2017-01-01

    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell tracking algorithms. With twenty-one participating algorithms and a data repository consisting of thirteen datasets of various microscopy modalities, the challenge displays today’s state of the art in the field. We analyze the results using performance measures for segmentation and tracking that rank all participating methods. We also analyze the performance of all algorithms in terms of biological measures and their practical usability. Even though some methods score high in all technical aspects, not a single one obtains fully correct solutions. We show that methods that either take prior information into account using learning strategies or analyze cells in a global spatio-temporal video context perform better than other methods under the segmentation and tracking scenarios included in the challenge. PMID:29083403

  12. An objective comparison of cell-tracking algorithms.

    PubMed

    Ulman, Vladimír; Maška, Martin; Magnusson, Klas E G; Ronneberger, Olaf; Haubold, Carsten; Harder, Nathalie; Matula, Pavel; Matula, Petr; Svoboda, David; Radojevic, Miroslav; Smal, Ihor; Rohr, Karl; Jaldén, Joakim; Blau, Helen M; Dzyubachyk, Oleh; Lelieveldt, Boudewijn; Xiao, Pengdong; Li, Yuexiang; Cho, Siu-Yeung; Dufour, Alexandre C; Olivo-Marin, Jean-Christophe; Reyes-Aldasoro, Constantino C; Solis-Lemus, Jose A; Bensch, Robert; Brox, Thomas; Stegmaier, Johannes; Mikut, Ralf; Wolf, Steffen; Hamprecht, Fred A; Esteves, Tiago; Quelhas, Pedro; Demirel, Ömer; Malmström, Lars; Jug, Florian; Tomancak, Pavel; Meijering, Erik; Muñoz-Barrutia, Arrate; Kozubek, Michal; Ortiz-de-Solorzano, Carlos

    2017-12-01

    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.

  13. Adaptive learning compressive tracking based on Markov location prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan

    2017-03-01

    Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.

  14. Computerised pathology test order entry reduces laboratory turnaround times and influences tests ordered by hospital clinicians: a controlled before and after study

    PubMed Central

    Westbrook, J I; Georgiou, A; Dimos, A; Germanos, T

    2006-01-01

    Objective To assess the impact of a computerised pathology order entry system on laboratory turnaround times and test ordering within a teaching hospital. Methods A controlled before and after study compared test assays ordered from 11 wards two months before (n = 97 851) and after (n = 113 762) the implementation of a computerised pathology order entry system (Cerner Millennium Powerchart). Comparisons were made of laboratory turnaround times, frequency of tests ordered and specimens taken, proportions of patients having tests, average number per patient, and percentage of gentamicin and vancomycin specimens labelled as random. Results Intervention wards experienced an average decrease in turnaround of 15.5 minutes/test assay (range 73.8 to 58.3 minutes; p<0.001). Reductions were significant for prioritised and non‐prioritised tests, and for those done within and outside business hours. There was no significant change in the average number of tests (p = 0.228), or specimens per patient (p = 0.324), and no change in turnaround time for the control ward (p = 0.218). Use of structured order screens enhanced data provided to laboratories. Removing three test assays from the liver function order set resulted in significantly fewer of these tests being done. Conclusions Computerised order entry systems are an important element in achieving faster test results. These systems can influence test ordering patterns through structured order screens, manipulation of order sets, and analysis of real time data to assess the impact of such changes, not possible with paper based systems. The extent to which improvements translate into improved patient outcomes remains to be determined. A potentially limiting factor is clinicians' capacity to respond to, and make use of, faster test results. PMID:16461564

