Sample records for computerized ionospheric tomography

  1. Computerized ionospheric tomography based on geosynchronous SAR

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng

    2017-02-01

    Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.

  2. Ionospheric tomography using ADS-B signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Noël, J.-M.

    2014-07-01

    Numerical modeling has demonstrated that Automatic Dependent Surveillance Broadcast (ADS-B) signals can be used to reconstruct two-dimensional (2-D) electron density maps of the ionosphere using techniques for computerized tomography. Ray tracing techniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modeled Faraday rotation was computed and converted to total electron content (TEC) along the raypaths. The resulting TEC was used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique. This study concentrated on reconstructing mesoscale structures 25-100 km in horizontal extent. The primary scientific interest of this study was to show that ADS-B signals can be used as a new source of data for CIT to image the ionosphere and to obtain a better understanding of magneto-ionic wave propagation.

  3. Research on ionospheric tomography based on variable pixel height

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  4. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  5. Variable pixel size ionospheric tomography

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Zheng, Hongwei; Wang, Yanjun; Nie, Wenfeng; Li, Chaokui; Ao, Minsi; Hu, Wusheng; Zhou, Wei

    2017-06-01

    A novel ionospheric tomography technique based on variable pixel size was developed for the tomographic reconstruction of the ionospheric electron density (IED) distribution. In variable pixel size computerized ionospheric tomography (VPSCIT) model, the IED distribution is parameterized by a decomposition of the lower and upper ionosphere with different pixel sizes. Thus, the lower and upper IED distribution may be very differently determined by the available data. The variable pixel size ionospheric tomography and constant pixel size tomography are similar in most other aspects. There are some differences between two kinds of models with constant and variable pixel size respectively, one is that the segments of GPS signal pay should be assigned to the different kinds of pixel in inversion; the other is smoothness constraint factor need to make the appropriate modified where the pixel change in size. For a real dataset, the variable pixel size method distinguishes different electron density distribution zones better than the constant pixel size method. Furthermore, it can be non-chided that when the effort is spent to identify the regions in a model with best data coverage. The variable pixel size method can not only greatly improve the efficiency of inversion, but also produce IED images with high fidelity which are the same as a used uniform pixel size method. In addition, variable pixel size tomography can reduce the underdetermined problem in an ill-posed inverse problem when the data coverage is irregular or less by adjusting quantitative proportion of pixels with different sizes. In comparison with constant pixel size tomography models, the variable pixel size ionospheric tomography technique achieved relatively good results in a numerical simulation. A careful validation of the reliability and superiority of variable pixel size ionospheric tomography was performed. Finally, according to the results of the statistical analysis and quantitative comparison, the

  6. Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT

    NASA Astrophysics Data System (ADS)

    Tuna, Hakan; Arikan, Orhan; Arikan, Feza

    2015-10-01

    Three-dimensional imaging of the electron density distribution in the ionosphere is a crucial task for investigating the ionospheric effects. Dual-frequency Global Positioning System (GPS) satellite signals can be used to estimate the slant total electron content (STEC) along the propagation path between a GPS satellite and ground-based receiver station. However, the estimated GPS-STEC is very sparse and highly nonuniformly distributed for obtaining reliable 3-D electron density distributions derived from the measurements alone. Standard tomographic reconstruction techniques are not accurate or reliable enough to represent the full complexity of variable ionosphere. On the other hand, model-based electron density distributions are produced according to the general trends of ionosphere, and these distributions do not agree with measurements, especially for geomagnetically active hours. In this study, a regional 3-D electron density distribution reconstruction method, namely, IONOLAB-CIT, is proposed to assimilate GPS-STEC into physical ionospheric models. The proposed method is based on an iterative optimization framework that tracks the deviations from the ionospheric model in terms of F2 layer critical frequency and maximum ionization height resulting from the comparison of International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model-generated STEC and GPS-STEC. The suggested tomography algorithm is applied successfully for the reconstruction of electron density profiles over Turkey, during quiet and disturbed hours of ionosphere using Turkish National Permanent GPS Network.

  7. Analysis of rocket beacon transmissions for computerized reconstruction of ionospheric densities

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Chaturvedi, P. K.; Fulford, J. A.; Forsyth, P. A.; Anderson, D. N.; Zalesak, S. T.

    1993-01-01

    Three methods are described to obtain ionospheric electron densities from transionospheric, rocket-beacon TEC data. First, when the line-of-sight from a ground receiver to the rocket beacon is tangent to the flight trajectory, the electron concentration can be obtained by differentiating the TEC with respect to the distance to the rocket. A similar method may be used to obtain the electron-density profile if the layer is horizontally stratified. Second, TEC data obtained during chemical release experiments may be interpreted with the aid of physical models of the disturbed ionosphere to yield spatial maps of the modified regions. Third, computerized tomography (CT) can be used to analyze TEC data obtained along a chain of ground-based receivers aligned along the plane of the rocket trajectory. CT analysis of TEC data is used to reconstruct a 2D image of a simulated equatorial plume. TEC data is computed for a linear chain of nine receivers with adjacent spacings of either 100 or 200 km. The simulation data are analyzed to provide an F region reconstruction on a grid with 15 x 15 km pixels. Ionospheric rocket tomography may also be applied to rocket-assisted measurements of amplitude and phase scintillations and airglow intensities.

  8. Application of generalized singular value decomposition to ionospheric tomography

    NASA Astrophysics Data System (ADS)

    Bhuyan, K.; Singh, S.; Bhuyan, P.

    2004-10-01

    The electron density distribution of the low- and mid-latitude ionosphere has been investigated by the computerized tomography technique using a Generalized Singular Value Decomposition (GSVD) based algorithm. Model ionospheric total electron content (TEC) data obtained from the International Reference Ionosphere 2001 and slant relative TEC data measured at a chain of three stations receiving transit satellite transmissions in Alaska, USA are used in this analysis. The issue of optimum efficiency of the GSVD algorithm in the reconstruction of ionospheric structures is being addressed through simulation of the equatorial ionization anomaly (EIA), in addition to its application to investigate complicated ionospheric density irregularities. Results show that the Generalized Cross Validation approach to find the regularization parameter and the corresponding solution gives a very good reconstructed image of the low-latitude ionosphere and the EIA within it. Provided that some minimum norm is fulfilled, the GSVD solution is found to be least affected by considerations, such as pixel size and number of ray paths. The method has also been used to investigate the behaviour of the mid-latitude ionosphere under magnetically quiet and disturbed conditions.

  9. Ionospheric Tomography Using Faraday Rotation of Automatic Dependant Surveillance Broadcast UHF Signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.

    2013-12-01

    The proposed launch of a satellite carrying the first space-borne ADS-B receiver by the Royal Military College of Canada (RMCC) will create a unique opportunity to study the modification of the 1090 MHz radio waves following propagation through the ionosphere from the transmitting aircraft to the passive satellite receiver(s). Experimental work successfully demonstrated that ADS-B data can be used to reconstruct two dimensional (2D) electron density maps of the ionosphere using computerized tomography (CT). The goal of this work is to evaluate the feasibility of CT reconstruction. The data is modelled using Ray-tracing techniques. This allows us to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation (FR) is determined and converted to total electron content (TEC) along the ray-paths. The resulting TEC is used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique (ART). This study concentrated on meso-scale structures 100-1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Multiple feature input electron density profile to ray-tracing program. Top: reconstructed relative electron density map of ray-trace input (Fig. 1) using TEC measurements and line-of-sight path. Bottom: reconstructed electron density map of ray-trace input using quiet background a priori estimate.

  10. Ionospheric tomography using Faraday rotation of Automatic Dependent Surveillance Broadcast (UHF) signals Ionospheric Measurement From ADS-B Signals

    NASA Astrophysics Data System (ADS)

    Cushley, Alex Clay

    The proposed launch of a CubeSat carrying the first space-borne ADS-B receiver by RMCC will create a unique opportunity to study the modification of radio waves following propagation through the ionosphere as the signals propagate from the transmitting aircraft to the passive satellite receiver(s). Experimental work is described which successfully demonstrated that ADS-B data can be used to reconstruct two-dimensional electron density maps of the ionosphere using techniques from computerized tomography. Ray-tracing techniques are used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation is determined and converted to TEC along the ray-paths. The resulting TEC is used as input for CIT using ART. This study concentrated on meso-scale structures 100--1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Keywords: Automatic Dependent Surveillance-Broadcast (ADS-B), Faraday rotation, electromagnetic (EM) waves, radio frequency (RF) propagation, ionosphere (auroral, irregularities, instruments and techniques), electron density profile, total electron content (TEC), computer ionospheric tomography (CIT), algebraic reconstruction technique (ART).

  11. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.

    2016-02-01

    In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.

  12. Model based Computerized Ionospheric Tomography in space and time

    NASA Astrophysics Data System (ADS)

    Tuna, Hakan; Arikan, Orhan; Arikan, Feza

    2018-04-01

    Reconstruction of the ionospheric electron density distribution in space and time not only provide basis for better understanding the physical nature of the ionosphere, but also provide improvements in various applications including HF communication. Recently developed IONOLAB-CIT technique provides physically admissible 3D model of the ionosphere by using both Slant Total Electron Content (STEC) measurements obtained from a GPS satellite - receiver network and IRI-Plas model. IONOLAB-CIT technique optimizes IRI-Plas model parameters in the region of interest such that the synthetic STEC computations obtained from the IRI-Plas model are in accordance with the actual STEC measurements. In this work, the IONOLAB-CIT technique is extended to provide reconstructions both in space and time. This extension exploits the temporal continuity of the ionosphere to provide more reliable reconstructions with a reduced computational load. The proposed 4D-IONOLAB-CIT technique is validated on real measurement data obtained from TNPGN-Active GPS receiver network in Turkey.

  13. Can computerized tomography accurately stage childhood renal tumors?

    PubMed

    Abdelhalim, Ahmed; Helmy, Tamer E; Harraz, Ahmed M; Abou-El-Ghar, Mohamed E; Dawaba, Mohamed E; Hafez, Ashraf T

    2014-07-01

    Staging of childhood renal tumors is crucial for treatment planning and outcome prediction. We sought to identify whether computerized tomography could accurately predict the local stage of childhood renal tumors. We retrospectively reviewed our database for patients diagnosed with childhood renal tumors and treated surgically between 1990 and 2013. Inability to retrieve preoperative computerized tomography, intraoperative tumor spillage and nonWilms childhood renal tumors were exclusion criteria. Local computerized tomography stage was assigned by a single experienced pediatric radiologist blinded to the pathological stage, using a consensus similar to the Children's Oncology Group Wilms tumor staging system. Tumors were stratified into up-front surgery and preoperative chemotherapy groups. The radiological stage of each tumor was compared to the pathological stage. A total of 189 tumors in 179 patients met inclusion criteria. Computerized tomography staging matched pathological staging in 68% of up-front surgery (70 of 103), 31.8% of pre-chemotherapy (21 of 66) and 48.8% of post-chemotherapy scans (42 of 86). Computerized tomography over staged 21.4%, 65.2% and 46.5% of tumors in the up-front surgery, pre-chemotherapy and post-chemotherapy scans, respectively, and under staged 10.7%, 3% and 4.7%. Computerized tomography staging was more accurate in tumors managed by up-front surgery (p <0.001) and those without extracapsular extension (p <0.001). The validity of computerized tomography staging of childhood renal tumors remains doubtful. This staging is more accurate for tumors treated with up-front surgery and those without extracapsular extension. Preoperative computerized tomography can help to exclude capsular breach. Treatment strategy should be based on surgical and pathological staging to avoid the hazards of inaccurate staging. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Tomography Reconstruction of Ionospheric Electron Density with Empirical Orthonormal Functions Using Korea GNSS Network

    NASA Astrophysics Data System (ADS)

    Hong, Junseok; Kim, Yong Ha; Chung, Jong-Kyun; Ssessanga, Nicholas; Kwak, Young-Sil

    2017-03-01

    In South Korea, there are about 80 Global Positioning System (GPS) monitoring stations providing total electron content (TEC) every 10 min, which can be accessed through Korea Astronomy and Space Science Institute (KASI) for scientific use. We applied the computerized ionospheric tomography (CIT) algorithm to the TEC dataset from this GPS network for monitoring the regional ionosphere over South Korea. The algorithm utilizes multiplicative algebraic reconstruction technique (MART) with an initial condition of the latest International Reference Ionosphere-2016 model (IRI-2016). In order to reduce the number of unknown variables, the vertical profiles of electron density are expressed with a linear combination of empirical orthonormal functions (EOFs) that were derived from the IRI empirical profiles. Although the number of receiver sites is much smaller than that of Japan, the CIT algorithm yielded reasonable structure of the ionosphere over South Korea. We verified the CIT results with NmF2 from ionosondes in Icheon and Jeju and also with GPS TEC at the center of South Korea. In addition, the total time required for CIT calculation was only about 5 min, enabling the exploration of the vertical ionospheric structure in near real time.

  15. Imaging the topside ionosphere and plasmasphere with ionospheric tomography using COSMIC GPS TEC

    NASA Astrophysics Data System (ADS)

    Pinto Jayawardena, Talini S.; Chartier, Alex T.; Spencer, Paul; Mitchell, Cathryn N.

    2016-01-01

    GPS-based ionospheric tomography is a well-known technique for imaging the total electron content (TEC) between GPS satellites and receivers. However, as an integral measurement of electron concentration, TEC typically encompasses both the ionosphere and plasmasphere, masking signatures from the topside ionosphere-plasmasphere due to the dominant ionosphere. Imaging these regions requires a technique that isolates TEC in the topside ionosphere-plasmasphere. Multi-Instrument Data Analysis System (MIDAS) employs tomography to image the electron distribution in the ionosphere. Its implementation for regions beyond is yet to be seen due to the different dynamics present above the ionosphere. This paper discusses the extension of MIDAS to image these altitudes using GPS phase-based TEC measurements and follows the work by Spencer and Mitchell (2011). Plasma is constrained to dipole field lines described by Euler potentials, resulting in a distribution symmetrical about the geomagnetic equator. A simulation of an empirical plasmaspheric model by Gallagher et al. (1988) is used to verify the technique by comparing reconstructions of the simulation with the empirical model. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) is used as GPS receiver locations. The verification is followed by a validation of the modified MIDAS algorithm, where the regions' TEC is reconstructed from COSMIC GPS phase measurements and qualitatively compared with previous studies using Jason-1 and COSMIC data. Results show that MIDAS can successfully image features/trends of the topside ionosphere-plasmasphere observed in other studies, with deviations in absolute TEC attributed to differences in data set properties and the resolution of the images.

  16. The Scintillation and Tomography Receiver in Space (CITRIS) Instrument for Ionospheric Research

    DTIC Science & Technology

    2008-01-01

    Z39-18 220 2008 NRL REVIEW REMOTE SENSING The Scintillation and Tomography Receiver in Space (CITRIS) Instrument for Ionospheric Research P.A...Scintillation and Tomography Receiver in Space (CITRIS) is currently in orbit sam- pling the ionosphere . CITRIS was developed at NRL to (a) permit...Koch, T.L. MacDonald, M.R. Wilkens, and G.P. Landis, “ Ionospheric Applications of the Scintillation and Tomography Receiver in Space (CITRIS

  17. Computerized tomography calibrator

    NASA Technical Reports Server (NTRS)

    Engel, Herbert P. (Inventor)

    1991-01-01

    A set of interchangeable pieces comprising a computerized tomography calibrator, and a method of use thereof, permits focusing of a computerized tomographic (CT) system. The interchangeable pieces include a plurality of nestable, generally planar mother rings, adapted for the receipt of planar inserts of predetermined sizes, and of predetermined material densities. The inserts further define openings therein for receipt of plural sub-inserts. All pieces are of known sizes and densities, permitting the assembling of different configurations of materials of known sizes and combinations of densities, for calibration (i.e., focusing) of a computerized tomographic system through variation of operating variables thereof. Rather than serving as a phanton, which is intended to be representative of a particular workpiece to be tested, the set of interchangeable pieces permits simple and easy standardized calibration of a CT system. The calibrator and its related method of use further includes use of air or of particular fluids for filling various openings, as part of a selected configuration of the set of pieces.

  18. Using sparse regularization for multi-resolution tomography of the ionosphere

    NASA Astrophysics Data System (ADS)

    Panicciari, T.; Smith, N. D.; Mitchell, C. N.; Da Dalt, F.; Spencer, P. S. J.

    2015-10-01

    Computerized ionospheric tomography (CIT) is a technique that allows reconstructing the state of the ionosphere in terms of electron content from a set of slant total electron content (STEC) measurements. It is usually denoted as an inverse problem. In this experiment, the measurements are considered coming from the phase of the GPS signal and, therefore, affected by bias. For this reason the STEC cannot be considered in absolute terms but rather in relative terms. Measurements are collected from receivers not evenly distributed in space and together with limitations such as angle and density of the observations, they are the cause of instability in the operation of inversion. Furthermore, the ionosphere is a dynamic medium whose processes are continuously changing in time and space. This can affect CIT by limiting the accuracy in resolving structures and the processes that describe the ionosphere. Some inversion techniques are based on ℓ2 minimization algorithms (i.e. Tikhonov regularization) and a standard approach is implemented here using spherical harmonics as a reference to compare the new method. A new approach is proposed for CIT that aims to permit sparsity in the reconstruction coefficients by using wavelet basis functions. It is based on the ℓ1 minimization technique and wavelet basis functions due to their properties of compact representation. The ℓ1 minimization is selected because it can optimize the result with an uneven distribution of observations by exploiting the localization property of wavelets. Also illustrated is how the inter-frequency biases on the STEC are calibrated within the operation of inversion, and this is used as a way for evaluating the accuracy of the method. The technique is demonstrated using a simulation, showing the advantage of ℓ1 minimization to estimate the coefficients over the ℓ2 minimization. This is in particular true for an uneven observation geometry and especially for multi-resolution CIT.

  19. An Application of Computerized Axial Tomography (CAT) Technology to Mass Raid Tracking

    DTIC Science & Technology

    1989-08-01

    ESD-TR-89-305 MTR-10542 An Application of Computerized Axial Tomography ( CAT ) Technology to Mass Raid Tracking By John K. Barr August 1989...NO 11. TITLE (Include Security Classification) An Application of Computerized Axial Tomography ( CAT ) Technology to Mass Raid Tracking 12...by block number) Computerized Axial Tomography ( CAT ) Scanner Electronic Support Measures (ESM) Fusion (continued) 19. ABSTRACT (Continue on

  20. Bayesian ionospheric multi-instrument 3D tomography

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Vierinen, Juha; Roininen, Lassi

    2017-04-01

    The tomographic reconstruction of ionospheric electron densities is an inverse problem that cannot be solved without relatively strong regularising additional information. % Especially the vertical electron density profile is determined predominantly by the regularisation. % %Often utilised regularisations in ionospheric tomography include smoothness constraints and iterative methods with initial ionospheric models. % Despite its crucial role, the regularisation is often hidden in the algorithm as a numerical procedure without physical understanding. % % The Bayesian methodology provides an interpretative approach for the problem, as the regularisation can be given in a physically meaningful and quantifiable prior probability distribution. % The prior distribution can be based on ionospheric physics, other available ionospheric measurements and their statistics. % Updating the prior with measurements results as the posterior distribution that carries all the available information combined. % From the posterior distribution, the most probable state of the ionosphere can then be solved with the corresponding probability intervals. % Altogether, the Bayesian methodology provides understanding on how strong the given regularisation is, what is the information gained with the measurements and how reliable the final result is. % In addition, the combination of different measurements and temporal development can be taken into account in a very intuitive way. However, a direct implementation of the Bayesian approach requires inversion of large covariance matrices resulting in computational infeasibility. % In the presented method, Gaussian Markov random fields are used to form a sparse matrix approximations for the covariances. % The approach makes the problem computationally feasible while retaining the probabilistic and physical interpretation. Here, the Bayesian method with Gaussian Markov random fields is applied for ionospheric 3D tomography over Northern Europe

  1. 4D computerized ionospheric tomography by using GPS measurements and IRI-Plas model

    NASA Astrophysics Data System (ADS)

    Tuna, Hakan; Arikan, Feza; Arikan, Orhan

    2016-07-01

    Ionospheric imaging is an important subject in ionospheric studies. GPS based TEC measurements provide very accurate information about the electron density values in the ionosphere. However, since the measurements are generally very sparse and non-uniformly distributed, computation of 3D electron density estimation from measurements alone is an ill-defined problem. Model based 3D electron density estimations provide physically feasible distributions. However, they are not generally compliant with the TEC measurements obtained from GPS receivers. In this study, GPS based TEC measurements and an ionosphere model known as International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) are employed together in order to obtain a physically accurate 3D electron density distribution which is compliant with the real measurements obtained from a GPS satellite - receiver network. Ionospheric parameters input to the IRI-Plas model are perturbed in the region of interest by using parametric perturbation models such that the synthetic TEC measurements calculated from the resultant 3D electron density distribution fit to the real TEC measurements. The problem is considered as an optimization problem where the optimization parameters are the parameters of the parametric perturbation models. Proposed technique is applied over Turkey, on both calm and storm days of the ionosphere. Results show that the proposed technique produces 3D electron density distributions which are compliant with IRI-Plas model, GPS TEC measurements and ionosonde measurements. The effect of the GPS receiver station number on the performance of the proposed technique is investigated. Results showed that 7 GPS receiver stations in a region as large as Turkey is sufficient for both calm and storm days of the ionosphere. Since the ionization levels in the ionosphere are highly correlated in time, the proposed technique is extended to the time domain by applying Kalman based tracking and smoothing

  2. A new computerized ionosphere tomography model using the mapping function and an application to the study of seismic-ionosphere disturbance

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Liu, Lei; Zhai, Changzhi; Wang, Zemin

    2016-08-01

    A new algorithm for ionosphere tomography using the mapping function is proposed in this paper. First, the new solution splits the integration process into four layers along the observation ray, and then, the single-layer model (SLM) is applied to each integration part using a mapping function. Next, the model parameters are estimated layer by layer with the Kalman filtering method by introducing the scale factor (SF) γ to solve the ill-posed problem. Finally, the inversed images of different layers are combined into the final CIT image. We utilized simulated data from 23 IGS GPS stations around Europe to verify the estimation accuracy of the new algorithm; the results show that the new CIT model has better accuracy than the SLM in dense data areas and the CIT residuals are more closely grouped. The stability of the new algorithm is discussed by analyzing model accuracy under different error levels (the max errors are 5TECU, 10TECU, 15TECU, respectively). In addition, the key preset parameter, SFγ , which is given by the International Reference Ionosphere model (IRI2012). The experiment is designed to test the sensitivity of the new algorithm to SF variations. The results show that the IRI2012 is capable of providing initial SF values. Also in this paper, the seismic-ionosphere disturbance (SID) of the 2011 Japan earthquake is studied using the new CIT algorithm. Combined with the TEC time sequence of Sat.15, we find that the SID occurrence time and reaction area are highly related to the main shock time and epicenter. According to CIT images, there is a clear vertical electron density upward movement (from the 150-km layer to the 450-km layer) during this SID event; however, the peak value areas in the different layers were different, which means that the horizontal movement velocity is not consistent among the layers. The potential physical triggering mechanism is also discussed in this paper. Compared with the SLM, the RMS of the new CIT model is improved by

  3. Combined single photon emission computerized tomography and conventional computerized tomography: Clinical value for the shoulder surgeons?

    PubMed Central

    Hirschmann, Michael T.; Schmid, Rahel; Dhawan, Ranju; Skarvan, Jiri; Rasch, Helmut; Friederich, Niklaus F.; Emery, Roger

    2011-01-01

    With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT) to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics. PMID:22058640

  4. Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Virtanen, Ilkka I.; Roininen, Lassi; Vierinen, Juha; Orispää, Mikko; Kauristie, Kirsti; Lehtinen, Markku S.

    2016-04-01

    We validate two-dimensional ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. Our tomography method is based on Bayesian statistical inversion with prior distribution given by its mean and covariance. We employ ionosonde measurements for the choice of the prior mean and covariance parameters and use the Gaussian Markov random fields as a sparse matrix approximation for the numerical computations. This results in a computationally efficient tomographic inversion algorithm with clear probabilistic interpretation. We demonstrate how this method works with simultaneous beacon satellite and ionosonde measurements obtained in northern Scandinavia. The performance is compared with results obtained with a zero-mean prior and with the prior mean taken from the International Reference Ionosphere 2007 model. In validating the results, we use EISCAT ultra-high-frequency incoherent scatter radar measurements as the ground truth for the ionization profile shape. We find that in comparison to the alternative prior information sources, ionosonde measurements improve the reconstruction by adding accurate information about the absolute value and the altitude distribution of electron density. With an ionosonde at continuous disposal, the presented method enhances stand-alone near-real-time ionospheric tomography for the given conditions significantly.

  5. Ionospheric-thermospheric UV tomography: 1. Image space reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Budzien, S. A.; Hei, M. A.

    2017-03-01

    We present and discuss two algorithms of the class known as Image Space Reconstruction Algorithms (ISRAs) that we are applying to the solution of large-scale ionospheric tomography problems. ISRAs have several desirable features that make them useful for ionospheric tomography. In addition to producing nonnegative solutions, ISRAs are amenable to sparse-matrix formulations and are fast, stable, and robust. We present the results of our studies of two types of ISRA: the Least Squares Positive Definite and the Richardson-Lucy algorithms. We compare their performance to the Multiplicative Algebraic Reconstruction and Conjugate Gradient Least Squares algorithms. We then discuss the use of regularization in these algorithms and present our new approach based on regularization to a partial differential equation.

  6. Computerized tomography versus magnetic resonance imaging: a comparative study in hypothalamic-pituitary and parasellar pathology.

    PubMed

    Webb, S M; Ruscalleda, J; Schwarzstein, D; Calaf-Alsina, J; Rovira, A; Matos, G; Puig-Domingo, M; de Leiva, A

    1992-05-01

    We wished to analyse the relative value of computerized tomography and magnetic resonance in patients referred for evaluation of pituitary and parasellar lesions. We performed a separate evaluation by two independent neuroradiologists of computerized tomography and magnetic resonance images ordered numerically and anonymously, with no clinical data available. We studied 40 patients submitted for hypothalamic-pituitary study; 31 were carried out preoperatively, of which histological confirmation later became available in 14. The remaining nine patients were evaluated postoperatively. Over 40 parameters relating to the bony margins, cavernous sinuses, carotid arteries, optic chiasm, suprasellar cisterns, pituitary, pituitary stalk and extension of the lesion were evaluated. These reports were compared with the initial ones offered when the scans were ordered, and with the final diagnosis. Concordance between initial computerized tomography and magnetic resonance was observed in 27 cases (67.5%); among the discordant cases computerized tomography showed the lesion in two, magnetic resonance in 10, while in the remaining case reported to harbour a microadenoma on computerized tomography the differential diagnosis between a true TSH-secreting microadenoma and pituitary resistance to thyroid hormones is still unclear. Both neuroradiologists coincided in their reports in 32 patients (80%); when the initial report was compared with those of the neuroradiologists, concordance was observed with at least one of them in 34 instances (85%). Discordant results were observed principally in microadenomas secreting ACTH or PRL and in delayed puberty. In the eight patients with Cushing's disease (histologically confirmed in six) magnetic resonance was positive in five and computerized tomography in two; the abnormal image correctly identified the side of the lesion at surgery. In patients referred for evaluation of Cushing's syndrome or hyperprolactinaemia (due to microadenomas) or

  7. Regional application of multi-layer artificial neural networks in 3-D ionosphere tomography

    NASA Astrophysics Data System (ADS)

    Ghaffari Razin, Mir Reza; Voosoghi, Behzad

    2016-08-01

    Tomography is a very cost-effective method to study physical properties of the ionosphere. In this paper, residual minimization training neural network (RMTNN) is used in voxel-based tomography to reconstruct of 3-D ionosphere electron density with high spatial resolution. For numerical experiments, observations collected at 37 GPS stations from Iranian permanent GPS network (IPGN) are used. A smoothed TEC approach was used for absolute STEC recovery. To improve the vertical resolution, empirical orthogonal functions (EOFs) obtained from international reference ionosphere 2012 (IRI-2012) used as object function in training neural network. Ionosonde observations is used for validate reliability of the proposed method. Minimum relative error for RMTNN is 1.64% and maximum relative error is 15.61%. Also root mean square error (RMSE) of 0.17 × 1011 (electrons/m3) is computed for RMTNN which is less than RMSE of IRI2012. The results show that RMTNN has higher accuracy and compiles speed than other ionosphere reconstruction methods.

  8. Reconstructing Regional Ionospheric Electron Density: A Combined Spherical Slepian Function and Empirical Orthogonal Function Approach

    NASA Astrophysics Data System (ADS)

    Farzaneh, Saeed; Forootan, Ehsan

    2018-03-01

    The computerized ionospheric tomography is a method for imaging the Earth's ionosphere using a sounding technique and computing the slant total electron content (STEC) values from data of the global positioning system (GPS). The most common approach for ionospheric tomography is the voxel-based model, in which (1) the ionosphere is divided into voxels, (2) the STEC is then measured along (many) satellite signal paths, and finally (3) an inversion procedure is applied to reconstruct the electron density distribution of the ionosphere. In this study, a computationally efficient approach is introduced, which improves the inversion procedure of step 3. Our proposed method combines the empirical orthogonal function and the spherical Slepian base functions to describe the vertical and horizontal distribution of electron density, respectively. Thus, it can be applied on regional and global case studies. Numerical application is demonstrated using the ground-based GPS data over South America. Our results are validated against ionospheric tomography obtained from the constellation observing system for meteorology, ionosphere, and climate (COSMIC) observations and the global ionosphere map estimated by international centers, as well as by comparison with STEC derived from independent GPS stations. Using the proposed approach, we find that while using 30 GPS measurements in South America, one can achieve comparable accuracy with those from COSMIC data within the reported accuracy (1 × 1011 el/cm3) of the product. Comparisons with real observations of two GPS stations indicate an absolute difference is less than 2 TECU (where 1 total electron content unit, TECU, is 1016 electrons/m2).

  9. Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance around the time of 2015 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Zhou, Chen; Liu, Yi; Zhai, Changzhi; Wang, Zemin; Liu, Lei

    2018-01-01

    The Co-Seismic Ionospheric Disturbance of the 2015 Nepal earthquake is analyzed in this paper. GNSS data are used to obtain the Satellite-Station TEC sequences. After removing the de-trended TEC variation, a clear ionospheric disturbance was observed 10 min after the earthquake, while the geomagnetic conditions, solar activity, and weather condition remained calm according to the Kp, Dst, F10.7 indices and meteorological records during the period of interest. Computerized ionosphere tomography (CIT) is then used to present the tridimensional ionosphere variation with a 10-min time resolution. The CIT results indicate that (1) the disturbance of the ionospheric electron density above the epicenter during the 2015 Nepal earthquake is confined at a relatively low altitude (approximately 150-300 km); (2) the ionospheric disturbances on the west side and east sides of the epicenter are precisely opposite. A newly established electric field penetration model of the lithosphere-atmosphere-ionosphere coupling is used to investigate the potential physical mechanism.

  10. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can

  11. Diagnostic Yield of Transbronchial Biopsy in Comparison to High Resolution Computerized Tomography in Sarcoidosis Cases

    PubMed

    Akten, H Serpil; Kilic, Hatice; Celik, Bulent; Erbas, Gonca; Isikdogan, Zeynep; Turktas, Haluk; Kokturk, Nurdan

    2018-04-25

    This study aimed to evaluate the diagnostic yield of fiberoptic bronchoscopic (FOB) transbronchial biopsy and its relation with quantitative findings of high resolution computerized tomography (HRCT). A total of 83 patients, 19 males and 64 females with a mean age of 45.1 years diagnosed with sarcoidosis with complete records of high resolution computerized tomography were retrospectively recruited during the time period from Feb 2005 to Jan 2015. High resolution computerized tomography scans were retrospectively assessed in random order by an experienced observer without knowledge of the bronchoscopic results or lung function tests. According to the radiological staging with HRCT, 2.4% of the patients (n=2) were stage 0, 19.3% (n=16) were stage 1, 72.3% (n=60) were stage 2 and 6.0% (n=5) were stage 3. This study showed that transbronchial lung biopsy showed positive results in 39.7% of the stage I or II sarcoidosis patients who were diagnosed by bronchoscopy. Different high resolution computerized tomography patterns and different scores of involvement did make a difference in the diagnostic accuracy of transbronchial biopsy (p=0.007). Creative Commons Attribution License

  12. Radio Tomography of Ionospheric Structures (probably) due to Underground-Surface-Atmosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Rekenthaler, D. A.

    2012-12-01

    Ionospheric radio-tomography (RT) utilizes radio signals transmitted from the global navigational satellite systems (GNSS), including low-orbiting (LO) navigational systems such as Transit, Tsikada, etc., and high-orbiting (HO) navigational systems such as GPS, GLONASS, Galileo, Beidou, etc. The signals that are transmitted from the LO navigational satellites and recorded by ground receiving chains can be inverted for almost instantaneous (5-8 min) 2D snapshots of electron density. The data from the networks of ground receivers that record the signals of the HO satellites are suitable for implementing high-orbital RT (HORT), i.e. reconstructing the 4D distributions of the ionospheric electron density (one 3D image every 20-30 min). In the regions densely covered by the GNSS receivers, it is currently possible to get a time step of 2-4 min. The LORT and HORT approaches have a common methodical basis: in both these techniques, the integrals of electron density along the ray between the satellite and the receiver are measured, and then the tomographic procedures are applied to reconstruct the distributions of electron density. We present several examples of the experiments on the ionospheric RT, which are related to the Underground-Surface-Atmosphere-Ionosphere (USAI) coupling. In particular, we demonstrate examples of RT images of the ionosphere after industrial explosions, rocket launches, and modification of the ionosphere by high-power radio waves. We also show RT cross sections reflecting ionospheric disturbances caused by the earthquakes (EQ) and tsunami waves. In these cases, there is an evident cause-and-effect relationship. The perturbations are transferred between the geospheres predominantly by acoustic gravity waves (AGW), whose amplitudes increase with increasing height. As far as EQ are concerned, the cause of the USAI coupling mechanism is not obvious. It is clear, however, that the regular RT studies can promote the solution of this challenging problem

  13. Large-scale traveling ionospheric disturbances using ionospheric imaging at storm time: A case study on 17 march 2013

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Yao, Yibin; Kong, Jian; Zhang, Liang

    2016-07-01

    A moderate geomagnetic storm occurred on March 17, 2013, during which large-scale traveling ionospheric disturbances (LSTIDs) are observed over China by ionosondes and GPS from Crustal Movement Observation Network of China (CMONOC) and the International GNSS Service (IGS). Ionosonde data and computerized ionospheric tomography (CIT) technique are employed to analyze the disturbances in our study. The maximum entropy cross spectral analysis (MECSA) method is used to obtain the propagation parameters of the LSTIDs. Spatio-temporal variations of ionospheric electron density (IED) and total electron content (TEC) during this geomagnetic storm over China are investigated. Disturbance images of IED and TEC are also presented in the paper. The results show two LSTID events at about 12:00 UT and 15:00 UT during the main phase of the storm. Besides, the LSTIDs with a duration of 40 min are detected over China. It is confirmed that the LSTIDs travel from north to south with a horizontal velocity of 400-500 m/s, and moved southwestwards with a horizontal velocity of 250-300 m/s, respectively.

  14. Computerized tomography platform using beta rays

    NASA Astrophysics Data System (ADS)

    Paetkau, Owen; Parsons, Zachary; Paetkau, Mark

    2017-12-01

    A computerized tomography (CT) system using a 0.1 μCi Sr-90 beta source, Geiger counter, and low density foam samples was developed. A simple algorithm was used to construct images from the data collected with the beta CT scanner. The beta CT system is analogous to X-ray CT as both types of radiation are sensitive to density variations. This system offers a platform for learning opportunities in an undergraduate laboratory, covering topics such as image reconstruction algorithms, radiation exposure, and the energy dependence of absorption.

  15. Initial clinical experience with computerized tomography of the body.

    PubMed

    Stephens, D H; Sheedy, P F; Hattery, R R; Hartman, G W

    1976-04-01

    Computerized tomography of the body, now possible with an instrument that can complete a scan rapidly enough to permit patients to suspend respiration, adds an important new dimension to radiologic diagnosis. Cross-sectional antomy is uniquely reconstructed to provide accurate diagnostic information for various disorders throughout the body.

  16. Sodankylä ionospheric tomography data set 2003-2014

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Roininen, Lassi; Kero, Antti; Raita, Tero; Ulich, Thomas; Markkanen, Markku; Juusola, Liisa; Kauristie, Kirsti

    2016-07-01

    Sodankylä Geophysical Observatory has been operating a receiver network for ionospheric tomography and collecting the produced data since 2003. The collected data set consists of phase difference curves measured from COSMOS navigation satellites from the Russian Parus network (Wood and Perry, 1980) and tomographic electron density reconstructions obtained from these measurements. In this study vertical total electron content (VTEC) values are integrated from the reconstructed electron densities to make a qualitative and quantitative analysis to validate the long-term performance of the tomographic system. During the observation period, 2003-2014, there were three to five operational stations at the Fennoscandia sector. Altogether the analysis consists of around 66 000 overflights, but to ensure the quality of the reconstructions, the examination is limited to cases with descending (north to south) overflights and maximum elevation over 60°. These constraints limit the number of overflights to around 10 000. Based on this data set, one solar cycle of ionospheric VTEC estimates is constructed. The measurements are compared against the International Reference Ionosphere (IRI)-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model results are on average 40 % higher than that of the tomographic results.

  17. Investigating the performance of wavelet neural networks in ionospheric tomography using IGS data over Europe

    NASA Astrophysics Data System (ADS)

    Ghaffari Razin, Mir Reza; Voosoghi, Behzad

    2017-04-01

    Ionospheric tomography is a very cost-effective method which is used frequently to modeling of electron density distributions. In this paper, residual minimization training neural network (RMTNN) is used in voxel based ionospheric tomography. Due to the use of wavelet neural network (WNN) with back-propagation (BP) algorithm in RMTNN method, the new method is named modified RMTNN (MRMTNN). To train the WNN with BP algorithm, two cost functions is defined: total and vertical cost functions. Using minimization of cost functions, temporal and spatial ionospheric variations is studied. The GPS measurements of the international GNSS service (IGS) in the central Europe have been used for constructing a 3-D image of the electron density. Three days (2009.04.15, 2011.07.20 and 2013.06.01) with different solar activity index is used for the processing. To validate and better assess reliability of the proposed method, 4 ionosonde and 3 testing stations have been used. Also the results of MRMTNN has been compared to that of the RMTNN method, international reference ionosphere model 2012 (IRI-2012) and spherical cap harmonic (SCH) method as a local ionospheric model. The comparison of MRMTNN results with RMTNN, IRI-2012 and SCH models shows that the root mean square error (RMSE) and standard deviation of the proposed approach are superior to those of the traditional method.

  18. Vertical structure of medium-scale traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas; Kim, Yong Ha; Kim, Eunsol

    2015-11-01

    We develop an algorithm of computerized ionospheric tomography (CIT) to infer information on the vertical and horizontal structuring of electron density during nighttime medium-scale traveling ionospheric disturbances (MSTIDs). To facilitate digital CIT we have adopted total electron contents (TEC) from a dense Global Positioning System (GPS) receiver network, GEONET, which contains more than 1000 receivers. A multiplicative algebraic reconstruction technique was utilized with a calibrated IRI-2012 model as an initial solution. The reconstructed F2 peak layer varied in altitude with average peak-to-peak amplitude of ~52 km. In addition, the F2 peak layer anticorrelated with TEC variations. This feature supports a theory in which nighttime MSTID is composed of oscillating electric fields due to conductivity variations. Moreover, reconstructed TEC variations over two stations were reasonably close to variations directly derived from the measured TEC data set. Our tomographic analysis may thus help understand three-dimensional structure of MSTIDs in a quantitative way.

  19. Multi-dimensional distribution of near-field ionospheric disturbances produced by the 2015 Mw7.8 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Yuan, Yunbin

    2017-10-01

    Ionospheric anomalies possibly associated with large earthquakes, particularly coseismic ionospheric disturbances, have been detected by global positioning system (GPS). A large Nepal earthquake with magnitude Mw7.8 occurred on April 25, 2015. In this paper, we investigate the multi-dimensional distribution of near-field coseismic ionospheric disturbances (CIDs) using total electron content (TEC) and computerized ionospheric tomography (CIT) from regional GPS observational data. The results show significant ionospheric TEC disturbances and interesting multi-dimensional structures around the main shock. Regarding the TEC changes, coseismic ionospheric disturbances occur approximately 10-20 min after the earthquake northeast and northwest of epicentre. The maximum ridge-to-trough amplitude of CIDs is up to approximately 0.90 TECU/min. Propagation velocities of the TEC disturbances are 1.27 ± 0.06 km/s and 1.91 ± 0.38 km/s. It is believed that the ionospheric disturbances are triggered by acoustic and Rayleigh waves. Tomographic results show that the three-dimensional distribution of ionospheric disturbances obviously increases at an altitude of 300 km above the surrounding epicentre, predominantly in the entire region between 200 km and 400 km. Significant ionospheric disturbances appear at 06:30 UT from tomographic images. This study reveals characteristics of an ionospheric anomaly caused by the Nepal earthquake.

  20. Infantile Autism and Computerized Tomography Brain-Scan Findings: Specific versus Nonspecific Abnormalities.

    ERIC Educational Resources Information Center

    Balottin, Umberto; And Others

    1989-01-01

    The study of computerized tomography brain-scan findings with 45 autistic and 19 control subjects concluded that autism is nonspecifically associated with brain-scan abnormalities, and that other nonorganic, as well as organic, factors should be taken into account. (Author/DB)

  1. Tomographic reconstruction of ionospheric electron density during the storm of 5-6 August 2011 using multi-source data.

    PubMed

    Tang, Jun; Yao, Yibin; Zhang, Liang; Kong, Jian

    2015-08-12

    The insufficiency of data is the essential reason for ill-posed problem existed in computerized ionospheric tomography (CIT) technique. Therefore, the method of integrating multi-source data is proposed. Currently, the multiple satellite navigation systems and various ionospheric observing instruments provide abundant data which can be employed to reconstruct ionospheric electron density (IED). In order to improve the vertical resolution of IED, we do research on IED reconstruction by integration of ground-based GPS data, occultation data from the LEO satellite, satellite altimetry data from Jason-1 and Jason-2 and ionosonde data. We used the CIT results to compare with incoherent scatter radar (ISR) observations, and found that the multi-source data fusion was effective and reliable to reconstruct electron density, showing its superiority than CIT with GPS data alone.

  2. Tomographic reconstruction of ionospheric electron density during the storm of 5-6 August 2011 using multi-source data

    PubMed Central

    Tang, Jun; Yao, Yibin; Zhang, Liang; Kong, Jian

    2015-01-01

    The insufficiency of data is the essential reason for ill-posed problem existed in computerized ionospheric tomography (CIT) technique. Therefore, the method of integrating multi-source data is proposed. Currently, the multiple satellite navigation systems and various ionospheric observing instruments provide abundant data which can be employed to reconstruct ionospheric electron density (IED). In order to improve the vertical resolution of IED, we do research on IED reconstruction by integration of ground-based GPS data, occultation data from the LEO satellite, satellite altimetry data from Jason-1 and Jason-2 and ionosonde data. We used the CIT results to compare with incoherent scatter radar (ISR) observations, and found that the multi-source data fusion was effective and reliable to reconstruct electron density, showing its superiority than CIT with GPS data alone. PMID:26266764

  3. Computerized tomography as a diagnostic aid in acute hemorrhagic leukoencephalitis.

    PubMed

    Rothstein, T L; Shaw, C M

    1983-03-01

    Computerized tomography (CT) in a pathologically proven case of acute hemorrhagic leukoencephalitis (AHL) showed a mass effect and increased absorption coefficient in the right hemisphere within 18 hours of the onset of neurological symptoms. The changes corresponded to the site of white matter edema, necrosis, and petechial hemorrhages demonstrated postmortem. The early changes of CT reflect the hyperacute nature of AHL and differ from those of herpes simplex encephalitis.

  4. Effect of ray and speed perturbations on ionospheric tomography by over-the-horizon radar: A new method, useful for SuperDarn radar

    NASA Astrophysics Data System (ADS)

    Eisenbeis, J.; Roy, C.; Bland, E. C.; Occhipinti, G.

    2017-12-01

    Most recent methods in ionospheric tomography are based on the inversion of the total electron content measured by ground-based GPS receivers. As a consequence of the high frequency of the GPS signal and the absence of horizontal raypaths, the electron density structure is mainly reconstructed in the F2 region (300 km), where the ionosphere reaches the maximum of ionization, and is not sensitive to the lower ionospheric structure. We propose here a new tomographic method of the lower ionosphere (Roy et al., 2014), based on the full inversion of over-the-horizon (OTH) radar data and applicable to SuperDarn data. The major advantage of our methodology is taking into account, numerically and jointly, the effect that the electron density perturbations induce not only in the speed of electromagnetic waves but also on the raypath geometry. This last point is extremely critical for OTH/SuperDarn data inversions as the emitted signal propagates through the ionosphere between a fixed starting point (the radar) and an unknown end point on the Earth surface where the signal is backscattered. We detail our ionospheric tomography method with the aid of benchmark tests in order to highlight the sensitivity of the radar related to the explored observational parameters: frequencies, elevations, azimuths. Having proved the necessity to take into account both effects simultaneously, we apply our method to real backscattered data from Super Darn and OTH radar. The preliminary solution obtained with the Hokkaido East SuperDARN with only two frequencies (10MHz and 11MHz), showed here, is stable and push us to deeply explore a more complete dataset that we will present at the AGU 2017. This is, in our knowledge, the first time that an ionospheric tomography has been estimated with SuperDarn backscattered data. Reference: Roy, C., G. Occhipinti, L. Boschi, J.-P. Moliné, and M. Wieczorek (2014), Effect of ray and speed perturbations on ionospheric tomography by over-the-horizon radar: A

  5. Ionospheric tomography by gradient-enhanced kriging with STEC measurements and ionosonde characteristics

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; van den Boogaart, Karl Gerald; Gerzen, Tatjana; Hoque, Mainul; Hernández-Pajares, Manuel

    2016-11-01

    The estimation of the ionospheric electron density by kriging is based on the optimization of a parametric measurement covariance model. First, the extension of kriging with slant total electron content (STEC) measurements based on a spatial covariance to kriging with a spatial-temporal covariance model, assimilating STEC data of a sliding window, is presented. Secondly, a novel tomography approach by gradient-enhanced kriging (GEK) is developed. Beyond the ingestion of STEC measurements, GEK assimilates ionosonde characteristics, providing peak electron density measurements as well as gradient information. Both approaches deploy the 3-D electron density model NeQuick as a priori information and estimate the covariance parameter vector within a maximum likelihood estimation for the dedicated tomography time stamp. The methods are validated in the European region for two periods covering quiet and active ionospheric conditions. The kriging with spatial and spatial-temporal covariance model is analysed regarding its capability to reproduce STEC, differential STEC and foF2. Therefore, the estimates are compared to the NeQuick model results, the 2-D TEC maps of the International GNSS Service and the DLR's Ionospheric Monitoring and Prediction Center, and in the case of foF2 to two independent ionosonde stations. Moreover, simulated STEC and ionosonde measurements are used to investigate the electron density profiles estimated by the GEK in comparison to a kriging with STEC only. The results indicate a crucial improvement in the initial guess by the developed methods and point out the potential compensation for a bias in the peak height hmF2 by means of GEK.

  6. Identifying and classifying hyperostosis frontalis interna via computerized tomography.

    PubMed

    May, Hila; Peled, Nathan; Dar, Gali; Hay, Ori; Abbas, Janan; Masharawi, Youssef; Hershkovitz, Israel

    2010-12-01

    The aim of this study was to recognize the radiological characteristics of hyperostosis frontalis interna (HFI) and to establish a valid and reliable method for its identification and classification. A reliability test was carried out on 27 individuals who had undergone a head computerized tomography (CT) scan. Intra-observer reliability was obtained by examining the images three times, by the same researcher, with a 2-week interval between each sample ranking. The inter-observer test was performed by three independent researchers. A validity test was carried out using two methods for identifying and classifying HFI: 46 cadaver skullcaps were ranked twice via computerized tomography scans and then by direct observation. Reliability and validity were calculated using Kappa test (SPSS 15.0). Reliability tests of ranking HFI via CT scans demonstrated good results (K > 0.7). As for validity, a very good consensus was obtained between the CT and direct observation, when moderate and advanced types of HFI were present (K = 0.82). The suggested classification method for HFI, using CT, demonstrated a sensitivity of 84%, specificity of 90.5%, and positive predictive value of 91.3%. In conclusion, volume rendering is a reliable and valid tool for identifying HFI. The suggested three-scale classification is most suitable for radiological diagnosis of the phenomena. Considering the increasing awareness of HFI as an early indicator of a developing malady, this study may assist radiologists in identifying and classifying the phenomena.

  7. Ionospheric Sounding Opportunities Using Signal Data From Preexisting Amateur Radio And Other Networks

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Noel, J. M. A.

    2015-12-01

    Amateur radio and other transmissions used for dedicated purposes, such as the Automatic Packet Reporting System (APRS) and Automatic Dependent Surveillance Broadcast (ADS-B), are signals that exist for another reason, but can be used for ionospheric sounding. Whether mandated and government funded or voluntarily constructed and operated, these networks provide data that can be used for scientific and operational purposes which rely on space weather data. Given the current state of the global economic environment and fiscal consequences to scientific research funding in Canada, these types of networks offer an innovative solution with preexisting hardware for more real-time and archival space-weather data to supplement current methods, particularly for data assimilation, modelling and forecasting. Furthermore, mobile ground-based transmitters offer more flexibility for deployment than stationary receivers. Numerical modelling has demonstrated that APRS and ADS-B signals are subject to Faraday rotation (FR) as they pass through the ionosphere. Ray tracingtechniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization. The modelled FR was computed and converted to total electron content (TEC) along the raypaths. TEC data can be used as input for computerized ionospheric tomography (CIT) in order to reconstruct electron density maps of the ionosphere.

  8. Application of IRI-Plas in Ionospheric Tomography and HF Communication Studies with Assimilation of GPS-TEC

    NASA Astrophysics Data System (ADS)

    Arikan, Feza; Gulyaeva, Tamara; Sezen, Umut; Arikan, Orhan; Toker, Cenk; Hakan Tuna, MR.; Erdem, Esra

    2016-07-01

    International Reference Ionosphere is the most acknowledged climatic model of ionosphere that provides electron density profile and hourly, monthly median values of critical layer parameters of the ionosphere for a desired location, date and time between 60 to 2,000 km altitude. IRI is also accepted as the International Standard Ionosphere model. Recently, the IRI model is extended to the Global Positioning System (GPS) satellite orbital range of 20,000 km. The new version is called IRI-Plas and it can be obtained from http://ftp.izmiran.ru/pub/izmiran /SPIM/. A user-friendly online version is also provided at www.ionolab.org as a space weather service. Total Electron Content (TEC), which is defined as the line integral of electron density on a given ray path, is an observable parameter that can be estimated from earth based GPS receivers in a cost-effective manner as GPS-TEC. One of the most important advantages of IRI-Plas is the possible input of GPS-TEC to update the background deterministic ionospheric model to the current ionospheric state. This option is highly useful in regional and global tomography studies and HF link assessments. IONOLAB group currently implements IRI-Plas as a background model and updates the ionospheric state using GPS-TEC in IONOLAB-CIT and IONOLAB-RAY algorithms. The improved state of ionosphere allows the most reliable 4-D imaging of electron density profiles and HF and satellite communication link simulations.This study is supported by TUBITAK 115E915 and joint TUBITAK 114E092 and AS CR 14/001.

  9. Ionospheric Asymmetry Evaluation using Tomography to Assess the Effectiveness of Radio Occultation Data Inversion

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Notarpietro, R.; Yin, P.; Nava, B.

    2013-12-01

    The Multi-Instrument Data Analysis System (MIDAS) algorithm is based on the oceanographic imaging techniques first applied to do the imaging of 2D slices of the ionosphere. The first version of MIDAS (version 1.0) was able to deal with any line-integral data such as GPS-ground or GPS-LEO differential-phase data or inverted ionograms. The current version extends tomography into four dimensional (lat, long, height and time) spatial-temporal mapping that combines all observations simultaneously in a single inversion with the minimum of a priori assumptions about the form of the ionospheric electron-concentration distribution. This work is an attempt to investigate the Radio Occultation (RO) data assimilation into MIDAS by assessing the ionospheric asymmetry and its impact on RO data inversion, when the Onion-peeling algorithm is used. Ionospheric RO data from COSMIC mission, specifically data collected during 24 September 2011 storm over mid-latitudes, has been used for the data assimilation. Using output electron density data from Midas (with/without RO assimilation) and ideal RO geometries, we tried to assess ionospheric asymmetry. It has been observed that the level of asymmetry was significantly increased when the storm was active. This was due to the increased ionization, which in turn produced large gradients along occulted ray path in the ionosphere. The presence of larger gradients was better observed when Midas was used with RO assimilated data. A very good correlation has been found between the evaluated asymmetry and errors related to the inversion products, when the inversion is performed considering standard techniques based on the assumption of spherical symmetry of the ionosphere. Errors are evaluated considering the peak electron density (NmF2) estimate and the Vertical TEC (VTEC) evaluation. This work highlights the importance of having a tool which should be able to state the effectiveness of Radio Occultation data inversion considering standard

  10. Accurately Diagnosing Uric Acid Stones from Conventional Computerized Tomography Imaging: Development and Preliminary Assessment of a Pixel Mapping Software.

    PubMed

    Ganesan, Vishnu; De, Shubha; Shkumat, Nicholas; Marchini, Giovanni; Monga, Manoj

    2018-02-01

    Preoperative determination of uric acid stones from computerized tomography imaging would be of tremendous clinical use. We sought to design a software algorithm that could apply data from noncontrast computerized tomography to predict the presence of uric acid stones. Patients with pure uric acid and calcium oxalate stones were identified from our stone registry. Only stones greater than 4 mm which were clearly traceable from initial computerized tomography to final composition were included in analysis. A semiautomated computer algorithm was used to process image data. Average and maximum HU, eccentricity (deviation from a circle) and kurtosis (peakedness vs flatness) were automatically generated. These parameters were examined in several mathematical models to predict the presence of uric acid stones. A total of 100 patients, of whom 52 had calcium oxalate and 48 had uric acid stones, were included in the final analysis. Uric acid stones were significantly larger (12.2 vs 9.0 mm, p = 0.03) but calcium oxalate stones had higher mean attenuation (457 vs 315 HU, p = 0.001) and maximum attenuation (918 vs 553 HU, p <0.001). Kurtosis was significantly higher in each axis for calcium oxalate stones (each p <0.001). A composite algorithm using attenuation distribution pattern, average attenuation and stone size had overall 89% sensitivity, 91% specificity, 91% positive predictive value and 89% negative predictive value to predict uric acid stones. A combination of stone size, attenuation intensity and attenuation pattern from conventional computerized tomography can distinguish uric acid stones from calcium oxalate stones with high sensitivity and specificity. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-12-01

    A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.

  12. A statistical study on the F2 layer vertical variation during nighttime medium-scale traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas; Kim, Yong Ha; Jeong, Se-Heon

    2017-03-01

    A statistical study on the relationship between the perturbation component (ΔTEC (total electron content)) and the F2 layer peak height (hmF2) during nighttime medium-scale traveling ionospheric disturbances is presented. The results are obtained by using a time-dependent computerized ionospheric tomography (CIT) technique. This was realized by using slant total electron content observations from a dense Global Positioning System receiver network over Japan (with more than 1000 receivers), together with a multiplicative algebraic reconstruction technique. Reconstructions from CIT were validated by using ionosonde and occultation measurements. A total of 36 different time snapshots of the ionosphere when medium-scale traveling ionospheric disturbances (MSTIDs) were eminent were analyzed. These were obtained from a data set covering years from 2011 to 2014. The reconstructed surface wavefronts of ΔTEC and hmF2 structure were found to be aligned along the northwest-southeast direction. These results confirm that nighttime MSTIDs are driven by electrodynamic forces related to Perkins instability which explains the northwest-southeast wavefront alignment based on the F region electrodynamics. Furthermore, from the statistical analysis hmF2 varied quasiperiodically in altitude with dominant peak-to-peak amplitudes between 10 and 40 km. In addition, ΔTEC and hmF2 were 60% anticorrelated.

  13. The Electron Density Features Revealed by the GNSS-Based Radio Tomography in the Different Latitudinal and Longitudinal Sectors of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Andreeva, Elena; Tereshchenko, Evgeniy; Nazarenko, Marina; Nesterov, Ivan; Kozharin, Maksim; Padokhin, Artem; Tumanova, Yulia

    2016-04-01

    The ionospheric radio tomography is an efficient method for electron density imaging in the different geographical regions of the world under different space weather conditions. The input for the satellite-based ionospheric radio tomography is provided by the signals that are transmitted from the navigational satellites and recorded by the chains or networks of ground receivers. The low-orbiting (LO) radio tomography employs the 150/400 MHz radio transmissions from the Earth's orbiters (like the Russian Tsikada/Parus and American Transit) flying at a height of ~1000 km above the Earth in the nearly polar orbits. The phases of the signals from a moving satellite which are recorded by the chains of ground receivers oriented along the satellite path form the families of linear integrals of electron density along the satellite-receiver rays that are used as the input data for LORT. The LO tomographic inversion of these data by phase difference method yields the 2D distributions of the ionospheric plasma in the vertical plane containing the receiving chain and the satellite path. LORT provides vertical resolution of 20-30 km and horizontal resolution of 30-40 km. The high-orbiting (HO) radio tomography employs the radio transmissions from the GPS/GLONASS satellites and enables 4D imaging of the ionosphere (3 spatial coordinates and time). HORT has a much wider spatial coverage (almost worldwide) and provides continuous time series of the reconstructions. However, the spatial resolution of HORT is lower (~100 km horizontally with a time step 60-20 min). In the regions with dense receiving networks (Europe, USA, Alaska, Japan), the resolution can be increased to 30-50 km with a time interval of 30-10 min. To date, the extensive RT data collected from the existing RT chains and networks enable a thorough analysis of both the regular and sporadic ionospheric features which are observed systematically or appear spontaneously, whose origin is fairly well understood or

  14. Two-dimensional ionospheric tomography over the low-latitude Indian region: An intercomparison of ART and MART algorithms

    NASA Astrophysics Data System (ADS)

    Das, Sukanta Kumar; Shukla, Ashish Kumar

    2011-04-01

    Single-frequency users of a satellite-based augmentation system (SBAS) rely on ionospheric models to mitigate the delay due to the ionosphere. The ionosphere is the major source of range and range rate errors for users of the Global Positioning System (GPS) who require high-accuracy positioning. The purpose of the present study is to develop a tomography model to reconstruct the total electron content (TEC) over the low-latitude Indian region which lies in the equatorial ionospheric anomaly belt. In the present study, the TEC data collected from the six TEC collection stations along a longitudinal belt of around 77 degrees are used. The main objective of the study is to find out optimum pixel size which supports a better reconstruction of the electron density and hence the TEC over the low-latitude Indian region. Performance of two reconstruction algorithms Algebraic Reconstruction Technique (ART) and Multiplicative Algebraic Reconstruction Technique (MART) is analyzed for different pixel sizes varying from 1 to 6 degrees in latitude. It is found from the analysis that the optimum pixel size is 5° × 50 km over the Indian region using both ART and MART algorithms.

  15. Extension of the Gladstone-Dale equation for flame flow field diagnosis by optical computerized tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yunyun; Li Zhenhua; Song Yang

    2009-05-01

    An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.

  16. Non-Conventional Applications of Computerized Tomography: Analysis of Solid Dosage Forms Produced by Pharmaceutical Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.

  17. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques.

    PubMed

    Ferreira, F J O; Crispim, V R; Silva, A X

    2010-06-01

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Simultaneous multiplicative column-normalized method (SMART) for 3-D ionosphere tomography in comparison to other algebraic methods

    NASA Astrophysics Data System (ADS)

    Gerzen, T.; Minkwitz, D.

    2016-01-01

    The accuracy and availability of satellite-based applications like GNSS positioning and remote sensing crucially depends on the knowledge of the ionospheric electron density distribution. The tomography of the ionosphere is one of the major tools to provide link specific ionospheric corrections as well as to study and monitor physical processes in the ionosphere. In this paper, we introduce a simultaneous multiplicative column-normalized method (SMART) for electron density reconstruction. Further, SMART+ is developed by combining SMART with a successive correction method. In this way, a balancing between the measurements of intersected and not intersected voxels is realised. The methods are compared with the well-known algebraic reconstruction techniques ART and SART. All the four methods are applied to reconstruct the 3-D electron density distribution by ingestion of ground-based GNSS TEC data into the NeQuick model. The comparative case study is implemented over Europe during two periods of the year 2011 covering quiet to disturbed ionospheric conditions. In particular, the performance of the methods is compared in terms of the convergence behaviour and the capability to reproduce sTEC and electron density profiles. For this purpose, independent sTEC data of four IGS stations and electron density profiles of four ionosonde stations are taken as reference. The results indicate that SMART significantly reduces the number of iterations necessary to achieve a predefined accuracy level. Further, SMART+ decreases the median of the absolute sTEC error up to 15, 22, 46 and 67 % compared to SMART, SART, ART and NeQuick respectively.

  19. Magnetic resonance imaging and computerized tomography in malignant external otitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gherini, S.G.; Brackmann, D.E.; Bradley, W.G.

    1986-05-01

    In malignant external otitis (MEO), determining the anatomic extent of disease and evaluating the physiologic response to therapy remain a problem. Magnetic resonance imaging (MRI) has recently become available in limited clinical settings. Four patients with MEO were evaluated using MRI, computerized tomography (CT), technetium-99 (Tc-99) bone scanning, and gallium-67 citrate (Ga-67 citrate) scanning. MRI is superior to CT, Tc-99 bone scanning, and Ga-67 citrate scanning in evaluating the anatomic extent of soft tissue changes in MEO. MRI alone cannot be relied upon to determine the physiologic response to therapy. MRI can, however, serve as a valuable guide to themore » interpretation of Tc-99 bone and Ga-67 citrate scans, and in this respect, MRI is extremely useful in the treatment of MEO.« less

  20. Three-dimensional ionospheric tomography reconstruction using the model function approach in Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Wang, Sicheng; Huang, Sixun; Xiang, Jie; Fang, Hanxian; Feng, Jian; Wang, Yu

    2016-12-01

    Ionospheric tomography is based on the observed slant total electron content (sTEC) along different satellite-receiver rays to reconstruct the three-dimensional electron density distributions. Due to incomplete measurements provided by the satellite-receiver geometry, it is a typical ill-posed problem, and how to overcome the ill-posedness is still a crucial content of research. In this paper, Tikhonov regularization method is used and the model function approach is applied to determine the optimal regularization parameter. This algorithm not only balances the weights between sTEC observations and background electron density field but also converges globally and rapidly. The background error covariance is given by multiplying background model variance and location-dependent spatial correlation, and the correlation model is developed by using sample statistics from an ensemble of the International Reference Ionosphere 2012 (IRI2012) model outputs. The Global Navigation Satellite System (GNSS) observations in China are used to present the reconstruction results, and measurements from two ionosondes are used to make independent validations. Both the test cases using artificial sTEC observations and actual GNSS sTEC measurements show that the regularization method can effectively improve the background model outputs.

  1. Renal calyceal anatomy characterization with 3-dimensional in vivo computerized tomography imaging.

    PubMed

    Miller, Joe; Durack, Jeremy C; Sorensen, Mathew D; Wang, James H; Stoller, Marshall L

    2013-02-01

    Calyceal selection for percutaneous renal access is critical for safe, effective performance of percutaneous nephrolithotomy. Available anatomical evidence is contradictory and incomplete. We present detailed renal calyceal anatomy obtained from in vivo 3-dimentional computerized tomography renderings. A total of 60 computerized tomography urograms were randomly selected. The renal collecting system was isolated and 3-dimensional renderings were constructed. The primary plane of each calyceal group of 100 kidneys was determined. A coronal maximum intensity projection was used for simulated percutaneous access. The most inferior calyx was designated calyx 1. Moving superiorly, the subsequent calyces were designated calyx 2 and, when present, calyx 3. The surface rendering was rotated to assess the primary plane of the calyceal group and the orientation of the select calyx. The primary plane of the upper pole calyceal group was mediolateral in 95% of kidneys and the primary plane of the lower pole calyceal group was anteroposterior in 95%. Calyx 2 was chosen in 90 of 97 simulations and it was appropriate in 92%. Calyx 3 was chosen in 7 simulations but it was appropriate in only 57%. Calyx 1 was not selected in any simulation and it was anteriorly oriented in 75% of kidneys. Appropriate lower pole calyceal access can be reliably accomplished with an understanding of the anatomical relationship between individual calyceal orientation and the primary plane of the calyceal group. Calyx 2 is most often appropriate for accessing the anteroposterior primary plane of the lower pole. Calyx 1 is most commonly oriented anterior. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Emission computerized axial tomography from multiple gamma-camera views using frequency filtering.

    PubMed

    Pelletier, J L; Milan, C; Touzery, C; Coitoux, P; Gailliard, P; Budinger, T F

    1980-01-01

    Emission computerized axial tomography is achievable in any nuclear medicine department from multiple gamma camera views. Data are collected by rotating the patient in front of the camera. A simple fast algorithm is implemented, known as the convolution technique: first the projection data are Fourier transformed and then an original filter designed for optimizing resolution and noise suppression is applied; finally the inverse transform of the latter operation is back-projected. This program, which can also take into account the attenuation for single photon events, was executed with good results on phantoms and patients. We think that it can be easily implemented for specific diagnostic problems.

  3. Clinical results of computerized tomography-based simulation with laser patient marking.

    PubMed

    Ragan, D P; Forman, J D; He, T; Mesina, C F

    1996-02-01

    Accuracy of a patient treatment portal marking device and computerized tomography (CT) simulation have been clinically tested. A CT-based simulator has been assembled based on a commercial CT scanner. This includes visualization software and a computer-controlled laser drawing device. This laser drawing device is used to transfer the setup, central axis, and/or radiation portals from the CT simulator to the patient for appropriate patient skin marking. A protocol for clinical testing is reported. Twenty-five prospectively, sequentially accessioned patients have been analyzed. The simulation process can be completed in an average time of 62 min. Under many cases, the treatment portals can be designed and the patient marked in one session. Mechanical accuracy of the system was found to be within +/- 1mm. The portal projection accuracy in clinical cases is observed to be better than +/- 1.2 mm. Operating costs are equivalent to the conventional simulation process it replaces. Computed tomography simulation is a clinical accurate substitute for conventional simulation when used with an appropriate patient marking system and digitally reconstructed radiographs. Personnel time spent in CT simulation is equivalent to time in conventional simulation.

  4. Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study.

    PubMed

    Eisner, Brian H; Kambadakone, Avinash; Monga, Manoj; Anderson, James K; Thoreson, Andrew A; Lee, Hang; Dretler, Stephen P; Sahani, Dushyant V

    2009-04-01

    We determined the most accurate method of measuring urinary stones on computerized tomography. For the in vitro portion of the study 24 calculi, including 12 calcium oxalate monohydrate and 12 uric acid stones, that had been previously collected at our clinic were measured manually with hand calipers as the gold standard measurement. The calculi were then embedded into human kidney-sized potatoes and scanned using 64-slice multidetector computerized tomography. Computerized tomography measurements were performed at 4 window settings, including standard soft tissue windows (window width-320 and window length-50), standard bone windows (window width-1120 and window length-300), 5.13x magnified soft tissue windows and 5.13x magnified bone windows. Maximum stone dimensions were recorded. For the in vivo portion of the study 41 patients with distal ureteral stones who underwent noncontrast computerized tomography and subsequently spontaneously passed the stones were analyzed. All analyzed stones were 100% calcium oxalate monohydrate or mixed, calcium based stones. Stones were prospectively collected at the clinic and the largest diameter was measured with digital calipers as the gold standard. This was compared to computerized tomography measurements using 4.0x magnified soft tissue windows and 4.0x magnified bone windows. Statistical comparisons were performed using Pearson's correlation and paired t test. In the in vitro portion of the study the most accurate measurements were obtained using 5.13x magnified bone windows with a mean 0.13 mm difference from caliper measurement (p = 0.6). Measurements performed in the soft tissue window with and without magnification, and in the bone window without magnification were significantly different from hand caliper measurements (mean difference 1.2, 1.9 and 1.4 mm, p = 0.003, <0.001 and 0.0002, respectively). When comparing measurement errors between stones of different composition in vitro, the error for calcium oxalate

  5. Equator and High-Latitude Ionosphere-to-Magnetosphere Research

    DTIC Science & Technology

    2007-10-30

    include cooperation with groups making ionospheric radio occultation and tomography , and UV measurements (Sections 2, 4, and 10). The Center is also...AFRL-RV-HA-TR-2007-1152 Equator and High-Latitude Ionosphere -to-Magnetosphere Research B. W. Reinisch G. S. Sales V. Paznukhov I. A. Galkin D. F... Ionosphere -to-Magnetosphere Research FA8718-06-C-0072 Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 62601F AUTHOR(S) 5d. PROJECT NUMBER W. Reinisclk G.S. Sales

  6. Application of High- and Low-Orbiting Radio Tomography for Exploring the Ionospheric Structures on Different Scales

    NASA Astrophysics Data System (ADS)

    Andreeva, Elena; Padokhin, Artem; Nazarenko, Marina; Nesterov, Ivan; Tumanova, Yulia; Tereshchenko, Evgeniy; Kozharin, Maksim

    2016-07-01

    The methods of ionospheric radio tomography (RT) are actively developing at present. These methods are suitable for reconstructing the spatial distributions of electron density from radio signals transmitted from the navigational satellite systems and recorded by the networks of ground-based receivers. The RT systems based on the low-orbiting (LO) (Parus/Transit) navigational systems have been in operation since the early 1990s. Recently, the RT methods employing the signals from high-orbiting (HO) satellite navigational systems such as GPS/GLONASS have come into play. In our presentation, we discuss the accuracies, advantages, and limitations of LORT and HORT as well as the possibilities of their combined application fro reconstructing the structure of the ionosphere in the same region during the same time interval on the different spatiotemporal scales. The LORT reconstructions provide practically instantaneous (spanning 5-10 min) 2D snapshots of the ionosphere within a spatial interval with a length of up to a few thousand km. The vertical resolution of LORT is 25-30 km and the horizontal resolution, 15-25 km. The HORT methods are capable of reconstructing the 4D structure of the ionosphere (three spatial coordinates and time). The spatial resolution of HORT is generally not better than 100 km with a 60-20 min interval between the successive reconstructions. In the regions of dense receiving networks, the resolution can be improved to 30-50 km and the time step can be reduced to 30-10 min. In California and Japan which are covered by extremely dense receiving networks the resolution can be even higher (10-30 km) and the time interval between the reconstruction even shorter (up to 2 min). In the presentation, we discuss the LORT and HORT reconstructions of the ionosphere during different time periods of the 23rd and 24th solar cycles in the different regions of the world. We analyze the spatiotemporal features and dynamics of the ionosphere depending on the solar

  7. The mobile hospital technology industry: focus on the computerized tomography scanner.

    PubMed

    Hartley, D; Moscovice, I

    1996-01-01

    This study of firms offering mobile hospital technology to rural hospitals in eight northwestern states found that several permanently parked computerized tomography (CT) units were found where mobile routes had atrophied due to the purchase of fixed units by former mobile CT hospital clients. Based on a criterion of 140 scans per month per unit as a threshold of profitable production, units owned by larger firms (those that operate five or more units) were more likely to be profitable than units owned by smaller firms (71% versus 20%, P = 0.03). A substantial number of rural hospitals lose money on mobile CT due to low Medicare reimbursement. In some areas, mobile hospital technology is a highly competitive industry. Evidence was found that several firms compete in some geographic areas and that some firms have lost hospital clients to competing vendors.

  8. Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hullar, Ted; Anastasio, Cort, E-mail: canastasio@ucdavis.edu; Paige, David F.

    2014-04-15

    High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as −25 °Cmore » ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.« less

  9. Remote Sensing of the Ionosphere and Plasmasphere from Space Using Radiowaves

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.

    2008-01-01

    Topics include the scientific context, trans-ionospheric and sounding, small-scale structure, plasmasphere, fast and slow tomography, and pseudo-imaging. Individual slides focus on where geospace science stands today, variability in inner magnetosphere electric fields, Appleton-Hartree formula, phase and range ionospheric observables, examples of leveling, large ionization changes during storms, new mid-latitude phenomena, ionospheric sounding, COSMIC CERTO/Tri-band beacon, LEO-ground radio tomography, irregularity measurements, COSMIC, critical sensor data from COSMIC GPS limb sounding, occultation geometry, comparison of calibrated slant TEC measurements for 26 June 2006, historic examples of Abel electron density profiles, comparison of UCAR and JPL Able profiles of 26 June 2006, validating UCAR and JPL Abel profiles using Arecibo ISR measurements for 26 June 2006, E-region from GPS/MET 1995, Abel versus gradient assisted retrieval, 3000 profiles/day, plasmasphere, JASON TEC above satellite, GPS equatorial plasmasphere measurements, April 2002 geomagnetic storm, and space-based GPS tomography.

  10. ARL Support of NRL Rocket Experiments to Investigate Ionospheric Phenomena

    DTIC Science & Technology

    2010-08-31

    reallocate the funds to support NRL’s ongoing efforts to develop an ionospheric tomography network in South America to support the C/NOFS satellite...of NRL Rocket Experiments to Investigate Ionospheric Phenomena 5a. CONTRACT NUMBER N00173-09-1-G036 5b. GRANT NUMBER N00173-09-1-G036 5c...1-G036 ARL Support of NRL Rocket Experiments to Investigate Ionospheric Phenomena BY DR. TREVOR W. GARNER APPLIED RESEARCH LABORATORIES THE

  11. Anthropometric and computerized tomographic measurements of lower extremity lean body mass.

    PubMed

    Buckley, D C; Kudsk, K A; Rose, B S; Fatzinger, P; Koetting, C A; Schlatter, M

    1987-02-01

    The loss of lean muscle mass is one of the hallmarks of protein-calorie malnutrition. Anthropometry is a standardized technique used to assess the response of muscle mass to nutrition therapy by quantifying the muscle and fat compartments. That technique does not accurately reflect actual limb composition, whereas computerized tomography does. Twenty lower extremities on randomly chosen men and women patients were evaluated by anthropometry and computerized tomography. Total area, muscle plus bone area, total volume, and muscle plus bone volume were correlated, using Heymsfield's equation and computerized tomography-generated areas. Anthropometrics overestimated total and muscle plus bone cross-sectional areas at almost every level. Anthropometry overestimated total area and total volume by 5% to 10% but overestimated muscle plus bone area and muscle plus bone volume by as much as 40%. Anthropometry, while easily performed and useful in large population groups for epidemiological studies, offers a poor assessment of lower extremity composition. On the other hand, computerized tomography is also easily performed and, while impractical for large population groups, does offer an accurate assessment of the lower extremity tissue compartments and is an instrument that might be used in research on lean muscle mass.

  12. Investigation of Pre-Earthquake Ionospheric Disturbances by 3D Tomographic Analysis

    NASA Astrophysics Data System (ADS)

    Yagmur, M.

    2016-12-01

    Ionospheric variations before earthquakes have been widely discussed phenomena in ionospheric studies. To clarify the source and mechanism of these phenomena is highly important for earthquake forecasting. To well understanding the mechanical and physical processes of pre-seismic Ionospheric anomalies that might be related even with Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling, both statistical and 3D modeling analysis are needed. For these purpose, firstly we have investigated the relation between Ionospheric TEC Anomalies and potential source mechanisms such as space weather activity and lithospheric phenomena like positive surface electric charges. To distinguish their effects on Ionospheric TEC, we have focused on pre-seismically active days. Then, we analyzed the statistical data of 54 earthquakes that M≽6 between 2000 and 2013 as well as the 2011 Tohoku and the 2016 Kumamoto Earthquakes in Japan. By comparing TEC anomaly and Solar activity by Dst Index, we have found that 28 events that might be related with Earthquake activity. Following the statistical analysis, we also investigate the Lithospheric effect on TEC change on selected days. Among those days, we have chosen two case studies as the 2011 Tohoku and the 2016 Kumamoto Earthquakes to make 3D reconstructed images by utilizing 3D Tomography technique with Neural Networks. The results will be presented in our presentation. Keywords : Earthquake, 3D Ionospheric Tomography, Positive and Negative Anomaly, Geomagnetic Storm, Lithosphere

  13. A motion artefact study and locally deforming objects in computerized tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-11-01

    Movements of the object during the data collection in computerized tomography can introduce motion artefacts in the reconstructed image. They can be reduced by employing information about the dynamic behaviour within the reconstruction step. However, inaccuracies concerning the movement are inevitable in practice. In this article, we give an explicit characterization of what is visible in an image obtained by a reconstruction algorithm with incorrect motion information. Then, we use this result to study in detail the situation of locally deforming objects, i.e. individual parts of the object have a different dynamic behaviour. In this context, we prove that additional artefacts arise due to the global nature of the Radon transform, even if the motion is exactly known. Based on our analysis, we propose a numerical scheme to reduce these artefacts in the reconstructed image. All our results are illustrated by numerical examples.

  14. Three-Dimensional Planning in Maxillofacial Fracture Surgery: Computer-Aided Design/Computer-Aided Manufacture Surgical Splints by Integrating Cone Beam Computerized Tomography Images Into Multislice Computerized Tomography Images.

    PubMed

    Ren, Jiayin; Zhou, Zhongwei; Li, Peng; Tang, Wei; Guo, Jixiang; Wang, Hu; Tian, Weidong

    2016-09-01

    This study aimed to evaluate an innovative workflow for maxillofacial fracture surgery planning and surgical splint designing. The maxillofacial multislice computerized tomography (MSCT) data and dental cone beam computerized tomography (CBCT) data both were obtained from 40 normal adults and 58 adults who suffered fractures. The each part of the CBCT dentition image was registered into MSCT image by the use of the iterative closest point algorithm. Volume evaluation of the virtual splints that were designed by the registered MSCT images and MSCT images of the same object was performed. Eighteen patients (group 1) were operated without any splint. Twenty-one (group 2) and 19 patients (group 3) used the splints designed according to the MSCT images and registered MSCT images, respectively. The authors' results showed that the mean errors between the 2 models ranged from 0.53 to 0.92 mm and the RMS errors ranged from 0.38 to 0.69 mm in fracture patients. The mean errors between the 2 models ranged from 0.47 to 0.85 mm and the RMS errors ranged from 0.33 to 0.71 mm in normal adults. 72.22% patients in group 1 recovered occlusion. 85.71% patients in group 2, and 94.73% patients in group 3 reconstructed occlusion. There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients (P <0.05). The MSCT images based splints' volume was statistically significantly distinct from the registered MSCT splints' volume in normal adults (P <0.05). There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients and normal adults (P <0.05). The occlusion recovery rate of group 3 was better than that of group 1 and group 2. The way of integrating CBCT images into MSCT images for splints designing was feasible. The volume of the splints designed by MSCT images tended to be smaller than the splints designed by

  15. Results From YOUTHSAT - Indian experiment in earths thermosphere-ionosphere region.

    NASA Astrophysics Data System (ADS)

    Tarun Kumar, Pant

    It is known that the characterization and modeling of the ionosphere/thermosphere necessitates a comprehensive understanding of the various processes prevailing therein. India’s first, indigenous and dedicated aeronomy satellite 'YOUTHSAT' carrying two Indian payloads - RaBIT (Radio Beacon for Ionospheric Tomography), and LiVHySI (Limb Viewing Hyper Spectral Imager) and one Russian payload SOLRAD, was conceived primarily to address to this aspect and launched on April 20, 2011 in an 818 Km polar orbit from SHAR on ISRO launch vehicle PSLV. The payloads RaBIT and LiVHySI were designed specifically to observe the ionised and neutral components of the upper atmosphere respectively. YOUTHSAT is a small satellite quiet advanced in its class having all the functionalities which are normally associated with a bigger satellite. The rising phase of the 23rd solar cycle was considered to be the best window for various observations from onboard YOUTHSAT. As an Indo Russian endeavour, it was launched with an objective of investigating the terrestrial upper atmosphere vis-a-vis the activity on the sun. RaBIT, an ISRO venture, is a radio beacon emitting coherent radio signal at 150 and 400 MHz frequencies. These are received using a chain of five receivers deployed along the ~76oE meridian at Trivandrum, Bangalore, Hyderabad, Bhopal and Delhi. The receivers estimate the Total Electron Content (TEC) of the ionosphere through the relative phase change of the received radio signals. The TECs thus estimated near simultaneously, are used to generate a tomogram, which gives an Altitude-Latitude distribution of the ionospheric electron density. For YOUTHSAT configuration, the tomogram covers the ionosphere from a few degrees (5-6o) south of Trivandrum to about 3-4o north of Delhi depending upon the satellite elevation. The RaBIT tomography network is by far the longest network existing anywhere in the world, and is unique therefore. Through RaBIT, a unique dataset leading to

  16. A multiresolution inversion for imaging the ionosphere

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Zheng, Ya-Nan; Mitchell, Cathryn N.; Li, Bo

    2017-06-01

    Ionospheric tomography has been widely employed in imaging the large-scale ionospheric structures at both quiet and storm times. However, the tomographic algorithms to date have not been very effective in imaging of medium- and small-scale ionospheric structures due to limitations of uneven ground-based data distributions and the algorithm itself. Further, the effect of the density and quantity of Global Navigation Satellite Systems data that could help improve the tomographic results for the certain algorithm remains unclear in much of the literature. In this paper, a new multipass tomographic algorithm is proposed to conduct the inversion using intensive ground GPS observation data and is demonstrated over the U.S. West Coast during the period of 16-18 March 2015 which includes an ionospheric storm period. The characteristics of the multipass inversion algorithm are analyzed by comparing tomographic results with independent ionosonde data and Center for Orbit Determination in Europe total electron content estimates. Then, several ground data sets with different data distributions are grouped from the same data source in order to investigate the impact of the density of ground stations on ionospheric tomography results. Finally, it is concluded that the multipass inversion approach offers an improvement. The ground data density can affect tomographic results but only offers improvements up to a density of around one receiver every 150 to 200 km. When only GPS satellites are tracked there is no clear advantage in increasing the density of receivers beyond this level, although this may change if multiple constellations are monitored from each receiving station in the future.

  17. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  18. Ionospheric-thermospheric UV tomography: 3. A multisensor technique for creating full-orbit reconstructions of atmospheric UV emission

    NASA Astrophysics Data System (ADS)

    Hei, Matthew A.; Budzien, Scott A.; Dymond, Kenneth F.; Nicholas, Andrew C.; Paxton, Larry J.; Schaefer, Robert K.; Groves, Keith M.

    2017-07-01

    We present the Volume Emission Rate Tomography (VERT) technique for inverting satellite-based, multisensor limb and nadir measurements of atmospheric ultraviolet emission to create whole-orbit reconstructions of atmospheric volume emission rate. The VERT approach is more general than previous ionospheric tomography methods because it can reconstruct the volume emission rate field irrespective of the particular excitation mechanisms (e.g., radiative recombination, photoelectron impact excitation, and energetic particle precipitation in auroras); physical models are then applied to interpret the airglow. The technique was developed and tested using data from the Special Sensor Ultraviolet Limb Imager and Special Sensor Ultraviolet Spectrographic Imager instruments aboard the Defense Meteorological Satellite Program F-18 spacecraft and planned for use with upcoming remote sensing missions. The technique incorporates several features to optimize the tomographic solutions, such as the use of a nonnegative algorithm (Richardson-Lucy, RL) that explicitly accounts for the Poisson statistics inherent in optical measurements, capability to include extinction effects due to resonant scattering and absorption of the photons from the lines of sight, a pseudodiffusion-based regularization scheme implemented between iterations of the RL code to produce smoother solutions, and the capability to estimate error bars on the solutions. Tests using simulated atmospheric emissions verify that the technique performs well in a variety of situations, including daytime, nighttime, and even in the challenging terminator regions. Lastly, we consider ionospheric nightglow and validate reconstructions of the nighttime electron density against Advanced Research Project Agency (ARPA) Long-range Tracking and Identification Radar (ALTAIR) incoherent scatter radar data.

  19. Skeletal maturity assessment with the use of cone-beam computerized tomography.

    PubMed

    Joshi, Vajendra; Yamaguchi, Tetsutaro; Matsuda, Yukiko; Kaneko, Norikazu; Maki, Kotarou; Okano, Tomohiro

    2012-06-01

    The aim of the study was to compare cervical vertebrae maturity assessed with the use of cone-beam computerized tomography (CBCT) with the hand-wrist maturation method and cervical vertebrae maturation assessed with the use of lateral cephalography for the assessment of skeletal maturity. Assessment of skeletal maturation was done using skeletal maturity indicators (SMI) from hand-wrist radiography, cervical vertebrae maturity index (CVMI) from CBCT and lateral cephalography (cephalo-CVMI). The Spearman correlation coefficient was used for statistical analysis. We observed a significant relationship between CBCT-CVMI and cephalo-CVMI as well as between CBCT-CVMI and SMI stages. The Spearman correlation coefficient value between CBCT-CVMI and cephalo-CVMI was 0.975 (P < .0001) and between CBCT-CVMI and SMI was 0.961(P < .0001). Cervical vertebrae maturity assessment with CBCT provided a reliable assessment of pubertal growth spurt, and therefore CBCT can be used to assess skeletal maturity. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Planning guidelines for computerized transaxial tomography (CT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-11-23

    Guidelines to assist local communities in review and decisionmaking related to computerized tomography (CT) 'head' and 'whole body' scanner needs and placement are presented. Although medical benefits for head scanning are well established, the proper role of whole body scanning in relation to other diagnostic procedures has not been determined. It is recommended that a 20 percent weighted consideration could be given to a potential CT scanner applicant's present capabilities in diagnostic 'body' work. The following guidelines for CT are recommended for use in assessing work qualifications of potential CT scanner applicants: (1) The facility must have an active neurosurgicalmore » service, with a geographically full-time board - certified neurosurgeon and at least 50 intracranial procedures performed annually. (2) The facility must have an active neurological service, with a geographically full-time board - certified neurologist. (3) The facility must have on staff a qualified neuroradiologist. It is recommended that the CT scanner utilization level be a minimum of 3,000 examinations per year per unit of new equipment. The applicant must submit financial data and must be committed to providing care to all patients, independent of ability to pay. The applicant must submit letters from area hospitals agreeing to utilize the scanner services. Additional criteria are given for body scanning work and for the number of scanners in a specific area. Detailed information is presented about scanner development and use in southeastern Pennsylvania and neighboring planning areas, and the cost of scanner operations is compared with revenues. The CT scanner committee membership is included.« less

  1. Integrated Multi-Point Space Plasma Measurements With Four Ionospheric Satellites

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.; Selcher, C.; Wilkens, M. R.; McHarg, M. G.; Krause, L.; Chun, F.; Enloe, L.; Panholzer, R.; Sakoda, D.; Phelps, R.; D Roussel-Dupre, D.; Colestock, P.; Close, S.

    2006-12-01

    The STP-1 launch scheduled for late 2006 will place four satellites with ionospheric plasma diagnostics into the same nearly circular orbit with an altitude of 560 km and inclination of 35.4°. The satellites will allow for unique multipoint measurements of ionospheric scintillations and their causes. Both the radio and in-situ diagnostics will provide coverage of low- and mid-latitudes. The four satellites, STPSat1, NPSat1, FalconSat3, and CFE will follow the same ground-track but because of drag and mass differences their relative velocities will be different and vary during the lifetime of the satellites. The four satellites will start close together; separate over a few months and coming back together with near conjunctions at six and eight months. Two satellite conjunctions between NPSat1 and STPSat1 will occur most often, approximately one month apart at the end of the mission. STPSat1 is equipped with CITRIS (sCintillation and TEC Receiver In Space) which will measure scintillations in the VHF, UHF and L-band along with measuring Total Electron Content (TEC) along the propagation path. NPSat1 will carry a three-frequency CERTO (Coherent Electromagnetic Radio TOmography) Beacon which broadcasts phase-coherent signals at 150.012 MHz, 400.032 MHz, and 1066.752 MHz. CITRIS will be able to measure TEC and Scintillations along the orbital path (propagation path from NPSat1 to STPSat1) as well as between the CITRIS and the ground. NPSat1 carries electron and ion saturation Langmuir Probes, while FalconSat3 carries the FLAPS (FLAt Plasma Spectrometer) and PLANE (Plasma Local Anomalous Noise Environment). The in-situ diagnostic complement the CITRIS/CERTO radio techniques in many ways. The CIBOLA Flight Experiment (CFE) contains a wide band receiver covering 100 to 500 MHz. The CFE data can be processed to show distortion of wide-band modulations by ionospheric irregularities. CFE and CITRIS can record ground transmissions from the French DORIS beacons which radiate

  2. Computerized tomography using video recorded fluoroscopic images

    NASA Technical Reports Server (NTRS)

    Kak, A. C.; Jakowatz, C. V., Jr.; Baily, N. A.; Keller, R. A.

    1975-01-01

    A computerized tomographic imaging system is examined which employs video-recorded fluoroscopic images as input data. By hooking the video recorder to a digital computer through a suitable interface, such a system permits very rapid construction of tomograms.

  3. Magnetosphere - ionosphere coupling process in the auroral region estimated from auroral tomography

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Ogawa, Y.; Kadokura, A.; Gustavsson, B.; Kauristie, K.; Whiter, D. K.; Enell, C. F. T.; Brandstrom, U.; Sergienko, T.; Partamies, N.; Kozlovsky, A.; Miyaoka, H.; Kosch, M. J.

    2016-12-01

    We have studied the magnetosphere - ionosphere coupling process by using multiple auroral images and the ionospheric data obtained by a campaign observation with multi-point imagers and the EISCAT UHF radar in Northern Europe. We observed wavy structure of discrete arcs around the magnetic zenith at Tromso, Norway, from 22:00 to 23:15 UT on March 14, 2015, followed by auroral breakup, poleward expansion, and pulsating auroras. During this interval, the monochromatic (427.8nm) images were taken at a sampling interval of 2 seconds by three EMCCD imagers and at an interval of 10 seconds by totally six imagers. The EISCAT UHF radar at Tromso measured the ionospheric parameters along the magnetic field line from 20 to 24 UT. We applied the tomographic inversion technique to these data set to retrieve 3D distribution of the 427.8nm emission, that enabled us to obtain the following quantities for the auroras that change from moment to moment; (1) the relation between the 427.8nm emission and the electron density enhancement along the field line, (2) the horizontal distribution of energy flux of auroral precipitating electrons, and (3) the horizontal distribution of height-integrated ionospheric conductivity. By combining those with the ionospheric equivalent current estimated from the ground-based magnetometer network, we discuss the current system of a sequence of the auroral event in terms of the magnetosphere-ionosphere coupling.

  4. Checking the possibility of controlling fuel element by X-ray computerized tomography

    NASA Astrophysics Data System (ADS)

    Trinh, V. B.; Zhong, Y.; Osipov, S. P.; Batranin, A. V.

    2017-08-01

    The article considers the possibility of checking fuel elements by X-ray computerized tomography. The checking tasks are based on the detection of particles of active material, evaluation of the heterogeneity of the distribution of uranium salts and the detection of clusters of uranium particles. First of all, scheme of scanning improve the performance and quality of the resulting three-dimensional images of the internal structure is determined. Further, the possibility of detecting clusters of uranium particles having the size of 1 mm3 and measuring the coordinates of clusters of uranium particles in the middle layer with the accuracy of within a voxel size (for the considered experiments of about 80 μm) is experimentally proved in the main part. The problem of estimating the heterogeneity of the distribution of the active material in the middle layer and the detection of particles of active material with a nominal diameter of 0.1 mm in the “blank” is solved.

  5. Ionospheric tomography over South Africa: Comparison of MIDAS and ionosondes measurements

    NASA Astrophysics Data System (ADS)

    Giday, Nigussie M.; Katamzi, Zama T.; McKinnell, Lee-Anne

    2016-01-01

    This paper aims to show the results of an ionospheric tomography algorithm called Multi-Instrument Data Analysis System (MIDAS) over the South African region. Recorded data from a network of 49-53 Global Positioning System (GPS) receivers over the South African region was used as input for the inversion. The inversion was made for April, July, October and December representing the four distinct seasons (Autumn, Winter, Spring and Summer respectively) of the year 2012. MIDAS reconstructions were validated by comparing maximum electron density of the F2 layer (NmF2) and peak height (hmF2) values predicted by MIDAS to those derived from three South African ionosonde measurements. The diurnal and seasonal trends of the MIDAS NmF2 values were in good agreement with the respective NmF2 values derived from the ionosondes. In addition, good agreement was found between the two measurements with minimum and maximum coefficients of determination (r2) between 0.84 and 0.96 in all the stations and validation days. The seasonal trend of the NmF2 values over the South Africa region has been reproduced using this inversion which was in good agreement with the ionosonde measurements. Moreover, a comparison of the International Reference Ionosphere (IRI-2012) model NmF2 values with the respective ionosonde derived NmF2 values showed to have higher deviation than a similar comparison between the MIDAS reconstruction and the ionosonde measurements. However, the monthly averaged hmF2 values derived from IRI 2012 model showed better agreement than the respective MIDAS reconstructed hmF2 values compared with the ionosonde derived hmF2 values.The performance of the MIDAS reconstruction was observed to deteriorate with increased geomagnetic conditions. MIDAS reconstructed electron density were slightly elevated during three storm periods studied (24 April, 15 July and 8 October) which was in good agreement with the ionosonde measurements.

  6. Computerized Tomography Measures During and After Artificial Lengthening of the Vocal Tract in Subjects With Voice Disorders.

    PubMed

    Guzman, Marco; Miranda, Gonzalo; Olavarria, Christian; Madrid, Sofia; Muñoz, Daniel; Leiva, Miguel; Lopez, Lorena; Bortnem, Cori

    2017-01-01

    The present study aimed to observe the effect of two types of tubes on vocal tract bidimensional and tridimensional images. Ten participants with hyperfunctional dysphonia were included. Computerized tomography was performed during production of sustained [a:], followed by sustained phonation into a drinking straw, and then repetition of sustained [a:]. A similar procedure was performed with a stirring straw after 15 minutes of vocal rest. Anatomic distances and area measures were obtained from computerized tomography midsagittal and transversal images. Vocal tract total volume was also calculated. During tube phonation, increases were measured in the vertical length of the vocal tract, oropharyngeal area, hypopharyngeal area, outlet of the epilaryngeal tube, and inlet to the lower pharynx. Also, the larynx was lower, and more closure was noted between the velum and the nasal passage. Tube phonation causes an increased total vocal tract volume, mostly because of the increased cross-sectional areas in the pharyngeal region. This change is more prominent when the tube offers more airflow resistance (stirring straw) compared with less airflow resistance (drinking straw). Based on our data and previous studies, it seems that vocal tract changes are not dependent on the voice condition (vocally trained, untrained, or disordered voices), but on the exercise itself and the type of instructions given to subjects. Tube phonation is a good option to reach therapeutic goals (eg, wide pharynx and low larynx) without giving biomechanical instructions, but only asking patients to feel easy voice and vibratory sensations. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Sodankylä ionospheric tomography dataset 2003-2014

    NASA Astrophysics Data System (ADS)

    Norberg, J.; Roininen, L.; Kero, A.; Raita, T.; Ulich, T.; Markkanen, M.; Juusola, L.; Kauristie, K.

    2015-12-01

    Sodankylä Geophysical Observatory has been operating a tomographic receiver network and collecting the produced data since 2003. The collected dataset consists of phase difference curves measured from Russian COSMOS dual-frequency (150/400 MHz) low-Earth-orbit satellite signals, and tomographic electron density reconstructions obtained from these measurements. In this study vertical total electron content (VTEC) values are integrated from the reconstructed electron densities to make a qualitative and quantitative analysis to validate the long-term performance of the tomographic system. During the observation period, 2003-2014, there were three-to-five operational stations at the Fenno-Scandinavian sector. Altogether the analysis consists of around 66 000 overflights, but to ensure the quality of the reconstructions, the examination is limited to cases with descending (north to south) overflights and maximum elevation over 60°. These constraints limit the number of overflights to around 10 000. Based on this dataset, one solar cycle of ionospheric vertical total electron content estimates is constructed. The measurements are compared against International Reference Ionosphere IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.

  8. Low-latitude Ionospheric Research using the CIRCE Mission

    NASA Astrophysics Data System (ADS)

    Dymond, K.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.

    2016-12-01

    The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a dual-satellite mission consisting of two 6U CubeSats actively maintaining a lead-follow configuration in the same orbit with a launch planned for the 2018-2019 time frame. These nano-satellites will each feature two 1U ultraviolet photometers, observing the 135.6 nm emission of atomic oxygen at nighttime. The primary objective is to characterize the two-dimensional distribution of electrons in the Equatorial Ionization Anomaly (EIA). The methodology used to reconstruct the nighttime ionosphere employs continuous UV photometry from four distinct viewing angles in combination with an additional data source, such as in situ plasma density measurements or a wide-band beacon data, with advanced image space reconstruction algorithm tomography techniques. The COSMIC/FORMOSAT-3 (CF3) constellation featured six Tiny Ionospheric Photometers, a compact UV sensor design which served as the pathfinder for the CIRCE instruments. The TIP instruments on the CF3 satellites demonstrated detection of ionospheric bubbles before they had penetrated the peak of the F-region ionosphere. We present our mission concept, simulations illustrating the imaging capability of the sensor suite, and a range of science questions addressable using such a system.

  9. Using three-dimensional-computerized tomography as a diagnostic tool for temporo-mandibular joint ankylosis: a case report.

    PubMed

    Kao, S Y; Chou, J; Lo, J; Yang, J; Chou, A P; Joe, C J; Chang, R C

    1999-04-01

    Roentgenographic examination has long been a useful diagnostic tool for temporo-mandibular joint (TMJ) disease. The methods include TMJ tomography, panoramic radiography and computerized tomography (CT) scan with or without injection of contrast media. Recently, three-dimensional CT (3D-CT), reconstructed from the two-dimensional image of a CT scan to simulate the soft tissue or bony structure of the real target, was proposed. In this report, a case of TMJ ankylosis due to traumatic injury is presented. 3D-CT was employed as one of the presurgical roentgenographic diagnostic tools. The conventional radiographic examination including panoramic radiography and tomography showed lesions in both sides of the mandible. CT scanning further suggested that the right-sided lesion was more severe than that on the left. With 3D-CT image reconstruction the size and extent of the lesions were clearly observable. The decision was made to proceed with an initial surgical approach on the right side. With condylectomy and condylar replacement using an autogenous costochondral graft on the right side, the range of mouth opening improved significantly. In this case report, 3D-CT demonstrates its advantages as a tool for the correct and precise diagnosis of TMJ ankylosis.

  10. Computerized tomography-assisted calculation of sinus augmentation volume.

    PubMed

    Krennmair, Gerald; Krainhöfner, Martin; Maier, Harald; Weinländer, Michael; Piehslinger, Eva

    2006-01-01

    This study was intended to calculate the augmentation volume for a sinus lift procedure based on cross-sectional computerized tomography (CT) scans for 2 different augmentation heights. Based on area calculations of cross-sectional CT scans, the volume of additional bone needed was calculated for 44 sinus lift procedures. The amount of bone volume needed to raise the sinus floor to heights of both 12 and 17 mm was calculated. To achieve a sinus floor height of 12 mm, it was necessary to increase the height by a mean of 7.2+/-2.1 mm (range, 3.0 to 10.5 mm), depending on the residual ridge height; to achieve a height of 17 mm, a mean of 12.4+/-2.0 mm (range, 8.5 to 15.5 mm) was required (P < .01). The calculated augmentation volume for an augmentation height of 12 mm was 1.7+/-.9 cm3; for an augmentation height of 17 mm, the volume required was 3.6+/-1.5 cm3. Increasing the height of the sinus lift by 5 mm, ie, from 12 mm to 17 mm augmentation height, increased the augmentation volume by 100%. A significant correlation was found between augmentation height and the calculated sinus lift augmentation volume (r = 0. 78, P < .01). Detailed preoperative knowledge of sinus lift augmentation volume is helpful as a predictive value in deciding on a donor site for harvesting autogenous bone and on the ratio of bone to bone substitute to use. Calculation of the augmentation size can help determine the surgical approach and thus perioperative treatment and the costs of the surgery for both patients and clinicians.

  11. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and

  12. Novel Application of Micro-Computerized Tomography for Morphologic Characterization of the Murine Penis.

    PubMed

    O'Neill, Marisol; Huang, Gene O; Lamb, Dolores J

    2017-12-01

    The murine penis model has enriched our understanding of anomalous penile development. The morphologic characterization of the murine penis using conventional serial sectioning methods is labor intensive and prone to errors. To develop a novel application of micro-computerized tomography (micro-CT) with iodine staining for rapid, non-destructive morphologic study of murine penis structure. Penises were dissected from 10 adult wild-type mice and imaged using micro-CT with iodine staining. Images were acquired at 5-μm spatial resolution on a Bruker SkyScan 1272 micro-CT system. After images were acquired, the specimens were washed of any remaining iodine and embedded in paraffin for conventional histologic examination. Histologic and micro-CT measurements for all specimens were made by 2 independent observers. Measurements of penile structures were made on virtual micro-CT sections and histologic slides. The Lin concordance correlation coefficient demonstrated almost perfect strength of agreement for interobserver variability for histologic section (0.9995, 95% CI = 0.9990-0.9997) and micro-CT section (0.9982, 95% CI = 0.9963-0.9991) measurements. Bland-Altman analysis for agreement between the 2 modalities of measurement demonstrated mean differences of -0.029, 0.022, and -0.068 mm for male urogenital mating protuberance, baculum, and penile glans length, respectively. There did not appear to be a bias for overestimation or underestimation of measured lengths and limits of agreement were narrow. The enhanced ability offered by micro-CT to phenotype the murine penis has the potential to improve translational studies examining the molecular pathways contributing to anomalous penile development. The present study describes the first reported use of micro-CT with iodine staining for imaging the murine penis. Producing repeated histologic sections of identical orientation was limited by inherent imperfections in mounting and tissue sectioning, but this was

  13. Studies of Ionospheric Plasma Structuring at Low Latitudes from Space and Ground, their Modeling and Relationship to Scintillations

    DTIC Science & Technology

    2008-09-30

    2006JA011646, 2006. [published, refereed] Lee, J. K., F. Kamalabadi, and J. J. Makela, Three-dimensional tomography of ionospheric variability using a...Studies of Ionospheric Plasma Structuring at Low Latitudes from Space and Ground, their Modeling and...illinois.edu Award Number: N00173-05-1-G904 LONG-TERM GOALS This program combines observations and modeling of the nighttime ionosphere to come to a

  14. Repeatability of Computerized Tomography-Based Anthropomorphic Measurements of Frailty in Patients With Pulmonary Fibrosis Undergoing Lung Transplantation.

    PubMed

    McClellan, Taylor; Allen, Brian C; Kappus, Matthew; Bhatti, Lubna; Dafalla, Randa A; Snyder, Laurie D; Bashir, Mustafa R

    To determine interreader and intrareader repeatability and correlations among measurements of computerized tomography-based anthropomorphic measurements in patients with pulmonary fibrosis undergoing lung transplantation. This was an institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study of 23 randomly selected subjects (19 male and 4 female; median age = 69 years; range: 66-77 years) with idiopathic pulmonary fibrosis undergoing pulmonary transplantation, who had also undergone preoperative thoracoabdominal computerized tomography. Five readers of varying imaging experience independently performed the following cross-sectional area measurements at the inferior endplate of the L3 vertebral body: right and left psoas muscles, right and left paraspinal muscles, total abdominal musculature, and visceral and subcutaneous fat. The following measurements were obtained at the inferior endplate of T6: right and left paraspinal muscles with and without including the trapezius muscles and subcutaneous fat. Three readers repeated all measurements to assess intrareader repeatability. Intrareader repeatability was nearly perfect (interclass correlation coefficients = 0.99, P < 0.001). Interreader agreement was excellent across all 5 readers (interclass correlation coefficients: 0.71-0.99, P < 0.001). Coefficients of variance between measures ranged from 3.2%-6.8% for abdominal measurements, but were higher for thoracic measurements, up to 23.9%. Correlation between total paraspinal and total psoas muscle area was strong (r 2 = 0.67, P < 0.001). Thoracic and abdominal musculature had a weaker correlation (r 2 = 0.35-0.38, P < 0.001). Measures of thoracic and abdominal muscle and fat area are highly repeatable in patients with pulmonary fibrosis undergoing lung transplantation. Measures of muscle area are strongly correlated among abdominal locations, but inversely correlated between abdominal and thoracic locations

  15. Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinerstein, S.L.; Kovarsky, J.

    1984-08-01

    A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvismore » were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.« less

  16. Numerical Simulations to Assess ART and MART Performance for Ionospheric Tomography of Chapman Profiles.

    PubMed

    Prol, Fabricio S; Camargo, Paulo O; Muella, Marcio T A H

    2017-01-01

    The incomplete geometrical coverage of the Global Navigation Satellite System (GNSS) makes the ionospheric tomographic system an ill-conditioned problem for ionospheric imaging. In order to detect the principal limitations of the ill-conditioned tomographic solutions, numerical simulations of the ionosphere are under constant investigation. In this paper, we show an investigation of the accuracy of Algebraic Reconstruction Technique (ART) and Multiplicative ART (MART) for performing tomographic reconstruction of Chapman profiles using a simulated optimum scenario of GNSS signals tracked by ground-based receivers. Chapman functions were used to represent the ionospheric morphology and a set of analyses was conducted to assess ART and MART performance for estimating the Total Electron Content (TEC) and parameters that describes the Chapman function. The results showed that MART performed better in the reconstruction of the electron density peak and ART gave a better representation for estimating TEC and the shape of the ionosphere. Since we used an optimum scenario of the GNSS signals, the analyses indicate the intrinsic problems that may occur with ART and MART to recover valuable information for many applications of Telecommunication, Spatial Geodesy and Space Weather.

  17. Computerized tomography tailored for the assessment of microscopic hematuria.

    PubMed

    Lang, Erich K; Macchia, Richard J; Thomas, Raju; Ruiz-Deya, Gilberto; Watson, Richard A; Richter, Frank; Irwin R, Robert; Marberger, Michael; Mydlo, Jack; Lechner, Gerhard; Cho, Kyunghee C; Gayle, Brian

    2002-02-01

    We report the results of a multicenter study of arterial, corticomedullary, nephrographic and excretory phase helical computerized tomography (CT) for detecting and characterizing abnormalities causing asymptomatic microscopic hematuria. We evaluated 350 consecutive patients, including 216 men and 134 women 23 to 88 years old, with asymptomatic microscopic hematuria of undetermined cause at 4 medical centers. Patients with known urological pathology were excluded from study. We performed 4 helical CT sequences, including pre-enhancement phase imaging from kidney to symphysis pubis, arterial phase imaging of the kidney and lower pelvis, corticomedullary nephrographic phase imaging of the kidney and lower pelvis, and excretory phase imaging from kidney to symphysis pubis with 2 to 5 mm. collimation and 1 to 1.5 pitch. Of 171 proved lesions 158 were correctly diagnosed. There were 10 false-positive and 13 false-negative diagnoses, indicating 0.9239 sensitivity, 0.9441 specificity, 0.9404 positive and 0.9285 negative predictive values, (p <0.001). All cases of congenital renal lesions, calculous disease, ureteral lesion and neoplastic lesion of the bladder were correctly diagnosed, as were 40 of 41 inflammatory renal, 21 of 23 renal masses and 13 of 16 inflammatory bladder lesions. In 27 patients with renal calculi the study was limited to pre-enhancement spiral CT. A positive diagnosis rate of 45.1% (158 of 350 cases) for the causes of heretofore refractory cases of hematuria with high sensitivity and specificity attest to the effectiveness of our hematuria CT protocol and support its use.

  18. LISN: A distributed observatory to image and study ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Sheehan, R.; Valladares, C. E.

    2013-05-01

    During nighttime the low-latitude ionosphere commonly develops plasma irregularities and density structures able to disrupt radio wave signals. This interference produces an adverse impact on satellite communication and navigation signals. For example, EM signals originated from satellites can suffer fading as deep as 20 dB even at UHF frequencies. In addition, civil aviation is increasingly dependent upon Global Navigation Satellite Systems and disruption of the navigation capability from ionospheric irregularities poses a clear threat to passengers and crews. To monitor and specify the conditions of the ionosphere over South America, the Low-latitude Ionospheric Sensor Network (LISN) was established as a permanent array of scientific instruments that operate continuously and transmit their observables to a central server in a real-time basis. Presently, the LISN observatory includes 3 different types of instruments: (1) 47 GPS receivers, (2) 5 flux-gate magnetometers and (3) 2 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes. In addition to providing a nowcast of the disturbed state of the ionosphere over South America, LISN permits detailed studies of the initiation and development of plasma irregularities. By using data assimilation and tomography techniques, LISN provides continuous estimates of several important geophysical parameters that are indispensable to a program aimed at forecasting the plasma electrodynamics and the formation of density structures in the low-latitude ionosphere.

  19. The Inversion of Ionospheric/plasmaspheric Electron Density From GPS Beacon Observations

    NASA Astrophysics Data System (ADS)

    Zou, Y. H.; Xu, J. S.; Ma, S. Y.

    It is a space-time 4-D tomography to reconstruct ionospheric/ plasmaspheric elec- tron density, Ne, from ground-based GPS beacon measurements. The mathematical foundation of such inversion is studied in this paper and some simulation results of reconstruction for GPS network observation are presented. Assuming reasonably a power law dependence of NE on time with an index number of 1-3 during one ob- servational time of GPS (60-90min.), 4-D inversion in consideration is reduced to a 3-D cone-beam tomography with incomplete projections. To see clearly the effects of the incompleteness on the quality of reconstruction for 3-D condition, we deduced theoretically the formulae of 3-D parallel-beam tomography. After establishing the mathematical basis, we adopt linear temporal dependence of NE and voxel elemental functions to perform simulation of NE reconstruction with the help of IRI90 model. Reasonable time-dependent 3-D images of ionosphere/ plasmasphere electron density distributions are obtained when taking proper layout of the GPS network and allowing variable resolutions in vertical.

  20. Preoperative Computerized Tomography and Magnetic Resonance Imaging of the Pancreas Predicts Pancreatic Mass and Functional Outcomes After Total Pancreatectomy and Islet Autotransplant.

    PubMed

    Young, Michael C; Theis, Jake R; Hodges, James S; Dunn, Ty B; Pruett, Timothy L; Chinnakotla, Srinath; Walker, Sidney P; Freeman, Martin L; Trikudanathan, Guru; Arain, Mustafa; Robertson, Paul R; Wilhelm, Joshua J; Schwarzenberg, Sarah J; Bland, Barbara; Beilman, Gregory J; Bellin, Melena D

    2016-08-01

    Approximately two thirds of patients will remain on insulin therapy after total pancreatectomy with islet autotransplant (TPIAT) for chronic pancreatitis. We investigated the relationship between measured pancreas volume on computerized tomography or magnetic resonance imaging and features of chronic pancreatitis on imaging, with subsequent islet isolation and diabetes outcomes. Computerized tomography or magnetic resonance imaging was reviewed for pancreas volume (Vitrea software) and presence or absence of calcifications, atrophy, and dilated pancreatic duct in 97 patients undergoing TPIAT. Relationship between these features and (1) islet mass isolated and (2) diabetes status at 1-year post-TPIAT were evaluated. Pancreas volume correlated with islet mass measured as total islet equivalents (r = 0.50, P < 0.0001). Mean islet equivalents were reduced by more than half if any one of calcifications, atrophy, or ductal dilatation were observed. Pancreatic calcifications increased the odds of insulin dependence 4.0 fold (1.1, 15). Collectively, the pancreas volume and 3 imaging features strongly associated with 1-year insulin use (P = 0.07), islet graft failure (P = 0.003), hemoglobin A1c (P = 0.0004), fasting glucose (P = 0.027), and fasting C-peptide level (P = 0.008). Measures of pancreatic parenchymal destruction on imaging, including smaller pancreas volume and calcifications, associate strongly with impaired islet mass and 1-year diabetes outcomes.

  1. Computerized tomography-guided sphenopalatine ganglion pulsed radiofrequency treatment in 16 patients with refractory cluster headaches: Twelve- to 30-month follow-up evaluations.

    PubMed

    Fang, Luo; Jingjing, Lu; Ying, Shen; Lan, Meng; Tao, Wang; Nan, Ji

    2016-02-01

    Sphenopalatine ganglion percutaneous radiofrequency thermocoagulation treatment can improve the symptoms of cluster headaches to some extent. However, as an ablation treatment, radiofrequency thermocoagulation treatment also has side effects. To preliminarily evaluate the efficacy and safety of a non-ablative computerized tomography-guided pulsed radiofrequency treatment of sphenopalatine ganglion in patients with refractory cluster headaches. We included and analysed 16 consecutive cluster headache patients who failed to respond to conservative therapy from the Pain Management Center at the Beijing Tiantan Hospital between April 2012 and September 2013 treated with pulsed radiofrequency treatment of sphenopalatine ganglion. Eleven of 13 episodic cluster headaches patients and one of three chronic cluster headaches patient were completely relieved of the headache within an average of 6.3 ± 6.0 days following the treatment. Two episodic cluster headache patients and two chronic cluster headache patients showed no pain relief following the treatment. The mean follow-up time was 17.0 ± 5.5 months. All patients enrolled in this study showed no treatment-related side effects or complications. Our data show that patients with refractory episodic cluster headaches were quickly, effectively and safely relieved from the cluster period after computerized tomography-guided pulsed radiofrequency treatment of sphenopalatine ganglion, suggesting that it may be a therapeutic option if conservative treatments fail. © International Headache Society 2015.

  2. Positron emission tomography/computerized tomography in lung cancer

    PubMed Central

    Vural, Gulin Ucmak

    2014-01-01

    Positron emission tomography (PET) using 2-(18F)-flouro-2-deoxy-D-glucose (FDG) has emerged as a useful tool in the clinical work-up of lung cancer. This review article provides an overview of applications of PET in diagnosis, staging, treatment response evaluation, radiotherapy planning, recurrence assessment and prognostication of lung cancer. PMID:24914421

  3. A Medium-Scale Traveling Ionospheric Disturbance Observed from the Ground and from Space

    NASA Astrophysics Data System (ADS)

    Watts, C.; Dymond, K. F.; Coker, C.; Budzien, S.; Bernhardt, P.; Kassim, N.; Lazio, J.; Cohen, A.; Weiler, K.; Crane, P.; Clarke, T.; Rickard, L. J.; Taylor, G. B.; Schinzel, F.; Philstrom, Y.; Kuniyoshi, M.; Close, S.; Colestock, P.; Myers, S.; Datta, A.

    2008-12-01

    We report the first optical observations from space of a Medium-scale Traveling Ionospheric Disturbance (MSTID) of the Traveling Wave Packet type. The observations were made during the Combined Radio Interferometry and COSMIC Experiment in Tomography Campaign (CRICKET) held on September 15, 2007 at ~0830 UT. The experiment used a Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC also known as FORMOSAT-3) satellite in conjunction with the Very Large Array (VLA) radio telescope, located near Socorro, NM, to study the ionosphere from the global scale down to the regional scale while the TIDs propagated through it. The COSMIC/FORMOSAT-3 satellite measured the ionosphere both horizontally and with altitude while the VLA measured the directions and speed of the TIDs. Our observations provide new information on this poorly understood class of TID

  4. Variability in Cobb angle measurements using reformatted computerized tomography scans.

    PubMed

    Adam, Clayton J; Izatt, Maree T; Harvey, Jason R; Askin, Geoffrey N

    2005-07-15

    Survey of intraobserver and interobserver measurement variability. To assess the use of reformatted computerized tomography (CT) images for manual measurement of coronal Cobb angles in idiopathic scoliosis. Cobb angle measurements in idiopathic scoliosis are traditionally made from standing radiographs, whereas CT is often used for assessment of vertebral rotation. Correlating Cobb angles from standing radiographs with vertebral rotations from supine CT is problematic because the geometry of the spine changes significantly from standing to supine positions, and 2 different imaging methods are involved. We assessed the use of reformatted thoracolumbar CT images for Cobb angle measurement. Preoperative CT of 12 patients with idiopathic scoliosis were used to generate reformatted coronal images. Five observers measured coronal Cobb angles on 3 occasions from each of the images. Intraobserver and interobserver variability associated with Cobb measurement from reformatted CT scans was assessed and compared with previous studies of measurement variability using plain radiographs. For major curves, 95% confidence intervals for intraobserver and interobserver variability were +/-6.6 degrees and +/-7.7 degrees, respectively. For minor curves, the intervals were +/-7.5 degrees and +/-8.2 degrees, respectively. Intraobserver and interobserver technical error of measurement was 2.4 degrees and 2.7 degrees, with reliability coefficients of 88% and 84%, respectively. There was no correlation between measurement variability and curve severity. Reformatted CT images may be used for manual measurement of coronal Cobb angles in idiopathic scoliosis with similar variability to manual measurement of plain radiographs.

  5. Online service for monitoring the ionosphere based on data from the global navigation satellite system

    NASA Astrophysics Data System (ADS)

    Aleshin, I. M.; Alpatov, V. V.; Vasil'ev, A. E.; Burguchev, S. S.; Kholodkov, K. I.; Budnikov, P. A.; Molodtsov, D. A.; Koryagin, V. N.; Perederin, F. V.

    2014-07-01

    A service is described that makes possible the effective construction of a three-dimensional ionospheric model based on the data of ground receivers of signals from global navigation satellite positioning systems (GNSS). The obtained image has a high resolution, mainly because data from the IPG GNSS network of the Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet) are used. A specially developed format and its implementation in the form of SQL structures are used to collect, transmit, and store data. The method of high-altitude radio tomography is used to construct the three-dimensional model. The operation of all system components (from registration point organization to the procedure for constructing the electron density three-dimensional distribution and publication of the total electron content map on the Internet) has been described in detail. The three-dimensional image of the ionosphere, obtained automatically, is compared with the ionosonde measurements, calculated using the two-dimensional low-altitude tomography method and averaged by the ionospheric model.

  6. Advanced Ionospheric Sensing using GROUP-C and LITES aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.; Finn, S. C.; Cook, T.; Powell, S. P.; O'Hanlon, B.; Bishop, R. L.

    2015-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) and Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are manifested for flight aboard the International Space Station (ISS) in 2016 as part of the Space Test Program Houston #5 payload. The two experiments provide technical development and risk-reduction for future DoD space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. In addition, the combined instrument complement of these two experiments offers a unique opportunity to study structures of the nighttime ionosphere. GROUP-C includes an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements and a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients. LITES is an imaging spectrograph that spans 60-140 nm and will obtain high-cadence limb profiles of the ionosphere and thermosphere from 150-350 km altitude. In the nighttime ionosphere, recombination of O+ and electrons produces optically thin emissions at 91.1 and 135.6 nm that can be used to tomographically reconstruct the two-dimensional plasma distribution in the orbital plane below ISS altitudes. Ionospheric irregularities, such as plasma bubbles and blobs, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the ISS would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. By combining for the first time high-sensitivity in-track photometry, vertical ionospheric airglow spectrographic imagery, and recent advancements in UV tomography, high-fidelity tomographic reconstruction of

  7. Comparison between multislice and cone-beam computerized tomography in the volumetric assessment of cleft palate.

    PubMed

    Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso

    2011-08-01

    The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.

  8. Computerized tomography with total variation and with shearlets

    NASA Astrophysics Data System (ADS)

    Garduño, Edgar; Herman, Gabor T.

    2017-04-01

    To reduce the x-ray dose in computerized tomography (CT), many constrained optimization approaches have been proposed aiming at minimizing a regularizing function that measures a lack of consistency with some prior knowledge about the object that is being imaged, subject to a (predetermined) level of consistency with the detected attenuation of x-rays. One commonly investigated regularizing function is total variation (TV), while other publications advocate the use of some type of multiscale geometric transform in the definition of the regularizing function, a particular recent choice for this is the shearlet transform. Proponents of the shearlet transform in the regularizing function claim that the reconstructions so obtained are better than those produced using TV for texture preservation (but may be worse for noise reduction). In this paper we report results related to this claim. In our reported experiments using simulated CT data collection of the head, reconstructions whose shearlet transform has a small ℓ 1-norm are not more efficacious than reconstructions that have a small TV value. Our experiments for making such comparisons use the recently-developed superiorization methodology for both regularizing functions. Superiorization is an automated procedure for turning an iterative algorithm for producing images that satisfy a primary criterion (such as consistency with the observed measurements) into its superiorized version that will produce results that, according to the primary criterion are as good as those produced by the original algorithm, but in addition are superior to them according to a secondary (regularizing) criterion. The method presented for superiorization involving the ℓ 1-norm of the shearlet transform is novel and is quite general: It can be used for any regularizing function that is defined as the ℓ 1-norm of a transform specified by the application of a matrix. Because in the previous literature the split Bregman algorithm is used

  9. Percutaneous nephrolithotomy in pediatric patients: is computerized tomography a must?

    PubMed

    Gedik, Abdullah; Tutus, Ali; Kayan, Devrim; Yılmaz, Yakup; Bircan, Kamuran

    2011-02-01

    The aim of this study was to retrospectively evaluate the results of pediatric percutaneous nephrolithotomy (PNL) cases, and discuss the results and necessity of non-contrast computerized tomography (CT) in these cases. In all, 48 pediatric patients who underwent PNL were retrospectively evaluated. Before PNL, either intravenous urography or CT was performed. In all patients, we evaluated the PNL time, scopy time with stone burden, and complications. During the PNL procedure, we switched to open surgery in two cases: in one because of renal pelvis perforation and in the other because of transcolonic access. In one patient who was scheduled to undergo PNL, we performed open surgery, primarily because we detected a retrorenal colon with CT. The stone burden in 45 patients who underwent PNL was 445 ± 225 mm(2), the PNL time was 51 ± 23 min, and the scopy time was 6.1 ± 2.7 min. We removed nephrostomy tubes 1-4 days after the procedure. In two patients, 24 h after removal of nephrostomy tubes, we inserted double J stents because of prolonged urine extravasation from the tract. In all, 34 of the 45 patients were stone-free, 5 patients had clinically insignificant stone fragments, and 6 patients had residual stones. PNL is a safe and effective method in the treatment of pediatric patients with kidney stones. Clinical experience is the most important factor in obtaining stone-free results. CT should be performed in all pediatric patients in order to prevent colon perforation.