  15. Practices to prevent venous thromboembolism: a brief review

    PubMed Central

    Lau, Brandyn D; Haut, Elliott R

    2014-01-01

    Background Venous thromboembolism (VTE) is a common cause of preventable harm for hospitalised patients. Over the past decade, numerous intervention types have been implemented in attempts to improve the prescription of VTE prophylaxis in hospitals, with varying degrees of success. We reviewed key articles to assess the efficacy of different types of interventions to improve prescription of VTE prophylaxis for hospitalised patients. Methods We conducted a search of MEDLINE for key studies published between 2001 and 2012 of interventions employing education, paper based tools, computerised tools, real time audit and feedback, or combinations of intervention types to improve prescription of VTE prophylaxis for patients in hospital settings. Process outcomes of interest were prescription of any VTE prophylaxis and best practice VTE prophylaxis. Clinical outcomes of interest were any VTE and potentially preventable VTE, defined as VTE occurring in patients not prescribed appropriate prophylaxis. Results 16 articles were included in this review. Two studies employed education only, four implemented paper based tools, four used computerised tools, two evaluated audit and feedback strategies, and four studies used combinations of intervention types. Individual modalities result in improved prescription of VTE prophylaxis; however, the greatest and most sustained improvements were those that combined education with computerised tools. Conclusions Many intervention types have proven effective to different degrees in improving VTE prevention. Provider education is likely a required additional component and should be combined with other intervention types. Active mandatory tools are likely more effective than passive ones. Information technology tools that are well integrated into provider workflow, such as alerts and computerised clinical decision support, can improve best practice prophylaxis use and prevent patient harm resulting from VTE. PMID:23708438

  16. Lessons from the Johns Hopkins Multi-Disciplinary Venous Thromboembolism (VTE) Prevention Collaborative

    PubMed Central

    Streiff, Michael B; Carolan, Howard T; Hobson, Deborah B; Kraus, Peggy S; Holzmueller, Christine G; Demski, Renee; Lau, Brandyn D; Biscup-Horn, Paula; Pronovost, Peter J

    2012-01-01

    Problem Venous thromboembolism (VTE) is a common cause of potentially preventable mortality, morbidity, and increased medical costs. Risk-appropriate prophylaxis can prevent most VTE events, but only a small fraction of patients at risk receive this treatment. Design Prospective quality improvement programme. Setting Johns Hopkins Hospital, Baltimore, Maryland, USA. Strategies for change A multidisciplinary team established a VTE Prevention Collaborative in 2005. The collaborative applied the four step TRIP (translating research into practice) model to develop and implement a mandatory clinical decision support tool for VTE risk stratification and risk-appropriate VTE prophylaxis for all hospitalised adult patients. Initially, paper based VTE order sets were implemented, which were then converted into 16 specialty-specific, mandatory, computerised, clinical decision support modules. Key measures for improvement VTE risk stratification within 24 hours of hospital admission and provision of risk-appropriate, evidence based VTE prophylaxis. Effects of change The VTE team was able to increase VTE risk assessment and ordering of risk-appropriate prophylaxis with paper based order sets to a limited extent, but achieved higher compliance with a computerised clinical decision support tool and the data feedback which it enabled. Risk-appropriate VTE prophylaxis increased from 26% to 80% for surgical patients and from 25% to 92% for medical patients in 2011. Lessons learnt A computerised clinical decision support tool can increase VTE risk stratification and risk-appropriate VTE prophylaxis among hospitalised adult patients admitted to a large urban academic medical centre. It is important to ensure the tool is part of the clinician’s normal workflow, is mandatory (computerised forcing function), and offers the requisite modules needed for every clinical specialty. PMID:22718994

  17. Augmented reality system for CT-guided interventions: system description and initial phantom trials

    NASA Astrophysics Data System (ADS)

    Sauer, Frank; Schoepf, Uwe J.; Khamene, Ali; Vogt, Sebastian; Das, Marco; Silverman, Stuart G.

    2003-05-01

    We are developing an augmented reality (AR) image guidance system, in which information derived from medical images is overlaid onto a video view of the patient. The interventionalist wears a head-mounted display (HMD) that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture the stereo view of the scene. A third video camera, operating in the near IR, is also attached to the HMD and is used for head tracking. The system achieves real-time performance of 30 frames per second. The graphics appears firmly anchored in the scne, without any noticeable swimming or jitter or time lag. For the application of CT-guided interventions, we extended our original prototype system to include tracking of a biopsy needle to which we attached a set of optical markers. The AR visualization provides very intuitive guidance for planning and placement of the needle and reduces radiation to patient and radiologist. We used an interventional abdominal phantom with simulated liver lesions to perform an inital set of experiments. The users were consistently able to locate the target lesion with the first needle pass. These results provide encouragement to move the system towards clinical trials.