  10. Spatio-temporal characteristics of the Equatorial Ionization Anomaly (EIA) in the East African region via ionospheric tomography during the year 2012

    NASA Astrophysics Data System (ADS)

    Kassa, T.; Damtie, B.; Bires, A.; Yizengaw, E.; Cilliers, P.

    2015-01-01

    We present the characteristics of the EIA in the East African sector inferred from ground-based GPS receivers via ionospheric tomography during the year 2012. For the analysis, we developed and used a 2D ionospheric tomography imaging software based on Bayesian inversion approach. To reconstruct ionospheric electron density form slant Total Electron Content (sTEC) measurements, we selected a chain of ten ground-based GPS receivers with stations' codes and geomagnetic coordinates: ARMI (3.03 °S, 109.29 °E), DEBK (4.32 °N, 109.48 °E), ASOS (1.14 °N, 106.16 °E), NEGE (3.60 °S, 111.35 °E), SHIS (3.26 °N, 110.62 °E), ASAB (4.91 °N, 114.34 °E), SHEB (7.36 °N, 110.60 °E), EBBE (9.54 °S, 104.10 °E), DODM (16.03 °S, 109.04 °E) & NAMA (11.49 °N, 113.60 °E). The temporal, spatial and storm-time characteristics of the EIA and the hourly, day-to-day and seasonal variations of the maximum electron density of F2 region (NmF2) at 15.29°S geomagnetic latitude are presented. We found that the magnitude of the peak and the width/thickness of the EIA pronounced during the equinox and weakened during the solstice seasons at 2100 LT. It is also observed that the EIA persisted for longer time in equinox season than the solstice season. The spatial appearance of the northern and southern anomalies are observed starting from 6.12 ° N and 10 ° S respectively along geomagnetic latitude during equinox season. The EIA is localized between 180 km and 450 km along the altitude during December solstice. The analysis on the NmF2 demonstrated a significant dependence on local time, day and season of the year. We also investigated the storm response of the EIA for the magnetic storm of Day Of the Year (DOY) 274-276. It is observed that the disturbance dynamo related composition change (O/N2 ratio) resulted in a well-developed EIA with an increase in the peak and the width of the EIA at 2100 LT on DOY 275 (main phase of the storm) compared to 274 (initial phase of the storm

  11. Low-latitude ionospheric research using the CIRCE Mission: instrumentation overview

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.; Marquis, P.; Brown, C. M.; Finne, T.; Wolfram, K. D.

    2017-08-01

    The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a dual-satellite mission consisting of two 6U CubeSats actively maintaining a lead-follow configuration in the same orbit with a launch planned for the 2018-2019 time-frame. These nanosatellites will each feature two 1U size ultraviolet photometers, observing the 135.6 nm emission of atomic oxygen at nighttime. The primary objective is to characterize the two-dimensional distribution of electrons in the orbital plane of the vehicles with special emphasis on studying the morphology of the Equatorial Ionization Anomaly (EIA). The methodology used to reconstruct the nighttime ionosphere employs continuous UV photometry from four distinct viewing angles in combination with an additional data source, such as in situ plasma density measurements or a wide-band beacon data, with advanced image space reconstruction algorithm tomography techniques. The COSMIC/FORMOSAT-3 (CF3) constellation featured six Tiny Ionospheric Photometers, compact UV sensors which served as the pathfinder for the CIRCE instruments. The TIP instruments on the CF3 satellites demonstrated detection of ionospheric bubbles before they had penetrated the peak of the F-region ionosphere, showed the temporal evolution of the EIA, and observed a Medium Scale Travelling Ionospheric Disturbance. We present our mission concept, some pertinent information regarding the instrument design, the results of simulations illustrating the imaging capability of the sensor suite, and a range of science questions addressable using such a system.

  12. D-region Ionospheric Imaging Using VLF/LF Broadband Sferics, Forward Modeling, and Tomography

    NASA Astrophysics Data System (ADS)

    McCormick, J.; Cohen, M.

    2017-12-01

    The D-region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales from 10 km to many hundreds of km. VLF and LF (3-30kHz, 30-300kHz) radio waves are guided to global distances by reflecting off of the ground and the D-region, making the Earth-ionosphere waveguide (EIWG). Therefore, information about the current state of the ionosphere is encoded in received VLF/LF radio waves since they act like probes of the D-region. The return stroke of lightning is an impulsive event that radiates powerful broadband radio emissions in VLF/LF bands known as `radio atmospherics' or `sferics'. Lightning flashes occur about 40-50 times per second throughout the Earth. An average of 2000 lightning storms occur each day with a mean duration of 30 minutes creating a broad spatial and temporal distribution of lightning VLF/LF sources. With careful processing, we can recover high fidelity measurements of amplitude and phase of both the radial and azimuthal magnetic field sferic components. By comparison to a theoretical EIWG propagation model such as the Long Wave Propagation Capability (LWPC) developed by the US Navy, with a standard forward modeling approach, we can infer information about the current state of the D-region. Typically, the ionosphere is parametrized to reduce the dimensionality of the problem which usually results in an electron density vs altitude profile. For large distances (Greater than 1000 km), these results can be interpreted as path-averaged information. In contrast to studies using navy transmitters to study the D-region, the full spectral information allows for more complete information and less ambiguous inferred ionospheric parameters. With the spatial breadth of lightning sources taken together with a broadly distributed VLF/LF receiver network, a dense set of measurements are acquired in a tomographic sense. Using the wealth of linear algebra and imaging techniques it is

  13. Ionospheric "Volcanology": Ionospheric Detection of Volcano Eruptions

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Shults, K.; Lognonne, P. H.; Rakoto, V.

    2016-12-01

    It is known that volcano eruptions and explosions can generate acoustic and gravity waves. These neutral waves further propagate into the atmosphere and ionosphere, where they are detectable by atmospheric and ionospheric sounding tools. So far, the features of co-volcanic ionospheric perturbations are not well understood yet. The development of the global and regional networks of ground-based GPS/GNSS receivers has opened a new era in the ionospheric detection of natural hazard events, including volcano eruptions. It is now known that eruptions with the volcanic explosivity index (VEI) of more than 2 can be detected in the ionosphere, especially in regions with dense GPS/GNSS-receiver coverage. The co-volcanic ionospheric disturbances are usually characterized as quasi-periodic oscillations. The Calbuco volcano, located in southern Chile, awoke in April 2015 after 43 years of inactivity. The first eruption began at 21:04UT on 22 April 2015, preceded by only an hour-long period of volcano-tectonic activity. This first eruption lasted 90 minutes and generated a sub-Plinian (i.e. medium to large explosive event), gray ash plume that rose 15 km above the main crater. A larger second event on 23 April began at 04:00UT (01:00LT), it lasted six hours, and also generated a sub-Plinian ash plume that rose higher than 15 km. The VEI was estimated to be 4 to 5 for these two events. In this work, we first study ionospheric TEC response to the Calbuco volcano eruptions of April 2015 by using ground-based GNSS-receivers located around the volcano. We analyze the spectral characteristics of the observed TEC variations and we estimate the propagation speed of the co-volcanic ionospheric perturbations. We further proceed with the normal mode summation technique based modeling of the ionospheric TEC variations due to the Calbuco volcano eruptions. Finally, we attempt to localize the position of the volcano from the ionospheric measurements, and we also estimate the time of the

  14. The potential of positron emission tomography/computerized tomography (PET/CT) scanning as a detector of high-risk patients with oral infection during preoperative staging.

    PubMed

    Yamashiro, Keisuke; Nakano, Makoto; Sawaki, Koichi; Okazaki, Fumihiko; Hirata, Yasuhisa; Takashiba, Shogo

    2016-08-01

    It is sometimes difficult to determine during the preoperative period whether patients have oral infections; these patients need treatment to prevent oral infection-related complications from arising during medical therapies, such as cancer therapy and surgery. One of the reasons for this difficulty is that basic medical tests do not identify oral infections, including periodontitis and periapical periodontitis. In this report, we investigated the potential of positron emission tomography/computerized tomography (PET/CT) as a diagnostic tool in these patients. We evaluated eight patients during the preoperative period. All patients underwent PET/CT scanning and were identified as having the signs of oral infection, as evidenced by (18)F-fludeoxyglucose (FDG) localization in the oral regions. Periodontal examination and orthopantomogram evaluation showed severe infection or bone resorption in the oral regions. (18)F-FDG was localized in oral lesions, such as severe periodontitis, apical periodontitis, and pericoronitis of the third molar. The densities of (18)F-FDG were proportional to the degree of inflammation. PET/CT is a potential diagnostic tool for oral infections. It may be particularly useful in patients during preoperative staging, as they frequently undergo scanning at this time, and those identified as having oral infections at this time require treatment before cancer therapy or surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Ionospheric Remote Sensing using GPS Radio Occultation and Ultraviolet Photometry aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Powell, S. P.; O'Hanlon, B.; Humphreys, T.; Bishop, R. L.; Stephan, A. W.; Gross, J.; Chakrabarti, S.

    2017-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiment launched to the International Space Station (ISS) on February 19, 2017 as part of the Space Test Program Houston #5 payload (STP-H5). After early orbit testing, GROUP-C began routine science operations in late April. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal nighttime ionospheric gradients and an advanced software-defined GPS receiver providing ionospheric electron density profiles, scintillation measurements, and lower atmosphere profiles. GROUP-C and a companion experiment, the Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES), offer a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor approaches, including ionospheric tomography. Data are collected continuously across low- and mid-latitudes as the ISS orbit precesses through all local times every 60 days. The GROUP-C GPS sensor routinely collects dual-frequency GPS occultations, makes targeted raw signal captures of GPS and Galileo occultations, and includes multiple antennas to characterize multipath in the ISS environment. The UV photometer measures the 135.6 nm ionospheric recombination airglow emision along the nightside orbital track. We present the first analysis of ionospheric observations, discuss the challenges and opportunities of remote sensing from the ISS platform, and explore how these new data help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere relevant to the upcoming GOLD and ICON missions.

  16. Dental status of three Egyptian mummies: radiological investigation by multislice computerized tomography.

    PubMed

    Gerloni, Alessandro; Cavalli, Fabio; Costantinides, Fulvio; Costantinides, Fulvia; Bonetti, Stefano; Paganelli, Corrado

    2009-06-01

    The aim of the study was to provide a paleopathologic and radiologic overview of the jaws and teeth of 3 Egyptian mummies preserved in the Civic Museum of History and Art in Trieste. Computerized tomography (CT) imaging and postprocessing techniques were used to examine the oral structures. A 16-slice CT scanner was used (Aquilion 16; Toshiba Medical Systems Europe, Zoetermeer, The Netherlands). Scans were obtained at high resolution. Orthogonal-plane and 3-dimensional (3D) reconstructions were created along with curved reconstructions of the lower and upper jaws. Determination of decayed/missing teeth (DMT) and decayed/missing/tooth surfaces (DMTs) were made with 3D images. Analyses revealed differences in the embalming techniques and state of preservation of the bodies. Marked wear of the occlusal surfaces was a characteristic finding in all of the mummies. The DMT and DMTs were low compared with values for contemporary populations. Two mummies had fully erupted third molars. All mummies exhibited bone changes consistent with periodontitis. The CT evaluations of the oral structures of the mummies provided insight into the dental status and oral diseases of these ancient Egyptians. The low DMT and DMTs values and indications of periodontitis may be associated with the lifestyle of these Egyptians. The fully erupted and well aligned third molars may represent a morphologic adaptation of the arches to the muscular activity associated with grinding tough foods.

  17. Validity of multislice computerized tomography for diagnosis of maxillofacial fractures using an independent workstation.

    PubMed

    Dos Santos, Denise Takehana; Costa e Silva, Adriana Paula Andrade; Vannier, Michael Walter; Cavalcanti, Marcelo Gusmão Paraiso

    2004-12-01

    The purpose of this study was to demonstrate the sensitivity and specificity of multislice computerized tomography (CT) for diagnosis of maxillofacial fractures following specific protocols using an independent workstation. The study population consisted of 56 patients with maxillofacial fractures who were submitted to a multislice CT. The original data were transferred to an independent workstation using volumetric imaging software to generate axial images and simultaneous multiplanar (MPR) and 3-dimensional (3D-CT) volume rendering reconstructed images. The images were then processed and interpreted by 2 examiners using the following protocols independently of each other: axial, MPR/axial, 3D-CT images, and the association of axial/MPR/3D images. The clinical/surgical findings were considered the gold standard corroborating the diagnosis of the fractures and their anatomic localization. The statistical analysis was carried out using validity and chi-squared tests. The association of axial/MPR/3D images indicated a higher sensitivity (range 95.8%) and specificity (range 99%) than the other methods regarding the analysis of all regions. CT imaging demonstrated high specificity and sensitivity for maxillofacial fractures. The association of axial/MPR/3D-CT images added important information in relationship to other CT protocols.

  18. Preoperative predictive model of cervical lymph node metastasis combining fluorine-18 fluorodeoxyglucose positron-emission tomography/computerized tomography findings and clinical factors in patients with oral or oropharyngeal squamous cell carcinoma.

    PubMed

    Mochizuki, Yumi; Omura, Ken; Nakamura, Shin; Harada, Hiroyuki; Shibuya, Hitoshi; Kurabayashi, Toru

    2012-02-01

    This study aimed to construct a preoperative predictive model of cervical lymph node metastasis using fluorine-18 fluorodeoxyglucose positron-emission tomography/computerized tomography ((18)F-FDG PET/CT) findings in patients with oral or oropharyngeal squamous cell carcinoma (SCC). Forty-nine such patients undergoing preoperative (18)F-FDG PET/CT and neck dissection or lymph node biopsy were enrolled. Retrospective comparisons with spatial correlation between PET/CT and the anatomical sites based on histopathological examinations of surgical specimens were performed. We calculated a logistic regression model, including the SUVmax-related variable. When using the optimal cutoff point criterion of probabilities calculated from the model that included either clinical factors and delayed-phase SUVmax ≥0.087 or clinical factors and maximum standardized uptake (SUV) increasing rate (SUV-IR) ≥ 0.100, it significantly increased the sensitivity, specificity, and accuracy (87.5%, 65.7%, and 75.2%, respectively). The use of predictive models that include clinical factors and delayed-phase SUVmax and SUV-IR improve preoperative nodal diagnosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Asymptomatic Emphysematous Pyelonephritis - Positron Emission Tomography Computerized Tomography Aided Diagnostic and Therapeutic Elucidation

    PubMed Central

    Pathapati, Deepti; Shinkar, Pawan Gulabrao; kumar, Satya Awadhesh; Jha; Dattatreya, Palanki Satya; Chigurupati, Namrata; Chigurupati, Mohana Vamsy; Rao, Vatturi Venkata Satya Prabhakar

    2017-01-01

    The authors report an interesting coincidental unearthing by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of a potentially serious medical condition of emphysematous pyelonephritis in a case of nasopharyngeal carcinoma. The management by conservative ureteric stenting and antibiotics was done with gratifying clinical outcome. PMID:28242985

  20. LITES and GROUP-C Mission Update: Ionosphere and Thermosphere Sensing from the ISS

    NASA Astrophysics Data System (ADS)

    Stephan, A. W.; Budzien, S. A.; Chakrabarti, S.; Hysell, D. L.; Powell, S. P.; Finn, S. C.; Cook, T.; Bishop, R. L.

    2016-12-01

    The Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiments are scheduled for launch to the International Space Station (ISS) in November 2016 as part of the Space Test Program Houston #5 payload (STP-H5). The two experiments provide technical development and risk-reduction for future space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. The combined instrument suite of these experiments offers a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor and tomographic approaches. LITES is an imaging spectrograph that spans 60-140 nm and continuously acquires limb profiles of the ionosphere and thermosphere from 150-350 km altitude. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients and an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements. High-cadence limb images and nadir photometry from GROUP-C/LITES are combined to tomographically reconstruct high-fidelity two-dimensional volume emission rates within the ISS orbital plane. The GPS occultation receiver provides independent measurements to calibrate and validate advanced daytime ionospheric algorithms and nighttime tomography. The vantage from the ISS on the lower portion of the thermosphere and ionosphere will yield measurements complementary to the NASA GOLD and ICON missions which are expected to fly during the STP-H5 mission. We present a mission status update and available early orbit observations, and the opportunities for using these new data to help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere system that have important implications for operational systems.

  1. Fractional flow reserve by computerized tomography and subsequent coronary revascularization

    PubMed Central

    Packard, René R. Sevag; Li, Dong; Budoff, Matthew J.; Karlsberg, Ronald P.

    2017-01-01

    Aims Fractional flow reserve by computerized tomography (FFR-CT) provides non-invasive functional assessment of the hemodynamic significance of coronary artery stenosis. We determined the FFR-CT values, receiver operator characteristic (ROC) curves, and predictive ability of FFR-CT for actual standard of care guided coronary revascularization. Methods and results Consecutive outpatients who underwent coronary CT angiography (coronary CTA) followed by invasive angiography over a 24-month period from 2012 to 2014 were identified. Studies that fit inclusion criteria (n = 75 patients, mean age 66, 75% males) were sent for FFR-CT analysis, and results stratified by coronary artery calcium (CAC) scores. Coronary CTA studies were re-interpreted in a blinded manner, and baseline FFR-CT values were obtained retrospectively. Therefore, results did not interfere with clinical decision-making. Median FFR-CT values were 0.70 in revascularized (n = 69) and 0.86 in not revascularized (n = 138) coronary arteries (P < 0.001). Using clinically established significance cut-offs of FFR-CT ≤0.80 and coronary CTA ≥70% stenosis for the prediction of clinical decision-making and subsequent coronary revascularization, the positive predictive values were 74 and 88% and negative predictive values were 96 and 84%, respectively. The area under the curve (AUC) for all studied territories was 0.904 for coronary CTA, 0.920 for FFR-CT, and 0.941 for coronary CTA combined with FFR-CT (P = 0.001). With increasing CAC scores, the AUC decreased for coronary CTA but remained higher for FFR-CT (P < 0.05). Conclusion The addition of FFR-CT provides a complementary role to coronary CTA and increases the ability of a CT-based approach to identify subsequent standard of care guided coronary revascularization. PMID:27469588

  2. Detection of Ionospheric Alfven Resonator Signatures in the Equatorial Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven; hide

    2012-01-01

    The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfven resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfven wave propagation, and troposphere24 ionosphere-magnetosphere coupling mechanisms.

  3. Numerical simulation of the structure of the high-latitude ionospheric F region during meridional HF propagation

    NASA Astrophysics Data System (ADS)

    Andreev, M. Yu.; Mingaleva, G. I.; Mingalev, V. S.

    2007-08-01

    A previously developed model of the high-latitude ionosphere is used to calculate the distribution of the ionospheric parameters in the polar region. A specific method for specifying input parameters of the mathematical model, using the experimental data obtained by the method of satellite radio tomography, is used in this case. The spatial distributions of the ionospheric parameters characterized by a complex inhomogeneous structure in the high-latitude region, calculated with the help of the mathematical model, are used to simulate the HF propagation along the meridionally oriented radio paths extending from middle to high latitudes. The method for improving the HF communication between a midlatitude transmitter and a polar-cap receiver is proposed.

  4. Strut fracture and disc embolization of a Björk-Shiley mitral valve prosthesis: localization of embolized disc by computerized axial tomography.

    PubMed

    Larrieu, A J; Puglia, E; Allen, P

    1982-08-01

    The case of a patient who survived strut fracture and embolization of a Björk-Shiley mitral prosthetic disc is presented. Prompt surgical treatment was directly responsible for survival. In addition, computerized axial tomography of the abdomen aided in localizing and retrieving the embolized disc, which was lodged at the origin of the superior mesenteric artery. A review of similar case reports from the literature supports our conclusions that the development of acute heart failure and absent or muffled prosthetic heart sounds in a patient with a Björk-Shiley prosthetic heart valve inserted prior to 1978 should raise the possibility of valve dysfunction and lead to early reoperation.

  5. A medium-scale traveling ionospheric disturbance observed from the ground and from space

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Watts, C.; Coker, C.; Budzien, S. A.; Bernhardt, P. A.; Kassim, N.; Lazio, T. J.; Weiler, K.; Crane, P. C.; Ray, P. S.; Cohen, A.; Clarke, T.; Rickard, L. J.; Taylor, G. B.; Schinzel, F.; Pihlstrom, Y.; Kuniyoshi, M.; Close, S.; Colestock, P.; Myers, S.; Datta, A.

    2011-10-01

    We report ultraviolet optical observations from space of a Medium-Scale Traveling Ionospheric Disturbance (MSTID) made during the Combined Radio Interferometry and COSMIC Experiment in Tomography Campaign (CRICKET) held on September 15, 2007 at ˜8:30 UT. The experiment used a Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC also known as FORMOSAT-3) satellite in conjunction with the Very Large Array (VLA) radio telescope, located near Socorro, NM, to study the ionosphere from the global scale down to the regional scale while the TIDs propagated through it. The COSMIC/FORMOSAT-3 satellite measured the F region electron density both horizontally and with altitude while the VLA measured the directions and speeds of the TIDs. These observations provide new information on this poorly understood class of TID and demonstrate the possibility of studying MSTIDs using space-based optical instruments.

  6. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols.

    PubMed

    Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen

    2010-12-01

    The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.

  7. A modified conjugate gradient method based on the Tikhonov system for computerized tomography (CT).

    PubMed

    Wang, Qi; Wang, Huaxiang

    2011-04-01

    During the past few decades, computerized tomography (CT) was widely used for non-destructive testing (NDT) and non-destructive examination (NDE) in the industrial area because of its characteristics of non-invasiveness and visibility. Recently, CT technology has been applied to multi-phase flow measurement. Using the principle of radiation attenuation measurements along different directions through the investigated object with a special reconstruction algorithm, cross-sectional information of the scanned object can be worked out. It is a typical inverse problem and has always been a challenge for its nonlinearity and ill-conditions. The Tikhonov regulation method is widely used for similar ill-posed problems. However, the conventional Tikhonov method does not provide reconstructions with qualities good enough, the relative errors between the reconstructed images and the real distribution should be further reduced. In this paper, a modified conjugate gradient (CG) method is applied to a Tikhonov system (MCGT method) for reconstructing CT images. The computational load is dominated by the number of independent measurements m, and a preconditioner is imported to lower the condition number of the Tikhonov system. Both simulation and experiment results indicate that the proposed method can reduce the computational time and improve the quality of image reconstruction. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Computerized tomography and pulmonary diffusing capacity in highly trained athletes after performing a triathlon.

    PubMed

    Caillaud, C; Serre-Cousiné, O; Anselme, F; Capdevilla, X; Préfaut, C

    1995-10-01

    We investigated the computerized tomographies (CTs) of the thorax and the pulmonary diffusing capacity for CO (DLCO) in eight male athletes before and after a triathlon. DLCO and alveolar volume (VA) were simultaneously measured during 9 s of breath holding. The transfer coefficient (KCO = DLCO/VA) was then calculated. CT scanning was performed during breath holding with the subjects in the supine position. Scanner analysis was done by 1) counting the linear and polygonal opacities (index of interstitial fluid accumulation) and 2) calculating the physical mean lung density and the mean slice mass. Results showed a significant reduction in DLCO (44.9 +/- 2.3 vs. 42.9 +/- 1.7 ml.min-1.mmHg-1; P < 0.05) and KCO (6.0 +/- 0.3 vs. 5.6 +/- 0.3 ml.min-1.mmHg-1.l of VA-1; P < 0.05) after the triathlon and an increase in mean lung density (0.21 +/- 0.009 vs. 0.25 +/- 0.01 g/cm3; P < 0.0001). The number of polygonal and linear opacities increased after the race (P < 0.001). This study confirmed that DLCO and KCO decrease in elite athletes after a long-distance race and showed a concomitant increase in CT lung density and in the number of opacities.

  9. Experience with single photon emission computerized tomography (SPECT) in follow-up of sternotomy healing.

    PubMed

    Harjula, A; Järvinen, A; Mattila, S; Porkka, L

    1985-01-01

    Single photon emission computerized tomography (SPECT) was performed thrice in ten patients undergoing open-heart surgery--preoperatively and 2 and 12 weeks postoperatively. The operations were done for ischemic heart disease (5), aortic valvular stenosis (2), aortic valvular insufficiency (1), leaking mitral prosthetic valve (1) and combined aortic and mitral valvular stenosis and insufficiency (1). The healing process in the longitudinally divided sternum was evaluated from the SPECT study. Four conventional static images in two dimensions were registered in anteroposterior, posteroanterior and left and right lateral projections. A tomographic study was done. Quantitative analyses were performed. The ratio of the sternal counts to the counts from a thoracic vertebra was calculated for use as a reference. The activity ratios showed a similar pattern in six cases, with initial increases and at 12 weeks slight decrease compared with the preoperative values. In two cases the activity was still increasing after 12 postoperative weeks. One patient, with sternotomy also one year previously, showed only slightly increased activity. The activity at the areas of the sternal wires was increased in six cases. The study thus revealed differing patterns of isotope uptake, although recovery was uneventful in all patients. The differences may reflect the possibility that the operative course and the preoperative clinical status can influence the healing mechanisms.

  10. Experimentally investigate ionospheric depletion chemicals in artificially created ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yu; Cao Jinxiang; Wang Jian

    2012-09-15

    A new approach for investigating ionosphere chemical depletion in the laboratory is introduced. Air glow discharge plasma closely resembling the ionosphere in both composition and chemical reactions is used as the artificially created ionosphere. The ionospheric depletion experiment is accomplished by releasing chemicals such as SF{sub 6}, CCl{sub 2}F{sub 2}, and CO{sub 2} into the model discharge. The evolution of the electron density is investigated by varying the plasma pressure and input power. It is found that the negative ion (SF{sub 6}{sup -}, CCl{sub 2}F{sub 2}{sup -}) intermediary species provide larger reduction of the electron density than the positive ionmore » (CO{sub 2}{sup +}) intermediary species. The negative ion intermediary species are also more efficient in producing ionospheric holes because of their fast reaction rates. Airglow enhancement attributed to SF{sub 6} and CO{sub 2} releases agrees well with the published data. Compared to the traditional methods, the new scheme is simpler to use, both in the release of chemicals and in the electron density measurements. It is therefore more efficient for investigating the release of chemicals in the ionosphere.« less

  11. High-Latitude Ionospheric Imaging using Canadian High Arctic Ionospheric Network (CHAIN)

    NASA Astrophysics Data System (ADS)

    Meziane, K.; Jayachandran, P. T.; Hamza, A. M.; MacDougall, J. W.

    2013-12-01

    Understanding the polar cap dynamics is a fundamental problem in solar-terrestrial physics; any breakthroughs would have to take into account the interactions that take place at the interfaces between the Solar Wind and the Magnetosphere and between the latter and the ionosphere, respectively. Over the past decade a significant number of ground-based GPS receivers and digital ionosondes have been deployed in the polar cap and auroral region. This deployment has allowed the harvest of much needed data, otherwise not available, which in turn helps understand the dynamics of the polar ionospheric regions. A technique, used consistently by researchers in the field, consists of inverting the Total Electron Content (TEC) along the ray path obtained from a system of GPS receivers. In the present study, a combination of tomography and ionosonde data from the CHAIN network is used to examine the dynamics of polar cap patches. First, the TEC derived from GPS receivers through tomographic reconstruction is directly compared with ionosonde data. The comparison includes periods of quite and disturbed geomagnetic activity. We then use the vertical density profiles derived from the CHAIN ionosondes as initial seeds for the reconstruction of the tomographic images of the polar cap regions. Precise electron density peaks obtained through the tomographic reconstruction fall within a range that is consistent with direct CHAIN measurements when certain conditions are met. An assessment of the performance of the resulting combination of GPS and ionosonde data is performed, and conclusions are presented.

  12. Ionospheric research opportunity

    NASA Astrophysics Data System (ADS)

    Rickel, Dwight

    1985-05-01

    Ground-based explosions have been exploited successfully in the past as a relatively controlled source for producing ionospheric disturbances. On June 25, the Defense Nuclear Agency will conduct a high explosives test on the northern section of the White Sands Missile Range. Approximately 4,800 tons of ammonium nitrate and fuel oil (ANFO) will be detonated at ground level, producing an acoustic shock wave with a surface pressure change of approximately 20 mbar at a 6 km range. This shock front will have sufficient strength to propagate into the ionosphere with at least a 10% change in the ambient pressure across the disturbance front in the lower F region. Such an ionospheric perturbation will give ionospheric researchers an excellent opportunity to investigate acoustic propagation at ionospheric heights, shock dissipation effect, the ion-neutral coupling process, acoustic-gravity wave (traveling ionospheric disturbance) generation mechanisms, and associated RF phenomena.

  13. Contrast-enhanced multidetector computerized tomography for odontogenic cysts and cystic-appearing tumors of the jaws: is it useful?

    PubMed

    Kakimoto, Naoya; Chindasombatjaroen, Jira; Tomita, Seiki; Shimamoto, Hiroaki; Uchiyama, Yuka; Hasegawa, Yoko; Kishino, Mitsunobu; Murakami, Shumei; Furukawa, Souhei

    2013-01-01

    The purpose of this study was to investigate the usefulness of computerized tomography (CT), particularly contrast-enhanced CT, in differentiation of jaw cysts and cystic-appearing tumors. We retrospectively analyzed contrast-enhanced CT images of 90 patients with odontogenic jaw cysts or cystic-appearing tumors. The lesion size and CT values were measured and the short axis to long axis (S/L) ratio, contrast enhancement (CE) ratio, and standard deviation ratio were calculated. The lesion size and the S/L ratio of keratocystic odontogenic tumors were significantly different from those of radicular cysts and follicular cysts. There were no significant differences in the CE ratio among the lesions. Multidetector CT provided diagnostic information about the size of odontogenic cysts and cystic-appearing tumors of the jaws that was related to the lesion type, but showed no relation between CE ratio and the type of these lesions. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Prevalence of Extracochlear Electrodes: Computerized Tomography Scans, Cochlear Implant Maps, and Operative Reports.

    PubMed

    Holder, Jourdan T; Kessler, David M; Noble, Jack H; Gifford, René H; Labadie, Robert F

    2018-06-01

    To quantify and compare the number of cochlear implant (CI) electrodes found to be extracochlear on postoperative computerized tomography (CT) scans, the number of basal electrodes deactivated during standard CI mapping (without knowledge of the postoperative CT scan), and the extent of electrode insertion noted by the surgeon. Retrospective. Academic Medical Center. Two hundred sixty-two patients underwent standard cochlear implantation and postoperative temporal bone CT scanning. Scans were analyzed to determine the number of extracochlear electrodes. Standard CI programming had been completed without knowledge of the extracochlear electrodes identified on the CT. These standard CI maps were reviewed to record the number of deactivated basal electrodes. Lastly, each operative report was reviewed to record the extent of reported electrode insertion. 13.4% (n = 35) of CIs were found to have at least one electrode outside of the cochlea on the CT scan. Review of CI mapping indicated that audiologists had deactivated extracochlear electrodes in 60% (21) of these cases. Review of operative reports revealed that surgeons correctly indicated the number of extracochlear electrodes in 6% (2) of these cases. Extracochlear electrodes were correctly identified audiologically in 60% of cases and in surgical reports in 6% of cases; however, it is possible that at least a portion of these cases involved postoperative electrode migration. Given these findings, postoperative CT scans can provide information regarding basal electrode location, which could help improve programming accuracy, associated frequency allocation, and audibility with appropriate deactivation of extracochlear electrodes.

  15. The application of compressive sampling in rapid ultrasonic computerized tomography (UCT) technique of steel tube slab (STS)

    PubMed Central

    Jiang, Baofeng; Jia, Pengjiao; Zhao, Wen; Wang, Wentao

    2018-01-01

    This paper explores a new method for rapid structural damage inspection of steel tube slab (STS) structures along randomly measured paths based on a combination of compressive sampling (CS) and ultrasonic computerized tomography (UCT). In the measurement stage, using fewer randomly selected paths rather than the whole measurement net is proposed to detect the underlying damage of a concrete-filled steel tube. In the imaging stage, the ℓ1-minimization algorithm is employed to recover the information of the microstructures based on the measurement data related to the internal situation of the STS structure. A numerical concrete tube model, with the various level of damage, was studied to demonstrate the performance of the rapid UCT technique. Real-world concrete-filled steel tubes in the Shenyang Metro stations were detected using the proposed UCT technique in a CS framework. Both the numerical and experimental results show the rapid UCT technique has the capability of damage detection in an STS structure with a high level of accuracy and with fewer required measurements, which is more convenient and efficient than the traditional UCT technique. PMID:29293593

  16. The application of compressive sampling in rapid ultrasonic computerized tomography (UCT) technique of steel tube slab (STS).

    PubMed

    Jiang, Baofeng; Jia, Pengjiao; Zhao, Wen; Wang, Wentao

    2018-01-01

    This paper explores a new method for rapid structural damage inspection of steel tube slab (STS) structures along randomly measured paths based on a combination of compressive sampling (CS) and ultrasonic computerized tomography (UCT). In the measurement stage, using fewer randomly selected paths rather than the whole measurement net is proposed to detect the underlying damage of a concrete-filled steel tube. In the imaging stage, the ℓ1-minimization algorithm is employed to recover the information of the microstructures based on the measurement data related to the internal situation of the STS structure. A numerical concrete tube model, with the various level of damage, was studied to demonstrate the performance of the rapid UCT technique. Real-world concrete-filled steel tubes in the Shenyang Metro stations were detected using the proposed UCT technique in a CS framework. Both the numerical and experimental results show the rapid UCT technique has the capability of damage detection in an STS structure with a high level of accuracy and with fewer required measurements, which is more convenient and efficient than the traditional UCT technique.

  17. LUNGx Challenge for computerized lung nodule classification

    PubMed Central

    Armato, Samuel G.; Drukker, Karen; Li, Feng; Hadjiiski, Lubomir; Tourassi, Georgia D.; Engelmann, Roger M.; Giger, Maryellen L.; Redmond, George; Farahani, Keyvan; Kirby, Justin S.; Clarke, Laurence P.

    2016-01-01

    Abstract. The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. Ten groups applied their own methods to 73 lung nodules (37 benign and 36 malignant) that were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. The continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community. PMID:28018939

  18. Spatial Structure of Large-Scale Plasma Density Perturbations HF-Induced in the Ionospheric F 2 Region

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Komrakov, G. P.; Glukhov, Ya. V.; Andreeva, E. S.; Kunitsyn, V. E.; Kurbatov, G. A.

    2016-07-01

    We consider the experimental results obtained by studying the large-scale structure of the HF-disturbed ionospheric region. The experiments were performed using the SURA heating facility. The disturbed ionospheric region was sounded by signals radiated by GPS navigation satellite beacons as well as by signals of low-orbit satellites (radio tomography). The results of the experiments show that large-scale plasma density perturbations induced at altitudes higher than the F2 layer maximum can contribute significantly to the measured variations of the total electron density and can, with a certain arrangement of the reception points, be measured by the GPS sounding method.

  19. AMPS data management requirements study. [user manuals (computer programs)/display devices - computerized simulation/experimentation/ionosphere

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A data simulation is presented for instruments and associated control and display functions required to perform controlled active experiments of the atmosphere. A comprehensive user's guide is given for the data requirements and software developed for the following experiments: (1) electromagnetic wave transmission; (2) passive observation of ambient plasmas; (3) ionospheric measurements with a subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustic gravity waves in the sodium layer using lasers. A complete description of each experiment is given.

  20. Ionosphere Waves Service - A demonstration

    NASA Astrophysics Data System (ADS)

    Crespon, François

    2013-04-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.

  1. Ionospheric modelling to boost the PPP-RTK positioning and navigation in Australia

    NASA Astrophysics Data System (ADS)

    Arsov, Kirco; Terkildsen, Michael; Olivares, German

    2017-04-01

    This paper deals with implementation of 3-D ionospheric model to support the GNSS positioning and navigation activities in Australia. We will introduce two strategies for Slant Total Electron Content (STEC) estimation from GNSS CORS sites in Australia. In the first scenario, the STEC is estimated in the PPP-RTK network processing. The ionosphere is estimated together with other GNSS network parameters, such as Satellite Clocks, Satellite Phase Biases, etc. Another approach is where STEC is estimated on a station by station basis by taking advantage of already known station position and different satellite ambiguities relations. Accuracy studies and considerations will be presented and discussed. Furthermore, based on this STEC, 3-D ionosphere modeling will be performed. We will present the simple interpolation, 3-D Tomography and bi-cubic splines as modeling techniques. In order to assess these models, a (user) PPP-RTK test bed is established and a sensitivity matrix will be introduced and analyzed based on time to first fix (TTFF) of ambiguities, positioning accuracy, PPP-RTK solution convergence time etc. Different spatial configurations and constellations will be presented and assessed.

  2. A Concept for Ionospheric Tomography from a CubeSat Platform at Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; Cook, T.; Finn, S. C.; Mendillo, C.; Martel, J.; Geddes, G.

    2015-12-01

    Remote sensing of the neutral atmosphere and ionosphere using extreme and far ultraviolet airglow has now been well established. It has been shown that the OI 135.6 nm nightglow can be used to infer the density of singly ionized atomic oxygen ions, the dominant ion in the F2 region. It has also been shown that zenith angle profiles of OII 83.4 nm emissions in the dayglow are sensitive to the electron density profiles as measured by incoherent scatter radar. Finally, simultaneous measurements of OII 61.7 nm and OII 83.4 nm emissions have been shown to yield daytime electron densities. We describe several key technological advances that have made it possible to consider self-consistent characterization of the thermosphere and ionosphere from a CubeSat platform.

  3. Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2017-12-01

    We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of

  4. Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate Ionospheric Gradients

    NASA Astrophysics Data System (ADS)

    Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Bell, M.; Callingham, J. R.; Dwarakanath, K. S.; For, B.-Q.; Hancock, P.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2016-07-01

    We estimate spatial gradients in the ionosphere using the Global Positioning System and GLONASS (Russian global navigation system) observations, utilising data from multiple Global Positioning System stations in the vicinity of Murchison Radio-astronomy Observatory. In previous work, the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array. Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System stations than is currently available at the Murchison Radio-astronomy Observatory.

  5. An ionospheric index suitable for estimating the degree of ionospheric perturbations

    NASA Astrophysics Data System (ADS)

    Wilken, Volker; Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Space weather can strongly affect trans-ionospheric radio signals depending on the used frequency. In order to assess the strength of a space weather event from its origin at the sun towards its impact on the ionosphere a number of physical quantities need to be derived from scientific measurements. These are for example the Wolf number sunspot index, the solar flux density F10.7, measurements of the interplanetary magnetic field, the proton density, the solar wind speed, the dynamical pressure, the geomagnetic indices Auroral Electrojet, Kp, Ap and Dst as well as the Total Electron Content (TEC), the Rate of TEC, the scintillation indices S4 and σ(ϕ) and the Along-Arc TEC Rate index index. All these quantities provide in combination with an additional classification an orientation in a physical complex environment. Hence, they are used for brief communication of a simplified but appropriate space situation awareness. However, space weather driven ionospheric phenomena can affect many customers in the communication and navigation domain, which are still served inadequately by the existing indices. We present a new robust index, that is able to properly characterize temporal and spatial ionospheric variations of small to medium scales. The proposed ionospheric disturbance index can overcome several drawbacks of other ionospheric measures and might be suitable as potential driver for an ionospheric space weather scale.

  6. Comparison of micro-computerized tomography and cone-beam computerized tomography in the detection of accessory canals in primary molars.

    PubMed

    Acar, Buket; Kamburoğlu, Kıvanç; Tatar, İlkan; Arıkan, Volkan; Çelik, Hakan Hamdi; Yüksel, Selcen; Özen, Tuncer

    2015-12-01

    This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this study. The specimens were classified into three groups: maxillary molars, mandibular molars with three canals, and mandibular molars with four canals. Differences between the gold standard and the observations made using the imaging methods were calculated using Spearman's rho correlation coefficient test. The presence of accessory canals in micro-CT images of maxillary and mandibular root canals showed a statistically significant correlation with the stereomicroscopic images used as a gold standard. No statistically significant correlation was found between the CBCT findings and the stereomicroscopic images. Although micro-CT is not suitable for clinical use, it provides more detailed information about minor anatomical structures. However, CBCT is convenient for clinical use but may not be capable of adequately analyzing the internal anatomy of primary teeth.

  7. Mesoscale Ionospheric Prediction

    DTIC Science & Technology

    2006-09-30

    Mesoscale Ionospheric Prediction Gary S. Bust 10000 Burnet Austin Texas, 78758 phone: (512) 835-3623 fax: (512) 835-3808 email: gbust...time-evolving non-linear numerical model of the mesoscale ionosphere , second to couple the mesoscale model to a mesoscale data assimilative analysis...third to use the new data-assimilative mesoscale model to investigate ionospheric structure and plasma instabilities, and fourth to apply the data

  8. The Combined Radio Interferometry and COSMIC Experiment in Tomography (CRICKET) Campaign

    NASA Astrophysics Data System (ADS)

    Dymond, Kenneth; Coker, Clayton; Bernhardt, Paul; Cohen, Aaron; Crane, Patrick; Kassim, Namir; Lazio, Joseph; Weiler, Kurt; Watts, Christopher; Rickard, Lee J.; Taylor, Greg; Schinzel, Frank; Philstrom, Ylva; Close, Sigrid; Colestock, Patrick; Myers, Steve; Datta, Abirhup

    We report on the Combined Radio Interferometry and COSMIC Experiment in Tomography Campaign (CRICKET) held on September 15 and 17, 2007. The experiment used the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC also known as FORMOSAT-3) in conjunction with the Very Large Array radio telescope, located near Socorro, NM, to study the ionosphere from the global scale down to the regional scale. Each COSMIC satellite includes three instruments capable of measuring the ionosphere: the Tiny Ionospheric Photometer (TIP), a UV radiometer; the GPS Occultation experiment (GOX), a dual-frequency GPS occultation receiver; and the Tri-band Beacon (TBB), a three frequency coherently radiating radio beacon. These three instruments have been demonstrated to be a powerful means for characterizing the global-scale ionosphere. The VLA when deployed at its largest extent and while operating at 73.8 MHz is incredibly sensitive to relative total electron content variations of the regional ionosphere over about a 30-100 km diameter area. In this work, we concentrate on the first set of observations on September 15, 2007 at approximately 0830 UT. We have successfully married these heterogeneous data sets, using a tomographic data fusion approach, to produce a consistent ionospheric specification from the global scale down to the regional scale.

  9. Ionospheric data assimilation applied to HF geolocation in the presence of traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Mitchell, C. N.; Rankov, N. R.; Bust, G. S.; Miller, E.; Gaussiran, T.; Calfas, R.; Doyle, J. D.; Teig, L. J.; Werth, J. L.; Dekine, I.

    2017-07-01

    Ionospheric data assimilation is a technique to evaluate the 3-D time varying distribution of electron density using a combination of a physics-based model and observations. A new ionospheric data assimilation method is introduced that has the capability to resolve traveling ionospheric disturbances (TIDs). TIDs are important because they cause strong delay and refraction to radio signals that are detrimental to the accuracy of high-frequency (HF) geolocation systems. The capability to accurately specify the ionosphere through data assimilation can correct systems for the error caused by the unknown ionospheric refraction. The new data assimilation method introduced here uses ionospheric models in combination with observations of HF signals from known transmitters. The assimilation methodology was tested by the ability to predict the incoming angles of HF signals from transmitters at a set of nonassimilated test locations. The technique is demonstrated and validated using observations collected during 2 days of a dedicated campaign of ionospheric measurements at White Sands Missile Range in New Mexico in January 2014. This is the first time that full HF ionospheric data assimilation using an ensemble run of a physics-based model of ionospheric TIDs has been demonstrated. The results show a significant improvement over HF angle-of-arrival prediction using an empirical model and also over the classic method of single-site location using an ionosonde close to the midpoint of the path. The assimilative approach is extendable to include other types of ionospheric measurements.

  10. LUNGx Challenge for computerized lung nodule classification

    DOE PAGES

    Armato, Samuel G.; Drukker, Karen; Li, Feng; ...

    2016-12-19

    The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. We present ten groups that applied their own methods to 73 lung nodules (37 benign and 36 malignant) thatmore » were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. Lastly, the continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.« less

  11. LUNGx Challenge for computerized lung nodule classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armato, Samuel G.; Drukker, Karen; Li, Feng

    The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. We present ten groups that applied their own methods to 73 lung nodules (37 benign and 36 malignant) thatmore » were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. Lastly, the continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.« less

  12. Computerized Tomography-Guided Paracentesis: An Effective Alternative to Bedside Paracentesis?

    PubMed

    Gaduputi, Vinaya; Tariq, Hassan; Chandrala, Chaitanya; Sakam, Sailaja; Abbas, Naeem; Chilimuri, Sridhar

    2017-02-01

    Ascites remains the most common cause of hospitalization among patients with decompensated cirrhosis. Paracentesis is a relatively safe procedure with low complication rates. Computerized tomography (CT)-guided therapeutic paracentesis could be a safe and effective alternative to unaided or aided (ultrasonogram-guided) bedside paracentesis. In this retrospective study, we aimed to compare the efficacy, safety, and cost-effectiveness of CT-guided paracentesis with bedside paracentesis. The period of study was from 2002 to 2012. All patients with cirrhosis who underwent therapeutic paracentesis were included in the study. These patients were divided into two groups. Group I consisted of patients who underwent CT-guided pigtail catheter insertion with ascitic fluid drainage. Group II consisted of patients who underwent beside therapeutic paracentesis after localization of fluid either by physical examination or sonographic localization. We measured the efficacy of CT-guided paracentesis and bedside paracentesis in terms of volume of fluid removed, length of stay, discharge doses of diuretics (spironolactone and furosemide) and number of days to readmission for symptomatic ascites. We also computed the cost-effectiveness of CT-guided therapeutic paracentesis when compared to a bedside procedure. Fischer exact test was used to analyze the distribution of categorical data and unpaired t -test was used for comparison of means. There were a total of 546 unique patients with diagnosed cirrhosis who were admitted to the hospital with symptomatic ascites and underwent therapeutic paracentesis. Two hundred and forty-seven patients underwent CT-guided paracentesis, while 272 patients underwent bedside paracentesis. There was significant inverse correlation between the amount of ascitic fluid removed and total length of stay in the hospital. We found that the volume of fluid removed via a CT-guided pigtail insertion and drainage (2.72 ± 2.02 L) is significantly higher when

  13. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  14. Combining ultrasonography and noncontrast helical computerized tomography to evaluate Holmium laser lithotripsy

    PubMed Central

    Mi, Jia; Li, Jie; Zhang, Qinglu; Wang, Xing; Liu, Hongyu; Cao, Yanlu; Liu, Xiaoyan; Sun, Xiao; Shang, Mengmeng; Liu, Qing

    2016-01-01

    Abstract The purpose of the study was to establish a mathematical model for correlating the combination of ultrasonography and noncontrast helical computerized tomography (NCHCT) with the total energy of Holmium laser lithotripsy. In this study, from March 2013 to February 2014, 180 patients with single urinary calculus were examined using ultrasonography and NCHCT before Holmium laser lithotripsy. The calculus location and size, acoustic shadowing (AS) level, twinkling artifact intensity (TAI), and CT value were all documented. The total energy of lithotripsy (TEL) and the calculus composition were also recorded postoperatively. Data were analyzed using Spearman's rank correlation coefficient, with the SPSS 17.0 software package. Multiple linear regression was also used for further statistical analysis. A significant difference in the TEL was observed between renal calculi and ureteral calculi (r = –0.565, P < 0.001), and there was a strong correlation between the calculus size and the TEL (r = 0.675, P < 0.001). The difference in the TEL between the calculi with and without AS was highly significant (r = 0.325, P < 0.001). The CT value of the calculi was significantly correlated with the TEL (r = 0.386, P < 0.001). A correlation between the TAI and TEL was also observed (r = 0.391, P < 0.001). Multiple linear regression analysis revealed that the location, size, and TAI of the calculi were related to the TEL, and the location and size were statistically significant predictors (adjusted r2 = 0.498, P < 0.001). A mathematical model correlating the combination of ultrasonography and NCHCT with TEL was established; this model may provide a foundation to guide the use of energy in Holmium laser lithotripsy. The TEL can be estimated by the location, size, and TAI of the calculus. PMID:27930563

  15. Computerized tomography attenuation values can be used to differentiate hydronephrosis from pyonephrosis.

    PubMed

    Yuruk, Emrah; Tuken, Murat; Sulejman, Suhejb; Colakerol, Aykut; Serefoglu, Ege Can; Sarica, Kemal; Muslumanoglu, Ahmet Yaser

    2017-03-01

    To determine the diagnostic value of computerized tomography (CT) in differentiating pyonephrosis from hydronephrosis on the basis of attenuation values (Hounsfield unit-HU). Data of the patients with grades 1-3 hydronephrosis on abdominopelvic CT, who underwent nephrostomy tube placement for decompression of the collecting system, were retrospectively analyzed. Patient demographics and CT findings were recorded along with the first access urine culture results. Three physicians calculated the surface areas and the attenuation values of the dilated collecting systems using the system software. Mean HU of pyonephrosis and hydronephrosis cases was compared. A total of 105 patients with the mean age of 47.7 ± 15.5 (range 20-80) were included. The interclass correlation coefficient of three physicians was 0.981 for HU measurement and 0.999 for calculation of collecting system surface area. Of the patients, 47 (44.8 %) had pyonephrosis. Mean surface areas of the collecting system were similar in patients with pyonephrosis and hydronephrosis (1481.13 ± 1562.94 vs. 1612.94 ± 2261.4 mm 2 , p = 0.735). Urine cultures were positive in all patients with pyonephrosis, whereas 12.7 % of hydronephrosis cases had bacterial in first access urine culture. The HU of the patients with pyonephrosis was significantly higher that that of patients with hydronephrosis (13.51 ± 13.29 vs. 4.67 ± 5.37, p = 0.0001). Having a HU of 9.21 or over diagnosed pyonephrosis accurately with 65.96 % sensitivity and 87.93 % specificity. Measuring attenuation values of the collecting system may be useful to differentiate pyonephrosis from hydronephrosis. Diagnosing pyonephrosis accurately may avoid septic complications.

  16. Peripancreatic collections in acute pancreatitis: Correlation between computerized tomography and operative findings

    PubMed Central

    Vege, Santhi Swaroop; Fletcher, Joel G; Talukdar, Rupjyoti; Sarr, Michael G

    2010-01-01

    AIM: To evaluate the ability of contrast-enhanced computerized tomography (CECT) to characterize the nature of peripancreatic collections. METHODS: Twenty five patients with peripancreatic collections on CECT and who underwent operative intervention for severe acute pancreatitis were retrospectively studied. The collections were classified into (1) necrosis without frank pus; (2) necrosis with pus; and (3) fluid without necrosis. A blinded radiologist assessed the preoperative CTs of each patient for necrosis and peripancreatic fluid collections. Peripancreatic collections were described in terms of volume, location, number, heterogeneity, fluid attenuation, wall perceptibility, wall enhancement, presence of extraluminal gas, and vascular compromise. RESULTS: Fifty-four collections were identified at operation, of which 45 (83%) were identified on CECT. Of these, 25/26 (96%) had necrosis without pus, 16/19 (84%) had necrosis with pus, and 4/9 (44%) had fluid without necrosis. Among the study characteristics, fluid heterogeneity was seen in a greater proportion of collections in the group with necrosis and pus, compared to the other two groups (94% vs 48% and 25%, P = 0.002 and 0.003, respectively). Among the wall characteristics, irregularity was seen in a greater proportion of collections in the groups with necrosis with and without pus, when compared to the group with fluid without necrosis (88% and 71% vs 25%, P = 0.06 and P < 0.01, respectively). The combination of heterogeneity and presence of extraluminal gas had a specificity and positive likelihood ratio of 92% and 5.9, respectively, in detecting pus. CONCLUSION: Most of the peripancreatic collections seen on CECT in patients with severe acute pancreatitis who require operative intervention contain necrotic tissue. CECT has a somewhat limited role in differentiating the different types of collections. PMID:20818812

  17. Inferring Nighttime Ionospheric Parameters with the Far Ultraviolet Imager Onboard the Ionospheric Connection Explorer

    NASA Astrophysics Data System (ADS)

    Kamalabadi, Farzad; Qin, Jianqi; Harding, Brian J.; Iliou, Dimitrios; Makela, Jonathan J.; Meier, R. R.; England, Scott L.; Frey, Harald U.; Mende, Stephen B.; Immel, Thomas J.

    2018-06-01

    The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150-450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.

  18. Improving the Nightside Mid-latitude Ionospheric Density in the Global Ionosphere-Thermosphere Model

    NASA Astrophysics Data System (ADS)

    Wu, C.; Ridley, A. J.

    2017-12-01

    The ionosphere and plasmasphere interact with each other through upwelling of plasma into the plasmasphere during the day and downwelling of the plasma into the ionosphere during the night. The storage of ion density in the plasmasphere and subsequent downwelling maintains the ion density in the nighttime mid-latitude ionosphere. Global models of the upper atmosphere that do not contain a plasmasphere, but are limited in altitude, such as the Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIEGCM) and the Global Ionosphere-Thermosphere Model(GITM) need a boundary condition that allows for some sort of downwelling to occur. In the TIEGCM, this has been set to a constant downward flux, while GITM has had no downwelling specification at all, which has caused the nighttime mid-latitude densities to be much too low. We present a new boundary condition in GITM, where there is downward ion flux from the upper boundary, allowing the ionosphere to be maintained during the night. This new boundary condition is dependent on the the Disturbance Storm Time (Dst), since, as the activity level increases (i.e., Dst decreases), the plasmasphere is eroded and will not serve to supply the ionosphere at night. Various quiet time and active time comparisons to ionosonde electron density and total electron content data will be presented that show that the ionospheric density in GITM is improved due to this new boundary condition.

  19. Tsunami Ionospheric warning and Ionospheric seismology

    NASA Astrophysics Data System (ADS)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  20. An Anatomical Study of Maxillary-Zygomatic Complex Using Three-Dimensional Computerized Tomography-Based Zygomatic Implantation

    PubMed Central

    Zhao, Shijie; Liu, Hui; Sun, Zhipeng; Wang, Jianwei

    2017-01-01

    Objective To obtain anatomical data of maxillary-zygomatic complex based on simulating the zygomatic implantation using cadaver heads and three-dimensional computerized tomography (3D-CT). Methods Simulating zygomatic implantation was performed using seven cadaver heads and 3D-CT images from forty-eight adults. After measuring the maxillary-zygomatic complex, we analyzed the position between the implantation path and the maxillary sinus cavity as well as the distance between the implantation path and the zygomatic nerve. Results The distance from the starting point to the endpoint of the implant was 56.85 ± 5.35 mm in cadaver heads and 58.15 ± 7.37 mm in 3D-CT images. For the most common implantation path (80.20%), the implant went through the maxillary sinus cavity completely. The projecting points of the implant axis (IA) on the surface of zygoma were mainly located in the region of frontal process of zygomatic bone close to the lateral orbital wall. The distances between IA and zygomatic nerve in 53 sides were shorter than 2 mm. Conclusion The simulating zygomatic implantation on cadaver skulls and 3D-CT imaging provided useful anatomical data of the maxillary-zygomatic complex. It is necessary to take care to avoid the zygomatic nerve injury during implantation, because it frequently appears on the route of implantation. PMID:29376077

  1. Computerized PET/CT image analysis in the evaluation of tumour response to therapy

    PubMed Central

    Wang, J; Zhang, H H

    2015-01-01

    Current cancer therapy strategy is mostly population based, however, there are large differences in tumour response among patients. It is therefore important for treating physicians to know individual tumour response. In recent years, many studies proposed the use of computerized positron emission tomography/CT image analysis in the evaluation of tumour response. Results showed that computerized analysis overcame some major limitations of current qualitative and semiquantitative analysis and led to improved accuracy. In this review, we summarize these studies in four steps of the analysis: image registration, tumour segmentation, image feature extraction and response evaluation. Future works are proposed and challenges described. PMID:25723599

  2. The International Reference Ionosphere - Climatological Standard for the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    2006-01-01

    The International Reference Ionosphere (IRI) a joint project of URSI and COSPAR is the defacto standard for a climatological specification of ionospheric parameters. IRI is based on a wide range of ground and space data and has been steadily improved since its inception in 1969 with the ever-increasing volume of ionospheric data and with better mathematical descriptions of the observed global and temporal variation patterns. The IRI model has been validated with a large amount of data including data from the most recent ionospheric satellites (KOMPSAT, ROCSAT and TIMED) and data from global network of ionosondes. Several IRI teams are working on specific aspects of the IRI modeling effort including an improved representation of the topside ionosphere with a seamless transition to the plasmasphere, a new effort to represent the global variation of F2 peak parameters using the Neural Network (NN) technique, and the inclusion of several additional parameters in IRI, e.g., spread-F probability and ionospheric variability. Annual IRI workshops are the forum for discussions of these efforts and for all science activities related to IRI as well as applications of the IRI model in engineering and education. In this paper I will present a status report about the IRI effort with special emphasis on the presentations and results from the most recent IRI Workshops (Paris, 2004; Tortosa, 2005) and on the most important ongoing IRI activities. I will discuss the latest version of the IRI model, IRI-2006, highlighting the most recent changes and additions. Finally, the talk will review some of the applications of the IRI model with special emphasis on the use for radiowave propagation studies and communication purposes.

  3. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.

    2008-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.

  4. Computed Tomography Status

    DOE R&D Accomplishments Database

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  5. Atmosphere-Ionosphere Electrodynamic Coupling

    NASA Astrophysics Data System (ADS)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  6. Electron Density Profiles of the Topside Ionosphere

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinsch, Bodo W.; Bilitza, Dieter; Benson, Robert F.

    2002-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h,F2 to - 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis- status.htm1. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling - 70% of the ionograms. An <> is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  7. An Initial Investigation of Ionospheric Gradients for Detection of Ionospheric Disturbances over Turkey

    NASA Astrophysics Data System (ADS)

    Koroglu, Meltem; Arikan, Feza; Koroglu, Ozan

    2015-04-01

    Ionosphere is an ionized layer of earth's atmosphere which affect the propagation of radio signals due to highly varying electron density structure. Total Electron Content (TEC) and Slant Total Electron Content (STEC) are convenient measures of total electron density along a ray path. STEC model is given by the line integral of the electron density between the receiver and GPS satellite. TEC and STEC can be estimated by observing the difference between the two GPS signal time delays that have different frequencies L1 (1575 MHz) and L2 (1227 MHz). During extreme ionospheric storms ionospheric gradients becomes larger than those of quiet days since time delays of the radio signals becomes anomalous. Ionosphere gradients can be modeled as a linear semi-infinite wave front with constant propagation speed. One way of computing the ionospheric gradients is to compare the STEC values estimated between two neighbouring GPS stations. In this so-called station-pair method, ionospheric gradients are defined by dividing the difference of the time delays of two receivers, that see the same satellite at the same time period. In this study, ionospheric gradients over Turkey are computed using the Turkish National Permanent GPS Network (TNPGN-Active) between May 2009 and September 2012. The GPS receivers are paired in east-west and north-south directions with distances less than 150 km. GPS-STEC for each station are calculated using IONOLAB-TEC and IONOLAB-BIAS softwares (www.ionolab.org). Ionospheric delays are calculated for each paired station for both L1 and L2 frequencies and for each satellite in view with 30 s time resolution. During the investigation period, different types of geomagnetic storms, Travelling Ionospheric Disturbances (TID), Sudden Ionospheric Disturbances (SID) and various earthquakes with magnitudes between 3 to 7.4 have occured. Significant variations in the structure of station-pair gradients have been observed depending on location of station-pairs, the

  8. Sub-Ionospheric Measurements of the Ocean, Atmosphere, and Ionosphere from the CARINA Satellites

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Montgomery, J. A., Jr.; Siefring, C. L.; Gatling, G.

    2016-12-01

    New satellites designed to fly between 150 and 250 km has been constructed to study a wide range of geophysical topics extending from the ocean to the topside ionosphere. The key features of the CARINA satellites are (1) the ability of sustain long duration (60 day) orbits below the F-Layer ionosphere, (2) download large quantities of data (10 GBytes) per pass over a ground station, and (3) a heritage instrument payload comprised of an Electric Field Instrument (EFI) with full range measurements from 3 to 13 MHz, a Ram Langmuir Probe (RLP) the measures ion density from 102 to 106 cm-3 with 10 kHz sample rate, an Orbiting GPS Receiver (OGR) providing overhead total electron content and satellite position and the Wake Retro Reflectors (WRR) that use laser ranging for precise orbit determination. Each letter in "CARINA" represents one of the science objectives. "Coastal" ocean wave remote sensing of the sea surface wave height spectrum derived from HF surface wave scatter to the satellite. Assimilation ionospheric models are supported by Global measurements of GPS total electron count (TEC) and in situ plasma density for updating data driven ionospheric models (GAIM, IDA3D, etc.). Radio wave propagation and interactions determine the impact of the bottomside ionosphere on HF ray trajectories, the effects of ionospheric irregularities that yield UHF/L-band scintillations and ionospheric modifications by high power HF waves. Ionospheric structures such are sporadic-E and intermediate layers, traveling ionospheric disturbances (TID's) and large scale bottomside fluctuations in the F-layer are directly measured by CARINA sensors. Neutral drag is studied along the orbit through reentry modeling of drag coefficients and neutral density model updates. Finally, Atmospherics and lightning knowledge is acquired through studies of lightning EM pulses and their impact on ionosphere. Two CARINA satellites separated by 2000 km flying above 50 degree inclination represents the

  9. Ionosphere-magnetosphere coupling and convection

    NASA Technical Reports Server (NTRS)

    Wolf, R. A.; Spiro, R. W.

    1984-01-01

    The following international Magnetospheric Study quantitative models of observed ionosphere-magnetosphere events are reviewed: (1) a theoretical model of convection; (2) algorithms for deducing ionospheric current and electric-field patterns from sets of ground magnetograms and ionospheric conductivity information; and (3) empirical models of ionospheric conductances and polar cap potential drop. Research into magnetic-field-aligned electric fields is reviewed, particularly magnetic-mirror effects and double layers.

  10. Longitudinal Differences in the Low-latitude Ionosphere and in the Ionospheric Variability

    NASA Astrophysics Data System (ADS)

    Goncharenko, L. P.; Zhang, S.; Liu, H.; Tsugawa, T.; Batista, I. S.; Reinisch, B. W.

    2017-12-01

    Analysis of longitudinal differences in ionospheric parameters can illuminate variety of mechanisms responsible for ionospheric variability. In this study, we aim to 1) quantitatively describe major features of longitudinal differences in peak electron density in the low-latitude ionosphere; 2) examine differences in ionospheric variability at different longitude sectors, and 3) illustrate longitudinal differences in ionospheric response to a large disturbance event, sudden stratospheric warming of 2016. We examine NmF2 observations by a network of ionosondes in the American (30-80W) and Asian (110-170E) longitudinal sectors. Selected instruments are located in the vicinity of EIA troughs (Jicamarca, Sao Luis, Guam, Kwajalein), northern and southern crests of EIA (Boa Vista, Tucuman, Cachoeira Paulista, Okinawa), and beyond EIA crests (Ramey, Yamagawa, Kokubunji). To examine main ionospheric features at each location, we use long-term datasets collected at each site to construct empirical models that describe variations in NmF2 as a function of local time, season, solar flux, and geomagnetic activity. This set of empirical models can be used to accurately describe background ionospheric behavior and serve as a set of observational benchmarks for global circulation models. It reveals, for example, higher NmF2 in the EIA trough in the Asian sector as compared to the American sector. Further, we quantitatively describe variability in NmF2 as a difference between local observations and local empirical model, and find that American sector's EIA trough has overall higher variability that maximizes for all local times during wintertime, while Asian sector trough variability does not change significantly with season. Additionally, local empirical models are used to isolate ionospheric features resulting from dynamical disturbances of different origin (e.g. geomagnetic storms, convective activity, sudden stratospheric warming events, etc.). We illustrate this approach with

  11. Computerized tomography-based anatomic description of the porcine liver.

    PubMed

    Bekheit, Mohamed; Bucur, Petru O; Wartenberg, Mylene; Vibert, Eric

    2017-04-01

    The knowledge of the anatomic features is imperative for successful modeling of the different surgical situations. This study aims to describe the anatomic features of the porcine using computerized tomography (CT) scan. Thirty large, white, female pigs were included in this study. The CT image acquisition was performed in four-phase contrast study. Subsequently, analysis of the images was performed using syngo.via software (Siemens) to subtract mainly the hepatic artery and its branches. Analysis of the portal and hepatic veins division pattern was performed using the Myrian XP-Liver 1.14.1 software (Intrasense). The mean total liver volume was 915 ± 159 mL. The largest sector in the liver was the right medial one representing around 28 ± 5.7% of the total liver volume. Next in order is the right lateral sector constituting around 24 ± 5%. Its volume is very close to the volume of the left medial sector, which represents around 22 ± 4.7% of the total liver volume. The caudate lobe represents around 8 ± 2% of the total liver volume.The portal vein did not show distinct right and left divisions rather than consecutive branches that come off the main trunk. The hepatic artery frequently trifurcates into left trunk that gives off the right gastric artery and the artery to the left lateral sector, the middle hepatic artery that supplies both the right and the left medial sectors and the right hepatic artery trunk that divides to give anterior branch to the right lateral lobe, branch to the right medial lobe, and at least a branch to the caudate lobe. Frequently, there is a posterior branch that crosses behind the portal vein to the right lateral lobe. The suprahepatic veins join the inferior vena cava in three distinct openings. There are communications between the suprahepatic veins that drain the adjacent sectors. The vein from the right lateral and the right medial sectors drains into a common trunk. The vein from the left lateral and from the left

  12. Online, automatic, ionospheric maps: IRI-PLAS-MAP

    NASA Astrophysics Data System (ADS)

    Arikan, F.; Sezen, U.; Gulyaeva, T. L.; Cilibas, O.

    2015-04-01

    Global and regional behavior of the ionosphere is an important component of space weather. The peak height and critical frequency of ionospheric layer for the maximum ionization, namely, hmF2 and foF2, and the total number of electrons on a ray path, Total Electron Content (TEC), are the most investigated and monitored values of ionosphere in capturing and observing ionospheric variability. Typically ionospheric models such as International Reference Ionosphere (IRI) can provide electron density profile, critical parameters of ionospheric layers and Ionospheric electron content for a given location, date and time. Yet, IRI model is limited by only foF2 STORM option in reflecting the dynamics of ionospheric/plasmaspheric/geomagnetic storms. Global Ionospheric Maps (GIM) are provided by IGS analysis centers for global TEC distribution estimated from ground-based GPS stations that can capture the actual dynamics of ionosphere and plasmasphere, but this service is not available for other ionospheric observables. In this study, a unique and original space weather service is introduced as IRI-PLAS-MAP from http://www.ionolab.org

  13. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance

    Science.gov Websites

    Radiopharmaceuticals, DOE Technical Report, 1977 Emission Computed Tomography: A New Technique for the Quantitative Extending the Power of Nuclear Magnetic Resonance Techniques Magnetic Resonance Imaging Research Top Some

  14. A Computerized Tomography Study of Vocal Tract Setting in Hyperfunctional Dysphonia and in Belting.

    PubMed

    Saldias, Marcelo; Guzman, Marco; Miranda, Gonzalo; Laukkanen, Anne-Maria

    2018-04-03

    Vocal tract setting in hyperfunctional patients is characterized by a high larynx and narrowing of the epilaryngeal and pharyngeal region. Similar observations have been made for various singing styles, eg, belting. The voice quality in belting has been described to be loud, speech like, and high pitched. It is also often described as sounding "pressed" or "tense". The above mentioned has led to the hypothesis that belting may be strenuous to the vocal folds. However, singers and teachers of belting do not regard belting as particularly strenuous. This study investigates possible similarities and differences between hyperfunctional voice production and belting. This study concerns vocal tract setting. Four male patients with hyperfunctional dysphonia and one male contemporary commercial music singer were registered with computerized tomography while phonating on [a:] in their habitual speaking pitch. Additionally, the singer used the pitch G4 in belting. The scannings were studied in sagittal and transversal dimensions by measuring lengths, widths, and areas. Various similarities were found between belting and hyperfunction: high vertical larynx position, small hypopharyngeal width, and epilaryngeal outlet. On the other hand, belting differed from dysphonia (in addition to higher pitch) by a wider lip and jaw opening, and larger volumes of the oral cavity. Belting takes advantage of "megaphone shape" of the vocal tract. Future studies should focus on modeling and simulation to address sound energy transfer. Also, they should consider aerodynamic variables and vocal fold vibration to evaluate the "price of decibels" in these phonation types. Copyright © 2018. Published by Elsevier Inc.

  15. Computerized tomography of the otic capsule and otoliths in the oyster toadfish, Opsanus tau.

    PubMed

    Edds-Walton, Peggy L; Arruda, Julie; Fay, Richard R; Ketten, Darlene R

    2015-02-01

    The neurocranium of the toadfish (Opsanus tau) exhibits a distinct translucent region in the otic capsule (OC) that may have functional significance for the auditory pathway. This study used ultrahigh resolution computerized tomography (100 µm voxels) to compare the relative density of three sites along the OC (dorsolateral, midlateral, and ventromedial) and two reference sites (dorsal: supraoccipital crest; ventral: parasphenoid bone) in the neurocranium. Higher attenuation occurs where structural density is greater; thus, we compared the X-ray attenuations measured, which provided a measure of relative density. The maximum attenuation value was recorded for each of the five sites (x and y) on consecutive sections throughout the OC and for each of the three calcareous otoliths associated with the sensory maculae (lagena, saccule, and utricle) in the OC. All three otoliths had higher attenuations than any sites in the neurocranium. Both dorsal and ventral reference sites (supraoccipital crest and parasphenoid bone, respectively) had attenuation levels consistent with calcified bone and had relatively small, irregular variations along the length of the OC in all individuals. The lowest relative attenuations (lowest densities) occurred consistently at the three sites along the OC. In addition, the lowest attenuations measured along the OC occurred at the ventromedial site around the saccular otolith for all seven fish. The decrease in bone density along the OC is consistent with the hypothesis that there is a low-density channel in the skull to facilitate transmission of acoustic stimuli to the auditory endorgans of the ear. © 2014 Wiley Periodicals, Inc.

  16. Ionospheric Change and Solar EUV Irradiance

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  17. Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"

    NASA Astrophysics Data System (ADS)

    Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker

    2017-04-01

    Ionospheric disturbances can affect technologies in space and on Earth disrupting satellite and airline operations, communications networks, navigation systems. As the world becomes ever more dependent on these technologies, ionospheric disturbances as part of space weather pose an increasing risk to the economic vitality and national security. Therefore, having the knowledge of ionospheric state in advance during space weather events is becoming more and more important. To promote scientific cooperation we recently formed a Working Group (WG) called "Ionosphere Predictions" within the International Association of Geodesy (IAG) under Sub-Commission 4.3 "Atmosphere Remote Sensing" of the Commission 4 "Positioning and Applications". The general objective of the WG is to promote the development of ionosphere prediction algorithm/models based on the dependence of ionospheric characteristics on solar and magnetic conditions combining data from different sensors to improve the spatial and temporal resolution and sensitivity taking advantage of different sounding geometries and latency. Our presented work enables the possibility to compare total electron content (TEC) prediction approaches/results from different centers contributing to this WG such as German Aerospace Center (DLR), Universitat Politècnica de Catalunya (UPC), Technische Universität München (TUM) and GMV. DLR developed a model-assisted TEC forecast algorithm taking benefit from actual trends of the TEC behavior at each grid point. Since during perturbations, characterized by large TEC fluctuations or ionization fronts, this approach may fail, the trend information is merged with the current background model which provides a stable climatological TEC behavior. The presented solution is a first step to regularly provide forecasted TEC services via SWACI/IMPC by DLR. UPC forecast model is based on applying linear regression to a temporal window of TEC maps in the Discrete Cosine Transform (DCT) domain

  18. Development of a database for the verification of trans-ionospheric remote sensing systems

    NASA Astrophysics Data System (ADS)

    Leitinger, R.

    2005-08-01

    Remote sensing systems need verification by means of in-situ data or by means of model data. In the case of ionospheric occultation inversion, ionosphere tomography and other imaging methods on the basis of satellite-to-ground or satellite-to-satellite electron content, the availability of in-situ data with adequate spatial and temporal co-location is a very rare case, indeed. Therefore the method of choice for verification is to produce artificial electron content data with realistic properties, subject these data to the inversion/retrieval method, compare the results with model data and apply a suitable type of “goodness of fit” classification. Inter-comparison of inversion/retrieval methods should be done with sets of artificial electron contents in a “blind” (or even “double blind”) way. The set up of a relevant database for the COST 271 Action is described. One part of the database will be made available to everyone interested in testing of inversion/retrieval methods. The artificial electron content data are calculated by means of large-scale models that are “modulated” in a realistic way to include smaller scale and dynamic structures, like troughs and traveling ionospheric disturbances.

  19. Simulation and Observation of Acoustic-Gravity Waves in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Kunitsyn, Viacheslav; Andreeva, Elena; Krysanov, Boris; Nesterov, Ivan

    Atmospheric and ionospheric perturbations associated with the acoustic-gravity waves (AGW) with typical frequencies of a few hertz -millihertz are considered. These events may be caused by the influence from space and atmosphere as well as by oscillations of the Earth surface and other near-surface phenomena. The surface sources include long-period oscillations of the Earth's surface, earthquakes, explosions, thermal heating, seisches and tsunami waves. The wavelike phenomena manifest themself as travelling disturbances of air (in the atmosphere) and of electron density (in the ionosphere). Travelling ionospheric disturbances (TIDs) are well detected by radio physical methods. AGW generation by near-surface sources is modeled by the numerical solution of the equation of geophysical fluid dynamics for different sources in two-dimensional non-linear dissipative compressible atmosphere. The numerical calculations are based on the FCT (Flux Corrected Transport) technique of the second order accuracy in time and space. Different scenarios of AGW generation are analyzed. The AGW caused by the surface sources within a few hertz-millihertz frequency band appear at the altitudes of middle atmosphere and ionosphere as the disturbances with typical scales from a few kilometers to several hundreds kilometers. Such structures can be successfully monitored by the methods of satellite radio tomography (RT). For the purposes of RT diagnostics of such disturbances, low-orbiting navigational satellites like Transit and Tsikada and high-orbiting navigation systems GPS/GLONASS are used. The results of numerical modeling of AGW generation by the surface sources are compared with the data of RT sounding. Also, generation of AGW by volumetric sources such as particle precipitation, rocket launching, heating by high-frequency radiation and other are considered. The obtained results proved the capability of RT methods of detecting and distinguishing between TIDs caused by AGW generated by

  20. Ionospheric effects during severe space weather events seen in ionospheric service data products

    NASA Astrophysics Data System (ADS)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  1. Preoperative evaluation of hilar vessel anatomy with 3-D computerized tomography in living kidney donors.

    PubMed

    Tombul, S T; Aki, F T; Gunay, M; Inci, K; Hazirolan, T; Karcaaltincaba, M; Erkan, I; Bakkaloglu, A; Yasavul, U; Bakkaloglu, M

    2008-01-01

    Digital subtract angiography is the gold standard for anatomic assessment of renal vasculature for living renal donors. However, multidetector-row computerized tomography (MDCT) is less invasive than digital subtract angiography and provides information of kidney stones and other intra-abdominal organs. In this study, preoperative MDCT angiography results were compared with the peroperative findings to evaluate the accuracy of MDCT for the evaluation of renal anatomy. From December 2002 to May 2007, all 60 consecutive living kidney donors were evaluated with MDCT angiography preoperatively. We reported the number and origin of renal arteries, presence of early branching arteries, and any intrinsic renal artery disease. Renal venous anatomy was evaluated for the presence of accessory, retroaortic, and circumaortic veins using venous phase axial images. The calyces and ureters were assessed with delayed topograms. The results of the MDCT angiography were compared with the peroperative findings. A total of 67 renal arteries were seen peroperatively in 60 renal units. Preoperative MDCT angiography detected 64 of them. The two arteries not detected by MDCT had diameters less than 3 mm. Anatomic variations were present in nine veins, five of which were detected by CT angiography. Sensitivity of MDCT angiography for arteries and veins was 95% and 93%, respectively. Positive predictive values were 100% for both arteries and veins. MDCT angiography offers a less invasive, rapid, and accurate preoperative investigation modality for vascular anatomy in living kidney donors. It also provides sufficient information about extrarenal anatomy important for donor surgery.

  2. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  3. Discrepancies between leg-to-leg bioelectrical Impedance analysis and computerized tomography in abdominal visceral fat measurement.

    PubMed

    Lu, Hsueh-Kuan; Chen, Yu-Yawn; Yeh, Chinagwen; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Casebolt, Kevin M; Huang, Ai-Chun; Lin, Wen-Long; Hsieh, Kuen-Chang

    2017-08-22

    The aim of this study was to evaluate leg-to-leg bioelectrical impedance analysis (LBIA) using a four-contact electrode system for measuring abdominal visceral fat area (VFA). The present study recruited 381 (240 male and 141 female) Chinese participants to compare VFA measurements estimated by a standing LBIA system (VFALBIA) with computerized tomography (CT) scanned at the L4-L5 vertebrae (VFA CT ). The total mean body mass index (BMI) was 24.7 ± 4.2 kg/m 2 . Correlation analysis, regression analysis, Bland-Altman plot, and paired sample t-tests were used to analyze the accuracy of the VFA LBIA . For the total subjects, the regression line was VFA LBIA  = 0.698 VFA CT  + 29.521, (correlation coefficient (r) = 0.789, standard estimate of error (SEE) = 24.470 cm 2 , p < 0.001), Lin's correlation coefficient (CCC) was 0.785; and the limit of agreement (LOA; mean difference ±2 standard deviation) ranged from -43.950 to 67.951 cm 2 , LOA% (given as a percentage of mean value measured by the CT) was 48.2%. VFA LBIA and VFA CT showed significant difference (p < 0.001). Collectively, the current study indicates that LBIA has limited potential to accurately estimate visceral fat in a clinical setting.

  4. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

    DTIC Science & Technology

    2014-09-23

    conduct simulations with a high-latitude data assimilation model. The specific objectives are to study magnetosphere-ionosphere ( M -I) coupling processes...based on three physics-based models, including a magnetosphere-ionosphere ( M -I) electrodynamics model, an ionosphere model, and a magnetic...inversion code. The ionosphere model is a high-resolution version of the Ionosphere Forecast Model ( IFM ), which is a 3-D, multi-ion model of the ionosphere

  5. The worldwide ionospheric data base

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    1989-01-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.

  6. Earthquake-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    After a giant earthquake (EQ), acoustic and gravity waves are excited by the displacement of land and sea surface, propagate through atmosphere, and then reach thermosphere, which causes ionospheric disturbances. This phenomenon was detected first by ionosonde and by HF Doppler sounderin the 1964 M9.2 Great Alaskan EQ. Developing Global Positioning System (GPS), seismogenic ionospheric disturbance detected by total electron content (TEC) measurement has been reported. A value of TEC is estimated by the phase difference between two different carrier frequencies through the propagation in the dispersive ionospheric plasma. The variation of TEC is mostly similar to that of F-region plasma. Acoustic-gravity waves triggered by an earthquake [Heki and Ping, EPSL, 2005; Liu et al., JGR, 2010] and a tsunami [Artu et al., GJI, 2005; Liu et al., JGR, 2006; Rolland, GRL, 2010] disturb the ionosphere and travel in the ionosphere. Besides the traveling ionospheric disturbances, ionospheric disturbances excited by Rayleigh waves [Ducic et al, GRL, 2003; Liu et al., GRL, 2006] as well as post-seismic 4-minute monoperiodic atmospheric resonances [Choosakul et al., JGR, 2009] have been observed after the large earthquakes. Since GPS Earth Observation Network System (GEONET) with more than 1200 GPS receiving points in Japan is a dense GPS network, seismogenic ionospheric disturbance is spatially observed. In particular, the seismogenic ionospheric disturbance caused by the M9.0 off the Pacific coast of Tohoku EQ (henceforth the Tohoku EQ) on 11 March 2011 was clearly observed. Approximately 9 minutes after the mainshock, acoustic waves which propagated radially emitted from the tsunami source area were observed through the TEC measurement (e. g., Liu et al. [JGR, 2011]). Moreover, there was a depression of TEC lasting for several tens of minutes after a huge earthquake, which was a large-scale phenomenon extending to a radius of a few hundred kilometers. This TEC depression may be

  7. Using the USU ionospheric model to predict radio propagation through a simulated ionosphere

    NASA Astrophysics Data System (ADS)

    Huffines, Gary R.

    1990-12-01

    To evaluate the capabilities of communication, navigation, and defense systems utilizing electromagnetic waves which interact with the ionosphere, a three-dimensional ray tracing program was used. A simple empirical model (Chapman function) and a complex physical model (Schunk and Sojka model) were used to compare the representation of ionospheric conditions. Four positions were chosen to test four different features of the Northern Hemispheric ionosphere. It seems that decreasing electron density has little or no effect on the horizontal components of the ray path while increasing electron density causes deviations in the ray path. It was also noted that rays in the physical model's mid-latitude trough region escaped the ionosphere for all frequencies used in this study.

  8. Complex network description of the ionosphere

    NASA Astrophysics Data System (ADS)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.

  9. A Review of Ionospheric Scintillation Models.

    PubMed

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  10. Contribution of the International Reference Ionosphere to the progress of the ionospheric representation

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter

    2017-04-01

    The International Reference Ionosphere (IRI), a joint project of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI), is a data-based reference model for the ionosphere and since 2014 it is also recognized as the ISO (International Standardization Organization) standard for the ionosphere. The model is a synthesis of most of the available and reliable observations of ionospheric parameters combining ground and space measurements. This presentation reviews the steady progress in achieving a more and more accurate representation of the ionospheric plasma parameters accomplished during the last decade of IRI model improvements. Understandably, a data-based model is only as good as the data foundation on which it is built. We will discuss areas where we are in need of more data to obtain a more solid and continuous data foundation in space and time. We will also take a look at still existing discrepancies between simultaneous measurements of the same parameter with different measurement techniques and discuss the approach taken in the IRI model to deal with these conflicts. In conclusion we will provide an outlook at development activities that may result in significant future improvements of the accurate representation of the ionosphere in the IRI model.

  11. The Ionosphere and Ocean Altimetry

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.

    1999-01-01

    The accuracy of satellite-based single-frequency radar ocean altimeters benefits from calibration of the total electron content (TEC) of the ionosphere below the satellite. Data from the global network of Global Positioning System (GPS) receivers provides timely, continuous, and globally well-distributed measurements of ionospheric electron content. We have created a daily automated process called Daily Global Ionospheric Map (Daily-GIM) whose primary purpose is to use global GPS data to provide ionospheric calibration data for the Geosat Follow-On (GFO) ocean altimeter. This process also produces an hourly time-series of global maps of the electron content of the ionosphere. This system is designed to deliver "quick-look" ionospheric calibrations within 24 hours with 90+% reliability and with a root-mean-square accuracy of 2 cm at 13.6 GHz. In addition we produce a second product within 72 hours which takes advantage of additional GPS data which were not available in time for the first process. The diagram shows an example of a comparison between TEC data from the Topographic Experiment (TOPEX) ocean altimeter and Daily-GIM. TEC are displayed in TEC units, TECU, where 5 TECU is 1 cm at 13.6 GHz. Data from a single TOPEX track is shown. Also shown is the Bent climatological model TEC for the track. Although the GFO satellite is not yet in its operational mode, we have been running Daily-GIM reliably (much better than 90%) with better than 2-cm accuracy (based on comparisons against TOPEX) for several months. When timely ephemeris files for the European Remote Sensing Satellite 2 (ERS-2) are available, daily ERS-2 altimeter ionospheric calibration files are produced. When GFO ephemeris files are made available to us, we produce GFO ionosphere calibration files. Users of these GFO ionosphere calibration files find they are a great improvement over the alternative International Reference Ionosphere 1995 (IRI-95) climatological model. In addition, the TOPEX orbit

  12. SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products

    NASA Astrophysics Data System (ADS)

    Jeansou, E.; Crespon, F.; Garcia, R.; Helbert, J.; Moreaux, G.; Lognonne, P.

    2005-12-01

    The dense GPS networks developed for geodesic applications appear to be very efficient ionospheric sensors because of interaction between plasma and electromagnetic waves. Indeed, the dual frequency receivers provide data from which the Slant Total Electron Content (STEC) can be easily extracted to compute Vertical Total Electron Content (VTEC) maps. The SPECTRE project, Service and Products for ionospheric Electron Content and Tropospheric Refractivity over Europe, is currently a pre-operational service providing VTEC maps with high time and space resolution after 3 days time delay (http://www.noveltis.fr/spectre and http://ganymede.ipgp.jussieu.fr/spectre). This project is a part of SWENET, SpaceWeather European Network, initiated by the European Space Agency. The SPECTRE data products are useful for many applications. We will present these applications in term of interest for the scientific community with a special focus on spaceweather and transient ionospheric perturbations related to Earthquakes. Moreover, the pre-operational extensions of SPECTRE to the californian (SCIGN/BARD) and japanese (GEONET) dense GPS networks will be presented. Then the method of 3D tomography of the electron density from GPS data will be presented and its resolution discussed. The expected improvements of the 3D tomographic images by new tomographic reconstruction algorithms and by the advent of the Galileo system will conclude the presentation.

  13. Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Joined Satellite and Ground Observations. Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Romanov, Alexey; Tsybulya, Konstantin; Davidenko, Dimitri; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    The recent M9 Tohoku Japan earthquake of March 11, 2011 was the largest recorded earthquake ever to hit this nation. We retrospectively analyzed the temporal and spatial variations of four different physical parameters - outgoing long wave radiation (OLR), GPS/TEC, Low-Earth orbit tomography and critical frequency foF2. These changes characterize the state of the atmosphere and ionosphere several days before the onset of this earthquake. Our first results show that on March 8th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting on this day in the lower ionospheric there was also confirmed an abnormal TEC variation over the epicenter. From March 3-11 a large increase in electron concentration was recorded at all four Japanese ground based ionosondes, which return to normal after the main earthquake. We found a positive correlation between the atmospheric and ionospheric anomalies and the Tohoku earthquake. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the Great Tohoku earthquake.

  14. The CERTO Beacon on CASSIOPE/e-POP and Experiments Using High-Power HF Ionospheric Heaters

    NASA Astrophysics Data System (ADS)

    Siefring, Carl L.; Bernhardt, Paul A.; James, H. Gordon; Parris, Richard Todd

    2015-06-01

    A new Coherent Electromagnetic Radio Tomography (CERTO) beacon is on the CASSIOPE satellite and part of the enhanced-Polar Outflow Probe (e-POP) suite of scientific instruments. CERTO signals can be used to measure ionospheric Total Electron Content (TEC) and radio scintillations along propagation paths between CERTO and receivers. The combination of CERTO and the array of e-POP in-situ diagnostics form a powerful tool for studying ionospheric plasma processes that have not been previously possible. Of note, the combination CERTO and the Radio Receiver Instrument (RRI), a modern digital receiver, which measures between 10 Hz to 18 MHz in selectable bands allows for innovative High Frequency (HF) radio propagation experiments. The use of high-power HF ionospheric heating facilities for such experiments further allows for repeatable studies of a number of important plasma processes. The new CERTO beacon transmits un-modulated, phase-coherent waves at 150, 400, and 1067 MHz with either right-hand-circular or linear polarization and TEC is measured using either differential phase and/or Faraday rotation. With a linear array of CERTO receivers, TEC data can be used for tomographic imaging of the ionosphere yielding two-dimensional maps of the plasma below the satellite orbit. In addition, the three CERTO frequencies cover a wide range for determination of radio scintillation effects caused by diffraction from propagation through ionospheric irregularities. We will describe the CERTO beacon and several potential innovative experiments using HF heating facilities in conjunction with CERTO, the RRI and other e-POP instruments.

  15. Ionosphere Waves Service (IWS) - a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    NASA Astrophysics Data System (ADS)

    Ferencz, Csaba; Lizunov, Georgii; Crespon, François; Price, Ivan; Bankov, Ludmil; Przepiórka, Dorota; Brieß, Klaus; Dudkin, Denis; Girenko, Andrey; Korepanov, Valery; Kuzmych, Andrii; Skorokhod, Tetiana; Marinov, Pencho; Piankova, Olena; Rothkaehl, Hanna; Shtus, Tetyana; Steinbach, Péter; Lichtenberger, János; Sterenharz, Arnold; Vassileva, Any

    2014-05-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  16. Ionospheric plasma cloud dynamics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measurements of the thermospheric neutral wind and ionospheric drift made at Eglin AFB, Florida and Kwajalein Atoll are discussed. The neutral wind measurements at Eglin had little variation over a period of four years for moderate magnetic activity (Kp 4); the ionospheric drifts are small. Evidence is presented that indicates that increased magnetic activity has a significant effect on the neutral wind magnitude and direction at this midlatitude station. The neutral wind at dusk near the equator is generally small although in one case out of seven it was significantly larger. It is described how observations of large barium releases can be used to infer the degree of electrodynamic coupling of ion clouds to the background ionosphere. Evidence is presented that indicates that large barium releases are coupled to the conjugate ionosphere at midlatitudes.

  17. Atmosphere-Ionosphere Response to the M9 Tohoku Earthquake Revealed by Multi-Instrument Space-Borne and Ground Observations. Preliminary Results

    NASA Technical Reports Server (NTRS)

    Ouzounov, Dimitar; Pulinets, Sergey; Romanov, Alexey; Romanov, Alexander; Tsbulya, Konstantin; Davidenko, Dmitri; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku Japan earthquake of March 11, 2011. Data include outgoing long wave radiation (OLR), GPS/TEC, Low-Earth orbit ionospheric tomography and critical frequency foF2. Our first results show that on March 8th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting on this day in the lower ionospheric there was also confirmed an abnormal TEC variation over the epicenter. From March 3-11 a large increase in electron concentration was recorded at all four Japanese ground based ionosondes, which returned to normal after the main earthquake The joined preliminary analysis of atmospheric and ionospheric parameters during the M9 Tohoku Japan earthquake has revealed the presence of related variations of these parameters implying their connection with the earthquake process. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the Great Tohoku earthquake.

  18. Ionospheric research for space weather service support

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  19. Chemistry in the Thermosphere and Ionosphere.

    ERIC Educational Resources Information Center

    Roble, Raymond G.

    1986-01-01

    An informative review which summarizes information about chemical reactions in the thermosphere and ionosphere. Topics include thermal structure, ultraviolet radiation, ionospheric photochemistry, thermospheric photochemistry, chemical heating, thermospheric circulation, auroral processes and ionospheric interactions. Provides suggested followup…

  20. Ionospheric behaviour during storm recovery phase

    NASA Astrophysics Data System (ADS)

    Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.

    2012-04-01

    Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.

  1. The dynamics of the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Miller, K. L.

    1988-01-01

    Data from the Pioneer-Venus orbiter has demonstrated the importance of understanding ion dynamics in the Venus ionosphere. The analysis of the data has shown that during solar maximum the topside Venus ionosphere in the dark hemisphere is generated almost entirely on the dayside of the planet during solar maximum, and flows with supersonic velocities across the terminator into the nightside. The flow field in the ionosphere is mainly axially-symmetric about the sun-Venus axis, as are most measured ionospheric quantities. The primary data base used consisted of the ion velocity measurements made by the RPA during three years that periapsis of the orbiter was maintained in the Venus ionosphere. Examples of ion velocities were published and modeled. This research examined the planetary flow patterns measured in the Venus ionosphere, and the physical implications of departures from the mean flow.

  2. Ionosphere dynamics in the auroral zone during the magnetic storm of March 17-18, 2015

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Sergeeva, M. A.

    2016-11-01

    A comprehensive study of the ionospheric processes encountered during the superstorm which started on March 17th 2015 has been carried out using magnetometer, ionosonde, riometer, ionospheric tomography and an all-sky camera installed in the observatory of Sodankylä, Finland. The storm manifested a number of interesting features. From 12:00 on March 17 there was a significant decrease of critical frequencies foF2 and intensive sporadic Es layers were observed. During the disturbance, there was a lack of variation of the X-component of the magnetic field at times, but the absorption level measured by the riometer was high. A comparison of the electron density distributions for the quiet and disturbed days as shown in the tomography data were very different. Where results were available at the same times, the tomographic foF2 values coincided with the ;real; foF2 values from the ionosonde. Where the ionosonde data was missing due to absorption, the tomographic foF2 values were used instead. The keograms from the all-sky camera showed that during disturbed days the aurorae manifested themselves as bright discrete forms. It was shown that the peaks of absorption due to particle precipitation seen by the riometer coincided in time with the brightenings of aurorae seen on the keograms.

  3. The reliability of Cavalier's principle of stereological method in determining volumes of enchondromas using the computerized tomography tools.

    PubMed

    Acar, Nihat; Karakasli, Ahmet; Karaarslan, Ahmet; Mas, Nermin Ng; Hapa, Onur

    2017-01-01

    Volumetric measurements of benign tumors enable surgeons to trace volume changes during follow-up periods. For a volumetric measurement technique to be applicable, it should be easy, rapid, and inexpensive and should carry a high interobserver reliability. We aimed to assess the interobserver reliability of a volumetric measurement technique using the Cavalier's principle of stereological methods. The computerized tomography (CT) of 15 patients with a histopathologically confirmed diagnosis of enchondroma with variant tumor sizes and localizations was retrospectively reviewed for interobserver reliability evaluation of the volumetric stereological measurement with the Cavalier's principle, V = t × [((SU) × d) /SL]2 × Σ P. The volumes of the 15 tumors collected by the observers are demonstrated in Table 1. There was no statistical significance between the first and second observers ( p = 0.000 and intraclass correlation coefficient = 0.970) and between the first and third observers ( p = 0.000 and intraclass correlation coefficient = 0.981). No statistical significance was detected between the second and third observers ( p = 0.000 and intraclass correlation coefficient = 0.976). The Cavalier's principle with the stereological technique using the CT scans is an easy, rapid, and inexpensive technique in volumetric evaluation of enchondromas with a trustable interobserver reliability.

  4. A novel three-dimensional image reconstruction method for near-field coded aperture single photon emission computerized tomography

    PubMed Central

    Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa

    2009-01-01

    Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769

  5. Ionospheric effects of thunderstorms and lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin H.

    2014-02-03

    Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm.more » We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.« less

  6. Representation of the Auroral and Polar Ionosphere in the International Reference Ionosphere (IRI)

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Reinisch, Bodo

    2013-01-01

    This issue of Advances in Space Research presents a selection of papers that document the progress in developing and improving the International Reference Ionosphere (IRI), a widely used standard for the parameters that describe the Earths ionosphere. The core set of papers was presented during the 2010 General Assembly of the Committee on Space Research in Bremen, Germany in a session that focused on the representation of the auroral and polar ionosphere in the IRI model. In addition, papers were solicited and submitted from the scientific community in a general call for appropriate papers.

  7. Using network technology for studying the ionosphere

    NASA Astrophysics Data System (ADS)

    Yasyukevich, Yury; Zhivetiev, Ilya

    2015-09-01

    One of the key problems of ionosphere physics is the coupling between different ionospheric regions. We apply networks technology for studying the coupling of changing ionospheric dynamics in different regions. We used data from global ionosphere maps (GIM) of total electron content (TEC) produced by CODE for 2005-2010. Distribution of cross-correlation function maxima of TEC variations is not simple. This distribution allows us to reveal two levels of ionosphere coupling: "strong" (r>0.9) and "weak" (r>0.72). The ionosphere of the Arctic region upper 50° magnetic latitude is characterized by a "strong" coupling. In the Southern hemisphere, a similar region is bigger. "Weak" coupling is typical for the whole Southern hemisphere. In North America there is an area where TEC dynamics is "strongly" correlated inside and is not correlated with other ionospheric regions.

  8. Ionospheric Profiles from Ultraviolet Remote Sensing

    DTIC Science & Technology

    1997-09-30

    The long-term goal of this project is to obtain ionospheric profiles from ultraviolet remote sensing of the ionosphere from orbiting space platforms... Remote sensing of the nighttime ionosphere is a more straightforward process because of the absence of the complications brought about by daytime

  9. Martian Ionospheric Observation and Modeling

    NASA Astrophysics Data System (ADS)

    González-Galindo, Francisco

    2018-02-01

    The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by the energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in the electron concentration placed at about 120–140 km of altitude, coincident with the peak of the ionization rate. Below, a secondary peak produced by solar X-rays and photoelectron-impact ionization is observed. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2+, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma become more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as the solar radiation getting to the planet, the neutral atmosphere, the meteoric influx, the atmospheric escape to space, or the interaction of the planet with the solar wind. It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to the contemporaneous observations, still ongoing, by the Mars Express and MAVEN orbiters, our current knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous

  10. Relations between age, weight, refractive error and eye shape by computerized tomography in children.

    PubMed

    Song, Ha Tae; Kim, Young Jun; Lee, Soo Jung; Moon, Yeon Sung

    2007-09-01

    To investigate relationships between age, weight, refractive error, and morphologic changes in children's eyes by computerized tomography (CT). Of the 772 eyes of 386 patients under the age of 20 years, who visited our Department of Ophthalmology between January 2005 to August 2006 and underwent CT of the orbit, 406 eyes of 354 patients with clear CT images and normal eyeball contour were enrolled in the present retrospective study. The axial lengths, widths, horizontal and vertical lengths, refractive errors, and body weight of eyes were measured, and relationship between these parameters were investigated. Axial length was found to correlate significantly with eye width (r=0.914), and in emmetropic eyes and myopic eyes, axial lengths and widths were found to increase as age and body weight increased. Axial lengths increased rapidly until age 10, and then increased slowly. In emmetropic eyes, widths/axial lengths increased with age, but in myopic eyes these decreased as age or severity of myopia increased. Moreover, as age increased, the myopic population and severity also increased. The axial length was longer in case of myopia compared to emmetropia in all age groups and there was almost no difference in the increase rate of axial length by the age of myopia and emmetropia. However, the width was wider in case of myopia compared to emmetropia in all age groups and the increase rate of width in myopia by age was smaller than that of emmetropia. Myopia showed decreasing rate of width/axial length with increase of age, from 1.004 in 5 years to 0.971 in 20 years. However, emmetropia showed increasing rate of width/axial length with increase of age, from 0.990 in 5 years to 1.006 in 20 years.

  11. Relations between Age, Weight, Refractive Error and Eye Shape by Computerized Tomography in Children

    PubMed Central

    Song, Ha Tae; Kim, Young Jun; Lee, Soo Jung

    2007-01-01

    Purpose To investigate relationships between age, weight, refractive error, and morphologic changes in children's eyes by computerized tomography (CT). Methods Of the 772 eyes of 386 patients under the age of 20 years, who visited our Department of Ophthalmology between January 2005 to August 2006 and underwent CT of the orbit, 406 eyes of 354 patients with clear CT images and normal eyeball contour were enrolled in the present retrospective study. The axial lengths, widths, horizontal and vertical lengths, refractive errors, and body weight of eyes were measured, and relationship between these parameters were investigated. Results Axial length was found to correlate significantly with eye width (r=0.914), and in emmetropic eyes and myopic eyes, axial lengths and widths were found to increase as age and body weight increased. Axial lengths increased rapidly until age 10, and then increased slowly. In emmetropic eyes, widths / axial lengths increased with age, but in myopic eyes these decreased as age or severity of myopia increased. Moreover, as age increased, the myopic population and severity also increased. Conclusions The axial length was longer in case of myopia compared to emmetropia in all age groups and there was almost no difference in the increase rate of axial length by the age of myopia and emmetropia. However, the width was wider in case of myopia compared to emmetropia in all age groups and the increase rate of width in myopia by age was smaller than that of emmetropia. Myopia showed decreasing rate of width/axial length with increase of age, from 1.004 in 5 years to 0.971 in 20 years. However, emmetropia showed increasing rate of width/axial length with increase of age, from 0.990 in 5 years to 1.006 in 20 years. PMID:17804923

  12. Impact of renal anatomy on shock wave lithotripsy outcomes for lower pole kidney stones: results of a prospective multifactorial analysis controlled by computerized tomography.

    PubMed

    Torricelli, Fabio C M; Marchini, Giovanni S; Yamauchi, Fernando I; Danilovic, Alexandre; Vicentini, Fabio C; Srougi, Miguel; Monga, Manoj; Mazzucchi, Eduardo

    2015-06-01

    We evaluated which variables impact fragmentation and clearance of lower pole calculi after shock wave lithotripsy. We prospectively evaluated patients undergoing shock wave lithotripsy for a solitary 5 to 20 mm lower pole kidney stone between June 2012 and August 2014. Patient body mass index and abdominal waist circumference were recorded. One radiologist blinded to shock wave lithotripsy outcomes measured stone size, area and density, stone-to-skin distance, infundibular length, width and height, and infundibulopelvic angle based on baseline noncontrast computerized tomography. Fragmentation, success (defined as residual fragments less than 4 mm in asymptomatic patients) and the stone-free rate were evaluated by noncontrast computerized tomography 12 weeks postoperatively. Univariate and multivariate analysis was performed. A total of 100 patients were enrolled in the study. Mean stone size was 9.1 mm. Overall fragmentation, success and stone-free rates were 76%, 54% and 37%, respectively. On logistic regression body mass index (OR 1.27, 95% CI 1.11-1.49, p = 0.004) and stone density (OR 1.0026, 95% CI 1.0008-1.0046, p = 0.005) significantly impacted fragmentation. Stone size (OR 1.24, 95% CI 1.07-1.48, p = 0.039) and stone density (OR 1.0021, 95% CI 1.0007-1.0037, p = 0.012) impacted the success rate while stone size (OR 1.24, 95% CI 1.04-1.50, p = 0.029), stone density (OR 1.0015, 95% CI 1.0001-1.0032, p = 0.046) and infundibular length (OR 1.1035, 95% CI 1.015-1.217, p = 0.015) impacted the stone-free rate. The best outcomes were found in patients with a body mass index of 30 kg/m(2) or less, stones 10 mm or less and 900 HU or less, and an infundibular length of 25 mm or less. The coexistence of significant unfavorable variables led to a stone-free rate of less than 20%. Obese patients with higher than 10 mm density stones (greater than 900 HU) in the lower pole of the kidney with an infundibular length of greater than 25 mm should be discouraged from

  13. 3D tomography of midlatitude sporadic-E in Japan from GNSS-TEC data

    NASA Astrophysics Data System (ADS)

    Muafiry, Ihsan Naufal; Heki, Kosuke; Maeda, Jun

    2018-03-01

    We studied ionospheric irregularities caused by midlatitude sporadic-E ( Es) in Japan using ionospheric total electron content (TEC) data from a dense GNSS array, GEONET, with a 3D (three-dimensional) tomography technique. Es is a thin layer of unusually high ionization that appears at altitudes of 100 km. Here, we studied five cases of Es irregularities in 2010 and 2012, also reported in previous studies, over the Kanto and Kyushu Districts. We used slant TEC residuals as the input and estimated the number of electron density anomalies of more than 2000 small blocks with dimensions of 20-30 km covering a horizontal region of 300 × 500 km. We applied a continuity constraint to stabilize the solution and performed several different resolution tests with synthetic data to assess the accuracy of the results. The tomography results showed that positive electron density anomalies occurred at the E region height, and the morphology and dynamics were consistent with those reported by earlier studies.

  14. AMPS data management requirements study, appendix 1. [user manuals (computer programs)/display devices - computerized simulation/experimentation/ionosphere

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flow charts and display formats for the simulation of five experiments are given. The experiments are: (1) electromagnetic wave transmission; (2) passive observations of ambient plasma; (3) ionospheric measurements with subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustical gravity waves in the sodium layer using lasers. A detailed explanation of the simulation procedure, definition of variables, and an explanation of how the experimenter makes display choices is also presented. A functional description is included on each flow chart and the assumptions and definitions of terms and scope of the flow charts and displays are presented.

  15. Beyond the Electrostatic Ionosphere: Dynamic Coupling of the Magnetosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Lysak, R. L.; Song, Y.

    2017-12-01

    Many models of magnetospheric dynamics treat the ionosphere as a height-integrated slab in which the electric fields are electrostatic. However, in dynamic situations, the coupling between magnetosphere and ionosphere is achieved by the propagation of shear Alfvén waves. Hall effects lead to a coupling of shear Alfvén and fast mode waves, resulting in an inductive electric field and a compressional component of the magnetic field. It is in fact this compressional magnetic field that is largely responsible for the magnetic fields seen on the ground. A fully inductive ionosphere model is required to describe this situation. The shear Alfvén waves are affected by the strong gradient in the Alfvén speed above the ionosphere, setting up the ionospheric Alfvén resonator with wave periods in the 1-10 second range. These waves develop a parallel electric field on small scales that can produce a broadband acceleration of auroral electrons, which form the Alfvénic aurora. Since these electrons are relatively low in energy (hundreds of eV to a few keV), they produce auroral emissions as well as ionization at higher altitudes. Therefore, they can produce localized columns of ionization that lead to structuring in the auroral currents due to phase mixing or feedback interactions. This implies that the height-integrated description of the ionosphere is not appropriate in these situations. These considerations suggest that the Alfvénic aurora may, at least in some cases, act as a precursor to the development of a quasi-static auroral arc. The acceleration of electrons and ions produces a density cavity at higher altitudes that favors the formation of parallel electric fields. Furthermore, the precipitating electrons will produce secondary and backscattered electrons that provide a necessary population for the formation of double layers. These interactions strongly suggest that the simple electrostatic boundary condition often assumed is inadequate to describe auroral arc

  16. Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations

    NASA Astrophysics Data System (ADS)

    Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bhat, N. D. R.; Briggs, F.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; Ewall-Wice, A.; Feng, L.; For, B.-Q.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Jacobs, D.; Johnston-Hollitt, M.; Kapińska, A. D.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Oberoi, D.; Offringa, A. R.; Pindor, B.; Procopio, P.; Riding, J.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Emrich, D.; Goeke, R.; Greenhill, L. J.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Morales, M. F.; Morgan, E.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-08-01

    We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.

  17. Abbreviated injury scale scoring in traffic fatalities: comparison of computerized tomography and autopsy.

    PubMed

    Leth, Peter Mygind; Ibsen, Marlene

    2010-06-01

    The purpose of this investigation is to evaluate the value of postmortem computerized tomography (CT) for Abbreviated Injury Scale (AIS) scoring and Injury Severity Scoring (ISS) of traffic fatalities. This is a prospective investigation of a consecutive series of 52 traffic fatalities from Southern Denmark that were CT scanned and autopsied. The AIS and ISS scores based on CT and autopsy (AU) were registered in a computer database and compared. Kappa values for reproducibility of AIS-severity scores and ISS scores were calculated. On an average, there was a 94% agreement between AU and CT in detecting the presence or absence of lesions in the various anatomic regions, and the severity scores were the same in 90% of all cases (range, 75-100%). When different severity scoring was obtained, CT detected more lesions with a high severity score in the facial skeleton, pelvis, and extremities, whereas AU detected more lesions with high scores in the soft tissues (especially in the aorta), cranium, and ribs. The kappa value for reproducibility of AIS scores confirmed that the agreement between the two methods was good. The lowest kappa values (>0.6) were found for the facial skeleton, cerebellum, meninges, neck organs, lungs, kidneys, and gastrointestinal tract. In these areas, the kappa value provided moderate agreement between CT and AU. For all other areas, there was a substantial agreement between the two methods. The ISS scores obtained by CT and by AU were calculated and were found to be with no or moderate variation in 85%. Rupture of the aorta was often overlooked by CT, resulting in too low ISS scoring. The most precise postmortem AIS and ISS scorings of traffic fatalities was obtained by a combination of AU and CT. If it is not possible to perform an AU, then CT may be used as an acceptable alternative for AIS scoring. We have identified one important obstacle for postmortem ISS scoring, namely that aorta ruptures are not easily detected by post mortem CT.

  18. Historical overview of HF ionospheric modification research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, W.E.; Duncan, L.M.

    1990-10-01

    Radio waves have inadvertently modified the Earth's ionosphere since the Luxembourg observations of Tellegen in 1933 and perhaps since Marconi in 1901. The history of ionospheric modification by radio waves is reviewed, beginning with Marconi, describing the Luxembourg effect and its explanations, and its early use to deduce the properties of the lower ionosphere in the 1930s. The measurements became more sophisticated in the 1950s, leading to the call for high-power high-frequency modification experiments in the upper ionosphere. Beginning in 1970, radio facilities became available of sufficient powers to induce changes in the ionospheric plasma detectable by a wide arraymore » of diagnostic instruments and techniques. A summary of these effects is presented based upon work up to 1990. These studies were originally motivated as a means of better understanding the natural ionosphere using a weak perturbational approach. However, a rich spectrum of nonlinear wave-plasma interactions was quickly discovered and ionospheric modification research became strongly motivated by issues in basic plasma physics. The ionosphere and near-Earth space are now exploited as an exceptional plasma laboratory-without-walls for the study of fundamental plasma processes requiring large spatial or temporal scales. Here we present a brief overview of these processes and phenomena, illustrated using results obtained from the Arecibo ionospheric modification facilities. The lessons learned and phenomena explored thus far offer many opportunities for controlling the ionospheric environment critical to many civilian and military telecommunications systems, both to disrupt systems normally operational and to create new propagation paths otherwise unavailable.« less

  19. Radar soundings of the ionosphere of Mars.

    PubMed

    Gurnett, D A; Kirchner, D L; Huff, R L; Morgan, D D; Persoon, A M; Averkamp, T F; Duru, F; Nielsen, E; Safaeinili, A; Plaut, J J; Picardi, G

    2005-12-23

    We report the first radar soundings of the ionosphere of Mars with the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on board the orbiting Mars Express spacecraft. Several types of ionospheric echoes are observed, ranging from vertical echoes caused by specular reflection from the horizontally stratified ionosphere to a wide variety of oblique and diffuse echoes. The oblique echoes are believed to arise mainly from ionospheric structures associated with the complex crustal magnetic fields of Mars. Echoes at the electron plasma frequency and the cyclotron period also provide measurements of the local electron density and magnetic field strength.

  20. Venusian Earthquakes Detection by Ionospheric Sounding

    NASA Astrophysics Data System (ADS)

    Occhipinti, G.; Lognonne, P.; Garcia, R. F.; Gudkova, T.

    2010-12-01

    Thanks to technological advances over the past fifteen years the ionosphere is now a new medium for seismological investigation. As a consequence of density structure in Venus atmosphere, the coupling between solid and fluid part of Venus induce a more significant atmospheric responce to quakes and volcanic eruptions (Lognonné & Johnson, 2007). Equivalent perturbation induced by internal activity has been detected on Earth through their subsequent ionospheric signature imaged by ionospheric tools (Doppler sounding or GPS) (Lognonné et al., 2006, Occhipinti et al., 2010). The strong solid/atmosphere coupling on Venus (Garcia et al., 2005, 2009), the thin ionospheric layer as well as absence of magnetic field present optimal circumstances for a better detection of these signals on Venus than on Earth. Consequently, ionospheric Doppler sounders on-board orbiters or balloons will provide informations on the infrasonic response of the atmosphere/ionosphere to quakes, and will help to constrain the interior structure of Venus through the solid/atmosphere coupling. With this paper we explore the future mission possibility and constrains.

  1. International reference ionosphere 1990

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Rawer, K.; Bossy, L.; Kutiev, I.; Oyama, K.-I.; Leitinger, R.; Kazimirovsky, E.

    1990-01-01

    The International Reference Ionosphere 1990 (IRI-90) is described. IRI described monthly averages of the electron density, electron temperature, ion temperature, and ion composition in the altitude range from 50 to 1000 km for magnetically quiet conditions in the non-auroral ionosphere. The most important improvements and new developments are summarized.

  2. Modifications of the ionosphere prior to large earthquakes: report from the Ionosphere Precursor Study Group

    NASA Astrophysics Data System (ADS)

    Oyama, K.-I.; Devi, M.; Ryu, K.; Chen, C. H.; Liu, J. Y.; Liu, H.; Bankov, L.; Kodama, T.

    2016-12-01

    The current status of ionospheric precursor studies associated with large earthquakes (EQ) is summarized in this report. It is a joint endeavor of the "Ionosphere Precursor Study Task Group," which was formed with the support of the Mitsubishi Foundation in 2014-2015. The group promotes the study of ionosphere precursors (IP) to EQs and aims to prepare for a future EQ dedicated satellite constellation, which is essential to obtain the global morphology of IPs and hence demonstrate whether the ionosphere can be used for short-term EQ predictions. Following a review of the recent IP studies, the problems and specific research areas that emerged from the one-year project are described. Planned or launched satellite missions dedicated (or suitable) for EQ studies are also mentioned.

  3. The Polar Ionosphere and Interplanetary Field.

    DTIC Science & Technology

    1987-08-01

    model for investigating time dependent behavior of the Polar F-region ionosphere in response to varying interplanetary magnetic field (IMF...conditions. The model has been used to illustrate ionospheric behavior during geomagnetic storms conditions. Future model applications may include...magnetosphere model for investigating time dependent behavior of the polar F-region ionosphere in response to varying interplanetary magnetic field

  4. Computerized Doppler Tomography and Spectrum Analysis of Carotid Artery Flow

    PubMed Central

    Morton, Paul; Goldman, Dave; Nichols, W. Kirt

    1981-01-01

    Contrast angiography remains the definitive study in the evaluation of atherosclerotic occlusive vascular disease. However, a safer technique for serial screening of symptomatic patients and for routine follow up is necessary. Computerized pulsed Doppler ultrasonic arteriography is a noninvasive technique developed by Miles6 for imaging lateral, antero-posterior and transverse sections of the carotid artery. We [ill] this system with new software and hardware to analyze the three-dimensional blood flow data. The system now provides information about the location of the occlusive process in the artery and a semi-quantitative evaluation of the degree of obstruction. In addition, we interfaced a digital signal analyzer to the system which permits spectrum analysis of the pulsed Doppler signal. This addition has allowed us to identify lesions which are not yet hemodynamically significant. ImagesFig. 2bFig. 2c

  5. Dual-frequency radio soundings of planetary ionospheres avoid misinterpretations of ionospheric features

    NASA Astrophysics Data System (ADS)

    Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.

    2017-12-01

    Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.

  6. Investigation of Thermospheric and Ionospheric Changes during Ionospheric Storms with Satellite and Ground-Based Data and Modeling

    NASA Technical Reports Server (NTRS)

    Richards, Philip G.

    2001-01-01

    The purpose of this proposed research is to improve our basic understanding of the causes of ionospheric storm behavior in the midlatitude F region ionosphere. This objective will be achieved by detailed comparisons between ground based measurements of the peak electron density (N(sub m)F(sub 2)), Atmosphere Explorer satellite measurements of ion and neutral composition, and output from the Field Line Interhemispheric Plasma (FLIP) model. The primary result will be a better understanding of changes in the neutral densities and ion chemistry during magnetic storms that will improve our capability to model the weather of the ionosphere which will be needed as a basis for ionospheric prediction. Specifically, this study seeks to answer the following questions: (1) To what extent are negative ionospheric storm phases caused by changes in the atomic to molecular ratio? (2) Are the changes in neutral density ratio due to increased N2, or decreased O, or both? (3) Are there other chemical processes (e.g., excited N2) that increase O+ loss rates during negative storms? (4) Do neutral density altitude distributions differed from hydrostatic equilibrium? (5) Why do near normal nighttime densities often follow daytime depletions of electron density; and (6) Can changes in h(sub m)F2 fully account for positive storm phases? To answer these questions, we plan to combine ground-based and space-based measurements with the aid of our ionospheric model which is ideally suited to this purpose. These proposed studies will lead to a better capability to predict long term ionospheric variability, leading to better predictions of ionospheric weather.

  7. New Model for Ionospheric Irregularities at Mars

    NASA Astrophysics Data System (ADS)

    Keskinen, M. J.

    2018-03-01

    A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.

  8. Monitoring of ionospheric irregularities with multi-GNSS observations: a new ionosphere activity index and product services

    NASA Astrophysics Data System (ADS)

    Wang, Ningbo; Li, Zishen; Yuan, Yunbin; Yuan, Hong

    2017-04-01

    Key words: Ionospheric irregularity, Rate of TEC (ROT), Rate of ROT index (RROT), GPS and GLONASS The ionospheric irregularities have a strong impact on many applications of Global Navigation Satellite Systems (GNSS) and other space-based radio systems. The rate of ionospheric total electron content (TEC) change index (ROTI, TECu/min), defined as the standard deviation of rate of TEC change (ROT) within a short time (e.g. 5 minutes), has been developed to describe the ionospheric irregularities and associated scintillations. However, ROT parameter may still contain the trend term of ionospheric TEC in spite of small-scale fluctuations. On the basis of single-differenced ROT (dROT) values, we develop a new ionosphere activity index, rate of ROT change index (RROT, TECu/min), to characterize the irregularity degree of the ionosphere. To illustrate the use of the index, we investigated the consistency between ROTI and RROT indexes, through the analysis of GPS data and S4 observations collected at two high-latitude stations of the northern hemisphere. It is confirmed that the correlation coefficients between RROT and S4 are higher than those between ROTI and S4 for the test period, meaning that the proposed RROT index is applicable to monitor the ionospheric irregularities and associated scintillations. RROT index can be easily calculated from dual-frequency GNSS signals (like GPS L1 and L2 carrier phase measurements). On the basis of GPS and GLONASS data provided by the IGS, ARGN, EPN and USCORS tracking networks (more than 1500 stations per day), absolute ROT (AROT), gradient of TEC index (GOTI), ROTI and RROT maps are generated to reflect the ionospheric irregularity activities. These maps are provided in an IONEX-like format on a global scale with a temporal resolution of 15 minutes and a spatial resolution of 5 and 2.5 degrees in longitude and latitude, respectively, and the maps with high spatial resolution (2x2 degrees) are also generated for European, Australia

  9. Application of Wuhan Ionospheric Oblique Backscattering Sounding System (WIOBSS) for the investigation of midlatitude ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhou, Xiaoming; Qiao, Lei; Gong, Wanlin

    2018-03-01

    An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.

  10. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude.

  11. Adding Spatially Correlated Noise to a Median Ionosphere

    NASA Astrophysics Data System (ADS)

    Holmes, J. M.; Egert, A. R.; Dao, E. V.; Colman, J. J.; Parris, R. T.

    2017-12-01

    We describe a process for adding spatially correlated noise to a background ionospheric model, in this case the International Reference Ionosphere (IRI). Monthly median models do a good job describing bulk features of the ionosphere in a median sense. It is well known that the ionosphere almost never actually looks like its median. For the purposes of constructing an Operational System Simulation Experiment, it may be desirable to construct an ionosphere more similar to a particular instant, hour, or day than to the monthly median. We will examine selected data from the Global Ionosphere Radio Observatory (GIRO) database and estimate the amount of variance captured by the IRI model. We will then examine spatial and temporal correlations within the residuals. This analysis will be used to construct a temporal-spatial gridded ionosphere that represents a particular instantiation of those statistics.

  12. Modifying the ionosphere with intense radio waves.

    PubMed

    Utlaut, W F; Cohen, R

    1971-10-15

    The ionospheric modification experiments provide an opportunity to better understand the aeronomy of the natural ionosphere and also afford the control of a naturally occurring plasma, which will make possible further progress in plasma physics. The ionospheric modification by powerful radio waves is analogous to studies of laser and microwave heating of laboratory plasmas (20). " Anomalous" reflectivity effects similar to the observed ionospheric attenuation have already been noted in plasmas modulated by microwaves, and anomalous heating may have been observed in plasmas irradiated by lasers. Contacts have now been established between the workers in these diverse areas, which span a wide range of the electromagnetic spectrum. Perhaps ionospheric modification will also be a valuable technique in radio communications.

  13. Ionospheric chemical releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.; Scales, W. A.

    1990-01-01

    Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.

  14. Increasing profitability through computerization.

    PubMed

    Sokol, D J

    1988-01-01

    The author explores the pragmatic or financial justification for computerizing a dental practice and discusses a computerized approach to precollection and collection for the dental office. The article also deals with the use of computerized correspondence to augment the recall policy of the office and to help generate new patient referrals and discusses the pros and cons of utilizing a dental computer service bureau in implementing these policies.

  15. Diagnostics of plasma in the ionospheric D-region: detection and study of different ionospheric disturbance types

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Čadež, Vladimir M.; Popović, Luka Č.; Srećković, Vladimir A.

    2017-07-01

    Here we discuss our recent investigations of the ionospheric plasma by using very low and low frequency (VLF/LF) radio waves. We give a review of how to detect different low ionospheric reactions (sudden ionospheric disturbances) to various terrestrial and extra-terrestrial events, show their classification according to intensity and time duration, and present some methods for their detections in time and frequency domains. Investigations of detection in time domain are carried out for intensive long-lasting perturbations induced by solar X-ray flares and for short-lasting perturbations caused by gamma ray bursts. We also analyze time variations of signals used in the low ionospheric monitoring after earthquake events. In addition, we describe a procedure for the detection of acoustic and gravity waves from the VLF/LF signal analysis in frequency domain. The research of the low ionospheric plasma is based on data collected by the VLF/LF receivers located in Belgrade, Serbia. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  16. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Hashimoto, Kumiko K.

    2016-12-01

    The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night

  17. Remote Sensing of Ionosphere by IONOLAB Group

    NASA Astrophysics Data System (ADS)

    Arikan, Feza

    2016-07-01

    Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state

  18. Ground-based observations and simulation of ionospheric VLF source in experiments on modification of the polar ionosphere

    NASA Astrophysics Data System (ADS)

    Lebed', O. M.; Fedorenko, Yu. V.; Blagoveshchenskaya, N. F.; Larchenko, A. V.; Grigor'ev, V. F.; Pil'gaev, S. V.