  18. Autonomous target tracking of UAVs based on low-power neural network hardware

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Jin, Zhanpeng; Thiem, Clare; Wysocki, Bryant; Shen, Dan; Chen, Genshe

    2014-05-01

    Detecting and identifying targets in unmanned aerial vehicle (UAV) images and videos have been challenging problems due to various types of image distortion. Moreover, the significantly high processing overhead of existing image/video processing techniques and the limited computing resources available on UAVs force most of the processing tasks to be performed by the ground control station (GCS) in an off-line manner. In order to achieve fast and autonomous target identification on UAVs, it is thus imperative to investigate novel processing paradigms that can fulfill the real-time processing requirements, while fitting the size, weight, and power (SWaP) constrained environment. In this paper, we present a new autonomous target identification approach on UAVs, leveraging the emerging neuromorphic hardware which is capable of massively parallel pattern recognition processing and demands only a limited level of power consumption. A proof-of-concept prototype was developed based on a micro-UAV platform (Parrot AR Drone) and the CogniMemTMneural network chip, for processing the video data acquired from a UAV camera on the y. The aim of this study was to demonstrate the feasibility and potential of incorporating emerging neuromorphic hardware into next-generation UAVs and their superior performance and power advantages towards the real-time, autonomous target tracking.

  19. Approach and Evaluation of a Mobile Video-Based and Location-Based Augmented Reality Platform for Information Brokerage

    NASA Astrophysics Data System (ADS)

    Dastageeri, H.; Storz, M.; Koukofikis, A.; Knauth, S.; Coors, V.

    2016-09-01

    Providing mobile location-based information for pedestrians faces many challenges. On one hand the accuracy of localisation indoors and outdoors is restricted due to technical limitations of GPS and Beacons. Then again only a small display is available to display information as well as to develop a user interface. Plus, the software solution has to consider the hardware characteristics of mobile devices during the implementation process for aiming a performance with minimum latency. This paper describes our approach by including a combination of image tracking and GPS or Beacons to ensure orientation and precision of localisation. To communicate the information on Points of Interest (POIs), we decided to choose Augmented Reality (AR). For this concept of operations, we used besides the display also the acceleration and positions sensors as a user interface. This paper especially goes into detail on the optimization of the image tracking algorithms, the development of the video-based AR player for the Android platform and the evaluation of videos as an AR element in consideration of providing a good user experience. For setting up content for the POIs or even generate a tour we used and extended the Open Geospatial Consortium (OGC) standard Augmented Reality Markup Language (ARML).

  20. Vehicle-borne IED detection using the ULTOR correlation processor

    NASA Astrophysics Data System (ADS)

    Burcham, Joel D.; Vachon, Joyce E.

    2006-05-01

    Advanced Optical Systems, Inc. developed the ULTOR(r) system, a real-time correlation processor that looks for improvised explosive devices (IED) by examining imagery of vehicles. The system determines the level of threat an approaching vehicle may represent. The system works on incoming video collected at different wavelengths, including visible, infrared, and synthetic aperture radar. Sensors that attach to ULTOR can be located wherever necessary to improve the safety around a checkpoint. When a suspect vehicle is detected, ULTOR can track the vehicle, alert personnel, check for previous instances of the vehicle, and update other networked systems with the threat information. The ULTOR processing engine focuses on the spatial frequency information available in the image. It correlates the imagery with templates that specify the criteria defining a suspect vehicle. It can perform full field correlations at a rate of 180 Hz or better. Additionally, the spatial frequency information is applied to a trained neural network to identify suspect vehicles. We have performed various laboratory and field experiments to verify the performance of the ULTOR system in a counter IED environment. The experiments cover tracking specific targets in video clips to demonstrating real-time ULTOR system performance. The selected targets in the experiments include various automobiles in both visible and infrared video.

  1. Investigation of kinematic features for dismount detection and tracking

    NASA Astrophysics Data System (ADS)

    Narayanaswami, Ranga; Tyurina, Anastasia; Diel, David; Mehra, Raman K.; Chinn, Janice M.

    2012-05-01

    With recent changes in threats and methods of warfighting and the use of unmanned aircrafts, ISR (Intelligence, Surveillance and Reconnaissance) activities have become critical to the military's efforts to maintain situational awareness and neutralize the enemy's activities. The identification and tracking of dismounts from surveillance video is an important step in this direction. Our approach combines advanced ultra fast registration techniques to identify moving objects with a classification algorithm based on both static and kinematic features of the objects. Our objective was to push the acceptable resolution beyond the capability of industry standard feature extraction methods such as SIFT (Scale Invariant Feature Transform) based features and inspired by it, SURF (Speeded-Up Robust Feature). Both of these methods utilize single frame images. We exploited the temporal component of the video signal to develop kinematic features. Of particular interest were the easily distinguishable frequencies characteristic of bipedal human versus quadrupedal animal motion. We examine limits of performance, frame rates and resolution required for human, animal and vehicles discrimination. A few seconds of video signal with the acceptable frame rate allow us to lower resolution requirements for individual frames as much as by a factor of five, which translates into the corresponding increase of the acceptable standoff distance between the sensor and the object of interest.

  2. 47 CFR 27.1233 - Reimbursement costs of transitioning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service... Programming and Data Transmission Track. (1) The proponent(s) must provide, at its cost, to each EBS licensee that intends to continue downstream high-power, high-site educational video programming or data...

  3. Performance analysis of visual tracking algorithms for motion-based user interfaces on mobile devices

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing

    2008-02-01

    Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.

  4. The effects of video game playing on attention, memory, and executive control.

    PubMed

    Boot, Walter R; Kramer, Arthur F; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele

    2008-11-01

    Expert video game players often outperform non-players on measures of basic attention and performance. Such differences might result from exposure to video games or they might reflect other group differences between those people who do or do not play video games. Recent research has suggested a causal relationship between playing action video games and improvements in a variety of visual and attentional skills (e.g., [Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534-537]). The current research sought to replicate and extend these results by examining both expert/non-gamer differences and the effects of video game playing on tasks tapping a wider range of cognitive abilities, including attention, memory, and executive control. Non-gamers played 20+ h of an action video game, a puzzle game, or a real-time strategy game. Expert gamers and non-gamers differed on a number of basic cognitive skills: experts could track objects moving at greater speeds, better detected changes to objects stored in visual short-term memory, switched more quickly from one task to another, and mentally rotated objects more efficiently. Strikingly, extensive video game practice did not substantially enhance performance for non-gamers on most cognitive tasks, although they did improve somewhat in mental rotation performance. Our results suggest that at least some differences between video game experts and non-gamers in basic cognitive performance result either from far more extensive video game experience or from pre-existing group differences in abilities that result in a self-selection effect.

  5. Real-time synchronization of kinematic and video data for the comprehensive assessment of surgical skills.

    PubMed

    Dosis, Aristotelis; Bello, Fernando; Moorthy, Krishna; Munz, Yaron; Gillies, Duncan; Darzi, Ara

    2004-01-01

    Surgical dexterity in operating theatres has traditionally been assessed subjectively. Electromagnetic (EM) motion tracking systems such as the Imperial College Surgical Assessment Device (ICSAD) have been shown to produce valid and accurate objective measures of surgical skill. To allow for video integration we have modified the data acquisition and built it within the ROVIMAS analysis software. We then used ActiveX 9.0 DirectShow video capturing and the system clock as a time stamp for the synchronized concurrent acquisition of kinematic data and video frames. Interactive video/motion data browsing was implemented to allow the user to concentrate on frames exhibiting certain kinematic properties that could result in operative errors. We exploited video-data synchronization to calculate the camera visual hull by identifying all 3D vertices using the ICSAD electromagnetic sensors. We also concentrated on high velocity peaks as a means of identifying potential erroneous movements to be confirmed by studying the corresponding video frames. The outcome of the study clearly shows that the kinematic data are precisely synchronized with the video frames and that the velocity peaks correspond to large and sudden excursions of the instrument tip. We validated the camera visual hull by both video and geometrical kinematic analysis and we observed that graphs containing fewer sudden velocity peaks are less likely to have erroneous movements. This work presented further developments to the well-established ICSAD dexterity analysis system. Synchronized real-time motion and video acquisition provides a comprehensive assessment solution by combining quantitative motion analysis tools and qualitative targeted video scoring.

  6. 3-D Velocimetry of Strombolian Explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Gaudin, D.; Orr, T. R.; Scarlato, P.; Houghton, B. F.; Del Bello, E.