    2017-11-01

    The phase velocities of TE and TEM waves at frequencies of 1017 and 3017 Hz, as well as the effect of precipitations during auroras on the velocities, are estimated in the Earth-ionosphere waveguide on the basis of observations of electromagnetic fields of an ionospheric source in experiments on modification of the lower ionosphere by a modulated high-power short-wave signals performed by the Arctic and Antarctic Research Institute (AARI) at the EISCAT/Heating test bench in October 2016. Probable electron density profiles in the plane-stratified ionosphere are retrieved from the numerical solution of a wave equation, which are used for the calculation of the phase velocities close to measured ones.

  19. [The role of multidetector computer tomography in diagnosis of acute pancreatitis].

    PubMed

    Lohanikhina, K Iu; Hordiienko, K P; Kozarenko, T M

    2014-10-01

    With the objective to improve the diagnostic semiotics of an acute pancreatitis (AP) 35 patients were examined, using 64-cut computeric tomograph Lightspeed VCT (GE, USA) with intravenous augmentation in arterial and portal phases. Basing on analysis of the investigations conducted, using multidetector computeric tomography (MDCT), the AP semiotics was systematized, which is characteristic for oedematous and destructive forms, diagnosed in 19 (44.2%) and 16 (45.8%) patients, accordingly. The procedure for estimation of preservation of the organ functional capacity in pancreonecrosis pres- ence was elaborated, promoting rising of the method diagnostic efficacy by 5.3 - 9.4%.

  20. A clear link connecting the troposphere and ionosphere: ionospheric reponses to the 2015 Typhoon Dujuan

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Xu, Yahui; Kuo, Chungyen; Zhang, Liang; Liu, Lei; Zhai, Changzhi

    2017-09-01

    The global navigation satellite system (GNSS) total electron content (TEC) sequences were used to capture the arrival time and location of the ionosphere disturbances in response to the 2015 Typhoon Dujuan. After removing the de-trended TEC variation, the clear ionosphere disturbances on the typhoon landing day could be distinguished, and these disturbances disappeared from the TEC sequences before and after the typhoon landing day. The foF2 data observed by Xiamen ionosonde station also show ionosphere disturbances. Based on the advantages of GNSS multi-point observations, the disturbances horizontal velocity in the ionosphere were estimated according to the linear theory for a dispersion relation of acoustic gravity waves (AGWs) in an isothermal atmosphere. The average horizontal velocity (˜ 240 m/s) and the radial velocity (˜ 287 m/s) were used in the two-dimensional grid search for the origin point on the Earth's surface. The origin area was determined to be on the eastern side of Taiwan. Lastly, a possible physical mechanism is discussed in this study. When typhoons land on Taiwan, the severe convective storms and the drag effect from the Central Mountains create an ideal location for development of AGWs. Topographic conditions, like the high lapse rate, contribute to the formation of AGWs, which then propagates into the ionosphere altitude.

  1. Preface: International Reference Ionosphere - Progress in Ionospheric Modelling

    NASA Technical Reports Server (NTRS)

    Bilitza Dieter; Reinisch, Bodo

    2010-01-01

    The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly

  2. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  3. Metrology and ionospheric observation standards

    NASA Astrophysics Data System (ADS)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  4. Cognitive impairment in systemic lupus erythematosus women with elevated autoantibodies and normal single photon emission computerized tomography.

    PubMed

    Peretti, Charles-Siegfried; Peretti, Charles Roger; Kozora, Elizabeth; Papathanassiou, Dimitri; Chouinard, Virginie-Anne; Chouinard, Guy

    2012-01-01

    Systemic lupus erythematosus (SLE) is known to induce psychiatric disorders, from psychoses to maladaptive coping. Brain autoantibodies were proposed to explain SLE neuropsychiatric disorders and found to be elevated before the onset of clinical symptoms. We assessed cognition in Caucasian SLE women with elevated autoantibodies without overt neuropsychiatric syndromes, in conjunction with single photon emission computerized tomography (SPECT). 31 women meeting SLE criteria of the American College of Rheumatology (ACR) were included. Patients who met the ACR neuropsychiatric definition were excluded. Matched controls were 23 healthy women from the Champagne-Ardenne region, France. Participants completed neuropsychological and autoantibodies measurements, and 19 completed SPECT. 61% (19/31) of women with SLE and 53% (9/17) of those with normal SPECT had significant global cognitive impairment defined as 4 T-scores <40 in cognitive tests, compared to 0% (0/23) of controls. SLE women also had significantly greater cognitive dysfunction (mean T-score) on the Wechsler Adult Intelligence Scale (WAIS) visual backspan, Trail Making Test A and B, WAIS Digit Symbol Substitution Test and Stroop Interference, compared to controls. Elevated antinuclear antibody correlated with impairment in the WAIS visual span, WAIS visual backspan, and cancellation task; elevated anti-double-stranded DNA antibody and anticardiolipin correlated respectively with impairment in the Trail Making Test A and WAIS auditive backspan. Two SLE women had abnormal SPECT. A high prevalence of cognitive deficits was found in Caucasian SLE women compared to normal women, which included impairment in cognitive domains important for daily activities. Elevated autoantibodies tended to correlate with cognitive dysfunction. Copyright © 2012 S. Karger AG, Basel.

  5. Ionospheric convection driven by NBZ currents

    NASA Technical Reports Server (NTRS)

    Rasmussen, C. E.; Schunk, R. W.

    1987-01-01

    Computer simulations of Birkeland currents and electric fields in the polar ionosphere during periods of northward IMF were conducted. When the IMF z component is northward, an additional current system, called the NBZ current system, is present in the polar cap. These simulations show the effect of the addition of NBZ currents on ionospheric convection, particularly in the polar cap. When the total current in the NBZ system is roughly 25 to 50 percent of the net region 1 and 2 currents, convection in the central portion of the polar cap reverses direction and turns sunward. This creates a pattern of four-cell convection with two small cells located in the polar cap, rotating in an opposite direction from the larger cells. When the Birkeland currents are fixed (constant current source), the electric field is reduced in regions of relatively high conductivity, which affects the pattern of ionospheric convection. Day-night asymmetries in conductivity change convection in such a way that the two polar-cap cells are located within the large dusk cell. When ionospheric convection is fixed (constant voltage source), Birkeland currents are increased in regions of relatively high conductivity. Ionospheric currents, which flow horizontally to close the Birkeland currents, are changed appreciably by the NBZ current system. The principal effect is an increase in ionospheric current in the polar cap.

  6. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors

    PubMed Central

    Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun

    2017-01-01

    Background: Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Methods: Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images <60 keV in Group A. The total radiation dose, total iodine load, contrast injection speed, and maximum injection pressure were compared between the two groups. The 40 keV and 60 keV spectral CT images of Group A were compared with the images of Group B to evaluate overall image quality. Results: The total radiation dose, total iodine load, injection speed, and maximum injection pressure for Group A were decreased by 19%, 15%, 34.4%, and 18.3%, respectively. The optimal energy level in spectral CT for displaying the abdominal vessels was 40 keV. At this level, the CT values in the abdominal aorta and its three branches, the portal vein and its two branches, and the inferior vena cava were all greater than 340 hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0

  7. Contrast Dose and Radiation Dose Reduction in Abdominal Enhanced Computerized Tomography Scans with Single-phase Dual-energy Spectral Computerized Tomography Mode for Children with Solid Tumors.

    PubMed

    Yu, Tong; Gao, Jun; Liu, Zhi-Min; Zhang, Qi-Feng; Liu, Yong; Jiang, Ling; Peng, Yun

    2017-04-05

    Contrast dose and radiation dose reduction in computerized tomography (CT) scan for adult has been explored successfully, but there have been few studies on the application of low-concentration contrast in pediatric abdominal CT examinations. This was a feasibility study on the use of dual-energy spectral imaging and adaptive statistical iterative reconstruction (ASiR) for the reduction of radiation dose and iodine contrast dose in pediatric abdominal CT patients with solid tumors. Forty-five patients with solid tumors who had initial CT (Group B) and follow-up CT (Group A) after chemotherapy were enrolled. The initial diagnostic CT scan (Group B) was performed using the standard two-phase enhanced CT with 320 mgI/ml concentration contrast, and the follow-up scan (Group A) was performed using a single-phase enhanced CT at 45 s after the beginning of the 270 mgI/ml contrast injection using spectral mode. Forty percent ASiR was used for the images in Group B and monochromatic images with energy levels ≥60 keV in Group A. In addition, filtered back-projection (FBP) reconstruction was used for monochromatic images <60 keV in Group A. The total radiation dose, total iodine load, contrast injection speed, and maximum injection pressure were compared between the two groups. The 40 keV and 60 keV spectral CT images of Group A were compared with the images of Group B to evaluate overall image quality. The total radiation dose, total iodine load, injection speed, and maximum injection pressure for Group A were decreased by 19%, 15%, 34.4%, and 18.3%, respectively. The optimal energy level in spectral CT for displaying the abdominal vessels was 40 keV. At this level, the CT values in the abdominal aorta and its three branches, the portal vein and its two branches, and the inferior vena cava were all greater than 340 hounsfield unit (HU). The abdominal organs of Groups A and B had similar degrees of absolute and relative enhancement (t = 0.36 and -1.716 for liver, -0.153 and

  8. New SuperDARN Radar Capabilities for Observing Ionospheric Plasma Convection and ITM Coupling in the Mid-Latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Baker, J. B.; Greenwald, R. A.; Clausen, L. B.; Shepherd, S. G.; Bristow, W. A.; Talaat, E. R.; Barnes, R. J.

    2010-12-01

    Within the past year the first pair of SuperDARN radars funded under the NSF MSI program has become operational at a site near Hays, Kansas. The fields of view of the co-located radars are oriented to provide common-volume observations with two existing radars in Virginia (Wallops, Blackstone) and two MSI radars under construction in Oregon (Christmas Valley). The emerging mid-latitude radar chain will complement the existing SuperDARN coverage at polar cap and auroral latitudes within North America. The mid-latitude radars observe the expansion of auroral effects during disturbed periods, subauroral polarization streams, and small-scale ionospheric irregularities on the nightside that open a window on the plasma drifts and electric fields of the quiet-time subauroral ionosphere. They also measure neutral winds at mesospheric heights and the propagation of ionospheric disturbances due to the passage of atmospheric gravity waves. The new radar capabilities provide unprecedented views of ITM processes in the subauroral ionosphere with applications to studies of ionospheric electric fields, ion-neutral coupling, atmospheric tides and planetary waves, ionospheric plasma structuring and plasma instability. In this talk we describe the new capabilities and the potential for providing large-scale context for related ITM measurements over North America. We present the first high-resolution two-dimensional maps of ionospheric plasma convection at mid-latitudes as generated from common-volume observations with the Hays and Blackstone radars.

  9. [Utility of methoxy isobutyl isonitrile (MIBI) scintigraphy, ultrasound and computerized axial tomography in preoperative topographic diagnosis of hiperparathyroidism].

    PubMed

    Gómez Palacios, Angel; Gómez Zábala, Jesús; Gutiérrez, María Teresa; Expósito, Amaya; Barrios, Borja; Zorraquino, Angel; Taibo, Miguel Angel; Iturburu, Ignacio

    2006-12-01

    1. To assess the sensitivity of scintigraphy using methoxy isobutyl isonitrile (MIBI). 2. To compare its resolution with that of ultrasound (US) and computerized axial tomography (CAT). 3. To use its diagnostic reliability to determine whether selective approaches can be used to treat hyperparathyroidism (HPT). A study of 76 patients who underwent surgery for HPT between 1996 and 2005 was performed. MIBI scintigraphy and cervical US were used for whole-body scanning in all patients; CAT was used in 47 patients. Intraoperative and postoperative biopsies were used for final evaluation of the tests, after visualization and surgical extirpation. The results of scintigraphy were positive in 65 patients (85.52%). The diagnosis was correct in all of the single images. Multiple images were due to hyperplasia and parathyroid adenomas with thyroid disease (5.2%). Three images, incorrectly classified as negative (3.94%), were positive. The sensitivity of US was 63% and allowed detection of three MIBI-negative adenomas (4%). CAT was less sensitive (55%), but detected a further three MIBI-negative adenomas (4%). 1. The sensitivity of MIBI reached 89.46%. In the absence of thyroid nodules, MIBI diagnosed 100% of single lesions. Pathological thyroid processes produced false-positive results (5.2%) and there were diagnostic errors (4%). 2. MIBI scintigraphy was more sensitive than US and CAT. 3. Positive, single image scintigraphy allows a selective cervical approach. US and CAT may help to save a further 8% of patients (with negative scintigraphy).

  10. First results from the ionospheric tomography experiment using beacon TEC data obtained by means of a network along a longitude of 136°E over Japan

    NASA Astrophysics Data System (ADS)

    Thampi, Smitha V.; Yamamoto, Mamoru

    2010-03-01

    A chain of newly designed GNU (GNU is not UNIX) Radio Beacon Receivers (GRBR) has recently been established over Japan, primarily for tomographic imaging of the ionosphere over this region. Receivers installed at Shionomisaki (33.45°N, 135.8°E), Shigaraki (34.8°N, 136.1°E), and Fukui (36°N, 136°E) continuously track low earth orbiting satellites (LEOS), mainly OSCAR, Cosmos, and FORMOSAT-3/COSMIC, to obtain simultaneous total electron content (TEC) data from these three locations, which are then used for the tomographic reconstruction of ionospheric electron densities. This is the first GRBR network established for TEC observations, and the first beacon-based tomographic imaging in Japanese longitudes. The first tomographic images revealed the temporal evolution with all of the major features in the ionospheric electron density distribution over Japan. A comparison of the tomographically reconstructed electron densities with the ƒ o F 2 data from Kokubunji (35°N, 139°E) revealed that there was good agreement between the datasets. These first results show the potential of GRBR and its network for making continuous, unattended ionospheric TEC measurements and for tomographic imaging of the ionosphere.

  11. Magnetospheric-ionospheric Poynting flux

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1994-01-01

    Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.

  12. International Reference Ionosphere -2010

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Reinisch, Bodo

    The International Reference Ionosphere 2010 includes several important improvements and ad-ditions. This presentation introduces these changes and discusses their benefits. The electron and ion density profiles for the bottomside ionosphere will be significantly improved by using more ionosonde data as well as photochemical considerations. As an additional lower iono-sphere parameter IRI-2010 will include the transition height from molecular to cluster ions. At the F2 peak Neural Net models for the peak density and the propagation factor M3000F2, which is related to the F2 peak height, are introduced as new options. At high latitudes the model will benefit from the introduction of auroral oval boundaries and their variation with magnetic activity. Regarding the electron temperature, IRI-2010 now models variations with solar activity. The homepage for the IRI project is at http://IRI.gsfc.nasa.gov/.

  13. Ionospheric Profiles from Ultraviolet Remote Sensing

    DTIC Science & Technology

    1998-01-01

    remote sensing of the ionosphere from orbiting space platforms. Remote sensing of the nighttime ionosphere is a relatively straightforward process due to the absence of the complications brought about by daytime solar radiation. Further, during the nighttime hours, the O(+)-H(+) transition level in both the mid- and low-latitude ionospheres lies around 750 km, which is within the range of accuracy of the path matrix inversion. The intensity of the O(+)-e(-) recombination radiation as observed from orbiting space platforms can now be used to

  14. Predicting ionospheric scintillation: Recent advancements and future challenges

    NASA Astrophysics Data System (ADS)

    Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.

    2017-12-01

    Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.

  15. Ionospheric limitations to time transfer by satellite

    NASA Technical Reports Server (NTRS)

    Knowles, S. H.

    1983-01-01

    The ionosphere can contribute appreciable group delay and phase change to radio signals traversing it; this can constitute a fundamental limitation to the accuracy of time and frequency measurements using satellites. Because of the dispersive nature of the ionosphere, the amount of delay is strongly frequency-dependent. Ionospheric compensation is necessary for the most precise time transfer and frequency measurements, with a group delay accuracy better than 10 nanoseconds. A priori modeling is not accurate to better than 25%. The dual-frequency compensation method holds promise, but has not been rigorously experimentally tested. Irregularities in the ionosphere must be included in the compensation process.

  16. Propagation studies using a theoretical ionosphere model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.K.

    1973-03-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray-tracing pron predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra--Rowe D-region model, and the Groves' neutral atmospheric model are used throughout ihis work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long-distance high-frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted. (auth) (STAR)

  17. Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves

    NASA Astrophysics Data System (ADS)

    Tu, Jiannan; Song, Paul; Vasyliūnas, Vytenis M.

    2014-01-01

    In the present study, we investigate magnetosphere-ionosphere/thermosphere (M-IT) coupling via MHD waves by numerically solving time-dependent continuity, momentum, and energy equations for ions and neutrals, together with Maxwell's equations (Ampère's and Faraday's laws) and with photochemistry included. This inductive-dynamic approach we use is fundamentally different from those in previous magnetosphere-ionosphere (M-I) coupling models: all MHD wave modes are retained, and energy and momentum exchange between waves and plasma are incorporated into the governing equations, allowing a self-consistent examination of dynamic M-I coupling. Simulations, using an implicit numerical scheme, of the 1-D ionosphere/thermosphere system responding to an imposed convection velocity at the top boundary are presented to show how magnetosphere and ionosphere are coupled through Alfvén waves during the transient stage when the IT system changes from one quasi steady state to another. Wave reflection from the low-altitude ionosphere plays an essential role, causing overshoots and oscillations of ionospheric perturbations, and the dynamical Hall effect is an inherent aspect of the M-I coupling. The simulations demonstrate that the ionosphere/thermosphere responds to magnetospheric driving forces as a damped oscillator.

  18. Comparative ionospheres: Terrestrial and giant planets

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo

    2018-03-01

    The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant

  19. Infrasonic troposphere-ionosphere coupling in Hawaii

    NASA Astrophysics Data System (ADS)

    Garces, M. A.

    2011-12-01

    The propagation of infrasonic waves in the ionospheric layers has been considered since the 1960's. It is known that space weather can alter infrasonic propagation below the E layer (~120 km altitude), but it was thought that acoustic attenuation was too severe above this layer to sustain long-range propagation. Although volcanoes, earthquakes and tsunamis (all surface sources) appear to routinely excite perturbations in the ionospheric F layer by the propagation of acoustic and acoustic-gravity waves through the atmosphere, there are few reports of the inverse pathway. This paper discusses some of the routine ground-based infrasonic array observations of ionospheric returns from surface sources. These thermospheric returns generally point back towards the source, with an azimuth deviation that can be corrected using the wind velocity profiles in the mesosphere and lower thermosphere. However, the seismic excitation in the North Pacific by the Tohoku earthquake ensonified the coupled lithosphere-atmosphere-ionosphere waveguide in the 0.01 - 0.1 Hz frequency band, producing anomalous signals observed by infrasound arrays in Hawaii. These infrasonic signals propagated at curiously high velocities, suggesting that some assumptions on ionospheric sound generation and propagation could be revisited.

  20. Tropical Cyclone - Equatorial Ionosphere Coupling: A Statistical Study

    NASA Astrophysics Data System (ADS)

    Bhagavathiammal, G. J.

    2016-07-01

    This paper describes the equatorial ionosphere response to tropical cyclone events which was observed over the Indian Ocean. This statistical study tries to reveal the possible Tropical Cyclone (TC) - Ionosphere coupling. Tropical cyclone track and data can be obtained from the India Meteorological Department, New Delhi. Digisonde/Ionosonde data for the equatorial latitudes can be obtained from Global Ionospheric Radio Observatory. It is believed that TC induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere and these propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). The convective regions are identified with the help of Outgoing Long wave radiation (OLR) data from NOAA Climate Data Center/ Precipitation data from TRMM Statellite. The variability of ionospheric parameter like Total Electron Content (TEC), foF2, h'F2 and Drift velocity are examined during TC periods. This study will report the possibility of TC-Ionosphere Coupling in equatorial atmosphere.

  1. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  2. First observation of the anomalous electric field in the topside ionosphere by ionospheric modification over EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Vickers, H.; Ogawa, Y.; Senior, A.; Blagoveshchenskaya, N.

    2014-11-01

    We have developed an active ground-based technique to estimate the steady state field-aligned anomalous electric field (E*) in the topside ionosphere, up to ~600 km, using the European Incoherent Scatter (EISCAT) ionospheric modification facility and UHF incoherent scatter radar. When pumping the ionosphere with high-power high-frequency radio waves, the F region electron temperature is significantly raised, increasing the plasma pressure gradient in the topside ionosphere, resulting in ion upflow along the magnetic field line. We estimate E* using a modified ion momentum equation and the Mass Spectrometer Incoherent Scatter model. From an experiment on 23 October 2013, E* points downward with an average amplitude of ~1.6 μV/m, becoming weaker at higher altitudes. The mechanism for anomalous resistivity is thought to be low-frequency ion acoustic waves generated by the pump-induced flux of suprathermal electrons. These high-energy electrons are produced near the pump wave reflection altitude by plasma resonance and also result in observed artificially induced optical emissions.

  3. Production of Ionospheric Perturbations by Cloud-to-Ground Lightning and the Recovery of the Lower Ionosphere

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; Dwyer, Joseph; Rassoul, Hamid

    2013-04-01

    The fact that lightning/thunderstorm activities can directly modify the lower ionosphere has long been established by observations of the perturbations of very low frequency (VLF) signals propagating in the earth-ionosphere waveguide. These perturbations are known as early VLF events [Inan et al., 2010, JGR, 115, A00E36, 2010]. More recently discovered transient luminous events caused by the lightning/thunderstorm activities only last ~1-100 ms, but studies of the early VLF events show that the lightning ionospheric effects can persist much longer, >10s min [Cotts and Inan, GRL, 34, L14809, 2007; Haldoupis et al., JGR, 39, L16801, 2012; Salut et al., JGR, 117, A08311, 2012]. It has been suggested that the long recovery is caused by long-lasting conductivity perturbations in the lower ionosphere, which can be created by sprites/sprite halos which in turn are triggered by cloud-to-ground (CG) lightning [Moore et al., JGR, 108, 1363, 2003; Haldoupis et al., 2012]. We recently developed a two-dimensional fluid model with simplified ionospheric chemistry for studying the quasi-electrostatic effects of lightning in the lower ionosphere [Liu, JGR, 117, A03308, 2012]. The model chemistry captures major ion species and reactions in the lower ionosphere. Additional important features of the model include self-consistent background ion density profiles and full description of electron and ion transport. In this talk, we present the simulation results on the dynamics of sprite halos caused by negative CG lightning. The modeling results indicate that electron density around 60 km altitude can be enhanced in a region as wide as 80 km. The enhancement reaches its full extent in ~1 s and recovers in 1-10 s, which are on the same orders as the durations of slow onset and post-onset peaks of some VLF events, respectively. In addition, long-lasting electron and ion density perturbations can occur around 80 km altitude due to negative halos as well as positive halos, which can explain

  4. Propagation studies using a theoretical ionosphere model

    NASA Technical Reports Server (NTRS)

    Lee, M.

    1973-01-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.

  5. TOmographic Remote Observer of Ionospheric Disturbances

    DTIC Science & Technology

    2007-11-15

    ionosphere . The proposed spacecraft was an evolutionary design from the USUSat, Combat Sentinel, and USUSat II programs whose histories are shown in...Figure 1. The primary science instrument, TOROID for TOmographic Remote Observer of Ionospheric Disturbances, is a photometer for measuring the

  6. Excitation of earth-ionosphere waveguide in the ELF and lower VLF bands by modulated ionospheric current. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, E.C.; Bloom, R.M.

    1993-05-21

    In this report the authors use the principal of reciprocity in conjunction with a full-wave propagation code to calculate ground-level fields excited by ionospheric currents modulated at frequencies between 50 and 100 Hz with HF heaters. Their results show the dependence on source orientation, altitude, and dimension and therefore pertain to experiments using the HIPAS or HAARP ionospheric heaters. In the end-fire mode, the waveguide excitation efficiency of an ELF HED in the ionosphere is up to 20 dB greater than for a ground-based antenna, provided its altitude does not exceed 80-to-90 km. The highest efficiency occurs for a sourcemore » altitude of around 70 km; if that altitude is raised to 100 km, the efficiency drops by about 20 dB in the day and 10 dB at night. That efficiency does not account for the greater conductivity modulation that might be achieved at altitudes greater than 70 km, however. The trade-off between the altitude dependencies of the excitation efficiency and maximum achievable modulation depends on the ERP of the HF heater, the optimum altitude increasing with increasing ERP. For HIPAS the best modulation altitude is around 70 km, whereas for HAARP there might be marginal value in modulating at attitudes as high as 100 Km. Ionospheric modification, Ionospheric currents, Ionospheric heating.« less

  7. Experimental evidence of electromagnetic pollution of ionosphere

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Korepanov, Valery; Dudkin, Denis

    The Earth’s ionosphere responds to external perturbations originated mainly in the Sun, which is the primary driver of the space weather (SW). But solar activity influences on the ionosphere and the Earth's atmosphere (i.e., the energy transfer in the direction of the Sun-magnetosphere-ionosphere-atmosphere-surface of the Earth), though important, is not a unique factor affecting its state - there is also a significant impact of the powerful natural and anthropogenic processes, which occur on the Earth’s surface and propagating in opposite direction along the Earth’s surface-atmosphere-ionosphere-magnetosphere chain. Numerous experimental data confirm that the powerful sources and consumers of electrical energy (radio transmitters, power plants, power lines and industrial objects) cause different ionospheric phenomena, for example, changes of the electromagnetic (EM) field and plasma in the ionosphere, and affect on the state of the Earth atmosphere. Anthropogenic EM effects in the ionosphere are already observed by the scientific satellites and the consequences of their impact on the ionosphere are not currently known. Therefore, it is very important and urgent task to conduct the statistically significant research of the ionospheric parameters variations due to the influence of the powerful man-made factors, primarily owing to substantial increase of the EM energy production. Naturally, the satellite monitoring of the ionosphere and magnetosphere in the frequency range from tens of hertz to tens of MHz with wide ground support offers the best opportunity to observe the EM energy release, both in the global and local scales. Parasitic EM radiation from the power supply lines, when entering the ionosphere-magnetosphere system, might have an impact on the electron population in the radiation belt. Its interaction with trapped particles will change their energy and pitch angles; as a result particle precipitations might occur. Observations of EM emission by

  8. Ionospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Nagy, A. F.

    1980-11-01

    The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.

  9. Effects of ionospheric modification on system performance

    NASA Astrophysics Data System (ADS)

    Ganguly, Suman

    1989-12-01

    Controlled ionospheric modification can be used for disrupting as well as facilitating communication and radar systems. After briefly describing the results achieved with the present day ionospheric modification facilities, a scenario is presented for the generation of strong and significant ionospheric modification. A few schemes are presented for the development of modern high power facilities using the state of the art technology and then the impact of such facilities on the system performance is described.

  10. Inverse problem of radiofrequency sounding of ionosphere

    NASA Astrophysics Data System (ADS)

    Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.

    2016-01-01

    An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.

  11. Ion Escape from the Ionosphere of Titan

    NASA Technical Reports Server (NTRS)

    Hartle, R.; Sittler, E.; Lipatov, A.

    2008-01-01

    Ions have been observed to flow away from Titan along its induced magnetic tail by the Plasma Science Instrument (PLS) on Voyager 1 and the Cassini Plasma Spectrometer (CAPS) on Cassini. In both cases, the ions have been inferred to be of ionospheric origin. Recent plasma measurements made at another unmagnetized body, Venus, have also observed similar flow in its magnetic tail. Much earlier, the possibility of such flow was inferred when ionospheric measurements made from the Pioneer Venus Orbiter (PVO) were used to derive upward flow and acceleration of H(+), D(+) and O(+) within the nightside ionosphere of Venus. The measurements revealed that the polarization electric field in the ionosphere produced the principal upward force on these light ions. The resulting vertical flow of H(+) and D(+) was found to be the dominant escape mechanism of hydrogen and deuterium, corresponding to loss rates consistent with large oceans in early Venus. Other electrodynamic forces were unimportant because the plasma beta in the nightside ionosphere of Venus is much greater than one. Although the plasma beta is also greater than one on Titan, ion acceleration is expected to be more complex, especially because the subsolar point and the subflow points can be 180 degrees apart. Following what we learned at Venus, upward acceleration of light ions by the polarization electric field opposing gravity in the ionosphere of Titan will be described. Additional electrodynamic forces resulting from the interaction of Saturn's magnetosphere with Titan's ionosphere will be examined using a recent hybrid model.

  12. Observation of Schumann Resonances in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Freudenreich, Henry

    2011-01-01

    The surface of the Earth and the lower edge of the ionosphere define a cavity in which electromagnetic waves propagate. When the cavity is excited by broadband electromagnetic sources, e.g., lightning, a resonant state can develop provided the average equatorial circumference is approximately equal to an integral number of wavelengths of the electromagnetic waves. This phenomenon, known as Schumann resonance, corresponds to electromagnetic oscillations of the surface-ionosphere cavity, and has been used extensively to investigate atmospheric electricity. Using measurements from the Communications/Navigation Outage Forecasting System (C/NOFS) satellite, we report, for the first time, Schumann resonance signatures detected well beyond the upper boundary of the cavity. These results offer new means for investigating atmospheric electricity, tropospheric-ionospheric coupling mechanisms related to lightning activity, and wave propagation in the ionosphere. The detection of Schumann resonances in the ionosphere calls for revisions to the existing models of extremely low frequency wave propagation in the surface-ionosphere cavity. Additionally, these measurements suggest new remote sensing capabilities for investigating atmospheric electricity at other planets.

  13. Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.

    2018-01-01

    The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.

  14. What Drives the Variability of the Mid-Latitude Ionosphere?

    NASA Astrophysics Data System (ADS)

    Goncharenko, L. P.; Zhang, S.; Erickson, P. J.; Harvey, L.; Spraggs, M. E.; Maute, A. I.

    2016-12-01

    The state of the ionosphere is determined by the superposition of the regular changes and stochastic variations of the ionospheric parameters. Regular variations are represented by diurnal, seasonal and solar cycle changes, and can be well described by empirical models. Short-term perturbations that vary from a few seconds to a few hours or days can be induced in the ionosphere by solar flares, changes in solar wind, coronal mass ejections, travelling ionospheric disturbances, or meteorological influences. We use over 40 years of observations by the Millstone Hill incoherent scatter radar (42.6oN, 288.5oE) to develop an updated empirical model of ionospheric parameters, and wintertime data collected in 2004-2016 to study variability in ionospheric parameters. We also use NASA MERRA2 atmospheric reanalysis data to examine possible connections between the state of the stratosphere & mesosphere and the upper atmosphere (250-400km). A case of major SSW of January 2013 is selected for in-depth study and reveals large anomalies in ionospheric parameters. Modeling with the NCAR Thermospheric-Ionospheric-Mesospheric-Electrodynamics general Circulation Model (TIME-GCM) nudged by WACCM-GEOS5 simulation indicates that during the 2013 SSW the neutral and ion temperature in the polar through mid-latitude region deviates from the seasonal behavior.

  15. Ionospheric research

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Data from research on ionospheric D, E, and F, regions are reported. Wave propagation, mass spectrometer measurements, and atmospheric reactions of HO2 with NO and NO2 and NH2 with NO and O2 are summarized.

  16. The theory of ionospheric focused heating

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Duncan, L. M.

    1987-01-01

    Ionospheric modification by high power radio waves and by chemical releases are combined in a theoretical study of ionospheric focused heating. The release of materials which promote electron-ion recombination creates a hole in the bottomside ionosphere. The ionospheric hole focuses high power radio waves from a ground-based transmitter to give a 20 dB or greater enhancement in power density. The intense radio beam excites atomic oxygen by collisions with accelerated electrons. Airglow from the excited oxygen provides a visible trace of the focused beam. The large increase in the intensity of the radio beam stimulates new wave-plasma interactions. Numerical simulations show that the threshold for the two-plasmon decay instability is exceeded. The interaction of the pump electromagnetic wave with the backward plasmon produces a scattered electromagnetic wave at 3/2 the pump frequency. The scattered wave provides a unique signature of the two-plasmon decay process for ground-based detection.

  17. Magnetic Fluctuations in the Martian Ionosphere

    NASA Technical Reports Server (NTRS)

    Espley, Jared

    2010-01-01

    The Martian ionosphere is influenced by both the solar wind and the regional magnetic fields present in the Martian crust. Both influences ought to cause time variable changes in the magnetic fields present in the ionosphere. I report observations of these magnetic field fluctuations in the Martian ionosphere. I use data from the Mars Global Surveyor magnetometer instrument. By using data from the aerobraking low altitude passes (approx. 200 km) I find that there are numerous fluctuations both near and far from the strong crustal sources. Using data from the 400 km altitude mapping phase (which is near the topside of the primary ionosphere), I look at the comparative strength of the fluctuations relative to the solar wind and temporal variations. I discuss which wave modes and instabilities could be contributing to these fluctuations. I also discuss the implications of these fluctuations for understanding energy transfer in the Martian system and the effects on atmospheric escape.

  18. Innovations in Computerized Assessment.

    ERIC Educational Resources Information Center

    Drasgow, Fritz, Ed.; Olson-Buchanan, Julie B., Ed.

    Chapters in this book present the challenges and dilemmas faced by researchers as they created new computerized assessments, focusing on issues addressed in developing, scoring, and administering the assessments. Chapters are: (1) "Beyond Bells and Whistles; An Introduction to Computerized Assessment" (Julie B. Olson-Buchanan and Fritz Drasgow);…

  19. Ionospheric Electron Density Measurements Using COSMIC

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Budzien, S. A.; Bernhardt, P. A.; Rocken, C.; Syndergaard, S.

    2007-12-01

    At 0140 UTC on April 15, 2006, the joint Taiwan-U.S. COSMIC/FORMOSAT-3 (Constellation Observing System for Meteorology, Ionosphere, and Climate and Formosa Satellite mission #3; hereafter COSMIC) mission, a constellation of six micro-satellites, was launched into a 512-km orbit from Vandenberg Air Force Base in California. Using on-board propulsion these satellites have been deployed to their final orbits at 800 km with 30 degrees of separation. This process has taken about 17 months following the launch. There are three instruments aboard each COSMIC satellite: the GPS Occultation Experiment (GOX), the Tri-Band Beacon (TBB), and the Tiny Ionospheric Photometer (TIP). These three instruments constitute a unique suite of instruments for studying the Earth's ionosphere. The GOX instrument operates by inferring the slant total electron content (the integral of the electron density along the line-of-sight) between the COSMIC satellites and the GPS satellites as a function of tangent height above the Earth's limb. These data can be inverted to produce electron density profiles in the E and F regions of the ionosphere. The TBB is a three frequency radio beacon that radiates coherently at 150, 400, and 1067 MHz. When the relative phases of the signals are measured between the COSMIC satellites and ground-based or space-based receivers, the total electron content along the line-of-sight can be determined. By making the measurements from a set of receivers, the two-dimensional distribution of electrons beneath the satellite can be determined using tomographic techniques. The TIP instrument measures the optical signature of the natural decay of the ionosphere produced via ecombination of the O+ ions and electrons. The TIP measurements can be used to characterize the morphology and dynamics of the global ionosphere. Additionally, the TIP measurements can be inverted in conjunction with the GPS occultation measurements, using tomographic techniques, to produce the two

  20. Generation of Artificial Ionospheric Irregularities in the Midlatitude Ionosphere Modified by High-Power High-Frequency X-Mode Radio Waves

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Bolotin, I. A.; Komrakov, G. P.; Pershin, A. V.; Vertogradov, G. G.; Vertogradov, V. G.; Vertogradova, E. G.; Kunitsyn, V. E.; Padokhin, A. M.; Kurbatov, G. A.; Akchurin, A. D.; Zykov, E. Yu.

    2014-11-01

    We consider the properties of the artificial ionospheric irregularities excited in the ionospheric F 2 region modified by high-power high-frequency X-mode radio waves. It is shown that small-scale (decameter) irregularities are not generated in the midlatitude ionosphere. The intensity of irregularities with the scales l ⊥ ≈50 m to 3 km is severalfold weaker compared with the case where the irregularities are excited by high-power O-mode radio waves. The intensity of the larger-scale irregularities is even stronger attenuated. It is found that the generation of large-scale ( l ⊥ ≈5-10 km) artificial ionospheric irregularities is enhanced at the edge of the directivity pattern of a beam of high-power radio waves.

  1. Neurologic applications of positron emission tomography.

    PubMed

    Lenzi, G L; Pantano, P

    1984-11-01

    The impact of computerized neuroimaging in the neurologic sciences has been so dramatic that it has completely changed our approach to the individual patient. Further changes may be expected from the newborn positron emission tomography (PET) and nuclear magnetic resonance (NMR) in order to help the reader digest a large bulk of data and fully realize the present state of the art of PET, the authors have shaped this review mainly on results rather than on methods and on published reports rather than on future potential.

  2. A Study of Ionospheric Storm Association with Intense Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Okpala, K. C.

    2017-12-01

    The bulk association between ionospheric storms and geomagnetic storms have been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤100nT) that occurred during solar cycle 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storms were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric condition at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  3. Ionosphere research with a HF/MF cubesat radio instrument

    NASA Astrophysics Data System (ADS)

    Kallio, Esa; Aikio, Anita; Alho, Markku; Fontell, Mathias; Harri, Ari-Matti; Kauristie, Kirsti; Kestilä, Antti; Koskimaa, Petri; Mäkelä, Jakke; Mäkelä, Miika; Turunen, Esa; Vanhamäki, Heikki; Verronen, Pekka

    2017-04-01

    New technology provides new possibilities to study geospace and 3D ionosphere by using spacecraft and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We introduce recently developed simulation models as well as measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in late 2017 (http://www.suomi100satelliitti.fi/eng). The new models are (1) a 3D ray tracing model and (2) a 3D full kinetic electromagnetic simulation. We also introduce how combining of the

  4. Estimate of higher order ionospheric errors in GNSS positioning

    NASA Astrophysics Data System (ADS)

    Hoque, M. Mainul; Jakowski, N.

    2008-10-01

    Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.

  5. Atelectasis observed by computerized tomography after Caesarean section.

    PubMed

    Meira, M N C; Carvalho, C R R; Galizia, M S; Borges, J B; Kondo, M M; Zugaib, M; Vieira, J E

    2010-06-01

    Atelectasis after either vaginal or Caesarean delivery has not been adequately quantified. This study addresses the hypothesis that atelectasis may be worse in women who undergo Caesarean section when compared with vaginal delivery under regional anaesthesia. Twenty healthy non-smoking women submitted to a chest computed tomography (CT) 2 h after delivery in a University Hospital, who had experienced vaginal delivery (n=10) under combined spinal-epidural analgesia or a Caesarean section (n=10) under spinal anaesthesia, were evaluated. The percentage cross-sectional area of atelectasis in dependent lung regions were measured from the CT images obtained at cross-section of the xiphoid process and the top of the diaphragm. The percentage cross-sectional area of atelectasis was 3.95% in the vaginal delivery group and 14.1% in the Caesarean group (P<0.001, Mann-Whitney rank sum test). These results suggested that pulmonary atelectasis is greater after Caesarean section delivery under spinal anaesthesia than after vaginal delivery with combined spinal-epidural analgesia.

  6. The solar wind-magnetosphere-ionosphere system

    PubMed

    Lyon

    2000-06-16

    The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments.

  7. Magnetically Controlled Upper Ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Majeed, T.; Al Aryani, O.; Al Mutawa, S.; Bougher, S. W.; Haider, S. A.

    2017-12-01

    The electron density (Ne) profiles measured by the Mars Express spacecraft over regions of strong crustal magnetic fields have shown anomalous characteristics of the topside plasma distribution with variable scale heights. One of such Ne profiles is located at 82oS and 180oE whose topside ionosphere is extended up to an altitude of 700 km. The crustal magnetic field at this southern site is nearly vertical and open to the access of solar wind plasma through magnetic reconnection with the interplanetary magnetic field. This can lead to the acceleration of electrons and ions during the daytime ionosphere. The downward accelerated electrons with energies >200 eV can penetrate deep into the Martian upper ionosphere along vertical magnetic field lines and cause heating, excitation and ionization of the background atmosphere. The upward acceleration of ions resulting from energy input by precipitating electrons can lead to enhance ion escape rate and modify scale heights of the topside ionosphere. We have developed a 1-D chemical diffusive model from 100 km to 400 km to interpret the Martian ionospheric structure at 82oS latitude. The primary source of ionization in the model is due to solar EUV radiation. An extra ionization source due to precipitating electrons of 0.25 keV, peaking near an altitude of 145 km is added in the model to reasonably reproduce the measured ionospheric structure below an altitude of 180 km. The behavior of the topside ionosphere can be interpreted by the vertical plasma transport caused by precipitating electrons. The vertical transport of plasma in our model is simulated by vertical ion velocities, whose values can be interpreted as drift velocities along magnetic field lines. We find that the variation of the topside Ne scale heights is sensitive to the magnitudes of upward and downward drifts with an imposed outward flux boundary condition at the top of the model. The model requires an upward flux of more than 107 ions cm-2 s-1 for both O2

  8. Space weather. Ionospheric control of magnetotail reconnection.

    PubMed

    Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G

    2014-07-11

    Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail. Copyright © 2014, American Association for the Advancement of Science.

  9. Incredibly distant ionospheric responses to earthquake

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2015-04-01

    Attempts to observe ionospheric responses to the earthquake has been going on for decades. In recent years, the greatest progress in the study of this question have GPS-measurements with simultaneous HF-measurements. The use of a dense network of GPS-receivers and getting with it sufficiently detailed two-dimensional maps of the total electron content (TEC) greatly clarified the nature of the ionospheric response to strong earthquakes. For ionospheric responses observation, that are remote more than 1000 km from the strong earthquakes epicentres, it is necessary to applying more sensitive methods than GPS. The most experience in the observation of the ionospheric responses to earthquakes accumulated with Doppler sounding. Using these measurements, ionospheric disturbances characteristic features (signature) have been allocated, which associated with the passage of Rayleigh waves on the surface. Particular, this Rayleigh wave signatures allocation is implemented in the Nostradamus coherent backscatter radar. The authors of this method suggest using radar techniques like a sensitive "ionospheric seismometer." The most productive allocation and studying of the vertical structure ionospheric responses could be ionosonde observations. However, their typical 15 minute sounding rate is quite sufficient for observing the regular ionosphere, but it is not enough for studying the ionospheric responses to earthquakes, because ionospheric responses is often seen only in one ionogram and it is absent in adjacent. The decisive factor in establishing the striking ionospheric response to the earthquake was the Tohoku earthquake in 2011, when there was three ionosondes distant at 870-2000 km from the epicentre. These ionosondes simultaneously showed distortion of the F1-layer traces as its multiple stratification (multiple-cusp signature - MCS), which generated by Rayleigh wave. Note that there was another fourth Japanese ionosonde. It is located a little further near boundaries

  10. Canadian High Arctic Ionospheric Network (CHAIN)

    NASA Astrophysics Data System (ADS)

    Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Hamza, A. M.; Mann, I. R.; Milling, D. K.; Kale, Z. C.; Chadwick, R.; Kelly, T.; Danskin, D. W.; Carrano, C. S.

    2009-02-01

    Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind-magnetosphere-ionosphere system as well as for space weather applications. Currently, the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground-based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions, and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instrument components of CHAIN are 10 high data rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN. This paper also reports a GPS signal scintillation episode associated with a magnetospheric impulse event. More details of the CHAIN project and data can be found at http://chain.physics.unb.ca/chain.

  11. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  12. Ionospheric responses during equinox and solstice periods over Turkey

    NASA Astrophysics Data System (ADS)

    Karatay, Secil; Cinar, Ali; Arikan, Feza

    2017-11-01

    Ionospheric electron density is the determining variable for investigation of the spatial and temporal variations in the ionosphere. Total Electron Content (TEC) is the integral of the electron density along a ray path that indicates the total variability through the ionosphere. Global Positioning System (GPS) recordings can be utilized to estimate the TEC, thus GPS proves itself as a useful tool in monitoring the total variability of electron distribution within the ionosphere. This study focuses on the analysis of the variations of ionosphere over Turkey that can be grouped into anomalies during equinox and solstice periods using TEC estimates obtained by a regional GPS network. It is observed that noon time depletions in TEC distributions predominantly occur in winter for minimum Sun Spots Numbers (SSN) in the central regions of Turkey which also exhibit high variability due to midlatitude winter anomaly. TEC values and ionospheric variations at solstice periods demonstrate significant enhancements compared to those at equinox periods.

  13. Ionospheric Correction of D-InSAR Using Split-Spectrum Technique and 3D Ionosphere Model in Deformation Monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Guo, L.; Wu, J. J.; Chen, Q.; Song, S.

    2014-12-01

    In Differential Interferometric Synthetic Aperture Radar (D-InSAR) atmosphere effect including troposphere and ionosphere is one of the dominant sources of error in most interferograms, which greatly reduced the accuracy of deformation monitoring. In recent years tropospheric correction especially Zwd in InSAR data processing has ever got widely investigated and got efficiently suppressed. And thus we focused our study on ionospheric correction using two different methods, which are split-spectrum technique and Nequick model, one of the three dimensional electron density models. We processed Wenchuan ALOS PALSAR images, and compared InSAR surface deformation after ionospheric modification using the two approaches mentioned above with ground GPS subsidence observations to validate the effect of split-spectrum method and NeQuick model, further discussed the performance and feasibility of external data and InSAR itself during the study of the elimination of InSAR ionospheric effect.

  14. The Role of Ionospheric Conductivity in the Response of the Magnetosphere and Ionosphere to Changes in the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cnossen, I.; Wiltberger, M. J.; Richmond, A. D.; Ouellette, J.

    2014-12-01

    The strength and orientation of the Earth's magnetic field play an important role in the magnetosphere-ionosphere-thermosphere system. This is demonstrated in a set of idealized experiments with the Coupled Magnetosphere-Ionosphere-Thermosphere model using a dipolar magnetic field. A decrease of the dipole moment (M) causes an increase in ionospheric conductance. This increase in conductance results in enhanced field-aligned currents (FACs), which change the shape of the magnetosphere, and causes a deviation from theoretical scaling relations of the stand-off distance, the size of the polar cap, and the cross-polar cap potential with M. The orientation of the Earth's magnetic field determines how the angle μ between the geomagnetic dipole axis and the geocentric solar magnetospheric (GSM) z-axis varies with season and universal time (UT). The angle μ can affect solar wind-magnetosphere-ionosphere coupling in two distinct ways: via variations in ionospheric conductivity over the polar caps or via a change in the coupling efficiency between the solar wind and magnetosphere as a result of changes in geometry. Simulations in which the ionospheric conductivity was either kept fixed or allowed to vary realistically demonstrated that variations in ionospheric conductance are responsible for ~10-30% of the variations in the cross-polar cap potential associated with variations in μ for southward interplanetary magnetic field (IMF). The remainder was mostly due to variations in the magnetic reconnection rate, which were associated with variations in the length of the section of the separator line along which relatively strong reconnection occurs.

  15. Ionosphere/microwave beam interaction study

    NASA Technical Reports Server (NTRS)

    Gordon, W. E.; Duncan, L. M.

    1978-01-01

    The microwave beam of the Solar Power Satellite (SPS) is predicted to interact with the ionosphere producing thermal runaway up to an altitude of about 100 kilometers at a power density threshold of 12 mW/cm sq (within a factor of two). The operation of the SPS at two frequencies, 2450 and 5800 MHz, is compared. The ionosphere interaction is less at the higher frequency, but the tropospheric problem scattering from heavy rain and hail is worse at the higher frequency. Microwave signals from communication satellites were observed to scintillate, but there is some concern that the uplink pilot signal may be distorted by the SPS heated ionosphere. The microwave scintillations are only observed in the tropics in the early evenings near the equinoxes. Results indicate that large phase errors in the uplink pilot signal can be reduced.

  16. The Canadian High Arctic Ionospheric Network (CHAIN)

    NASA Astrophysics Data System (ADS)

    Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Chadwick, R.; Kelly, T.

    2009-05-01

    Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind - magnetosphere - ionosphere (SW-M-I) system as well as for space weather applications. Currently the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground- based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instruments components of CHAIN are ten high data-rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN.

  17. Ionospheric Impacts on UHF Space Surveillance

    NASA Astrophysics Data System (ADS)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  18. Can the ionosphere regulate magnetospheric convection.

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Kennel, C. F.

    1973-01-01

    A simple model is outlined that relates the dayside magnetopause displacement to the currents feeding the polar cap ionosphere, from which the ionospheric electric field and the flux return rate may be estimated as a function of magnetopause displacement. Then, flux conservation arguments make possible an estimate of the time scale on which convection increases.

  19. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    NASA Astrophysics Data System (ADS)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  20. A Comparative Study of the Ionospheric TEC Measurements Using Global Ionospheric Maps of GPS, TOPEX Radar and the Bent Model

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wilson, B.; Mannucci, A.; Lindqwister, U.; Yuan, D.

    1997-01-01

    Global ionospheric mapping (GIM) is a new, emerging technique for determining global ionospheric TEC (total electron content) based on measurements from a worldwide network of Global Positioning System (GPS) receivers.

  1. Considering the potential of IAR emissions for ionospheric sounding

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Polyushkina, T. N.; Tsegmed, B.; Oinats, A. V.; Pashinin, A. Yu.; Edemskiy, I. K.; Mylnikova, A. A.; Ratovsky, K. G.

    2017-11-01

    Knowledge of the ionospheric state allows us to adjust the forecasts of radio wave propagation, specify the environment models, and follow the changes of space weather. At present, probing of the ionosphere is produced by radio sounding with ground ionosondes, as well as by raying signals from satellites. We want to draw attention to the possibility of the diagnosis of the ionospheric parameters by detecting ultra-low frequency (ULF) electromagnetic emission generated in the so-called ionospheric Alfvén resonator (IAR). To do this, we present observations of the IAR emission made simultaneously for the first time at three stations using identical induction magnetometers. The stations are within one-hour difference of local time, two of them are mid-latitudinal; the third one is situated in the auroral zone. We compare frequency and frequency difference between adjacent harmonics of the observed multi-band emission with ionospheric parameters measured at the stations using ionosondes and GPS-observations. Diurnal variations of the ionospheric and ULF emission characteristics are also compared. The results show that there is quite a stable correlation between the resonant frequencies of the resonator bands and the critical frequency of the F2 layer of the ionosphere, namely, the frequency of the IAR emission varies inversely as the critical frequency of the ionosphere. This is due to the fact that the frequency of oscillation captured in the resonator is primarily determined by the Alfvén velocity (which depends on the plasma density) in the ionospheric F2 layer. The correlation is high; it varies at different stations, but is observed distinctly along the whole meridian. However, coefficients of a regression equation that connects the ionosphere critical frequency with DSB frequency vary significantly from day to day at all stations. The reason for such a big spread of the regression parameters is not clear and needs further investigation before we are able to

  2. Preseismic Lithosphere-Atmosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    Preseismic atmospheric and ionospheric disturbances besides preseismic geo-electric potential anomalies and ultra-low-frequency (ULF) geomagnetic variations observed on the ground have been reported. Both the phenomena have been found since the 1980s and a number of papers have been published. Since most of the reported phenomena transiently appear with accompanying quiescence before the mainshock, this prevents us to intuitively recognize a correlation between the anomaly appearance and the earthquake occurrence. Some of them, however, showed that anomalies monotonically grew into the mainshock, of which a variation supports the concept of seismic nucleation process under the pre-earthquake state. For example, Heki [GRL, 2011] reported that ionospheric electron density monotonically enhanced tens of minutes prior to the subduction mega-earthquake. However, this preseismic enhancement is apparent variation attributed to tsunamigenic ionospheric hole [Kakinami and Kamogawa et al, GRL, 2012], namely wide and long-duration depression of ionospheric electron after tsunami-excited acoustic waves reach the ionosphere. Since the tsunamigenic ionospheric hole could be simulated [Shinagawa et al., GRL, 2013], the reported variations are high-possibly pseudo phenomena [Kamogawa and Kakinami, JGR, 2013]. Thus, there are barely a few reports which show the preseismic monotonic variation supported by the concept of the seismic nucleation process. As far as we discuss the preseismic geoelectromagnetical and atmospheric-ionospheric anomalies, preseismic transient events from a few weeks to a few hours prior to the mainshock are paid attention to for the precursor study. In order to identify precursors from a number of anomalies, one has to show a statistical significance of correlation between the earthquake and the anomalies, to elucidate the physical mechanism, or to conduct both statistical and physical approach. Since many speculation of the physical mechanism have been

  3. Analysis of ionospheric structure influences on residual ionospheric errors in GNSS radio occultation bending angles based on ray tracing simulations

    NASA Astrophysics Data System (ADS)

    Liu, Congliang; Kirchengast, Gottfried; Sun, Yueqiang; Zhang, Kefei; Norman, Robert; Schwaerz, Marc; Bai, Weihua; Du, Qifei; Li, Ying

    2018-04-01

    The Global Navigation Satellite System (GNSS) radio occultation (RO) technique is widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source to RO at upper stratospheric altitudes, and a linear dual-frequency bending angle correction is commonly used to remove the first-order ionospheric effect. However, the higher-order residual ionospheric error (RIE) can still be significant, so it needs to be further mitigated for high-accuracy applications, especially from 35 km altitude upward, where the RIE is most relevant compared to the decreasing magnitude of the atmospheric bending angle. In a previous study we quantified RIEs using an ensemble of about 700 quasi-realistic end-to-end simulated RO events, finding typical RIEs at the 0.1 to 0.5 µrad noise level, but were left with 26 exceptional events with anomalous RIEs at the 1 to 10 µrad level that remained unexplained. In this study, we focused on investigating the causes of the high RIE of these exceptional events, employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects - where asymmetric ionospheric conditions play the primary role, more than the ionization level driven by solar activity - and technical ray tracer effects due to occasions of imperfect smoothness in ionospheric refractivity model derivatives. We also found that along-ray impact parameter variations of more than 10 to 20 m are possible due to ionospheric asymmetries and, depending on prevailing horizontal refractivity gradients, are positive or negative relative to the initial impact parameter at the GNSS transmitter. Furthermore, mesospheric RIEs are found generally higher than upper-stratospheric ones, likely due to

  4. Multi-Cone Model for Estimating GPS Ionospheric Delays

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony

    2009-01-01

    The multi-cone model is a computational model for estimating ionospheric delays of Global Positioning System (GPS) signals. It is a direct descendant of the conical-domain model. A primary motivation for the development of this model is the need to find alternatives for modeling slant delays at low latitudes, where ionospheric behavior poses an acute challenge for GPS signal-delay estimates based upon the thin-shell model of the ionosphere.

  5. Absorption of whistler mode waves in the ionosphere of venus.

    PubMed

    Taylor, W W; Scarf, F L; Russell, C T; Brace, L H

    1979-07-06

    It is shown that whistler mode waves from the ionosheath of Venus are absorbed by Landau damping at the dayside ionosphere boundary. This process heats the ionospheric electrons and it may provide an important energy input into the dayside ionosphere. Cyclotron damping of the waves does not occur in the same region. However, Landau damping of ionosheath waves is apparently not an important energy source in the nightside ionosphere. Impulsive events in the nightside ionosphere seem to fall into two classes: (i) lightning signals (near periapsis) and (ii) noise, which may be caused by gradient or current instabilities.

  6. Effect of Ionosphere on Geostationary Communication Satellite Signals

    NASA Astrophysics Data System (ADS)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  7. Use of global ionospheric maps for HF Doppler measurements interpretation

    NASA Astrophysics Data System (ADS)

    Petrova, I. R.; Bochkarev, V. V.; Latypov, R. R.

    2018-04-01

    The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale.

  8. An investigation on seismo-ionospheric precursors in various earthquake zones

    NASA Astrophysics Data System (ADS)

    Su, Y.; Liu, J. G.; Chen, M.

    2011-12-01

    Y. C. Su1, J. Y. Liu1 and M. Q. Chen1 1Institute of Space Science, National Central University, Chung-Li,Taiwan. This paper examines the relationships between the ionosphere and earthquakes occurring in different earthquake zones e.g. Malaysia area, Tibet plateau, mid-ocean ridge, Andes, etc., to reveal the possible seismo-ionospheric precursors for these area. Because the lithology, focal mechanism of earthquakes and electrodynamics in the ionosphere at different area are different, it is probable to have diverse ionospheric reactions before large earthquakes occurring in these areas. In addition to statistical analyses on increase or decrease anomalies of the ionospheric electron density few days before large earthquakes, we focus on the seismo-ionospheric precursors for oceanic and land earthquakes as well as for earthquakes with different focal mechanisms.

  9. Effective Heart Disease Detection Based on Quantitative Computerized Traditional Chinese Medicine Using Representation Based Classifiers.

    PubMed

    Shu, Ting; Zhang, Bob; Tang, Yuan Yan

    2017-01-01

    At present, heart disease is the number one cause of death worldwide. Traditionally, heart disease is commonly detected using blood tests, electrocardiogram, cardiac computerized tomography scan, cardiac magnetic resonance imaging, and so on. However, these traditional diagnostic methods are time consuming and/or invasive. In this paper, we propose an effective noninvasive computerized method based on facial images to quantitatively detect heart disease. Specifically, facial key block color features are extracted from facial images and analyzed using the Probabilistic Collaborative Representation Based Classifier. The idea of facial key block color analysis is founded in Traditional Chinese Medicine. A new dataset consisting of 581 heart disease and 581 healthy samples was experimented by the proposed method. In order to optimize the Probabilistic Collaborative Representation Based Classifier, an analysis of its parameters was performed. According to the experimental results, the proposed method obtains the highest accuracy compared with other classifiers and is proven to be effective at heart disease detection.

  10. Far-field coseismic ionospheric disturbances of Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Drobzheva, Ya. V.; Chum, J.

    2015-12-01

    A computer code has been developed to simulate the generation of infrasonic waves by a strong earthquake at a distance of 9000 km from the epicenter, their propagation through the atmosphere and their effects in the ionosphere. We provide estimates of the perturbations in the ionosphere at the height (210-220 km) where radiowaves at the sounding frequency (3.595 MHz) of a continuous Doppler radar reflect. Ionospheric perturbations have a global character and amplitudes of 1.5-7.5% of ambient value. Perturbations exist for ~1 h. The form of calculated ionospheric disturbances coincides with the experimental results. The correlation coefficient between calculated and experimental forms was from 0.68 to 0.9.

  11. Low ionospheric reactions on tropical depressions prior hurricanes

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Radovanović, Milan; Milovanović, Boško; Kovačević, Andjelka; Bajčetić, Jovan; Popović, Luka Č.

    2017-10-01

    We study the reactions of the low ionosphere during tropical depressions (TDs) which have been detected before the hurricane appearances in the Atlantic Ocean. We explore 41 TD events using very low frequency (VLF) radio signals emitted by NAA transmitter located in the USA and recorded by VLF receiver located in Belgrade (Serbia). We found VLF signal deviations (caused ionospheric turbulence) in the case of 36 out of 41 TD events (88%). Additionally, we explore 27 TDs which have not been developed in hurricanes and found similar low ionospheric reactions. However, in the sample of 41 TDs which are followed by hurricanes the typical low ionosphere perturbations seem to be more frequent than other TDs.

  12. Gigantic jets between a thundercloud and the ionosphere.

    PubMed

    Su, H T; Hsu, R R; Chen, A B; Wang, Y C; Hsiao, W S; Lai, W C; Lee, L C; Sato, M; Fukunishi, H

    2003-06-26

    Transient luminous events in the atmosphere, such as lighting-induced sprites and upwardly discharging blue jets, were discovered recently in the region between thunderclouds and the ionosphere. In the conventional picture, the main components of Earth's global electric circuit include thunderstorms, the conducting ionosphere, the downward fair-weather currents and the conducting Earth. Thunderstorms serve as one of the generators that drive current upward from cloud tops to the ionosphere, where the electric potential is hundreds of kilovolts higher than Earth's surface. It has not been clear, however, whether all the important components of the global circuit have even been identified. Here we report observations of five gigantic jets that establish a direct link between a thundercloud (altitude approximately 16 km) and the ionosphere at 90 km elevation. Extremely-low-frequency radio waves in four events were detected, while no cloud-to-ground lightning was observed to trigger these events. Our result indicates that the extremely-low-frequency waves were generated by negative cloud-to-ionosphere discharges, which would reduce the electrical potential between ionosphere and ground. Therefore, the conventional picture of the global electric circuit needs to be modified to include the contributions of gigantic jets and possibly sprites.