    2014-12-01

    Using two synchronized high-speed cameras we were able to reconstruct the three-dimensional displacement and velocity field of bomb-sized pyroclasts in Strombolian explosions at Stromboli Volcano. Relatively low-intensity Strombolian-style activity offers a rare opportunity to observe volcanic processes that remain hidden from view during more violent explosive activity. Such processes include the ejection and emplacement of bomb-sized clasts along pure or drag-modified ballistic trajectories, in-flight bomb collision, and gas liberation dynamics. High-speed imaging of Strombolian activity has already opened new windows for the study of the abovementioned processes, but to date has only utilized two-dimensional analysis with limited motion detection and ability to record motion towards or away from the observer. To overcome this limitation, we deployed two synchronized high-speed video cameras at Stromboli. The two cameras, located sixty meters apart, filmed Strombolian explosions at 500 and 1000 frames per second and with different resolutions. Frames from the two cameras were pre-processed and combined into a single video showing frames alternating from one to the other camera. Bomb-sized pyroclasts were then manually identified and tracked in the combined video, together with fixed reference points located as close as possible to the vent. The results from manual tracking were fed to a custom software routine that, knowing the relative position of the vent and cameras, and the field of view of the latter, provided the position of each bomb relative to the reference points. By tracking tens of bombs over five to ten frames at different intervals during one explosion, we were able to reconstruct the three-dimensional evolution of the displacement and velocity fields of bomb-sized pyroclasts during individual Strombolian explosions. Shifting jet directivity and dispersal angle clearly appear from the three-dimensional analysis.

  7. Comparative Evaluation of Background Subtraction Algorithms in Remote Scene Videos Captured by MWIR Sensors

    PubMed Central

    Yao, Guangle; Lei, Tao; Zhong, Jiandan; Jiang, Ping; Jia, Wenwu

    2017-01-01

    Background subtraction (BS) is one of the most commonly encountered tasks in video analysis and tracking systems. It distinguishes the foreground (moving objects) from the video sequences captured by static imaging sensors. Background subtraction in remote scene infrared (IR) video is important and common to lots of fields. This paper provides a Remote Scene IR Dataset captured by our designed medium-wave infrared (MWIR) sensor. Each video sequence in this dataset is identified with specific BS challenges and the pixel-wise ground truth of foreground (FG) for each frame is also provided. A series of experiments were conducted to evaluate BS algorithms on this proposed dataset. The overall performance of BS algorithms and the processor/memory requirements were compared. Proper evaluation metrics or criteria were employed to evaluate the capability of each BS algorithm to handle different kinds of BS challenges represented in this dataset. The results and conclusions in this paper provide valid references to develop new BS algorithm for remote scene IR video sequence, and some of them are not only limited to remote scene or IR video sequence but also generic for background subtraction. The Remote Scene IR dataset and the foreground masks detected by each evaluated BS algorithm are available online: https://github.com/JerryYaoGl/BSEvaluationRemoteSceneIR. PMID:28837112

  8. Testing Video and Social Media for Engaging Users of the U.S. Climate Resilience Toolkit

    NASA Astrophysics Data System (ADS)

    Green, C. J.; Gardiner, N.; Niepold, F., III; Esposito, C.

    2015-12-01

    We developed a custom video production stye and a method for analyzing social media behavior so that we may deliberately build and track audience growth for decision-support tools and case studies within the U.S. Climate Resilience Toolkit. The new style of video focuses quickly on decision processes; its 30s format is well-suited for deployment through social media. We measured both traffic and engagement with video using Google Analytics. Each video included an embedded tag, allowing us to measure viewers' behavior: whether or not they entered the toolkit website; the duration of their session on the website; and the number pages they visited in that session. Results showed that video promotion was more effective on Facebook than Twitter. Facebook links generated twice the number of visits to the toolkit. Videos also increased Facebook interaction overall. Because most Facebook users are return visitors, this campaign did not substantially draw new site visitors. We continue to research and apply these methods in a targeted engagement and outreach campaign that utilizes the theory of social diffusion and social influence strategies to grow our audience of "influential" decision-makers and people within their social networks. Our goal is to increase access and use of the U.S. Climate Resilience Toolkit.

  9. Are Health Videos from Hospitals, Health Organizations, and Active Users Available to Health Consumers? An Analysis of Diabetes Health Video Ranking in YouTube

    PubMed Central

    Borras-Morell, Jose-Enrique; Martinez-Millana, Antonio; Karlsen, Randi

    2017-01-01

    Health consumers are increasingly using the Internet to search for health information. The existence of overloaded, inaccurate, obsolete, or simply incorrect health information available on the Internet is a serious obstacle for finding relevant and good-quality data that actually helps patients. Search engines of multimedia Internet platforms are thought to help users to find relevant information according to their search. But, is the information recovered by those search engines from quality sources? Is the health information uploaded from reliable sources, such as hospitals and health organizations, easily available to patients? The availability of videos is directly related to the ranking position in YouTube search. The higher the ranking of the information is, the more accessible it is. The aim of this study is to analyze the ranking evolution of diabetes health videos on YouTube in order to discover how videos from reliable channels, such as hospitals and health organizations, are evolving in the ranking. The analysis was done by tracking the ranking of 2372 videos on a daily basis during a 30-day period using 20 diabetes-related queries. Our conclusions are that the current YouTube algorithm favors the presence of reliable videos in upper rank positions in diabetes-related searches. PMID:28243314

  10. Are Health Videos from Hospitals, Health Organizations, and Active Users Available to Health Consumers? An Analysis of Diabetes Health Video Ranking in YouTube.