  13. MDCT for computerized volumetry of pneumothoraces in pediatric patients.

    PubMed

    Cai, Wenli; Lee, Edward Y; Vij, Abhinav; Mahmood, Soran A; Yoshida, Hiroyuki

    2011-03-01

    Our purpose in this study was to develop an automated computer-aided volumetry (CAV) scheme for quantifying pneumothorax in multidetector computed tomography (MDCT) images for pediatric patients and to investigate the imaging parameters that may affect its accuracy. Fifty-eight consecutive pediatric patients (mean age 12 ± 6 years) with pneumothorax who underwent MDCT for evaluation were collected retrospectively for this study. All cases were imaged by a 16- or 64-MDCT scanner with weight-based kilovoltage, low-dose tube current, 1.0-1.5 pitch, 0.6-5.0 mm slice thickness, and a B70f (sharp) or B31f (soft) reconstruction kernel. Sixty-three pneumothoraces ≥1 mL were visually identified in the left (n = 30) and right (n = 33) lungs. Each identified pneumothorax was contoured manually on an Amira workstation V4.1.1 (Mercury Computer Systems, Chelmsford, MA) by two radiologists in consensus. The computerized volumes of the pneumothoraces were determined by application of our CAV scheme. The accuracy of our automated CAV scheme was evaluated by comparison between computerized volumetry and manual volumetry, for the total volume of pneumothoraces in the left and right lungs. The mean difference between the computerized volumetry and the manual volumetry for all 63 pneumothoraces ≥1 mL was 8.2%. For pneumothoraces ≥10 mL, ≥50 mL, and ≥200 mL, the mean differences were 7.7% (n = 57), 7.3% (n = 33), and 6.4% (n = 13), respectively. The correlation coefficient was 0.99 between the computerized volume and the manual volume of pneumothoraces. Bland-Altman analysis showed that computerized volumetry has a mean difference of -5.1% compared to manual volumetry. For all pneumothoraces ≥10 mL, the mean differences for slice thickness ≤1.25 mm, = 1.5 mm, and = 5.0 mm were 6.1% (n = 28), 3.5% (n = 10), and 12.2% (n = 19), respectively. For the two reconstruction kernels, B70f and B31f, the mean differences were 6.3% (n = 42, B70f) and 11.7% (n = 15, B31f

  14. Ionospheric Caustics in Solar Radio Observations

    NASA Astrophysics Data System (ADS)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  15. Chemical releases in the ionosphere

    NASA Technical Reports Server (NTRS)

    Davis, T. N.

    1979-01-01

    The study of the interaction between the atmosphere, ionosphere and magnetosphere is identified as a major task worthy of pursuit. The present review demonstrates the major contributions to this complex problem already made by active experiments involving the injection of chemicals and energetic electron beams into the atmosphere, ionosphere and magnetosphere. Through the use of chemical releases, it has been possible to investigate a number of quantities including high-altitude winds and electric fields, the detailed configurations of the geomagnetic field within the ionosphere and the magnetosphere, as well as the propagation of energetic particle beams and their interaction with natural neutral and ionized constituents of the high atmosphere. So far, virtually all of this effort has been accomplished using rockets. In the future, it is obvious that satellite platforms will play a greater role, both in making injections and in observing their effects.

  16. Simulation of Ionospheric Response During Solar Eclipse Events

    NASA Astrophysics Data System (ADS)

    Kordella, L.; Earle, G. D.; Huba, J.

    2016-12-01

    Total solar eclipses are rare, short duration events that present interesting case studies of ionospheric behavior because the structure of the ionosphere is determined and stabilized by varying energies of solar radiation (Lyman alpha, X-ray, U.V., etc.). The ionospheric response to eclipse events is a source of scientific intrigue that has been studied in various capacities over the past 50 years. Unlike the daily terminator crossings, eclipses cause highly localized, steep gradients of ionization efficiency due to their comparatively small solar zenith angle. However, the corona remains present even at full obscuration, meaning that the energy reduction never falls to the levels seen at night. Previous eclipse studies performed by research groups in the US, UK, China and Russia have shown a range of effects, some counter-intuitive and others contradictory. In the shadowed region of an eclipse (i.e. umbra) it is logical to assume a reduction in ionization rates correlating with the reduction of incident solar radiation. Results have shown that even this straightforward hypothesis may not be true; effects on plasma distribution, motion and temperature are more appreciable than might be expected. Recent advancements in ionospheric simulation codes present the opportunity to investigate the relationship between geophysical conditions and geomagnetic location on resulting eclipse event ionosphere. Here we present computational simulation results using the Naval Research Lab (NRL) developed ionospheric modeling codes Sami2 and Sami3 (Sami2 is Another Model of the Ionosphere) modified with spatio-temporal photoionization attenuation functions derived from theory and empirical data.

  17. GBAS Ionospheric Anomaly Monitoring Based on a Two-Step Approach

    PubMed Central

    Zhao, Lin; Yang, Fuxin; Li, Liang; Ding, Jicheng; Zhao, Yuxin

    2016-01-01

    As one significant component of space environmental weather, the ionosphere has to be monitored using Global Positioning System (GPS) receivers for the Ground-Based Augmentation System (GBAS). This is because an ionospheric anomaly can pose a potential threat for GBAS to support safety-critical services. The traditional code-carrier divergence (CCD) methods, which have been widely used to detect the variants of the ionospheric gradient for GBAS, adopt a linear time-invariant low-pass filter to suppress the effect of high frequency noise on the detection of the ionospheric anomaly. However, there is a counterbalance between response time and estimation accuracy due to the fixed time constants. In order to release the limitation, a two-step approach (TSA) is proposed by integrating the cascaded linear time-invariant low-pass filters with the adaptive Kalman filter to detect the ionospheric gradient anomaly. The performance of the proposed method is tested by using simulated and real-world data, respectively. The simulation results show that the TSA can detect ionospheric gradient anomalies quickly, even when the noise is severer. Compared to the traditional CCD methods, the experiments from real-world GPS data indicate that the average estimation accuracy of the ionospheric gradient improves by more than 31.3%, and the average response time to the ionospheric gradient at a rate of 0.018 m/s improves by more than 59.3%, which demonstrates the ability of TSA to detect a small ionospheric gradient more rapidly. PMID:27240367

  18. Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.

    2013-01-01

    Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).

  19. Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin Hoffmann

    In this report, we study the correlation between thunderstorm activity and ionospheric gravity and acoustic waves in the low-latitude ionosphere. We use ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World- Wide Lightning Location Network (WWLLN). We find that ionospheric acoustic waves show a strong diurnal pattern in summer, peaking in the pre-midnight time period. However, the peak magnitude does not correspond to thunderstorm area, and the peak time is significantly after the peak in thunderstorm activity. Wintertime acoustic wave activity has no discernable pattern in these data. Themore » coverage area of ionospheric gravity waves in the summer was found to increase with increasing thunderstorm activity. Wintertime gravity wave activity has an observable diurnal pattern unrelated to thunderstorm activity. These findings show that while thunderstorms are not the only, or dominant source of ionospheric perturbations at low-latitudes, they do have an observable effect on gravity wave activity and could be influential in acoustic wave activity.« less

  20. LIFDAR: A Diagnostic Tool for the Ionosphere

    NASA Astrophysics Data System (ADS)

    Kia, O. E.; Rodgers, C. T.; Batholomew, J. L.

    2011-12-01

    ITT Corporation proposes a novel system to measure and monitor the ion species within the Earth's ionosphere called Laser Induced Fluorescence Detection and Ranging (LIFDAR). Unlike current ionosphere measurements that detect electrons and magnetic field, LIFDAR remotely measures the major contributing ion species to the electron plasma. The LIFDAR dataset has the added capability to demonstrate stratification and classification of the layers of the ionosphere to ultimately give a true tomographic view. We propose a proof of concept study using existing atmospheric LIDAR sensors combined with a mountaintop observatory for a single ion species that is prevalent in all layers of the atmosphere. We envision the LIFDAR concept will enable verification, validation, and exploration of the physics of the magneto-hydrodynamic models used in ionosphere forecasting community. The LIFDAR dataset will provide the necessary ion and electron density data for the system wide data gap. To begin a proof of concept, we present the science justification of the LIFDAR system based on the model photon budget. This analysis is based on the fluorescence of ionized oxygen within the ionosphere versus altitude. We use existing model abundance data of the ionosphere during normal and perturbed states. We propagate the photon uncertainties from the laser source through the atmosphere to the plasma and back to the collecting optics and detector. We calculate the expected photon budget to determine signal to noise estimates based on the targeted altitude and detection efficiency. Finally, we use these results to derive a LIFDAR observation strategy compatible with operational parameters.

  1. Computerized tomography with 3-dimensional reconstruction for the evaluation of renal size and arterial anatomy in the living kidney donor.

    PubMed

    Janoff, Daniel M; Davol, Patrick; Hazzard, James; Lemmers, Michael J; Paduch, Darius A; Barry, John M

    2004-01-01

    Computerized tomography (CT) with 3-dimensional (3-D) reconstruction has gained acceptance as an imaging study to evaluate living renal donors. We report our experience with this technique in 199 consecutive patients to validate its predictions of arterial anatomy and kidney volumes. Between January 1997 and March 2002, 199 living donor nephrectomies were performed at our institution using an open technique. During the operation arterial anatomy was recorded as well as kidney weight in 98 patients and displacement volume in 27. Each donor had been evaluated preoperatively by CT angiography with 3-D reconstruction. Arterial anatomy described by a staff radiologist was compared with intraoperative findings. CT estimated volumes were reported. Linear correlation graphs were generated to assess the reliability of CT volume predictions. The accuracy of CT angiography for predicting arterial anatomy was 90.5%. However, as the number of renal arteries increased, predictive accuracy decreased. The ability of CT to predict multiple arteries remained high with a positive predictive value of 95.2%. Calculated CT volume and kidney weight significantly correlated (0.654). However, the coefficient of variation index (how much average CT volume differed from measured intraoperative volume) was 17.8%. CT angiography with 3-D reconstruction accurately predicts arterial vasculature in more than 90% of patients and it can be used to compare renal volumes. However, accuracy decreases with multiple renal arteries and volume comparisons may be inaccurate when the difference in kidney volumes is within 17.8%.

  2. Ionosphere of Mars observed by Mars Express.

    NASA Astrophysics Data System (ADS)

    Dubinin, Eduard; Fraenz, Markus; Andrews, Dave; Morgan, Dave

    2016-04-01

    The Martian ionosphere is studied at different solar zenith angles using the local electron number densities and total electron content (TEC) derived from the observations by MARSIS onboard Mars Express. The data are complemented by the ASPERA-3 observations which provide us with the information about upward/downward velocity of the low-energy ions and electron precipitation. We consider the Mars Express observations at different solar cycle intervals. Different factors which influence the ionosphere dynamics are analyzed. The focus is made on a role of the crustal magnetic field on the Martian ionosphere and its influence on ion escape.

  3. Rocket studies of the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Bowhill, Sidney A.

    1990-01-01

    The earth's ionosphere in the altitude range of 50 to 200 km was investigated by rocket-borne sensors, supplemented by ground-based measurement. The rocket payloads included mass spectrometers, energetic particle detectors, Langmuir probes and radio propagation experiments. Where possible, rocket flights were included in studies of specific phenomena, and the availability of data from other experiments greatly increased the significance of the results. The principal ionospheric phenomena studied were: winter anomaly in radiowave absorption, ozone and molecular oxygen densities, mid-latitude sporadic-E layers, energetic particle precipitation at middle and low latitudes, ionospheric instabilities and turbulence, and solar eclipse effects in the D and E regions. This document lists personnel who worked on the project, and provides a bibliography of resultant publications.

  4. Summary of Sessions: Ionosphere - Thermosphere - Mesosphere Working Group

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Bhattacharyya, A.

    2006-01-01

    The topics covered by the sessions under the working group on Ionosphere-Thermosphere-Mesosphere dealt with various aspects of the response of the ionosphere-thermosphere coupled system and the middle atmosphere to solar variability. There were four plenary talks related to the theme of this working group, thirteen oral presentations in three sessions and six poster presentations. A number of issues related to effects of solar variability on the ionosphere-thermosphere, observed using satellite and ground-based data including ground magnetometer observations, radio beacon studies of equatorial spread F, and modeling of some of these effects, were discussed. Radar observations of the mesosphere-lower thermosphere region and a future mission to study the coupling of thunderstorm processes to this region, the ionosphere, and magnetosphere were also presented.

  5. On the mid-latitude ionospheric storm association with intense geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley Chukwudi; Ogbonna, Chinasa Edith

    2018-04-01

    The bulk association between ionospheric storms and geomagnetic storms has been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤ 100 nT) that occurred during solar cycles 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storm were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e. Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric conditions at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  6. New Observations of the Martian Ionosphere and its Variability - An Overview

    NASA Astrophysics Data System (ADS)

    Kopf, Andrew J.

    2017-04-01

    The Martian ionosphere is a highly variable system, owed to the strong influence of the Sun on its properties and behavior, particularly at higher altitudes. Recent measurements from the MAVEN and Mars Express spacecraft have allowed for a more complete understanding of the ionosphere and its variability from two different perspectives. Due to the low-altitude periapsis of its orbit, MAVEN has allowed for the first in-situ ionospheric studies since Viking, yielding detailed direct measurements of the ionosphere's structure, composition, and dynamics, as well as its rate of loss to space. Mars Express has over a decade of continuous ionospheric observation of the red planet, with the unique ability to remotely sound the ionosphere. These features enable Mars Express to make long-period ionospheric measurements on each orbit, at all local times and solar zenith angles. Utilized together, these two spacecraft form a powerful observational suite that has provided new insights into this dynamic environment. This talk will highlight several important recent results in the study of the Martian ionosphere and its variability.

  7. Asymmetric DE3 causes WN3 in the ionosphere

    NASA Astrophysics Data System (ADS)

    Jiang, Jinzhe; Wan, Weixing; Ren, Zhipeng; Yue, Xinan

    2018-08-01

    This study investigates a mechanism to generate the wavenumber-3 longitude variation in the ionosphere, using the simulations with the Global Coupled Ionosphere Thermosphere Electrodynamics Model, developed by the Institute of Geology and Geophysics, Chinese Academy of Sciences (GCITEM-IGGCAS). Due to the asymmetry of geomagnetic field, the asymmetric Hough mode of diurnal eastward wavenumber-3 (DE3) also produces the WN3 structure in the ionosphere by coupling with the magnetic line. The densities of the neutral mass and the plasmas in the ionosphere are studied in detail. The results show a clear WN3 pattern driven by tide's electro-dynamical coupling. We then conclude that the asymmetric component of the DE3 can also cause the WN3 structure in the ionosphere, which confirms the assumption that more than one source could generate WN3 structure in previous studies.

  8. On the development and global oscillations of cometary ionospheres

    NASA Technical Reports Server (NTRS)

    Houpis, H. L. F.; Mendis, D. A.

    1981-01-01

    Representing the cometary ionosphere by a single fluid model characterized by an average ionization time scale, both the ionosphere's development as a comet approaches the sun and its response to sudden changes in solar wind conditions are investigated. Three different nuclear sizes (small, average, very large) and three different modes of energy addition to the atmosphere (adiabatic, isothermal, suprathermal) are considered. It is found that the crucial parameter determining both the nature and the size of the ionosphere is the average ionization time scale within the ionosphere. Two different scales are identified. It is noted that the ionosphere can also be characterized by the relative sizes of three different scale lengths: the neutral standoff distance from the nucleus, the ion standoff distance from the nucleus, and the nuclear distance at which the ions and the neutrals decouple collisionally.

  9. Ionosphere/microwave beam interaction study. [satellite solar energy conversion

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Gordon, W. E.

    1977-01-01

    A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.

  10. Designing a Computerized Presentation Center.

    ERIC Educational Resources Information Center

    Christopher, Doris A.

    1995-01-01

    The Office Systems and Business Education Department at California State University (Los Angeles) developed a computerized presentation center, with multimedia classrooms and a multipurpose room, where students learn computerized presentation design skills, faculty can develop materials for class, and local business can do videoconferencing and…

  11. Influence of Solar Irradiance on Polar Ionospheric Convection

    NASA Astrophysics Data System (ADS)

    Burrell, A. G.; Yeoman, T. K.; Stephen, M.; Lester, M.

    2016-12-01

    Plasma convection over the poles shows the result of direct interactions between the terrestrial atmosphere, magnetosphere, and the sun. The paths that the ionospheric plasma takes in the polar cap form a variety of patterns, which have been shown to depend strongly on the direction of the Interplanetary Magnetic Field (IMF) and the reconnection rate. While the IMF and level of geomagnetic activity clearly alter the plasma convection patterns, the influence of changing solar irradiance is also important. The solar irradiance and magnetospheric particle precipitation regulate the rate of plasma production, and thus the ionospheric conductivity. Previous work has demonstrated how season alters the convection patterns observed over the poles, demonstrating the importance that solar photoionisation has on plasma convection. This study investigates the role of solar photoionisation on convection more directly, using measurements of ionospheric convection made by the Super Dual Auroral Radar Network (SuperDARN) and solar irradiance observations made by the Solar EUV Experiment (SEE) to explore the influence of the solar cycle on ionospheric convection, and the implications this may have on magnetosphere-ionosphere coupling.

  12. VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes

    PubMed Central

    Hayakawa, Masashi

    2007-01-01

    It is recently recognized that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes, seems to be very promising for short-term earthquake prediction. We have proposed a possible use of VLF/LF (very low frequency (3-30 kHz) /low frequency (30-300 kHz)) radio sounding of the seismo-ionospheric perturbations. A brief history of the use of subionospheric VLF/LF propagation for the short-term earthquake prediction is given, followed by a significant finding of ionospheric perturbation for the Kobe earthquake in 1995. After showing previous VLF/LF results, we present the latest VLF/LF findings; One is the statistical correlation of the ionospheric perturbation with earthquakes and the second is a case study for the Sumatra earthquake in December, 2004, indicating the spatical scale and dynamics of ionospheric perturbation for this earthquake.

  13. Tropospheric wet refractivity tomography using multiplicative algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Xiaoying, Wang; Ziqiang, Dai; Enhong, Zhang; Fuyang, K. E.; Yunchang, Cao; Lianchun, Song

    2014-01-01

    Algebraic reconstruction techniques (ART) have been successfully used to reconstruct the total electron content (TEC) of the ionosphere and in recent years be tentatively used in tropospheric wet refractivity and water vapor tomography in the ground-based GNSS technology. The previous research on ART used in tropospheric water vapor tomography focused on the convergence and relaxation parameters for various algebraic reconstruction techniques and rarely discussed the impact of Gaussian constraints and initial field on the iteration results. The existing accuracy evaluation parameters calculated from slant wet delay can only evaluate the resultant precision of the voxels penetrated by slant paths and cannot evaluate that of the voxels not penetrated by any slant path. The paper proposes two new statistical parameters Bias and RMS, calculated from wet refractivity of the total voxels, to improve the deficiencies of existing evaluation parameters and then discusses the effect of the Gaussian constraints and initial field on the convergence and tomography results in multiplicative algebraic reconstruction technique (MART) to reconstruct the 4D tropospheric wet refractivity field using simulation method.

  14. Ionospheric Irregularities and Acoustic/Gravity Wave Activity Above Low-Latitude Thunderstorms

    NASA Astrophysics Data System (ADS)

    Lay, Erin H.

    2018-01-01

    Ionospheric irregularities due to plasma bubbles, scintillation, and acoustic/gravity waves are studied in the low-latitude ionosphere in relation to thunderstorm activity. Ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network and lightning measurements from the World-Wide Lightning Location Network are compared during two summer months and two winter months in 2013. Large amplitude fluctuations in TEC are found to have a strongly peaked diurnal pattern in the late evening and nighttime summer ionosphere. The maximum magnitude and coverage area of these fluctuations increases as thunderstorm area increases. Summertime midamplitude fluctuations do not exhibit the same diurnal variation but do increase in magnitude and coverage area as thunderstorm area increases. Wintertime ionospheric fluctuations do not appear to be related to thunderstorm activity. These findings show that thunderstorms have an observable effect on magnitude and coverage area of ionospheric fluctuations.

  15. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction.

    PubMed

    Huang, Ling; Zhang, Hongping; Xu, Peiliang; Geng, Jianghui; Wang, Cheng; Liu, Jingnan

    2017-02-27

    Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS) positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC) semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC) and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 10 16 electrons/m²) with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the new proposed

  16. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction

    PubMed Central

    Huang, Ling; Zhang, Hongping; Xu, Peiliang; Geng, Jianghui; Wang, Cheng; Liu, Jingnan

    2017-01-01

    Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS) positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC) semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC) and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 1016 electrons/m2) with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the new proposed

  17. Ionospheric scintillation observations over Kenyan region - Preliminary results

    NASA Astrophysics Data System (ADS)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  18. Field-aligned currents in the undisturbed polar ionosphere

    NASA Astrophysics Data System (ADS)

    Kroehl, H. W.

    1989-09-01

    Field-aligned currents, FAC's, which couple ionospheric currents at high latitudes with magnetospheric currents have become an essential cornerstone to our understanding of plasma dynamics in the polar region and in the earth's magnetosphere. Initial investigators of polar electrodynamics including the aurora were unable to distinguish between the ground magnetic signatures of a purely two-dimensional current and those from a three-dimensional current system, ergo many scientists ignored the possible existence of these vertical currents. However, data from magnetometers and electrostatic analyzers flown on low-altitude, polar-orbiting satellites proved beyond any reasonable doubt that field-aligned currents existed, and that different ionospheric regions were coupled to different magnetospheric regions which were dominated by different electrodynamic processes, e.g., magnetospheric convection electric fields, magnetospheric substorms and parallel electric fields. Therefore, to define the “undisturbed” polar ionosphere and its structure and dynamics, one needs to consider these electrodynamic processes, to select times for analysis when they are not strongly active and to remember that the polar ionosphere may be disturbed when the equatorial, mid-latitude and sub-auroral ionospheres are not. In this paper we will define the principle high-latitude current systems, describe the effects of FAC's associated with these systems, review techniques which would minimize these effects and present our description of the “undisturbed” polar ionosphere.

  19. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    NASA Astrophysics Data System (ADS)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the

  20. Arkansas' Curriculum Guide. Competency Based Computerized Accounting.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock. Div. of Vocational, Technical and Adult Education.

    This guide contains the essential parts of a total curriculum for a one-year secondary-level course in computerized accounting. Addressed in the individual sections of the guide are the following topics: the complete accounting cycle, computer operations for accounting, computerized accounting and general ledgers, computerized accounts payable,…

  1. Saturn's ionosphere: Inferred electron densities

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1983-01-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densitis measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings.

  2. Ionospheric-thermospheric UV tomography: 2. Comparison with incoherent scatter radar measurements

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.; Coker, C.; Hei, M. A.; Groves, K. M.

    2017-03-01

    The Special Sensor Ultraviolet Limb Imager (SSULI) instruments are ultraviolet limb scanning sensors that fly on the Defense Meteorological Satellite Program F16-F19 satellites. The SSULIs cover the 80-170 nm wavelength range which contains emissions at 91 and 136 nm, which are produced by radiative recombination of the ionosphere. We invert the 91.1 nm emission tomographically using a newly developed algorithm that includes optical depth effects due to pure absorption and resonant scattering. We present the details of our approach including how the optimal altitude and along-track sampling were determined and the newly developed approach we are using for regularizing the SSULI tomographic inversions. Finally, we conclude with validations of the SSULI inversions against Advanced Research Project Agency Long-range Tracking and Identification Radar (ALTAIR) incoherent scatter radar measurements and demonstrate excellent agreement between the measurements. As part of this study, we include the effects of pure absorption by O2, N2, and O in the inversions and find that best agreement between the ALTAIR and SSULI measurements is obtained when only O2 and O are included, but the agreement degrades when N2 absorption is included. This suggests that the absorption cross section of N2 needs to be reinvestigated near 91.1 nm wavelengths.

  3. Simulation and mitigation of higher-order ionospheric errors in PPP

    NASA Astrophysics Data System (ADS)

    Zus, Florian; Deng, Zhiguo; Wickert, Jens

    2017-04-01

    We developed a rapid and precise algorithm to compute ionospheric phase advances in a realistic electron density field. The electron density field is derived from a plasmaspheric extension of the International Reference Ionosphere (Gulyaeva and Bilitza, 2012) and the magnetic field stems from the International Geomagnetic Reference Field. For specific station locations, elevation and azimuth angles the ionospheric phase advances are stored in a look-up table. The higher-order ionospheric residuals are computed by forming the standard linear combination of the ionospheric phase advances. In a simulation study we examine how the higher-order ionospheric residuals leak into estimated station coordinates, clocks, zenith delays and tropospheric gradients in precise point positioning. The simulation study includes a few hundred globally distributed stations and covers the time period 1990-2015. We take a close look on the estimated zenith delays and tropospheric gradients as they are considered a data source for meteorological and climate related research. We also show how the by product of this simulation study, the look-up tables, can be used to mitigate higher-order ionospheric errors in practise. Gulyaeva, T.L., and Bilitza, D. Towards ISO Standard Earth Ionosphere and Plasmasphere Model. In: New Developments in the Standard Model, edited by R.J. Larsen, pp. 1-39, NOVA, Hauppauge, New York, 2012, available at https://www.novapublishers.com/catalog/product_info.php?products_id=35812

  4. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  5. Validation of a Global Ionospheric Data Assimilation Model

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Hajj, G.; Wang, C.; Pi, X.; Rosen, I.

    2003-04-01

    As the number of ground and space-based receivers tracking the global positioning system (GPS) steadily increases, and the quantity of other ionospheric remote sensing data such as measurements of airglow also increases, it is becoming possible to monitor changes in the ionosphere continuously and on a global scale with unprecedented accuracy and reliability. However, in order to make effective use of such a large volume of data for both ionospheric specification and forecast, it is important to develop a data- driven ionospheric model that is consistent with the underlying physical principles governing ionosphere dynamics. A fully 3-dimensional Global Assimilative Ionosphere Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory team. GAIM uses a first-principles ionospheric physics model (“forward” model) and Kalman filtering and 4DVAR techniques to not only solve for densities on a 3D grid but also estimate key driving forces which are inputs to the theoretical model, such as the ExB drift, neutral wind, and production terms. The driving forces are estimated using an “adjoint equation” to compute the required partial derivatives, thereby greatly reducing the computational demands compared to other techniques. For estimation of the grid densities, GAIM uses an approximate Kalman filter implementation in which the portions of the covariance matrix that are retained (the off-diagonal elements) are determined by assumed but physical correlation lengths in the ionosphere. By selecting how sparse or full the covariance matrix is over repeated Kalman filter runs, one can fully investigate the tradeoff between estimation accuracy and computational speed. Although GAIM will ultimately use multiple datatypes and many data sources, we have performed a first study of quantitative accuracy by ingesting GPS-derived TEC observations from ground and space-based receivers and nighttime UV radiance data from

  6. Computerized Biomechanical Man-Model

    DTIC Science & Technology

    1976-07-01

    Force Systems Command Wright-Patterson AFB, Ohio ABSTRACT The COMputerized BIomechanical MAN-Model (called COMBIMAN) is a computer interactive graphics...concept was to build a mock- The use of mock-ups for biomechanical evalua- up which permitted the designer to visualize the tion has long been a tool...of the can become an obstacle to design change. Aerospace Medical Research Laboratory, we are developing a computerized biomechanical man-model

  7. VHF Scintillation in an Artificially Heated Ionosphere

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.

    2017-12-01

    As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.

  8. Evaluation of Inversion Methods Applied to Ionospheric ro Observations

    NASA Astrophysics Data System (ADS)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Guyot, Elia

    The new technique of radio-occultation can be used to study the Earth's ionosphere. The retrieval processes of ionospheric profiling from radio occultation observations usually assume spherical symmetry of electron density distribution at the locality of occultation and use the Abel integral transform to invert the measured total electron content (TEC) values. This pa-per presents a set of ionospheric profiles obtained from SAC-C satellite with the Abel inversion technique. The effects of the ionosphere on the GPS signal during occultation, such as bending and scintillation, are examined. Electron density profiles are obtained using the Abel inversion technique. Ionospheric radio occultations are validated using vertical profiles of electron con-centration from inverted ionograms , obtained from ionosonde sounding in the vicinity of the occultation. Results indicate that the Abel transform works well in the mid-latitudes during the daytime, but is less accurate during the night-time.

  9. Ionospheric irregularities and acoustic/gravity wave activity above low-latitude thunderstorms

    DOE PAGES

    Lay, Erin H.

    2017-12-18

    Ionospheric irregularities due to plasma bubbles, scintillation, and acoustic/gravity waves are studied in the low-latitude ionosphere in relation to thunderstorm activity. Ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World-Wide Lightning Location Network (WWLLN) are compared during two summer months and two winter months in 2013. Large amplitude fluctuations in TEC are found to have a strongly-peaked diurnal pattern in the late evening and nighttime summer ionosphere. The maximum magnitude and coverage area of these fluctuations increases as thunderstorm area increases. Summertime mid-amplitude fluctuations do not exhibit the samemore » diurnal variation, but do increase in magnitude and coverage area as thunderstorm area increases. Wintertime ionospheric fluctuations do not appear to be related to thunderstorm activity. Lastly, these findings show that thunderstorms have an observable effect on magnitude and coverage area of ionospheric fluctuations.« less

  10. Ionospheric irregularities and acoustic/gravity wave activity above low-latitude thunderstorms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin H.

    Ionospheric irregularities due to plasma bubbles, scintillation, and acoustic/gravity waves are studied in the low-latitude ionosphere in relation to thunderstorm activity. Ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World-Wide Lightning Location Network (WWLLN) are compared during two summer months and two winter months in 2013. Large amplitude fluctuations in TEC are found to have a strongly-peaked diurnal pattern in the late evening and nighttime summer ionosphere. The maximum magnitude and coverage area of these fluctuations increases as thunderstorm area increases. Summertime mid-amplitude fluctuations do not exhibit the samemore » diurnal variation, but do increase in magnitude and coverage area as thunderstorm area increases. Wintertime ionospheric fluctuations do not appear to be related to thunderstorm activity. Lastly, these findings show that thunderstorms have an observable effect on magnitude and coverage area of ionospheric fluctuations.« less

  11. GEM-CEDAR Study of Ionospheric Energy Input and Joule Dissipation

    NASA Technical Reports Server (NTRS)

    Rastaetter, Lutz; Kuznetsova, Maria M.; Shim, Jasoon

    2012-01-01

    We are studying ionospheric model performance for six events selected for the GEM-CEDAR modeling challenge. DMSP measurements of electric and magnetic fields are converted into Poynting Flux values that estimate the energy input into the ionosphere. Models generate rates of ionospheric Joule dissipation that are compared to the energy influx. Models include the ionosphere models CTIPe and Weimer and the ionospheric electrodynamic outputs of global magnetosphere models SWMF, LFM, and OpenGGCM. This study evaluates the model performance in terms of overall balance between energy influx and dissipation and tests the assumption that Joule dissipation occurs locally where electromagnetic energy flux enters the ionosphere. We present results in terms of skill scores now commonly used in metrics and validation studies and we can measure the agreement in terms of temporal and spatial distribution of dissipation (i.e, location of auroral activity) along passes of the DMSP satellite with the passes' proximity to the magnetic pole and solar wind activity level.

  12. Ionospheric Composition and Reactions: Our present knowledge of what ions are in the ionosphere, and why, is summarized.

    PubMed

    Donahue, T M

    1968-02-02

    Recent measurements of ion densities in the ionosphere seem to be more or less compatible with current data for ion-molecule reaction rates in some parts of the ionosphere under conditions in which a steady state prevails. There is no such agreement for the upper ionosphere, where the densities of He(+) and H(+) are difficult to understand in terms of present concepts concerning the relevant production and loss processes. Sources of ionizing radiation are needed to explain night- time observations in the E region and perhaps also in the F region. The D region remains a poorly understood laboratory of negative-ion and positiveion chemistry, where neither observation nor theory is as yet adequate.

  13. Computerized Numerical Control Curriculum Guide.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This guide is intended for use in a course in programming and operating a computerized numerical control system. Addressed in the course are various aspects of programming and planning, setting up, and operating machines with computerized numerical control, including selecting manual or computer-assigned programs and matching them with…

  14. Computerized Adaptive Personality Testing: A Review and Illustration With the MMPI-2 Computerized Adaptive Version.

    ERIC Educational Resources Information Center

    Forbey, Johnathan D.; Ben-Porath, Yossef S.

    2007-01-01

    Computerized adaptive testing in personality assessment can improve efficiency by significantly reducing the number of items administered to answer an assessment question. Two approaches have been explored for adaptive testing in computerized personality assessment: item response theory and the countdown method. In this article, the authors…

  15. GNSS monitoring of the ionosphere for Space Weather services

    NASA Astrophysics Data System (ADS)

    Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.

    2012-04-01

    The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space

  16. Scale Height variations with solar cycle in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis

    2015-04-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.

  17. Observations and simulations of the ionospheric lunar tide: Seasonal variability

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.

    2014-07-01

    The seasonal variability of the ionospheric lunar tide is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. The present study focuses on the seasonal variability of the lunar tide in the ionosphere and its potential connection to the occurrence of stratosphere sudden warmings (SSWs). COSMIC maximum F region electron density (NmF2) and total electron content observations reveal a primarily annual variation of the ionospheric lunar tide, with maximum amplitudes occurring at low latitudes during December-February. Simulations of the lunar tide climatology in TIME-GCM display a similar annual variability as the COSMIC observations. This leads to the conclusion that the annual variability of the lunar tide in the ionosphere is not solely due to the occurrence of SSWs. Rather, the annual variability of the lunar tide in the ionosphere is generated by the seasonal variability of the lunar tide at E region altitudes. However, compared to the observations, the ionospheric lunar tide annual variability is weaker in the climatological simulations which is attributed to the occurrence of SSWs during the majority of the years included in the observations. Introducing a SSW into the TIME-GCM simulation leads to an additional enhancement of the lunar tide during Northern Hemisphere winter, increasing the lunar tide annual variability and resulting in an annual variability that is more consistent with the observations. The occurrence of SSWs can therefore potentially bias lunar tide climatologies, and it is important to consider these effects in studies of the lunar tide in the atmosphere and ionosphere.

  18. Magnetosphere-Ionosphere Energy Interchange in the Electron Diffuse Aurora

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Glocer, Alex; Himwich, E. W.

    2014-01-01

    The diffuse aurora has recently been shown to be a major contributor of energy flux into the Earth's ionosphere. Therefore, a comprehensive theoretical analysis is required to understand its role in energy redistribution in the coupled ionosphere-magnetosphere system. In previous theoretical descriptions of precipitated magnetospheric electrons (E is approximately 1 keV), the major focus has been the ionization and excitation rates of the neutral atmosphere and the energy deposition rate to thermal ionospheric electrons. However, these precipitating electrons will also produce secondary electrons via impact ionization of the neutral atmosphere. This paper presents the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E greater than 600 eV) and their ionosphere-magnetosphere coupling processes. In this article, we discuss for the first time how diffuse electron precipitation into the atmosphere and the associated secondary electron production participate in ionosphere-magnetosphere energy redistribution.

  19. Radio Sounding of the Martian and Venusian Ionospheres

    NASA Astrophysics Data System (ADS)

    Paetzold, M.; Haeusler, B.; Bird, M. K.; Peter, K.; Tellmann, S.; Tyler, G. L.; Withers, P.

    2011-12-01

    The Mars Express Radio Science Experiment MaRS and the radio science experiment Vera on Venus Express sound the ionospheres of Mars and Venus, respectively, at two frequencies in the microwave band and cover altitudes from the base of the ionosphere at 80 km (100 km at Venus) to the ionopause at altitudes between 300 km and 600 km. In general, both ionospheres consists of a lower layer M1 (V1 at Venus) at about 110 km (115 km), and the main layer M2 (V2) at about 135 km (145 km) altitude, both formed mainly by solar radiation at X-ray and EUV, respectively. The specific derivation and interpretation of the vertical electron density profiles at two radio frequencies from radio sounding is demonstrated in detail. Cases of quiet and disturbed ionospheric electron density profiles and cases of potential misinterpretations are presented. The behavior of the peak densities and peak altitudes of both ionospheres as a function of solar zenith angle and phase of the solar cycle as seen with Mars Express and Venus Express will be compared with past observations, models and conclusions.

  20. GPS, Earthquakes, the Ionosphere, and the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Calais, Eric; Minster, J. Bernard

    1998-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes producing strong vertical ground displacements are known to produce infrasonic pressure waves in the atmosphere. Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic waves induce variations of the ionospheric electron density. The Global Positioning System provides a way of directly measuring the Total Electron Content in the ionosphere and, therefore. of detecting such perturbations in the upper atmosphere. In this work, we demonstrate the capabilities of the GPS technique to detect ionospheric perturbations caused by the January 17. 1994, M (sub w) =6.7, Northridge earthquake and the STS-58 Space Shuttle ascent. In both cases, we observe a perturbation of the ionospheric electron density lasting for about 30 m, with periods less than 10 m. The perturbation is complex and shows two sub-events separated by about 15 m. The phase velocities and waveform characteristics of the two sub-events lead us to interpret the first arrival as the direct propagation of 2 free wave, followed by oscillatory guided waves propagating along horizontal atmospheric interfaces at 120 km altitude and below.

  1. Ionospheric threats to the integrity of airborne GPS users

    NASA Astrophysics Data System (ADS)

    Datta-Barua, Seebany

    The Global Positioning System (GPS) has both revolutionized and entwined the worlds of aviation and atmospheric science. As the largest and most unpredictable source of GPS positioning error, the ionospheric layer of the atmosphere, if left unchecked, can endanger the safety, or "integrity," of the single frequency airborne user. An augmentation system is a differential-GPS-based navigation system that provides integrity through independent ionospheric monitoring by reference stations. However, the monitor stations are not in general colocated with the user's GPS receiver. The augmentation system must protect users from possible ionosphere density variations occurring between its measurements and the user's. This study analyzes observations from ionospherically active periods to identify what types of ionospheric disturbances may cause threats to user safety if left unmitigated. This work identifies when such disturbances may occur using a geomagnetic measure of activity and then considers two disturbances as case studies. The first case study indicates the need for a non-trivial threat model for the Federal Aviation Administration's Local Area Augmentation System (LAAS) that was not known prior to the work. The second case study uses ground- and space-based data to model an ionospheric disturbance of interest to the Federal Aviation Administration's Wide Area Augmentation System (WAAS). This work is a step in the justification for, and possible future refinement of, one of the WAAS integrity algorithms. For both WAAS and LAAS, integrity threats are basically caused by events that may be occurring but are unobservable. Prior to the data available in this solar cycle, events of such magnitude were not known to be possible. This work serves as evidence that the ionospheric threat models developed for WARS and LAAS are warranted and that they are sufficiently conservative to maintain user integrity even under extreme ionospheric behavior.

  2. Substorm Birkeland currents and Cowling channels in the ionosphere

    NASA Astrophysics Data System (ADS)

    Fujii, R.

    2016-12-01

    Field-aligned current (FAC) connects electromagnetically the ionosphere with the magnetosphere and plays important roles on dynamics and energetics in the magnetosphere and the ionosphere. In particular, connections between FACs in the ionosphere give important information on various current sources in the magnetosphere and the linkage between them, although the connection between FACs in the ionosphere does not straightforwardly give that in the magnetosphere. FACs in the ionosphere are closed to each other through ionospheric currents determined with the electric field and the Hall and Pedersen conductivities. The electric field and the conductivities are not independently distributed, but rather they are harmonized with each other spatially and temporarily in a physically consistent manner to give a certain FAC. In particular, the divergence of the Hall current due to the inhomogeneity of the Hall conductivity either flows in/out to the magnetosphere as a secondary FAC or accumulates excess charges that produce a secondary electric field. This electric field drives a current circuit connecting the Hall current with the Pedersen current; a Cowling channel current circuit. The FAC (the electric field) we observe is the sum of the primary and secondary FACs (electric fields). The talk will present characteristics of FACs and associated electric field and auroras during substorms, and the ionospheric current closures between the FACs. A statistical study has shown that the majority of region 1 currents are connected to their adjacent region 2 or region 0 currents, indicating the Pedersen current closure rather than the Hall current closure is dominant. On the other hand, the Pedersen currents associated with surge and substorm-related auroras often are connected to the Hall currents, forming a Cowling channel current circuit within the ionosphere.

  3. Preoperative Computerized Tomography and Magnetic Resonance Imaging of the Pancreas Predicts Pancreatic Mass and Functional Outcomes After Total Pancreatectomy and Islet Autotransplant

    PubMed Central

    Young, Michael C.; Theis, Jake R.; Hodges, James S.; Dunn, Ty B.; Pruett, Timothy L.; Chinnakotla, Srinath; Walker, Sidney P.; Freeman, Martin L.; Trikudanathan, Guru; Arain, Mustafa; Robertson, R. Paul; Wilhelm, Joshua J.; Schwarzenberg, Sarah J.; Bland, Barbara; Beilman, Gregory J.; Bellin, Melena D.

    2015-01-01

    Objectives About two-thirds of patients will remain on insulin therapy after total pancreatectomy with islet autotransplant (TPIAT) for chronic pancreatitis. We investigated the relationship between measured pancreas volume on computerized tomography (CT) or magnetic resonance imaging (MRI), and features of chronic pancreatiits on imaging, with subsequent islet isolation and diabetes outcomes. Methods CT or MRI was reviewed for pancreas volume (Vitrea software), and presence or absence of calcifications, atrophy, and dilated pancreatic duct in 97 patients undergoing TPIAT. Relationship between these features and: (1) islet mass isolated and (2) diabetes status at 1 year post-TPAIT were evaluated. Results Pancreas volume correlated with islet mass measured as total islet equivalents (r=0.50, p<0.0001). Mean islet equivalents was reduced by more than half if any one of calcifications, atrophy, or ductal dilatation were observed. Pancreatic calcifications increased the odds of insulin dependence 4.0 fold (1.1, 15). Collectively, the pancreas volume and 3 imaging features strongly associated with 1 year insulin use (p=0.07), islet graft failure (p=0.003), Hemoglobin A1c (p=0.0004), fasting glucose (p=0.027), and fasting C-peptide level (p=0.008). Conclusions Measures of pancreatic parenchymal destruction on imaging, including smaller pancreas volume and calcifications associate strongly with impaired islet mass and 1 year diabetes outcomes. PMID:26745861

  4. High Resolution Reconstruction of the Ionosphere for SAR Applications

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; Gerzen, Tatjana; Hoque, Mainul

    2014-05-01

    Caused by ionosphere's strong impact on radio signal propagation, high resolution and highly accurate reconstructions of the ionosphere's electron density distribution are demanded for a large number of applications, e.g. to contribute to the mitigation of ionospheric effects on Synthetic Aperture Radar (SAR) measurements. As a new generation of remote sensing satellites the TanDEM-L radar mission is planned to improve the understanding and modelling ability of global environmental processes and ecosystem change. TanDEM-L will operate in L-band with a wavelength of approximately 24 cm enabling a stronger penetration capability compared to X-band (3 cm) or C-band (5 cm). But accompanied by the lower frequency of the TanDEM-L signals the influence of the ionosphere will increase. In particular small scale irregularities of the ionosphere might lead to electron density variations within the synthetic aperture length of the TanDEM-L satellite and in turn might result into blurring and azimuth pixel shifts. Hence the quality of the radar image worsens if the ionospheric effects are not mitigated. The Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) aims in the preparation of the HGF centres and the science community for the utilisation and integration of the TanDEM-L products into the study of the Earth's system. One significant point thereby is to cope with the mentioned ionospheric effects. Therefore different strategies towards achieving this objective are pursued: the mitigation of the ionospheric effects based on the radar data itself, the mitigation based on external information like global Total Electron Content (TEC) maps or reconstructions of the ionosphere and the combination of external information and radar data. In this presentation we describe the geostatistical approach chosen to analyse the behaviour of the ionosphere and to provide a high resolution 3D electron density reconstruction. As first step the horizontal structure of

  5. Ionospheric storms at geophysically-equivalent sites - Part 1: Storm-time patterns for sub-auroral ionospheres

    NASA Astrophysics Data System (ADS)

    Mendillo, M.; Narvaez, C.

    2009-04-01

    The systematic study of ionospheric storms has been conducted primarily with groundbased data from the Northern Hemisphere. Significant progress has been made in defining typical morphology patterns at all latitudes; mechanisms have been identified and tested via modeling. At higher mid-latitudes (sites that are typically sub-auroral during non-storm conditions), the processes that change significantly during storms can be of comparable magnitudes, but with different time constants. These include ionospheric plasma dynamics from the penetration of magnetospheric electric fields, enhancements to thermospheric winds due to auroral and Joule heating inputs, disturbance dynamo electrodynamics driven by such winds, and thermospheric composition changes due to the changed circulation patterns. The ~12° tilt of the geomagnetic field axis causes significant longitude effects in all of these processes in the Northern Hemisphere. A complementary series of longitude effects would be expected to occur in the Southern Hemisphere. In this paper we begin a series of studies to investigate the longitudinal-hemispheric similarities and differences in the response of the ionosphere's peak electron density to geomagnetic storms. The ionosonde stations at Wallops Island (VA) and Hobart (Tasmania) have comparable geographic and geomagnetic latitudes for sub-auroral locations, are situated at longitudes close to that of the dipole tilt, and thus serve as our candidate station-pair choice for studies of ionospheric storms at geophysically-comparable locations. They have an excellent record of observations of the ionospheric penetration frequency (foF2) spanning several solar cycles, and thus are suitable for long-term studies. During solar cycle #20 (1964-1976), 206 geomagnetic storms occurred that had Ap≥30 or Kp≥5 for at least one day of the storm. Our analysis of average storm-time perturbations (percent deviations from the monthly means) showed a remarkable agreement at both

  6. The coupling between the ionosphere and the protonosphere and its implications on the long term variations of ionospheric electron content

    NASA Technical Reports Server (NTRS)

    Waldman, H.

    1971-01-01

    The long-term variations in the daytime exchange flux are estimated with the use of model hydrogen concentrations based on the inverse relationship between the abundance of neutral hydrogen and the neutral temperature in the thermosphere. The results are found to be compatible with the observed long-term behavior of the ionospheric electron content at a midlatitude location, as revealed by Faraday observations using geostationary satellites. The basic processes occurring in the ionosphere are reviewed, with emphasis on the concepts of limiting velocity and limiting flux. An approach to the problem of numerical simulation of the ionosphere is also presented and discussed.

  7. Ionospheric manifestations of earthquakes and tsunamis in a dynamic atmosphere

    NASA Astrophysics Data System (ADS)

    Godin, Oleg A.; Zabotin, Nikolay A.; Zabotina, Liudmila

    2015-04-01

    Observations of the ionosphere provide a new, promising modality for characterizing large-scale physical processes that occur on land and in the ocean. There is a large and rapidly growing body of evidence that a number of natural hazards, including large earthquakes, strong tsunamis, and powerful tornadoes, have pronounced ionospheric manifestations, which are reliably detected by ground-based and satellite-borne instruments. As the focus shifts from detecting the ionospheric features associated with the natural hazards to characterizing the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it becomes imperative to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard. The relation between perturbations at the ground level and their ionospheric manifestations is strongly affected by parameters of the intervening atmosphere. In this paper, we employ the ray theory to model propagation of acoustic-gravity waves in three-dimensionally inhomogeneous atmosphere. Huygens' wavefront-tracing and Hamiltonian ray-tracing algorithms are used to simulate propagation of body waves from an earthquake hypocenter through the earth's crust and ocean to the upper atmosphere. We quantify the influence of temperature stratification and winds, including their seasonal variability, and air viscosity and thermal conductivity on the geometry and amplitude of ionospheric disturbances that are generated by seismic surface waves and tsunamis. Modeling results are verified by comparing observations of the velocity fluctuations at altitudes of 150-160 km by a coastal Dynasonde HF radar system with theoretical predictions of ionospheric manifestations of background infragravity waves in the ocean. Dynasonde radar systems are shown to be a promising means for monitoring acoustic-gravity wave activity and observing ionospheric perturbations due to earthquakes and tsunamis. We will discuss

  8. SAMI3_ICON: Model of the Ionosphere/Plasmasphere System

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Maute, A.; Crowley, G.

    2017-10-01

    The NRL ionosphere/plasmasphere model SAMI3 has been modified to support the NASA ICON mission. Specifically, SAMI3_ICON has been modified to import the thermospheric composition, temperature, and winds from TIEGCM-ICON and the high-latitude potential from AMIE data. The codes will be run on a daily basis during the ICON mission to provide ionosphere and thermosphere properties to the science community. SAMI3_ICON will provide ionospheric and plasmaspheric parameters such as the electron and ion densities, temperatures, and velocities, as well as the total electron content (TEC), peak ionospheric electron density (NmF2) and height of the F layer at NmF2 (hmF2).

  9. Use of Noncontrast Computed Tomography and Computed Tomographic Perfusion in Predicting Intracerebral Hemorrhage After Intravenous Alteplase Therapy.

    PubMed

    Batchelor, Connor; Pordeli, Pooneh; d'Esterre, Christopher D; Najm, Mohamed; Al-Ajlan, Fahad S; Boesen, Mari E; McDougall, Connor; Hur, Lisa; Fainardi, Enrico; Shankar, Jai Jai Shiva; Rubiera, Marta; Khaw, Alexander V; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Goyal, Mayank; Lee, Ting-Yim; Aviv, Richard I; Menon, Bijoy K

    2017-06-01

    Intracerebral hemorrhage is a feared complication of intravenous alteplase therapy in patients with acute ischemic stroke. We explore the use of multimodal computed tomography in predicting this complication. All patients were administered intravenous alteplase with/without intra-arterial therapy. An age- and sex-matched case-control design with classic and conditional logistic regression techniques was chosen for analyses. Outcome was parenchymal hemorrhage on 24- to 48-hour imaging. Exposure variables were imaging (noncontrast computed tomography hypoattenuation degree, relative volume of very low cerebral blood volume, relative volume of cerebral blood flow ≤7 mL/min·per 100 g, relative volume of T max ≥16 s with all volumes standardized to z axis coverage, mean permeability surface area product values within T max ≥8 s volume, and mean permeability surface area product values within ipsilesional hemisphere) and clinical variables (NIHSS [National Institutes of Health Stroke Scale], onset to imaging time, baseline systolic blood pressure, blood glucose, serum creatinine, treatment type, and reperfusion status). One-hundred eighteen subjects (22 patients with parenchymal hemorrhage versus 96 without, median baseline NIHSS score of 15) were included in the final analysis. In multivariable regression, noncontrast computed tomography hypoattenuation grade ( P <0.006) and computerized tomography perfusion white matter relative volume of very low cerebral blood volume ( P =0.04) were the only significant variables associated with parenchymal hemorrhage on follow-up imaging (area under the curve, 0.73; 95% confidence interval, 0.63-0.83). Interrater reliability for noncontrast computed tomography hypoattenuation grade was moderate (κ=0.6). Baseline hypoattenuation on noncontrast computed tomography and very low cerebral blood volume on computerized tomography perfusion are associated with development of parenchymal hemorrhage in patients with acute ischemic

  10. Can the ionosphere regulate magnetospheric convection?

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Kennel, C. F.

    1972-01-01

    Following a southward shift of the interplanetary magnetic field, which implies enhanced reconnection at the nose of the magnetosphere, the magnetopause shrinks from its Chapman-Ferraro equilibrium position. If the convective return of magnetic flux to the magnetopause equalled the reconnection rate, the magnetopause would not shrink. Consequently, there is a delay in the development of magnetospheric convection following the onset of reconnection, which is ascribed to line tying by the polar cusp ionosphere. A simple model relates the dayside magnetopause displacement to the currents feeding the polar cap ionosphere, from which the ionospheric electric field, and consequently, the flux return rate, may be estimated as a function of magnetopause displacement. Flux conservation arguments then permit an estimate of the time scale on which convection increases, which is not inconsistent with that of the substorm growth phase.

  11. VLF phase and amplitude: daytime ionospheric parameters

    NASA Astrophysics Data System (ADS)

    McRae, W. M.; Thomson, N. R.

    2000-05-01

    Experimental observations of the daytime variations of VLF phase and amplitude over a variety of long subionospheric paths have been found to be satisfactorily modelled with a D-region ionosphere, described by the two traditional parameters, H' and /β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively). This VLF radio modelling uses the NOSC Earth-ionosphere waveguide programs but with an experimentally deduced dependence of these two ionospheric parameters on solar zenith angle. Phase and amplitude measurements from several VLF Omega and MSK stations were compared with calculations from the programs LWPC and Modefinder using values of H' and /β determined previously from amplitude only data. This led to refined curves for the diurnal variations of H' and /β which, when used in these programs, give not only calculated amplitudes but also, for the first time, calculated phase variations that agree well with a series of observations at Dunedin, New Zealand, of VLF signals from Omega Japan, Omega Hawaii, NPM (Hawaii) and NLK (Seattle) covering a frequency range of 10-25 kHz.

  12. Low-latitude Ionospheric Heating during Solar Flares

    NASA Astrophysics Data System (ADS)

    Klenzing, J.; Chamberlin, P. C.; Qian, L.; Haaser, R. A.; Burrell, A. G.; Earle, G. D.; Heelis, R. A.; Simoes, F. A.

    2013-12-01

    The advent of the Solar Dynamics Observatory (SDO) represents a leap forward in our capability to measure rapidly changing transient events on the sun. SDO measurements are paired with the comprehensive low latitude measurements of the ionosphere and thermosphere provided by the Communication/Navigation Outage Forecast System (C/NOFS) satellite and state-of-the-art general circulation models to discuss the coupling between the terrestrial upper atmosphere and solar radiation. Here we discuss ionospheric heating as detected by the Coupled Ion-Neutral Dynamics Investigation (CINDI) instrument suite on the C/NOFS satellite during solar flares. Also discusses is the necessity of decoupling the heating due to increased EUV irradiance and that due to geomagnetic storms, which sometimes occur with flares. Increases in both the ion temperature and ion density in the subsolar topside ionosphere are detected within 77 minutes of the 23 Jan 2012 M-class flare, and the observed results are compared with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) using the Flare Irradiance Spectral Model (FISM) as an input.

  13. Choice of optimum heights for registration of ionospheric response onto earthquakes

    NASA Astrophysics Data System (ADS)

    Krasnov, Valerii; Gotur, Ivan; Kuleshov, Yurii; Cherny, Sergei

    2017-10-01

    To investigate the dependence of ionospheric disturbances on height we used model calculations, and the data of seismic and ionospheric observations during the Tohoku-Oki earthquake. High-altitude dependences of "portraits" of ionospheric disturbances are calculated for a case of influence of a seismic P-wave onto the ionosphere. We compared the "portraits" of ionospheric disturbances with the "portraits" of the seismic recording. The correlation coefficient of the recordings for the height of 100 km was about 0.81, for 130 km - 0.85, for 160 km - 0.77, for 180 km - 0.76, for 200 km - 0.7, for 230 km -0.54 and for 250 km - 0.41. At the same time the maximum of F2-layer was at the height about 250 km. Thus, the height of a maximum of F2-layer was not optimum for registration of ionospheric disturbances due to the earthquake. It was preferable to carry out measurements of the ionospheric disturbances at the heights below 200 km. The profile of amplitude of the ionospheric disturbance had no sharply expressed maximum at the height of a maximum of F2-layer. Therefore it is problematic to use the approach of the thin layer for interpretation of TEC disturbances.

  14. Wet model of Saturn's ionosphere: Water from the rings

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Waite, J. H.

    1984-01-01

    Current theoretical models of Saturn's ionosphere are difficult to reconcile with the ionospheric electron density profiles obtained from the Pioneer and Voyager radio occultation observations and the large diurnal variation of maximum ionospheric electron density deduced from studies of Saturn lightning discharges. A model of Saturn's ionosphere is proposed in which water plays a major role as a minor constituent present by virtue of downward diffusion from an external source. This model of the Saturn ionosphere is a classical 'F2' type layer resulting from the photodissociative production of H(+) from H2 and rapid chemical loss due to a series of charge exchange reactions with water. A planet-wide influx of about 4x10 to the 7th power molecules/sec/sq cm of water from the rings is consistent with the observed ionospheric electron densities and estimates of influx due to micrometeoride bombardment of the rings. An enhanced influx of water occurs at latitudes (-38 deg, +44 deg) magnetically connected to the inner edge of Saturn's B ring which results from an electromagnetic erosion process contributing substantially to the (local) upper atmosphere water content. Present day influx at these latitudes is possibly as large as 2x10 to the 9th power molecules/sec/sq cm.

  15. A study of ionospheric grid modification technique for BDS/GPS receiver

    NASA Astrophysics Data System (ADS)

    Liu, Xuelin; Li, Meina; Zhang, Lei

    2017-07-01

    For the single-frequency GPS receiver, ionospheric delay is an important factor affecting the positioning performance. There are many kinds of ionospheric correction methods, common models are Bent model, IRI model, Klobuchar model, Ne Quick model and so on. The US Global Positioning System (GPS) uses the Klobuchar coefficients transmitted in the satellite signal to correct the ionospheric delay error for a single frequency GPS receiver, but this model can only reduce the ionospheric error of about 50% in the mid-latitudes. In the Beidou system, the accuracy of the correction delay is higher. Therefore, this paper proposes a method that using BD grid information to correct GPS ionospheric delay to improve the ionospheric delay for the BDS/GPS compatible positioning receiver. In this paper, the principle of ionospheric grid algorithm is introduced in detail, and the positioning accuracy of GPS system and BDS/GPS compatible positioning system is compared and analyzed by the real measured data. The results show that the method can effectively improve the positioning accuracy of the receiver in a more concise way.

  16. A real-time ionospheric model based on GNSS Precise Point Positioning

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Hongping; Ge, Maorong; Huang, Guanwen

    2013-09-01

    This paper proposes a method of real-time monitoring and modeling the ionospheric Total Electron Content (TEC) by Precise Point Positioning (PPP). Firstly, the ionospheric TEC and receiver’s Differential Code Biases (DCB) are estimated with the undifferenced raw observation in real-time, then the ionospheric TEC model is established based on the Single Layer Model (SLM) assumption and the recovered ionospheric TEC. In this study, phase observations with high precision are directly used instead of phase smoothed code observations. In addition, the DCB estimation is separated from the establishment of the ionospheric model which will limit the impacts of the SLM assumption impacts. The ionospheric model is established at every epoch for real time application. The method is validated with three different GNSS networks on a local, regional, and global basis. The results show that the method is feasible and effective, the real-time ionosphere and DCB results are very consistent with the IGS final products, with a bias of 1-2 TECU and 0.4 ns respectively.

  17. Calculating the number of shock waves, expulsion time, and optimum stone parameters based on noncontrast computerized tomography characteristics.

    PubMed

    Foda, Khaled; Abdeldaeim, Hussein; Youssif, Mohamed; Assem, Akram

    2013-11-01

    To define the parameters that accompanied a successful extracorporeal shock wave lithotripsy (ESWL), namely the number of shock waves (SWs), expulsion time (ET), mean stone density (MSD), and the skin-to-stone distance (SSD). A total of 368 patients diagnosed with renal calculi using noncontrast computerized tomography had their MSD, diameter, and SSD recorded. All patients were treated using a Siemens lithotripter. ESWL success meant a stone-free status or presence of residual fragments <3 mm, ET was the time in days for the successful clearance of stone fragments. Correlation was performed between the stone characteristics, number of SWs, and ET. Two multiple regression analysis models defined the number of SWs and ET. Two receiver operating characteristic curves plotted the best MSD cutoff value and optimum SSD for a successful ESWL. Three hundred one patients were ESWL successes. A significant positive correlation was elicited between number of SWs and stone diameter, density and SSD; between ET and stone diameter and density. Multiple regressions concluded 2 equations: Number of SWs = 265.108 + 5.103 x1 + 22.39 x2 + 10.931 x3 ET (days) = -10.85 + 0.031 x1 + 2.11 x2 x1 = stone density (Hounsfield unit [HUs]), x2 = stone diameter (mm), and x3 = SSD (mm). Receiver operating characteristic curves demonstrated a cutoff value of ≤ 934 HUs with 94.4% sensitivity and 66.7% specificity and P = .0211. The SSD curve showed that a distance ≤ 99 mm was 85.7% sensitive, 87.5% specific, P <.0001. Stone disintegration is not recommended if MSD is >934 HUs and SSD >99 mm. The required number of SWs and the expected ET can be anticipated. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Response of ionospheric electric fields at mid-low latitudes during sudden commencements

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kasaba, Y.; Shinbori, A.; Nishimura, Y.; Kikuchi, T.; Ebihara, Y.; Nagatsuma, T.

    2015-06-01

    Using in situ observations from the Republic of China Satellite-1 spacecraft, we investigated the time response and local time dependence of the ionospheric electric field at mid-low latitudes associated with geomagnetic sudden commencements (SCs) that occurred from 1999 to 2004. We found that the ionospheric electric field variation associated with SCs instantaneously responds to the preliminary impulse (PI) signature on the ground regardless of spacecraft local time. Our statistical analysis also supports the global instant transmission of electric field from the polar region. In contrast, the peak time detected in the ionospheric electric field is earlier than that of the equatorial geomagnetic field (~20 s before in the PI phase). Based on the ground-ionosphere waveguide model, this time lag can be attributed to the latitudinal difference of ionospheric conductivity. However, the local time distribution of the initial excursion of ionospheric electric field shows that dusk-to-dawn ionospheric electric fields develop during the PI phase. Moreover, the westward electric field in the ionosphere, which produces the preliminary reverse impulse of the geomagnetic field on the dayside feature, appears at 18-22 h LT where the ionospheric conductivity beyond the duskside terminator (18 h LT) is lower than on the dayside. The result of a magnetohydrodynamic simulation for an ideal SC shows that the electric potential distribution is asymmetric with respect to the noon-midnight meridian. This produces the local time distribution of ionospheric electric fields similar to the observed result, which can be explained by the divergence of the Hall current under nonuniform ionospheric conductivity.