    PubMed

    Fernandez-Llatas, Carlos; Traver, Vicente; Borras-Morell, Jose-Enrique; Martinez-Millana, Antonio; Karlsen, Randi

    2017-01-01

    Health consumers are increasingly using the Internet to search for health information. The existence of overloaded, inaccurate, obsolete, or simply incorrect health information available on the Internet is a serious obstacle for finding relevant and good-quality data that actually helps patients. Search engines of multimedia Internet platforms are thought to help users to find relevant information according to their search. But, is the information recovered by those search engines from quality sources? Is the health information uploaded from reliable sources, such as hospitals and health organizations, easily available to patients? The availability of videos is directly related to the ranking position in YouTube search. The higher the ranking of the information is, the more accessible it is. The aim of this study is to analyze the ranking evolution of diabetes health videos on YouTube in order to discover how videos from reliable channels, such as hospitals and health organizations, are evolving in the ranking. The analysis was done by tracking the ranking of 2372 videos on a daily basis during a 30-day period using 20 diabetes-related queries. Our conclusions are that the current YouTube algorithm favors the presence of reliable videos in upper rank positions in diabetes-related searches.

  11. Automated Video Based Facial Expression Analysis of Neuropsychiatric Disorders

    PubMed Central

    Wang, Peng; Barrett, Frederick; Martin, Elizabeth; Milanova, Marina; Gur, Raquel E.; Gur, Ruben C.; Kohler, Christian; Verma, Ragini

    2008-01-01

    Deficits in emotional expression are prominent in several neuropsychiatric disorders, including schizophrenia. Available clinical facial expression evaluations provide subjective and qualitative measurements, which are based on static 2D images that do not capture the temporal dynamics and subtleties of expression changes. Therefore, there is a need for automated, objective and quantitative measurements of facial expressions captured using videos. This paper presents a computational framework that creates probabilistic expression profiles for video data and can potentially help to automatically quantify emotional expression differences between patients with neuropsychiatric disorders and healthy controls. Our method automatically detects and tracks facial landmarks in videos, and then extracts geometric features to characterize facial expression changes. To analyze temporal facial expression changes, we employ probabilistic classifiers that analyze facial expressions in individual frames, and then propagate the probabilities throughout the video to capture the temporal characteristics of facial expressions. The applications of our method to healthy controls and case studies of patients with schizophrenia and Asperger’s syndrome demonstrate the capability of the video-based expression analysis method in capturing subtleties of facial expression. Such results can pave the way for a video based method for quantitative analysis of facial expressions in clinical research of disorders that cause affective deficits. PMID:18045693

  12. A generic flexible and robust approach for intelligent real-time video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Delaigle, Jean-Francois; Bastide, Arnaud; Macq, Benoit

    2004-05-01

    In this article we present a generic, flexible and robust approach for an intelligent real-time video-surveillance system. A previous version of the system was presented in [1]. The goal of these advanced tools is to provide help to operators by detecting events of interest in visual scenes and highlighting alarms and compute statistics. The proposed system is a multi-camera platform able to handle different standards of video inputs (composite, IP, IEEE1394 ) and which can basically compress (MPEG4), store and display them. This platform also integrates advanced video analysis tools, such as motion detection, segmentation, tracking and interpretation. The design of the architecture is optimised to playback, display, and process video flows in an efficient way for video-surveillance application. The implementation is distributed on a scalable computer cluster based on Linux and IP network. It relies on POSIX threads for multitasking scheduling. Data flows are transmitted between the different modules using multicast technology and under control of a TCP-based command network (e.g. for bandwidth occupation control). We report here some results and we show the potential use of such a flexible system in third generation video surveillance system. We illustrate the interest of the system in a real case study, which is the indoor surveillance.

  13. A novel visual saliency detection method for infrared video sequences

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Yuzhen; Ning, Chen

    2017-12-01

    Infrared video applications such as target detection and recognition, moving target tracking, and so forth can benefit a lot from visual saliency detection, which is essentially a method to automatically localize the ;important; content in videos. In this paper, a novel visual saliency detection method for infrared video sequences is proposed. Specifically, for infrared video saliency detection, both the spatial saliency and temporal saliency are considered. For spatial saliency, we adopt a mutual consistency-guided spatial cues combination-based method to capture the regions with obvious luminance contrast and contour features. For temporal saliency, a multi-frame symmetric difference approach is proposed to discriminate salient moving regions of interest from background motions. Then, the spatial saliency and temporal saliency are combined to compute the spatiotemporal saliency using an adaptive fusion strategy. Besides, to highlight the spatiotemporal salient regions uniformly, a multi-scale fusion approach is embedded into the spatiotemporal saliency model. Finally, a Gestalt theory-inspired optimization algorithm is designed to further improve the reliability of the final saliency map. Experimental results demonstrate that our method outperforms many state-of-the-art saliency detection approaches for infrared videos under various backgrounds.

  14. Detection and tracking of gas plumes in LWIR hyperspectral video sequence data

    NASA Astrophysics Data System (ADS)

    Gerhart, Torin; Sunu, Justin; Lieu, Lauren; Merkurjev, Ekaterina; Chang, Jen-Mei; Gilles, Jérôme; Bertozzi, Andrea L.

    2013-05-01

    Automated detection of chemical plumes presents a segmentation challenge. The segmentation problem for gas plumes is difficult due to the diffusive nature of the cloud. The advantage of considering hyperspectral images in the gas plume detection problem over the conventional RGB imagery is the presence of non-visual data, allowing for a richer representation of information. In this paper we present an effective method of visualizing hyperspectral video sequences containing chemical plumes and investigate the effectiveness of segmentation techniques on these post-processed videos. Our approach uses a combination of dimension reduction and histogram equalization to prepare the hyperspectral videos for segmentation. First, Principal Components Analysis (PCA) is used to reduce the dimension of the entire video sequence. This is done by projecting each pixel onto the first few Principal Components resulting in a type of spectral filter. Next, a Midway method for histogram equalization is used. These methods redistribute the intensity values in order to reduce icker between frames. This properly prepares these high-dimensional video sequences for more traditional segmentation techniques. We compare the ability of various clustering techniques to properly segment the chemical plume. These include K-means, spectral clustering, and the Ginzburg-Landau functional.

  15. Granular Flow Graph, Adaptive Rule Generation and Tracking.

    PubMed

    Pal, Sankar Kumar; Chakraborty, Debarati Bhunia

    2017-12-01

    A new method of adaptive rule generation in granular computing framework is described based on rough rule base and granular flow graph, and applied for video tracking. In the process, several new concepts and operations are introduced, and methodologies formulated with superior performance. The flow graph enables in defining an intelligent technique for rule base adaptation where its characteristics in mapping the relevance of attributes and rules in decision-making system are exploited. Two new features, namely, expected flow graph and mutual dependency between flow graphs are defined to make the flow graph applicable in the tasks of both training and validation. All these techniques are performed in neighborhood granular level. A way of forming spatio-temporal 3-D granules of arbitrary shape and size is introduced. The rough flow graph-based adaptive granular rule-based system, thus produced for unsupervised video tracking, is capable of handling the uncertainties and incompleteness in frames, able to overcome the incompleteness in information that arises without initial manual interactions and in providing superior performance and gaining in computation time. The cases of partial overlapping and detecting the unpredictable changes are handled efficiently. It is shown that the neighborhood granulation provides a balanced tradeoff between speed and accuracy as compared to pixel level computation. The quantitative indices used for evaluating the performance of tracking do not require any information on ground truth as in the other methods. Superiority of the algorithm to nonadaptive and other recent ones is demonstrated extensively.