  19. Overview of our current understanding of the Titan ionosphere

    NASA Astrophysics Data System (ADS)

    Cravens, Thomas

    An ionosphere was first detected on Titan in 1980 by the Voyager 1 radio occultation experi-ment and the first in situ measurements were made in 2004 by the Cassini spacecraft, although many theoretical studies were carried out prior to the Cassini mission. Earth and Titan are similar in that molecular nitrogen is the major neutral atmospheric species but these bodies differ in that the next most abundant species at Earth is molecular oxygen and at Titan is methane. As a consequence, the chemistry in the upper atmosphere and ionosphere is quite different for the two bodies. Titan's upper atmosphere and ionosphere strongly interact with Saturn's magnetospheric plasma. Magnetic fields were observed in Titan's ionosphere by the Cassini magnetometer and are induced as a consequence of this interaction, which affects the flow and distribution of plasma. Energetic electrons and ions from Saturn's magnetosphere precipitate into the upper atmosphere, acting as both heat and ionization sources. However, on the dayside, absorption of solar extreme ultraviolet radiation is thought to be the dominant source of ionization and energy. The electron temperatures measured in the ionosphere by the Cassini Langmuir probe (RPWS/LP) are about 1000 K, greatly exceeding the neutral temper-ature (about 150 K). The ion and neutral mass spectrometer (INMS) onboard Cassini detected a large number of ion species with mass numbers up to 100 Daltons and the energetic plasma spectrometer (CAPS) detected both negative and positive ion species at even higher mass num-bers. Primary ionization processes create N2+, N+, CH4+, CH3+, and other ion species, but a complex ion-neutral chemistry, involving methane and other hydrocarbon and nitriles species (acetylene, ethylene, ethane, hydrogen cyanide, benzene,. . . .), convert these initial species into numerous other species including CH5+, C2H5+, HCNH+, C3H5+, CH2NH2+, C6H7+. As in most ionospheres, chemistry dominates the ionospheric structure at

  20. Tsunamis warning from space :Ionosphere seismology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larmat, Carene

    2012-09-04

    Ionosphere is the layer of the atmosphere from about 85 to 600km containing electrons and electrically charged atoms that are produced by solar radiation. Perturbations - layering affected by day and night, X-rays and high-energy protons from the solar flares, geomagnetic storms, lightning, drivers-from-below. Strategic for radio-wave transmission. This project discusses the inversion of ionosphere signals, tsunami wave amplitude and coupling parameters, which improves tsunami warning systems.

  1. A study of root canal morphology of human primary incisors and molars using cone beam computerized tomography: an in vitro study.

    PubMed

    Gaurav, Vivek; Srivastava, Nikhil; Rana, Vivek; Adlakha, Vivek Kumar

    2013-01-01

    Variations in morphology of root canals in primary teeth usually leads to complications during and after endodontic therapy. To improve the success in endodontics, a thorough knowledge of the root canal morphology is essential. The aim of this study was to assess the variation in number and morphology of the root canals of primary incisors and molars and to study the applicability of cone beam computerized tomography (CBCT) in assessing the same. A total of 60 primary molars and incisors with full root length were collected and various parameters such as the number of roots, number of canals, diameter of root canal at cementoenamel junction and middle-third, length and angulations of roots of primary molars and incisors were studied using CBCT. The observations were put to descriptive statistics to find out the frequency, mean, standard deviation and range for all four subgroups. Further, unpaired t-test was used to compare these parameters between subgroups and analysis of variance test was implemented to evaluate the parameters within the subgroups. The CBCT showed the presence of bifurcation of root canal at middle third in 13% of mandibular incisors while 20% of mandibular molars had two canals in distal root. The diameter of distobuccal root canal of maxillary molars and mesiolingual canal of mandibular molars was found to be minimum. CBCT is a relatively new and effective technology, which provides an auxiliary imaging modality to supplement conventional radiography for assessing the variation in root canal morphology of primary teeth.

  2. 11 CFR 9033.12 - Production of computerized information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... magnetic media, such as magnetic tapes or magnetic diskettes, containing the computerized information at.... The computerized magnetic media shall be prepared and delivered at the committee's expense and shall... Commission's Computerized Magnetic Media Requirements for title 26 Candidates/Committees Receiving Federal...

  3. Hybrid simulations of Venus' ionospheric magnetization states

    NASA Astrophysics Data System (ADS)

    Wiehle, Stefan; Motschmann, Uwe; Fränz, Markus

    2013-04-01

    The solar wind interaction with the plasma environment of Venus is studied with focus on ionospheric magnetization states using a 3D hybrid simulation code. The plasma environment of Venus was investigated mainly by Pioneer Venus Orbiter (PVO) and the still ongoing Venus Express (VEX) mission. Unlike many other planets, Venus' ionosphere is not shielded by a strong magnetosphere. Hence, data measured by spacecraft like PVO and VEX close to the planet are highly sensitive to solar wind and IMF upstream conditions, which cannot be measured while the spacecraft is inside the magnetosheath region about one hour before and after the closest approach. However, solar wind and IMF are known to change within minutes; ionospheric magnetization states, found by PVO and VEX, are highly dependent on the solar wind upstream pressure and also the magnetic field direction may change rapidly in case of a magnetic sector boundary crossing. When these solar wind induced transition effects occur, the causal change in the solar wind cannot be determined from ionospheric in-situ data. Additionally, with an orbital period of 24 hours, measuring transition timescales of solar wind triggered events is not possible. Our self-consistent simulations aim to provide a global picture of the solar wind interaction with Venus focusing on the effects of upstream fluctuations to the magnetic field in the vicinity of the planet. We use the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) 3D hybrid simulation code to model the entire Venus plasma environment. The simulation grid is refined within the ionosphere in order to resolve strong small-scale gradients of the magnetic field and ion density, a necessity to describe the magnetic field depletion inside the Venus' ionosphere. In contrast to other simulation studies, we apply no boundary conditions for the magnetic field at the planetary surface. Furthermore, we include varying upstream conditions like solar wind velocity and density as well as IMF

  4. Saturn's ionosphere - Inferred electron densities

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1984-01-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densities measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings. Previously announced in STAR as N84-17102

  5. Calculation of conductivities and currents in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Carpenter, L. A.

    1975-01-01

    Formulas and procedures to calculate ionospheric conductivities are summarized. Ionospheric currents are calculated using a semidiurnal E-region neutral wind model and electric fields from measurements at Millstone Hill. The results agree well with ground based magnetogram records for magnetic quiet days.

  6. In Vivo Evaluation of Chemical Composition of Eight Types of Urinary Calculi Using Spiral Computerized Tomography in a Chinese Population.

    PubMed

    Huo, Jun; Liu, Zhong-Yuan; Wang, Ke-Feng; Xu, Zhen-Qun

    2015-09-01

    This study was conducted to evaluate the chemical composition of eight types of urinary calculi using spiral computerized tomography (CT) in vivo. From October 2011 to February 2013, upper urinary tract calculi were obtained from 122 patients in the department of urinary surgery of the First Affiliated Hospital of Soochow University. All patients were scanned with a 64-detector row helical CT scanner using 6.50 mm collimation before ureterorenoscopy. Data from the preoperative spiral CT scans and postoperative chemical composition of urinary calculi were collected. The chemical composition analysis indicates that there were five types of pure calculi and three types of mixed calculi, including 39 calcium oxalate calculi, 12 calcium phosphate calculi, 10 calcium carbonate calculi, 8 magnesium ammonium phosphate calculi, 6 carbonated apatite, 21 uric acid/ammonium urate calculi, 10 uric acid/calcium oxalate calculi, and 16 calcium oxalate/calcium phosphate calculi. There were significant differences in the mean CT values among the five types of pure calculi (P < 0.001). Furthermore, we also observed significant differences in the mean CT values among three types of mixed calculi (P < 0.001). Significant differences in the mean CT values were also found among eight types of urinary calculi (P < 0.001). However, no statistically significant difference was observed between the mean CT values of magnesium ammonium phosphate calculi and uric acid/calcium oxalate calculi (P = 0.262). Our findings suggest that spiral CT could be a promising tool for determining the chemical composition of upper urinary tract calculi. © 2014 Wiley Periodicals, Inc.

  7. A computerized tomography system for transcranial ultrasound imaging.

    PubMed

    Tang, Sai Chun; Clement, Gregory T

    Hardware for tomographic imaging presents both challenge and opportunity for simplification when compared with traditional pulse-echo imaging systems. Specifically, point diffraction tomography does not require simultaneous powering of elements, in theory allowing just a single transmit channel and a single receive channel to be coupled with a switching or multiplexing network. In our ongoing work on transcranial imaging, we have developed a 512-channel system designed to transmit and/or receive a high voltage signal from/to arbitrary elements of an imaging array. The overall design follows a hierarchy of modules including a software interface, microcontroller, pulse generator, pulse amplifier, high-voltage power converter, switching mother board, switching daughter board, receiver amplifier, analog-to-digital converter, peak detector, memory, and USB communication. Two pulse amplifiers are included, each capable of producing up to 400Vpp via power MOSFETS. Switching is based around mechanical relays that allow passage of 200V, while still achieving switching times of under 2ms, with an operating frequency ranging from below 100kHz to 10MHz. The system is demonstrated through ex vivo human skulls using 1MHz transducers. The overall system design is applicable to planned human studies in transcranial image acquisition, and may have additional tomographic applications for other materials necessitating a high signal output.

  8. Conical-Domain Model for Estimating GPS Ionospheric Delays

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony

    2009-01-01

    The conical-domain model is a computational model, now undergoing development, for estimating ionospheric delays of Global Positioning System (GPS) signals. Relative to the standard ionospheric delay model described below, the conical-domain model offers improved accuracy. In the absence of selective availability, the ionosphere is the largest source of error for single-frequency users of GPS. Because ionospheric signal delays contribute to errors in GPS position and time measurements, satellite-based augmentation systems (SBASs) have been designed to estimate these delays and broadcast corrections. Several national and international SBASs are currently in various stages of development to enhance the integrity and accuracy of GPS measurements for airline navigation. In the Wide Area Augmentation System (WAAS) of the United States, slant ionospheric delay errors and confidence bounds are derived from estimates of vertical ionospheric delay modeled on a grid at regularly spaced intervals of latitude and longitude. The estimate of vertical delay at each ionospheric grid point (IGP) is calculated from a planar fit of neighboring slant delay measurements, projected to vertical using a standard, thin-shell model of the ionosphere. Interpolation on the WAAS grid enables estimation of the vertical delay at the ionospheric pierce point (IPP) corresponding to any arbitrary measurement of a user. (The IPP of a given user s measurement is the point where the GPS signal ray path intersects a reference ionospheric height.) The product of the interpolated value and the user s thin-shell obliquity factor provides an estimate of the user s ionospheric slant delay. Two types of error that restrict the accuracy of the thin-shell model are absent in the conical domain model: (1) error due to the implicit assumption that the electron density is independent of the azimuthal angle at the IPP and (2) error arising from the slant-to-vertical conversion. At low latitudes or at mid

  9. The Ionosphere's Pocket Litter: Exploiting Crowd-Sourced Observations

    NASA Astrophysics Data System (ADS)

    Miller, E. S.; Frissell, N. A.; Kaeppler, S. R.; Demajistre, R.; Knuth, A. A.

    2015-12-01

    One of the biggest challenges faced in developing and testing our understanding of the ionosphere is acquiring data that characterizes the latitudinal and longitudinal variability of the ionosphere. While there are extensive networks of ground sites that sample the vertical distribution, we have rather poor coverage over the oceans and in parts of the southern hemisphere. Our ability to validate the ionospheric models is limited by the lack of point measurements and those measurements that essentially constitute characterization of horizontal gradients. In this talk, we discuss and demonstrate the use of various types of crowd-sourced information that enables us to extend our coverage over these regions. We will discuss new sources of these data, concepts for new experiments and the use of these data in assimilative models. We note that there are new, low cost options for obtaining data that broaden the participation beyond the aeronomy/ionospheric community.

  10. ULF Waves in the Ionospheric Alfven Resonator: Modeling of MICA Observations

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Tulegenov, B.

    2017-12-01

    We present results from a numerical study of physical processes responsible for the generation of small-scale, intense electromagnetic structures in the ultra-low-frequency range frequently observed in the close vicinity of bright discrete auroral arcs. In particular, our research is focused on the role of the ionosphere in generating these structures. A significant body of observations demonstrate that small-scale electromagnetic waves with frequencies below 1 Hz are detected at high latitudes where the large-scale, downward magnetic field-aligned current (FAC) interact with the ionosphere. Some theoretical studies suggest that these waves can be generated by the ionospheric feedback instability (IFI) inside the ionospheric Alfven resonator (IAR). The IAR is the region in the low-altitude magnetosphere bounded by the strong gradient in the Alfven speed at high altitude and the conducting bottom of the ionosphere (ionospheric E-region) at low altitude. To study ULF waves in this region we use a numerical model developed from reduced two fluid MHD equations describing shear Alfven waves in the ionosphere and magnetosphere of the earth. The active ionospheric feedback on structure and amplitude of magnetic FACs that interact with the ionosphere is implemented through the ionospheric boundary conditions that link the parallel current density with the plasma density and the perpendicular electric field in the ionosphere. Our numerical results are compared with the in situ measurements performed by the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched on February 19, 2012 from Poker Flat Research Range in Alaska to measure fields and particles during a passage through a discreet auroral arc. Parameters of the simulations are chosen to match actual MICA parameters, allowing the comparison in the most precise and rigorous way. Waves generated in the numerical model have frequencies between 0.30 and 0.45 Hz, while MICA measured

  11. Characteristics of ionospheric storms in East Asia

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Guojun; Shi, Jiankui

    The ionosphere experiences intense response during the geomagnetic storm and it varies with latitude and longitude. The DPS-4 digisonde measurements and GPS-TEC data of ionospheric stations located at different latitudes in the longitudinal sector of 90-130E during 2002 to 2012 were analyzed to investigate the ionospheric effects in the different latitude of East Asia during geomagnetic storm. About 70 geomagnetic storms are selected according to the Dst index and observed data and they are in different seasons and different solar activity levels. A few quiet days’ averages of data before geomagnetic storm were used as the undisturbed level. Results show that for the middle and high latitude, the short-lived positive disturbance associated with the initial phase of the every storm was observed in each season and then the disturbances were negative till the termination of storm. At the low latitude, storm-time disturbances of foF2 have obvious diurnal, seasonal and solar cycle characteristics. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime except for the summer in low solar activity period. The intensity of response of foF2 is stronger at nighttime than that at daytime. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only. It’s notable that geomagnetic activities occurred at local time nighttime can cause stronger and longer responses of foF2 at the low latitude. All in all, the obvious negative phase ionospheric storms often occurred at the low latitude. Moreover a notable phenomenon was observed for the low latitude, there are the intensive oscillations of foF2

  12. [Computerized medical record: deontology and legislation].

    PubMed

    Allaert, F A; Dusserre, L

    1996-02-01

    Computerization of medical records is making headway for patients' follow-up, scientific research, and health expenses control, but it must not alter the guarantees provided to the patients by the medical code of ethics and the law of January 6, 1978. This law, modified on July 1, 1994, requires to register all computerized records of personal data and establishes rights to protect privacy against computer misdemeanor. All medical practitioners using computerized medical records must be aware that the infringement of this law may provoke suing in professional, civil or criminal court.

  13. Simulation and analysis of chemical release in the ionosphere

    NASA Astrophysics Data System (ADS)

    Gao, Jing-Fan; Guo, Li-Xin; Xu, Zheng-Wen; Zhao, Hai-Sheng; Feng, Jie

    2018-05-01

    Ionospheric inhomogeneous plasma produced by single point chemical release has simple space-time structure, and cannot impact radio wave frequencies higher than Very High Frequency (VHF) band. In order to produce more complicated ionospheric plasma perturbation structure and trigger instabilities phenomena, multiple-point chemical release scheme is presented in this paper. The effects of chemical release on low latitude ionospheric plasma are estimated by linear instability growth rate theory that high growth rate represents high irregularities, ionospheric scintillation occurrence probability and high scintillation intension in scintillation duration. The amplitude scintillations and the phase scintillations of 150 MHz, 400 MHz, and 1000 MHz are calculated based on the theory of multiple phase screen (MPS), when they propagate through the disturbed area.

  14. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<−100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3–6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  15. Ionospheric redistribution during geomagnetic storms.

    PubMed

    Immel, T J; Mannucci, A J

    2013-12-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active ( D s t <-100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3-6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow.

  16. Ionospheric reflection of the magnetic activity described by the index η

    NASA Astrophysics Data System (ADS)

    Dziak-Jankowska, Beata; Stanisławska, Iwona; Ernst, Tomasz; Tomasik, Łukasz

    2011-09-01

    Differences in the external part of the vertical geomagnetic component point to the existence of local inhomogeneities in the magnetosphere or the ionosphere. Usually used magnetic indices are not sufficient to express the state of ionosphere, the common used global Kp index derived in the three-hour interval does not indicate much more rapidly changes appearing in ionosphere. Magnetic index η reflects ionospheric disturbances when other indices show very quiet conditions. Data of ionospheric characteristics (foE, foEs, h'E, h'F2) during 28-day long quiet day conditions (Kp = 0-2) in 2004 were analyzed. The correlations between strong local disturbances in ionosphere during very quiet days and high values of magnetic index η were found. The most sensitive to magnetic influence - ionospheric E layer data (foE characteristic) - reaches median deviations up to (+0.8 MHz and -0.8 MHz) during very low magnetic activity (Kp = 0-1). The high peaks (2-2.7) of the magnetic index η correlate in time with large local median deviations of foE. Such local deviations can suggest local inhomogeneities (vertical drifts) in the ionosphere. The correlation in space is not trivial. The strong peak of η is situated between the positive and negative deviations of foE. Additional observation is connected with correlation in time of the high η value with the negative median deviations of h'F2 (in some cases up to -90 km). The analysis was based on one-minute data recorded at each of 20 European Magnetic Observatories working in the INTERMAGNET network and from 19 ionosondes for 2004. Ionospheric data are sparse in time and in space in opposite to the magnetic data. The map of the magnetic indices can suggest the behavior of ionospheric characteristics in the areas where we have no data.

  17. Layer structure of the Venus daytime ionosphere from Venera-15,-16 radio occultation

    NASA Astrophysics Data System (ADS)

    Gavrik, Anatoly

    Up to now more than five hundred radio occultation experiments had been carried out by different missions to research physical properties of the Venus ionosphere. The purpose of this report is to show new properties of the Venus daytime ionosphere reanalyzing Venera-15,-16 dual-frequency occultation data. The high coherence and stability of radio signals of Venera- 15,-16 at wave lengths 32 cm and 8 cm, along with the fact, that the refractive amplification at 32 cm in the ionosphere exceeds by factor 6 the refractive amplification at 13 cm used by others researches, have allowed to perform analysis of radiophysical parameters in the Venus ionosphere more accurate. Progress in the radiovision theory and up-to-date digital processing techniques have provided an opportunity to discover unknown layered structure of the Venus daytime ionosphere. We offer the new technique of the data analysis that allows us to separate influence of noise, ionosphere and atmosphere on the radio occultation results. We point out that significant gradient variations in the vertical distribution of the electron density are observed in the region of maximum electron density of the daytime ionosphere at altitudes of 150-175 km. That testifies layered structure of this part of the Venus ionosphere. The results of data analysis reveal the regular existence of the ionospheric layers in the bottom daytime ionosphere at altitudes from 80 up to 115 km. The bottom border of the ionosphere part can vary in the range of 80-100 km, and gradients of the electron density show strong variability. We detect the wave structure in the top atmosphere and in the bottom ionosphere at altitudes from 60 up to 115 km as well. It is difficult to obtain correct electron density in the region, where we have detected the new ionospheric layers. Relative errors of the electron density are greater than 100% at altitudes between 80 and 120 km. The bottom part of the ionosphere is more variable, than overlying area of

  18. Role of the ionosphere for the atmospheric evolution of planets.

    PubMed

    Yamauchi, Masatoshi; Wahlund, Jan-Erik

    2007-10-01

    We have synthesized current understanding, mainly observations, with regard to ion escape mechanisms to space from the ionosphere and exosphere of Titan and Earth-type planets, with the intent to provide an improved input for models of atmospheric evolution on early Earth and Earth-type planets and exoplanets. We focus on the role of the ionosphere and its non-linear response to solar parameters, all of which have been underestimated in current models of ancient atmospheric escape (4 billion years ago). Factors that have been overlooked include the following: (1) Much larger variation of O(+) outflow than H(+) outflow from the terrestrial ionosphere, depending on solar and geomagnetic activities (an important consideration when attempting to determine the oxidized state of the atmosphere of early Earth); (2) magnetization of the ionopause, which keeps ionospheric ions from escaping and controls many other escape processes; (3) extra ionization by, for example, the critical ionization velocity mechanism, which expands the ionosphere to greater altitudes than current models predict; and (4) the large escape of cold ions from the dense, expanded ionosphere of Titan. Here we offer, as a guideline for quantitative simulations, a qualitative diagnosis of increases or decreases of non-thermal escape related to the ionosphere for magnetized and unmagnetized planets in response to changes in solar parameters (i.e., solar EUV/FUV flux, solar wind dynamic pressure, and interplanetary magnetic field).

  19. 39 CFR 501.15 - Computerized Meter Resetting System.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND DISTRIBUTE POSTAGE EVIDENCING SYSTEMS § 501.15 Computerized Meter Resetting System. (a) Description. The Computerized Meter Resetting System (CMRS) permits customers to reset their postage meters at... 39 Postal Service 1 2010-07-01 2010-07-01 false Computerized Meter Resetting System. 501.15...

  20. Resources for Improving Computerized Learning Environments.

    ERIC Educational Resources Information Center

    Yeaman, Andrew R. J.

    1989-01-01

    Presents an annotated review of human factors literature that discusses computerized environments. Topics discussed include the application of office automation practices to educational environments; video display terminal (VDT) workstations; health and safety hazards; planning educational facilities; ergonomics in computerized offices; and…

  1. Utilizing GPS to Determine Ionospheric Delay over the Ocean

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Garrison, James L., Jr.

    1996-01-01

    Several spaceborne altimeters have been built and flown, and others are being developed to provide measurements of ocean and ice sheet topography. Until the launch of TOPEX, altimeters were single frequency systems incapable of removing the effects of ionospheric delay on the radar pulse. With the current state of the art in satellite altimetry, the ionosphere causes the largest single error when using single frequency altimeters. Ionospheric models provide the only recourse short of adding a second frequency to the altimeter. Unfortunately, measurements of the ionosphere are lacking over the oceans or ice sheets where they are most needed. A possible solution to the lack of data density may result from an expanded use of the Global Positioning System (GPS). This paper discusses how the reflection of the GPS signal from the ocean can be used to extend ionospheric measurements by simply adding a GPS receiver and downward-pointing antenna to satellites carrying single frequency altimeters. This paper presents results of a study assessing the feasibility and effectiveness of adding a GPS receiver and downward-pointing antenna to satellites carrying single frequency altimeters.

  2. Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean

    NASA Astrophysics Data System (ADS)

    Hartkorn, Oliver; Saur, Joachim

    2017-11-01

    We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.

  3. Low Latitude Ionospheric Effects on Radiowave Propagation

    DTIC Science & Technology

    1998-06-01

    was used. Active earth-based observation equipment includes coherent and non-coherent scatter radars, and vertical and oblique incidence sounders...ionospheric monitoring during this experiment consisted of an oblique sounder, apparatus to measure time-of-flight of transionospheric signals, and an...is configured to monitor the ionosphere directly overhead in the vertical incidence configuration, or with an obliquely -launched antenna elevation

  4. Evaluation of computed tomography numbers for treatment planning of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mira, J.G.; Fullerton, G.D.; Ezekiel, J.

    1982-09-01

    Computerized tomography numbers (CTN) were evaluated in 32 computerized tomography scans performed on patients with carcinoma of the lung, with the aim of evaluating CTN in normal (lung, blood, muscle, etc) and pathologic tissues (tumor, atelectasis, effusion, post-radiation fibrosis). Our main findings are: 1. Large individual CTN variations are encountered in both normal and pathologic tissues, above and below mean values. Hence, absolute numbers are meaningless. Measurements of any abnormal intrathoracic structure should be compared in relation to normal tissue CTN values in the same scan. 2. Tumor and complete atelectasis have CTN basically similar to soft tissue. Hence, thesemore » numbers are not useful for differential diagnosis. 3. Effusions usually have lower CTN and can be distinguished from previous situations. 4. Dosimetry based on uniform lung density assumptions (i.e., 300 mg/cm/sup 3/) might produce substantial dose errors as lung CTN exhibit variations indicating densities well above and below this value. 5. Preliminary information indicates that partial atelectasis and incipient post-radiation fibrosis can have very low CTN. Hence, they can be differentiated from solid tumors in certain cases, and help in differential diagnosis of post radiation recurrence within the radiotherapy field versus fibrosis.« less

  5. Feedback instability of the ionospheric resonant cavity

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.

    1991-01-01

    A model is developed that provides a theoretical basis for previous numerical results showing a feedback instability with frequencies characteristic of Alfven travel times within the region of the large increase of Alfven speed above the ionosphere. These results have been extended to arbitrary ionospheric conductivity by developing a numerical solution of the cavity dispersion relation that involves Bessel functions of complex order and argument. It is concluded that the large contrast between the magnetospheric and ionospheric Alfven speed leads to the formation of resonant cavity modes with frequencies ranging from 0.1 to 1 Hz. The presence of the cavity leads to a modification of the reflection characteristics of Alfven waves with frequencies that compare to the cavity's normal modes.

  6. Generating high precision ionospheric ground-truth measurements

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila (Inventor); Sparks, Lawrence (Inventor); Mannucci, Anthony J. (Inventor)

    2007-01-01

    A method, apparatus and article of manufacture provide ionospheric ground-truth measurements for use in a wide-area augmentation system (WAAS). Ionospheric pseudorange/code and carrier phase data as primary observables is received by a WAAS receiver. A polynomial fit is performed on the phase data that is examined to identify any cycle slips in the phase data. The phase data is then leveled. Satellite and receiver biases are obtained and applied to the leveled phase data to obtain unbiased phase-leveled ionospheric measurements that are used in a WAAS system. In addition, one of several measurements may be selected and data is output that provides information on the quality of the measurements that are used to determine corrective messages as part of the WAAS system.

  7. 21 CFR 884.2800 - Computerized Labor Monitoring System.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computerized Labor Monitoring System. 884.2800... Devices § 884.2800 Computerized Labor Monitoring System. (a) Identification. A computerized labor monitoring system is a system intended to continuously measure cervical dilation and fetal head descent and...

  8. Ionospheric signatures of Lightning

    NASA Astrophysics Data System (ADS)

    Hsu, M.; Liu, J.

    2003-12-01

    The geostationary metrology satellite (GMS) monitors motions of thunderstorm cloud, while the lightning detection network (LDN) in Taiwan and the very high Frequency (VHF) radar in Chung-Li (25.0›XN, 121.2›XE) observed occurrences of lightning during May and July, 1997. Measurements from the digisonde portable sounder (DPS) at National Central University shows that lightning results in occurrence of the sporadic E-layer (Es), as well as increase and decrease of plasma density at the F2-peak and E-peak in the ionosphere, respectively. A network of ground-based GPS receivers is further used to monitor the spatial distribution of the ionospheric TEC. To explain the plasma density variations, a model is proposed.

  9. Computerized Sociometric Assessment for Preschool Children

    ERIC Educational Resources Information Center

    Endedijk, Hinke M.; Cillessen, Antonius H. N.

    2015-01-01

    In preschool classes, sociometric peer ratings are used to measure children's peer relationships. The current study examined a computerized version of preschool sociometric ratings. The psychometric properties were compared of computerized sociometric ratings and traditional peer ratings for preschoolers. The distributions, inter-item…

  10. The VLF Scattering Pattern of Lightning-Induced Ionospheric Disturbances

    NASA Astrophysics Data System (ADS)

    Cohen, M.; Golkowski, M.

    2016-12-01

    Very Low Frequency (VLF) transmitter remote sensing is a well-employed technique to diagnose the impact of lightning on the D-region ionosphere, from the EMP, quasi-static charge, and radiation belt electron precipitation. When lightning disturbs the ionosphere, propagation of VLF (3-30 kHz) narrow-frequency signals through that region are subsequently scattered, which can be detected as transient changes in amplitude and phase at distant receivers. In principle it is possible to then infer the ionospheric disturbance but in practice this is difficult to do reliably. One of the challenges of this process is that VLF perturbations are like snowflakes - no two events are the same. The transmitter-receiver geometry, lightning properties, and ionospheric condition before the event, all impact the VLF scattering. This makes it very difficult, based on case studies which observe only one or two slivers at a time, to infer the scattering pattern of VLF events, and therefore, to infer what happened to the ionosphere. Our aim is to get around that by looking at a huge database of lightning-induced ionospheric disturbances, taken over several years of recordings. We utilize an automatic extraction algorithm to find, identify, and characterize VLF perturbations on a massive scale. From there, we can investigate how the VLF perturbations change as a function of the parameters of the event. If it turns out that there is exists a "canonical" lightning-induced disturbance as a function of geometry and lightning parameters, it will go a long way toward identifying the causative mechanisms and being able to accurately simulate and reproduce any lightning-induced ionospheric disturbance. We present results of our efforts to do just that.

  11. Comparison of Ionospheric Parameters during Similar Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.

    2018-03-01

    The degree of closeness of ionospheric parameters during one magnetic storm and of the same parameters during another, similar, storm is estimated. Overall, four storms—two pairs of storms close in structure and appearance according to recording of the magnetic field X-component—were analyzed. The examination was based on data from Sodankyla observatory (Finland). The f-graphs of the ionospheric vertical sounding, magnetometer data, and riometer data on absorption were used. The main results are as follows. The values of the critical frequencies foF2, foF1, and foE for different but similar magnetic storms differ insignificantly. In the daytime, the difference is on average 6% (from 0 to 11.1%) for all ionospheric layers. In the nighttime conditions, the difference for foF2 is 4%. The nighttime values of foEs differ on average by 20%. These estimates potentially make it possible to forecast ionospheric parameters for a particular storm.

  12. Detection of ionospheric scintillation effects using LMD-DFA

    NASA Astrophysics Data System (ADS)

    Tadivaka, Raghavendra Vishnu; Paruchuri, Bhanu Priyanka; Miriyala, Sridhar; Koppireddi, Padma Raju; Devanaboyina, Venkata Ratnam

    2017-08-01

    The performance and measurement accuracy of global navigation satellite system (GNSS) receivers is greatly affected by ionospheric scintillations. Rapid amplitude and phase variations in the received GPS signal, known as ionospheric scintillation, affects the tracking of signals by GNSS receivers. Hence, there is a need to investigate the monitoring of various activities of the ionosphere and to develop a novel approach for mitigation of ionospheric scintillation effects. A method based on Local Mean Decomposition (LMD)-Detrended Fluctuation Analysis (DFA) has been proposed. The GNSS data recorded at Koneru Lakshmaiah (K L) University, Guntur, India were considered for analysis. The carrier to noise ratio (C/N0) of GNSS satellite vehicles were decomposed into several product functions (PF) using LMD to extract the intrinsic features in the signal. Scintillation noise was removed by the DFA algorithm by selecting a suitable threshold. It was observed that the performance of the proposed LMD-DFA was better than that of empirical mode decomposition (EMD)-DFA.

  13. Pulsations in the Earth's Lower Ionosphere Synchronized With Solar Flare Emission

    NASA Astrophysics Data System (ADS)

    Hayes, Laura A.; Gallagher, Peter T.; McCauley, Joseph; Dennis, Brian R.; Ireland, Jack; Inglis, Andrew

    2017-10-01

    Solar flare emission at X-ray and extreme ultraviolet (EUV) energies can cause substantial enhancements in the electron density in the Earth's lower ionosphere. It has now become clear that flares exhibit quasi-periodic pulsations with timescales of minutes at X-ray energies, but to date, it has not been known if the ionosphere is sensitive to this variability. Here using a combination of very low frequency (24 kHz) measurement together with space-based X-ray and EUV observations, we report pulsations of the ionospheric D region, which are synchronized with a set of pulsating flare loops. Modeling of the ionosphere show that the D region electron density varies by up to an order of magnitude over the timescale of the pulsations (˜ 20 min). Our results reveal that the Earth's ionosphere is more sensitive to small-scale changes in solar soft X-ray flux than previously thought and implies that planetary ionospheres are closely coupled to small-scale changes in solar/stellar activity.

  14. Magnetosphere-ionosphere coupling: processes and rates

    NASA Astrophysics Data System (ADS)

    Lotko, W.

    Magnetosphere-ionosphere coupling describes the interaction between the collisionless plasma of the magnetosphere and the ionized and neutral collisional gases of the ionosphere and thermosphere. This coupling introduces feedback and scale interactivity in the form of a time-variable mass flux, electron energy flux and Poynting flux flowing between the two regions. Although delineation of an MI coupling region is somewhat ambiguous, at mid and high latitudes it may be considered as the region of the topside ionosphere and low-altitude magnetosphere where electromagnetic energy is converted to plasma beams and heat via collisionless dissipation processes. Above this region the magnetically guided transmission of electromagnetic power from distant magnetospheric dynamos encounters only weak attenuation. The ionospheric region below it is dominated by ionization processes and collisional cross-field transport and current closure. This tutorial will use observations, models and theory to characterize three major issues in MI coupling: (1) the production of plasma beams and heat in the coupling region; (2) the acceleration of ions leading to massive outflows; and (3) the length and time scale dependence of electromagnetic energy deposition at low altitude. Our success in identifying many of the key processes is offset by a lack of quantitative understanding of the factors controlling the rates of energy deposition and of the production of particle energy and mass fluxes.

  15. Ionospheric Delay Compensation Using a Scale Factor Based on an Altitude of a Receiver

    NASA Technical Reports Server (NTRS)

    Zhao, Hui (Inventor); Savoy, John (Inventor)

    2014-01-01

    In one embodiment, a method for ionospheric delay compensation is provided. The method includes determining an ionospheric delay based on a signal having propagated from the navigation satellite to a location below the ionosphere. A scale factor can be applied to the ionospheric delay, wherein the scale factor corresponds to a ratio of an ionospheric delay in the vertical direction based on an altitude of the satellite navigation system receiver. Compensation can be applied based on the ionospheric delay.

  16. Reconstruction of the ionospheric electron density by geostatistical inversion

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; van den Boogaart, Karl Gerald; Hoque, Mainul; Gerzen, Tatjana

    2015-04-01

    The ionosphere is the upper part of the atmosphere where sufficient free electrons exist to affect the propagation of radio waves. Typically, the ionosphere extends from about 50 - 1000 km and its morphology is mainly driven by solar radiation, particle precipitation and charge exchange. Due to the strong ionospheric impact on many applications dealing with trans-ionospheric signals such as Global Navigation Satellite Systems (GNSS) positioning, navigation and remote sensing, the demand for a highly accurate reconstruction of the electron density is ever increasing. Within the Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) the utilization of the upcoming radar mission TanDEM-L and its related products are prepared. The TanDEM-L mission will operate in L-band with a wavelength of approximately 24 cm and aims at an improved understanding of environmental processes and ecosystem change, e.g. earthquakes, volcanos, glaciers, soil moisture and carbon cycle. Since its lower frequency compared to the X-band (3 cm) and C-band (5 cm) radar missions, the influence of the ionosphere will increase and might lead to a significant degradation of the radar image quality if no correction is applied. Consequently, our interest is the reconstruction of the ionospheric electron density in order to mitigate the ionospheric delay. Following the ionosphere's behaviour we establish a non-stationary and anisotropic spatial covariance model of the electron density separated into a vertical and horizontal component. In order to estimate the model's parameters we chose a maximum likelihood approach. This approach incorporates GNSS total electron content measurements, representing integral measurements of the electron density between satellite to receiver ray paths, and the NeQuick model as a non-stationary trend. Based on a multivariate normal distribution the spatial covariance model parameters are optimized and afterwards the 3D electron density can be

  17. Planning for coordinated space and ground-based ionospheric modification experiments

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Burke, William J.; Carlson, Herbert C.; Heckscher, John L.; Kossey, Paul A.; Weber, E. J.; Kuo, S. P.

    1990-01-01

    The planning and conduction of coordinated space and ground-based ionospheric modification experiments are discussed. The purpose of these experiments is to discuss: (1) the nonlinear VLF wave interaction with the ionospheric plasmas; and (2) the nonlinear propagation of VLF waves in the HF-modified ionosphere. It is expected that the HF-induced ionospheric density striations can render the nonlinear mode conversion of VLF waved into lower hybrid waves. Lower hybrid waves can also be excited parametrically by the VLF waves in the absence of the density striations if the VLF waves are intense enough. Laboratory experiments are planned for crosschecking the results obtained from the field experiments.

  18. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  19. Cost-effectiveness analysis of 3-D computerized tomography colonography versus optical colonoscopy for imaging symptomatic gastroenterology patients.

    PubMed

    Gomes, Manuel; Aldridge, Robert W; Wylie, Peter; Bell, James; Epstein, Owen

    2013-04-01

    When symptomatic gastroenterology patients have an indication for colonic imaging, clinicians have a choice between optical colonoscopy (OC) and computerized tomography colonography with three-dimensional reconstruction (3-D CTC). 3-D CTC provides a minimally invasive and rapid evaluation of the entire colon, and it can be an efficient modality for diagnosing symptoms. It allows for a more targeted use of OC, which is associated with a higher risk of major adverse events and higher procedural costs. A case can be made for 3-D CTC as a primary test for colonic imaging followed if necessary by targeted therapeutic OC; however, the relative long-term costs and benefits of introducing 3-D CTC as a first-line investigation are unknown. The aim of this study was to assess the cost effectiveness of 3-D CTC versus OC for colonic imaging of symptomatic gastroenterology patients in the UK NHS. We used a Markov model to follow a cohort of 100,000 symptomatic gastroenterology patients, aged 50 years or older, and estimate the expected lifetime outcomes, life years (LYs) and quality-adjusted life years (QALYs), and costs (£, 2010-2011) associated with 3-D CTC and OC. Sensitivity analyses were performed to assess the robustness of the base-case cost-effectiveness results to variation in input parameters and methodological assumptions. 3D-CTC provided a similar number of LYs (7.737 vs 7.739) and QALYs (7.013 vs 7.018) per individual compared with OC, and it was associated with substantially lower mean costs per patient (£467 vs £583), leading to a positive incremental net benefit. After accounting for the overall uncertainty, the probability of 3-D CTC being cost effective was around 60 %, at typical willingness-to-pay values of £20,000-£30,000 per QALY gained. 3-D CTC is a cost-saving and cost-effective option for colonic imaging of symptomatic gastroenterology patients compared with OC.

  20. Back-diffusion plasma generator for ionosphere study

    NASA Astrophysics Data System (ADS)

    Fang, H. K.; Oyama, K.-I.; Chen, A. B.

    2017-11-01

    To produce ionospheric plasma environments at ground level is essential to get information not only for the development of CubeSat-class spacecraft but also for the design of ionospheric plasma instruments and to confirm their performance. In this paper, we describe the principle of plasma generation and characteristics of the back-diffusion plasma source, which can produce in-lab plasma similar to the Earth’s ionosphere, E and F regions, conditions of electron and ion temperature and density. The ion and electron energy distributions of the plasma generated by a back-diffusion source are measured by means of a cleaned Langmuir probe and gridded particle energy analyzers. The ion motion in front of the source is investigated by a hard-sphere collision model in SIMION software and the simulation results are comparable with the findings of our experiment. Furthermore, plasma densities and ion temperatures at different positions in front of the source are also demonstrated. The back-diffusion source has been accommodated for ionospheric plasma productions in several Asian institutes. The plasma characteristics of the source shown in this paper will benefit space research groups in the development of space plasma instruments.

  1. Ionospheric disturbances under low solar activity conditions

    NASA Astrophysics Data System (ADS)

    Buresova, D.; Lastovicka, J.; Hejda, P.; Bochnicek, J.

    2014-07-01

    The paper is focused on ionospheric response to occasional magnetic disturbances above selected ionospheric stations located at middle latitudes of the Northern and Southern Hemisphere under extremely low solar activity conditions of 2007-2009. We analyzed changes in the F2 layer critical frequency foF2 and the F2 layer peak height hmF2 against 27-days running mean obtained for different longitudinal sectors of both hemispheres for the initial, main and recovery phases of selected magnetic disturbances. Our analysis showed that the effects on the middle latitude ionosphere of weak-to-moderate CIR-related magnetic storms, which mostly occur around solar minimum period, could be comparable with the effects of strong magnetic storms. In general, both positive and negative deviations of foF2 and hmF2 have been observed independent on season and location. However positive effects on foF2 prevailed and were more significant. Observations of stormy ionosphere also showed large departures from the climatology within storm recovery phase, which are comparable with those usually observed during the storm main phase. The IRI STORM model gave no reliable corrections of foF2 for analyzed events.

  2. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...

    2015-07-30

    Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less

  3. Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)

    2017-01-01

    A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.

  4. Possibility of Ionospheric Cause of FACs and Convection Field in the Magnetosphere-Ionosphere System: The Harang Reversal, Premidnight Upward-FAC, and the Ionospheric Hall Polarization Field

    NASA Astrophysics Data System (ADS)

    Nakamizo, A.; Yoshikawa, A.

    2016-12-01

    Whereas it is generally thought that Birkeland Currents (FACs) are generated in the magnetosphere and that the ionospheric convection reflects the magnetospheric convection, we present a possibility that the ionosphere drives FACs and the convection field in the M-I system. We apply this idea to the Harang Reversal (HR) for demonstration. By using an ionospheric potential solver we calculate the electrostatic field for given distributions of FACs and conductance. The result shows that a conspicuous structure resembling HR is generated even for a symmetric distribution of the R1-type FACs and that the Hall polarization field is produced at the equatorward boundary of the auroral region as the primary currents diverge/converge at the conductance gradient there, which causes the potential deformation (HR). Conventionally HR has been considered to be of the magnetospheric origin, and a ring current model actually produces the corresponding structure in the magnetosphere [e.g., Erickson et al., 1991]. Observationally the divE equivalent to HR is consistent with the premidnight upward-FAC seen in Iijima and Potemra's diagram. A recent theoretical study [Ohtani et al., 2016] proposes that HR is a required structure for the interchange stability of the magnetotail in the presence of the R1 and R2-FAC systems including a premidnight upward-FAC. Returning to our result, the important point is that HR is reproduced at the conductance edge by the ionospheric polarization field, for which the primary field originates from the R1-FACs distributed far from that region. We also suggest: (i) In a more realistic finite ΣA, the total ionospheric polarization is partly released by a FAC, which may be a part of the premidnight upward-FAC. (ii) However, existing simulation models do not allow this type of current closure, and accordingly they may enhance the HR structure in the magnetosphere. This discussion should hold generally and would promote the global M-I coupling studies to the

  5. Atmosphere-ionosphere coupling from convectively generated gravity waves

    NASA Astrophysics Data System (ADS)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  6. Comparison of global and regional ionospheric models

    NASA Astrophysics Data System (ADS)

    Ranner, H.-P.; Krauss, S.; Stangl, G.

    2012-04-01

    Modelling of the Earth's ionosphere means the description of the variability of the vertical TEC (Total Electron Content) in dependence of geographic latitude and longitude, height, diurnal and seasonal variation as well as solar activity. Within the project GIOMO (next Generation near real-time IOnospheric MOdels) the objectives are the identification and consolidation of improved ionospheric modelling technologies. The global models Klobuchar (GPS) and NeQuick (currently in use by EGNOS, in future used by Galileo) are compared to the IGS (International GNSS Service) Final GIM (Global Ionospheric Map). Additionally a RIM (Regional Ionospheric Map) for Europe provided by CODE (Center for Orbit Determination in Europe) is investigated. Furthermore the OLG (Observatorium Lustbühel Graz) regional models are calculated for two test beds with different latitudes and extensions (Western Austria and the Aegean region). There are three different approaches, two RIMs are based on spherical harmonics calculated either from code or phase measurements and one RIM is based on a Taylor series expansion around a central point estimated from zero-difference observations. The benefits of regional models are the local flexibility using a dense network of GNSS stations. Near real-time parameters are provided within ten minutes after every clock hour. All models have been compared according to their general behavior, the ability to react upon extreme solar events and the robustness of estimation. A ranking of the different models showed a preference for the RIMs while the global models should be used within a fall-back strategy.

  7. Microcomputer Network for Computerized Adaptive Testing (CAT)

    DTIC Science & Technology

    1984-03-01

    PRDC TR 84-33 \\Q.�d-33- \\ MICROCOMPUTER NETWOJlt FOR COMPUTERIZED ADAPTIVE TESTING ( CAT ) Baldwin Quan Thomas A . Park Gary Sandahl John H...ACCEIIION NO NPRDC TR 84-33 4. TITLE (-d Sul>tlllo) MICROCOMP UTER NETWORK FOR COMPUTERIZED ADA PTIVE TESTING ( CAT ) 1. Q B. uan T. A . Park...adaptive testing ( CAT ) Bayesian sequential testing 20. ABSTitACT (Continuo on ro•••• aide II noco .. _, _., ld-tlly ,.,. t.loclt _._.) DO Computerized

  8. Computerized Adaptive Testing (CAT): A User Manual

    DTIC Science & Technology

    1984-03-12

    NPRDC TR 84-32 COMPUTERIZED ADAPTIVE TESTING ( CAT ): A USER MANUAL Susan Hardwick Lawrence Eastman Ross Cooper Rehab Group, Incorporated San...a ~EI’IOD COVIRED COMPUTERIZED ADAPTIVE TESTING ( CAT ) Final Report Aug 1981-June 1982 A USER MANUAL 1. ~l:l’t,ORMINCI ORCI. RE~ORT NUM.I:R 62-83...II nee• .. _, entl ldentll)’ ,,. llloclr _,.,) A joint-service effort is underway to develop a computerized adaptive testing ( CAT ) system and to

  9. First tsunami gravity wave detection in ionospheric radio occultation data

    DOE PAGES

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; ...

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing themore » vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.« less

  10. Improving the Ionospheric Auroral Conductance in a Global Ring Current Model and the Effects on the Ionospheric Electrodynamics

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Jordanova, V. K.; McGranaghan, R. M.; Solomon, S. C.

    2017-12-01

    The ionospheric conductance, height-integrated electric conductivity, can regulate both the ionospheric electrodynamics and the magnetospheric dynamics because of its key role in determining the electric field within the coupled magnetosphere-ionosphere system. State-of-the-art global magnetosphere models commonly adopt empirical conductance calculators to obtain the auroral conductance. Such specification can bypass the complexity of the ionosphere-thermosphere chemistry but on the other hand breaks the self-consistent link within the coupled system. In this study, we couple a kinetic ring current model RAM-SCB-E that solves for anisotropic particle distributions with a two-stream electron transport code (GLOW) to more self-consistently compute the height-dependent electric conductivity, provided the auroral electron precipitation from the ring current model. Comparisons with the traditional empirical formula are carried out. It is found that the newly coupled modeling framework reveals smaller Hall and Pedersen conductance, resulting in a larger electric field. As a consequence, the subauroral polarization streams demonstrate a better agreement with observations from DMSP satellites. It is further found that the commonly assumed Maxwellian spectrum of the particle precipitation is not globally appropriate. Instead, a full precipitation spectrum resulted from wave particle interactions in the ring current accounts for a more comprehensive precipitation spectrum.

  11. Ionospheric hot spot at high latitudes

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Sojka, J. J.

    1982-01-01

    Schunk and Raitt (1980) and Sojka et al. (1981) have developed a model of the convecting high-latitude ionosphere in order to determine the extent to which various chemical and transport processes affect the ion composition and electron density at F-region altitudes. The numerical model produces time-dependent, three-dimensional ion density distributions for the ions NO(+), O2(+), N2(+), O(+), N(+), and He(+). Recently, the high-latitude ionospheric model has been improved by including thermal conduction and diffusion-thermal heat flow terms. Schunk and Sojka (1982) have studied the ion temperature variations in the daytime high-latitude F-region. In the present study, a time-dependent three-dimensional ion temperature distribution is obtained for the high-latitude ionosphere for an asymmetric convection electric field pattern with enhanced flow in the dusk sector of the polar region. It is shown that such a convection pattern produces a hot spot in the ion temperature distribution which coincides with the location of the strong convection cell.

  12. Assimilative modeling of low latitude ionosphere

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Wang, Chunining; Hajj, George A.; Rosen, I. Gary; Wilson, Brian D.; Mannucci, Anthony J.

    2004-01-01

    In this paper we present an observation system simulation experiment for modeling low-latitude ionosphere using a 3-dimensional (3-D) global assimilative ionospheric model (GAIM). The experiment is conducted to test the effectiveness of GAIM with a 4-D variational approach (4DVAR) in estimation of the ExB drift and thermospheric wind in the magnetic meridional planes simultaneously for all longitude or local time sectors. The operational Global Positioning System (GPS) satellites and the ground-based global GPS receiver network of the International GPS Service are used in the experiment as the data assimilation source. 'The optimization of the ionospheric state (electron density) modeling is performed through a nonlinear least-squares minimization process that adjusts the dynamical forces to reduce the difference between the modeled and observed slant total electron content in the entire modeled region. The present experiment for multiple force estimations reinforces our previous assessment made through single driver estimations conducted for the ExB drift only.

  13. Equatorial ionospheric electrodynamics during solar flares

    NASA Astrophysics Data System (ADS)

    Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding

    2017-05-01

    Previous investigations on ionospheric responses to solar flares focused mainly on the photoionization caused by the increased X-rays and extreme ultraviolet irradiance. However, little attention was paid to the related electrodynamics. In this letter, we explored the equatorial electric field (EEF) and electrojet (EEJ) in the ionosphere at Jicamarca during flares from 1998 to 2008. It is verified that solar flares increase dayside eastward EEJ but decrease dayside eastward EEF, revealing a negative correlation between EEJ and EEF. The decreased EEF weakens the equatorial fountain effect and depresses the low-latitude electron density. During flares, the enhancement in the Cowling conductivity may modulate ionospheric dynamo and decrease the EEF. Besides, the decreased EEF is closely related to the enhanced ASY-H index that qualitatively reflects Region 2 field-aligned current (R2 FAC). We speculated that solar flares may also decrease EEF through enhancing R2 FAC that leads to an overshielding-like effect.

  14. Experimental studies of ionospheric irregularities and related plasma processes

    NASA Technical Reports Server (NTRS)

    Baker, Kay D.

    1992-01-01

    Utah State University (USU) continued its program of measuring and interpreting electron density and its variations in a variety of ionospheric conditions with the Experimental Studies of Ionospheric Irregularities and Related Plasma Processes program. The program represented a nearly ten year effort to provide key measurements of electron density and its fluctuations using sounding rockets. The program also involved the joint interpretation of the results in terms of ionospheric processes. A complete campaign summary and a brief description of the major rocket campaigns are also included.

  15. Lightning impact on micro-second long ionospheric variability

    NASA Astrophysics Data System (ADS)

    Koh, Kuang Liang; Liu, Zhongjian; Fullekrug, Martin

    2017-04-01

    Lightning discharges cause electron heating and enhanced ionisation in the D region ionosphere which disturb the transmission of VLF communications [Inan et al., 2010]. A disturbance of such nature was measured in a VLF transmission with a sampling rate of 1 MHz, enabling much faster ionospheric variability to be observed when compared to previous studies which typically report results with a time resolution >5-20ms. The disturbance resembles "Long Recovery Early VLF" (LORE) events [Haldoupis et al. 2013, Cotts & Inan 2007]. LOREs exhibit observable ionospheric effects that last longer (>200s) than other lightning related disturbances. It was proposed that the mechanism behind the long-lasting effects of LOREs is different to shorter events [Gordillo-Vázquez et al. 2016]. The ionospheric variability inferred from the transmitted signal is seen to change dramatically after the lightning onset, suggesting that there are fast processes in the ionosphere affected or produced which have not been considered in previous research. The ionospheric variability inferred from the main two frequencies of the transmission is different. A possible explanation is a difference in the propagation paths of the two main frequencies of the transmission [Füllekrug et al., 2015]. References Inan, U.S., Cummer, S.A., Marshall, R.A., 2010. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J. Geophys. Res. 115, A00E36. doi:10.1029/2009JA014775 Cotts, B.R.T., Inan, U.S., 2007. VLF observation of long ionospheric recovery events. Geophys. Res. Lett. 34, L14809. doi:10.1029/2007GL030094 Haldoupis, C., Cohen, M., Arnone, E., Cotts, B., Dietrich, S., 2013. The VLF fingerprint of elves: Step-like and long-recovery early VLF perturbations caused by powerful ±CG lightning EM pulses. J. Geophys. Res. Space Physics 118, 5392-5402. doi:10.1002/jgra.50489 Gordillo-Vázquez, F.J., Luque, A., Haldoupis, C., 2016. Upper D region chemical kinetic modeling of

  16. Advanced Composition and the Computerized Library.

    ERIC Educational Resources Information Center

    Hult, Christine

    1989-01-01

    Discusses four kinds of computerized access tools: online catalogs; computerized reference; online database searching; and compact disks and read only memory (CD-ROM). Examines how these technologies are changing research. Suggests how research instruction in advanced writing courses can be refocused to include the new technologies. (RS)

  17. `Earth-ionosphere' mode controlled source electromagnetic method

    NASA Astrophysics Data System (ADS)

    Li, Diquan; Di, Qingyun; Wang, Miaoyue; Nobes, David

    2015-09-01

    In traditional artificial-source electromagnetic exploration, the effects of the ionosphere and displacement current (DC) in the air were neglected, and only the geoelectrical structure of the earth's crust and upper mantle was considered, such as for controlled source audio-frequency magnetotelluric (CSAMT). By employing a transmitter (less than 30 kW) to generate source fields, the CSAMT method overcomes the problems associated with weak natural electromagnetic (EM) fields used in magnetotellurics. However, the transmitter is moved and the source-receiver offset is approximately less than 20 km, because of the limitation of emission energy. We put forward a new idea, that is, a fixed artificial source (greater than 200 kW) is used and the source location selected at a high resistivity region (to ensure a high emission efficiency), so there may be a possibility that as long as the source strength magnitude is strong enough, the artificial EM signal can be easily observed within a distance of several thousand kilometres. Previous studies have provided the evidence to support this idea; they used the `earth-ionosphere' mode in modeling the EM fields with the offset up to a thousand kilometres. Such EM fields still have a signal/noise ratio over 10-20 dB; this means that a new EM method with fixed source is feasible. However, in their calculations, the DC which plays a very important role for large offsets was neglected. This paper pays much attention to derive the formulae of the `earth-ionosphere' mode with a horizontal electric dipole source, and the DC is not neglected. We present some three layers modeling results to illustrate the basic EM field characteristics under the `earth-ionosphere' mode. As the offset increases, the contribution of the conduction current decreases, DC and ionosphere were taken into account, and the EM field attenuation decreases. We also quantitatively compare the predicted and observed data. The comparison of these results with the

  18. Mechanisms of Ionospheric Mass Escape

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2010-01-01

    The dependence of ionospheric O+ escape flux on electromagnetic energy flux and electron precipitation into the ionosphere is derived for a hypothetical ambipolar pick-up process, powered the relative motion of plasmas and neutral upper atmosphere, and by electron precipitation, at heights where the ions are magnetized but influenced by photo-ionization, collisions with gas atoms, ambipolar and centrifugal acceleration. Ion pick-up by the convection electric field produces "ring-beam" or toroidal velocity distributions, as inferred from direct plasma measurements, from observations of the associated waves, and from the spectra of incoherent radar echoes. Ring-beams are unstable to plasma wave growth, resulting in rapid relaxation via transverse velocity diffusion, into transversely accelerated ion populations. Ion escape is substantially facilitated by the ambipolar potential, but is only weakly affected by centrifugal acceleration. If, as cited simulations suggest, ion ring beams relax into non-thermal velocity distributions with characteristic speed equal to the local ion-neutral flow speed, a generalized "Jeans escape" calculation shows that the escape flux of ionospheric O+ increases with Poynting flux and with precipitating electron density in rough agreement with observations.

  19. Pre-earthquake Anomalies of the Ion Velocity in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Liu, J. Y. G.; Chao, C. K.

    2016-12-01

    In the paper, pre-earthquake ionospheric anomalies (PEIAs) of the ion velocity, which are further employed to estimate the seismo-ionospheric electric fields, are for the first time reported. To see whether ionospheric ion velocity can be used to detect PEIAs or not, we examine concurrent measurements of the ion density, ion temperature, and the ion velocity probed by ROCSAT/IPEI (ionospheric Plasma and Electrodynamics Instrument), as well as the global ionospheric map (GIM) of the total electron content (TEC) derived by ground-based GPS receivers during the 31 March 2002 M6.8 Earthquake in Taiwan. It is found around the epicenter area 1-5 days before the earthquake that the GIM TEC significantly decreases, while the ROCSAT/IPEI ion density significantly decreases and ion velocity in the downward direction anomalously increases. The increase in the downward velocity implies that a westward electric field of about 0.91mV/m generated during the earthquake period is essential.

  20. Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling

    NASA Technical Reports Server (NTRS)

    Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.

    2011-01-01

    The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.

  1. Methodology of automated ionosphere front velocity estimation for ground-based augmentation of GNSS

    NASA Astrophysics Data System (ADS)

    Bang, Eugene; Lee, Jiyun

    2013-11-01

    ionospheric anomalies occurring during severe ionospheric storms can pose integrity threats to Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS). Ionospheric anomaly threat models for each region of operation need to be developed to analyze the potential impact of these anomalies on GBAS users and develop mitigation strategies. Along with the magnitude of ionospheric gradients, the speed of the ionosphere "fronts" in which these gradients are embedded is an important parameter for simulation-based GBAS integrity analysis. This paper presents a methodology for automated ionosphere front velocity estimation which will be used to analyze a vast amount of ionospheric data, build ionospheric anomaly threat models for different regions, and monitor ionospheric anomalies continuously going forward. This procedure automatically selects stations that show a similar trend of ionospheric delays, computes the orientation of detected fronts using a three-station-based trigonometric method, and estimates speeds for the front using a two-station-based method. It also includes fine-tuning methods to improve the estimation to be robust against faulty measurements and modeling errors. It demonstrates the performance of the algorithm by comparing the results of automated speed estimation to those manually computed previously. All speed estimates from the automated algorithm fall within error bars of ± 30% of the manually computed speeds. In addition, this algorithm is used to populate the current threat space with newly generated threat points. A larger number of velocity estimates helps us to better understand the behavior of ionospheric gradients under geomagnetic storm conditions.

  2. Ionospheric error contribution to GNSS single-frequency navigation at the 2014 solar maximum

    NASA Astrophysics Data System (ADS)

    Orus Perez, Raul

    2017-04-01

    For single-frequency users of the global satellite navigation system (GNSS), one of the main error contributors is the ionospheric delay, which impacts the received signals. As is well-known, GPS and Galileo transmit global models to correct the ionospheric delay, while the international GNSS service (IGS) computes precise post-process global ionospheric maps (GIM) that are considered reference ionospheres. Moreover, accurate ionospheric maps have been recently introduced, which allow for the fast convergence of the real-time precise point position (PPP) globally. Therefore, testing of the ionospheric models is a key issue for code-based single-frequency users, which constitute the main user segment. Therefore, the testing proposed in this paper is straightforward and uses the PPP modeling applied to single- and dual-frequency code observations worldwide for 2014. The usage of PPP modeling allows us to quantify—for dual-frequency users—the degradation of the navigation solutions caused by noise and multipath with respect to the different ionospheric modeling solutions, and allows us, in turn, to obtain an independent assessment of the ionospheric models. Compared to the dual-frequency solutions, the GPS and Galileo ionospheric models present worse global performance, with horizontal root mean square (RMS) differences of 1.04 and 0.49 m and vertical RMS differences of 0.83 and 0.40 m, respectively. While very precise global ionospheric models can improve the dual-frequency solution globally, resulting in a horizontal RMS difference of 0.60 m and a vertical RMS difference of 0.74 m, they exhibit a strong dependence on the geographical location and ionospheric activity.

  3. Statistical Analysis of the Ionosphere based on Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Demir, Uygar; Arikan, Feza; Necat Deviren, M.; Toker, Cenk

    2016-07-01

    Ionosphere is made up of a spatio-temporally varying trend structure and secondary variations due to solar, geomagnetic, gravitational and seismic activities. Hence, it is important to monitor the ionosphere and acquire up-to-date information about its state in order both to better understand the physical phenomena that cause the variability and also to predict the effect of the ionosphere on HF and satellite communications, and satellite-based positioning systems. To charaterise the behaviour of the ionosphere, we propose to apply Singular Value Decomposition (SVD) to Total Electron Content (TEC) maps obtained from the TNPGN-Active (Turkish National Permanent GPS Network) CORS network. TNPGN-Active network consists of 146 GNSS receivers spread over Turkey. IONOLAB-TEC values estimated from each station are spatio-temporally interpolated using a Universal Kriging based algorithm with linear trend, namely IONOLAB-MAP, with very high spatial resolution. It is observed that the dominant singular value of TEC maps is an indicator of the trend structure of the ionosphere. The diurnal, seasonal and annual variability of the most dominant value is the representation of solar effect on ionosphere in midlatitude range. Secondary and smaller singular values are indicators of secondary variation which can have significance especially during geomagnetic storms or seismic disturbances. The dominant singular values are related to the physical basis vectors where ionosphere can be fully reconstructed using these vectors. Therefore, the proposed method can be used both for the monitoring of the current state of a region and also for the prediction and tracking of future states of ionosphere using singular values and singular basis vectors. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  4. Observations of weak ionosphere disturbances on the Kharkov incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Lysenko, Valery; Cherniak, Iurii

    The ionosphere plasma characteristics are responding on variations of solar and magnetic activity, high-power processes in the Earth atmosphere and lithosphere. The research of an ionosphere structure and dynamics is important as for understanding physics of processes and radiophysical problems solution. The method of incoherent scatter (IS) of radiowaves allows determining experimentally as regular variations of electronic concentration Ne and concomitant ionosphere parameters, and their behaviour during natural and antropogeneous origin disturbances. The equipment and measurement technique, developed by authors, are allows obtaining reliable data about an ionosphere behaviour during various origin and intensity perturbations. Oservations results of main parameters IS signal and ionosphere plasma during weak magnetic storm, solar eclipse, ionosphere disturbances caused by start of the high-power rocket are presented. Experimentally obtained on the Kharkov IS radar altitude-temporary dependences of disturbed ionosphere plasma parameters during weak intensity magnetic storm 04-06 April 2006 (Kp = 5, Dst = -100 nTl) were adduced. During a main storm phase the positive perturbation was observed (Ne is increased in 1.3 times), April 5, at maximum Dst - negative perturbation (Ne is decreased in 1.6 times), April 6 - positive perturbation (the second positive storm phase - Ne was increased at 1.33 times). During negative ionosphere storm the height of a F2 layer maximum was increased on 30-40 km, ionic temperature in the day is increased on 150K, electronic temperature is increased on 600K. For date 29.03.2006, when take place partial Sun eclipse (disk shadow factor 73 During launch heavy class rocket "Proton-K" december 25, 2006 from Baikonur cosmodrome (distance up to a view point of 2500 km) the perturbations in close space were observed. By measurements results of ionosphere plasma cross-section two disturbed areas were registered. First was observed through 8 mines

  5. Analysis of FORTE data to extract ionospheric parameters

    NASA Astrophysics Data System (ADS)

    Roussel-Dupré, Robert A.; Jacobson, Abram R.; Triplett, Laurie A.

    2001-01-01

    The ionospheric transfer function is derived for a spherically symmetric ionosphere with an arbitrary radial electron density profile in the limit where the radio frequencies of interest ω are much larger than the plasma frequency ωpe. An expansion of the transfer function to second order in the parameter X (= ω2pe/ω2) is carried out. In this limit the dispersive properties of the ionosphere are manifested as a frequency-dependent time of arrival that includes quadratic, cubic, and quartic terms in 1/ω. The coefficients of these terms are related to the total electron content (TEC) along the slant path from transmitter to receiver, the product of TEC and the longitudinal magnetic field strength along the slant path, and refractive bending and higher-order electron density profile effects, respectively. By fitting the time of arrival versus frequency of a transionospheric signal to a polynomial in 1/ω it is possible to extract the TEC, the longitudinal magnetic field strength, the peak electron density, and an effective thickness for the ionosphere. This exercise was carried out for a number of transionospheric pulses measured in the VHF by the FORTE satellite receiver and generated by the Los Alamos Portable Pulser. The results are compared with predictions derived from the International Reference Ionosphere and the United States Geological Survey geomagnetic field model.

  6. Improved estimation of Mars ionosphere total electron content

    NASA Astrophysics Data System (ADS)

    Cartacci, M.; Sánchez-Cano, B.; Orosei, R.; Noschese, R.; Cicchetti, A.; Witasse, O.; Cantini, F.; Rossi, A. P.

    2018-01-01

    We describe an improved method to estimate the Total Electron Content (TEC) of the Mars ionosphere from the echoes recorded by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005; Orosei et al., 2015) onboard Mars Express in its subsurface sounding mode. In particular, we demonstrate that this method solves the issue of the former algorithm described at (Cartacci et al., 2013), which produced an overestimation of TEC estimates on the day side. The MARSIS signal is affected by a phase distortion introduced by the Mars ionosphere that produces a variation of the signal shape and a delay in its travel time. The new TEC estimation is achieved correlating the parameters obtained through the correction of the aforementioned effects. In detail, the knowledge of the quadratic term of the phase distortion estimated by the Contrast Method (Cartacci et al., 2013), together with the linear term (i.e. the extra time delay), estimated through a radar signal simulator, allows to develop a new algorithm particularly well suited to estimate the TEC for solar zenith angles (SZA) lower than 95° The new algorithm for the dayside has been validated with independent data from MARSIS in its Active Ionospheric Sounding (AIS) operational mode, with comparisons with other previous algorithms based on MARSIS subsurface data, with modeling and with modeling ionospheric distortion TEC reconstruction.

  7. The ionospheric response to the Saint Patrick storm over South East Asia

    NASA Astrophysics Data System (ADS)

    Spogli, L.; Alfonsi, L.; Di Mauro, D.; Pezzopane, M.; Cesaroni, C.; Povero, G., Sr.; Pini, M., Sr.; Dovis, F., Sr.; Romero, R.; Linty, N.; Abadi, P.; Nuraeni, F.; Husin, A.; Huy Le, M.; La The, V.; Pillat, V. G.; Floury, N.

    2015-12-01

    ERICA, a project funded by the European Space Agency, aims at characterizing the ionospheric variability of the Equatorial Ionospheric Anomaly in the South East Asia. In particular, ERICA focuses on the variation of the plasma electron density in the southern and northern crests of the anomaly and over the dip equator identified by the Equatorial Ionospheric Trough. To achieve this goal, an ad hoc measurements campaign is on-going with ground-based instruments located in the footprints of the Equatorial Ionospheric Anomaly and of the Equatorial Ionospheric Trough in Vietnam and Indonesia.The campaign started on the 1st of March 2015, timing to monitor the Saint Patrick storm effects on the ionosphere by means of ionosondes, double frequency hardware and software defined radio GNSS receivers, ground based and spaceborne magnetometers and Langmuir probe. Such multi-instrumental and multi-parametric observations of the region enables an in-depth investigation of the ionospheric response to the largest geomagnetic storm of the current solar cycle. The observations record positive and negative ionospheric storms, sporadic E layer and spread F conditions, scintillations enhancement and inhibition, TEC gradients. The ancillary information on the local magnetic field allows to highlight the variety of ionospheric perturbations happened during the main and the long recovery phase of the storm.The paper presents the outcomes of the investigation evidencing the peculiarities of a region not yet extensively reported in the open literature.

  8. A gridded global description of the ionosphere and thermosphere for 1996 - 2000

    NASA Astrophysics Data System (ADS)

    Ridley, A.; Kihn, E.; Kroehl, H.

    The modeling and simulation community has asked for a realistic representation of the near-Earth space environment covering a significant number of years to be used in scientific and engineering applications. The data, data management systems, assimilation techniques, physical models, and computer resources are now available to construct a realistic description of the ionosphere and thermosphere over a 5 year period. DMSP and NOAA POES satellite data and solar emissions were used to compute Hall and Pederson conductances in the ionosphere. Interplanetary magnetic field measurements on the ACE satellite define average electrostatic potential patterns over the northern and southern Polar Regions. These conductances, electric field patterns, and ground-based magnetometer data were input to the Assimilative Mapping of Ionospheric Electrodynamics model to compute the distribution of electric fields and currents in the ionosphere. The Global Thermosphere Ionosphere Model (GITM) used the ionospheric electrodynamic parameters to compute the distribution of particles and fields in the ionosphere and thermosphere. GITM uses a general circulation approach to solve the fundamental equations. Model results offer a unique opportunity to assess the relative importance of different forcing terms under a variety of conditions as well as the accuracies of different estimates of ionospheric electrodynamic parameters.

  9. GIM-TEC adaptive ionospheric weather assessment and forecast system

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Stanislawska, I.

    2013-09-01

    The Ionospheric Weather Assessment and Forecast (IWAF) system is a computer software package designed to assess and predict the world-wide representation of 3-D electron density profiles from the Global Ionospheric Maps of Total Electron Content (GIM-TEC). The unique system products include daily-hourly numerical global maps of the F2 layer critical frequency (foF2) and the peak height (hmF2) generated with the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, upgraded by importing the daily-hourly GIM-TEC as a new model driving parameter. Since GIM-TEC maps are provided with 1- or 2-days latency, the global maps forecast for 1 day and 2 days ahead are derived using an harmonic analysis applied to the temporal changes of TEC, foF2 and hmF2 at 5112 grid points of a map encapsulated in IONEX format (-87.5°:2.5°:87.5°N in latitude, -180°:5°:180°E in longitude). The system provides online the ionospheric disturbance warnings in the global W-index map establishing categories of the ionospheric weather from the quiet state (W=±1) to intense storm (W=±4) according to the thresholds set for instant TEC perturbations regarding quiet reference median for the preceding 7 days. The accuracy of IWAF system predictions of TEC, foF2 and hmF2 maps is superior to the standard persistence model with prediction equal to the most recent ‘true’ map. The paper presents outcomes of the new service expressed by the global ionospheric foF2, hmF2 and W-index maps demonstrating the process of origin and propagation of positive and negative ionosphere disturbances in space and time and their forecast under different scenarios.

  10. Active experiments in the ionosphere and variations of geophysical and meteorological parameters

    NASA Astrophysics Data System (ADS)

    Sivokon, Vladimir; Cherneva, Nina; Shevtsov, Boris

    Energy distribution in ionospheric-magnetospheric relations, as one of the possible external climatological factors, may be traced on the basis of the analysis of natural geophysical phenomena such as ionosphere artificial radio radiation and magnetic storms. Development of magnetic disturbances is, to some extent, associated with current variations in electrojet. In its turn, some technologies are known which may affect electrojet and its characteristics. The method, developed by the authors, is based on a complex comparison of different geophysical fields and allows us to determine the degree of active experiment effect on energy change in ionospheric-magnetospheric relations and to evaluate on this basis the degree of active experiment effect on climate in the ionosphere. Within the framework of RAS Presidium Program Project “Determination of climate-forming characteristic changes on the basis of monitoring of geophysical field variations”, investigations have been carried out, which showed the possibility of ionosphere modification effect on the energy of magnetospheric-ionospheric relations. Evaluation of possible climate changes considering ionospheric-magnetospheric relations has not been previously discussed.

  11. 3D Imaging with Holographic Tomography

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Kou, Shan Shan

    2010-04-01

    There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we

  12. Longitudinal Ionospheric Variability Observed by LITES on the ISS

    NASA Astrophysics Data System (ADS)

    Stephan, A. W.; Finn, S. C.; Cook, T.; Geddes, G.; Chakrabarti, S.; Budzien, S. A.

    2017-12-01

    The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an imaging spectrograph designed to measure altitude profiles (150-350 km) of extreme- and far-ultraviolet airglow emissions that originate from photochemical processes in the ionosphere and thermosphere. During the daytime, LITES observes the bright O+ 83.4 nm emission from which the ionospheric profile can be inferred. At night, recombination emissions at 91.1 and 135.6 nm provide a direct measure of the electron content along the line of sight. LITES was launched and installed on the International Space Station (ISS) in late February 2017 where it has been operating along with the highly complementary GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment. We will present some of the first observations from LITES in April 2017 that show longitudinal patterns in ionospheric density and the daily variability in those patterns. LITES vertical imaging from a vantage point near 410 km enables a particularly unique perspective on the altitude of the ionospheric peak density at night that can complement and inform other ground- and space-based measurements, and track the longitude-altitude variability that is reflective of changes in equatorial electrodynamics.

  13. Global ionospheric dynamics and electrodynamics during geomagnetic storms (Invited)

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Tsurutani, B.; Verkhoglyadova, O. P.; Komjathy, A.; Butala, M. D.

    2013-12-01

    Globally distributed total electron content (TEC) data has become an important tool for exploring the consequences of storm-time electrodynamics. Magnetosphere-ionosphere coupling during the main phase is responsible for the largest ionospheric effects observed during geomagnetic storms, mediated by global scale electrodynamics. Recent research using case studies reveals a complex picture of M-I coupling and its relationship to interplanetary drivers such as the solar wind electric field. Periods of direct coupling exist where the solar wind electric field is strongly correlated with prompt penetration electric fields, observed as enhanced vertical plasma drifts or an enhanced electrojet in the daytime equatorial ionosphere. Periods of decoupling between low latitude electric fields and the solar wind electric field are also observed, but the factors distinguishing these two types of response have not been clearly identified. Recent studies during superstorms suggest a role for the transverse (y-component) of the interplanetary magnetic field, which affects magnetospheric current systems and therefore may affect M-I coupling, with significant ionospheric consequences. Observations of the global ionospheric response to a range of geomagnetic storm intensities are presented. Scientific understanding of the different factors that affect electrodynamic aspects of M-I coupling are discussed.

  14. Planning for coordinated space and ground-based ionospheric modification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.C.

    1990-10-01

    The planning and conducting of coordinated space and ground-based ionospheric modification experiments are discussed. The purpose of these experiments is to investigate (1) the nonlinear VLF wave interaction with the ionospheric plasmas, and (2) the nonlinear propagation of VLF waves in the HF-modified ionosphere. It is expected that the HY-induced ionospheric density striations can render the nonlinear mode conversion of VLF waves into lower hybrid waves. Lower hybrid waves can also be excited parametrically by the VLF waves in the absence of the density striations if the VLF waves are intense enough. Laboratory experiments are planned for crosschecking the resultsmore » obtained from the field experiments.« less

  15. ISO Technical Specification for the Ionosphere -IRI Recent Activities

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Reinisch, Bodo; Tamara, Gulyaeva

    ISO Technical Specification TS 16457 recommends the International Reference Ionosphere (IRI) for the specification of ionospheric densities and temperatures. We review the latest develop-ments towards improving the IRI model and the newest version of the model IRI-2010. IRI-2010 includes several important improvements and additions. This presentation introduces these changes and discusses their benefits. The changes affect primarily the density profiles in the bottomside ionosphere and the density and height of the F2 peak, the point of highest density in the ionosphere. An important new addition to the model is the inclusion of auroral boundaries and their movement with magnetic activity. We will also discuss the status of other ongoing IRI activities and some of the recent applications of the IRI model. The homepage for the IRI project is at http://IRI.gsfc.nasa.gov/.

  16. Active experiments in the ionosphere and geomagnetic field variations

    NASA Astrophysics Data System (ADS)

    Sivokon, V. P.; Cherneva, N. V.; Khomutov, S. Y.; Serovetnikov, A. S.

    2014-11-01

    Variations of ionospheric-magnetospheric relation energy, as one of the possible outer climatology factors, may be traced on the basis of analysis of natural geophysical phenomena such as ionosphere artificial radio radiation and magnetic storms. Experiments on active impact on the ionosphere have been carried out for quite a long time in Russia as well. The most modern heating stand is located in Alaska; it has been used within the HAARP Program. The possibility of this stand to affect geophysical fields, in particular, the geomagnetic field is of interest.

  17. Extremely Low Ionospheric Peak Altitudes in the Polar-Hole Region

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Grebowsky, Joseph M.

    1999-01-01

    Vertical electron-density (N (sub e)) profiles, deduced from newly-available ISIS-II digital ionospheric topside-sounder data, are used to investigate the "polar-hole" region within the winter, nighttime polar cap ionosphere during solar minimum. The hole region is located around 0200 MLT near the poleward side of the auroral oval. Earlier investigations had revealed very low N (sub e) values in this region (down to 200/cu cm near 300 km). In the present study, such low N, values (approx. 100/cu cm) were only found near the ISIS (International Satellite for Ionospheric Study)-II altitude of 1400 km. The peak ionospheric concentration below the spacecraft remained fairly constant (approx. 10 (exp 5)/cu cm across the hole region but the altitude of the peak dropped dramatically. This peak dropped, surprisingly, to the vicinity of 100 km. These observations suggest that the earlier satellite in situ measurements, interpreted as deep holes in the ionospheric F-region concentration, could have been made during conditions of an extreme decrease in the altitude of the ionospheric N (sub e) peak. The observations, in combination with other data, indicate that the absence of an F-layer peak may be a frequent occurrence at high latitudes.

  18. Global Distributions of Ionospheric Electrostatic Potentials for Various Interplanetary Conditions

    NASA Astrophysics Data System (ADS)

    Kartalev, M.; Papitashvili, V.; Keremidarska, V.; Grigorov, K.; Romanov, D.

    2001-12-01

    We report on a study of the global ionospheric electrostatic potential distributions obtained from combining two algorithms used for the mapping of high-latitude and middle-latitude ionospheric electrodynamics; that is, the LiMIE (http://www.sprl.umich.edu/mist/) and IMEH (http://geospace.nat.bg) models, respectively. In this combination, the latter model utilizes the LiMIE high-latitude field-aligned current distributions for various IMF conditions and different seasons (summer, winter, equinox). The IMEH model is a mathematical tool, allowing us to study conjugacy (or non-conjugacy) of the ionospheric electric fields on a global scale, from the northern and southern polar regions to the middle- and low-latitudes. The proposed numerical scheme permits testing of different mechanisms of the interhemispheric coupling and mapping to the ionosphere through the appropriate current systems. The scheme is convenient for determining self-consistently the separatrices in both the northern and southern hemispheres. In this study we focus on the global ionospheric electrostatic field distributions neglecting other possible electric field sources. Considering some implications of the proposed technique for the space weather specification and forecasting, we developed a Web-based interface providing global distributions of the ionospheric electrostatic potentials in near-real time from the ACE upstream solar wind observations at L1.

  19. Strike-slip earthquakes can also be detected in the ionosphere

    NASA Astrophysics Data System (ADS)

    Astafyeva, Elvira; Rolland, Lucie M.; Sladen, Anthony

    2014-11-01

    It is generally assumed that co-seismic ionospheric disturbances are generated by large vertical static displacements of the ground during an earthquake. Consequently, it is expected that co-seismic ionospheric disturbances are only observable after earthquakes with a significant dip-slip component. Therefore, earthquakes dominated by strike-slip motion, i.e. with very little vertical co-seismic component, are not expected to generate ionospheric perturbations. In this work, we use total electron content (TEC) measurements from ground-based GNSS-receivers to study ionospheric response to six recent largest strike-slip earthquakes: the Mw7.8 Kunlun earthquake of 14 November 2001, the Mw8.1 Macquarie earthquake of 23 December 2004, the Sumatra earthquake doublet, Mw8.6 and Mw8.2, of 11 April 2012, the Mw7.7 Balochistan earthquake of 24 September 2013 and the Mw 7.7 Scotia Sea earthquake of 17 November 2013. We show that large strike-slip earthquakes generate large ionospheric perturbations of amplitude comparable with those induced by dip-slip earthquakes of equivalent magnitude. We consider that in the absence of significant vertical static co-seismic displacements of the ground, other seismological parameters (primarily the magnitude of co-seismic horizontal displacements, seismic fault dimensions, seismic slip) may contribute in generation of large-amplitude ionospheric perturbations.

  20. GNSS Active Network of West of Sao Paulo State Applied to Ionosphere Monitoring

    NASA Astrophysics Data System (ADS)

    Aguiar, C. R.; Camargo, P. D.

    2008-12-01

    In Brazil, a research project of atmospheric studies from reference stations equipped with dual frequency GNSS receivers is in initial phase. These stations have composed the GNSS Active Network of West Sao Paulo State (Network-GNSS-SP) and have been broadcasting GNSS data in real time. Network-GNSS-SP is in tests phase and it's the first Brazilian network to provide GNSS measurements in real time. In Spatial Geodesy Study Brazilian Group (GEGE) has been researched the ionosphere effects on L band signal, as well as the GPS potential on ionosphere dynamic monitoring and, consequently, the application of this one to spatial geophysics study, besides dynamic ionosphere modeling. An algorithm based on Kalman filter has been developed for ionosphere modeling at low latitude regions and estimation of ionospheric parameters as absolute vertical TEC (VTEC) for the monitoring of ionosphere behavior. The approach used in this study is to apply a model for the ionospheric vertical delay. In the algorithm, the ionospheric vertical delay is modeled and expanded by Fourier series. In this paper has been realized on-line processing of the Network-GNSS-SP data and the initial results reached with the algorithm can already be analyzed. The results show the ionospheric maps created from real time TEC estimates.

  1. Computerized tomography assessment of cranial and mid-facial fractures in patients following road traffic accident in South-West Nigeria.

    PubMed

    Abiodun, Adeyinka; Atinuke, Agunloye; Yvonne, Osuagwu

    2012-01-01

    Globally, the most common cause of cranio-facial fractures is road traffic accident (RTA) with computerized tomography (CT) scan as the gold standard in the diagnosis of patients with cranial and facial fractures. The purpose of this study is to assess the pattern of cranial and facial fractures on CT in head injured patients following RTA. Using CT, detailed analyses of 236 patients with head injury following RTA were performed between 2006 and 2008, Data recorded included cause of injury, age and gender distribution, cranial and mid-facial fractures sustained, associated intracranial and soft tissue injury and the types of vehicular accident. The peak age of the patients was between 30 and 39 years. RTA was more common in males than females. Motor-vehicle was the most common cause of RTA in the present study (66.9%). More passengers were involved in the motor vehicle (87.3%) and motorcycle (52.0%) accidents than their corresponding drivers, and they were predominantly males. Majority of the patients involved in pedestrian road traffic accident (PRTA) were motor vehicle victims (93.3%). There were more patients with cranial (59.8%) than mid-facial fractures (40.2%). Majority of the patients had temporal bone cranial fracture (31.1%) and combined or mixed type of mid-facial fractures (41.3%). Intracranial bleeding (31.7%) was the most common associated intracranial finding. RTAs continue to be a menace and are the main cause of craniofacial injury in Nigeria. This pattern of etiologic factors is in accordance with data from most developing countries. Special attention should be paid to reinforcement of legislation and enactment of laws aimed at the reduction of head injury and provision for easy access to CT for the head injured patient.

  2. Broadband Ionospheric Scintillation Measurements from Space

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  3. Recent Advances in Ionospheric Modeling Using the USU GAIM Data Assimilation Models

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Thompson, D. C.; Schunk, R. W.

    2009-12-01

    The ionospheric plasma distribution at low and mid latitudes has been shown to display both a background state (climatology) and a disturbed state (weather). Ionospheric climatology has been successfully modeled, but ionospheric weather has been much more difficult to model because the ionosphere can vary significantly on an hour-by-hour basis. Unfortunately, ionospheric weather can have detrimental effects on several human activities and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems using Global Positioning System (GPS) satellites. As shown by meteorologists and oceanographers, the most reliable weather models are physics-based, data-driven models that use Kalman filter or other data assimilation techniques. Since the state of a medium (ocean, lower atmosphere, ionosphere) is driven by complex and frequently nonlinear internal and external processes, it is not possible to accurately specify all of the drivers and initial conditions of the medium. Therefore physics-based models alone cannot provide reliable specifications and forecasts. In an effort to better understand the ionosphere and to mitigate its adverse effects on military and civilian operations, specification and forecast models are being developed that use state-of-the-art data assimilation techniques. Over the past decade, Utah State University (USU) has developed two data assimilation models for the ionosphere as part of the USU Global Assimilation of Ionospheric Measurements (GAIM) program and one of these models has been implemented at the Air Force Weather Agency for operational use. The USU-GAIM models are also being used for scientific studies, and this should lead to a dramatic advance in our understanding of ionospheric physics; similar to what occurred in meteorology and oceanography after the introduction of data assimilation models in those fields. Both USU-GAIM models are capable of assimilating data from a variety of data

  4. Protecting Privacy in Computerized Medical Information.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    This report analyzes the implications of computerized medical information and the challenges it brings to individual privacy. The report examines the nature of the privacy interest in health care information and the current state of the law protecting that information; the nature of proposals to computerize health care information and the…

  5. Geospace ionosphere research with a MF/HF radio instrument on a cubesat

    NASA Astrophysics Data System (ADS)

    Kallio, E. J.; Aikio, A. T.; Alho, M.; Fontell, M.; van Gijlswijk, R.; Kauristie, K.; Kestilä, A.; Koskimaa, P.; Makela, J. S.; Mäkelä, M.; Turunen, E.; Vanhamäki, H.

    2016-12-01

    Modern technology provides new possibilities to study geospace and its ionosphere, using spacecraft and and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We present computational simulation results and measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in 2017 (http://www.suomi100satelliitti.fi/eng). We have modelled the propagation of the radio waves, both ground generated man-made waves and space formed space weather related waves, through the 3D

  6. VLF remote sensing of the ambient and modified lower ionosphere

    NASA Astrophysics Data System (ADS)

    Demirkol, Mehmet Kursad

    2000-08-01

    Electron density and temperature changes in the D region are sensitively manifested as changes in the amplitude and phase of subionospheric Very Low Frequency (VLF) signals propagating beneath the perturbed region. Both localized and large scale disturbances (either in electron density or temperature) in the D region cause significant scattering of VLF waves propagating in the earth- ionosphere waveguide, leading to measurable changes in the amplitude and phase of the VLF waves. Large scale auroral disturbances, associated with intensification of the auroral electrojet, as well as ionospheric disturbances produced during relativistic electron enhancements, cause characteristic changes over relatively long time scales that allow the assessment of the `ambient' ionosphere. Localized ionospheric disturbances are also produced by powerful VLF transmitting facilities such as the High Power Auroral Stimulation (HIPAS) facility, the High frequency Active Auroral Research Program (HAARP), and also by lightning discharges. Amplitude and phase changes of VLF waveguide signals scattered from such artificially heated ionospheric patches are known to be detectable. In this study, we describe a new inversion algorithm to determine altitude profiles of electron density and collision frequency within such a localized disturbance by using the measured amplitude and phase of three different VLF signals at three separate receiving sites. For this purpose a new optimization algorithm is developed which is primarily based on the recursive usage of the three dimensional version of the Long Wave Propagation, Capability (LWPC) code used to model the subionospheric propagation and scattering of VLF signals in the earth- ionosphere waveguide in the presence of ionospheric disturbances.

  7. Key Issues in the Production of Ionospheric Outflows

    NASA Astrophysics Data System (ADS)

    Lotko, W.

    2017-12-01

    Global models demonstrate that outflows of ionospheric ions can have profound effects on the dynamics of the solar wind-magnetosphere-ionosphere-thermosphere system, particularly during geomagnetic storms. Yet the processes that determine where and when outflows occur are poorly understood, in large part because a full complement of critical multivariable measurements of outflows and their causal drivers has yet to be assembled. Development of accurate regional and global predictive models of outflows has been hampered by this lack of empirical knowledge, but models are also challenged by the additional requirement of having to reduce the complex microphysics of ion energization into lumped relations that specify outflow characteristics through causal regulators. Opportunities to improve understanding of this problem are vast. This overview will focus on a limited set of priority questions that address how ions overcome gravity to leave the ionosphere; the timing, rate, spatial distribution and energetics of their exodus; how their flight impacts the ionosphere-thermosphere environment that spawns outflows; and the influence of magnetospheric feedback on outflow production.

  8. Lunar ionosphere exploration method using auroral kilometric radiation

    NASA Astrophysics Data System (ADS)

    Goto, Yoshitaka; Fujimoto, Takamasa; Kasahara, Yoshiya; Kumamoto, Atsushi; Ono, Takayuki

    2011-01-01

    The evidence of a lunar ionosphere provided by radio occultation experiments performed by the Soviet spacecraft Luna 19 and 22 has been controversial for the past three decades because the observed large density is difficult to explain theoretically without magnetic shielding from the solar wind. The KAGUYA mission provided an opportunity to investigate the lunar ionosphere with another method. The natural plasma wave receiver (NPW) and waveform capture (WFC) instruments, which are subsystems of the lunar radar sounder (LRS) on board the lunar orbiter KAGUYA, frequently observe auroral kilometric radiation (AKR) propagating from the Earth. The dynamic spectra of the AKR sometimes exhibit a clear interference pattern that is caused by phase differences between direct waves and waves reflected on a lunar surface or a lunar ionosphere if it exists. It was hypothesized that the electron density profiles above the lunar surface could be evaluated by comparing the observed interference pattern with the theoretical interference patterns constructed from the profiles with ray tracing. This method provides a new approach to examining the lunar ionosphere that does not involve the conventional radio occultation technique.

  9. Structure and dynamics of the ionosphere. [Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Nagy, A. F.; Brace, L. H.

    1982-01-01

    The structure of the Venus ionosphere and the major processes occurring within it are summarized. The daytime ionosphere is created by solar EUV radiation incident on the thermosphere; it is in photochemical equilibrium near its peak at about 142 km, where O2(+) is the major ion, and near diffusive equilibrium in its upper regions, where the major ion is O(+). The day-to-night plasma pressure gradient across the terminator drives a nightward ion flow which, together with electron precipitation, contributes to the formation of the nighttime ionosphere. Large-scale radial holes or plasma depletions extending downwards to nearly the ionization peak in the antisolar region are also observed which are associated with regions of strong radial magnetic fields. The ionopause is a highly dynamic and complex surface, extending from an average altitude of 290 km at the subsolar point to about 1000 km at the terminator and from 200 to over 3000 km on the nightside. A variety of solar wind interaction products are observed in the mantle, a transition region between the ionospheric plasma and the flowing shocked solar wind.

  10. Global 3-D ionospheric electron density reanalysis based on multisource data assimilation

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Hunt, Douglas C.; Wang, Wenbin; Solomon, Stanley C.; Burns, Alan G.; Bilitza, Dieter; Liu, Jann-Yenq; Wan, Weixing; Wickert, Jens

    2012-09-01

    We report preliminary results of a global 3-D ionospheric electron density reanalysis demonstration study during 2002-2011 based on multisource data assimilation. The monthly global ionospheric electron density reanalysis has been done by assimilating the quiet days ionospheric data into a data assimilation model constructed using the International Reference Ionosphere (IRI) 2007 model and a Kalman filter technique. These data include global navigation satellite system (GNSS) observations of ionospheric total electron content (TEC) from ground-based stations, ionospheric radio occultations by CHAMP, GRACE, COSMIC, SAC-C, Metop-A, and the TerraSAR-X satellites, and Jason-1 and 2 altimeter TEC measurements. The output of the reanalysis are 3-D gridded ionospheric electron densities with temporal and spatial resolutions of 1 h in universal time, 5° in latitude, 10° in longitude, and ˜30 km in altitude. The climatological features of the reanalysis results, such as solar activity dependence, seasonal variations, and the global morphology of the ionosphere, agree well with those in the empirical models and observations. The global electron content derived from the international GNSS service global ionospheric maps, the observed electron density profiles from the Poker Flat Incoherent Scatter Radar during 2007-2010, and foF2 observed by the global ionosonde network during 2002-2011 are used to validate the reanalysis method. All comparisons show that the reanalysis have smaller deviations and biases than the IRI-2007 predictions. Especially after April 2006 when the six COSMIC satellites were launched, the reanalysis shows significant improvement over the IRI predictions. The obvious overestimation of the low-latitude ionospheric F region densities by the IRI model during the 23/24 solar minimum is corrected well by the reanalysis. The potential application and improvements of the reanalysis are also discussed.

  11. Applications of a time-dependent polar ionosphere model for radio modification experiments

    NASA Astrophysics Data System (ADS)

    Fallen, Christopher Thomas

    A time-dependent self-consistent ionosphere model (SLIM) has been developed to study the response of the polar ionosphere to radio modification experiments, similar to those conducted at the High-Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska. SCIM solves the ion continuity and momentum equations, coupled with average electron and ion gas energy equations; it is validated by reproducing the diurnal variation of the daytime ionosphere critical frequency, as measured with an ionosonde. Powerful high-frequency (HF) electromagnetic waves can drive naturally occurring electrostatic plasma waves, enhancing the ionospheric reflectivity to ultra-high frequency (UHF) radar near the HF-interaction region as well as heating the electron gas. Measurements made during active experiments are compared with model calculations to clarify fundamental altitude-dependent physical processes governing the vertical composition and temperature of the polar ionosphere. The modular UHF ionosphere radar (MUIR), co-located with HAARP, measured HF-enhanced ion-line (HFIL) reflection height and observed that it ascended above its original altitude after the ionosphere had been HF-heated for several minutes. The HFIL ascent is found to follow from HF-induced depletion of plasma surrounding the F-region peak density layer, due to temperature-enhanced transport of atomic oxygen ions along the geomagnetic field line. The lower F-region and topside ionosphere also respond to HF heating. Model results show that electron temperature increases will lead to suppression of molecular ion recombination rates in the lower F region and enhancements of ambipolar diffusion in the topside ionosphere, resulting in a net enhancement of slant total electron content (TEC); these results have been confirmed by experiment. Additional evidence for the model-predicted topside ionosphere density enhancements via ambipolar diffusion is provided by in-situ measurements of ion density and

  12. A Multi-ring Ionospheric Plasma Probe

    NASA Technical Reports Server (NTRS)

    Sheldon, J. W.

    1972-01-01

    An ionospheric plasma probe was constructed which consists of a long cylinder with the end facing the flow closed by an end plate made up of multiple annular rings and a center disk. A theoretical argument is given which yields the plasma potential and electron temperature in terms of known plasma parameters and the currents to the various rings of the end plate. This probe was successfully operated in an ionospheric flow simulation facility and the resulting plasma potential is in excellent agreement with the traditional Langmuir analysis (1.22 volts).

  13. Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign

    NASA Astrophysics Data System (ADS)

    Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer

  14. Current to the ionosphere following a lightning stroke

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Baginski, M. E.

    1987-01-01

    A simple analytical expression for calculating the total current waveform to the ionosphere after a lightning stroke is derived. The validity of this expression is demonstrated by comparison with a more rigorous computer solution of Maxwell's equations. The analytic model demonstrates that the temporal variation of the current induced in the ionosphere and global circuit and the corresponding return current in the earth depends on the conductivity profile at intervening altitudes in the middle atmosphere. A conclusion is that capacitative coupling may provide tighter coupling between the lower atmosphere and the ionosphere than usually considered, in both directions, which may help to explain observations which seem to indicate that magnetospheric phenomena may in some instances trigger lightning.

  15. Peculiarities of Ionospheric Response to Solar Eruptive Events

    NASA Astrophysics Data System (ADS)

    Cadez, V. M.; Nina, A.

    2013-05-01

    Solar eruptive events such as flares and coronal mass ejections (CMEs) affect the terrestrial upper atmosphere, the magnetosphere and ionosphere in particular, through sudden impacts of additional X-ray radiation and by increased intensity of the solar wind. As a consequence, a variety perturbation features occur locally as well as globally in the plasma medium in space around the Earth. We study some of such transient phenomena taking place at low altitudes of the ionosphere (below 90 km) by monitoring and analyzing registered amplitude and phase time variations of VLF radio waves with given frequencies. The main object of this research is gaining an additional insight into the structure and physical properties of the lower ionosphere.

  16. BOLAS: A Canadian-US Ionospheric Tether Mission

    NASA Technical Reports Server (NTRS)

    Tyc, George; Vigneron, Frank; Jablonski, Alexander; James, H. Gordon; Carrington, Connie; Rupp, Charles

    1997-01-01

    Everyday, international broadcasters, ships, and aircraft use a naturally conducting atmospheric layer, the ionosphere, to reflect communications signals over the Earth's horizon. A better understanding of this layer, with its irregularities, instabilities, and dynamics, would improve communications transmission and reception. This atmospheric layer is also a lens that can distort signal transmissions from communications, navigation, and surveillance satellites. The ionosphere over Canada and other high latitude countries can carry large currents and is particularly dynamic, so that a scientific understanding of this layer is critical. The BOLAS (Bistatic Observations using Low Altitude Satellites) mission would characterize reflective and transmissive properties of the ionosphere by flying two satellites, each with identical HF receivers, dipole antennas, particle probes, and GPS receivers. The satellites would be connected by a non-conducting tether to maintain a 100 m separation, and would cartwheel in the orbit plane to spatially survey the ionosphere. The six-month mission would fly in a high inclination, 350 x 600 km orbit, and would be active during passes over the auroral region of Canada. This paper discusses the system requirements and architecture, spacecraft and operations concepts, and mission design, as well as team organization, international cooperation and the scientific and technological benefits that are expected.

  17. Ionospheric Refraction Corrections in the GTDS for Satellite-To-Satellite Tracking Data

    NASA Technical Reports Server (NTRS)

    Nesterczuk, G.; Kozelsky, J. K.

    1976-01-01

    In satellite-to-satellite tracking (SST) geographic as well as diurnal ionospheric effects must be contended with, for the line of sight between satellites can cross a day-night interface or lie within the equatorial ionosphere. These various effects were examined and a method of computing ionospheric refraction corrections to range and range rate measurements with sufficient accuracy were devised to be used in orbit determinations. The Bent Ionospheric Model is used for SST refraction corrections. Making use of this model a method of computing corrections through large ionospheric gradients was devised and implemented into the Goddard Trajectory Determination System. The various considerations taken in designing and implementing this SST refraction correction algorithm are reported.

  18. First demonstration of HF-driven ionospheric currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.

    2011-10-01

    The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.

  19. Computerized Diagnostic Testing: Problems and Possibilities.

    ERIC Educational Resources Information Center

    McArthur, David L.

    The use of computers to build diagnostic inferences is explored in two contexts. In computerized monitoring of liquid oxygen systems for the space shuttle, diagnoses are exact because they can be derived within a world which is closed. In computerized classroom testing of reading comprehension, programs deliver a constrained form of adaptive…

  20. Ionospheric Simulation System for Satellite Observations and Global Assimilative Modeling Experiments (ISOGAME)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.

    2013-01-01

    ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.

  1. Ionospheric scintillation detection based on GPS observations, a case study over Iran

    NASA Astrophysics Data System (ADS)

    Sobhkhiz Miandehi, Sahar; Alizadeh Elizei, M. Mahdi; Schuh, Harald

    2017-04-01

    Global Positioning System (GPS) which is used extensively for various purposes such as navigation, surveying, remote sensing and telecommunication, is strongly affected by the earth's upper atmosphere, the ionosphere. Ionosphere is a highly variable region with complex physical characteristics in which the density of free electrons are large enough to have considerable effects on signals' propagation travelling through this dispersive medium. As GPS signals travel through the ionosphere, they may experience rapid amplitude fluctuations or unexpected phase changes. This is referred to as ionospheric scintillation. Ionospheric scintillation which is caused by small scale irregularities in the electron density, is one of the dominant propagation disturbances at radio frequency signals. These irregularities severely affect the accuracy and reliability of GPS measurements. Therefore it is necessary to investigate ionospheric scintillation and its effects on GPS observations. The focus of this paper is to detect ionospheric scintillations over Iran's region, during different periods of solar activity and to investigate these effects on GPS observations in more detail. Furthermore the effects of these irregularities on regional modeling of ionosphere over Iran is also investigated. The results show that effectiveness of this phenomenon depends on geographic location, local time and global geomagnetic storm index (kp index). The required data for this investigation are ground based measurements of permanent GPS stations over Iran, established by the National Cartographic Center of Iran (NCC).

  2. Ionospheric corrections to precise time transfer using GPS

    NASA Technical Reports Server (NTRS)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of

  3. Jupiter's non-auroral Ionosphere and Thermosphere

    NASA Astrophysics Data System (ADS)

    Stallard, T.; Melin, H.; Burrell, A. G.; Hsu, V.; Johnson, R.; Moore, L.; O'Donoghue, J.; Thayer, J. P.

    2017-12-01

    Until recently, our understanding of the non-auroral ionosphere of Jupiter was very limited. However, with the arrival of the Juno spacecraft at Jupiter, we have begun to revise past observations of this region, as well as utilizing modern telescope facilities, in order to reveal a complex array of ionospheric features that show strong coupling with both the local magnetic field and dynamics within the underlying thermosphere. The first feature that was identified was an apparent `Great Dark Spot' in the sub-auroral ionosphere, almost as large as the Great Red Spot. This was observed well away from the northern magnetic pole, mapping to only 2.4 jovian radii. Spectra of the feature showed that it was produced by a 150K cooling in the thermosphere. However, images taken between 1995-2000 showed this feature was consistently observed over two decades at similar magnetic longitudes, but appeared to vary in size, morphology and exact location on a timescale of only days. This suggests that the Great Dark Spot is a large thermospheric vortex driven by auroral heating, similar to transitory features observed at Earth, forming in sub-auroral regions during periods of active aurora. Careful analysis of the Jupiter images then allowed us to measure ionospheric emission down to the equator. This revealed the location of Jupiter's magnetic equator for the first time, appearing as a dark sinusoidal ribbon. This feature appears to be produced as photo-electrons are pushed poleward of the equator when magnetic fields are parallel with the planet's surface, a different process than the dominant plasma fountain that drives Earth's equatorial anomaly. Also revealed were a series of dark spots. Recent Juno magnetometer measurements show that two of these spots appear in regions of high radial magnetic field, suggesting that these regions of the ionosphere are shielded, an inversion of the same process that drives higher ionization in the South Atlantic Anomaly.

  4. Computerized Dead-Space Volume Measurement of Face Masks Applied to Simulated Faces.

    PubMed

    Amirav, Israel; Luder, Anthony S; Halamish, Asaf; Marzuk, Chatib; Daitzchman, Marcelo; Newhouse, Michael T

    2015-09-01

    The dead-space volume (VD) of face masks for metered-dose inhaler treatments is particularly important in infants and young children with asthma, who have relatively low tidal volumes. Data about VD have been traditionally obtained from water displacement measurements, in which masks are held against a flat surface. Because, in real life, masks are placed against the face, VD is likely to differ considerably between masks depending upon their contour and fit. The aim of this study was to develop an accurate and reliable way to measure VD electronically and to apply this technique by comparing the electronic VD of commonly available face masks. Average digital faces were obtained from 3-dimensional images of 270 infants and children. Commonly used face masks (small and medium) from various manufacturers (Monaghan Medical, Pari Respiratory Equipment, Philips Respironics, and InspiRx) were scanned and digitized by means of computed tomography. Each mask was electronically applied to its respective digital face, and the VD enclosed (mL) was computerized and precisely measured. VD varied between 22.6 mL (SootherMask, InspiRx) and 43.1 mL (Vortex, Pari) for small masks and between 41.7 mL (SootherMask) and 71.5 mL (AeroChamber, Monaghan Medical) for medium masks. These values were significantly lower and less variable than measurements obtained by water displacement. Computerized techniques provide an innovative and relatively simple way of accurately measuring the VD of face masks applied to digital faces. As determined by computerized measurement using average-size virtual faces, the InspiRx masks had a significantly smaller VD for both small and medium masks compared with the other masks. This is of considerable importance with respect to aerosol dose and delivery time, particularly in young children. (ClinicalTrials.gov registration NCT01274299.). Copyright © 2015 by Daedalus Enterprises.

  5. AATR an ionospheric activity indicator specifically based on GNSS measurements

    NASA Astrophysics Data System (ADS)

    Juan, José Miguel; Sanz, Jaume; Rovira-Garcia, Adrià; González-Casado, Guillermo; Ibáñez, D.; Perez, R. Orus

    2018-03-01

    This work reviews an ionospheric activity indicator useful for identifying disturbed periods affecting the performance of Global Navigation Satellite System (GNSS). This index is based in the Along Arc TEC Rate (AATR) and can be easily computed from dual-frequency GNSS measurements. The AATR indicator has been assessed over more than one Solar Cycle (2002-2017) involving about 140 receivers distributed world-wide. Results show that it is well correlated with the ionospheric activity and, unlike other global indicators linked to the geomagnetic activity (i.e. DST or Ap), it is sensitive to the regional behaviour of the ionosphere and identifies specific effects on GNSS users. Moreover, from a devoted analysis of different Satellite Based Augmentation System (SBAS) performances in different ionospheric conditions, it follows that the AATR indicator is a very suitable mean to reveal whether SBAS service availability anomalies are linked to the ionosphere. On this account, the AATR indicator has been selected as the metric to characterise the ionosphere operational conditions in the frame of the European Space Agency activities on the European Geostationary Navigation Overlay System (EGNOS). The AATR index has been adopted as a standard tool by the International Civil Aviation Organization (ICAO) for joint ionospheric studies in SBAS. In this work we explain how the AATR is computed, paying special attention to the cycle-slip detection, which is one of the key issues in the AATR computation, not fully addressed in other indicators such as the Rate Of change of the TEC Index (ROTI). After this explanation we present some of the main conclusions about the ionospheric activity that can extracted from the AATR values during the above mentioned long-term study. These conclusions are: (a) the different spatial correlation related with the MOdified DIP (MODIP) which allows to clearly separate high, mid and low latitude regions, (b) the large spatial correlation in mid

  6. Correction of Single Frequency Altimeter Measurements for Ionosphere Delay

    NASA Technical Reports Server (NTRS)

    Schreiner, William S.; Markin, Robert E.; Born, George H.

    1997-01-01

    This study is a preliminary analysis of the accuracy of various ionosphere models to correct single frequency altimeter height measurements for Ionospheric path delay. In particular, research focused on adjusting empirical and parameterized ionosphere models in the parameterized real-time ionospheric specification model (PRISM) 1.2 using total electron content (TEC) data from the global positioning system (GPS). The types of GPS data used to adjust PRISM included GPS line-of-sight (LOS) TEC data mapped to the vertical, and a grid of GPS derived TEC data in a sun-fixed longitude frame. The adjusted PRISM TEC values, as well as predictions by IRI-90, a climatotogical model, were compared to TOPEX/Poseidon (T/P) TEC measurements from the dual-frequency altimeter for a number of T/P tracks. When adjusted with GPS LOS data, the PRISM empirical model predicted TEC over 24 1 h data sets for a given local time to with in a global error of 8.60 TECU rms during a midnight centered ionosphere and 9.74 TECU rms during a noon centered ionosphere. Using GPS derived sun-fixed TEC data, the PRISM parameterized model predicted TEC within an error of 8.47 TECU rms centered at midnight and 12.83 TECU rms centered at noon. From these best results, it is clear that the proposed requirement of 3-4 TECU global rms for TOPEX/Poseidon Follow-On will be very difficult to meet, even with a substantial increase in the number of GPS ground stations, with any realizable combination of the aforementioned models or data assimilation schemes.

  7. Regional ionospheric TEC data assimilation and now-casting service

    NASA Astrophysics Data System (ADS)

    Aa, E.; Liu, S.; Wengeng, H.

    2017-12-01

    Ionospheric data assimilation is a now-casting technique to incorporate irregular ionospheric measurements into certain background model, which is an effective and efficient way to overcome the limitation of the unbalanced data distribution and to improve the accuracy of the model, so that the model and the data can be optimally combined with each other to produce a more reliable and reasonable system specification. In this study, a regional total electron content (TEC) now-casting system over China and adjacent areas (70E-140E and 15N-55N) is developed on the basis of data assimilation technique. The International Reference Ionosphere (IRI) is used here as background model, and the GNSS data are derived from both the Space Environment Monitoring Network of Chinese Academy of Sciences (SEMnet) and International GNSS Service (IGS) data. A Three-dimensional variation algorithm (3DVAR) combined with Gauss-Markov Kalman filter technique is used to implement the data assimilation. The regional gridded TEC maps and the position errors of single-frequency GPS receivers can be generated and publicized online (http://sepc.ac.cn/TEC_chn.php) in quasi-real time, which is updated for every 15 min. It is one of the ionospheric now-casting systems in China based on data assimilation algorithm, which can be used not only for real-time monitoring of ionosphere environment over China and adjacent areas, but also in providing accurate and effective specification of regional ionospheric TEC and error correction for satellite navigation, radar imaging, shortwave communication, and other relevant applications.

  8. Ionosphere variability at mid latitudes during sudden stratosphere warmings

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Maute, A. I.; Maruyama, N.

    2015-12-01

    Variability of the mid latitude ionosphere and thermosphere during the 2009 and 2013 sudden stratosphere warmings (SSWs) is investigated in the present study using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and model simulations. The simulations are performed using the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) and Ionosphere Plasmasphere Electrodynamics (IPE) model. Both the COSMIC observations and TIME-GCM simulations reveal perturbations in the F-region peak height (hmF2) at Southern Hemisphere mid latitudes during SSW time periods. The perturbations are ~20-30 km, which corresponds to 10-20% variability in hmF2. The TIME-GCM simulations and COSMIC observations of the hmF2 variability are in overall good agreement, and the simulations can thus be used to understand the physical processes responsible for the hmF2 variability. The simulation results demonstrate that the mid lattiude hmF2 variability is primarily driven by the propagation of the migrating semidiurnal lunar tide (M2) into the thermosphere where it modulates the field aligned neutrals winds, which in-turn raise and lower the F-region peak height. The importance of the thermosphere neutral winds on generating the ionosphere variability at mid latitudes during SSWs is supported by IPE simulations performed both with and without the neutral wind variability. Though there are subtle differences, the consistency of the behavior between the 2009 and 2013 SSWs suggests that variability in the Southern Hemisphere mid latitude ionosphere and thermosphere is a consistent feature of the SSW impact on the upper atmosphere.

  9. Impact of heliogeophysical disturbances on ionospheric HF channels

    NASA Astrophysics Data System (ADS)

    Uryadov, V. P.; Vybornov, F. I.; Kolchev, A. A.; Vertogradov, G. G.; Sklyarevsky, M. S.; Egoshin, I. A.; Shumaev, V. V.; Chernov, A. G.

    2018-04-01

    The article presents the results of the observation of a strong magnetic storm and two X-ray flares during the summer solstice in 2015, and their impact on the HF signals characteristics in ionospheric oblique sounding. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, ultimately causing a long blackout on paths adjacent to subauroral latitudes. On mid-latitude paths, the decrease in 1FMOF reached ∼50% relative to the average values for the quiet ionosphere. It is shown that the propagation conditions via the sporadic Es layer during the magnetic storm on a subauroral path are substantially better than those for F-mode propagation via the upper ionosphere. The delay of the sharp decrease in 1FMOF during the main phase of the magnetic storm allowed us to determine the propagation velocity of the negative phase disturbances (∼100 m/s) from subauroral to mid-latitude ionosphere along two paths: Lovozero - Yoshkar-Ola and Cyprus - Nizhny Novgorod. It is shown that both the LOF and the signal/noise ratio averaged over the frequency band corresponding to the propagation mode via the sporadic Es layer correlate well with the auroral AE index. Using an over-the-horizon chirp radar with a bistatic configuration on the Cyprus - Rostov-on-Don path, we located small-scale scattering irregularities responsible for abnormal signals in the region of the equatorial boundary of the auroral oval.

  10. Computerized Management of Physical Plant Services.

    ERIC Educational Resources Information Center

    Hawkey, Earl W.; Kleinpeter, Joseph

    Outlining the major areas to be considered when deciding whether or not to computerize physical plant services in higher education institutions, the author points out the shortcomings of manual record keeping systems. He gives five factors to consider when deciding to computerize: (1) time and money, (2) extent of operation, (3) current and future…

  11. Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2006-11-01

    The Utah State University Gauss-Markov Kalman Filter (GMKF) was developed as part of the Global Assimilation of Ionospheric Measurements (GAIM) program. The GMKF uses a physics-based model of the ionosphere and a Gauss-Markov Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) observations. The physics-based model is the Ionospheric Forecast Model (IFM), which accounts for five ion species and covers the E region, F region, and the topside from 90 to 1400 km altitude. Within the GMKF, the IFM derived ionospheric densities constitute a background density field on which perturbations are superimposed based on the available data and their errors. In the current configuration, the GMKF assimilates slant total electron content (TEC) from a variable number of global positioning satellite (GPS) ground sites, bottomside electron density (Ne) profiles from a variable number of ionosondes, in situ Ne from four Defense Meteorological Satellite Program (DMSP) satellites, and nighttime line-of-sight ultraviolet (UV) radiances measured by satellites. To test the GMKF for real-time operations and to validate its ionospheric density specifications, we have tested the model performance for a variety of geophysical conditions. During these model runs various combination of data types and data quantities were assimilated. To simulate real-time operations, the model ran continuously and automatically and produced three-dimensional global electron density distributions in 15 min increments. In this paper we will describe the Gauss-Markov Kalman filter model and present results of our validation study, with an emphasis on comparisons with independent observations.

  12. A method to identify aperiodic disturbances in the ionosphere

    NASA Astrophysics Data System (ADS)

    Wang, J.-S.; Chen, Z.; Huang, C.-M.

    2014-05-01

    In this paper, variations in the ionospheric F2 layer's critical frequency are decomposed into their periodic and aperiodic components. The latter include disturbances caused both by geophysical impacts on the ionosphere and random noise. The spectral whitening method (SWM), a signal-processing technique used in statistical estimation and/or detection, was used to identify aperiodic components in the ionosphere. The whitening algorithm adopted herein is used to divide the Fourier transform of the observed data series by a real envelope function. As a result, periodic components are suppressed and aperiodic components emerge as the dominant contributors. Application to a synthetic data set based on significant simulated periodic features of ionospheric observations containing artificial (and, hence, controllable) disturbances was used to validate the SWM for identification of aperiodic components. Although the random noise was somewhat enhanced by post-processing, the artificial disturbances could still be clearly identified. The SWM was then applied to real ionospheric observations. It was found to be more sensitive than the often-used monthly median method to identify geomagnetic effects. In addition, disturbances detected by the SWM were characterized by a Gaussian-type probability density function over all timescales, which further simplifies statistical analysis and suggests that the disturbances thus identified can be compared regardless of timescale.

  13. Satellite-motion Compensation for Monitoring Travelling Ionospheric Disturbances (TIDs) Using GPS

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.; Penney, R.

    2016-12-01

    The ionosphere exerts a strong influence over a wide range of modern communications and navigtion systems, but is subject to complex influences from both terrestrial and solar sources. Ionospheric disturbances can be triggered by lower-atmosphere phenomena such as hurricanes as well as geophysical events such as earthquakes, as well as being strongly influenced by cyclical and unpredictable solar behaviour. Dual-band GPS receivers provide a popular and convenient means of obtaining information about the ionosphere, and ionospheric disturbances. While GPS measurements can provide clues about the state of the ionosphere, there are many challenges in obtaining reliable information from them. For example, drop-outs and carrier-phase cycle slips may have little influence on using GPS for (medium-precision) navigation, but can lead to signal-processing artefacts that would cause false alarms in detecting ionospheric disturbances. If one is interested in measuring the motion of travelling ionospheric disturbances (TIDs) one must also be able to disentangle the effects of satellite motion from the TID motion. We discuss a novel approach to robustly separating TID waveforms from background trends within GPS time-series of total electron content (TEC), as well as innovative techniques for estimating TID velocities using ideas from Synthetic Aperture Radar (SAR). Underpinning these, we consider how to robustly pre-process GPS time-series to reduce the influence of drop-outs while also reducing data volumes. We present comparisons of our TID velocity estimates with more standard "cross-correlation" techniques, including cases where these standard techniques produce pathological results. We also show results from simulated GPS time-series derived from modelled ionospheric disturbances.

  14. Electrodynamics of the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Ledvina, S. A.; Brecht, S. H.

    2017-12-01

    The presence of the Martian crustal magnetic fields makes a significant modification to the interaction between the solar wind/IMF and the ionosphere of the planet. This paper presents the results of 3-D hybrid simulations of Martian solar wind interaction containing the Martian crustal fields., self-consistent ionospheric chemistry and planetary rotation. It has already been reported that the addition of the crustal fields and planetary rotation makes a significant modification of the ionospheric loss from Mars, Brecht et al., 2016. This paper focuses on two other aspects of the interaction, the electric fields and the current systems created by the solar wind interaction. The results of several simulations will be analyzed and compared. The electric fields around Mars due to its interaction with the solar wind will be examined. Special attention will be paid to the electric field constituents (∇ X B, ∇Pe, ηJ). Regions where the electric field is parallel to the magnetic field will be found and the implications of these regions will be discussed. Current systems for each ion species will be shown. Finally the effects on the electric fields and the current systems due to the rotation of Mars will be examined.

  15. Pre-IGY Ionosphere Over Washington D.C

    NASA Astrophysics Data System (ADS)

    Rice, D. D.; Sojka, J. J.; Eccles, J. V.; Hunsucker, R. D.

    2012-12-01

    A data recovery study has been sponsored by the NSF to determine how successfully the ionosphere during a pre-IGY era can be inferred from archived ionogram films. This pilot study targets the Washington, DC ionosonde WA938 located at Ft. Belvoir in Fairfax, VA (38.7° N, -77.1° E). The focus of the study is 1951, 61 years ago, or about 5 1/2 solar cycles ago. The ionosonde was a model C-3 designed by the National Bureau of Standards (NBS). Ionograms were taken at approximately six per hour, but not uniformly spaced in time. These were recorded on an extended frame 35 mm film. Between 2-4 weeks of ionograms were recorded on a single film reel. These films were archived at the NOAA's National Geophysical Data Center (NGDC), also known as a World Data Center . Over the past five years, NGDC has been able to digitize several months from selected years of these films. These digitized ionogram images are the starting point for the ionospheric data analysis for this study. SEC has developed an image processing technique called the Expert System for Ionogram Reduction (ESIR), which has been patented [Sojka et al. 2009]. This software was developed specifically to recognize and invert an ionogram from a photographic image, producing an equivalent ionospheric electron density profile. The recognition of both virtual height and frequency axes in these ionogram photos is discussed. We demonstrate how we can validate and calibrate these scales independent of the ionosonde's virtual height and frequency markings. Examples during several months of 1951 of the automated ESIR ionogram reduction will be provided. These examples will be presented in the context of how the mid-latitude ionosphere over Washington DC in 1951 compares with the present-day ionosphere. Limitations in the data extraction are discussed from a point of view of how they might affect confidence in the inferred long-term trends in the ionosphere. Reference: Sojka J. J., D. C. Thompson, D. D. Rice (2009

  16. Artificial Aurora and Ionospheric Heating by HAARP

    NASA Astrophysics Data System (ADS)

    Hadavandkhani, S.; Nikouravan, Bijan; Ghazimaghrebi, F.

    2016-08-01

    A recent experiment was achieved at HAARP to study the scaling of the ionospherically generated ELF signal with power transmitted from the high frequency (HF) array. The results were in excellent agreement with computer simulations. The outcomes approving that the ELF power increases with the square of the incident HF power. This paper present a review on the situation of the ionized particles in Ionospheric layer when stimulated by artificial an ELF and VLF external high energy radio waves.

  17. Higher-order ionospheric error at Arecibo, Millstone, and Jicamarca

    NASA Astrophysics Data System (ADS)

    Matteo, N. A.; Morton, Y. T.

    2010-12-01

    The ionosphere is a dominant source of Global Positioning System receiver range measurement error. Although dual-frequency receivers can eliminate the first-order ionospheric error, most second- and third-order errors remain in the range measurements. Higher-order ionospheric error is a function of both electron density distribution and the magnetic field vector along the GPS signal propagation path. This paper expands previous efforts by combining incoherent scatter radar (ISR) electron density measurements, the International Reference Ionosphere model, exponential decay extensions of electron densities, the International Geomagnetic Reference Field, and total electron content maps to compute higher-order error at ISRs in Arecibo, Puerto Rico; Jicamarca, Peru; and Millstone Hill, Massachusetts. Diurnal patterns, dependency on signal direction, seasonal variation, and geomagnetic activity dependency are analyzed. Higher-order error is largest at Arecibo with code phase maxima circa 7 cm for low-elevation southern signals. The maximum variation of the error over all angles of arrival is circa 8 cm.

  18. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  19. Atomic oxygen ions as ionospheric biomarkers on exoplanets

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Withers, Paul; Dalba, Paul A.

    2018-04-01

    The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.

  20. Study of thermospheric and ionospheric tidal responses to the 2009 stratospheric sudden warming by an assimilative atmosphere-ionosphere coupled TIME-GCM with FORMOSAT-3/COSMIC observations

    NASA Astrophysics Data System (ADS)

    Lin, Jia-Ting; Liu, Hanli; Liu, Jann-Yenq; Lin, Charles C. H.; Chen, Chia-Hung; Chang, Loren; Chen, Wei-Han

    In this study, ionospheric peak densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the tidal responses during the 2008/2009. The observations are further compared with the results from an atmosphere-ionosphere coupled model, TIME-GCM. The model assimilates MERRA 3D meteorological data between the lower-boundary (~30km) and 0.1h Pa (~62km) by a nudging method. The comparison shows general agreement in the major features of decrease of migrating tidal signatures (DW1, SW2 and TW3) in ionosphere around the growth phase of SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Both the observation and simulation indicate a pronounced enhancement of the ionospheric SW2 signatures after the stratospheric temperature increase. The model suggest that the typical morning enhancement/afternoon reduction of electron density variation is mainly caused by modification of the ionospheric migrating tidal signatures. The model shows that the thermospheric SW2 tide variation is similar to ionosphere as well as the phase shift. These phases shift of migrating tides are highly related to the present of induced secondary planetary wave 1 in the E region.