  16. Design, implementation and accuracy of a prototype for medical augmented reality.

    PubMed

    Pandya, Abhilash; Siadat, Mohammad-Reza; Auner, Greg

    2005-01-01

    This paper is focused on prototype development and accuracy evaluation of a medical Augmented Reality (AR) system. The accuracy of such a system is of critical importance for medical use, and is hence considered in detail. We analyze the individual error contributions and the system accuracy of the prototype. A passive articulated arm is used to track a calibrated end-effector-mounted video camera. The live video view is superimposed in real time with the synchronized graphical view of CT-derived segmented object(s) of interest within a phantom skull. The AR accuracy mostly depends on the accuracy of the tracking technology, the registration procedure, the camera calibration, and the image scanning device (e.g., a CT or MRI scanner). The accuracy of the Microscribe arm was measured to be 0.87 mm. After mounting the camera on the tracking device, the AR accuracy was measured to be 2.74 mm on average (standard deviation = 0.81 mm). After using data from a 2-mm-thick CT scan, the AR error remained essentially the same at an average of 2.75 mm (standard deviation = 1.19 mm). For neurosurgery, the acceptable error is approximately 2-3 mm, and our prototype approaches these accuracy requirements. The accuracy could be increased with a higher-fidelity tracking system and improved calibration and object registration. The design and methods of this prototype device can be extrapolated to current medical robotics (due to the kinematic similarity) and neuronavigation systems.

  17. Measuring social attention and motivation in autism spectrum disorder using eye-tracking: Stimulus type matters.

    PubMed

    Chevallier, Coralie; Parish-Morris, Julia; McVey, Alana; Rump, Keiran M; Sasson, Noah J; Herrington, John D; Schultz, Robert T

    2015-10-01

    Autism Spectrum Disorder (ASD) is characterized by social impairments that have been related to deficits in social attention, including diminished gaze to faces. Eye-tracking studies are commonly used to examine social attention and social motivation in ASD, but they vary in sensitivity. In this study, we hypothesized that the ecological nature of the social stimuli would affect participants' social attention, with gaze behavior during more naturalistic scenes being most predictive of ASD vs. typical development. Eighty-one children with and without ASD participated in three eye-tracking tasks that differed in the ecological relevance of the social stimuli. In the "Static Visual Exploration" task, static images of objects and people were presented; in the "Dynamic Visual Exploration" task, video clips of individual faces and objects were presented side-by-side; in the "Interactive Visual Exploration" task, video clips of children playing with objects in a naturalistic context were presented. Our analyses uncovered a three-way interaction between Task, Social vs. Object Stimuli, and Diagnosis. This interaction was driven by group differences on one task only-the Interactive task. Bayesian analyses confirmed that the other two tasks were insensitive to group membership. In addition, receiver operating characteristic analyses demonstrated that, unlike the other two tasks, the Interactive task had significant classification power. The ecological relevance of social stimuli is an important factor to consider for eye-tracking studies aiming to measure social attention and motivation in ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  18. Homography-based multiple-camera person-tracking

    NASA Astrophysics Data System (ADS)

    Turk, Matthew R.

    2009-01-01

    Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of live targets for training. No calibration is required. Testing shows that the algorithm performs very well in real-world sequences. The consistent labelling problem is solved, even for targets that appear via in-scene entrances. Full occlusions are handled. Although implemented in Matlab, the multiple-camera tracking system runs at eight frames per second. A faster implementation would be suitable for real-world use at typical video frame rates.

  19. Repurposing video recordings for structure motion estimations

    NASA Astrophysics Data System (ADS)

    Khaloo, Ali; Lattanzi, David

    2016-04-01

    Video monitoring of public spaces is becoming increasingly ubiquitous, particularly near essential structures and facilities. During any hazard event that dynamically excites a structure, such as an earthquake or hurricane, proximal video cameras may inadvertently capture the motion time-history of the structure during the event. If this dynamic time-history could be extracted from the repurposed video recording it would become a valuable forensic analysis tool for engineers performing post-disaster structural evaluations. The difficulty is that almost all potential video cameras are not installed to monitor structure motions, leading to camera perspective distortions and other associated challenges. This paper presents a method for extracting structure motions from videos using a combination of computer vision techniques. Images from a video recording are first reprojected into synthetic images that eliminate perspective distortion, using as-built knowledge of a structure for calibration. The motion of the camera itself during an event is also considered. Optical flow, a technique for tracking per-pixel motion, is then applied to these synthetic images to estimate the building motion. The developed method was validated using the experimental records of the NEESHub earthquake database. The results indicate that the technique is capable of estimating structural motions, particularly the frequency content of the response. Further work will evaluate variants and alternatives to the optical flow algorithm, as well as study the impact of video encoding artifacts on motion estimates.

  20. UWB Two-Cluster AOA Tracking Prototype System Design

    NASA Technical Reports Server (NTRS)

    Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda

    2006-01-01

    This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.

Top